National Library of Energy BETA

Sample records for utah white mesa

  1. DOE - Office of Legacy Management -- EFB White Mesa Site - 033

    Office of Legacy Management (LM)

    EFB White Mesa Site - 033 FUSRAP Considered Sites Site: EFB White Mesa Site (033 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Utah. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill tailings Radiation

  2. Salt Lake City, Utah A White House Climate Action Champions Case Study

    Energy Savers [EERE]

    Salt Lake City, Utah A White House Climate Action Champions Case Study INDEX Executive Summary.............................. 2 Climate Action Champion.................... 2 Project Spotlight.................................... 3 Challenges and lessons learned.......... 4 Resources & Contacts........................... 5 2 Executive Summary Salt Lake City has a robust set of ambitious climate goals that target reducing emissions while simultaneously prioritizing ways to become more resilient

  3. Mesa Energy formerly called Mesa Environmental Sciences | Open...

    Open Energy Info (EERE)

    Energy formerly called Mesa Environmental Sciences Jump to: navigation, search Name: Mesa Energy (formerly called Mesa Environmental Sciences) Place: Pennsylvania Zip: 19355...

  4. Red Mesa | Open Energy Information

    Open Energy Info (EERE)

    Mesa Jump to: navigation, search Name Red Mesa Facility Red Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources...

  5. Davis County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah Fruit Heights, Utah Kaysville, Utah Layton, Utah North Salt Lake, Utah South Weber, Utah Sunset, Utah Syracuse, Utah West Bountiful, Utah West Point, Utah Woods Cross,...

  6. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  7. Wasatch County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Green Joules Pan Am Biofuels Inc Places in Wasatch County, Utah Charleston, Utah Daniel, Utah Heber, Utah Midway, Utah Park City, Utah Timber Lakes, Utah Wallsburg, Utah...

  8. Emery County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Clawson, Utah Cleveland, Utah Elmo, Utah Emery, Utah Ferron, Utah Green River, Utah Huntington, Utah Orangeville, Utah Retrieved from "http:en.openei.orgwindex.php?titleEmery...

  9. High Mesa | Open Energy Information

    Open Energy Info (EERE)

    High Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Idaho Power Location...

  10. MESA Other GFP.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MESA Other GFP BARCODE DESCRIPTION MFG MODEL SN COST BLDG ROOM INVT DATE S10345 REFRIGERATOR ABSOCOLD 0000 430308515 206.66 922 136 7222013 0000031174 HEADSET PLNM22 UNIVE...

  11. Sandia Energy » Mesa del Sol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence http:energy.sandia.govmesa-del-sol-project-is-finalist-for-international-sm...

  12. Mesa Verde's New Museum Showcases Sustainable Building Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mesa Verde's New Museum Showcases Sustainable Building Technologies Mesa Verde's New Museum Showcases Sustainable Building Technologies April 18, 2013 - 11:42am Addthis Mesa Verde ...

  13. Cache County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype B. Places in Cache County, Utah Amalga, Utah Avon, Utah Benson, Utah Cache, Utah Clarkston, Utah Cornish, Utah Cove, Utah Hyde Park, Utah...

  14. Women in STEM Panel @Mesa Public Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Panel @Mesa Public Library WHEN: Oct 15, 2015 7:00 PM - Feb 12, 2015 8:30 PM WHERE: Mesa Public Library 2400 Central Ave, Los Alamos, NM 87544 SPEAKER: Nicole-Lloyd-Ronning, Teri...

  15. Milford, Utah FORGE Logo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logo Milford, Utah FORGE Logo Milford, Utah FORGE Logo More Documents & Publications Milford, Utah FORGE Logo Milford, Utah FORGE Map Milford, Utah FORGE Logo West Flank FORGE Logo Milford, Utah FORGE Logo Newberry FORGE Logo

  16. Milford, Utah FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Map Milford, Utah FORGE Map Milford, Utah FORGE Map More Documents & Publications Milford, Utah FORGE Map Milford, Utah FORGE Logo Milford, Utah FORGE Map Newberry FORGE Map Milford, Utah FORGE Map Fallon FORGE Map

  17. Red Sky with Red Mesa

    SciTech Connect (OSTI)

    2011-04-14

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  18. Red Sky with Red Mesa

    ScienceCinema (OSTI)

    None

    2014-06-23

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  19. Women in STEM Panel @Mesa Public Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Women in STEM Panel @Mesa Public Library Women in STEM Panel @Mesa Public Library WHEN: Oct 15, 2015 7:00 PM - Feb 12, 2015 8:30 PM WHERE: Mesa Public Library 2400 Central Ave, Los Alamos, NM 87544 SPEAKER: Nicole-Lloyd-Ronning, Teri Roberts and Sandy Frost CATEGORY: Bradbury INTERNAL: Calendar Login Ada Lovelace day image Event Description Join the speakers for a conversation about women in STEM. In association with the Bradbury Science Museum. Women in STEM Panel @Mesa Public Library Join

  20. Mesa Top Photovoltaic Array (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Fact sheet overview of the Mesa Top Photovoltaic Array project implemented by the Department of Energy Golden Office and National Renewable Energy Laboratory.

  1. DOE and Colorado Mesa University Education Agreement Expands...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Colorado Mesa University Education Agreement Expands LM's Site Reuse Portfolio DOE and Colorado Mesa University Education Agreement Expands LM's Site Reuse Portfolio October...

  2. MESA Other GFP.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MESA Other GFP BARCODE DESCRIPTION MFG MODEL SN COST BLDG ROOM INVT DATE S10345 REFRIGERATOR ABSOCOLD 0000 430308515 $206.66 922 136 7/22/2013 0000031174 HEADSET PLNM22 UNIVE PLANTRONICSPLNM22 AV4357H7 $123.99 B01 282 7/2/2012 0000106508 HEADSET PLANTRONICS PLANTRONICSCS50EX N/A $267.95 B01 179 7/17/2013 0000106505 HEADSET PLANTRONICS PLANTRONICSCS50EX N/A $267.95 B01 272 7/17/2013 0000106506 HEADSET PLANTRONICS PLANTRONICSCS50EX N/A $267.95 922 104C 3/1/2013 0000106507 HEADSET PLANTRONICS

  3. MESA Sensitive Property.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitive Property MESA 1 BARCODE DESCRIPTION MANUF. MODEL_NO SN COST BLD ROOM INV_DATE 0000030149 TABLET GRAPHIRE4 4X5 WACOM GRAPHIRE WAC-CTE440B 6CZ015783 $99.74 922 3W-12 22-Jul-09 0000040803 COMPUTER, CONVERTABL HEWLETT PACKARD COMPAQ ELITE 8300 MXL23921C0 $779.00 922 2W-7 19-Jul-13 0000040819 COMPUTER, CONVERTABL HEWLETT PACKARD COMPAQ ELITE 8300 MXL23921F3 $779.00 922 313 25-Jul-13 0000040796 COMPUTER, CONVERTABL HEWLETT PACKARD COMPAQ ELITE 8300 MXL23921JR $779.00 922 311 1-Jul-13

  4. Juab County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 5 Climate Zone Subtype B. Places in Juab County, Utah Eureka, Utah Levan, Utah Mona, Utah Nephi, Utah Rocky Ridge, Utah Santaquin, Utah Retrieved...

  5. DOE - Office of Legacy Management -- Chupadera Mesa NM Site - NM 04

    Office of Legacy Management (LM)

    Chupadera Mesa NM Site - NM 04 FUSRAP Considered Sites Chupadera Mesa, NM Alternate Name(s): None Location: Approximately 28 miles northeast of the Trinity nuclear test site on the White Sands Missile Range, Northeast of Bingham, New Mexico NM.04-5 Historical Operations: Received the deposition of longer-lived radionuclides in the fallout from the nuclear test, primarily cesium-137, strontium-90, plutonium-239, cobalt-60, and europium-155. NM.04-2 NM.04-5 Eligibility Determination: No further

  6. Utah Department of Commerce | Open Energy Information

    Open Energy Info (EERE)

    Commerce Jump to: navigation, search Name: Utah Department of Commerce Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111 References: Utah Commerce Website1 This...

  7. BLM Utah State Office | Open Energy Information

    Open Energy Info (EERE)

    Utah State Office Jump to: navigation, search Logo: BLM Utah State Office Name: BLM Utah State Office Abbreviation: Utah Address: 440 West 200 South, Suite 500 Place: Salt Lake...

  8. Field Projects: Monticello, Utah

    Broader source: Energy.gov [DOE]

    A permeable reactive barrier (PRB) of zero-valent iron is helping to clean up groundwater at a former uranium and vanadium ore processing mill at Monticello, Utah. LM managed remediation of...

  9. Utah_cm_smith

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cindy and Mack Smith Site - Utah Wind Anemometer Loan Program Latitude: N. 37 deg. 44.034' Longitude: W. 109 deg. 17.28' Elevation: 6762' Placed in service: November 21, 2002...

  10. DOE - Office of Legacy Management -- Utah

    Office of Legacy Management (LM)

    Utah Utah ut_map Green River Site Mexican Hat Site Monticello Site Salt Lake City Sites (2)

  11. Utah Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy Corp., and the Utah Municipal Power Association's Cove Fort Station, which is located north of Beaver, Utah. Photo of the Bud L. Bonnett Geothermal Plant in Cove Fort Sulphurdale, UT

  12. Beaver County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Facility Blundell 2 Geothermal Facility Places in Beaver County, Utah Beaver, Utah Milford, Utah Minersville, Utah Retrieved from "http:en.openei.orgwindex.php?titleBeaver...

  13. Washington County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype B. Registered Energy Companies in Washington County, Utah Verdi Energy Group Places in Washington County, Utah Apple Valley, Utah Enterprise, Utah...

  14. Utah DEQ Air Permitting Branch Webpage | Open Energy Information

    Open Energy Info (EERE)

    link for Utah DEQ Air Permitting Branch Webpage Citation Utah Department of Environmental Quality. Utah DEQ Air Permitting Branch Webpage Internet. State of Utah. cited 201411...

  15. Utah Air Guidance Documents Webpage | Open Energy Information

    Open Energy Info (EERE)

    link for Utah Air Guidance Documents Webpage Citation Utah Department of Environmental Quality. Utah Air Guidance Documents Webpage Internet. State of Utah. cited 201411...

  16. Utah Natural Gas Processed in Utah (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Utah (Million Cubic Feet) Utah Natural Gas Processed in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 489,947 526,290 440,712 411,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Utah-Utah

  17. University of Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Utah University of Utah Milford, Utah FORGE Logo The Milford, Utah FORGE team, led by the University of Utah - Energy & Geoscience Institute (EGI), has identified a location where they propose to establish a geothermal laboratory. The proposed area has an established history of geothermal research and development, with a vast set of data from exploration wells and seismic stations that will help the Milford, Utah FORGE team characterize their potential site. The Milford, Utah

  18. Alternative Fuels Data Center: Mesa Unified School District Reaps Economic

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Environmental Benefits with Propane Buses Mesa Unified School District Reaps Economic and Environmental Benefits with Propane Buses to someone by E-mail Share Alternative Fuels Data Center: Mesa Unified School District Reaps Economic and Environmental Benefits with Propane Buses on Facebook Tweet about Alternative Fuels Data Center: Mesa Unified School District Reaps Economic and Environmental Benefits with Propane Buses on Twitter Bookmark Alternative Fuels Data Center: Mesa Unified

  19. Utah Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Logo: Utah Geological Survey Name: Utah Geological Survey Address: 1594 W. North Temple Place: Salt Lake City, Utah Zip: 84114-6100 Phone Number: 801.537.3300 Website:...

  20. Utah + workshop + GRR | OpenEI Community

    Open Energy Info (EERE)

    2012 - 14:45 Utah Meeting 1 Utah + workshop + GRR On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting flowcharts developed...

  1. Draper, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Draper is a city in Salt Lake County and Utah County, Utah. It falls under Utah's 2nd congressional...

  2. Utah's Public Notice Website | Open Energy Information

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah's Public Notice Website Citation Utah.gov. Utah's Public Notice Website...

  3. Utah DEQ Website | Open Energy Information

    Open Energy Info (EERE)

    Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Website Author Utah Department of Environmental Quality Published Utah Department of...

  4. Utah Solar Outlook March 2010

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  5. Utah Code Annotated | Open Energy Information

    Open Energy Info (EERE)

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  6. Utah/Incentives | Open Energy Information

    Open Energy Info (EERE)

    RecruitmentSupport Yes City of St. George - Energy Efficient Homes Rebate Program (Utah) Utility Rebate Program No City of St. George - Energy Star Appliance Rebate Program (Utah)...

  7. Orem, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah's 3rd congressional district.12 Registered Energy Companies in Orem, Utah Better Biodiesel Domestic Energy Partners Trulite Inc References US Census Bureau...

  8. Lehi, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah's 3rd congressional district.12 Registered Energy Companies in Lehi, Utah Tasco Engineering Inc References US Census Bureau Incorporated place and minor civil...

  9. Utah Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    Municipal Power Agency Place: Utah Phone Number: (801) 798-7489 Website: www.umpa.cc Facebook: https:www.facebook.compagesUtah-Municipal-Power-Agency152219714819535 Outage...

  10. Utah/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    UtahWind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >>...

  11. EERE Success Story-Mesa Verde's New Museum Showcases Sustainable

    Office of Environmental Management (EM)

    Building Technologies | Department of Energy Mesa Verde's New Museum Showcases Sustainable Building Technologies EERE Success Story-Mesa Verde's New Museum Showcases Sustainable Building Technologies April 18, 2013 - 11:42am Addthis Mesa Verde National Park's visitor center blends state-of-the-art energy technology with traditional Native American building principles to create a high-performance, Leadership in Energy and Environmental Design Platinum-certified sustainability showcase. The

  12. The Black Mesa coal/water slurry pipeline system

    SciTech Connect (OSTI)

    Brolick, H.J.

    1994-12-31

    The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 mw steam powered electric generating plant located in Laughlin, Nevada.

  13. Mesa Verde's New Museum Showcases Sustainable Building Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mesa Verde's New Museum Showcases Sustainable Building Technologies Mesa Verde's New Museum Showcases Sustainable Building Technologies April 18, 2013 - 11:42am Addthis Mesa Verde National Park's visitor center blends state-of-the-art energy technology with traditional Native American building principles to create a high-performance, Leadership in Energy and Environmental Design Platinum-certified sustainability showcase. The center consumes about 28% less energy than

  14. Costa Mesa, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Costa Mesa, California Ceradyne Inc EPS Corp Energy and Power Solutions MGE UPS SYSTEMS Inc Registered Financial Organizations...

  15. Mountain Mesa, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Mesa, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.6393975, -118.4056391 Show Map Loading map......

  16. Utah/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    info@distributedwind.org Distributed Wind Energy Association Utah Wind Resources Utah Office of Energy Development: Wind Energy Information AWEA State Wind Energy Statistics: Utah...

  17. Curecanti-Blue Mesa-Salida 115-kV transmission lines access roads rehabilitation, maintenance, and construction project. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    Western Area Power Administration (Western) is a power marketing agency of the US Department of Energy, with jurisdiction in 15 western states. The Salt Lake City Area (SLCA) of Western performs the agency`s mission in parts of Colorado, New Mexico, Texas, Utah, Arizona, Wyoming, and Nevada. As part of its mission, Western owns, operates, and maintains a system of transmission lines for transmitting bulk electrical energy from points of generation to and between delivery points. Part of that system in southwestern Colorado includes the Blue Mesa-Curecanti and Blue Mesa-Salida 115-kV transmission lines. Western proposes to conduct maintenance and improve its access roads for these two transmission lines. This paper discusses the impacts to the existing environment as well as the environmental consequences resulting from the maintenance and construction that is proposed.

  18. Utah - UAC R907-1 - Utah Administrative Procedures | Open Energy...

    Open Energy Info (EERE)

    07-1 - Utah Administrative Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah - UAC R907-1 - Utah...

  19. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  20. RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    Utah < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationUtah) Redirect page Jump to: navigation, search REDIRECT...

  1. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  2. Sandy, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Sandy is a city in Salt Lake County, Utah. It falls under Utah's 2nd congressional district.12 Registered...

  3. Utah Public Service Commission | Open Energy Information

    Open Energy Info (EERE)

    Lake City, Utah Zip: 84114 Phone Number: 801.530.6716 Website: www.psc.utah.govindex.html References: PSC homepage1 This article is a stub. You can help OpenEI by expanding...

  4. Milford, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Milford is a city in Beaver County, Utah. It falls under Utah's 3rd congressional...

  5. Utah Water Rights Flowchart | Open Energy Information

    Open Energy Info (EERE)

    Flowchart Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Rights Flowchart Abstract Provides access to flowchart of Utah's water rights...

  6. Utah Antidegradation Review Form | Open Energy Information

    Open Energy Info (EERE)

    Utah Antidegradation Review Form Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Antidegradation Review Form Form Type ApplicationNotice Form Topic...

  7. OpenEI Community - Utah + workshop + GRR

    Open Energy Info (EERE)

    Utah Meeting 1 http:en.openei.orgcommunityblogutah-meeting-1

    On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting...

  8. Utah Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Lake City, Utah Zip: 84114 Phone Number: 801.965.4000 Website: www.udot.utah.govmainf?p100 References: UDOT homepage1 This article is a stub. You can help OpenEI by...

  9. Utah Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    Utah Meeting 1 Home > Blogs > Kyoung's blog Kyoung's picture Submitted by Kyoung(150) Contributor 10 September, 2012 - 13:45 Utah + workshop + GRR On Thursday, September 6, we met...

  10. Monticello, Utah, Disposal and Processing Sites

    Office of Legacy Management (LM)

    Monticello, Utah, Disposal and Processing Sites This fact sheet provides information about the Monticello, Utah, Disposal and Processing Sites. These sites are managed by the U.S. Department of Energy Office of Legacy Management under the Comprehensive Environmental Response, Compensation, and Liability Act. Location of the Monticello, Utah, Disposal and Processing Sites Site Description and History The Monticello, Utah, Disposal and Processing Sites are located in and near the city of

  11. EERE Success Story-Mesa Verde's New Museum Showcases Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 18, 2013 - 11:42am Addthis Mesa Verde National Park's visitor center blends state-of-the-art energy technology with traditional Native American building principles to create ...

  12. Red Mesa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Mesa is a census-designated place in Apache County, Arizona.1 References US...

  13. Tracer Testing At East Mesa Geothermal Area (1983) | Open Energy...

    Open Energy Info (EERE)

    procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results...

  14. Prospects for Utah look good

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2006-01-15

    Utah enjoys its first boom in over a generation. Recently Arch Coal, Andalex, CONSOl Energy and PacifiCorp ramped up their coal mining operations or re-opened closed facilities. Arch Coal's Skyline mine was able to mine over 200,0000 tons of coal throughout 2005 and its SUFCO mine produced 7.5 mt of coal during 2005. The article based largely on the recent 'Annual review and forecast of Utah coal', reports on developments in the state whose coal production could break records in 2006. 1 ref., 4 photos.

