National Library of Energy BETA

Sample records for utility prairie winds

  1. Blooming Prairie Public Utilities - Commercial & Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    per technology Program Info Sector Name Utility Administrator Blooming Prairie Public Utilities Website http:www.SaveEnergyInBloomingPrairie.com State Minnesota Program Type...

  2. EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt...

    Office of Environmental Management (EM)

    5: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska SUMMARY DOE's Western...

  3. South Dakota PrairieWinds Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing You the MoneySolarSound Oil Company PrairieWinds Project

  4. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsen Hybrid, LLCBiofuelsEthanol LLC Jump8)Wind

  5. South Dakota PrairieWinds Project Executive Summary Executive Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing You the MoneySolarSound Oil Company PrairieWinds

  6. Prairie Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas:PottawattamiePowerSatMontana: EnergyView GasWind Energy

  7. EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared an EIS to evaluate the environmental impacts of interconnecting the proposed Grande Prairie Wind Farm, in Holt County, near O’Neill, Nebraska, to Western’s power transmission system.

  8. Effects of wind energy development on survival of female greater prairie-chickens

    E-Print Network [OSTI]

    Sandercock, Brett K.

    Effects of wind energy development on survival of female greater prairie-chickens Virginia L of Florida, Gainesville, FL 32611, USA Summary 1. The potential effects of wind energy development on wildlife have received increased attention over the past decade. In Kansas, optimal sites for wind energy

  9. Space use by female Greater Prairie-Chickens in response to wind energy development

    E-Print Network [OSTI]

    Sandercock, Brett K.

    Space use by female Greater Prairie-Chickens in response to wind energy development V. L. WINDER,1-Chickens in response to wind energy development. Ecosphere 5(1):3. http://dx.doi.org/10.1890/ ES13-00206.1 Abstract. Wind energy development is targeted to meet 20% of U.S. energy demand by 2030. In Kansas, optimal sites

  10. Village of Prairie Du Sac, Wisconsin (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho) Jump to:NewVermont (UtilityCity,

  11. Pioneer Prairie II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue Mountain GeothermalPilgerPimaWind FarmI3Q08)Wind

  12. Pioneer Prairie II (09) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue Mountain GeothermalPilgerPimaWind FarmI3Q08)

  13. Prairie Star (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsen Hybrid, LLCBiofuelsEthanol LLC Jump8) Wind

  14. Pretty Prairie High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsen Hybrid,Areas-WindInformation SodaPretty

  15. Research and Development Needs for Wind Systems Utilizing Controllable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development Needs for Wind Systems Utilizing Controllable Grid Simulators and Full Scale Hardware in the Loop Testing Research and Development Needs for Wind Systems...

  16. A Minnesota Blizzard Provides Insight into Utility-Scale Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Minnesota Blizzard Provides Insight into Utility-Scale Wind Turbine Wakes A Minnesota Blizzard Provides Insight into Utility-Scale Wind Turbine Wakes September 12, 2014 - 11:22am...

  17. Report of Energy Efficiency Study and Metering/Utilities Profile for Electricity Deregulation at Prairie View A&M University (PVAMU) Prairie View, Texas 

    E-Print Network [OSTI]

    Zhu, Y.; Claridge, D. E.; Giebler, T.; Abushakra, B.; Turner, W. D.

    1999-01-01

    The physical plant director and staff at Prairie View A&M University (PVAMU) do a good job of maintaining PVAMU facilities and keeping expenses down. During our visit, however, we were able to identify several opportunities ...

  18. Utilization of Wind Energy at High Altitude

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-10

    Ground based, wind energy extraction systems have reached their maximum capability. The limitations of current designs are: wind instability, high cost of installations, and small power output of a single unit. The wind energy industry needs of revolutionary ideas to increase the capabilities of wind installations. This article suggests a revolutionary innovation which produces a dramatic increase in power per unit and is independent of prevailing weather and at a lower cost per unit of energy extracted. The main innovation consists of large free-flying air rotors positioned at high altitude for power and air stream stability, and an energy cable transmission system between the air rotor and a ground based electric generator. The air rotor system flies at high altitude up to 14 km. A stability and control is provided and systems enable the changing of altitude. This article includes six examples having a high unit power output (up to 100 MW). The proposed examples provide the following main advantages: 1. Large power production capacity per unit - up to 5,000-10,000 times more than conventional ground-based rotor designs; 2. The rotor operates at high altitude of 1-14 km, where the wind flow is strong and steady; 3. Installation cost per unit energy is low. 4. The installation is environmentally friendly (no propeller noise). -- * Presented in International Energy Conversion Engineering Conference at Providence., RI, Aug. 16-19. 2004. AIAA-2004-5705. USA. Keyword: wind energy, cable energy transmission, utilization of wind energy at high altitude, air rotor, windmills, Bolonkin.

  19. Utility-Scale Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    turbines as greater than 1 megawatt. This technology class includes land-based and offshore wind projects. 1 Learn more about utility-scale wind at the links below....

  20. Feasibility Study for a Hopi Utility-Scale Wind Project

    SciTech Connect (OSTI)

    Kendrick Lomayestewa

    2011-05-31

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  1. Voltage Impacts of Utility-Scale Distributed Wind

    SciTech Connect (OSTI)

    Allen, A.

    2014-09-01

    Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbine interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.

  2. Pioneer Prairie I (3Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue Mountain GeothermalPilgerPimaWind FarmI3Q08) Wind

  3. Pioneer Prairie I (4Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue Mountain GeothermalPilgerPimaWind FarmI3Q08) WindI

  4. Review of Historical and Modern Utilization of Wind Power Publications Department

    E-Print Network [OSTI]

    Review of Historical and Modern Utilization of Wind Power Publications Department publications Review of Historical and Modern Utilization of Wind Power Per Dannemand Andersen, Ph.D. Content INTRODUCTION THE HISTORY OF WIND POWER q Wind Power in Denmark APPLICATIONS OF WIND POWER WIND POWER

  5. Utility Wind Interest Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumaty JumpRulesUtah'sOhio:sourceRebateWind

  6. Initial Economic Analysis of Utility-scale Wind Integration in Hawaii

    Office of Energy Efficiency and Renewable Energy (EERE)

    Summarizes analysis of the economic characteristics of the utility-scale wind configuration project that has been referred to as the “Big Wind” project.

  7. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  8. Four Corners Wind Resource Center Webinar: Building Utility-Scale Wind: Permitting and Regulation Lessons for County Decision-Makers

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Four Corners Wind Resource Center will host this webinar exploring lessons learned in the permitting of utility-scale wind projects and the development of ordinances and regulations for...

  9. MPC for Wind Power Gradients --Utilizing Forecasts, Rotor Inertia, and Central Energy Storage

    E-Print Network [OSTI]

    MPC for Wind Power Gradients -- Utilizing Forecasts, Rotor Inertia, and Central Energy Storage the control of a wind power plant, possibly consisting of many individual wind turbines. The goal. INTRODUCTION Today, wind power is the most important renewable energy source. For the years to come, many

  10. Initial Economic Analysis of Utility-Scale Wind Integration in Hawaii

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This report summarizes an analysis, conducted by the National Renewable Energy Laboratory (NREL) in May 2010, of the economic characteristics of a particular utility-scale wind configuration project that has been referred to as the 'Big Wind' project.

  11. Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Final report

    SciTech Connect (OSTI)

    Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

    1982-08-01

    The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in the study was the Los Angeles Department of Water and Power and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

  12. Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Revised final report

    SciTech Connect (OSTI)

    Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

    1983-03-01

    The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in this study was the Los Angeles Department of Water and Power, and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

  13. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

  14. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  15. Utilization of localized panel resonant behavior in wind turbine blades.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd

    2010-11-01

    The shear webs and laminates of core panels of wind turbine blades must be designed to avoid panel buckling while minimizing blade weight. Typically, buckling resistance is evaluated by consideration of the load-deflection behavior of a blade using finite element analysis (FEA) or full-scale static loading of a blade to failure under a simulated extreme loading condition. This paper examines an alternative means for evaluating blade buckling resistance using non-destructive modal tests or FEA. In addition, panel resonances can be utilized for structural health monitoring by observing changes in the modal parameters of these panel resonances, which are only active in a portion of the blade that is susceptible to failure. Additionally, panel resonances are considered for updating of panel laminate model parameters by correlation with test data. During blade modal tests conducted at Sandia Labs, a series of panel modes with increasing complexity was observed. This paper reports on the findings of these tests, describes potential ways to utilize panel resonances for blade evaluation, health monitoring, and design, and reports recent numerical results to evaluate panel resonances for use in blade structural health assessment.

  16. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006–2014

    SciTech Connect (OSTI)

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  17. Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)

    SciTech Connect (OSTI)

    Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

    2012-01-01

    Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

  18. Research and Development Needs for Wind Systems Utilizing Controllable...

    Energy Savers [EERE]

    allows for the testing of various real-world aspects of integrating wind energy onto the power grid. The CGI power-electronic grid simulator enables low to medium voltage, single-...

  19. Final Technical Report Laramie County Community College: Utility-Scale Wind Energy Technology

    SciTech Connect (OSTI)

    Douglas P. Cook

    2012-05-22

    The Utility-Scale Wind Energy Technology U.S. Department of Energy (DOE) grant EE0000538, provided a way ahead for Laramie County Community College (LCCC) to increase educational and training opportunities for students seeking an Associate of Applied Science (AAS) or Associate of Science (AS) degree in Wind Energy Technology. The DOE grant enabled LCCC to program, schedule, and successfully operate multiple wind energy technology cohorts of up to 20-14 students per cohort simultaneously. As of this report, LCCC currently runs four cohorts. In addition, the DOE grant allowed LCCC to procure specialized LABVOLT electronic equipment that directly supports is wind energy technology curriculum.

  20. Wind Energy for Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPower IncHomesWind EnergyWind Energy

  1. Lenox Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:LaredoLeelanau County,Lempster WindLenox

  2. Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F. Manwell,

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Utility Scale Wind Turbines on a Grid Connected Island Mohit Dua, Anthony L. Rogers, James F utility scale wind turbines on Fox Islands, located 12 miles from the coast of Maine in the United States of electricity itself. Three locations are analyzed in detail as potential sites for wind turbine installations

  3. Optimal site selection and sizing of distributed utility-scale wind power plants

    SciTech Connect (OSTI)

    Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States); Artig, R. [Minnesota Dept. of Public Service, St. Paul, MN (United States)

    1998-04-01

    As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

  4. Stuart Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreek WindInsulatedCrater,Stuart

  5. Wall Lake Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairexVertVillageVitexWaco,Wales Wind EnergyWall Lake

  6. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  7. Environmental Impacts of Wind Power Development on the Population...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens Environmental Impacts of Wind Power Development on the Population Biology of...

  8. POST-CONSTRUCTION WILDLIFE MONITORING AT THE ATLANTIC CITY UTILITIES AUTHORITY-JERSEY ATLANTIC WIND POWER FACILITY

    E-Print Network [OSTI]

    Firestone, Jeremy

    - Monitor evidence of bird and bat collisions with wind turbines During the reporting period, we conducted with on-site wind turbines. Searches were conducted around each turbine by a single, trained NJAS staff WIND POWER FACILITY PROJECT STATUS REPORT IV Submitted to: New Jersey Board of Public Utilities New

  9. Reliable, Lightweight Transmissions For Off-Shore, Utility Scale Wind Turbines

    SciTech Connect (OSTI)

    Jean-Claude Ossyra

    2012-10-25

    The objective of this project was to reduce the technical risk for a hydrostatic transmission based drivetrain for high-power utility-size wind turbines. A theoretical study has been performed to validate the reduction of cost of energy (CoE) for the wind turbine, identify risk mitigation strategies for the drive system and critical components, namely the pump, shaft connection and hydrostatic transmission (HST) controls and address additional benefits such as reduced deployment costs, improved torque density and improved mean time between repairs (MTBR).

  10. 13www.wildlife.org The Wildlife Society Nesting Prairie-Chickens

    E-Print Network [OSTI]

    Sandercock, Brett K.

    The growing wind energy industry in the Great Plains may not have as strong an impact on greater prairie range. As demand for wind power grows--slated to meet 20 percent of U.S. energy needs by 2030 and after the development of a new wind energy facility in Kansas. The researchers tracked nest site

  11. Minnesota Nuclear Profile - Prairie Island

    U.S. Energy Information Administration (EIA) Indexed Site

    Prairie Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Contributed Paper Effects of Wind Energy Development on Nesting

    E-Print Network [OSTI]

    Sandercock, Brett K.

    Contributed Paper Effects of Wind Energy Development on Nesting Ecology of Greater Prairie 32611, U.S.A. Abstract: Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We

  13. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2014-04-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  14. Revisiting the 'Buy versus Build' decision for publicly owned utilities in California considering wind and geothermal resources

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2001-10-01

    The last two decades have seen a dramatic increase in the market share of independent, non-utility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Specific debates have revolved around the relative advantages of, the types of risk created by, and the regulatory incentives favoring each approach. Very little of this discussion has focused specifically on publicly owned electric utilities, however, perhaps due to the belief that public power's tax-free financing status leaves little space in which NUGs can compete. With few exceptions (Wiser and Kahn 1996), renewable sources of supply have received similarly scant attention in the buy versus build debate. In this report, we revive the ''buy versus build'' debate and apply it to the two sectors of the industry traditionally underrepresented in the discussion: publicly owned utilities and renewable energy. Contrary to historical treatment, this debate is quite relevant to public utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This report looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind or geothermal power--in California. To examine the economic aspects of this decision, we modified and updated a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity.

  15. Prairie Winds ND I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsen Hybrid, LLCBiofuelsEthanol LLC Jump8)

  16. New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May 2010, which examined the viability, benefits, and challenges of integrating as much as 33% wind and solar power into the electricity grid of the western United States.

  17. Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District

    SciTech Connect (OSTI)

    Zaininger, H.W. [Zaininger Engineering Co., Inc., Roseville, CA (United States)

    1998-08-01

    This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plant and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.

  18. Building Green in Greensburg: Prairie Pointe Townhomes

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Prairie Pointe Townhomes in Greensburg, Kansas.