  15. New Wells Provide Information on Groundwater at Pahute Mesa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 28, 2012 New Wells Provide Information on Groundwater at Pahute Mesa New wells drilled near historic underground test areas in Nevada are helping scientists get a clearer understanding of the groundwater in these areas while contributing to the design of a long-term monitoring system. Drilled from September to October 2012, these two wells will supplement a network of more than 20 existing characterization wells in an area called Pahute Mesa, which extends from the northwestern portion

  16. Spanish Fork, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spanish Fork is a city in Utah County, Utah. It falls under Utah's 3rd congressional...

  17. Utah State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Name: Utah State Historic Preservation Offic Address: 300 S. Rio Grande Street Place: Salt Lake City, Utah Zip: 84101 Website: history.utah.gov...

  18. Utah Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Board Jump to: navigation, search Name: Utah Oil and Gas Board Address: 1594 West North Temple Place: Utah Zip: 84116 Website: oilgas.ogm.utah.gov Coordinates: 40.7721389,...

  19. Utah Division of State History | Open Energy Information

    Open Energy Info (EERE)

    History Jump to: navigation, search Logo: Utah Division of State History Name: Utah Division of State History Address: 300 S. Rio Grande St. Place: Salt Lake City, Utah Zip: 84101...

  20. City of Murray, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Murray, Utah (Utility Company) Jump to: navigation, search Name: City of Murray Place: Utah Phone Number: (801) 264-2730 Website: www.murray.utah.govindex.aspx Outage...

  1. American Fork, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. American Fork is a city in Utah County, Utah. It falls under Utah's 2nd congressional...

  2. Categorical Exclusion Determinations: Utah | Department of Energy

    Office of Environmental Management (EM)

    Utah Categorical Exclusion Determinations: Utah Location Categorical Exclusion Determinations issued for actions in Utah. DOCUMENTS AVAILABLE FOR DOWNLOAD August 31, 2015 CX-100348 Categorical Exclusion Determination Sodium Ion Expansion Power Block for Distributed CSP Award Number: DE-EE0007110 CX(s) Applied: A9, B3.6 Solar Energy Technologies Office Date: 08/31/2015 Location(s): UT Office(s): Golden Field Office December 12, 2014 CX-100147 Categorical Exclusion Determination Wasatch Solar

  3. Steven K. Krueger, University of Utah

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cumulus Convection and the Boundary Layer at the Southern Great Plains ACRF Steven K. Krueger, University of Utah from Arakawa and Jung (2003) Interactions of Cumulus...

  4. Utah Labor Commission | Open Energy Information

    Open Energy Info (EERE)

    The Utah Labor Commission is the regulatory agency responsible for preserving the balance established by the legislature for protecting the health, safety, and economic...

  5. Utah Geothermal Presentation Bloomquist | Open Energy Information

    Open Energy Info (EERE)

    on geothermal energy development in Utah. Authors Dr. R. Gordon Bloomquist and Ph.D Organization Washington State University Energy Program Published Bloomquist, 2004 DOI...

  6. Elberta, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleElberta,Utah&oldid233710" Feedback Contact needs updating Image needs updating Reference needed Missing...

  7. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  8. Utah Antidegradation FAQ | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Utah Antidegradation FAQPermittingRegulatory GuidanceSupplemental Material Abstract...

  9. Utah Antidegradation Review Implementation Guidance | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Antidegradation Review Implementation GuidancePermittingRegulatory...

  10. Utah Geothermal Institutional Handbook | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Geothermal Institutional HandbookPermittingRegulatory GuidanceGuide...

  11. Green River, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site near Green River, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Green River, Utah, Disposal Site Site Description and History The Green River disposal site is about 0.5 mile east of the Green River and 1.5 miles southeast of the city of Green River, Utah. The site consists of an

  12. Mexican Hat, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Mexican Hat, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Mexican Hat, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Mexican Hat, Utah, Disposal Cell Site Location and History The Mexican Hat disposal site is located on the Navajo Reservation in southeast Utah, 1.5 miles southwest of the town of Mexican Hat and 1 mile south of the San

  13. Daniel, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Daniel, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4707885, -111.4146275 Show Map Loading map... "minzoom":false,"mappingservice"...

  14. Utah Antiquities Section | Open Energy Information

    Open Energy Info (EERE)

    sites and artifacts, educate the public about them, and assist professionals who are researching these cultural resources. References "Utah State History: Archaeology Website"...

  15. Utah | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Utah | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  16. Rainier Mesa Sub-CAU Model for N-Tunnel (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Rainier Mesa Sub-CAU Model for N-Tunnel Citation Details In-Document Search Title: Rainier Mesa Sub-CAU Model for N-Tunnel You are accessing a document from the...

  17. Energy & Geoscience Institute at the University of Utah | Open...

    Open Energy Info (EERE)

    Geoscience Institute at the University of Utah Jump to: navigation, search Name: Energy & Geoscience Institute at the University of Utah Address: 423 Wakara Way Suite 300 Place:...

  18. Utah Code Title 73, Chapter 3, Appropriation | Open Energy Information

    Open Energy Info (EERE)

    (Manner of acquiring water rights) as established by the Utah Legislature in Salt Lake City, Utah. Published NA Year Signed or Took Effect 2012 Legal Citation Not...

  19. Utah Division of Water Rights Information Webpage | Open Energy...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Division of Water Rights Information Webpage Citation Utah Division of...

  20. Utah State Parks and Recreation | Open Energy Information

    Open Energy Info (EERE)

    Recreation Jump to: navigation, search Name: Utah State Parks and Recreation Address: 1594 W North Temple, Suite 116 Place: Salt Lake City, Utah Zip: 84116 Phone Number:...

  1. Utah State Prison Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Prison Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Utah State Prison Space Heating Low Temperature Geothermal Facility Facility Utah State...

  2. Utah Application to Appropriate Water | Open Energy Information

    Open Energy Info (EERE)

    Utah Application to Appropriate Water Abstract Required application for obtaining a right to appropriate water in Utah. Form Type ApplicationNotice Form Topic Filing for Water...

  3. Utah R850-27 Geothermal Steam | Open Energy Information

    Open Energy Info (EERE)

    in Utah outlining the authority for the Utah School and Institutional Trust Lands Administration (UTLA) to administer trust land in the state, including the leasing of trust land...

  4. Utah School and Institutional Trust Lands Administration | Open...

    Open Energy Info (EERE)

    School and Institutional Trust Lands Administration Jump to: navigation, search Logo: Utah School and Institutional Trust Lands Administration Name: Utah School and Institutional...

  5. Utah's 3rd congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    district in Utah. Registered Energy Companies in Utah's 3rd congressional district Better Biodiesel Composite Tower Solutions Domestic Energy Partners Evergreen Clean Energy FT...

  6. Guide to Permitting Electric Transmission Lines in Utah | Open...

    Open Energy Info (EERE)

    GuidanceGuideHandbook Abstract Guide to permitting requirements of federal, state, and local agencies. Author Utah Office of Energy Development Published Utah Office of Energy...

  7. Utah Division of Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah. The Division of Public Utilities, makes recommendations to the Utah Public Service Commission for rate-making purposes, applications, hearings and other...

  8. Utah Roses Greenhouse Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Roses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Utah Roses Greenhouse Low Temperature Geothermal Facility Facility Utah Roses Sector...

  9. Enel North America Utah Geothermal Working Group Meeting | Open...

    Open Energy Info (EERE)

    America Utah Geothermal Working Group Meeting Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Enel North America Utah Geothermal Working Group Meeting...

  10. Utah Office of Energy Development | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Utah Office of Energy Development Address: PO Box 144845 Place: Salt Lake City, Utah Zip: 84114 Phone Number: 801-538-8732 Website:...

  11. Utah Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Utah (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 18,183 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Utah

  12. Mesa Grande Band of Mission Indians- 2004 Project

    Broader source: Energy.gov [DOE]

    The Mesa Grande Band of Mission Indians, located in northern San Diego County, will conduct a study of the feasibility of reducing air pollution generated on the reservation by an over-reliance on wood-burning stoves, kerosene heaters, and gasoline generators, and to identify the types of renewable energy systems that could be used for residential structures and well-pump systems.

  13. Utah Success Story—A Performance Contracting Program

    Broader source: Energy.gov [DOE]

    Provides an overview case study of Utah's Performance Contracting Program. Author: Energy Services Coalition

  14. Red Cliffs Campground, Cedar City District, Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Red Cliffs Campground, Cedar City District, Utah Red Cliffs Campground, Cedar City District, Utah Photo of Field Station at Red Cliffs Campground in Utah's Cedar City District The Bureau of Land Management (BLM) has remote field stations in Arizona, California, Utah, Idaho, and Alaska. This photograph shows the field station at Red Cliffs Campground in Utah's Cedar City District. Photovoltaic power systems allow the people working in these remote areas to have the convenience of continuous

  15. Changes in Vegetation at the Monticello, Utah, Disposal Site | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Changes in Vegetation at the Monticello, Utah, Disposal Site Changes in Vegetation at the Monticello, Utah, Disposal Site Changes in Vegetation at the Monticello, Utah, Disposal Site Linda Sheader and Marilyn Kastens PDF icon Changes in Vegetation at the Monticello, Utah, Disposal Site More Documents & Publications Study of Factors Affecting Shrub Establishment on the Monticello, Utah, Disposal Cell Cover Monitoring the Performance of an Alternative Landfill Cover at the

  16. Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah |

    Office of Environmental Management (EM)

    Department of Energy Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah PDF icon Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah More Documents & Publications Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah Hydraulic Conductivity of the Monticello Permeable Reactive Barrier

  17. New Weatherization Training Center Opens in Utah | Department of Energy

    Office of Environmental Management (EM)

    Weatherization Training Center Opens in Utah New Weatherization Training Center Opens in Utah May 25, 2010 - 6:32pm Addthis The Utah weatherization assistance program built a new demonstration house to train weatherization workers. The Intermountain Weatherization Training Center is located in a warehouse in Clearfield, Utah. | Photo courtesy of Intermountain Weatherization Training Center The Utah weatherization assistance program built a new demonstration house to train weatherization workers.

  18. Alternative Fuels Data Center: Utah Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Utah Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Utah Transportation

  19. Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loan Program Utah's Clean Fuels and Vehicle Technology Loan Program to someone by E-mail Share Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Facebook Tweet about Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Twitter Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Google Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan

  20. Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Boost Sustainability Utah Paperbox Adds Workplace Charging to Boost Sustainability to someone by E-mail Share Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Facebook Tweet about Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Twitter Bookmark Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Google Bookmark Alternative Fuels Data Center: Utah Paperbox

  1. MESA Two-Year Anniversary | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    MESA Two-Year Anniversary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working

  2. Utah

    Gasoline and Diesel Fuel Update (EIA)

  3. An Examination of Avoided Costs in Utah

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-01-07

    The Utah Wind Working Group (UWWG) believes there are currently opportunities to encourage wind power development in the state by seeking changes to the avoided cost tariff paid to qualifying facilities (QFs). These opportunities have arisen as a result of a recent renegotiation of Pacificorp's Schedule 37 tariff for wind QFs under 3 MW, as well as an ongoing examination of Pacificorp's Schedule 38 tariff for wind QFs larger than 3 MW. It is expected that decisions made regarding Schedule 38 will also impact Schedule 37. Through the Laboratory Technical Assistance Program (Lab TAP), the UWWG has requested (through the Utah Energy Office) that LBNL provide technical assistance in determining whether an alternative method of calculating avoided costs that has been officially adopted in Idaho would lead to higher QF payments in Utah, and to discuss the pros and cons of this method relative to the methodology recently adopted under Schedule 37 in Utah. To accomplish this scope of work, I begin by summarizing the current method of calculating avoided costs in Utah (per Schedule 37) and Idaho (the ''surrogate avoided resource'' or SAR method). I then compare the two methods both qualitatively and quantitatively. Next I present Pacificorp's four main objections to the use of the SAR method, and discuss the reasonableness of each objection. Finally, I conclude with a few other potential considerations that might add value to wind QFs in Utah.

  4. White Roofs

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29

    Secretary Steven Chu discusses the benefits of switching to white roofs and light colored pavements.

  5. Coal slurry pipelines: Blach Mesa and future projects

    SciTech Connect (OSTI)

    Brolick, H.J.

    1998-12-31

    Most people in the mining industry have some familiarity with pipelining of minerals in slurry form, however, many may not realize the extent that mineral slurry pipeline transport is used throughout the world. The author is referring to the shipment of the minerals in the raw or concentrate form, not tailings pipelines which are also commonplace in the minerals industry. There are over forty mineral pipelines around the world. The list covers a wide range of minerals, including copper ore concentrate, iron ore concentrate, limestone, phosphate concentrate, kaolin, Gilsonite and gold ore, with only eleven of the mineral pipelines located in the USA. It should be noted that one of the earliest slurry pipelines was a 108 mile coal slurry pipeline in Ohio, which started up in 1957. The pipeline only operated until 1963 when a railroad company literally bought out the transportation contract. This really was the beginning of the unit train concept. Each mineral has specific physical and chemical characteristics to be considered when evaluating transport by pipeline. The processing required at the pipeline origin, as well as at the pipeline termination, are also important factors in determining slurry pipeline feasibility. Transport distance, annual volume, and continuity of shipments are other important factors. One of the most difficult minerals to transport as a slurry is coal because the specific gravity is closer to water than most other minerals. Thus, the fine balance of creating enough fine particles to serve as a carrier for the coarser material, while at the same time having a material that can be economically dewatered is very sensitive and technical designs will vary with types of coal. Additionally, since coal is purchased for its thermal value, excess surface moisture can lower the value of the coal to the customer. One of the most successful slurry pipeline operations, and the only current operating long-distance coal slurry pipeline is the Black Mesa Pipeline System. The Black Mesa Pipeline is a 273 mile (439 km) long, 18-inch (457 mm) coal/water slurry pipeline, originating on the Black Mesa in the Northeastern part of Arizona, USA. The system delivers coal from the Peabody Coal Company`s Black Mesa open pit mine to the Mohave Generating Station which is a 1580 MW steam powered electric generating plant located in Laughlin, Nevada. Black Mesa Pipeline began commercial operation in November, 1970 and has transported in excess of 110,000,000 tons (99,800,000 metric tons) of coal with an availability factor of 99%.

  6. 4th Quarter 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Capacity (short tons of ore per day) 2014 1st quarter 2015 2nd quarter 2015 3rd quarter 2015 4th quarter 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating- Processing Alternate Feed Operating Operating- Processing Alternate Feed Operating- Processing Alternate Feed Operating- Processing Alternate Feed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725

  7. Sandia Energy - Mesa del Sol Unveils First Smart Grid in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Grid Integration News Energy Efficiency News & Events SMART Grid Solar Microgrid Global Climate & Energy Mesa del Sol Unveils First Smart Grid in the Nation Previous...

  8. Utah DEQ Energy Pre-Design Program | Open Energy Information

    Open Energy Info (EERE)

    Pre-Design Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Energy Pre-Design Program Abstract Provides information about Utah's...

  9. Spring Lake, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Lake is a census-designated place in Utah County, Utah.1 References US Census...

  10. Iron County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype B. Registered Energy Companies in Iron County, Utah Solar Unlimited USA Places in Iron County, Utah...

  11. Utah Division of Forestry, Fire and State Lands | Open Energy...

    Open Energy Info (EERE)

    of Forestry, Fire and State Lands Address: 1594 W. North Temple, Ste 3520 Place: Salt Lake City, Utah Zip: 84114-5703 Phone Number: 801.538.5555 Website: forestry.utah.gov...

  12. Utah Division of Water Rights | Open Energy Information

    Open Energy Info (EERE)

    Name: Utah Division of Water Rights Address: 1594 West North Temple, Suite 220 Place: Salt Lake City, Utah Zip: 84114-6300 Phone Number: 801.538.7240 Website:...

  13. RAPID/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    Temperature Gradient Wells UAC Rule R655-1 Wells Used for the Discovery and Production of Geothermal Energy in the State of Utah UC 73-22 Utah Geothermal Resource Conservation Act...

  14. City of Logan, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Logan, Utah (Utility Company) Jump to: navigation, search Name: City of Logan Place: Utah Phone Number: (435) 716-9090 Website: www.loganutah.orgLP Outage Hotline: (435) 716-9090...

  15. Mt Wheeler Power, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    Mt Wheeler Power, Inc (Utah) Jump to: navigation, search Name: Mt Wheeler Power, Inc Place: Utah Phone Number: 1 775-289-8981 Website: mwpower.net Facebook: https:...

  16. Utah Sensitive Species List Webpage | Open Energy Information

    Open Energy Info (EERE)

    Species List Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Sensitive Species List Webpage Abstract Provides access to Utah Sensitive...

  17. Norton v Southern Utah Wilderness Alliance, 542 US 55 | Open...

    Open Energy Info (EERE)

    v Southern Utah Wilderness Alliance, 542 US 55 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: Norton v Southern Utah Wilderness Alliance,...

  18. City of Santa Clara, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Santa Clara, Utah (Utility Company) Jump to: navigation, search Name: City of Santa Clara Place: Utah Phone Number: (435) 673-6712 Website: www.sccity.org Outage Hotline: (435)...

  19. Park City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park City is a city in Summit County and Wasatch County, Utah. It falls under Utah's 1st...

  20. City of Blanding, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Blanding, Utah (Utility Company) Jump to: navigation, search Name: City of Blanding Place: Utah Phone Number: 435-678-2791 Website: www.blanding-ut.gov Outage Hotline:...

  1. West Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Mountain is a census-designated place in Utah County, Utah.1 References US Census...

  2. ,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:28 AM" "Back to Contents","Data 1: Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035UT3" "Date","Utah Natural...

  3. File:UtahEnergyForumSiting.pdf | Open Energy Information

    Open Energy Info (EERE)

    UtahEnergyForumSiting.pdf Jump to: navigation, search File File history File usage File:UtahEnergyForumSiting.pdf Size of this preview: 800 600 pixels. Go to page 1 2 3 4 5 6 7...

  4. Utah Division of Wildlife Resources | Open Energy Information

    Open Energy Info (EERE)

    Name: Utah Division of Wildlife Resources Address: 1594 W North Temple, Suite 2110, Box 146301 Place: Salt Lake City, Utah Zip: 84114-6301 Phone Number: 801-538-4745 Website:...

  5. Utah Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Recovery Act State Memo Utah Recovery Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Utah are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, alternative fuel vehicles, and the

  6. Study of Factors Affecting Shrub Establishment on the Monticello, Utah,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Cell Cover | Department of Energy Study of Factors Affecting Shrub Establishment on the Monticello, Utah, Disposal Cell Cover Study of Factors Affecting Shrub Establishment on the Monticello, Utah, Disposal Cell Cover Study of Factors Affecting Shrub Establishment on the Monticello, Utah, Disposal Cell Cover PDF icon Study of Factors Affecting Shrub Establishment on the Monticello, Utah, Disposal Cell Cover More Documents & Publications Changes in Vegetation at the Monticello,

  7. White Papers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White Papers White Papers This page contains a collection of white papers on IS&T topics and presentations about ISTI. Contact Institute Director Stephan Eidenbenz (505) 667-3742 Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email What is ISTI? Slide deck, Author: S. Eidenbenz, November 2015

  8. Geology and resources of the Tar Sand Triangle, southeastern Utah

    SciTech Connect (OSTI)

    Dana, G.F.; Oliver, R.L.; Elliott, J.R.

    1984-05-01

    The Tar Sand Triangle is located in southeastern Utah between the Dirty Devil and Colorado Rivers and covers an area of about 200 square miles. The geology of the area consists of gently northwest dipping strata exposed in the box canyons and slopes of the canyonlands morphology. Strata in the area range in age from Jurassic to Permian. The majority of tar sand saturation is found in the Permian White Rim Sandstone Member of the Cutler Formation. The White Rim Sandstone Member consists of a clean, well-sorted sandstone which was deposited in a shallow marine environment. Resources were calculated from analytical data from the three coreholes drilled by the Laramie Energy Technology Center and other available data. The total in-place resources, determined from this study, are 6.3 billion barels. Previous estimates ranged from 2.9 to 16 million barrels. More coring and analyses will be necessary before a more accurate determination of resources can be attempted. 8 references, 11 figures, 7 tables.

  9. Utah Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Utah Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 74 83 103 97 82 75 66 73 71 71 2010's 66 60 55 50 47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Utah Coalbed Methane Proved Reserves,

  10. Workplace Charging Challenge Partner: Utah Paperbox | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Paperbox Workplace Charging Challenge Partner: Utah Paperbox Workplace Charging Challenge Partner: Utah Paperbox Salt Lake City has a unique air quality problem. In the wintertime, the city gets temperature inversions which can trap pollution. This can make the city's air quality very unhealthy in a matter of days. While there is no magic bullet, Utah PaperBox believes that plug-in electric vehicles (PEVs) are a part of the solution. As a 100-year-old company, Utah PaperBox wants to make

  11. Bibliography of Utah radioactive occurrences. Volume II

    SciTech Connect (OSTI)

    Doelling, H.H.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  12. Bibliography of Utah radioactive occurrences. Volume I

    SciTech Connect (OSTI)

    Doelling, H.H. comp.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  13. Archaeological investigations on the Buckboard Mesa Road Project

    SciTech Connect (OSTI)

    Amick, D.S.; Henton, G.H.; Pippin, L.C.

    1991-10-01

    In 1986, the Desert Research Institute (DRI) conducted an archaeological reconnaissance of a new alignment for the Buckboard Mesa Road on the Nevada Test Site for the Department of Energy (DOE). During this reconnaissance, several archaeological sites of National Register quality were discovered and recorded including a large quarry, site 26Ny4892, and a smaller lithic scatter, site 26Ny4894. Analysis of the debitage at 26Ny4892 indicates that this area was used primarily as a quarry for relatively small cobbles of obsidian found in the alluvium. Lithic reduction techniques used here are designed for efficiently reducing small pieces of toolstone and are oriented towards producing flake blanks from small cores and bifacially reducing exhausted cores. Projectile point cross references indicate that the area has seen at least casual use for about 10,000 years and more sustained use for the last 3,000 years. Initial obsidian hydration measurements indicate sustained use of the quarry for about the last 3,000 years although the loci of activities appear to change over time. Based on this study, the DRI recommends that quarrying activities in the area of 26Ny4892 are sufficiently sampled and that additional investigations into that aspect of prehistoric activity in the area are not necessary. This does not apply to other aspects of prehistoric use. DRI recommends that preconstruction surveys continue to identify nonquarrying, prehistoric utilization of the area. With the increased traffic on the Buckboard Mesa Road, there is a greater potential for vandalism to sites of National Register-quality located near the road. The DRI recommends that during the orientation briefing the workers at the Test Site be educated about the importance of cultural resources and the need for their protection. 202 refs., 41 figs., 52 tabs.

  14. DOE and Colorado Mesa University Education Agreement Expands LM's Site Reuse Portfolio

    Broader source: Energy.gov [DOE]

    A partnership with Colorado Mesa University (CMU) in Grand Junction, Colorado, and the U.S. Department of Energy (DOE) recently provided a chance for CMU students and their instructor to visit the Grand Junction, Colorado, Disposal Site.

  15. Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Utah (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Utah

  16. Major Oil Plays in Utah and Vicinity

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Assoc

  17. NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste

    Office of Legacy Management (LM)

    AM? 2 2 1986 NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste Line Sites from Further Consideration for FUSRAP Inclusion Carlos E. Garcia, Director Environmental Safety and Health Division Albuquerque Operations Office The enclosed material is being provided to you to document the final actions taken under the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP) for the Chupadera Mesa area and the Los Alamos County Industrial Waste Lines, New

  18. RAPID/Geothermal/Land Access/Utah | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessUtah < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  19. Utah Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    References: DNR Homepage1 The Department of Natural Resources helps ensure Utah's quality of life by managing and protecting the state's natural resources. The Department...

  20. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map...

  1. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map Loading map... "minzoom":false,"mapping...

  2. ,"Utah Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  3. Eagle Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eagle Mountain, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3141169, -112.006882 Show Map Loading map... "minzoom":false,"mappings...

  4. Utah's 1st congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Energy Companies in Utah's 1st congressional district Blue Source LLC Ciralight Emery Energy Company Eneco Inc EnergySolutions Inc Genifuel Green Joules GreenFire Energy...

  5. 01243_UofUtah | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Emissions factors for CO2 equivalent, methane, and ... Impacts" PDF Special Progress Report entitled, "VUQ of ... Oil Sands Development Scenarios in Utah's Uinta Basin" ...

  6. RAPID/Geothermal/Water Use/Utah | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseUtah < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  7. Utah Water Right Information Webpage | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Right Information Webpage Abstract Provides information about obtaining a water rights...

  8. Weber County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Weber County, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2602635, -111.9522491 Show Map Loading map... "minzoom":false,"mappingse...

  9. Utah Underground Storage Tank Installation Permit | Open Energy...

    Open Energy Info (EERE)

    Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type Application...

  10. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  11. Conjunctive Surface and Groundwater Management in Utah. Implications...

    Office of Scientific and Technical Information (OSTI)

    begins with a discussion of Utah water law, with an emphasis on conjunctive use issues. ... Moreover, conjunctive management reflects an important trend in western water law that ...

  12. Conjunctive Surface and Groundwater Management in Utah. Implications...

    Office of Scientific and Technical Information (OSTI)

    ... begins with a discussion of Utah water law, with an emphasis on conjunctive use issues. ... Moreover, conjunctive management reflects an important trend in western water law that ...

  13. Summit Park, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7457808, -111.6115928 Show Map Loading map... "minzoom":false,"mappingservice":"...

  14. Utah Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Injection Control Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Underground Injection Control Program Webpage Abstract Provides...

  15. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  16. Utah Water Quality Standards Workgroup Website | Open Energy...

    Open Energy Info (EERE)

    Quality Standards Workgroup Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Quality Standards Workgroup Website Abstract This...

  17. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  18. Utah Division of Water Quality | Open Energy Information

    Open Energy Info (EERE)

    Ground Water Quality Protection Permitting Contact 2 Contacts.png Woody Campbell http:www.waterquality.utah.gov Retrieved from "http:en.openei.orgw...

  19. RAPID/Geothermal/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    may make modifications to the final permit based on any comments submitted during review. Air Quality Assessment Process In Utah, developers may be required to obtain an Air...

  20. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Utah and Arizona Using Hyperspectral Remote Sensing January 17, 2012 Jungho Im, John R. Jensen, Ryan R. Jensen, John Gladden, Jody Waugh and Mike Serrato PDF icon...

  1. Saratoga Springs, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3491173, -111.9046567 Show Map Loading map... "minzoom":false,"mappingservice...

  2. ,"Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  3. Glen Canyon National Recreation Area, Lake Powell, Utah | Department of

    Office of Environmental Management (EM)

    Energy Glen Canyon National Recreation Area, Lake Powell, Utah Glen Canyon National Recreation Area, Lake Powell, Utah Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is

  4. Utah Department of Environmental Quality Hazardous Waste Permits...

    Open Energy Info (EERE)

    Hazardous Waste Permits Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Hazardous Waste Permits...

  5. Utah Nonpoint Source Pollution Management Plan | Open Energy...

    Open Energy Info (EERE)

    Nonpoint Source Pollution Management Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Nonpoint Source...

  6. Camp William Utah National Guard Wind Farm II | Open Energy Informatio...

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Camp William Utah National Guard Wind Farm II Facility Camp William Utah National Guard Sector Wind energy Facility Type Community Wind Facility...

  7. Reconnaissance of the hydrothermal resources of Utah

    SciTech Connect (OSTI)

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  8. Geohydrology of Pahute Mesa-3 test well, Nye County, Nevada

    SciTech Connect (OSTI)

    Kilroy, K.C.; Savard, C.S.

    1997-02-01

    The Pahute Mesa-3 test well is on Pahute Mesa about 3 miles west of the Nevada Test Site and 20 miles northeast of Oasis Valley near Beatty, Nevada. The well was drilled for the U.S. Department of Energy Radionuclide Migration Program to monitor conditions near the western edge of the Nevada Test Site. The well was drilled with conventional rotary methods and an air-foam drilling fluid to a depth of 3,019 feet. A 10.75-inch diameter steel casing was installed to a depth of 1,473 feet. The test well penetrates thick units of non-welded to partly welded ash-flow and air-fall tuff of Tertiary age with several thin layers of densely welded tuff, rhyolite and basalt flows, and breccia. Geophysical logs indicate that fractures are significant in the Tiva Canyon Tuff of the Paintbrush Group and this was confirmed by high flow in this unit during a borehole-flow survey. The geophysical logs also show that the effective porosity in tuffaceous units ranges from 19 to 38 percent and averages 30 percent, and the total porosity ranges from 33 to 55 percent and averages 42 percent. The measured temperature gradient of 1.00 degree Celsius per 100 feet is steep, but is similar to that of other nearby wells, one of which penetrates a buried granite intrusion. Injection tests for six intervals of the well yielded transmissivities that ranged from 3.1 x 10{sup -3} to 25 feet squared per day and hydraulic conductivities that ranged from 6 x 10{sup -5} to 0.12 foot per day. The sum of the transmissivities is 28 feet squared per day and the geometric mean of hydraulic conductivity is 1.7 x 10{sup -3} foot per day. Estimates of storage coefficient range from 2.1 x 10{sup -5} to 3.8 x 10{sup -3}, indicating that the aquifer responded to the injection tests in a confined manner. An aquifer test produced a drawdown of 78 feet during 31 hours of testing at 169 gallons per minute.

  9. White Paper

    Broader source: Energy.gov (indexed) [DOE]

    Baker Fellow Howard H. Baker Jr. Center for Public Policy January 2015 White Paper 1:15 Baker Center Board Cynthia Baker Media Consultant Washington, DC The Honorable Howard H. ...

  10. White Paper

    Broader source: Energy.gov (indexed) [DOE]

    1 White Paper 1.15 Alternative Transportation Refueling Infrastructure in the U.S. 2014: Status and Challenges David L. Greene, Sr. Baker Fellow Howard H. Baker Jr. Center for Public Policy January 2015 White Paper 1:15 Baker Center Board Cynthia Baker Media Consultant Washington, DC The Honorable Howard H. Baker Jr. Former Ambassador to Japan Former United States Senator The Honorable Phil Bredesen Former Governor of Tennessee Sam M. Browder Retired, Harriman Oil Sarah Keeton Campbell

  11. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

  12. Utah State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utah State Historic Preservation Programmatic Agreement Utah State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. PDF icon state_historic_preservation_programmatic_agreement_ut.pdf More Documents & Publications Kansas State Historic Preservation Programmatic Agreement Washington State Historic Preservation Programmatic Agreement Virginia State Historic Preservation

  13. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  14. Utah School Children “Help Utah Out, Turn off the Spout!”

    Broader source: Energy.gov [DOE]

    Utah is working to ensure the resiliency of its future water and energy systems with funding from the Energy Department’s State Energy Program. In fact, the state developed its own Water Energy in Action educational program –in conjunction with the National Energy Foundation – to educate K-12 students and teachers about the many uses of water.

  15. Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method

    SciTech Connect (OSTI)

    Cooper, Clay A; Hershey, Ronald L; Healey, John M; Lyles, Brad F

    2013-07-01

    Groundwater recharge on Pahute Mesa was estimated using the chloride mass-balance (CMB) method. This method relies on the conservative properties of chloride to trace its movement from the atmosphere as dry- and wet-deposition through the soil zone and ultimately to the saturated zone. Typically, the CMB method assumes no mixing of groundwater with different chloride concentrations; however, because groundwater is thought to flow into Pahute Mesa from valleys north of Pahute Mesa, groundwater flow rates (i.e., underflow) and chloride concentrations from Kawich Valley and Gold Flat were carefully considered. Precipitation was measured with bulk and tipping-bucket precipitation gauges installed for this study at six sites on Pahute Mesa. These data, along with historical precipitation amounts from gauges on Pahute Mesa and estimates from the PRISM model, were evaluated to estimate mean annual precipitation. Chloride deposition from the atmosphere was estimated by analyzing quarterly samples of wet- and dry-deposition for chloride in the bulk gauges and evaluating chloride wet-deposition amounts measured at other locations by the National Atmospheric Deposition Program. Mean chloride concentrations in groundwater were estimated using data from the UGTA Geochemistry Database, data from other reports, and data from samples collected from emplacement boreholes for this study. Calculations were conducted assuming both no underflow and underflow from Kawich Valley and Gold Flat. Model results estimate recharge to be 30 mm/yr with a standard deviation of 18 mm/yr on Pahute Mesa, for elevations >1800 m amsl. These estimates assume Pahute Mesa recharge mixes completely with underflow from Kawich Valley and Gold Flat. The model assumes that precipitation, chloride concentration in bulk deposition, underflow and its chloride concentration, have been constant over the length of time of recharge.

  16. Colorado Natural Gas Processed in Utah (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Utah (Million Cubic Feet) Colorado Natural Gas Processed in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 286 3,677 4,194 3,499 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Colorado-Utah

  17. DOE - Office of Legacy Management -- University of Utah Medical Research

    Office of Legacy Management (LM)

    Center - UT 02 Utah Medical Research Center - UT 02 FUSRAP Considered Sites Site: UNIVERSITY OF UTAH, MEDICAL RESEARCH CENTER (UT.02) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Salt Lake City , Utah UT.02-2 Evaluation Year: 1987 UT.02-1 Site Operations: Research and development on animal inhalation of uranium dust during the 1950s. UT.02-2 Site Disposition: Eliminated - Radiation levels below criteria UT.02-1 UT.02-2 Radioactive

  18. Daniel White

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daniel White About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Office of the CTO Operations and Deployment Science Engagement Tools Team Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network

  19. Jonathan White

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  20. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    7 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Capacity (short tons of ore per day) 2010 2011 2012 2013 2014 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Operating-Processing Alternate Feed Energy Fuels Resources Corp Pinon Ridge Mill Montrose, Colorado 500 Developing Permitted And Licensed Partially Permitted And Licensed Permitted And Licensed Permitted And Licensed

  1. BLM Offers Geothermal Leases in Utah, Idaho, and Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bureau of Land Management (BLM) announced in early November that it will hold a competitive lease sale for geothermal energy development on 61 parcels totaling nearly 200,000 acres in the states of Utah, Oregon, and Idaho.

  2. Carbon County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Carbon County is a county in Utah. Its FIPS County Code is 007. It is classified as ASHRAE...

  3. Utah Rules of Appellate Procedure | Open Energy Information

    Open Energy Info (EERE)

    of Appellate Procedure Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah Rules of Appellate ProcedureLegal Abstract...

  4. Utah State Historic Preservation Office Webpage | Open Energy...

    Open Energy Info (EERE)

    Office Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah State Historic Preservation Office Webpage Abstract Provides overview of the role...

  5. Utah Department of Environmental Quality Forms Webpage | Open...

    Open Energy Info (EERE)

    Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Forms Webpage Abstract Provides access to forms...

  6. Empire Electric Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    search Name: Empire Electric Assn, Inc Place: Utah Phone Number: 970-565-4444 or 800-709-3726 Website: www.eea.coop Outage Hotline: 970-565-4444 or 800-709-3726 References:...

  7. Utah Water Rights Fee Schedule | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Rights Fee Schedule Abstract Water rights fee schedule based on amount appropriated....

  8. City of Monroe, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    (Utility Company) Jump to: navigation, search Name: City of Monroe Place: Utah Phone Number: 435.527.4621 Website: www.littlegreenvalley.com Outage Hotline: 435.527.4621...

  9. Moon Lake Electric Assn Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    search Name: Moon Lake Electric Assn Inc Place: Utah Phone Number: ALTAMONT OFFICE (435) 454-3611 -- DUCHESNE OFFICE (435) 738-5322 -- RANGELY OFFICE (970) 675-2291 --...

  10. Utah - UDOT - Accommodation of Utilities and the Control and...

    Open Energy Info (EERE)

    UDOT - Accommodation of Utilities and the Control and Protection of State Highway Rights of Way Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Utah -...

  11. Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,944 46,944...

  12. Utah Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,862 9,993...

  13. Utah Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    laws and works with individuals, community groups, and businesses to protect the quality of our air, land and water in the state of Utah. The following Divisions make up...

  14. DOE Announces Preferred Alternatives For Moab, Utah, Uranium Mill Tailings

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC – The U.S. Department of Energy today announced the department’s preferred alternatives for remediation of the Moab, Utah, Uranium Mill Tailings Remedial Action Project Site:  active...

  15. Shining Energy-saving LEDs on Utah Starry Nights

    Broader source: Energy.gov [DOE]

    Utah is known for its magnificent night skies, where stargazers can catch a glimpse of constellations or a rogue shooting star. Now some rural towns have found a way to create even better views—and conserve energy.

  16. Box Elder County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Box Elder County is a county in Utah. Its FIPS County Code is 003. It is classified as...

  17. Utah Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Utah Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 68,211 95,670 93,934 98,598 99,233 241,904 274,470 286,592 286,929 1990's 334,067 333,591 319,017 348,010 368,585 308,174 265,546 249,930 242,070 211,514 2000's 169,553 166,505 136,843 161,275 193,093 187,524 193,836 195,701 202,380 412,639 2010's 454,832 490,233 535,365 448,687 419,773 - = No Data

  18. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  19. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  20. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  1. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  2. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Wyoming (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 469 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Wyoming

  3. Conjunctive Surface and Groundwater Management in Utah: Implications for

    Office of Scientific and Technical Information (OSTI)

    Oil Shale and Oil Sands Development (Technical Report) | SciTech Connect Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Citation Details In-Document Search Title: Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully

  4. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Utah Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us Middle School Regionals Utah Regions Print Text

  5. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt043_erickson_2010_p.pdf More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Puget Sound Clean Cities Petroleum Reduction

  6. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) Absaroka thrust - Paleozoic-cored structures. The Mesozoic-cored structures subplay represents a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in this subplay produce crude oil and associated gas. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplay. It represents a very continuous and linear, hanging wall, ramp anticline where the Twin Creek is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in both subplays consist of long, narrow, doubly plunging anticlines.

  7. Completion Report for Well ER-20-4 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-04-30

    Well ER-20-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site, Nye County, Nevada. The well was drilled in August and September 2010 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to investigate the possibility of radionuclide transport from up-gradient underground nuclear tests conducted in central Pahute Mesa. This well also provided detailed hydrogeologic information in the Tertiary volcanic section that will help reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model.

  8. UC 73-22 Utah Geothermal Resource Conservation Act | Open Energy...

    Open Energy Info (EERE)

    Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: UC 73-22 Utah Geothermal Resource...