  19. COMPARISON OF THE POPULATIONS OF COMMON WOOD-NYMPH BUTTERFLIES IN BURNED PRAIRIE, UNBURNED PRAIRIE AND OLD FIELD GRASSES

    SciTech Connect (OSTI)

    Hahn, M.; Walton, R.

    2007-01-01

    Common wood-nymph butterfl ies are found throughout the United States and Canada. However, not much is known about how they overwinter or their preferences for particular grasses and habitats. In this study, the impact of prairie management plans on the abundance of the wood-nymph population was assessed, as well as the preference of these butterfl ies for areas with native or non-native grasses. The abundance of common wood-nymph butterfl ies was determined using Pollard walks; more common wood-nymph butterfl ies were found in the European grasses than were found in the burned and unburned prairie sites. The majority of the vegetation at each of the three sites was identifi ed and documented. Using a 1 X 3 ANOVA analysis, it was determined there were signifi cantly more butterfl ies in the European grasses than in the burned and unburned prairie sites (p < 0.0005). There was no signifi cant difference between the burned and unburned treatments of the prairie on the common wood-nymph population. A multiple variable linear regression model described the effect of temperature and wind speed on the number of observed common wood-nymph butterfl ies per hour (p = 0.026). These preliminary results need to be supplemented with future studies. Quadrat analysis of the vegetation from all three sites should be done to search for a correlation between common wood-nymph butterfl y abundance per hour and the specifi c types or quantity of vegetation at each site. The effect of vegetation height and density on the observer’s visual fi eld should also be assessed.

  20. Utility-Scale Wind & Solar Power in the U.S.: Where it stands...

    Energy Savers [EERE]

    solar market has been dominated in recent years by Feed-in-Tariffs (FiT) in Western Europe * At year-end 2013, just over 70 GW of utility-scale and rooftop solar PV was...

  1. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01

    As a result wind turbines can produce energy in winds as lowelectric energy to generate wind, a wind turbine utilizesWind Turbine Projects to Encourage Utilization of Wind Energy

  2. Pocahontas Prairie | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue MountainSchoolPrairie Jump to: navigation, search

  3. Dell Prairie, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi: EnergyS4263135°,Delbuoy JumpDell Prairie,

  4. Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.

    2006-03-01

    Presentation for the European Wind Energy Conference held February 27--March 2, 2006, in Athens, Greece, showing grid impacts of wind power variability.

  5. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  6. Wind Integration National Dataset (WIND) Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  7. Coherent dynamics in the rotor tip shear layer of utility scale wind turbines

    E-Print Network [OSTI]

    Yang, Xiaolei; Barone, Matthew; Sotiropoulos, Fotis

    2015-01-01

    Recent field experiments conducted in the near-wake (up to 0.5 rotor diameters downwind of the rotor) of a 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetery (SLPIV) (Hong et al., Nature Comm., vol. 5, 2014, no. 4216) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. The LES is shown to reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. We show that the visualized vortex patterns are the result of energetic coherent dynamics in the rotor tip shear layer driven by interactions between the tip vortices and a second set of counter-rotating spiral vortice...

  8. The Prairie- Our Heartland: Phriendly Physics

    Broader source: Energy.gov [DOE]

    What was the Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  9. Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States; Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Milligan, M.; Smith, J. C.; DeMeo, E.; Oakleaf, B.; Wolf, K.; Schuerger, M.; Zavadil, R.; Ahlstrom, M.; Nakafuji, D. Y.

    2006-07-01

    Because of wind power's unique characteristics, many concerns are based on the increased variability that wind contributes to the grid, and most U.S. studies have focused on this aspect of wind generation. Grid operators are also concerned about the ability to predict wind generation over several time scales. In this report, we quantify the physical impacts and costs of wind generation on grid operations and the associated costs.

  10. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  11. Showdown on the PrairieShowdown on the Prairie: Use of bison and cattle to restore

    E-Print Network [OSTI]

    Gray, Matthew

    1 Showdown on the PrairieShowdown on the Prairie: Use of bison and cattle to restore native ­ Current perspectives of grazing ­ Grazing effects Diff b t bi d ttl· Differences between bison and cattle and sedges Cattle Eat grasses and forbs and sedges Foraging differencesForaging differences Bison tend

  12. JEPSON PRAIRIE Self Guided Nature Trail

    E-Print Network [OSTI]

    Ishida, Yuko

    . Mounds emerge from the prairie like islands with their tops fringed with grasses that sway and rustle of October and March. The cool moist winter and spring are followed by summer heat and drought the plants to flower and ripen their seed before the heat and drought of summer. The animal residents also

  13. Extractable soil phosphorus in Blackland Prairie soils 

    E-Print Network [OSTI]

    Byrd, Robert Claude

    1995-01-01

    crop P response, evaluate crop response to P fertilizer placement and rate, and compare extractable P levels from TAEX, Bray 1, Olsen, TAEX 1, TAEX 2, and TAEX 3 in selected Blackland Prairie soils. Five field locations were established with replicated...

  14. Prairie Technologies User's Manual 1. Preface

    E-Print Network [OSTI]

    Yavuz, Deniz

    . If water gets into a system component, discontinue use of the system, turn off power, and contact Prairie Technologies. Warning Labels Used on the Ultima Multiphoton Microscopy System Warning label on beam cover and light box Warning label on interlocked components Warning label for defeated interlocks (on interlock

  15. In Van Wert and Paulding counties, Ohio's first utility-scale wind energy farms (Horizon Wind Energy's Timber Road II and Iberdrola

    E-Print Network [OSTI]

    - nities throughout Ohio on how to prepare for and attract potential renewable energy developments. More Energy's Timber Road II and Iberdrola Renewables' Blue Creek) were completed in 2011. Nancy Bowen- Ellzey are proving it," said Dan Litchfield, project developer for the Blue Creek Wind Farm, who has been working

  16. Final Summary Report: Em-Powering Coastal States and Utilities through Model Offshore Wind Legislation and Outreach

    SciTech Connect (OSTI)

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-11-30

    The final summary report summarizes the most significant findings from three project reports detailing: feed-in tariffs, model request for proposals for new generation, and model state offshore wind power legislation.

  17. Wind energy: Program overview, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  18. City of Blooming Prairie, Minnesota (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point,

  19. Blooming Prairie Public Utilities - Commercial & Industrial Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De pEnergy Industrial LocalApril 15, 2015Efficiency Rebate

  20. NREL SBV Pilot Wind Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities to develop everything at one location-from small residential wind turbines and components to utility-scale offshore wind technologies. With the NWTC, partners...

  1. Prairie View A&M University Whole Campus Energy Analysis 

    E-Print Network [OSTI]

    Haberl, J. S.; Claridge, D. E.; Turner, W. D.

    1991-01-01

    Prairie View A&M University started a large scale energy management program in 1987 and 1988. This report presents an analysis of whole-campus energy consumption at the Prairie View A&M Campus where whole-campus indices were developed that normalize...

  2. Prairie Star (07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsen Hybrid, LLCBiofuelsEthanol LLC Jump

  3. Fatal Flaw Analysis of Utility-Scale Wind Turbine Generators at the West Haymarket Joint Public Agency. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-08-01

    Fatal flaw analysis of utility-scale wind turbines at the West Haymarket Joint Public Agency brownfields site in Lincoln, Nebraska, funded by EPA.

  4. Technical and Economic Feasibility Study of Utility-Scale Wind at the Doepke-Holliday Superfund Site. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-05-01

    This report is a technical and financial feasibility study of a utility-scale wind turbine on the Doepke Superfund site.

  5. Feasibility and preliminary design study for a high velocity, low density wind tunnel utilizing the thermal creep effect 

    E-Print Network [OSTI]

    Stephen, Alton Lee

    1968-01-01

    FE7 SE'BID 1'"Y AND PB I '&NAEY DLS1GN STUDY POR A H. GH V' LOCITY, 10iif DFN ITY BIND UNNEL UT1LI71NG THE THEP". AL CREEP EFFECT A Thesis Alton Lee Steghens, Jr. Submitted to the Graduate College of the Texas AKN University in partial fulf... illment o- the regui ements for the degree NASTEP. 0 SCIENCE Aug st 1968 Yajor Subject: A rospa. e Engineering FEASIBILITY AND PRELIMINARY DESIGN STUDY FOR A HIGH VELOCITY, LOW DENSITY HIND TUNNEL UTILIZING THE THERiMAL CREEP EFFECT A Thesis Alton...

  6. Community Wind: Once Again Pushing the Envelope of Project Finance

    E-Print Network [OSTI]

    bolinger, Mark A.

    2011-01-01

    panel at AWEA’s Small and Community Wind Conference &of relatively small utility-scale wind power projects thattheir typically small size, community wind projects should

  7. Fermilab Workshop for Prairie- Our Heartland: Physics Institutes (second session)

    Broader source: Energy.gov [DOE]

    What was the Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  8. Two decades of prairie restoration at Fermilab, Batavia, Illinois

    SciTech Connect (OSTI)

    Betz, R.F.; Lootens, R.J.; Becker, M.K.

    1996-12-31

    Successional Restoration is the method being used to restore the prairie at Fermilab on the former agricultural fields. This involves an initial planting, using aggressive species that have wide ecological tolerances which will grow well on abandoned agricultural fields. Collectively, these species are designated as the prairie matrix. The species used for this prairie matrix compete with and eventually eliminate most weedy species. They also provide an adequate fuel load capable of sustaining a fire within a few years after a site has been initially planted. Associated changes in the biological and physical structure of the soil help prepare the way for the successful introduction of plants of the later successional species. Only after the species of the prairie matrix are well established, is the species diversity increased by introducing species with narrower ecological tolerances. These species are thus characteristic of the later successional stages.

  9. Fermilab Workshop for Prairie- Our Heartland: Biology Institute

    Broader source: Energy.gov [DOE]

    What was the Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  10. Fermilab Workshop for Prairie- Our Heartland: Chemistry Institutes

    Broader source: Energy.gov [DOE]

    What was the Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  11. Native Tallgrass Prairie Remnants as "Living Museums": Landscape Context, Metacommunity Dynamics, and Private Management Practices of Native Prairie Hay Meadows

    E-Print Network [OSTI]

    Kilroy Mollmann, Hayley A.

    2010-08-27

    In fragmented tallgrass prairie remnants within eastern Kansas, smaller patch area, greater isolation, and poorer matrix quality are predicted to result in (1) decreased species richness, (2) decreased site `quality,' and ...

  12. Experimental warming increases CO2 saturation in a shallow prairie pond

    E-Print Network [OSTI]

    Flanagan, Kyla M.; McCauley, Edward

    2010-01-01

    in a shallow prairie pond Kyla M. Flanagan • Edward McCauleydynamics of lakes and ponds in order to assess contributionsin a shallow prairie pond. We outline and test three

  13. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01

    wind generators . For utility planning purposes an LOLPWe will see that for utility system planning purposes, it is

  14. Spatial variation in keystone effects: small mammal diversity associated with black-tailed prairie dog colonies

    E-Print Network [OSTI]

    Collinge, Sharon K.

    Spatial variation in keystone effects: small mammal diversity associated with black-tailed prairie composition have earned them status as a keystone species. We examined the impact of black-tailed prairie dogs the species' geographic range. We posed 2 nested hypotheses: 1) prairie dogs function as a keystone species

  15. DEMEC Member Utilities- Green Energy Program Incentives (8 utilities)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  16. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Bioenergy Power Systems Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Wind Power Introduction The Wind Power...

  17. Wind powering America: Vermont

    SciTech Connect (OSTI)

    NREL

    2000-04-11

    Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

  18. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue MountainSchoolPrairiePonder,Abbey School Wind

  19. WINDExchange: Utility-Scale Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0 -UsingHeatInformation ResourcesAboutHowMaps &

  20. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  1. Wind Vision: A New Era for Wind Power

    Broader source: Energy.gov (indexed) [DOE]

    a period of volatility in natural gas fuel prices launched the modern era of U.S. wind power. Electric system operators and utilities now routinely consider wind power as part...

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Inc. 2009 Wind Technologies Market Report Mexico (7%). It isMexico Cowlitz Public Utility District WPPI Energy Alliant Energy Puget Sound Energy Northwestern Energy * Based on a projection of wind

  3. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect (OSTI)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.

  4. Portsmouth Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue MountainSchoolPrairiePonder,Abbey School WindWind

  5. OETR OETR Symposium Utilization of

    E-Print Network [OSTI]

    Tokyo, University of

    OETR OETR Symposium Utilization of Offshore Wind Energy for a New Landscape of Beautiful Japan OETR) and Chuichi ARAKAWA (Vice president of the World Wind Energy Association and The University of Tokyo) 1 Part 1 + OEAJ Two keys, Bankability and Public Acceptance A leading veri cation project for offshore wind

  6. Varieties of Cotton in the Red Prairies of Northwest Texas. 

    E-Print Network [OSTI]

    Quinby, John Roy

    1927-01-01

    ......................................... Results in 1924 12 ......................................... ResuTts in 1925 13 .......................................... Resnlts in 1926 14 BULLETIN NO. 366 - NOVEMBER, 1927 VARIETIES OF COTTON IN THE RED PRAIRIES OF NORTH- WEST TEXAS Substation No..... ............... Durango. ................. Sunshine.. ................ Rowden.. ................. Snowflake.. ............... Summerour & Co Vernon Texas Summerour & SO; ~erno; Texas R. E. Hudson, ~uhurn, AI;. Cris Reuter, New Orleans, La. Texas Substat~on No.. 12...

  7. Multichannel Confocal User Guide Note: for more details see the Prairie user manual at http://www.prairie

    E-Print Network [OSTI]

    Yavuz, Deniz

    @wisc.edu) Turning on the instrument 1. 2. 3. Turn on laser launches (on the right side of the computer cart). Let turn on main power (behind the monitor) 5. Turn on the computer (open panel on from of computer tower to find the power button). 6. Turn on the power behind the microscope (on the right side) 7. Open Prairie

  8. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01

    Encourage Utilization of Wind Energy Resources, 27 TiEMiP.supra note 44, at 92; Wind Energy, Ri--NEWABLE ENEzRGY PoL'ysupply by 2030. See, Wind Energy, ENVI'L. AND ENERGY STUDY

  9. Prairies and Savannas of Wisconsin: References Cochrane, T. S. and H. H. Iltis. 2000. Atlas of the Wisconsin prairie and savanna flora.