  9. UC 73-22 - Utah Geothermal Resource Conservation Act | Open Energy...

    Open Energy Info (EERE)

    - Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 73-22 - Utah Geothermal Resource...

  10. UC 19-6-401 et seq. - Utah Underground Storage Tank Act | Open...

    Open Energy Info (EERE)

    9-6-401 et seq. - Utah Underground Storage Tank Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 19-6-401 et seq. - Utah...

  11. Utah - UC 54-14 - Utility Facility Review Board Act | Open Energy...

    Open Energy Info (EERE)

    Utah - UC 54-14 - Utility Facility Review Board Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah - UC 54-14 - Utility...

  12. Utah Full Proof of Beneficial Use of Water | Open Energy Information

    Open Energy Info (EERE)

    Utah Full Proof of Beneficial Use of Water Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Full Proof of Beneficial Use of Water Abstract Proof of...

  13. File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf | Open Energy...

    Open Energy Info (EERE)

    3UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Size of this...

  14. File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf | Open Energy...

    Open Energy Info (EERE)

    3UTEGeothermalSteamLeaseUtahTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf Size of this preview:...

  15. Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Jackie M. Williams; Jay A. Sampson; Brian D. Rodriguez; and Theodore H. Asch.

    2006-11-03

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas. Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near or within the water table. This underground testing was limited to specific areas of the Nevada Test Site, including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology, and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (Bechtel Nevada, 2006). During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. This work will help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) from the Yucca Flat area and west towards Shoshone Mountain, to Buckboard Mesa in the south, and onto Rainier Mesa in the north. Subsequent interpretation will include a three-dimensional (3-D) character analysis and a two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for the twenty-six stations shown in figure 1. No interpretation of the data is included here.

  16. Microsoft Word - DOE-ID-11-009 Utah EC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 SECTION A. Project Title: Development of Nuclear Energy-Related Infrastructure and Capabilities at the Utah Nuclear Engineering Radiation Measurement Laboratory - University of Utah SECTION B. Project Description This project will upgrade the nuclear engineering measurement lab of the Nuclear Engineering Measurement Laboratory at the Utah Nuclear Engineering Program, University of Utah by purchasing two high energy resolution HPGe detector counting systems, a scintillation detector counting

  17. Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah,

    Office of Environmental Management (EM)

    November 2005 Through February 2008 | Department of Energy Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 PDF icon Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005

  18. Completion Report for Well ER-EC-12 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-04-30

    Well ER-EC-12 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in June and July 2010 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters for volcanic aquifers potentially down-gradient from historic underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.

  19. Completion Report for Well ER-EC-15 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-05-31

    Well ER-EC-15 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in October and November 2010, as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters of volcanic aquifers potentially down-gradient from underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.

  20. Microsoft Word - DOE-ID-14-014 Utah B1-31.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SECTION A. Project Title: Development of Capabilities to Study the Thermodynamics of Nuclear Energy Related Infrastructure at the Utah Nuclear Engineering Program - University of Utah SECTION B. Project Description The University of Utah proposes to acquire an isothermal titration calorimeter (ITC) for the measurement of thermodynamic properties of actinide complexes, and the enhancement of coursework and research efforts

  1. Analysis of Well ER-EC-6 Testing, Western Pahute Mesa - Oasis Valley FY 2000 Testing Program

    SciTech Connect (OSTI)

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-6 during the Western Pahute Mesa-Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa-Oasis Valley, Well ER-EC-6 Data Report for Development and Hydraulic Testing.

  2. Domestic Uranium Production Report - Quarterly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating status at the end of Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) 2014 1st quarter 2015 2nd quarter 2015 3rd quarter 2015 4th Quarter 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000

  3. Variation in the annual average radon concentration measured in homes in Mesa County, Colorado

    SciTech Connect (OSTI)

    Rood, A.S.; George, J.L.; Langner, G.H. Jr.

    1990-04-01

    The purpose of this study is to examine the variability in the annual average indoor radon concentration. The TMC has been collecting annual average radon data for the past 5 years in 33 residential structures in Mesa County, Colorado. This report is an interim report that presents the data collected up to the present. Currently, the plans are to continue this study in the future. 62 refs., 3 figs., 12 tabs.

  4. SUMMARY REPORT For MONITORTNG AND MITIGATlON OF MESA VERDE CACTUS

    Office of Legacy Management (LM)

    SUMMARY REPORT For MONITORTNG AND MITIGATlON OF MESA VERDE CACTUS (SCLEROCACTUS MESAEVERDAE) NAVAJO TRIBAL UTILITY AUTHORITY POWERLINE UMTRA GROUND WATER PROJECT, SHIPROCK SlTE ON NAVAJO NATION TRIBAL LAND IN SAN JUAN COUNTY, NEW MEXICO Prepared For: S. M. STOLLER CORPORATION GRAND JUNCTION, COLORADO On Behalf of DEPARTMENT O W ENERGY GRAND JUNCTION, COLORADO Prepared By: ECOSPHERE ENVIRONMENTAL SERVICES NAVAJO FISH AND WJLDLIli'E PERMIT #000802-001 FARIVWGTON, NEW MEXICO NOVEMBER 2003 RECORD

  5. Mesa Grande Band of Mission Indians Tribal Energy Project Feasibility Study

    Office of Environmental Management (EM)

    Mesa Grande Band of Mission Indians Tribal Energy Project Feasibility Study The Land The Land The Land Reservation consists of 1820 acres Historically as low as 120 acres Acquisition of 800+ acres in 1988 Purchase of 900 acres in 1998 The People 700 members today 130 living on Reservation 90% people on Reservation below poverty line Long waiting list of people wanting to live on Reservation Challenges Facing the Tribe Quality, Affordable Housing Decent, Living Wage Jobs Sustainable Growth Upper

  6. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Utah Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us High School Regionals Utah Regions Print Text Size: A A A

  7. Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,464 37 720 690 953 0 1,189 541 251 133 2010's 7 833 22 640 31 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Utah Dry Natural Gas

  8. Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 568 17 978 729 946 6 1,147 484 258 92 2010's 530 758 12 478 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Utah Dry Natural Gas Proved Reserves Dry

  9. Utah Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 2010's 3 3 4 3 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Estimated Production Utah

  10. Utah Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Utah Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 127 277 2000's 108 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Utah Natural Gas Liquids Proved Reserves

  11. Utah Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming (Million Cubic Feet) Utah Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 11,554 9,075 7,975 8,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Utah-Wyoming

  12. Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 488 2010's 518 582 700 670 606 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 Utah

  13. Salt Lake City, Utah, Processing and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Salt Lake City, Utah, Processing and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site and disposal site at Salt Lake City, Utah. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Salt Lake City Processing and Disposal Sites Site Descriptions and History The former Salt Lake City processing site is located about 4 miles south-southwest of the center of Salt

  14. Energy Department Recognizes University of Utah in Better Buildings Challenge

    Broader source: Energy.gov [DOE]

    As part of President Obama’s Better Buildings Challenge, the Energy Department recognized the University of Utah today for its leadership in energy efficiency and for reducing energy use by 40 percent in a historic campus building, saving the University $57,000 a year.

  15. Geology, hydrothermal petrology, stable isotope geochemistry, and fluid inclusion geothermometry of LASL geothermal test well C/T-1 (Mesa 31-1), East Mesa, Imperial Valley, California, USA

    SciTech Connect (OSTI)

    Miller, K.R.; Elders, W.A.

    1980-08-01

    Borehole Mesa 31-1 (LASL C/T-1) is an 1899-m (6231-ft) deep well located in the northwestern part of the East Mesa Geothermal Field. Mesa 31-1 is the first Calibration/Test Well (C/T-1) in the Los Alamos Scientific Laboratory (LASL), Geothermal Log Interpretation Program. The purpose of this study is to provide a compilation of drillhole data, drill cuttings, well lithology, and formation petrology that will serve to support the use of well LASL C/T-1 as a calibration/test well for geothermal logging. In addition, reviews of fluid chemistry, stable isotope studies, isotopic and fluid inclusion geothermometry, and the temperature log data are presented. This study provides the basic data on the geology and hydrothermal alteration of the rocks in LASL C/T-1 as background for the interpretation of wireline logs.

  16. The MESA polarimetry chain and the status of its double scattering polarimeter

    SciTech Connect (OSTI)

    Aulenbacher, K.; Bartolomé, P. Aguar; Molitor, M.; Tioukine, V.

    2013-11-07

    We plan to have two independent polarimetry systems at MESA based on totally different physical processes. A first one tries to minimize the systematic uncertainties in double polarized Mo/ller scattering, which is to be achieved by stored hydrogen atoms in an atomic trap (Hydro-Mo/ller-Polarimeter). The other one relies on the equality of polarizing and analyzing power which allows to measure the effective analyzing power of a polarimeter with very high accuracy. Since the status of Hydro-Mo/ller is presented in a separate paper we concentrate on the double scattering polarimeter in this article.

  17. Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits

    DOE Patents [OSTI]

    Vawter, Gregory A.; Smith, Robert E.

    1998-01-01

    A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides.

  18. Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits

    DOE Patents [OSTI]

    Vawter, G.A.; Smith, R.E.

    1998-04-28

    A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides. 7 figs.

  19. Deep Resistivity Structure of Rainier Mesa-Shoshone Mountain, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Theodore H. Asch; Brian D. Rodriguez; Jay A. Sampson; Jackie M. Williams; Maryla Deszcz-Pan

    2006-12-12

    The U. S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. During 2005, the U.S. Geological Survey (USGS), funded by the DOE and NNSA-NSO, collected and processed data from twenty-six Magnetotelluric (MT) and Audio-Magnetotelluric (AMT) sites at the Nevada Test Site. Data stations were located in and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend to the west the hydrogeologic study that was conducted in Yucca Flat in 2003. This work has helped to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale(Bechtel Nevada, 2006)) in the Yucca Flat area and west towards Shoshone Mountain in the south, east of Buckboard Mesa, and onto Rainier Mesa in the north. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology within the region. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit (UCCU) are generally characterized in the upper 5 km. The interpretation is not well determined where conductive TCU overlies conductive Chainman Shale, where resistive Eleana Formation overlies resistive LCA units, or where resistive VTA rock overlies units of the Eleana Formation. The nature of the volcanic units in the west has been refined as are large and small fault structures such as the CP Thrust Fault, the Carpetbag Fault, and the Yucca Fault that cross Yucca Flat. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit and areas to the west and in understanding the effects on ground-water flow in the area.

  20. AN OVERVIEW OF CULTURAL RESOURCES ON PAHUTE AND RAINIER MESAS ON THE

    National Nuclear Security Administration (NNSA)

    AN OVERVIEW OF CULTURAL RESOURCES ON PAHUTE AND RAINIER MESAS ON THE NEVADA TEST SITE, NYE COUNTY, NEVADA by Lonnie C. Pippin with contributions by Jonathan 0. Davis Stephen R. Durand Ronald L. Reno and Robert K. Vierra Prepared for U.S. Department of Energy Nevada Operations Office Las Vegas, Nevada 1986 Technical Report No. 45 ISBN 0-945920-45-8 ISSN 0897-6376 ACKNOWLEDGEMENTS "Many i n d i v i d u a l s have contributed to the development of this o v e r v i e w and to each we owe a s p

  1. Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping

    SciTech Connect (OSTI)

    Drellack, S.L.; Prothro, L.B.; Townsend, M.J.; Townsend, D.R.

    2011-02-01

    The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristics of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).

  2. Ute Mountain Ute Tribe - Local Scale Solar Energy Development

    Energy Savers [EERE]

    Ute Mountain Ute Tribe Renewable Energy Committee Agenda * Introduction to the Tribe and Tribal Natural Resources * Looking to the Future, Expanding the Portfolio of Natural Resource Development * Focus on solar energy development * The DOE-funded feasibility study * Reservation of approximately 600,000 acres, with lands located in Colorado, Utah, and New Mexico * Tribal communities in Towaoc (southwestern Colorado) and White Mesa (Southeastern Utah) * Approximately 2,300 enrolled Tribal members

  3. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  4. Technical analysis of prospective photovoltaic systems in Utah.

    SciTech Connect (OSTI)

    Quiroz, Jimmy Edward; Cameron, Christopher P.

    2012-02-01

    This report explores the technical feasibility of prospective utility-scale photovoltaic system (PV) deployments in Utah. Sandia National Laboratories worked with Rocky Mountain Power (RMP), a division of PacifiCorp operating in Utah, to evaluate prospective 2-megawatt (MW) PV plants in different locations with respect to energy production and possible impact on the RMP system and customers. The study focused on 2-MW{sub AC} nameplate PV systems of different PV technologies and different tracking configurations. Technical feasibility was evaluated at three different potential locations in the RMP distribution system. An advanced distribution simulation tool was used to conduct detailed time-series analysis on each feeder and provide results on the impacts on voltage, demand, voltage regulation equipment operations, and flicker. Annual energy performance was estimated.

  5. A Hydrostratigraphic Model of the Pahute Mesa - Oasis Valley Area, Nye County, Nevada

    SciTech Connect (OSTI)

    S. L. Drellack, Jr.; L. B. Prothro; J. L. Gonzales

    2001-12-01

    A 3-D hydrostratigraphic framework model has been built for the use of hydrologic modelers who are tasked with developing a model to determine how contaminants are transported by groundwater flow in an area of complex geology. The area of interest includes Pahute Mesa, a former nuclear testing area at the Nevada Test Site (NTS), and Oasis Valley, a groundwater discharge area down-gradient from contaminant source areas on Pahute Mesa. To build the framework model, the NTS hydrogeologic framework was integrated with an extensive collection of drill-hole data (stratigraphic, lithologic, and alteration data); a structural model; and several recent geophysical, geological, and hydrological studies to formulate a hydrostratigraphic system. The authors organized the Tertiary volcanic units in the study area into 40 hydrostratigraphic units that include 16 aquifers, 13 confining units, and 11 composite units. The underlying pre-Tertiary rocks were divided into six hydrostratigraphic units, including two aquifers and four confining units. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with all the major structural features that control them, including calderas and faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to address alternative interpretations for some of the major features in the model. Six of these alternatives were developed so they could be modeled in the same fashion as the base model.

  6. Predicted Geology of the Pahute Mesa-Oasis Valley Phase II Drilling Initiative

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-04-20

    Pahute Mesa–Oasis Valley (PM-OV) Phase II drilling will occur within an area that encompasses approximately 117 square kilometers (45 square miles) near the center of the Phase I PM-OV hydrostratigraphic framework model area. The majority of the investigation area lies within dissected volcanic terrain between Pahute Mesa on the north and Timber Mountain on the south. This area consists of a complex distribution of volcanic tuff and lava of generally rhyolitic composition erupted from nearby calderas and related vents. Several large buried volcanic structural features control the distribution of volcanic units in the investigation area. The Area 20 caldera, including its structural margin and associated caldera collapse collar, underlies the northeastern portion of the investigation area. The southern half of the investigation area lies within the northwestern portion of the Timber Mountain caldera complex, including portions of the caldera moat and resurgent dome. Another significant structural feature in the area is the west-northwest-trending Northern Timber Mountain moat structural zone, which bisects the northern portion of the investigation area and forms a structural bench. The proposed wells of the UGTA Phase II drilling initiative can be grouped into four generalized volcanic structural domains based on the stratigraphic distribution and structural position of the volcanic rocks in the upper 1,000 meters (3,300 feet) of the crust, a depth that represents the approximate planned total depths of the proposed wells.

  7. Completion of the Five-Year Reviews for the Monticello, Utah...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and ongoing monitoring were maintaining protection of human health and the environment. ... Addthis Related Articles Completion of the Five-Year Reviews for the Monticello, Utah, ...

  8. Landslides and debris flows in Ephraim Canyon, central Utah

    SciTech Connect (OSTI)

    Baum, R.L.; Fleming, R.W.

    1989-01-01

    The geology of 36 km{sup 2} in Ephraim Canyon, on the west side of the Wasatch Plateau, central Utah, was mapped at a scale of 1:12,000 following the occurrence of numerous landslides in 1983. The geologic map shows the distribution of the landslides and debris flows of 1983-86, as well as older landslide deposits, other surficial deposits, and bedrock. Several of the recent landslides are described and illustrated by means of maps or photographs.

  9. Landslides and other mass movements near TA-33, northern White Rock Canyon, New Mexico. Final report

    SciTech Connect (OSTI)

    Dethier, D.P.

    1993-09-01

    Massive slump complexes and at least two rock avalanches flank the eastern rim of the Pajarito Plateau along northern White Rock Canyon, north of TA-33. Landslides failed along mechanically weak rocks in the Santa Fe Group, within the Puye Formation, or in Pliocene alluvial and lacustrine units. The landslides are mainly of early or middle Pleistocene age. The toe area of at least,one slump complex has been active in the late Pleistocene, damming White Rock Canyon near the mouth of Water Canyon. Lacustrine sediment that filled this lake, or series of lakes, to an elevation of at least 1710 m is preserved at a number of upstream sites, including a deposit near the Buckman townsite that exposes 30 m of lacustrine sediment. Charcoal collected at several sites has been submitted for {sup 14}C dating. Landslides, however, probably do not represent a significant short-term threat to the material disposal areas at TA-33. Bedrock that lies beneath the TA-33 mesa is relatively stable, the mesa shows no signs of incipient failure, and past periods of slide activity were responses to rapid downcutting of the Rio Grande and climate change, probably over periods of several decades, at least. Rockfall and headward erosion of gullies do not represent significant decadal hazards on canyon rims near TA-33. Gully migration near MDA-K is a potential threat, but the gullies were not examined in detail. A system of north-trending faults, at least one of which displays Pleistocene activity, bisects the TA-33 mesa. If these faults are capable of producing significant seismic shaking, generalizations about landslide and rockfall hazards must be reevaluated.

  10. Completion Report for Well ER-12-3 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada Corporation

    2006-05-01

    Well ER-12-3 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in March and April 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of central Rainier Mesa, especially in the older Tertiary volcanic rocks and Paleozoic sedimentary rocks. The main 47.0-centimeter hole was drilled to a depth of 799.2 meters and cased with 33.97-centimeter casing to 743.1 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to a total depth of 1,496.0 meters. The completion string consisted of 13.97-centimeter stainless steel casing, with two slotted intervals open to the lower carbonate aquifer, suspended from 19.37-centimeter carbon steel casing. A piezometer string was installed outside the 33.97-centimeter casing to a depth of 467.1 meters to monitor a zone of perched water within the Tertiary volcanic section. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 35 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 674.2 meters of Tertiary volcanic rocks and 821.7 meters of Paleozoic dolomite and limestone. Forty-nine days after the well was completed, but prior to well development and testing, the water level inside the main hole was tagged at the depth of 949.1 meters, and the water level inside the piezometer string was tagged at 379.9 meters.

  11. BPA White Book (generation/planning)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White Book 2011 White Book 2010 White Book 2009 White Book 2008 White Book The 2008 White Book was not formally published due to work load constraints associated with completion of...

  12. Utah Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Utah Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 44 -35 1980's -22 44 307 4 -44 -65 -68 -45 -424 260 1990's 8 126 136 43 -82 -63 44 -40 97 -56 2000's 4 135 13 40 113 65 -11 17 -4 1 2010's -80 134 289 -582 -20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  13. Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 58 54 1980's 61 79 87 68 76 73 60 60 40 64 1990's 71 81 111 165 184 165 180 177 216 220 2000's 226 288 286 278 282 308 349 365 417 447 2010's 432 449 478 456 433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. Utah Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Utah Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 93 62 97 1980's 156 413 60 93 41 27 51 12 3 9 1990's 55 21 37 11 43 19 126 164 133 618 2000's 266 269 368 230 299 596 1,408 744 801 164 2010's 106 643 447 117 164 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  15. Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 79 202 89 1980's 123 84 99 42 257 83 78 144 277 84 1990's 101 83 99 24 201 74 79 34 110 322 2000's 110 606 490 767 278 112 502 325 564 491 2010's 219 341 1,926 444 617 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  16. Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 37 117 62 1980's 293 414 55 176 80 111 51 281 86 87 1990's 112 204 161 337 172 69 125 293 645 801 2000's 177 805 207 188 475 186 218 1,113 379 1,342 2010's 872 813 1,349 484 752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  17. Utah Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 551 627 550 1990's 1,508 631 783 345 252 713 923 3,379 3,597 3,625 2000's 3,576 3,535 949 924 312 191 274 278 313 293 2010's 293 286 302 323 328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  18. Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 3 7 2010's 8 11 11 11 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Production

  19. Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 5 11 8 20 26 31 31 28 25 23 1990's 16 17 15 14 14 9 8 8 8 14 2000's 7 11 11 10 10 12 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  20. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 14 16 15 18 24 27 27 28 38 35 1990's 35 34 32 32 34 37 44 49 40 45 2000's 55 54 55 52 52 50 49 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  1. Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,592 1,685 1,725 1,224 934 902 750 922 893 725 2010's 718 679 518 523 538 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as

  2. Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 36 58 2000's 91 100 91 76 61 52 164 174 140 235 2010's 257 258 368 312 261 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  3. Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 52 62 90 2010's 69 78 87 57 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Proved Reserves as of

  4. Utah Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 54 116 2010's 132 196 181 169 206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Proved

  5. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Drici, Warda

    2004-02-01

    This report documents the analysis of the available hydrologic data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  7. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    SciTech Connect (OSTI)

    John McCord; Marutzky, Sam

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

  8. Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Drici, Warda

    2003-08-01

    This report documents the analysis of the available transport parameter data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  9. White Tail | Open Energy Information

    Open Energy Info (EERE)

    Tail Jump to: navigation, search Name White Tail Facility White Tail Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer...

  10. Completion Report for Well ER-EC-13 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-05-31

    Well ER-EC-13 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in October 2010 as part of the Pahute Mesa Phase II drilling program. A main objective was to provide detailed hydrogeologic information for the Fortymile Canyon composite unit hydrostratigraphic unit in the Timber Mountain moat area, within the Timber Mountain caldera complex, that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic framework model. This well may also be used as a long-term monitoring well.

  11. Applications of Geophysical and Geological Techniques to Identify Areas for Detailed Exploration in Black Mesa Basin, Arizona

    SciTech Connect (OSTI)

    George, S.; Reeves, T.K.; Sharma, Bijon; Szpakiewicz, M.

    1999-04-29

    A recent report submitted to the U.S. Department of Energy (DOE) (NIPER/BDM-0226) discussed in considerable detail, the geology, structure, tectonics, and history of oil production activities in the Black Mesa basin in Arizona. As part of the final phase of wrapping up research in the Black Mesa basin, the results of a few additional geophysical studies conducted on structure, stratigraphy, petrophysical analysis, and oil and gas occurrences in the basin are presented here. A second objective of this study is to determine the effectiveness of relatively inexpensive, noninvasive techniques like gravity or magnetic in obtaining information on structure and tectonics in sufficient detail for hydrocarbon exploration, particularly by using the higher resolution satellite data now becoming available to the industry.

  12. Completion Report for Well ER-12-4, Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain (includes Errata Sheet)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-05-01

    Well ER-12-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in May 2005, as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit in the north-central portion of the Nevada Test Site. The well is located on Rainier/Aqueduct Mesa, northwest of Yucca Flat, within Area 12 of the Nevada Test Site. The well provided information regarding the radiological and physical environment near underground nuclear tests conducted in U12t Tunnel, information on the pre-Tertiary rocks in the area, and depth to the regional water table.

  13. Utah's "Solar For Schools" Program Is Bringing New Light to Education |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Utah's "Solar For Schools" Program Is Bringing New Light to Education Utah's "Solar For Schools" Program Is Bringing New Light to Education November 12, 2010 - 9:54am Addthis Gil Sperling, U.S. Department of Energy; Elise Brown, Utah State Energy Program; Janet Jameson, Hillside Teacher; Prathusha Boppana, Hillside Student; Martell Menlove, Deputy Supt of Schools; Chuck McGinnis, Johnson Controls at the Solar for Schools ribbon cutting. | Department

  14. Keeping Energy Savings in the LOOP: Mesa Lane Partners Case Study

    SciTech Connect (OSTI)

    2013-03-01

    Mesa Lane Partners (MLP) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to a build a new, low-energy mixed-use building that consumes at least 50% less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA), as part of DOE’s Commercial Building Partnerships (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. The privately developed 46,000-square-foot LOOP project, which is intended to provide affordable off-campus student housing in an underserved community next to University of California at Santa Barbara, will contain more than 7,000 square feet of retail space, a roof deck, an event space, a gym, and 48 apartments. The project developer, MLP, is aiming to exceed CBP requirement, targeting energy consumption that is at least 65% less than that required by the standard. If the LOOP meets this goal, it is expected to achieve Leadership in Energy and Environmental Design (LEED) Gold certification.

  15. Otay Mesa, CA Liquefied Natural Gas Exports to Mexico (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) Otay Mesa, CA Liquefied Natural Gas Exports to Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 28.552 20.095 25.827 18.229 20.015 14.105 12.433 14.333 14.803 21.894 22.627 22.814 2012 20.271 17.729 14.101 8.688 7.904 7.837 8.662 7.680 8.558 7.633 6.648 3.334 2013 8.259 6.636 6.520 5.121 3.337 5.017 2014 5.824 6.666 6.683 7.542 6.699 6.680 8.532 7.747 8.558 8.481 8.540 5.953 2015 8.468 6.814 7.708 8.492 7.706 8.536 9.114 7.469 7.452 6.594

  16. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2010-14 Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) Operating status at end of the year 2010 2011 2012 2013 2014 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Processing Alternate Feed Operating-Processing Alternate Feed Energy Fuels Resources Corp Pinon Ridge Mill Montrose,

  17. Utah. Code. Ann. § 19-5-115: Spills or discharges of oil or...

    Open Energy Info (EERE)

    Utah. Code. Ann. 19-5-115: Spills or discharges of oil or other substance Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  18. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Utah

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Utah.

  19. Utah R652-20-3400 Geothermal Steam Leases | Open Energy Information

    Open Energy Info (EERE)

    Ruleregulation in Utah outlining the lease process for geothermal resources on (non-trust) state land Published NA Year Signed or Took Effect 2014 Legal Citation R652-20-3400...

  20. Utah - UAC R930-6 - Access Management | Open Energy Information

    Open Energy Info (EERE)

    UAC R930-6 - Access Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah - UAC R930-6 - Access ManagementLegal...

  1. Utah UC 54-4, Authority of Commission Over Public Utilities ...

    Open Energy Info (EERE)

    4, Authority of Commission Over Public Utilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah UC 54-4, Authority of...

  2. Low-Temperature Geothermal Water in Utah: A compilation of Data...

    Open Energy Info (EERE)

    Temperature Geothermal Water in Utah: A compilation of Data for Thermal Wells and Springs Through 1993 Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  3. Long-Term Flow Test No. 1, Roosevelt Hot Springs, Utah | Open...

    Open Energy Info (EERE)

    Flow Test No. 1, Roosevelt Hot Springs, Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Long-Term Flow Test No. 1, Roosevelt Hot Springs,...

  4. Utah - UC 54-2 - Public Utilities Definitions | Open Energy Informatio...

    Open Energy Info (EERE)

    2 - Public Utilities Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah - UC 54-2 - Public Utilities...

  5. Utah UC 54-2-1, Public Utilities Definitions | Open Energy Information

    Open Energy Info (EERE)

    2-1, Public Utilities Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah UC 54-2-1, Public Utilities...

  6. Utah - T-223 Application for Right-of-Way Encroachment Permit...

    Open Energy Info (EERE)

    T-223 Application for Right-of-Way Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Utah - T-223 Application for Right-of-Way...

  7. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,806 5,621 6,286 6,775 8,970 7,970 6,596 1990's 10,573 4,597 3,866 3,241 3,322 18,520 18,570 16,478 19,481 15,930 2000's 16,394 14,578 17,163 16,398 15,802 17,216 20,221 21,715 18,169 20,222 2010's 22,022 23,209 28,165 28,165 25,336 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Utah Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,329 32,637 32,966 1990's 34,697 35,627 36,145 37,816 39,183 40,101 40,107 40,689 42,054 43,861 2000's 47,201 47,477 50,202 51,063 51,503 55,174 55,821 57,741 59,502 60,781 2010's 61,976 62,885 63,383 64,114 65,134 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Utah Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 414,020 418,569 432,377 1990's 453,023 455,649 467,664 484,438 503,583 523,622 562,343 567,786 588,364 609,603 2000's 641,111 657,728 660,677 678,833 701,255 743,761 754,554 778,644 794,880 810,442 2010's 821,525 830,219 840,687 854,389 869,052 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,935 2,788 2,561 2000's 2,674 4,161 5,984 7,347 8,278 8,859 11,156 11,970 11,532 10,239 2010's 10,347 11,374 12,902 13,441 14,061 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  12. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,732 2,754 2,715 6,514 8,701 8,919 9,615 1990's 9,146 9,141 8,745 9,285 9,951 8,492 8,549 8,141 7,985 7,880 2000's 8,276 5,436 4,534 4,481 3,370 3,914 3,739 2,779 2,206 1,573 2010's 1,616 3,063 3,031 5,996 4,782 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Utah Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Utah Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,158 74,698 52,324 21,491 48,654 49,378 58,356 1990's 57,098 62,241 86,682 93,894 154,907 153,804 168,944 174,275 190,230 194,413 2000's 218,283 215,527 250,118 202,784 250,261 267,766 319,268 NA 276,340 389,830

  14. Utah Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.05 1.01 1.01 1.04 1.17 1.26 1.17 2000's 1.11 1.15 1.21 1.08 1.24 1.20 1.37 1.28 1.35 1.36 2010's 1.38 1.49 1.44 1.44 1.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  15. Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 877 925 948 1980's 1,201 1,912 2,161 2,333 2,080 1,999 1,895 1,947 1,298 1,507 1990's 1,510 1,702 1,830 2,040 1,789 1,580 1,633 1,839 2,388 3,213 2000's 4,235 4,579 4,135 3,516 3,866 4,295 5,146 6,391 6,643 7,257 2010's 6,981 7,857 7,548 6,829 6,685 - = No Data Reported; -- = Not Applicable; NA =

  16. Utah Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Utah Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 165,253 169,776 159,889 2000's 164,557 159,299 163,379 154,125 155,891 160,275 187,399 219,700 224,188 214,220 2010's 219,213 222,227 223,039 247,285 242,457 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  17. Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 650 1980's 870 1,722 1,928 2,112 1,984 1,897 1,795 1,870 1,509 1,498 1990's 1,432 1,532 1,709 1,909 1,631 1,424 1,446 1,695 2,293 3,050 2000's 4,125 4,450 3,915 3,318 3,661 4,051 4,894 6,095 6,393 6,810

  18. Microsoft Word - DOE-ID-12-006 Utah EC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SECTION A. Project Title: Acquisition of Specific Equipment to Enhance Performance, Control and Operational Capability of the University of Utah TRIGA Facilities SECTION B. Project Description The objective of this project is to replace the University of Utah TRIGA Reactor heavy water-element handling tool and underwater vacuum cleaner, and to add a portable spectroscopy system and broad energy germanium detector to the facility operational capabilities. SECTION C. Environmental Aspects /

  19. Microsoft Word - DOE-ID-13-013 Utah State B1-31.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: High Temperature Thermal Properties - Utah State University SECTION B. Project Description Utah State University proposes to purchase a Laser Flash Analysis (LFA) system for high temperature thermophysical properties analysis of nuclear materials. The LFA system combined with existing equipment will expand the ability to analyze and characterize thermophysical properties such as thermal diffusivity, thermal conductivity, specific heat capacity, thermal expansion

  20. Microsoft Word - DOE-ID-13-027 Utah EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Risk Assessment of Structural Integrity of Transportation Casks - University of Utah SECTION B. Project Description The University of Utah proposes to assess the risk of loss of structural integrity of transportation casks and fuel cladding after extended storage. The project will include subjecting canisters to impact loads and puncture tests. Casks will be subjected to accelerated degradation due to chloride attacks to simulate the effects of exposure to

  1. Microsoft Word - DOE-ID-13-076 Utah State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SECTION A. Project Title: Optical Fiber Based Laser System for Thermophysical Properties at Very High Temperatures - Utah State University SECTION B. Project Description Utah State University proposes to develop a robust technique using lasers for the measurement of multiple thermophysical properties, such as thermal diffusivity, thermal conductivity, heat capacity, and melting point, at very high temperatures. Objectives include: 1. Design, build, and tune the measurement technique; 2.

  2. Microsoft Word - DOE-ID-14-075 Utah EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SECTION A. Project Title: - Development and Optimization of Voltammetric Methods for Real Time Analysis of Electrorefiner Salt with High Concentrations of Actinides and Fission Products - University of Utah SECTION B. Project Description The University of Utah proposes to develop a robust, accurate method for measuring key component concentrations in molten LiCl- KCl that can readily be implemented into real-time process monitoring systems. This will be accomplished by utilizing fundamental

  3. Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively

    Energy Savers [EERE]

    Contaminated Properties Site (Monticello Vicinity Properties) and the Monticello Mill Tailings Site | Department of Energy Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively Contaminated Properties Site (Monticello Vicinity Properties) and the Monticello Mill Tailings Site Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively Contaminated Properties Site (Monticello Vicinity Properties) and the Monticello Mill Tailings Site October 16, 2012 -

  4. EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado, Utah,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Nevada | Department of Energy 0: TransWest Express Transmission Project; Wyoming, Colorado, Utah, and Nevada EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado, Utah, and Nevada Summary This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending

  5. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, David J. (Oakland, CA)

    1999-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  6. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, David J. (Oakland, CA)

    1997-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  7. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1997-06-24

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  8. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  9. THE WHITE HOUSE | Department of Energy

    Energy Savers [EERE]

    THE WHITE HOUSE THE WHITE HOUSE PDF icon THE WHITE HOUSE More Documents & Publications Audit Report: IG-0473 Lapse Documents Inspection Report: IG-0397

  10. White House Tribal Nations Conference

    Broader source: Energy.gov [DOE]

    The White House will host the seventh annual Tribal Nations Conference to allow tribal leaders to engage with the President, cabinet officials, and the White House Council on Native America Affairs about key issues facing tribes.

  11. Inversion of Gravity Data to Define the Pre-Cenozoic Surface and Regional Structures Possibly Influencing Groundwater Flow in the Rainier Mesa Region, Nye County, Nevada.

    SciTech Connect (OSTI)

    Thomas G. Hildenbrand; Geoffrey A. Phelps; Edward A. Mankinen

    2006-09-21

    A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significant improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (< 1 km). The new model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.

  12. White House Tribal Youth Gathering

    Broader source: Energy.gov [DOE]

    The White House will host the first-ever White House Tribal Youth Gathering to provide American Indian and Alaska Native youth from across the country the opportunity to interact directly with senior Administration officials and the White House Council on Native American Affairs. Registration is due May 8, 2015.

  13. Completion Report for Wells ER-20-8 and ER-20-8#2 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-02-28

    Wells ER-20-8 and ER-20-8#2 were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The holes were drilled in July and August 2009, as part of the Pahute Mesa Phase II drilling program. The primary purpose of these wells was to provide detailed hydrogeologic information in the Tertiary volcanic section that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic framework model. They may also be used as long-term monitoring wells.

  14. Utah Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Utah Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,633 3,266 3,412 1970's 1,493 3,822 3,382 3,489 3,958 3,659 4,032 4,524 3,570 3,950 1980's 4,075 5,219 3,930 4,180 4,259 3,874 10,139 12,396 21,237 18,302 1990's 17,579 14,392 11,851 13,300 13,780 13,679 10,970 17,872 11,801 11,407 2000's 12,795 11,379 3,352 3,404 3,381 2,815 2,911 2,729 3,280 8,489 2010's

  15. Utah Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Underground Storage Volume (Million Cubic Feet) Utah Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 59,806 56,937 55,229 54,606 57,328 55,249 67,314 75,921 83,365 86,778 66,668 58,461 1991 61,574 54,369 50,745 51,761 54,314 60,156 66,484 70,498 74,646 75,367 70,399 63,453 1992 59,541 59,119 59,059 60,896 64,403 67,171 70,690 75,362 78,483 79,756 74,021 67,181 1993 61,308 56,251 52,595 52,028 58,713 65,349 69,968 75,120 80,183

  16. Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.16 0.15 1970's 0.15 0.17 0.17 0.19 0.41 0.48 0.50 0.61 0.64 0.72 1980's 1.12 1.10 3.06 3.40 4.08 3.52 2.90 1.88 2.39 1.58 1990's 1.70 1.54 1.63 1.77 1.54 1.15 1.39 1.86 1.73 1.93 2000's 3.28 3.52 1.99 4.11 5.24 7.16 5.49 NA 6.15 3.38 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA =

  17. Completion Report for Well ER-16-1 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain

    SciTech Connect (OSTI)

    NSTec Geology Services

    2006-12-01

    Well ER-16-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in June and July 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit, Number 99. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of the Shoshone Mountain area, especially in the older Tertiary and pre-Tertiary strata. The main 46.99-centimeter hole was drilled to a depth of 702.9 meters and cased with 33.97-centimeter casing to 663.7 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to total depth of 1,220.7 meters. A completion string set at the depth of 1,162.4 meters consisted of 13.97-centimeter stainless-steel casing, with one continuous slotted interval open to the lower carbonate aquifer. The fluid level in the borehole soon dropped, so the borehole was deepened in July 2006. To deepen the borehole, the slotted section was cemented and a 12.1-centimeter hole was drilled through the bottom of the completion string to the new total depth of 1,391.7 meters, which is 171.0 meters deeper than the original borehole. A string of 6.03-centimeter carbon-steel tubing with one continuous slotted interval at 1,361.8 to 1,381.4 meters, and open to the lower carbonate aquifer, was installed in the well with no gravel packing or cement, to serve as a monitoring string. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 37 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 646.8 meters of Tertiary volcanic rocks and 744.9 meters of Paleozoic dolomite, quartzite, shale, and limestone. Three weeks after the monitoring string was installed, the water level was tagged at the drill hole depth of 1,271.9 meters, which equates to an estimated elevation of 761.7 meters, accounting for the borehole angle.