    E-Print Network [OSTI]

    Emshwiller, Eve

    of the Wisconsin prairie and savanna flora. Department of Natural Resources and University of Wisconsin-Madison Herbarium, Madison, Wisconsin. Available from info/EcoNatRes.Aldo> (accessed December 2005). Ladd, D.M. 1995. Tallgrass prairie wildflowers: a field guide. The Nature

  10. Wind Plant Ramping Behavior

    SciTech Connect (OSTI)

    Ela, E.; Kemper, J.

    2009-12-01

    With the increasing wind penetrations, utilities and operators (ISOs) are quickly trying to understand the impacts on system operations and planning. This report focuses on ramping imapcts within the Xcel service region.

  11. Phase 2 Report: Oahu Wind Integration and Transmission Study...

    Office of Environmental Management (EM)

    OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) Initial Economic Analysis of Utility-scale Wind Integration in Hawaii...

  12. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Office of Environmental Management (EM)

    The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

  13. New Report Evaluates Impacts of DOE's Wind Powering America Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    which are intended to increase the deployment of utility-scale, community, and small wind systems. These state-level activities include the formation of wind working groups...

  14. Helicobacter marmotae and novel Helicobacter and Campylobacter species isolated from the livers and intestines of prairie dogs

    E-Print Network [OSTI]

    Beisele, Maike

    Prairie dogs (Cynomys ludovicianus) are used to study the aetiology and prevention of gallstones because of the similarities of prairie dog and human bile gallstone composition. Epidemiological and experimental studies ...

  15. NREL's Wind R&D Success Stories, National Wind Technology Center (NWTC) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    Wind energy research, development, and deployment have reduced the cost of large and small wind turbine technologies, increased wind energy system reliability and operability, lowered risk by validating performance and design, increased the understanding of the true impacts of wind energy on the U.S. electrical infrastructure, and expanded wind energy markets. A synopsis of research conducted on utility-scale wind turbines, small wind turbines, software, components, market development and grid integration are detailed.

  16. Pasture Improvement in the Gulf Coast Prairie of Texas. 

    E-Print Network [OSTI]

    Reynolds, E. B. (Elbert Brunner); Stansel, R. H. (Roy Harrison); Jones, John H.

    1939-01-01

    , carpet, and Angleton grasses, California bur clover (toothed bur clover), White Dutch clover, and common lespedez ?commended for permanent pastures in the region. Adequate drair wing to control weeds, and the seeding of desirable and nuapbcu pasture... grasses and clovers in a permanent pasture, and with- stands heavy grazing. This grass is recommended in any mixture for permanent pasture in the Gulf Coast Prairie. Bahia grass, Paspalum notaturn, is a native of the West Indies and South America...

  17. Pretty Prairie, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology Jump to:PresidioPrairie, Kansas: Energy

  18. Prairie Energy Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhonoSolar and Wind JumpPowercomPublic Works

  19. Prairie View A&M University Whole Campus Energy Report Update 

    E-Print Network [OSTI]

    Haberl, J. S.; Claridge, D. E.; Turner, W. D.

    1992-01-01

    Prairie View A&M University started a large scale energy management program in 1987 and 1988. This updated report presents an analysis of whole-campus energy consumption at the Prairie View A&M Campus where whole-campus indices were developed...

  20. IMPACTS OF OIL AND NATURAL GAS ON PRAIRIE GROUSE: CURRENT KNOWLEDGE AND RESEARCH NEEDS1

    E-Print Network [OSTI]

    Beck, Jeffrey L.

    IMPACTS OF OIL AND NATURAL GAS ON PRAIRIE GROUSE: CURRENT KNOWLEDGE AND RESEARCH NEEDS1 Jeffrey L current knowledge on the effects of oil and gas development and production on prairie grouse based to impacts from oil and gas development or (ii) correlative studies evaluating cause and effect relationships

  1. A decrease of circulating CD4? T cells in Attwater's prairie chickens infected with reticuloendotheliosis virus 

    E-Print Network [OSTI]

    Ferro, Pamela Joyce Bloomer

    2001-01-01

    of this project was to develop a method to monitor CD4? and CD8? T cells in prairie chickens and to determine if there was an alteration in the number of circulating T cells associated with REV infection in prairie chickens. A panel of anti-chicken monoclonal...

  2. The Vascular Flora of the Tallgrass Prairie Preserve, Osage County, Oklahoma

    E-Print Network [OSTI]

    Palmer, Michael W.

    The Vascular Flora of the Tallgrass Prairie Preserve, Osage County, Oklahoma Michael W. Palmer* Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078-3013 ABSTRACT The 15,410 ha Tallgrass Prairie Preserve (Osage County, Oklahoma), managed by The Nature Conservancy, consists

  3. A FAUNISTIC SURVEY OF NATIVE BEES IN THE MISSISSIPPI BLACK BELT PRAIRIE

    E-Print Network [OSTI]

    Ray, David

    A FAUNISTIC SURVEY OF NATIVE BEES IN THE MISSISSIPPI BLACK BELT PRAIRIE SURVEY OF NATIVE BEES IN THE MISSISSIPPI BLACK BELT PRAIRIE By Beverly A. McGee Smith of Study: A FAUNISTIC SURVEY OF NATIVE BEES IN THE MISSISSIPPI BLACK BELT

  4. Keystone rodent interactions: prairie dogs and kangaroo rats structure the biotic composition of a desertified grassland

    E-Print Network [OSTI]

    Davidson, Ana

    Keystone rodent interactions: prairie dogs and kangaroo rats structure the biotic composition. Keystone rodent interactions: prairie dogs and kangaroo rats structure the biotic composition of a desertified grass- land. Á Ecography 29: 755Á765. Understanding the interactive effects of multiple keystone

  5. Pomeroy III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue MountainSchoolPrairie JumpPolytechnic4Q07) WindIII

  6. Pomeroy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue MountainSchoolPrairie JumpPolytechnic4Q07)Wind

  7. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    SciTech Connect (OSTI)

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

    2014-04-30

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.

  8. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  9. Community Wind: Once Again Pushing the Envelope of Project Finance

    E-Print Network [OSTI]

    bolinger, Mark A.

    2011-01-01

    Suitable for Farmer-Owned Wind Power Projects in the UnitedAnalysis of Community Wind Power Development Options insmall utility-scale wind power projects that sell power on

  10. Fully coupled dynamic analysis of a floating wind turbine system

    E-Print Network [OSTI]

    Withee, Jon E

    2004-01-01

    The use of wind power is in a period of rapid growth worldwide and wind energy systems have emerged as a promising technology for utilizing offshore wind resources for the large scale generation of electricity. Drawing ...

  11. Economic Development Benefits of the Mars Hill Wind Farm, Wind Powering America Rural Economic Development, Case Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    This case study summarizes the economic development benefits of the Mars Hill Wind Farm to the community of Mars Hill, Maine. The Mars Hill Wind Farm is New England's first utility-scale wind farm.

  12. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  13. 2010 Cost of Wind Energy Review

    SciTech Connect (OSTI)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  14. Assessment of lesser prairie-chicken lek density relative to landscape characteristics in Texas

    SciTech Connect (OSTI)

    Jennifer Timmer; Matthew Butler; Warren Ballard; Clint Boal; Heather Whitlaw

    2012-08-31

    My 2.5-yr Master'Â?s project accomplished the objectives of estimating lesser prairie-chicken (LPC) lek density and abundance in the Texas occupied range and modeling anthropogenic and landscape features associated with lek density by flying helicopter lek surveys for 2 field seasons and employing a line-transect distance sampling method. This project was important for several reasons. Firstly, wildlife managers and biologists have traditionally monitored LPC populations with road-based surveys that may result in biased estimates and do not provide access to privately-owned or remote property. From my aerial surveys and distance sampling, I was able to provide accurate density and abundance estimates, as well as new leks and I detected LPCs outside the occupied range. Secondly, recent research has indicated that energy development has the potential to impact LPCs through avoidance of tall structures, increased mortality from raptors perching on transmission lines, disturbance to nesting hens, and habitat loss/fragmentation. Given the potential wind energy development in the Texas Panhandle, spatial models of current anthropogenic and vegetative features (such as transmission lines, roads, and percent native grassland) influencing lek density were needed. This information provided wildlife managers and wind energy developers in Texas with guidelines for how change in landscape features could impact LPCs. Lastly, LPC populations have faced range-wide declines over the last century and they are currently listed as a candidate species under the Endangered Species Act. I was able to provide timely information on LPC populations in Texas that will be used during the listing process.

  15. North Prairie, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire:source History ViewLittlePerry,Prairie, Wisconsin:

  16. Eden Prairie, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetekofEcogeo MeiotheEcoprogettiPrairie,

  17. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01

    to generate in this way wind speed fluctuations with similar statistics as observed in nature. Forces wereWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  18. From "Sea of Grass" to "Wire and Rail": Melville's Evolving Perspective on the Prairies

    E-Print Network [OSTI]

    Schultz, Elizabeth A.

    2011-01-01

    , commerce, and greed explicitly brought on by Euroamericans. While Melville’s metaphorical use of prairie images in his early writings may, in Buell’s terms, appear anthropocentric, in Moby-Dick as well as in his later work, Clarel and John Marr and Other... and the mystic of the prairie landscape. In Mardi, Melville recalls that the prairie may be as still as “an August noon” (M 567); in Moby-Dick, he refers to its “placidity” (MD 335), and later in John Marr and Other Poems, he writes that “Blank stillness would...

  19. Analysis of wind power ancillary services characteristics with German 250-MW wind data

    SciTech Connect (OSTI)

    Ernst, B.

    1999-12-09

    With the increasing availability of wind power worldwide, power fluctuations have become a concern for some utilities. Under electric industry restructuring in the US, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. This paper analyzes wind power in the context of ancillary services, using data from a German 250 Megawatt Wind project.

  20. Wind Energy in Indian Country: Turning to Wind for the Seventh Generation

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Wind Energy in Indian Country: Turning to Wind for the Seventh Generation by Andrew D. Mills: ___________________________________________ Jane Stahlhut Date #12;Wind Energy in Indian Country A.D. Mills Abstract - ii - Abstract Utility-scale wind projects are increasingly being developed in rural areas of the United States. In the West

  1. Oregon Department of Energy Webinar: Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE)

    The intended audience for this webinar on offshore wind basics is decision-makers, energy industry practitioners, utilities, and those knowledgeable about renewable energy. The webinar will feature...

  2. Lower Sioux Wind Feasibility & Development

    SciTech Connect (OSTI)

    Minkel, Darin

    2012-04-01

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  3. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  4. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Savers [EERE]

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of...

  5. Lesser prairie-chicken demographics in Texas: survival, reproduction, and population viability 

    E-Print Network [OSTI]

    Lyons, Eddie Keith

    2009-05-15

    , survival, reproduction, and population viability were lower in the shinnery oak compared to the sand sagebrush vegetation type. Lesser prairie-chicken survival differed between breeding and non-breeding periods. I estimated annual survival of lesser...

  6. RESEARCH ARTICLE Connectivity of prairie dog colonies in an altered landscape

    E-Print Network [OSTI]

    Collinge, Sharon K.

    experienced extensive habitat alter- ation, fragmenting populations of species such as black- tailed prairie), agriculture (Levy et al. 2010) and dams (Beneteau et al. 2009). Furthermore, landscape chan- ges can alter

  7. The effects of shinnery oak removal on lesser prairie chicken survival, movement, and reproduction 

    E-Print Network [OSTI]

    Leonard, John Peter

    2009-05-15

    The lesser prairie chicken (Tympanuchus pallidicinctus; LPC) has declined in numbers since the late 1800s. Reasons for this decline have been attributed to habitat degradation (decreased forb and grass cover and increased woody cover...

  8. Dissolved inorganic carbon in soil and shallow groundwater, Konza Prairie LTER Site, NE Kanas, USA

    E-Print Network [OSTI]

    Tsypin, Mikhail

    2011-12-31

    Sources and seasonal trends of dissolved inorganic carbon (DIC) in a shallow limestone aquifer were studied for 1 year at the Konza Prairie LTER (Long-Term Ecological Research) Site in northeastern Kansas, from spring 2010 to spring 2011. Annual...

  9. Fermilab Workshop for Prairie- Our Heartland: Insects at Work in Our World

    Broader source: Energy.gov [DOE]

    What was the Midwest like 200 years ago? The Prairie - Our Heartland is both an interdisciplinary ecology program including free field trips to Fermilab for upper elementary students and a...

  10. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01

    , wind power has been expanding globally in recent years and it has become a dominant renewable energy the turbulent atmosphere and the wind turbine wake in order to optimize the design of the wind turbine as wellWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary

  11. 2013 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orrell, Alice C.; Rhoads-Weaver, H. E.; Flowers, Larry T.; Gagne, Matthew N.; Pro, Boyd H.; Foster, Nikolas AF

    2014-08-20

    The purpose of this report is to quantify and summarize the 2013 U.S. distributed wind market to help plan and guide future investments and decisions by industry stakeholders, utilities, state and federal agencies, and other interested parties.

  12. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  13. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  14. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  15. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, Charles J. (Rexford, NY); Rhudy, Ralph G. (Scotia, NY); Bushman, Ralph E. (Lathem, NY)

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  16. Wind Farm Power System Model Development: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.

    2004-07-01

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  17. Wind | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:Wind WorldWind forWindWind

  18. AN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITY PLANNING AND PROCUREMENT PROCESSES

    E-Print Network [OSTI]

    Mills, Andrew D.