  18. white-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 A Comparison of Shipboard and Island Observations from the Combined Sensor Program A. B. White Cooperative Institute for Research in Environmental Sciences University of Colorado NOAA-Environmental Technology Laboratory Boulder, Colorado C. W. Fairall and M. J. Post NOAA-Environmental Technology Laboratory Boulder, Colorado Introduction Two issues concerning the Tropical Western Pacific (TWP) Atmospheric Radiation and Cloud Stations (ARCS) are these: To what degree are the measurements

  19. Brendan M. White

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brendan M. White About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Office of the CTO Operations and Deployment Science Engagement Tools Team Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report

  20. Completion Report for Well ER-EC-14, Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    2013-03-05

    Well ER-EC-14 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (NNSS; formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September and October 2012, as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information for the Fortymile Canyon composite hydrostratigraphic unit in the Timber Mountain moat area, within the Timber Mountain caldera complex, that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic framework model. The main 55.9-centimeter (cm) hole was drilled to a total depth of 325.5 meters (m) and cased with 40.6-cm casing to 308.1 m. The hole diameter was then decreased to 37.5 cm, and drilling continued to a total depth of 724.8 m. The completion casing string, set to the depth of 690.9 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The stainless-steel casing has two slotted intervals open to the Rainier Mesa Tuff. Two piezometer strings were installed in Well ER-EC-14. Both piezometer strings, each with one slotted interval, consist of 6.0-cm carbon-steel tubing at the surface, then cross over to 7.3-cm stainless-steel tubing just above the water table. The shallow piezometer string was landed at 507.8 m, and the deep piezometer string was landed at 688.6 m. Both piezometer strings are set to monitor groundwater within moderately to densely welded Rainier Mesa Tuff. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, water quality (including tritium and other radionuclides) measurements, and water level measurements. The well penetrated 15.2 m of alluvium and 709.6 m of Tertiary volcanic rocks. The stratigraphy and general lithology were not as expected due to the position of Well ER-EC-14 relative to the buried caldera margins of the Timber Mountain caldera complex. The well is located inside the Rainier Mesa caldera, but outside the younger Ammonia Tanks caldera. On November 5, 2012, a preliminary fluid level in the shallow piezometer string was measured at the depth of 311.8 m. This water level depth was taken before installation of the bridge plug (to be placed within the main completion casing to separate the two slotted zones). Well development, hydrologic testing, and sampling, will be conducted at a later date. No tritium above levels detectable by field methods were encountered in this hole. All Fluid Management Plan (FMP) requirements for Well ER-EC-14 were met. Analysis of monitoring samples and FMP confirmatory samples indicated that fluids generated during drilling at Well ER-EC-14 met the FMP criteria for discharge to an unlined sump or designated infiltration area. All sanitary and hydrocarbon waste generated was properly handled and disposed of.

  1. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    SciTech Connect (OSTI)

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  2. Data Report: Meteorological and Evapotranspiration Data from Sagebrush and Pinyon Pine/Juniper Communities at Pahute Mesa, Nevada National Security Site, 2011-2012

    SciTech Connect (OSTI)

    Jasoni, Richard L; Larsen, Jessica D; Lyles, Brad F.; Healey, John M; Cooper, Clay A; Hershey, Ronald L; Lefebre, Karen J

    2013-04-01

    Pahute Mesa is a groundwater recharge area at the Nevada National Security Site. Because underground nuclear testing was conducted at Pahute Mesa, groundwater recharge may transport radionuclides from underground test sites downward to the water table; the amount of groundwater recharge is also an important component of contaminant transport models. To estimate the amount of groundwater recharge at Pahute Mesa, an INFIL3.0 recharge-runoff model is being developed. Two eddy covariance (EC) stations were installed on Pahute Mesa to estimate evapotranspiration (ET) to support the groundwater recharge modeling project. This data report describes the methods that were used to estimate ET and collect meteorological data. Evapotranspiration was estimated for two predominant plant communities on Pahute Mesa; one site was located in a sagebrush plant community, the other site in a pinyon pine/juniper community. Annual ET was estimated to be 310±13.9 mm for the sagebrush site and 347±15.9 mm for the pinyon pine/juniper site (March 26, 2011 to March 26, 2012). Annual precipitation measured with unheated tipping bucket rain gauges was 179 mm at the sagebrush site and 159 mm at the pinyon pine/juniper site. Annual precipitation measured with bulk precipitation gauges was 222 mm at the sagebrush site and 227 mm at the pinyon pine/juniper site (March 21, 2011 to March 28, 2012). A comparison of tipping bucket versus bulk precipitation data showed that total precipitation measured by the tipping bucket rain gauges was 17 to 20 percent lower than the bulk precipitation gauges. These differences were most likely the result of the unheated tipping bucket precipitation gauges not measuring frozen precipitation as accurately as the bulk precipitation gauges. In this one-year study, ET exceeded precipitation at both study sites because estimates of ET included precipitation that fell during the winter of 2010-2011 prior to EC instrumentation and the precipitation gauges started collecting data in March 2011.

  3. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, Utah

    SciTech Connect (OSTI)

    none,

    2013-09-01

    As the first net zero-energy production home certified in Utah, this house incorporates two 94% efficient tankless water heaters and two roof-mounted solar panels that preheat the home's water supply. This home won a 2013 Housing Innovation Award in the production builder category.

  4. LONG-TERM SURVEILLANCE PLAN FOR THE GREEN RIVER, UTAH DISPOSAL SITE Ttable of Contents

    Office of Legacy Management (LM)

    LONG-TERM SURVEILLANCE PLAN FOR THE GREEN RIVER, UTAH DISPOSAL SITE Ttable of Contents DOE/AL/62350-89 May 20, 1998 REV. 1 VER.4 08914TOC.DOC (GRN) i TABLE OF CONTENTS Section Page 1.0 INTRODUCTION ................................................................................................. 1-1 1.1 Background .................................................................................................... 1- 2 1.2 Licensing process

  5. EECBG Success Story: Shining Energy-Saving LEDs on Utah Starry Nights

    Broader source: Energy.gov [DOE]

    Thanks to an Energy Efficiency and Conservation Block Grant (EECBG), Utah is replacing streetlights with efficient LEDs across 14 rural communities. About 2,500 streetlights will be replaced and could save the town 20% to 50% on electricity bills. Learn more.

  6. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive confining units. The underlying pre-Tertiary rocks are divided into six hydrostratigraphic units, including three aquifers and three confining units. Other units include an alluvial aquifer and a Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units ('layers' in the model). The model also incorporates 56 Tertiary normal faults and 4 Mesozoic thrust faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Four of these alternatives were developed so they can be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area Subproject of the Environmental Restoration Project.

  7. The Honorable Michael White The Honorable Michael White

    Office of Legacy Management (LM)

    : \ The Honorable Michael White The Honorable Michael White City,of Cleveland " City,of Cleveland " \ \ 601 Lakesi~de.Avenue ': 601 Lakesi~de.Avenue ': ~ ~ Cleveland, Ohio 44114 Cleveland, Ohio 44114 Dear Mayor White: : Secretary of Energy Hazel'O'Leary has announced a new approach,to openness in, the Department of Energy (DOE) and its communications with the public. In support of this initiative, we are,pleased to forward.the enclosed information r,elated to ~the former Match &

  8. Unclassified Source Term and Radionuclide Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    McCord, John

    2004-08-01

    This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for Central and Western Pahute Mesa: Corrective Action Units (CAUs) 101 and 102.

  9. THE WHITE HOUSE | Department of Energy

    Energy Savers [EERE]

    THE WHITE HOUSE THE WHITE HOUSE PDF icon THE WHITE HOUSE More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation Progress Report on U.S.-China Energy Cooperation

  10. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  11. Roscoe B White | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roscoe B White Principal Research Physicist, Plasma Physics Laboratory. Lecture Dr. White is a distinguished research fellow in the theory department and a faculty lecturer with...

  12. White Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    White Energy Ltd Place: Dallas, Texas Zip: 75240 Product: White Energy plans to invest in the development, acquisition and construction of biofuel plants in the USA. Coordinates:...

  13. Whites Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Whites Renewable Energy Jump to: navigation, search Name: Whites Renewable Energy Place: United Kingdom Zip: YO8 8EF Sector: Biomass, Renewable Energy Product: UK based company...

  14. The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies

    SciTech Connect (OSTI)

    Pawloski, G A; Wurtz, J; Drellack, S L

    2009-12-29

    Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

  15. Value of information analysis for Corrective Action Unit Nos. 101 and 102: Central and western Pahute Mesa, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    1998-09-01

    The purpose of this report is to describe the basis for and present the results of a value of information analysis (VOIA) for the Pahute Mesa underground test area of the Nevada Test Site (NTS), one of several areas of the Nevada Test Site used for underground nuclear testing in the past. The value of information analysis was used to evaluate and compare potential characterization options at the Pahute Mesa underground test area for site remediation purposes. Thirty six characterization options were evaluated, ranging from a single, inexpensive study using existing data and intended to address a single question or uncertainty, to a forty-million-dollar suite of activities designed to collect and analyze new information to address multiple uncertainties. The characterization options were compared and ranked based on how effective the experts though the information collection would be in reducing uncertainties, how this effected the distance to contaminant boundary, and the cost of the option.

  16. Completion Report for Well ER-20-7: Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-04-28

    Well ER-20-7 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in June 2009 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to further investigate migration of radionuclides from the nearby, up-gradient TYBO and BENHAM underground nuclear tests, which originally was discovered at Well Cluster ER-20-5. This well also provided detailed hydrogeologic information in the Tertiary volcanic section that will reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model. The main 44.45-centimeter hole was drilled to a depth of 681.8 meters and cased with 33.97-centimeter casing to 671.7 meters. The hole diameter was then decreased to 31.12 centimeters, and the well was drilled to total depth of 894.9 meters. The completion string, set to the depth of 890.0 meters, consists of 14.13-centimeter stainless-steel casing hanging from 19.37-centimeter carbon-steel casing. The 14.13-centimeter stainless-steel casing has one continuous slotted interval open to the Topopah Spring aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 meters, sidewall core samples from 20 depth intervals, various geophysical logs, water quality (primarily tritium) measurements, and water level measurements. The well penetrated 894.9 meters of Tertiary volcanic rock, including two saturated welded-tuff aquifers. A fluid level measurement was obtained during open-hole geophysical well logging for the upper, Tiva Canyon, aquifer at the depth of 615.7 meters on June 19, 2009. The fluid level measured in the open hole on June 27, 2009,after the total depth was reached and the upper aquifer was cased off, was also at the depth of 615.7 meters. Preliminary field measurements indicated 1.5 to 4.5 million picocuries per liter of tritium in the Tiva Canyon aquifer and 20 to 61 million picocuries per liter in the underlying Topopah Spring aquifer.

  17. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

    Broader source: Energy.gov [DOE]

    The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

  18. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect (OSTI)

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  19. Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah

    SciTech Connect (OSTI)

    Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

    1980-03-01

    Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

  20. EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  1. This fact sheet describes wetlands in and around Monticello, Utah, and what the

    Office of Legacy Management (LM)

    wetlands in and around Monticello, Utah, and what the U.S. Department of Energy (DOE) is doing to restore wetlands that are adversely affected by Monticello cleanup project activities. The purpose of the Monticello cleanup projects is to minimize risks to the public and the environment from exposure to uranium mill tailings and radon gas. The cleanup is being performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund.

  2. U.S. Department of Energy at Grand Junction 2003 Annual Inspection⎯Monticello, Utah

    Office of Legacy Management (LM)

    at Grand Junction 2003 Annual Inspection⎯Monticello, Utah November 2003 Page 1 2003 Annual Inspection of the Monticello Mill Tailings (USDOE) and Monticello Radioactively Contaminated Properties Sites Summary The Monticello site, which includes the U.S. Department of Energy (DOE) Monticello Mill Tailings Site (MMTS) and the Monticello Radioactively Contaminated Properties site, was inspected September 23-25, 2003. A follow-up inspection of the Soil and Sediment properties was conducted on

  3. Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona

    SciTech Connect (OSTI)

    Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

    1999-04-27

    The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

  4. Hunter-gatherer adaptations and environmental change in the southern Great Basin: The evidence from Pahute and Rainier mesas

    SciTech Connect (OSTI)

    Pippin, L.C.

    1998-06-01

    This paper reviews the evidence for fluctuations in past environments in the southern Great Basin and examines how these changes may have affected the strategies followed by past hunter and gatherers in their utilization of the resources available on a highland in this region. The evidence used to reconstruct past environments for the region include botanical remains from packrat middens, pollen spectra from lake and spring deposits, faunal remains recovered from archaeological and geologic contexts, tree-ring indices from trees located in sensitive (tree-line) environments, and eolian, alluvial and fluvial sediments deposited in a variety of contexts. Interpretations of past hunter and gatherer adaptive strategies are based on a sample of 1,311 archaeological sites recorded during preconstruction surveys on Pahute and Rainier mesas in advance of the US Department of Energy`s nuclear weapons testing program. Projectile point chronologies and available tree-ring, radiocarbon, thermoluminescence and obsidian hydration dates were used to assign these archaeological sites to specific periods of use.

  5. Completion Report for Well ER-EC-11 Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-12-01

    Well ER-EC-11 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September and October 2009 as part of the Pahute Mesa Phase II drilling program. A main objective was to investigate radionuclide migration down-gradient from Well Cluster ER-20-5 and Well ER-20-7 and across the northern Timber Mountain moat structural zone into the area referred to as the Bench, between Pahute Mesa and the Timber Mountain caldera complex. A secondary purpose of the well was to provide detailed hydrogeologic information for the shallow- to intermediate-depth Tertiary volcanic section in the Bench area. This well also provided detailed hydrogeologic information in the Tertiary volcanic section to reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model (Bechtel Nevada, 2002). The main 52.1-centimeter hole was drilled to a depth of 507.5 meters and then opened to a diameter of 66.0 centimeters. It was cased with 50.8-centimeter casing to 504.9 meters. The hole diameter was then decreased to 47.0 centimeters, and drilling continued to a total depth of 979.3 meters. It was then cased with 34.0-centimeter casing set at 965.5 meters. The hole diameter was then decreased to 31.1 centimeters and the borehole was drilled to a total depth of 1,264.3 meters. The completion casing string, set to the depth of 1,262.5 meters, consists of 19.4-centimeter stainless-steel casing hanging from 19.4-centimeter carbon-steel casing. The stainless-steel casing has two slotted intervals open to the Tiva Canyon and Topopah Spring aquifers. Four piezometer strings were installed in Well ER-EC-11. A string of carbon-steel 6.0-centimeter tubing with one slotted interval was inserted outside the 50.8-centimeter casing, within the 66.0-centimeter borehole for access to the Timber Mountain aquifer, and landed at 475.3 meters. A second string of 6.0-centimeter tubing with one slotted interval was inserted outside the 34.0-centimeter casing, within the 47.0-centimeter borehole for access to the Benham aquifer, and landed at 911.7 meters. A third piezometer string consists of 7.3-centimeter stainless-steel tubing that hangs from 6.0-centimeter carbon-steel tubing via a crossover sub. This string was landed at 1,029.5 meters to monitor the Tiva Canyon aquifer. The deepest string of 7.3-centimeter tubing was landed at 1,247.8 meters to monitor the Topopah Spring aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 meters, 67 percussion gun and rotary sidewall core samples, various geophysical logs, fluid samples (for groundwater chemistry analysis and tritium measurements), and water-level measurements. The well penetrated 1,264.3 meters of Tertiary volcanic rock, including three saturated welded-tuff aquifers and one saturated lava-flow aquifer. A water level was measured in the Timber Mountain aquifer at 449.6 meters, during open-hole geophysical logging on September 20, 2009. The fluid level measured after the total depth was reached and the upper aquifer was cased off was 450.0 meters when measured in the open borehole on October 17, 2009. Measurements on samples taken from the undeveloped well indicated that tritium levels averaging approximately 12,430 picocuries per liter (less than Safe Drinking Water Act levels) were encountered within the Benham aquifer. Tritium was below the minimum detectable activity concentration for samples collected from the Tiva Canyon aquifer and the Topopah Spring aquifer.

  6. White Papers on Materials for Photoelectrochemical Water Splitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White Papers on Materials for Photoelectrochemical Water Splitting White Papers on Materials for Photoelectrochemical Water Splitting Series of white papers from the U.S....

  7. Report 23: Photometric Testing of White Tunable LED Luminaires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report 23: Photometric Testing of White Tunable LED Luminaires Report 23: Photometric Testing of White Tunable LED Luminaires PDF icon caliper23white-tunable-led-luminaires.pdf ...

  8. Sandia Energy - White House Business Council Roundtable on Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protected: White House Business Council Roundtable on Water Home Climate Water Security Protected: White House Business Council Roundtable on Water Previous Next Protected: White...

  9. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  10. Survey of literature relating to energy development in Utah's Colorado Plateau

    SciTech Connect (OSTI)

    Larsen, A.

    1980-06-01

    This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

  11. Six Utah plants help fuel rise in geothermal projects | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Geothermal power projects are developing quickly across the country, with Utah playing a role. A report released Thursday by the Geothermal Energy Association shows that the number of new geothermal projects under way in the United States grew 20 percent since January. "These new projects will result in the infusion of roughly $15 billion in capital investment in the Western states and create 7,000 permanent jobs and more than 25,000 person-years of construction and manufacturing

  12. ,"Utah Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5030ut2m.xls"

  13. ,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Utah Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"Utah Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  1. ,"Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  2. ,"Utah Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ut2m.xls"

  3. ,"Utah Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  6. ,"Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2006 ,"Release Date:","11/19/2015" ,"Next Release

  7. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 1,001 895 872 - =

  8. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  9. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  10. White Papers | OpenEI Community

    Open Energy Info (EERE)

    Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White...

  11. Inside the White House: Solar Panels

    Broader source: Energy.gov [DOE]

    Go inside the White House and learn about the installation of solar panels on the roof of the residence.

  12. Women @ Energy: Karen White | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Karen White Women @ Energy: Karen White August 28, 2015 - 10:51am Addthis Karen S. White is controls group leader and data operations manager at the Spallation Neutron Source at Oak Ridge National Laboratory. She attended Old Dominion University, where she earned a bachelor's degree in computer engineering and master's degree in computer science, and George Washington University, where she earned an M.E. in engineering management. Karen S. White is controls group leader and data operations

  13. Geology and chemical analyses of coal, Mesaverde Group (Cretaceous), Lower White River coal field, Moffat and Rio Blanco Counties, Colorado

    SciTech Connect (OSTI)

    Hildebrand, R.T.; Garrigues, R.S.

    1981-01-01

    The Lower White River coal field comprises an area of approximately 930 square miles underlain by coal-bearing strata in Moffat and Rio Blanco Counties, northwestern Colorado (Landis, 1959; Hornbaker and others, 1976). The field lies along the northwestern edge of the Piceance Creek basin near the Utah border. Significant coal deposits in the Lower White River field occur in the Mesaverda Group of Late Cretaceous age; original resources are estimated to be as much as 11,763 million short tons to a depth of 6000 feet (Hornbaker and others, 1976). A total of 13 samples of coal (10 core samples and 3 samples of drill cuttings) were collected from five drill holes in the northwestern part of the Lower White River field during exploratory drilling conducted by the US Geological Survey in 1976 (see Garrigues, 1976; Barnum and others, 1977). These samples represent several coal beds in the middle part of the Mesaverde Group. Table 1 gives brief descriptions of the samples; the general geology of the area and sample localities are shown in figure 2.