    2014-01-01

    2012. “Diversity Benefit of Solar and Wind with IncreasingElectric Power Association. 2009. Utility Solar ProcurementStudy: Solar Electricity in the Utility Market. Washington

  19. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  20. Wind energy systems information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  1. EIS-0418: PrairieWinds Project, South Dakota | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996 EM Health and Intercom Energy,of91: Draft8: Final Environmental

  2. Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartmentApril2014Federalintended to

  3. DOE/EIS-0485 Final Environmental Impact Statement Grande Prairie Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153 METHODS DERIVATION-2013,3O190-SA-032 FISCALI5 Final

  4. ENS-1363/99-0017 Wind farm production prediction

    E-Print Network [OSTI]

    .1 The wind farm models 22 9 Utility experience 27 9.1 Power markets 27 9.2 Daily dispatch 27 9.3 Balance Wind power models 15 6.1 The wind farm model ( ˇ ˇ˘ Ł¤ Ą¦ ) 17 6.2 The upscaling model. 4 ENS-1363/99-0017 #12;2 Introduction The amount of wind power install

  5. Statistical Analysis of Environment Canada's Wind Speed Data

    E-Print Network [OSTI]

    Taylor, James H.

    of wind power generation poses operational difficulties to electricity markets. An electricity market to the defaulters. The wind energy (WE) utility thus faces the challenge of producing accurate power generation the kinetic energy in the wind is converted into electric power by the wind power generator. Stationary time

  6. Wind velocity measurements using a pulsed LIDAR system: first results

    E-Print Network [OSTI]

    Peinke, Joachim

    , M K¨uhn3 and J Peinke4 1,4 ForWind Center for Wind Energy Research, University of Oldenburg, Germany 2,3 Endowed Chair of Wind Energy, University of Stuttgart, Germany E-mail: 1 matthias relevance for wind energy utilization. Different technologies are in use in this field, among them LIDAR

  7. Pomeroy II (4Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue MountainSchoolPrairie JumpPolytechnic4Q07) Wind

  8. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  9. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  10. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01

    Huei. 2005. Primer on Wind Power for Utility Applications.Wan, Yih-Huei. 2004. Wind Power Plant Behaviors: Analysesof Long-Term Wind Power Data. National Renewable Energy Lab

  11. Financial Innovation Among the Community Wind Sector in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2012-01-01

    small utility-scale wind power projects that are at leastbreak into the broader U.S. wind power market. For example,for a limited time, wind power (and other types of) projects

  12. Operational behavior of a double-fed permanent magnet generator for wind turbines

    E-Print Network [OSTI]

    Reddy, Sivananda Kumjula

    2005-01-01

    Greater efficiency in wind turbine systems is achieved by allowing the rotor to change its rate of rotation as the wind speed changes. The wind turbine system is decoupled from the utility grid and a variable speed operation ...

  13. NREL: Wind Research - Utility-Scale Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine

  14. Osage Municipal Utilities Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid DataInformationOpen EnergyPre-TaxMunicipal

  15. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    Hallgren, Willow

    Australia is considered to have very good wind resources, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account ...

  16. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    Hallgren, Willow

    Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to ...

  17. Central Lincoln People's Utility District - Renewable Energy...

    Broader source: Energy.gov (indexed) [DOE]

    PV (Residential): 2,000 PV (Commercial): 5,000 Solar Water Heating: 800 Wind: 5,000 Hydro Electric: 5,000 Program Info Sector Name Utility Administrator Central Lincoln...

  18. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  19. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    SciTech Connect (OSTI)

    Douglas Larson; Thomas Carr

    2012-03-30

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

  20. Financial Impact of Energy Efficiency under a Federal Renewable Electricity Standard: Case Study of a Kansas "super-utility"

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01

    all-in, first-year 2012 cost for wind energy under a powerO&M) costs for utility-sponsored wind and biofuel projectsovernight capital cost of the wind facility and the biofuel

  1. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  2. Idaho_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Bryans Run Cell Tower Site Wilson Peak Eckert Site Loertscher Boise State's Wind Data Link Wind Power Idaho Wind Data See also: Idaho Energy Resources - Wind, American...

  3. Model Ordinance for Siting of Wind-Energy Systems

    Broader source: Energy.gov [DOE]

    With respect to small wind turbines, the model ordinance addresses setbacks, access, lighting, noise, appearance, code compliance, utility notification, abandonment, and the permitting process....

  4. Arizona/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Requirements Most utilities and other electricity providers require you to enter into a formal agreement with them before you interconnect your wind turbine with the...

  5. Optimization Online - Stochastic Real-Time Scheduling of Wind ...

    E-Print Network [OSTI]

    Alireza Soroudi

    2015-01-03

    Jan 3, 2015 ... Stochastic Real-Time Scheduling of Wind-thermal Generation Units in an Electric Utility. Alireza Soroudi (alireza.soroudi ***at*** ucd.ie)

  6. Generating Economic Development from a Wind Power Plant in Spanish...

    Wind Powering America (EERE)

    of the utility companies. In Utah, the Commission is responsible for determining avoided cost rates for qualifying facilities. As will be noted later, the Spanish Fork Wind...

  7. Wind Integration Datasets from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Wind Integration Datasets provide time-series wind data for 2004, 2005, and 2006. They are intended to be used by energy professionals such as transmission planners, utility planners, project developers, and university researchers, helping them to perform comparisons of sites and estimate power production from hypothetical wind plants. NREL cautions that the information from modeled data may not match wind resource information shown on NREL;s state wind maps as they were created for different purposes and using different methodologies.

  8. Meteorological aspects of siting large wind turbines

    SciTech Connect (OSTI)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  9. Technical Note Field Test of Digital Photography Biomass Estimation Technique in Tallgrass Prairie

    E-Print Network [OSTI]

    Morrison, Lloyd W.

    on a linear transformation (i.e., regressing dry clipped weights against percent digital obstruction). We usedTechnical Note Field Test of Digital Photography Biomass Estimation Technique in Tallgrass Prairie or proximity to a drying oven. We tested the digital photography biomass estimation technique for measuring

  10. Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006

    E-Print Network [OSTI]

    Beck, Jeffrey L.

    Summary of Oil and Natural Gas Development Impacts on Prairie Grouse September 2006 Jeffrey L. Beck Independent Avenue Grand Junction, CO 81505 Please cite as: Beck, J. L. 2006. Summary of oil and natural gas). These statistics suggest oil and gas development is rapidly increasing in the West, propelled by national

  11. Extensive investigation of reticuloendotheliosis virus in the endangered Attwater's prairie chicken 

    E-Print Network [OSTI]

    Bohls, Ryan Lanier

    2007-09-17

    ........................................................................................... 82 V FLOW CYTOMETRIC ANALYSIS OF REV INFECTION IN CD4 + AND CD8 + T CELLS...................................................................................... 84 Introduction... ................................................................................................ 81 15. Comparison of CD4 + and CD8 + T cell percentages in REV infected and uninfected Attwater’s prairie chickens.................................................................... 90 ix 16. Histograms showing percentage of cells...

  12. Geothermal research project sets sights on Grande Prairie By Jenny Oatway May 20, 2015

    E-Print Network [OSTI]

    Wang, Hao "Howard"

    off between the cost of drilling that deep and also much less is known about the reservoirs Geothermal research project sets sights on Grande Prairie By Jenny Oatway May 20, 2015 City Council is excited about an opportunity to explore the potential for harnessing geothermal energy

  13. LANDSCAPE IMPACTS ON FISH COMMUNITY STRUCTURE AND FOOD CHAIN LENGTH IN PRAIRIE AND OZARK RIVERS

    E-Print Network [OSTI]

    Desotelle, Micaleila D.

    2008-03-28

    in Ozark streams. The bass and sunfish family Centrarchidae was the second most abundant taxa, but less so in prairie rivers. Suckers in the family Catostomidae were important in all rivers, but were a smaller percentage. Most rivers sampled had a small...

  14. DOE Announces Webinars on the Distributed Wind Power Market,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Energy Service Contracts, and More DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy Service Contracts, and More August 21, 2013 - 12:00pm Addthis...

  15. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  16. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering University of Dayton... Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical...

  17. Hualapai Tribal Utility Development Project

    SciTech Connect (OSTI)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.

  18. Wind and Solar Energy Curtailment Practices (Presentation)

    SciTech Connect (OSTI)

    Bird, L.; Cochran, J.; Wang, X.

    2014-10-01

    This presentation to the fall 2014 technical meeting of the Utility Variable-Generation Integration Group summarizes experience with curtailment of wind and solar in the U.S.

  19. Quantification of Impurities in Prairie Snowpacks and Evaluation and Assessment of Measuring Snow Parameters from MODIS Images 

    E-Print Network [OSTI]

    Morris, Jennifer Nicole

    2012-10-19

    Extensive research on soot in snow and snow grain size has been carried out in the Polar Regions. However, North American prairie snowpacks lack observations of soot in snow on snow albedo which adds uncertainty to the overall global effect...

  20. SEASONAL SURVIVAL, REPRODUCTION, AND USE OF WILDFIRE AREAS BY LESSER PRAIRIE CHICKENS IN THE NORTHEASTERN TEXAS PANHANDLE 

    E-Print Network [OSTI]

    Jones, Ryan S.

    2010-07-14

    (Artemisia filifolia) vegetation type as compared to the shinnery oak (Quercus harvardii) type (40%). I also evaluated post-burn habitat alterations and plant succession (1 year and 2 years after burning) as potential lesser prairie chicken habitat. After...

  1. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  2. 2014 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  3. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  4. Workplace Charging Challenge Partner: Prairie State College | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind(NREL) | DepartmentDepartment

  5. Simulation of winds as seen by a rotating vertical axis wind turbine blade

    SciTech Connect (OSTI)

    George, R.L.

    1984-02-01

    The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

  6. Manzanita Wind Energy Feasibility Study

    SciTech Connect (OSTI)

    Trisha Frank

    2004-09-30

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

  7. Distributed Wind Policy Comparison Tool

    SciTech Connect (OSTI)

    2011-12-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE’s '20% Wind Energy by 2030' report and helping to meet COE targets.

  8. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren, Udaya Bhaskar;1 The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren* , Udaya Bhaskar Gunturu, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35

  9. The Potential Wind Power Resource in Australia: A New Perspective*

    E-Print Network [OSTI]

    The Potential Wind Power Resource in Australia: A New Perspective* Willow Hallgren, Udaya Bhaskar: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;The Potential Wind Power Resource in Australia, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased

  10. Wave Models for Offshore Wind Turbines Puneet Agarwal

    E-Print Network [OSTI]

    Manuel, Lance

    Wave Models for Offshore Wind Turbines Puneet Agarwal§ and Lance Manuely Department of Civil. These wave modeling assumptions do not adequately represent waves in shallow waters where most offshore wind for estimating loads on the support structure (monopile) of an offshore wind turbine. We use a 5MW utility

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  12. Small Wind Electric Systems: A U.S. Consumer's Guide

    SciTech Connect (OSTI)

    None

    2007-08-01

    The handbook provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy.

  13. Establishing an In-House Wind Maintenance Program

    SciTech Connect (OSTI)

    2011-12-01

    Update to the 2008 guidebook titled “Establishing an In-house Wind Maintenance Program”, which was developed to support utilities in developing O&M strategies. This update includes significant contributions from utilities and other stakeholders around the country, representing all perspectives and regardless of whether or not they own wind turbines or projects.

  14. Prairie Island Nuclear Station Spent Filter Processing for Direct Disposal - 12333

    SciTech Connect (OSTI)

    Anderson, H. Michael [WMG, Inc., 16 Bank Street, Peekskill, NY 10566 (United States)

    2012-07-01

    This paper will discuss WMG's filter processing experience within the commercial nuclear power industry, specifically recent experience processing high activity spent filters generated by Xcel Energy's Prairie Island Nuclear Station (Prairie Island), located in Welch, MN. WMG processed for disposal eighty-four 55-gallon drums filled with varying types of high activity spent filters. The scope of work involved characterization, packaging plan development, transport to the WMG's Off-Site Processing location, shredding the filter contents of each drum, cement solidifying the shredded filter material, and finally shipping the solidified container of shredded filter material to Clive, Utah where the container was presented to EnergySolutions Disposal site for disposal in their Containerised Waste Facility. This sequence of events presented in this paper took place a total of nine (9) times over a period of four weeks. All 1294 filters were successfully solidified into nine (9) -WMG 142 steel liners, and each was successfully disposed of as Class A Waste at EnergySolutions Disposal Site in Clive, Utah. Prairie Island's waste material was unique in that all its filters were packaged in 55-gallon drums; and since the station packaged its filters in drums it was much easier to develop packaging plans for such a large volume of legacy filters. For this author, having over 20-years of waste management experiences, storing and shipping waste material in 55-gallon drums is not immediately thought of as a highly efficient method of managing its waste material. However, Prairie Island's use of 55-gallon drums to store and package its filters provided a significant advantage. Drums could be mixed and matched to provide the most efficient processing method while still meeting the Waste Class A limits required for disposal. (author)

  15. PrairieFire BioFuels Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas:PottawattamiePowerSatMontana: EnergyView GasWind

  16. Prairie Horizon Agri Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhonoSolar and Wind JumpPowercomPublic

  17. Prairie Land Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhonoSolar and Wind JumpPowercomPublicElectric

  18. features Utility Generator

    E-Print Network [OSTI]

    Chang, Shih-Fu

    #12;#12;#12;#12;features function utility Training Pool Utility Generator Per-frame function content utility classes utility classes utility Tree Decision Generator Module Utility Clustering Adaptive

  19. Argonne Terrestrial Carbon Cycle Data from Batavia Prairie and Agricultural Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Matamala, Roser [ANL; Jastrow, Julie D.; Lesht, Barry [ANL; Cook, David [ANL; Pekour, Mikhail [ANL; Gonzalez-Meler, Miquel A. [University of Illinois at Chicago

    Carbon dioxide fluxes and stocks in terrestrial ecosystems are key measurements needed to constrain quantification of regional carbon sinks and sources and the mechanisms controlling them. This information is required to produce a sound carbon budget for North America. This project examines CO2 and energy fluxes from agricultural land and from restored tallgrass prairie to compare their carbon sequestration potentials. The study integrates eddy covariance measurements with biometric measurements of plant and soil carbon stocks for two systems in northeastern Illinois: 1) long-term cultivated land in corn-soybean rotation with conventional tillage, and 2) a 15 year-old restored prairie that represents a long-term application of CRP conversion of cultivated land to native vegetation. The study contributes to the North American Carbon Program (NACP) by providing information on the magnitude and distribution of carbon stocks and the processes that control carbon dynamics in cultivated and CRP-restored land in the Midwest. The prairie site has been functioning since October 2004 and the agricultural site since July 2005. (From http://www.atmos.anl.gov/ FERMI/index.html)

  20. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  1. A Comparison of Wind Turbine Load Statistics for Inflow Turbulence Fields based on Conventional

    E-Print Network [OSTI]

    Manuel, Lance

    A Comparison of Wind Turbine Load Statistics for Inflow Turbulence Fields based on Conventional for a utility-scale 5MW wind turbine. Load statistics, spectra, and time-frequency analysis representations utility-scale wind turbines. The present study takes on this question by making use of conventional

  2. Wind Vision: Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Vision: Impacts Rich Tusing New West Technologies, LLC For EERE's Wind and Water Power Technologies Office July 15, 2015 2 | Wind and Water Power Technologies Office...