  14. White House Forum on Minorites in Energy

    Broader source: Energy.gov [DOE]

    On November 13, 2013, the Department of Energy and the White House Office of Science and Technology Policy, the Council for Environmental Quality, and the White House Office of Public Engagement co-hosted the White House Forum on Minorities in Energy. The event included the announcement of the Ambassadors for the Minorities in Energy Initiative.

  15. Geothermal rotary separator turbine: wellhead power system tests at Milford, Utah

    SciTech Connect (OSTI)

    Hughes, E.E.

    1983-08-01

    Through development of a separator/expander engine EPRI is improving the efficiency of single flash geothermal power systems. Under cost-shared contracts with Biphase Energy Systems and Utah Power and Light Company (UP and L), a wellhead power generating system has been built and tested. The wellhead unit has been operated for 4000 hours at Roosevelt Hot Springs near Milford, Utah. Phillips Petroleum Company operates the geothermal field at this site. The rotary separator turbine (RST) is a separating expander that increases the resource utilization efficiency by extracting power upstream of a steam turbine in either a 1-stage or 2-stage flash power system. The first power output was achieved October 28, 1981, six weeks after arrival of the RST at the site. The RST system produced 3270 MWh(e) gross and 2770 MWh(e) net to the UP and L grid. Total equivalent power produced by the wellhead RST (actual power output of the RST plus the power obtainable from the steam flow out of the RST) is 15 to 20 percent above the power that would be produced by an optimum 1-stage direct flash plant operated on the same geothermal well.

  16. Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah

    SciTech Connect (OSTI)

    Clements, Craig B.; Whiteman, Charles D.; Horel, John D.

    2003-06-01

    The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah minimum temperature record of -56 C. The evolution of cold-pool characteristics depended on the strength of prevailing flows above the basin. On an undisturbed day, a 30 C diurnal temperature range and a strong nocturnal potential temperature inversion (22 K in 100 m) were observed in the basin. Initially, downslope flows formed on the basin sidewalls. As a very strong potential temperature jump (17 K) developed at the top of the cold pool, however, the winds died within the basin and over the sidewalls. A persistent turbulent sublayer formed below the jump. Turbulent sensible heat flux on the basin floor became negligible shortly after sunset while the basin atmosphere continued to cool. Temperatures over the slopes, except for a 1 to 2-m-deep layer, became warmer than over the basin center at the same altitude. Cooling rates for the entire basin near sunset were comparable to the 90 W m-2 rate of loss of net longwave radiation at the basin floor, but these rates decreased to only a few watts per square meter by sunrise. This paper compares the observed cold-pool buildup in basins with inversion buildup in valleys.

  17. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  18. Supplemental Modeling and Analysis Report, Atlas Corporation Moab Mill, Moab, Utah

    SciTech Connect (OSTI)

    Easterly, CE

    2001-11-05

    The purpose of this report is to provide additional numerical modeling and data evaluation for the Atlas tailings pile near Moab, Utah. A previous report (Tailings Pile Seepage Model: The Atlas Corporation Moab Mill, Moab, Utah, January 9, 1998) prepared for the Nuclear Regulatory Commission (NRC) by Oak Ridge National Laboratory/Grand Junction (ORNL/GJ) presented the results of steady-state modeling of water flow and subsequent discharge to the underlying groundwater system. At the request of the Fish and Wildlife Service (FWS), this model was expanded to evaluate the impact of drainage from the tailings pile in addition to recharge from precipitation in a transient mode simulation. In addition, the FWS requested transient simulations of contaminant transport in the alluvial aquifer. Subsequently, NRC requested an evaluation of additional hydrologic issues related to the results presented in the Tailings Pile Seepage Model (ORNL/GJ 1998a) and the Limited Groundwater Investigation (ORNL/GJ 1998b). Funding for the report was provided by the U.S. Department of Energy. The following section lists the individual tasks with subsequent sections providing the results. A map for the Atlas Moab Mill site is presented in Fig. 1.1.

  19. Mesa del Sol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Matthews, M.L.; Alkema, K.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  1. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  2. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  3. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  4. Well Completion Report for Well ER-20-11, Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-02-27

    Well ER-20-11 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September 2012 as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. Well ER-20-11 was constructed to further investigate the nature and extent of radionuclidecontaminated groundwater encountered in two nearby UGTA wells, to help define hydraulic and transport parameters for the contaminated Benham aquifer, and to provide data for the UGTA hydrostratigraphic framework model. The 44.5-centimeter (cm) surface hole was drilled to a depth of 520.0 meters (m) and cased with 34.0-cm casing to 511.5 m. The hole diameter was then decreased to 31.1 cm, and the borehole was drilled to a total depth of 915.6 m. The hole was completed to allow access for hydrologic testing and sampling in the target aquifer, which is a lava-flow aquifer known as the Benham aquifer. The completion casing string, set to the depth of 904.3 m, consists of a string of 6?-inch (in.) stainless-steel casing hanging from a string of 7?-in. carbon-steel casing. The stainless-steel casing has one slotted interval at 796.3 to 903.6 m. One piezometer string was installed, which consists of 2?-in. stainless-steel tubing that hangs from 2?-in. carbon-steel tubing via a crossover sub. This string was landed at 903.8 m and is slotted in the interval 795.3 to 903.1 m. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, fluid samples (for groundwater chemistry analysis and tritium measurements), and water-level measurements. The well penetrated 915.6 m of Tertiary volcanic rock, including one saturated lava flow aquifer. Measurements on samples taken from the undeveloped well indicated elevated tritium levels within the Benham aquifer. The maximum tritium level measured with field equipment was 146,131 picocuries per liter from a sample obtained at the depth of 912.0 m. The fluid level was measured in the piezometer string at a depth of 504.5 m on September 26, 2012. All Fluid Management Plan (FMP) requirements for Well ER-20-11 were met. Analysis of monitoring samples and FMP confirmatory samples indicated that fluids generated during drilling at Well ER-20-11 met the FMP criteria for discharge to an unlined sump or designated infiltration area. Well development, hydrologic testing, and sampling will be conducted at a later date.

  5. Technical White Papers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White Papers Technical White Papers The following technical white papers explore potential options to increase widespread deployment of distributed generation (DG) and combined heat and power (CHP). Issues such as the treatment of CHP in renewable portfolio standards and CHP commissioning are discussed. Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, 15 pp, Aug. 2011 Barriers to CHP with Renewable Portfolio Standards, 13 pp, Sept. 2007 A Case for CHP Commissioning, 57

  6. Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1 1 1980's 1 0 2 1 0 2 0 3 0 1 1990's 0 0 4 0 0 3 0 0 0 0 2000's 15 5 2 7 11 4 0 0 0 4 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  7. Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32 84 41 1980's 9 3 11 8 3 0 0 5 3 0 1990's 0 5 0 8 1 2 17 0 0 4 2000's 0 4 0 0 5 4 45 4 64 0 2010's 0 1 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  8. Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,956 1,503 2,113 1970's 633 2,115 1,978 2,435 4,193 7,240 9,150 7,585 8,325 14,123 1980's 7,594 511 5,965 4,538 8,375 9,001 13,289 17,671 16,889 16,211 1990's 19,719 13,738 12,611 12,526 13,273 27,012 27,119 24,619 27,466 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  9. Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6.85 5.52 5.42 5.27 4.90 4.73 4.49 5.37 5.42 5.32 2000's 5.72 7.24 6.33 7.09 7.81 9.10 10.55 8.33 8.08 10.01 2010's 11.61 13.01 15.02 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  10. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722

  11. Utah Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Utah Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 0 0 4,438 4,892 5,360 5,222 5,427 5,204 2000's 5,052 4,813 5,469 4,837 4,850 4,533 4,510 4,516 5,103 5,338 2010's 5,307 5,392 5,681 7,539 8,283 - = No Data Reported; -- = Not Applicable;

  12. White Mountain Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Group LLC Jump to: navigation, search Name: White Mountain Group, LLC Place: Delaware Product: The company has entered an agreement with Australian Biodiesel Group for a share...

  13. Nondestructive Evaluation and Monitoring Projects NASA White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF) ... Monitoring of Composite Tanks Pipeline and Pressure Vessel R&D under the ...

  14. The White House's Week of Making

    Broader source: Energy.gov [DOE]

    The White House's Week of Making from June 12-18 will coincide with a National Maker Faire event in Washington, D.C.

  15. Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect (OSTI)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: • Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. • Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. • CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  16. Engineering assessment of inactive uranium mill tailings: Mexican Hat Site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U/sub 3/O/sub 8/ whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions.

  17. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  18. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  19. CARBON AND OXYGEN ISOTOPIC ANALYSIS: BUG, CHEROKEE, AND PATTERSON CANYON FIELDS, SAN JUAN COUNTY, UTAH

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey Jr; Kevin McClure; Craig D. Morgan; Stephen T. Nelson

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  20. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  1. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  2. City of White, South Dakota (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    White, South Dakota (Utility Company) Jump to: navigation, search Name: City of White Place: South Dakota Phone Number: 605-629-2601 Website: www.white.govoffice2.comindex Outage...

  3. White Plains, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in White Plains, New York 3 Registered Financial Organizations in White Plains, New York 4 References US Recovery Act Smart Grid Projects in White Plains, New York Power Authority...

  4. White Arrow Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    White Arrow Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home White Arrow Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  5. Recommendation 208 : Use White Paper on Oak Ridge Reservation...

    Office of Environmental Management (EM)

    8 : Use White Paper on Oak Ridge Reservation Recommendation 208 : Use White Paper on Oak Ridge Reservation The ORSSAB approved the enclosed recommendation suggesting DOE Oak Ridge...

  6. White River Electric Assn, Inc | Open Energy Information

    Open Energy Info (EERE)

    Assn, Inc Jump to: navigation, search Name: White River Electric Assn, Inc Place: Colorado Website: www.white-river-electric-assoc Twitter: @WREAColorado Facebook: https:...

  7. White Licks Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    White Licks Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home White Licks Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  8. White Sulphur Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility White...

  9. Tribal Leaders Provide White House with Input on Bolstering Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaders Provide White House with Input on Bolstering Climate Resilience Tribal Leaders Provide White House with Input on Bolstering Climate Resilience January 7, 2015 - 10:29am ...

  10. EISPC White Paper on "State Approaches to Retention of Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EISPC White Paper on "State Approaches to Retention of Nuclear Power Plants" Now Available EISPC White Paper on "State Approaches to Retention of Nuclear Power Plants" Now ...

  11. White House Council of Economic Advisers and Energy Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White House Council of Economic Advisers and Energy Department Release New Report on Resiliency of Electric Grid During Natural Disasters White House Council of Economic Advisers ...

  12. White Oak Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name White Oak Wind Energy Center Facility White Oak Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind...

  13. Barriers to CHP with Renewable Portfolio Standards, Draft White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP with Renewable Portfolio Standards, Draft White Paper, September 2007 Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007 The recent ...

  14. 21st Century Truck Partnership - Roadmap and Technical White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of ...

  15. White County, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in White County, Tennessee Doyle, Tennessee Sparta, Tennessee Retrieved from "http:en.openei.orgwindex.php?titleWhiteCounty,Tennes...

  16. White brings talent, energy to PPPL's small business program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Office of Communications ) Arlene White. Last August, Arlene White looked at the agenda for a conference on small businesses the night before the event and received a...

  17. Sandia Energy - Four-color laser white illuminant demonstrating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laser white illuminant demonstrating high color-rendering quality Home Solid-State Lighting News Four-color laser white illuminant demonstrating high color-rendering quality...

  18. White Creek Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Power Project Jump to: navigation, search Name White Creek Wind Power Project Facility White Creek Wind Power Project Sector Wind energy Facility Type Commercial Scale...

  19. Phase I Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada with Errata Sheet 1, 2, 3, Revision 1

    SciTech Connect (OSTI)

    Greg Ruskauff

    2009-02-01

    As prescribed in the Pahute Mesa Corrective Action Investigation Plan (CAIP) (DOE/NV, 1999) and Appendix VI of the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008), the ultimate goal of transport analysis is to develop stochastic predictions of a contaminant boundary at a specified level of uncertainty. However, because of the significant uncertainty of the model results, the primary goal of this report was modified through mutual agreement between the DOE and the State of Nevada to assess the primary model components that contribute to this uncertainty and to postpone defining the contaminant boundary until additional model refinement is completed. Therefore, the role of this analysis has been to understand the behavior of radionuclide migration in the Pahute Mesa (PM) Corrective Action Unit (CAU) model and to define, both qualitatively and quantitatively, the sensitivity of such behavior to (flow) model conceptualization and (flow and transport) parameterization.

  20. Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model

    SciTech Connect (OSTI)

    Brian A. Ebel; John R. Nimmo

    2009-09-11

    Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travel within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of these end members.

  1. Ringleader: Ashley White, Director of Communications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    like home." After completing her PhD in Materials Science from the University of Cambridge, White says she was looking for something "a little bit different" and heard about...

  2. 2014 White House Tribal Nations Conference

    Broader source: Energy.gov [DOE]

    On Wednesday, December 3, President Obama will host the 2014 White House Tribal Nations Conference at the Capital Hilton in Washington, DC. The conference will provide leaders from the 566...

  3. Strategic Facility Management: A White Paper

    Broader source: Energy.gov [DOE]

    This white paper provides information on the SFP process, its requirements and benefits, and gives a facility manager the basic tools to launch and successfully complete a SFP for the supported organization.

  4. Lighting Choices - White Background | Department of Energy

    Energy Savers [EERE]

    Choices - White Background Image icon All of these lightbulbs-CFLs, LEDs, and energy-saving incandescents-meet the new energy standards that take effect from 2012-2014. More...

  5. BPA research aids Columbia River white sturgeon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research aids Columbia River white sturgeon 8142015 12:00 AM Tweet Page Content BPA fish biologist Scott Bettin (left) and Brad Cady of the Washington Dept. of Fish and...

  6. History of Electricity at the White House

    Broader source: Energy.gov [DOE]

    The White House has only been electrified for a little over a century. Check out our timeline to read more about what it takes to power 1600 Pennsylvania Avenue.

  7. Eolian sabkha sandstones in the Nugget Sandstone (Jurassic), Vernal area, Utah

    SciTech Connect (OSTI)

    Schenk, C.J.; Peterson, F. (Geological Survey, Denver, CO (United States))

    1991-06-01

    The Jurassic Nugget Sandstone in the Vernal, Utah, area is characterized by thick (up to 25 m) sets of cross-stratified eolian dune sandstone separated by either erosional planar bounding surfaces or thin (mostly < 3 m) sandstones interpreted as sabkha sandstones. Structures in Nugget sabkha sandstones are predominantly wavy or irregular bedding and thin, remnant sets of dune cross-strata consisting of eolian ripple and avalanche strata. The types of sedimentary structures and erosional features in Nugget sabkha sandstones indicate a close relationship between sand deposition and erosion and fluctuations in the local water table. Thin, remnant eolian dune sets are common in Nugget sabkha sandstones. The remnant sets form when dunes migrating across a sabkha are partially wetted as the water table rises slightly (on a scale of tens of centimeters); the lower part of the dune with wetted sand remains on the sabkha as the rest of the dune continues to migrate. Typically, ripple strata of the dune apron and the toes of avalanche strata are preserved in dune remnants. The avalanche strata, being slightly coarser grained, are preferentially deflated, leaving microtopography. This topography is commonly filled in with ripple strata that form as dry sand again blows across the sabkha. Stacked sets of remnant dunes separated by erosional surfaces illustrate the control of sand deposition on eolian sabkhas by the local water table.

  8. Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.21 1970's 0.21 0.22 0.28 0.29 0.34 0.54 0.67 1.40 1.72 1.88 1980's 2.94 3.17 2.67 2.94 2.99 3.19 2.93 2.66 2.84 2.18 1990's 2.25 2.51 2.25 1.91 1.94 1.57 1.68 2.20 2.05 1.92 2000's 3.19 2.97 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  9. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2 -26.2 -3.2 0.1 32.2 -15.2 -19.1 -18.8 -21.7 -3.8 2.1 1992 -35.0 -4.5 68.2 48.2 46.1 36.5 13.8 0.4 -13.6 -18.6 5.0 6.8 1993 -6.8 -42.8 -72.3 -83.7 -48.5 -4.4 1.6 3.6 11.8 35.5 17.2 37.2 1994 66.2 69.4 210.9 497.9 131.8 40.0 34.2 32.4 40.9 25.7 26.4 36.0 1995 28.4 93.2 100.2 78.2 40.9

  10. Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,017 1980's 1,284 2,057 2,253 2,472 2,325 2,288 2,205 2,341 1,984 1,940 1990's 1,887 2,001 2,018 2,198 1,917 1,701 1,747 2,005 2,502 3,371 2000's 4,472 4,753 4,274 3,617 3,951 4,359 5,211 6,463 6,714 7,411 2010's 7,146 8,108 7,775 7,057 6,970 - = No Data

  11. NGNP High Temperature Materials White Paper

    SciTech Connect (OSTI)

    Lew Lommers; George Honma

    2012-08-01

    This white paper is one in a series of white papers that address key generic issues of the combined construction and operating license (COL) pre-application program key generic issues for the Next Generation Nuclear Plant reactor using the prismatic block fuel technology. The purpose of the pre-application program interactions with the NRC staff is to reduce the time required for COL application review by identifying and addressing key regulatory issues and, if possible, obtaining agreements for their resolution

  12. White_House_0921.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White_House_0921.pdf White_House_0921.pdf PDF icon White_House_0921.pdf More Documents & Publications EA-0921: Finding of No Significant Impact wh_mission_status.pdf Environmental Leaders, Cabinet Secretaries to Participate in First White House Environmental Justice Forum on December 15, 2010

  13. August 15, 2001: IBM ASCI White | Department of Energy

    Energy Savers [EERE]

    5, 2001: IBM ASCI White August 15, 2001: IBM ASCI White August 15, 2001: IBM ASCI White August 15, 2001 Lawrence Livermore National Laboratory dedicates the "world's fastest supercomputer," the IBM ASCI White supercomputer with 8,192 processors that perform 12.3 trillion operations per second.