  3. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  4. Wind Power Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Links These other web sites may provide additional information of interest: American Wind Energy Association Idaho Department of Energy Wind Power Information Utah...

  5. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  6. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  7. Vandenberg_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force and other branches of the Department of Defense for several years doing wind data collection and assessment, wind power feasibility studies, and wind farm design....

  8. Methods and apparatus for rotor load control in wind turbines

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw

    2006-08-22

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  9. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  10. AIAA Guidance, Navigation and Control Conference, Toronto, Canada Wind Field Estimation for Small Unmanned Aerial

    E-Print Network [OSTI]

    Langelaan, Jack W.

    AIAA Guidance, Navigation and Control Conference, Toronto, Canada Wind Field Estimation for Small of wind velocity and wind gradient) for small and mini unmanned aerial vehicles. The approach utilizes with estimating wind conditions to enable gust soaring. Since the motivation is small, low cost uavs (here small

  11. Wind Program: Wind Vision | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated...

  12. Wind | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay...

  13. Matter & Energy Wind Energy

    E-Print Network [OSTI]

    Shepelyansky, Dima

    intuitive experience of a small wind not creating a storm, and that wind needs to reach a certain threshold

  14. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  15. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Utilizes...

  16. Design Considerations for Monopile Founded Offshore Wind Turbines Subject to Breaking Waves 

    E-Print Network [OSTI]

    Owens, Garrett Reese 1987-

    2012-11-26

    The majority of offshore wind farms utilize monopile substructures. As these wind farms are typically located in water depths less than 30 meters, the effect of breaking waves on these structures is of great concern to design engineers...

  17. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect (OSTI)

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  18. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  19. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2002-05-01

    Small Wind Electric Systems An Oregon Consumer's Guide provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the Oregon guide provides state specific information that includes and state wind resource map, state incentives, and state contacts for more information.

  20. Small Wind Electric Systems: A Maryland Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  1. Small Wind Electric Systems: A Vermont Consumer's Guide

    SciTech Connect (OSTI)

    O'Dell, K.

    2001-10-01

    The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information.

  2. Wind Development on Tribal Lands

    SciTech Connect (OSTI)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  3. Vegetation dynamics of a native haymeadow, a grazed meadow, and an oldfield within the San Antonio Prairie of Texas 

    E-Print Network [OSTI]

    Hightower, Terry Paul

    1987-01-01

    rcl es represent position of the community within the ordination. 8 ~Sti a leucotricha (a) and Diodia tricocca (b) foliar cover across 6 sample dates for the non-defoliated and defoliated samples within the oldfield, grazed meadow and haymeadow... of the Fort Worth Prairie. The prairie was classified as a grazing disclimax, with S~ti a leucotricha and Bothriochloa saccharoides the major dominants. 5 sion in a g I d occ rr d h S~chizach ri s~i 1 re sed and ecological retrogression was indicated...

  4. Utilization of a Validated Power System Model on Two

    E-Print Network [OSTI]

    Utilization of a Validated Power System Model on Two Scenarios: Base Case and High Wind Penetration, New York And University of Hawaii Hawaii Natural Energy Institute School of Ocean and Earth Science are presented. The business-as-usual and higher wind penetration scenarios have been built in both

  5. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  6. Sandia Energy - Grid System Planning for Wind: Wind Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid System Planning for Wind: Wind Generator Modeling Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Grid System Planning for Wind:...

  7. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  8. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind...

  9. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

  10. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its...

  11. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  12. Federal Utility Partnership Working Group - Utility Interconnection...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group (FUPWG) meeting-discusses solarphotovoltaic (PV) projects to connect with utility in California and their issues. fupwgfall12jewell.pd...

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    AWEA). 2009b. AWEA Small Wind Turbine Global Market Study:will ultimately benefit wind. Small Wind ITC: EESA 2008

  14. Guide to Using the WIND Toolkit Validation Code

    SciTech Connect (OSTI)

    Lieberman-Cribbin, W.; Draxl, C.; Clifton, A.

    2014-12-01

    In response to the U.S. Department of Energy's goal of using 20% wind energy by 2030, the Wind Integration National Dataset (WIND) Toolkit was created to provide information on wind speed, wind direction, temperature, surface air pressure, and air density on more than 126,000 locations across the United States from 2007 to 2013. The numerical weather prediction model output, gridded at 2-km and at a 5-minute resolution, was further converted to detail the wind power production time series of existing and potential wind facility sites. For users of the dataset it is important that the information presented in the WIND Toolkit is accurate and that errors are known, as then corrective steps can be taken. Therefore, we provide validation code written in R that will be made public to provide users with tools to validate data of their own locations. Validation is based on statistical analyses of wind speed, using error metrics such as bias, root-mean-square error, centered root-mean-square error, mean absolute error, and percent error. Plots of diurnal cycles, annual cycles, wind roses, histograms of wind speed, and quantile-quantile plots are created to visualize how well observational data compares to model data. Ideally, validation will confirm beneficial locations to utilize wind energy and encourage regional wind integration studies using the WIND Toolkit.

  15. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  16. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  17. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    land- based wind energy technology. 2009 Wind TechnologiesRenewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUSTfor a variety of energy technologies, including wind energy.

  18. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    land-based wind energy technology. 2011 Wind Technologiesfor a variety of energy technologies, including wind energy.Renewable Energy Laboratory’s National Wind Technology

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    land-based wind energy technology. 2010 Wind Technologiesfor a variety of energy technologies, including wind energy.2010 Wind Technologies Market Report Federal Energy

  20. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    land-based wind energy technology. 2012 Wind Technologiesfor a variety of energy technologies, including wind energy.of Energy (DOE) Wind & Water Power Technology Office team

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    wind power project costs, wind turbine transaction prices,increases in the cost of wind turbines over the last severaland components and wind turbine costs. Excluded from all

  2. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    A. 2010. Impact of Wind Energy Installations on DomesticJanuary 31, 2011. American Wind Energy Association (AWEA).D.C. : American Wind Energy Association. American Wind

  3. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    A. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.D.C. : American Wind Energy Association. American Wind

  4. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect (OSTI)

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  5. Proceedings of the fourth biennial conference and workshop on wind energy conversion systems

    SciTech Connect (OSTI)

    Kottler, R.J. Jr.

    1980-06-01

    Separate abstracts are included for papers presented concerning research and development requirements and utility interface and institutional issues for small-scale systems; design requirements and research and development requirements for large-scale systems; economic and operational requirements of large-scale wind systems; wind characteristics and wind energy siting; international activities; wind energy applications in agriculture; federal commercialization and decentralization plans; and wind energy innovative systems.

  6. Wind Power: How Much, How Soon, and At What Cost?

    SciTech Connect (OSTI)

    Wiser, Ryan H; Hand, Maureen

    2010-01-01

    The global wind power market has been growing at a phenomenal pace, driven by favorable policies towards renewable energy and the improving economics of wind projects. On a going forward basis, utility-scale wind power offers the potential for significant reductions in the carbon footprint of the electricity sector. Specifically, the global wind resource is vast and, though accessing this potential is not costless or lacking in barriers, wind power can be developed at scale in the near to medium term at what promises to be an acceptable cost.

  7. Wind Energy Program overview, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    Wind energy research has two goals: (1) to gain a fundamental understanding of the interactions between wind and wind turbines; and (2) to develop the basic design tools required to develop advanced technologies. A primary objective of applied research activities is to develop sophisticated computer codes and integrate them into the design, testing, and evaluation of advanced components and systems, Computer models have become a necessary and integral part of developing new high-tech wind energy systems. A computer-based design strategy allows designers to model different configurations and explore new designs before building expensive hardware. DOE works closely with utilities and the wind industry in setting its applied research agenda. As soon as research findings become available, the national laboratories transfer the information to industry through workshops, conferences, and publications.

  8. Wind Power Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Analysis ms - 3.0MB Excel Excel Wind Analysis Presentation - 8.2MB PowerPoint Excel Wind Analysis With Power Curves Included - 3.7MB Excel WindR.exe - 44kB Weibull Excel Wind...

  9. Wind technology roadmap | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:Wind WorldWind forWind

  10. utility functions scaling profiles utility-fair

    E-Print Network [OSTI]

    Chang, Shih-Fu

    bandwidth utility functions scaling profiles utility-fair I. INTRODUCTION The emerging MPEG-4 video. This can result in a significant increase in the utilization of network capacity [1]. These techniques. Bandwidth utility functions [9] can be used to characterize an application's capability to adapt over

  11. Utilization Analysis Page 1 UTILIZATION ANALYSIS

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Utilization Analysis Page 1 UTILIZATION ANALYSIS Section 46a-68-40 and HIRING/PROMOTION GOALS utilized in the Health Center's workforce, the numbers of protected classes in the workforce must conducted for each occupational category and position classification. The Utilization Analysis was performed

  12. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminarsDesign » DesignMay »helpWind

  13. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy AdvancesWind

  14. Fifty-five year changes in species composition on dry prairie remnants in south-central Wisconsin1

    E-Print Network [OSTI]

    Waller, Donald M.

    of habitat specialists has declined (from 27.4 to 21.7) contributing to declines in floristic quality and management since the arrival of European settlers in the early to mid 1800s decimated these grasslands. These included converting prairies into farm fields, fragmenting grass- lands by roads (Henderson 1981), and sup

  15. STRATEGIC PLAN 2013-2018 Role of the Prairie Research Institute in Meeting the Needs of Society

    E-Print Network [OSTI]

    Lee, Tonghun

    STRATEGIC PLAN 2013-2018 JULY 2013 Role of the Prairie Research Institute in Meeting the Needs and services.This five-year strategic plan identifies immediate and longer-term measures that maintain's needs Implementation of this Strategic Plan will be a concerted effort across Institute management

  16. The Prairie Naturalist 43(1/2):3844; June 2011 Corresponding author email address: carol.johnston@sdstate.edu

    E-Print Network [OSTI]

    ; Phragmites in unglaciated western South Dakota usually occurred on creeks and stock dams, stock dam, Prairie Coteau, Black Hills Common reed, Phragmites australis [(Cav.) Trin. ex Steud. (syn Dakota to list the non-native P. australis haplotype M as a noxious weed (South Dakota Rules §12

  17. SMALL MAMMALS ASSOCIATED WITH COLONIES OF BLACK-TAILED PRAIRIE DOGS (CYNOMYS LUDOVICIANUS) IN THE SOUTHERN HIGH PLAINS

    E-Print Network [OSTI]

    Wallace, Mark C.

    common species among the types of sites. Prairie dogs are touted as a keystone species) often are touted as a keystone species within the Great Plains ecosys- tem. If adhering to the definition of a keystone species as one whose impact on its c

  18. USE OF NATURAL VEGETATIVE BARRIERS TO LIMIT BLACK-TAILED PRAIRIE DOG TOWN EXPANSION IN WESTERN SOUTH DAKOTA

    E-Print Network [OSTI]

    for solutions to difficult problems and went out of there way to let prairie dogs stay on their property during as the company on the long drives, and hot summer days in the field. Many of graduate students at South Dakota stimulation. Lastly I would like to thank my family. The value of their support is immeasurable. I thank my

  19. NET PRED UTILITY

    Energy Science and Technology Software Center (OSTI)

    002602IBMPC00 Normalized Elution Time Prediction Utility  http://omics.pnl.gov/software/NETPredictionUtility.php 

  20. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  1. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    power producer. Assuming WAPA follows a similar model as it has adopted for the generation of utility- scale solar PV generation, the development of a utility-scale wind...

  2. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  3. Small Wind Electric Systems: A U.S. Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  4. Small Wind Electric Systems: A Montana Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Small Wind Electric Systems: A Colorado Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2006-12-01

    Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  6. Small Wind Electric Systems: A Maryland Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-01-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  7. Small Wind Electric Systems: A Michigan Consumer's Guide (revised)

    SciTech Connect (OSTI)

    Not Available

    2007-01-01

    Small Wind Electric Systems: A Michigan Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  8. Small Wind Electric Systems: A South Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A South Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  9. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Small Wind Electric Systems: A Vermont Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  12. Small Wind Electric Systems: An Illinois Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: An Illinois Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  13. Small Wind Electric Systems: A Minnesota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A Minnesota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  14. Small Wind Electric Systems: A Washington Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Washington Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  15. Small Wind Electric Systems: A North Carolina Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    Small Wind Electric Systems: A North Carolina Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  16. Small Wind Electric Systems: A North Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A North Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  17. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  18. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  19. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Maine Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  20. Small Wind Electric Systems: A Pennsylvania Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Pennsylvania Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  1. Small Wind Electric Systems: A Montana Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  2. Small Wind Electric Systems: An Ohio Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Ohio Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  3. Small Wind Electric Systems: A Kansas Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Kansas Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  4. Quadrennial Technology Review 2015: Technology Assessments--Wind...

    Office of Scientific and Technical Information (OSTI)

    than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The...

  5. Vertical axis wind turbine with continuous blade angle adjustment

    E-Print Network [OSTI]

    Weiss, Samuel Bruce

    2010-01-01

    The author presents a concept for a vertical axis wind turbine that utilizes each blade's entire rotational cycle for power generation. Each blade has its own vertical axis of rotation and is constrained to rotate at the ...

  6. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  7. Wind resuspension of trace amounts of plutonium particles from soil in a semi-arid climate

    SciTech Connect (OSTI)

    Langer, G.

    1984-01-01

    This study of resuspension of soil containing minute amounts of plutonium (Pu-239) has been in progress at the Rocky Flats (RF) Plant since 1978. It is one of several studies initiated after wind relocated small amounts of soil-borne Pu-239 during cleanup of an outdoor storage area. The Pu-239-settled field is now sparsely covered with prairie grass typical of the area. Past studies were limited to comparisons of bulk soil activity with total activity in the airborne dust. This work covers the physics of the particle resuspension process. This report covers the following: (1) Pu-239 resuspension rate versus wind speed, (2) mechanisms of soil particle resuspension, (3) vertical concentration profile of Pu-239 particles, (4) Pu-239 and host particle size distribution and activity concentration. 5 references, 1 table.

  8. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  9. Wind Power Outreach Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Outreach Programs A team of educators and scientists from the Idaho...

  10. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  11. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  12. Wind energy bibliography

    SciTech Connect (OSTI)

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  13. Small Wind Conference 2015

    Broader source: Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  14. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  15. Great Plains Wind Energy Transmission Development Project

    SciTech Connect (OSTI)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

  16. For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine July 1, 2014 - 8:44am Addthis For Cape Wind, Summer Breeze...

  17. Wind Energy in Iowa Technical and Financial Considerations

    E-Print Network [OSTI]

    McCalley, James D.

    ­ Created by the 1990 Iowa Energy Efficiency Act ­ Funded by surcharge on intra-state electric & gas sales ­ ~ 3,447 existing utility-scale turbines (>50 kW) ­ Percentage of Iowa electricity from wind in 2014: ~28.53% · Iowa ranked first in the US in 2014 for percentage of electricity derived from wind. ­ Iowa

  18. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3://www.atm.ncu.edu.tw/93/wind/ MM5 simulation (1996~2000 database) Wind speed (m/s) at 50mWind power (100W/m2) at 50m http://wind.itri.org.tw/wind

  19. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    of Energy’s (DOE) Wind & Water Power Program. For reviewingwere funded by the Wind & Water Power Program, Office ofWind Technologies Market Report Wind Energy Web Sites U.S. Department of Energy Wind and Water Power

  20. Alternative methods of modeling wind generation using production cost models

    SciTech Connect (OSTI)

    Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Pang, C.K. [P Plus Corp., Cupertino, CA (United States)] [P Plus Corp., Cupertino, CA (United States)

    1996-08-01

    This paper examines the methods of incorporating wind generation in two production costing models: one is a load duration curve (LDC) based model and the other is a chronological-based model. These two models were used to evaluate the impacts of wind generation on two utility systems using actual collected wind data at two locations with high potential for wind generation. The results are sensitive to the selected wind data and the level of benefits of wind generation is sensitive to the load forecast. The total production cost over a year obtained by the chronological approach does not differ significantly from that of the LDC approach, though the chronological commitment of units is more realistic and more accurate. Chronological models provide the capability of answering important questions about wind resources which are difficult or impossible to address with LDC models.

  1. Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)

    SciTech Connect (OSTI)

    Clifton, A.

    2012-12-01

    Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

  2. Distributed Wind Policy Comparison Tool Guidebook

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets.

  3. Utility Theory Social Intelligence

    E-Print Network [OSTI]

    Polani, Daniel

    Utility Theory Social Intelligence Daniel Polani Utility Theory ­ p.1/15 Utilities: Motivation Consider: game scenario For Instance: 2-or-more players Necessary: development of concept for utilities decisions sequential decisions (time) games Utility The Prototypical Scenario Consider: agent that can take

  4. Hualapai Wind Project Feasibility Report

    SciTech Connect (OSTI)

    Davidson, Kevin; Randall, Mark; Isham, Tom; Horna, Marion J; Koronkiewicz, T; Simon, Rich; Matthew, Rojas; MacCourt, Doug C.; Burpo, Rob

    2012-12-20

    The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

  5. Wind energy for low head irrigation

    SciTech Connect (OSTI)

    Wiersma, J.L.; Bender, A.R.

    1982-12-01

    An air-lift pump utilizing a wind turbine driven air compressor is a viable method of furnishing irrigation water for the establishment of a tree shelter belt. The performance characteristics of the air-lift pump are quantified for use in a design procedure.

  6. PEV-based Reactive Power Compensation for Wind DG Units: A Stackelberg Game Approach

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    a multiple timescale dispatch for smart grid with integrated wind power. Wu et al. investigated how to utilize wind power integration into the power grid when aggregators use a linear pricing scheme in [4. Keywords--Distributed generation, wind power integration, plug-in electric vehicles, reactive power

  7. Manufacturing Defects Common to Composite Wind Turbine Blades: Effects of Defects

    E-Print Network [OSTI]

    1 Manufacturing Defects Common to Composite Wind Turbine Blades: Effects of Defects Jared W. Nelson The Blade Reliability Collaborative has been formed to perform comprehensive studies to improve wind turbine uni-directional wind turbine fiber-reinforced composite material with an epoxy resin were utilized

  8. Assessing the Impacts of Wind Integration in the Western Provinces Amy Sopinka

    E-Print Network [OSTI]

    Victoria, University of

    and utilize high levels of renewable energy technology, such as wind power, depends upon the composition penetrations in the Alberta grid under various balancing protocols. We find that adding #12;iv wind capacityAssessing the Impacts of Wind Integration in the Western Provinces by Amy Sopinka B.A., Queen

  9. Developing a Practical Wind Tunnel Test Engineering Course for Undergraduate Aerospace Engineering Students 

    E-Print Network [OSTI]

    Recla, Benjamin Jeremiah

    2013-04-19

    This thesis describes the development and assessment of an undergraduate wind tunnel test engineering course utilizing the 7ft by 10ft Oran W. Nicks Low Speed Wind Tunnel (LSWT). Only 5 other universities in the United States have a wind tunnel...

  10. The Ecological Society of America wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg Wind energy has become an increasingly important

    E-Print Network [OSTI]

    Wilmers, Chris

    ). Environmental benefits of wind energy accrue from the replacement of energy generated by other means (eg fossil. 2003). However, development of the wind energy industry has led to some unexpected environmental costs at utility-scale wind energy facilities, espe- cially along forested ridgetops in the eastern US (Arnett 2005

  11. A FRESH LOOK AT OFFSHORE WIND OPPORTUNITIES IN MASSACHUSETTS Anthony L. Rogers, Ph.D.

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    A FRESH LOOK AT OFFSHORE WIND OPPORTUNITIES IN MASSACHUSETTS Anthony L. Rogers, Ph.D. James F at Amherst Amherst, MA 01003 The utilization of offshore winds for generating electricity was first proposed that offshore wind development anywhere would be unlikely. More recently, a number of European countries have

  12. SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS

    E-Print Network [OSTI]

    Heinemann, Detlev

    subject. 2. RELEVANCE OF POWER PRODUCTION FORECASTS OF WIND AND SOLAR INSTALLATIONS First, the relevance region the installed wind power capacity has reached the order of magnitude of the average load-georg.beyer@elektrotechnik.fh-magdeburg.de Abstract - With the increase of penetration of the utility networks by wind- and solar derived electricity

  13. Simulation Of Energy Storage In A System With Integrated Wind Yannick Degeilh, Justine Descloux, George Gross

    E-Print Network [OSTI]

    Gross, George

    Simulation Of Energy Storage In A System With Integrated Wind Resources Yannick Degeilh, Justine-scale storage [3],[4] to facilitate the improved harnessing of the wind resources by storing wind energy Descloux, George Gross University of Illinois at Urbana-Champaign, USA Abstract ­ Utility-scale storage

  14. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  15. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  16. Wind Resource Maps (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

  17. Performance Indicators of Wind Energy Production

    E-Print Network [OSTI]

    D'Amico, G; Prattico, F

    2015-01-01

    Modeling wind speed is one of the key element when dealing with the production of energy through wind turbines. A good model can be used for forecasting, site evaluation, turbines design and many other purposes. In this work we are interested in the analysis of the future financial cash flows generated by selling the electrical energy produced. We apply an indexed semi-Markov model of wind speed that has been shown, in previous investigation, to reproduce accurately the statistical behavior of wind speed. The model is applied to the evaluation of financial indicators like the Internal Rate of Return, semi-Elasticity and relative Convexity that are widely used for the assessment of the profitability of an investment and for the measurement and analysis of interest rate risk. We compare the computation of these indicators for real and synthetic data. Moreover, we propose a new indicator that can be used to compare the degree of utilization of different power plants.

  18. Mid-Atlantic Wind - Overcoming the Challenges

    SciTech Connect (OSTI)

    Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

    2012-05-31

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  19. Mid-Atlantic Wind - Overcoming the Challenges

    SciTech Connect (OSTI)

    Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

    2012-06-29

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  20. Dust transport: Wind blown and mechanical resuspension, July 1983 to December 1984

    SciTech Connect (OSTI)

    Langer, G.

    1986-09-20

    This study defines the processes that resuspend plutonium (Pu) particles from Pu-contaminated soil at Rocky Flats. Such knowledge can predict the transport of Pu particles from the site and the population dose. A vertical dust flux tower profiled the plume of Pu particles from the site. The data show a 70% reduction between 1 and 10 m in the concentration of coarse and inhalable Pu particles. The respirable particle concentration remained steady at both heights, slightly above background levels. High winds visually resuspend large amounts of dust for short periods, but we suspected that present sampling devices do not function properly above 50 km/h. During a windstorm reaching 80 km/h, the size-selective sampler used seriously underestimated the dust(Pu) concentration. Wind tunnel studies measured resuspension versus wind speed from our prairie grass covered, arid soil. We failed to find a good correlation between resuspension and wind speed. This led to a search for alternative mechanisms of resuspension besides wind erosion. Resuspension of dust(Pu) from grass proved to be important, as well as resuspension from rain splash.

  1. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  2. Wind energy offers considerable promise

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise: the wind itself is free, wind power is clean: the wind itself is free, wind power is clean, and it is inexhaustible. In recent years, research on wind · Wind farm aerodynamics Rotor Design · Aerodynamics · Structure and design · Composite design, material

  3. Wind energy offers considerable promise

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise: the wind itself is free, wind power is clean, wind power is clean, and it is inexhaustible. In recent years, research on wind energy has accelerated that are offered are: Wind Physics · Atmospheric aerodynamics and turbulence · Wind farm aerodynamics Rotor Design

  4. Wind Generation on Winnebago Tribal Lands

    SciTech Connect (OSTI)

    Multiple

    2009-09-30

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the project’s proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

  5. FINAL TECHNICAL REPORT: 20% Wind by 2030: Overcoming the Challenges

    SciTech Connect (OSTI)

    Tom Kaiserski; Dan Lloyd

    2012-02-28

    The funds allocated through the Wind Powering America (WPA) grant were utilized by the State of Montana to support broad outreach activities communicating the benefits and opportunities of increased wind energy and transmission development. The challenges to increased wind development were also clearly communicated with the understanding that a clearer comprehension of the challenges would be beneficial in overcoming the obstacles to further development. The ultimate purpose of these activities was to foster the increased development of Montana's rich wind resources through increased public acceptance and wider dissemination of technical resources.

  6. An introduction to the small wind turbine project

    SciTech Connect (OSTI)

    Forsyth, T.L.

    1997-07-01

    Small wind turbines are typically used for the remote or rural areas of the world including: a village in Chile; a cabin dweller in the U.S.; a farmer who wants to water his crop; or a utility company that wants to use distributed generation to help defer building new transmission lines and distribution facilities. Small wind turbines can be used for powering communities, businesses, homes, and miscellaneous equipment to support unattended operation. This paper covers the U.S. Department of Energy/National Renewable Energy Laboratory Small Wind Turbine project, its specifications, its applications, the subcontractors and their small wind turbines concepts. 4 refs., 4 figs.

  7. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  8. Prairie View 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 APPENDIX C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 APPENDIX D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 APPENDIX E...-pair. Here subscripts ij are omitted from piijQ, piijA and piijB. Prob. = Probability. . . . 46 III Interval estimates of ??Q by piA, piB,?A and ?B, for the flanking markers separated by ?AB = 20 cM under Haldane?s mapping function...

  9. Judi Danielson Wind Power: From Niche to Mainstream

    E-Print Network [OSTI]

    continued to grow, driven by retail green power options, utility efforts to diversify and "green up" resource portfolios, green power acquisition mandates imposed by public utility commissions as a conditionJudi Danielson Wind Power: From Niche to Mainstream What's Inside (continued on page 11) Winter

  10. Wind 7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut: Energy Resources Name: Wind

  11. Wind World | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:Wind World Place: Denmark

  12. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:Wind World Place:

  13. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:Wind World Place:source

  14. Evaluation of Desmanthus illinoensis (Michx.) MacM. for sod- seeding on blackland prairie soils in Texas 

    E-Print Network [OSTI]

    Msiska, Harry Darius Chandiwira

    1986-01-01

    as to style and content by: Chri topher A. Call (Chair of Committee William (Bill) R. Ocumpau ( ber) Fred E. Smeins (Member) oseph L. Schuster (Head of Department) August 1986 ABSTRACT Evaluation of Desmanthus illinoensis (Nichx. ) NacN. for Sod... on the Blackland Prairie soils. 4 Monthly rainfall and long term mean monthly rainfall for Caldwell (extrapolated from Brenham, Cameron, and College Station) during the study period (Mar. 1984? Aug. 1985). . 5 Monthly rainfall and long term monthly mean...

  15. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  16. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  17. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  18. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  19. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  20. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  1. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  2. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  3. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  4. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  5. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  6. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOE’s) investments in offshore wind energy research and

  7. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    11 “advanced-stage” offshore wind project proposals totalingcontinued in 2008 (see Offshore Wind Development Activities,Market Report Offshore Wind Development Activities In

  8. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    for deepwater offshore wind and tidal energy demonstrationand Minnesota (12%). Offshore Wind Power Project and Policythe emergence of an offshore wind power market still faces

  9. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    and Minnesota (12%). Offshore Wind Power Project and Policythe emergence of an offshore wind power market still facesexists in developing offshore wind energy in several parts

  10. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    of Energy?s (DOE) Wind & Water Power Program. For reviewingfor offshore wind power development in federal waters fromof Water and Power (LADWP). 2011. Completion of Wind Power

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    Table 8 Figure 30. Wind Integration Costs at Various LevelsOperations and Maintenance Costs Wind project operations andPublic Service Wind Integration Cost Impact Study. Prepared

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    charging wind power projects for balancing services. 81 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  13. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    charging wind power projects for balancing services. 88 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  14. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    Xcel Energy. 2011. Wind Induced Coal Plant Cyclingand the Implications of Wind Curtailment for Public Serviceof Colorado 2 GW and 3 GW Wind Integration Cost Study.

  15. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.Newark, DE. 16 pages. Global Wind Energy Council (GWEC) (

  16. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    be provided by wind power generators to provide frequencyof wind power capacity in that state) because generatorsgenerators to provide the needed flexibility to integrate wind power.

  17. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    2010. Status of Centralized Wind Power Forecasting in NorthInterconnection Policies and Wind Power: A Discussion ofLADWP). 2011. Completion of Wind Power Project Brings More

  18. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    and K. Porter. 2011. Wind Power and Electricity Markets.The Effects of Integrating Wind Power on Transmission System41 6. Wind Power Price

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    exists in developing offshore wind energy in several partsexclusively on offshore wind energy will be published laterexclusively on offshore wind energy will be published later

  20. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    assistance with the offshore wind energy discussion; Donnaactivity in the offshore wind energy sector. Data fromexpanded discussion of offshore wind energy development, and

  1. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    exists in developing offshore wind energy in several partsstrides relating to offshore wind energy have been madeactivity in the offshore wind energy sector. Data from

  2. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribut

  3. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    2010. International Wind Energy Development: World MarketUniversity. American Wind Energy Association (AWEA). 2010a.Washington, DC: American Wind Energy Association. American

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA). 2009b. AWEA SmallWashington, DC: American Wind Energy Association. Bolinger,

  5. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  6. AWEA Wind Energy Fall Symposium

    Broader source: Energy.gov [DOE]

    The AWEA Wind Energy Fall Symposium gathers wind energy professionals for informal yet productive interactions with industry peers. Jose Zayas, Director, Wind & Water Power Technologies Office,...

  7. A Case Study of Danville Utilities: Utilizing Industrial Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing...

  8. DOE/NREL supported wind energy activities in Indonesia

    SciTech Connect (OSTI)

    Drouilhet, S.

    1997-12-01

    This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in village settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.

  9. Candidate wind turbine generator site: annual data summary, January 1981-December 1981

    SciTech Connect (OSTI)

    Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.

    1982-07-01

    Summarized hourly meteorological data for 34 candidate and wind turbine generator sites for calendar year 1981 are presented. These data are collected for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, wind speed, direction, and distribution data are given in eight tables. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

  10. Wind Power Career Chat

    SciTech Connect (OSTI)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  11. Wind energy information guide

    SciTech Connect (OSTI)

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  12. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am...

  13. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply...

  14. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  15. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    SciTech Connect (OSTI)

    Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas; Desai, Ankur R

    2012-09-01

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well as on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.

  16. Aleutian Pribilof Islands Wind Energy Feasibility Study

    SciTech Connect (OSTI)

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

  17. Evaluating the risk-reduction benefits of wind energy

    SciTech Connect (OSTI)

    Brower, M.C.; Bell, K.; Spinney, P. [and others

    1997-05-01

    The question of uncertainty and risk in electric utility resource planning has received considerable attention in recent years. During the 1980s, many utilities suffered financial losses because of unexpectedly high plant construction costs and low growth in electricity demand. In addition, the introduction of competition to the electric industry is creating new risks for power companies. No longer will utilities be able to count on regulatory protections and a base of captive consumers to provide a stable market and adequate return on their investments. Alternative risk management strategies will have to be considered instead. One approach to managing risk is for a utility company to invest in diverse power sources such as wind power plants. Since wind plants consume no fuel, can be built in relatively small increments with short construction lead times, and generate no pollutants, it is often said that they offer significant protection from risks associated with conventional fossil-fuel power plants. So far there have been few efforts to quantify these benefits, however. The study compares the costs and risks of two competing resource options, a gas-fired combined cycle plant and a wind plant, both utility-owned, through decision analysis. The case study utility is Texas Utilities Electric, a very large investor-owned company serving an area with substantial, high-quality wind resources. The authors chose a specific moment in the future - the year 2003 - when the utility currently plans to build a large fossil-fueled power plant, and examined the implications for the utility`s expected revenues, costs, and profits if a wind plant were to be built instead.

  18. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  19. Wind Power FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Frequently Asked Questions QUESTION: Why was the time stamp on my first wind explorer data chip incorrect? ANSWER: You need to program the proper date and time in the wind...

  20. Airplane and the wind

    E-Print Network [OSTI]

    Airplane and the wind. An airplane starts from the point A and flies to B. The speed of the airplane with respect to the air is v (constant). There is also a wind of

  1. NREL: Wind Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. December 2015 Wind and Water Power Small Business Voucher Open House December 2, 2015, 9:00 - 1:00 MST Boulder,...

  2. WINDExchange: Learn About Wind

    Wind Powering America (EERE)

    wind turbines in a row at sunset. The sky is varying hues of orange and the sun is halfway past the horizon. Wind power comes in many sizes. Here, several...

  3. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  4. After the Wind Storm 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    Accidents and hazards continue to plague the construction industry. One often overlooked hazard to workers is the potential for flying debris and materials during high winds. This research was designed to evaluate the wind velocity required...

  5. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    AWEA). 2009b. AWEA Small Wind Turbine Global Market Study:will ultimately benefit wind. Small Wind ITC: EESA 2008to be relatively small, whereas the impacts of wind on load-

  6. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    AWEA). 2010. AWEA Small Wind Turbine Global Market Survey,levels. Small Wind Turbines Small wind turbines can providebelow summarizes sales of small wind turbines, 100 kW and

  7. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    wind project costs, wind turbine transaction prices, projectincreases in the cost of wind turbines over the last severalO&M costs given the dramatic changes in wind turbine

  8. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbines100 wind turbine installed at the National Renewable Energy

  9. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    Sites U.S. Department of Energy Wind Program wind.energy.govA. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    AWEA). 2012b. 2011 U.S. Small Wind Turbine Market Report.a brief discussion on Small Wind This 100 kW thresholdAnnual Capacity (GW) Small Wind Turbines Small wind turbines

  11. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    a brief discussion on Small Wind Turbines is provided onO&M costs. 2012 Wind Technologies Market Report Small WindTurbines Small wind turbines can provide power directly to

  12. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    AWEA). 2010. AWEA Small Wind Turbine Global Market Survey,a brief discussion on Small Wind Turbines is provided onat 2008 and 2009 levels. Small Wind Turbines Small wind

  13. White Wind Farms Strategic Communications Campaign

    E-Print Network [OSTI]

    Ford, Gina; Noulles, Mary; James, Jessica

    2014-09-03

    66053 Nearby Wine Retailers 11 Finances, Operations and Overhead In 2012, White Wind Farms generated $555,000 in annual revenue. The revenue is itemized as follows: $500,000 in nursery sales, $30,000 in wine sales and $25,000 in revenue from... Village, Kan., were the only three retail outlets where respondents purchased wine. 23 Social Eight respondents follow White Wind Farms on Facebook, 27 do not and the remaining 12 respondents do not utilize Facebook. When asked what types of occasions...

  14. Barton Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado StateWind ProjectVillage, Inc (UtilityWind

  15. Wind Project Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut: EnergyWind PowerEnergyWind

  16. Wind Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut: EnergyWindAssessmentWind

  17. WindKraft Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:Wind WorldWind

  18. Wind Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy.

  19. Wind Tunnel Building - 7 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    or gravitational energy to some extent. Moreover, wave energy provides “15-20 times more available energy per square meter than either wind or solar” [1]. Of these the most commercially viable resources studied so far are ocean currents and waves. Some... limited commercial development and is therefore of more interest. Ocean waves arise from the transfer of energy from the sun to wind then water. Solar energy creates wind, which then blows over the ocean, converting wind energy to wave energy. Once...

  20. Appendix I3-1 to Wind HUI Initiative 1: AWST-WindNET-Phase 1 Final Report

    SciTech Connect (OSTI)

    John Zack

    2012-07-15

    This report is an appendix to the Hawaii WindHUI efforts to develop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET Phase 1 efforts on the Big Island of Hawaii and includes descriptions of modeling methodologies, use of field validation data, results and recommendations. The objective of the WindNET project was to investigate the improvement that could be obtained in short-term wind power forecasting for wind generation facilities operating on the island grids operated by Hawaiian Electric Companies through the use of atmospheric sensors deployed at targeted locations. WindNET is envisioned as a multiphase project that will address the short-term wind forecasting issues of all of the wind generation facilities on the all of the Hawaiian Electric Companies' island grid systems. The first phase of the WindNET effort (referred to as WindNET-1) was focused on the wind generation facilities on the Big Island of Hawaii. With complex terrain and marine environment, emphasis was on improving the 0 to 6 hour forecasts of wind power ramps and periods of wind variability, with a particular interest in the intra-hour (0-1 hour) look-ahead period. The WindNET project was built upon a foundation that was constructed with the results from a previously completed observation targeting study for the Big Island that was conducted as part of a project supported by the National Renewable Energy Laboratory (NREL) and interactions with the western utilities. The observational targeting study provided guidance on which variables to measure and at what locations to get the most improvement in forecast performance at a target forecast site. The recommendations of the observation targeting study were based on the application two techniques: (1) an objective method called ensemble sensitivity analysis (ESA) (Ancell and Hakim, 2007; Torn and Hakim, 2008; Zack et al, 2010); and (2) a subjective method based on a diagnostic analysis of large ramp events. The analysis was completed for both the wind farm on the southern tip of the Big Island and on the northern tip of the island. The WindNET project was designed to also deploy sensors to validate the Big Island observational targeting study and enhance operator's understanding of predominate causes of wind variability conditions at the wind facilities. Compromises had to be made with the results from the observation targeting study to accommodate project resource limitations, availability of suitable sites, and other factors. To focus efforts, field sensor deployment activities focused on the wind facility on the southern point of Big Island.

  1. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Prospects for Offshore Wind Farms. ” Wind Engineering, 28:Techniques for Offshore Wind Farms. ” Journal of Solar

  2. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    by Canada (76%) and Mexico (17%). Wind turbine component30%), Mexico (21%), and China (21%)). Total wind turbine

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    of larger balancing areas, the use of regional wind powerbalancing areas. The successful use of regional wind power

  5. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    directly charging wind power projects for balancing servicesin smaller balancing areas. The successful use of wind power

  6. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Public Opinion About Large Offshore Wind Power: UnderlyingA. (2007) Delaware Opinion on Offshore Wind Power - Interim

  7. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Renewable Energy (Wind and Water Technologies Program) ofWind Farms in North America 1 Ben Hoen Environmental Energy Technologies

  8. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    regulation and frequency response services charge to wind energyRegulation and Frequency Response Service rate for wind energy

  9. Wind for Schools Curriculum Brief

    SciTech Connect (OSTI)

    None

    2010-08-01

    This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  10. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  11. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  12. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make States Cape Wind PPA at 18 c/kWh #12;The cycle of non-innova?on Offshore

  13. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  14. Reference Manual for the System Advisor Model's Wind Power Performance Model

    SciTech Connect (OSTI)

    Freeman, J.; Jorgenson, J.; Gilman, P.; Ferguson, T.

    2014-08-01

    This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface and as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.

  15. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

  16. A Minnesota Blizzard Provides Insight into Utility-Scale Wind...

    Office of Environmental Management (EM)

    the researchers were ready. They had positioned a large searchlight with reflecting optics designed to create a light sheet reflecting off snow particles in an area that was 36...

  17. New Report: Integrating More Wind and Solar Reduces Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Energy Reliability, and NREL, the new study found that incorporating these renewable energies did increase cycling, but the increased costs and emissions generated from...

  18. New Report: Integrating More Wind and Solar Reduces Utilities' Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon Pollution |of EnergyResearchEnergy

  19. Research and Development Needs for Wind Systems Utilizing Controllable Grid

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A Wholesale PowerNatural Gas Producers Selected by DOESimulators

  20. Utilities in California and Washington Receive Honors for Innovative Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline ofTurkeyProgramDepartmentAboutUsing

  1. New England Wind Energy Education Project (NEWEEP)

    SciTech Connect (OSTI)

    Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

    2012-04-25

    Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing to form a Steering Committee consists of the Massachusetts Renewable Energy Trust; Maine Public Utilities Commission; New Hampshire office of Energy & Planning, the Connecticut Clean Energy Fund;, ISO New England; Utility Wind Interest Group; University of Massachusetts Wind Energy Center; Renewable Energy New England (a new partnership between the renewable energy industry and environmental public interest groups), and Lawrence Berkeley National Laboratory (conditionally). The Steering Committee will: (1) identify and prioritize topics of greatest interest or concern where detailed, objective and accurate information will advance the dialogue in the region; (2) identify critical outreach venues, influencers and experts; (3) direct and coordinate project staff; (4) assist project staff in planning briefings and conferences described below; (5) identify topics needing additional research or technical assistance and (6) identify and recruit additional steering committee members. Impacts/Benefits/Outcomes: By cutting through the clutter of competing and conflicting information on critical issues, this project is intended to encourage the market's acceptance of appropriately-sited wind energy generation.

  2. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  3. Utility Cost Analysis 

    E-Print Network [OSTI]

    Horn, S.

    1984-01-01

    One of the first steps in setting up an energy management program in a commercial building is determining operating costs per energy consuming system through a utility cost analysis. This paper illustrates utility cost analysis methods used...

  4. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  5. Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  6. Final Technical Report - Kotzebue Wind Power Project - Volume II

    SciTech Connect (OSTI)

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  7. Thermal Wind The thermal wind is defined as the vector difference between the geostrophic winds at

    E-Print Network [OSTI]

    Hennon, Christopher C.

    ATMS 310 Thermal Wind The thermal wind is defined as the vector difference between the geostrophic winds at two levels. It is not really a wind at all, just a measure of the shear of the geostrophic wind. But there are good reasons for considering the geostrophic wind; mainly, it provides a convenient way of connecting

  8. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  9. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  10. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  11. Access Framework: Model Text (November 2011) An Act to Establish a Framework for Development of Offshore Wind Power

    E-Print Network [OSTI]

    Firestone, Jeremy

    of Offshore Wind Power Whereas, the offshore waters of [State] are ecologically and economically vital public, Whereas, offshore wind power provides utility-scale renewable energy at competitive costs, helps to meet consequences; and Whereas, offshore wind power, being a domestic source of energy enhances U.S. energy

  12. 1E Wind Energy Program: Technical Information and Outreach Support Final Technical Report

    SciTech Connect (OSTI)

    Arnold, Abigail

    2006-03-09

    A U.S. consensus-based collaborative formed in 1994, the National Wind Coordinating Committee (NWCC) identifies issues that affect the use of wind power, establishes dialogue among key stakeholders, and catalyzes appropriate activities to support the development of environmentally, economically, and politically sustainable commercial markets for wind power. NWCC members include representatives from electric utilities and support organizations, state legislatures, state utility commissions, consumer advocacy offices, wind equipment suppliers and developers, green power marketers, environmental organizations, agriculture and economic development organizations, and state and federal agencies.

  13. WINS. Market Simulation Tool for Facilitating Wind Energy Integration

    SciTech Connect (OSTI)

    Shahidehpour, Mohammad

    2012-10-30

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities; and (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.

  14. Final Report for DOE Project: Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies

    SciTech Connect (OSTI)

    Bridgham, Scott D.; Johnson, Bart

    2013-09-26

    Pacific Northwest (PNW) prairies are an imperiled ecosystem that contain a large number of plant species with high fidelity to this habitat. The few remaining high-quality PNW prairies harbor a number of sensitive, rare, and endangered plant species that may be further at-risk with climate change. Thus, PNW prairies are an excellent model system to examine how climate change will affect the distribution of native plant species in grassland sites. Our experimental objectives were to determine: (i) how climate change will affect the range distribution of native plant species; (ii) what life history stages are most sensitive to climate change in a group of key indicator native species; (iii) the robustness of current restoration techniques and suites of species to changing climate, and in particular, the relative competitiveness of native species versus exotic invasive species; and (iv) the effects of climate change on carbon and nutrient cycling and soil-microbial-plant feedbacks. We addressed these objectives by experimentally increasing temperature 2.5 to 3.0 şC above ambient with overhead infrared lamps and increasing wet-season precipitation by 20% above ambient in three upland prairie sites in central-western Washington, central-western Oregon, and southwestern Oregon from fall 2010 through 2012. Additional precipitation was applied within 2 weeks of when it fell so precipitation intensity was increased, particularly during the winter rainy season but with minimal additions during the summer dry season. These three sites also represent a 520-km natural climate gradient of increasing degree of severity of Mediterranean climate from north to south. After removing the extant vegetation, we planted a diverse suite of 12 native species that have their northern range limit someplace within the PNW in each experimental plot. An additional 20 more wide-spread native species were also planted into each plot. We found that recruitment of plant species within their ranges was negatively impacted by increased temperatures, but for species planted north of their current range, increased temperature was neutral. However, for surviving plants climate treatments and site-specific factors (e.g., nutrient availability) were the strongest predictors of plant growth and seed set. When recruitment and plant growth are considered together, increased temperatures are negative within a species current range but beyond this range they become positive. Germination was the most critical stage for plant response across all sites and climate treatments. Our results underscore the importance of including plant vital rates into models that are examining climate change effects on plant ranges. Warming altered plant community composition, decreased diversity, and increased total cover, with warmed northern communities over time becoming more like ambient communities further south. In particular, warming increased the cover of annual introduced species, suggesting that the observed biogeographic pattern of increasing invasion by this plant functional group in US West Coast prairies as one moves further south is at least in part due to climate. Our results suggest that with the projected increase in drought severity with climate change, Pacific Northwest prairies may face an increase of invasion by annuals, similar to what has been observed in California, resulting in novel species assemblages and shifts in functional composition, which in turn may alter ecosystem function. Warming generally increased nutrient availability and plant productivity across all sites. The seasonality of soil respiration responses to heating were strongly dependent on the Mediterranean climate gradient in the PNW, with heating responses being generally positive during periods of adequate soil moisture and becoming neutral to negative during periods of low soil moisture. The asynchrony between temperature and precipitation may make soils less sensitive to warming. Precipitation effects were minimal for all measured responses indicating the importance of increased temperature

  15. ERCOT Wind Scraper | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreaforInformationBrownfieldsEPIRERCOT Wind Scraper Jump

  16. "List of Covered Electric Utilities" under the Public Utility...

    Office of Environmental Management (EM)

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  17. Carrots for Utilities: Providing Financial Returns for Utility...

    Open Energy Info (EERE)

    Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities:...

  18. Renewable Energy RFPs: Solicitation Response and Wind ContractPrices

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2005-04-18

    As input into renewable energy policy discussions in Illinois, we have been asked to provide information on the results of recent, competitive solicitations for renewable energy, with a focus on wind power. In particular, this memorandum includes two pieces of information: (1) Publicly available data on the strength of response to recent renewable energy solicitations; and (2) Wind power purchase costs as revealed through actual power purchase agreements with electric utilities.

  19. Social organization and group dynamics of white-tailed deer on brush-free coastal prairie in Texas 

    E-Print Network [OSTI]

    Brown, Wendy Margaret

    1981-01-01

    more unusual. Hawkins and Klimstra (1970) and Hardin et al. (1976) stated that yearling bucks rarely, if ever, rejoin their dams after the breeding season. Among white-tailed deer studied thus far, this again seems to be unique to Texas populations...SOCIAL ORGANIZATION AND GROUP DYNAMICS OF WHITE-TAILED DEER ON BRUSH-FREE COASTAL PRAIRIE IN TEXAS A Thesis by WENDY MARGARET BROWN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement...

  20. Gansu Xinhui Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Xinhui Wind Power Jump to: navigation, search Name: Gansu Xinhui Wind Power Place: China Sector: Wind energy Product: China-based joint venture engaged in developing wind projects....

  1. 20% Wind by 2030: Overcoming the Challenges in West Virginia

    SciTech Connect (OSTI)

    Patrick Mann; Christine Risch

    2012-02-15

    Final Report for '20% Wind by 2030: Overcoming the Challenges in West Virginia'. The objective of this project was to examine the obstacles and constraints to the development of wind energy in West Virginia as well as the obstacles and constraints to the achievement of the national goal of 20% wind by 2030. For the portion contracted with WVU, there were four tasks in this examination of obstacles and constraints. Task 1 involved the establishment of a Wind Resource Council. Task 2 involved conducting limited research activities. These activities involved an ongoing review of wind energy documents including documents regarding the potential for wind farms being located on reclaimed surface mining sites as well as other brownfield sites. The Principal Investigator also examined the results of the Marshall University SODAR assessment of the potential for placing wind farms on reclaimed surface mining sites. Task 3 involved the conducting of outreach activities. These activities involved working with the members of the Wind Resource Council, the staff of the Regional Wind Energy Institute, and the staff of Penn Future. This task also involved the examination of the importance of transmission for wind energy development. The Principal Investigator kept informed as to transmission developments in the Eastern United States. The Principal Investigator coordinated outreach activities with the activities at the Center for Business and Economic Research at Marshall University. Task 4 involved providing technical assistance. This task involved the provision of information to various parties interested in wind energy development. The Principal Investigator was available to answer requests from interested parties regarding in formation regarding both utility scale as well as small wind development in West Virginia. Most of the information requested regarded either the permitting process for wind facilities of various sizes in the state or information regarding the wind potential in various parts of the state. This report describes four sub-categories of work done by the Center for Business and Economic Research (CBER) at Marshall University under this contract. The four sub-projects are: (1) research on the impacts of wind turbines on residential property values; (2) research on the integration of wind energy in regional transmission systems; (3) review of state-based wind legislation in consideration of model new policy options for West Virginia; and (4) promotion of wind facilities on former surface mine sites through development of a database of potential sites.

  2. Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features

    SciTech Connect (OSTI)

    Toole, Gasper L.

    2009-01-01

    Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

  3. Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)

    SciTech Connect (OSTI)

    Hodge, B.

    2013-12-01

    Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

  4. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    SciTech Connect (OSTI)

    Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

    2014-05-01

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

  5. Wind Tunnel Building - 3 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

  6. Generalized utility metrics for supercomputers

    E-Print Network [OSTI]

    Strohmaier, Erich

    2009-01-01

    2007:1–12 Generalized utility metrics for supercomputers 12.ISSUE PAPER Generalized utility metrics for supercomputersproblem of ranking the utility of supercom- puter systems

  7. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  8. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  9. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    Module Handbook Specialisation Wind Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 NTU Athens Specialisation Provider: Wind Energy #12;Specialisation Wind Energy, NTU Athens, 2nd Semester Module 1/Wind Energy: Wind potential, Aerodynamics & Loading

  10. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Lennard, William N.

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  11. Utilization of a Validated Power System Model on Two

    E-Print Network [OSTI]

    Utilization of a Validated Power System Model on Two Scenarios: Base Case and High Wind Penetration. DE-FC-06NT42847 Task 1. Deliverable #4 ­ Conceptual Design Report By GE Global Research Niskayuna-956-8346 e-mail: rochelea@hawaii.edu Technical Contact at GE Global Research: Devon Manz Electric Power

  12. Assessment of Mission Design Including Utilization of Libration

    E-Print Network [OSTI]

    Barcelona, Universitat de

    Assessment of Mission Design Including Utilization of Libration Points and Weak Stability: The International Sun-Earth Explorer 3 . . . . . . . . . . . . . . . 11 2.1.2 WIND/JWST: Next Generation Space Telescope . . . . . . . . . . . . . . . 33 2.1.9 FIRST/HERSCHEL: Far Infra

  13. Accelerating Offshore Wind Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced investments in seven offshore wind demonstration projects. Check out our map to see where these projects will be located.

  14. Wind/Water Nexus

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Nobel laureate Richard Smalley cited energy and water as among humanity's top problems for the next 50 years as the world's population increases from 6.3 billion to 9 billion. The U.S. Department of Energy's Wind and Hydropower Program has initiated an effort to explore wind energy's role as a technical solution to this critically important issue in the United States and the world. This four-page fact sheet outlines five areas in which wind energy can contribute: thermoelectric power plant/water processes, irrigation, municipal water supply, desalination, and wind/hydropower integration.

  15. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  16. Talkin’ Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  17. Category:Wind power in China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID RoadmapInformation UtilityWind FarmsWindWind

  18. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  19. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  20. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Office of Environmental Management (EM)

    Powering America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis...

  1. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  2. Resources for Utility Regulators

    SciTech Connect (OSTI)

    SEE Action

    2012-06-01

    Provides a summary of State and Local Energy Efficiency Action Network (SEE Action) information resources available to utility regulators, organized by topic.

  3. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  4. Continuous Reliability Enhancement for Wind (CREW) database : wind plant reliability benchmark.

    SciTech Connect (OSTI)

    Hines, Valerie Ann-Peters; Ogilvie, Alistair B.; Bond, Cody R.

    2013-09-01

    To benchmark the current U.S. wind turbine fleet reliability performance and identify the major contributors to component-level failures and other downtime events, the Department of Energy funded the development of the Continuous Reliability Enhancement for Wind (CREW) database by Sandia National Laboratories. This report is the third annual Wind Plant Reliability Benchmark, to publically report on CREW findings for the wind industry. The CREW database uses both high resolution Supervisory Control and Data Acquisition (SCADA) data from operating plants and Strategic Power Systems' ORAPWind%C2%AE (Operational Reliability Analysis Program for Wind) data, which consist of downtime and reserve event records and daily summaries of various time categories for each turbine. Together, these data are used as inputs into CREW's reliability modeling. The results presented here include: the primary CREW Benchmark statistics (operational availability, utilization, capacity factor, mean time between events, and mean downtime); time accounting from an availability perspective; time accounting in terms of the combination of wind speed and generation levels; power curve analysis; and top system and component contributors to unavailability.

  5. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit History Community Wind HandbookUnderstand Your Wind Resource and Conduct a Preliminary Estimate < Community...

  6. American Wind Energy Association Wind Energy Finance and Investment Seminar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

  7. Public Acceptance of Wind: Foundational Study Near US Wind Facilities

    Wind Powering America (EERE)

    Group * Energy Analysis and Environmental Impacts Department Public Acceptance of Wind Power Ben Hoen Lawrence Berkeley National Laboratory WindExchange Webinar June 17, 2015...

  8. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the...

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    al. 2010. Large-scale Offshore Wind for the United States:examined land-based and offshore wind energy in the Easternassistance with the offshore wind energy discussion; Donna

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    with the section on offshore wind; Donna Heimiller and Billythe end of 2011, global offshore wind power capacity stoodEnergy's investments in offshore wind R&D. Interest exists

  11. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    al. 2010. Large-scale Offshore Wind for the United States:assistance with the offshore wind energy discussion; DonnaTechnologies Market Report Offshore Wind Power Project and

  12. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Economic Analysis of a Wind Farm in Nantucket Sound. BeaconP. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &

  13. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    Public Service Wind Integration Cost Impact Study. Preparedused to estimate wind integration costs and the ability toColorado 2 GW and 3 GW Wind Integration Cost Study. Denver,

  14. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    from Canada and Mexico; unlike for wind-powered generatingHonduras (16%), Mexico (8%), and Canada (8%). Wind turbineWind belt states include Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, Nebraska, New Mexico,

  15. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    balancing areas, the use of wind forecasts, and intra-hourchallenges and costs. Wind forecasts are most accurate andare the cost of day-ahead wind forecast error; the remaining

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    of wind power capacity in that state) because generatorsgenerators to provide the needed flexibility to integrate wind power.wind power forecasts by system operators can significantly reduce integration challenges and costs. Intra-hour transmission scheduling and generator

  17. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  18. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  19. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  20. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,a brief discussion on Small Wind Turbines is provided on2010a) sometimes also includes small wind turbines. Other