  14. White Papers on Materials for Photoelectrochemical Water Splitting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy White Papers on Materials for Photoelectrochemical Water Splitting White Papers on Materials for Photoelectrochemical Water Splitting Series of white papers from the U.S. Department of Energy Photoelectrochemical Working Group (Revision: October 2013). These white papers are intended as concise living documents summarizing the unique potential and challenges faced in the R&D of promising materials classes. PDF icon pec_white_papers.pdf More Documents &

  15. The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents

    SciTech Connect (OSTI)

    Thomas Chidsey

    2008-09-30

    The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted-marine facies constitute a significant reservoir potential, having both effective porosity and permeability when dissolution of skeletal grains, followed by dolomitization, has occurred. Two major types of diagenetic dolomite are observed in the Leadville Limestone at Lisbon field: (1) tight 'early' dolomite consisting of very fine grained (<5 {micro}m), interlocking crystals that faithfully preserve depositional fabrics; and (2) porous, coarser (>100-250 {micro}m), rhombic and saddle crystals that discordantly replace limestone and earlier very fine grained dolomite. Predating or concomitant with late dolomite formation are pervasive leaching episodes that produced vugs and extensive microporosity. Most reservoir rocks within Lisbon field appear to be associated with the second, late type of dolomitization and associated leaching events. Other diagenetic products include pyrobitumen, syntaxial cement, sulfide minerals, anhydrite cement and replacement, and late macrocalcite. Fracturing (solution enlarged) and brecciation (autobrecciation) caused by hydrofracturing are widespread within Lisbon field. Sediment-filled cavities, related to karstification of the exposed Leadville, are present in the upper third of the formation. Pyrobitumen and sulfide minerals appear to coat most crystal faces of the rhombic and saddle dolomites. The fluid inclusion and mineral relationships suggest the following sequence of events: (1) dolomite precipitation, (2) anhydrite deposition, (3) anhydrite dissolution and quartz precipitation, (4) dolomite dissolution and late calcite precipitation, (5) trapping of a mobile oil phase, and (6) formation of bitumen. Fluid inclusions in calcite and dolomite display variable liquid to vapor ratios suggesting reequilibration at elevated temperatures (50 C). Fluid salinities exceed 10 weight percent NaCl equivalent. Low ice melting temperatures of quartz- and calcite-hosted inclusions suggest chemically complex Ca-Mg-bearing brines associated with evaporite deposits were responsible for mineral deposition. The overall conclusion from th

  16. ,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  17. ,"Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next

  18. Geomorphology and failure history of the earthquake-induced Farmington Siding landslide complex, Davis County, Utah

    SciTech Connect (OSTI)

    Lowe, M.; Harty, K.M. )

    1993-04-01

    The Farmington Siding landslide complex covers an area of 19.5 km[sup 2] in central Davis County. First identified and mapped in the 1970s, the feature was classified by previous researchers as a liquefaction-induced lateral spread based on surface geomorphology and exposures on the landslide complex. This was the first landslide in Utah to be attributed to earthquake-induced liquefaction. Geomorphic and geologic evidence indicate that the Farmington Sliding landslide complex likely consists of liquefaction-induced landslides that failed by means of both flow failure and lateral spreading. The landslide complex is located in an area underlain primarily by fine-grained deposits of Pleistocene Lake Bonneville and Holocene Great Salt Lake. Geomorphic features of the landslide complex include main and minor scarps, hummocks, closed depressions, and transverse lineaments. The main scarp consists mostly of a series of arcuate scallops near the left flank of the landslide, but it is a relatively linear, single scarp near the right flank of the landslide. Hummocks and closed depressions are most common near the head region of the landslide complex. Failure of the Farmington Sliding landslide complex has occurred at least twice. The older, distal portion of the landslide complex is cut by the Gilbert shoreline of the Bonneville lake cycle, indicating that landsliding occurred more than 10,000 years ago. In the younger portion of the landslide complex, landsliding has disrupted the Gilbert shoreline. Radiocarbon age estimates from trenches on a hummock near the main scarp of the younger landslide indicate that slope failure occurred sometime between about 2,730 [+-] 370 cal. yr B.P. and 4,530 [+-] 300 cal. yr B.P., possibly during the penultimate or antepenultimate surface-faulting earthquake on the Weber segment of the Wasatch fault zone.

  19. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect (OSTI)

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  20. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  1. Efficient White SSL Component for General Illumination

    SciTech Connect (OSTI)

    Sean Evans

    2011-01-31

    Cree has developed a new, high-efficiency, low-cost, light emitting diode (LED) module that should be capable of replacing standard, halogen, fluorescent and metal halide lamps based on the total cost of ownership. White LEDs are produced by combining one or more saturated color LEDs with a phosphor or other light down-converting media to achieve white broad-band illumination. This two year project addressed LED chip, package and phosphor efficiency improvements to establish a technology platform suitable for low-cost, high-efficiency commercial luminaires. New phosphor materials with improved quantum efficiency at 'real-life' operating conditions were developed along with new package technology to improve the efficiency of warm white LED modules compared to the baseline technology. Specifically, Cree has successfully demonstrated warm white LED modules providing 540 lumens at a correlated color temperature (CCT) of 3000 K. The LED module had an efficacy of 102.8 lumens per watt (LPW) using 1 mm2 chips biased at 350 mA - a 27% improvement over the technology at project start (81 LPW at 3000K). The white modules also delivered an efficacy of 88 LPW at elevated junction temperatures of 125 C. In addition, a proof-of-concept 4-inch downlight luminaire produced a flux of 1183 lumens at a CCT of 2827 K and a color rendering index (CRI) of 80 using this project's phosphor developments.

  2. Ringleader: Ashley White, Director of Communications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashley White, Director of Communications Print After many years as a researcher followed by a few in government and policy, Ashley White sees her new position as ALS Director of Communications as a perfect blend of it all. "I'm thrilled to be back in a research environment, since I started out my career as a researcher and loved being in the lab," she says. "When I walk around the ALS and see all the tin foil and the beamline equipment, it feels like home." After completing

  3. The Honorable Michael'R. White :

    Office of Legacy Management (LM)

    Ewgy Washington,,DC 20585 ,( ; APR 0 3, 1995, The Honorable Michael'R. White : ,601 Lakeside Avenue " Cleveland, Ohio 44114 ' Dear Mayor White! .,' J Secretary.of Energy Hazel O'Leary has.announced a new approach to. openness in .the,Department of Energy (DDE) and,ifs communications with the publ,lc. In ! 'support of this initiative, we are pleased to forward the enclosed informatlon related to the former NationaTACME Machine Co. site in your jurisdiction thjt performed work for DOE or

  4. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    SciTech Connect (OSTI)

    1986-12-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  5. Differential white cell count by centrifugal microfluidics.

    SciTech Connect (OSTI)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  6. White House Forum on Minorities in Energy

    Broader source: Energy.gov [DOE]

    At the White House Forum on Minorities in Energy, Secretary Moniz honored the Ambassadors of the Minorities in Energy Initiative -- senior-level leaders dedicated to advancing underrepresented groups in the energy sector. Panel discussions at the event covered a wide range of issues including increasing participation in STEM fields by minorities and engaging communities in energy and climate issues.

  7. EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area Power Administration Transmission Lines on Forest Service Lands, Colorado, Nebraska, and Utah

    Broader source: Energy.gov [DOE]

    This EIS is being prepared jointly by DOE’s Western Area Power Administration and the U.S. Forest Service. The EIS evaluates the potential environmental impacts of Western’s proposed changes to vegetation management along its transmission line rights-of-way on National Forest System lands in Colorado, Utah, and Nebraska.

  8. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    SciTech Connect (OSTI)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  9. Bio-Treatment of Energetic Materials Using White-Rot Fungus

    SciTech Connect (OSTI)

    MM Shah

    1998-11-12

    The nitramine explosive, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), is used by militaries around the world in high yield munitions and often in combination with hexahydro- 1,3,5-trirdtro- 1,3,5- triazine (RDX). Improper handling and disposal of manufacturing wastewater may lead to environmental contamination. In the past wastewater was collected in disposal lagoons where it evaporated, and deposited large amounts of explosives on the lagoon floor. Although lagoon disposal is no longer practiced, thousands of acres have been already contaminated. RDX and, to a lesser extent, HMX have leached through the soil subsurface and contaminated groundwater ( 1,2). Likewjse, burning of substandard material or demilitarization of out-of-date muriitions has also led to environmental contamination. The current stockpile of energetic materials at DOE sites requires resource recovery or disposition (RRD). A related challenge exists in the clean-up of the DOE sites where soil and ground water are contaminated with explosives. Current technologies such as incineration, molten salt process, supercritical water oxidation are expensive and have technical hurdles. Open burning and open detonation(OB/OD) is not encouraged by regulatory agencies for disposal of explosives. Hence, there is need for a safe . technology to degrade these contaminants. The fi.mgal process does not employ open burning or open detonation to destroy energetic materials. The fimgal process can be used by itself, or it can augment or support other technologies for the treatment of energetic materials. The proposed enzyme technology will not release any air pollutants and will meet the regulations of Clean Air Act amendments, the Resource Conservation and Recovery Act, and the Federal. Facilities Compliance Act. The goal for this project was to test the ability of white-rot fungus to degrade HMX. In our study, we investigated the biodegradation of HMX using white-rot fungus in liquid and solid cultures. The degradation of HMX was studied at 1, 10, 100 and 1000 ppm levels. In all cases, HMX was degraded. In general, the rate of degradation of HMX increased with increase in HMX concentration. Because of encouraging findings, further optimization of this method and eventual field testing of this technology is recommended. This research was pefiormed in collaboration with Utah State University.

  10. City of White Mountain, Alaska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of White Mountain, Alaska (Utility Company) Jump to: navigation, search Name: City of White Mountain Place: Alaska Phone Number: 907-638-2230 Outage Hotline: 907-638-2230...

  11. Wayne-White Counties Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    Wayne-White Counties Elec Coop Jump to: navigation, search Name: Wayne-White Counties Elec Coop Place: Illinois Phone Number: (618) 842-2196 Website: waynewhitecoop.com Facebook:...

  12. White County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Indiana. Its FIPS County Code is 181. It is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Utility Companies in White County, Indiana White County...

  13. VBH-0068- In the Matter of Ronald D. White

    Broader source: Energy.gov [DOE]

    This Decision involves a complaint filed by Ronald D. White (White or “Complainant”) under the Department of Energy (DOE) Contractor Employee Protection Program, codified at 10 C.F.R. Part 708....

  14. MOF Coating a Promising Path to White LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOF Coating a Promising Path to White LEDs MOF Coating a Promising Path to White LEDs Print Friday, 27 February 2015 17:11 Hu et al. designed a new yellow phosphor with high...

  15. President Obama Announces 2015 White House Tribal Nations Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President Obama Announces 2015 White House Tribal Nations Conference October 20, 2015 - 11:16am Addthis On Thursday, Nov. 5, President Obama will host the 2015 White House Tribal ...

  16. Keynote Address: Ali Zaidi, the White House Domestic Policy Council...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ali Zaidi, the White House Domestic Policy Council Keynote Address: Ali Zaidi, the White House Domestic Policy Council May 21, 2014 2:05PM to 2:30PM PDT Pacific Ballroom Keynote...

  17. White City, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. White City is a census-designated place in Jackson County, Oregon.1 Registered Energy Companies in White City, Oregon Biomass One LP...

  18. EIS-0376: White Wind Farm Brookings County, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal by Western to interconnect its proposed White Wind Farm Project (Project) to Western’s transmission system at the existing White...

  19. Statement from the White House Press Secretary on the Ongoing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the White House Press Secretary on the Ongoing U.S. Response to the Earthquakes and Tsunami in Japan Statement from the White House Press Secretary on the Ongoing U.S. Response to...

  20. White LED with High Package Extraction Efficiency

    SciTech Connect (OSTI)

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated in the package may cause a deterioration of encapsulant materials, affecting the performance of both the LED die and phosphor, leading to a decrease in the luminous efficacy over lifetime. Recent studies from research groups at Rensselaer Polytechnic Institute found that, under the condition to obtain a white light, about 40% of the light is transmitted outward of the phosphor layer and 60% of the light is reflected inward.1,2 It is claimed that using scattered photon extraction (SPE) technique, luminous efficacy is increased by 60%. In this project, a transparent/translucent monolithic phosphor was used to replace the powdered phosphor layer. In the normal pcLED package, the powdered phosphor is mixed with silicone either to be deposited on the top of LED die forming a chip level conversion (CLC) white LED or to be casted in the package forming a volume conversion white LED. In the monolithic phosphors there are no phosphor powder/silicone interfaces so it can reduce the light scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is inserted in the white LED package between the blue LED die and phosphor layer. It will selectively transmit the blue light from the LED die and reflect the phosphor's yellow inward emission outward. The two technologies try to recover backward light to the outward direction in the pcLED package thereby improving the package extraction efficiency.

  1. Geothermal Literature Review At White Mountains Area (Goff &...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details...

  2. President Obama Announces 2015 White House Tribal Nations Conference |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy President Obama Announces 2015 White House Tribal Nations Conference President Obama Announces 2015 White House Tribal Nations Conference October 20, 2015 - 11:16am Addthis On Thursday, Nov. 5, President Obama will host the 2015 White House Tribal Nations Conference in Washington, D.C. The conference will provide leaders from the 567 federally recognized tribes the opportunity to interact directly with high-level federal government officials and members of the White

  3. Modeling-Computer Simulations At White Mountains Area (Goff ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity...

  4. Automation World Features New White Paper on Wireless Security | Department

    Energy Savers [EERE]

    of Energy Automation World Features New White Paper on Wireless Security Automation World Features New White Paper on Wireless Security The April 2009 issue of Automation World magazine features the white paper Wireless Systems Considerations When Implementing NERC Critical Infrastructure Protection Standards. PDF icon Automation World Features New White Paper on Wireless Security More Documents & Publications Wireless System Considerations When Implementing NERC Critical Infrastructure

  5. Entrepreneurs Celebrated at White House Demo Day | Department of Energy

    Office of Environmental Management (EM)

    Entrepreneurs Celebrated at White House Demo Day Entrepreneurs Celebrated at White House Demo Day August 4, 2015 - 1:50pm Addthis Entrepreneurs Celebrated at White House Demo Day Minh Le Minh Le Deputy Director, Solar Energy Technologies Office Today, President Obama is hosting the first-ever White House Demo Day, showcasing entrepreneurs who have launched innovative businesses across the country. The event will highlight a diverse set of entrepreneurs: people whose stories show why America

  6. White River Valley Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The White River Electric Coop's Rebate Program offers both residential and commercial rebates. Items available in the program include:

  7. Keynote Address: Ali Zaidi, the White House Domestic Policy Council |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ali Zaidi, the White House Domestic Policy Council Keynote Address: Ali Zaidi, the White House Domestic Policy Council May 21, 2014 2:05PM to 2:30PM PDT Pacific Ballroom Keynote address by Ali Zaidi, Deputy Director for Energy Policy, the White House Domestic Policy Council

  8. Report 23: Photometric Testing of White Tunable LED Luminaires | Department

    Energy Savers [EERE]

    of Energy 3: Photometric Testing of White Tunable LED Luminaires Report 23: Photometric Testing of White Tunable LED Luminaires PDF icon caliper_23_white-tunable-led-luminaires.pdf More Documents & Publications September 2015 Postings January 2016 POSTINGS 2015 SSL TECHNOLOGY DEVELOPMENT WORKSHOP PRESENTATIONS - Day 2

  9. An accreting white dwarf near the Chandrasekhar limit in the Andromeda galaxy

    SciTech Connect (OSTI)

    Tang, Sumin; Bildsten, Lars; Wolf, William M.; Li, K. L.; Kong, Albert K. H.; Cao, Yi; Kulkarni, Shrinivas R.; Perley, Daniel A.; Prince, Thomas A.; Cenko, S. Bradley; De Cia, Annalisa; Kasliwal, Mansi M.; Laher, Russ R.; Surace, Jason; Nugent, Peter E.

    2014-05-01

    The intermediate Palomar Transient Factory (iPTF) detection of the most recent outburst of the recurrent nova (RN) system RX J0045.4+4154 in the Andromeda galaxy has enabled the unprecedented study of a massive (M > 1.3 M {sub ?}) accreting white dwarf (WD). We detected this nova as part of the near-daily iPTF monitoring of M31 to a depth of R ? 21 mag and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of M{sub R} = –6.6 mag, and with a decay time of 1 mag per day, it is a faint and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900-2600 km s{sup –1} 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT {sub eff} ? 90-110 eV that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is an RN with a time between outbursts of approximately 1 yr, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a M > 1.3 M {sub ?} WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to M-dot >1.7×10{sup ?7} M{sub ?} yr{sup ?1} and WD mass >1.30 M {sub ?}. If the WD keeps 30% of the accreted material, it will take less than a Myr to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution.

  10. HTGR Mechanistic Source Terms White Paper

    SciTech Connect (OSTI)

    Wayne Moe

    2010-07-01

    The primary purposes of this white paper are: (1) to describe the proposed approach for developing event specific mechanistic source terms for HTGR design and licensing, (2) to describe the technology development programs required to validate the design methods used to predict these mechanistic source terms and (3) to obtain agreement from the NRC that, subject to appropriate validation through the technology development program, the approach for developing event specific mechanistic source terms is acceptable

  11. White Earth Biomass/Biogas Feasibility Study

    SciTech Connect (OSTI)

    Triplett, Michael

    2015-03-12

    The White Earth Nation examined the feasibility of cost savings and fossil energy reduction through the installation of biogas/biomass boiler at the tribal casino. The study rejected biogas options due to availability and site constraints, but found a favorable environment for technical and financial feasibility of installing a 5 MMBtu hot water boiler system to offset 60-70 percent of current fuel oil and propane usage.

  12. White Mountain Apache Tribe- 2002 Project

    Broader source: Energy.gov [DOE]

    The project will involve an examination of the feasibility of a cogeneration facility at the Fort Apache Timber Company (FATCO), an enterprise of the White Mountain Apache Tribe. FATCO includes a sawmill and a remanufacturing operation that process timber harvested on the tribe's reservation. The operation's main facility is located in the reservation's largest town, Whiteriver. In addition, the tribe operates an ancillary facility in the town of Cibeque on the reservation's west side.

  13. White Earth Nation Biomass Fasibility Study

    Energy Savers [EERE]

    November 16, 2012 Jerome Lhotka, Director, Economic Development Mike Triplett, Planner White Earth Nation Presentation Overview * Study Objectives * Accomplishments to Date * Initial Findings * Observations * Plans Forward 2 Study Objectives * Primary Objectives: * Conduct a due diligence grade feasibility study to assess the opportunity to convert existing thermal and power systems at the Shooting Star Casino to a sustainable bioenergy system. * Background * The Casino is utilizing fuel oil and

  14. White Earth Nation Biomass Feasibility Study

    Energy Savers [EERE]

    May 5, 2015 - DOE Tribal Energy Program Mike Triplett, Planner White Earth Nation Presentation Overview * Study Objectives * Accomplishments to Date * Initial Findings * Observations * Plans Forward 2 Study Objectives * Primary Objectives: * Conduct a due diligence grade feasibility study to assess the opportunity to convert existing thermal and power systems at the Shooting Star Casino to a sustainable bioenergy system. * Background * The Casino is utilizing fuel oil and propane fired boilers

  15. White Earth Nation Biomass Feasibility Study

    Energy Savers [EERE]

    March 27, 2014 Mike Triplett, Planner White Earth Nation Presentation Overview * Study Objectives * Accomplishments to Date * Initial Findings * Observations * Plans Forward 2 Study Objectives * Primary Objectives: * Conduct a due diligence grade feasibility study to assess the opportunity to convert existing thermal and power systems at the Shooting Star Casino to a sustainable bioenergy system. * Background * The Casino is utilizing fuel oil and propane fired boilers as primary source of

  16. Low Voltage White Phosphorescent OLED Achievements

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) and its research partners at Princeton University and the University of Southern California have succeeded in developing a white phosphorescent OLED (PHOLED™) that achieved a record efficiency of 20 lumens per watt. This achievement is the result of the team's collaborative efforts to increase the efficiency of PHOLED lighting by focusing on two critical factors: lowering the drive voltages and increasing the amount of light extracted.

  17. White House | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home / White

  18. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  19. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  20. Environmental assessment of remedial action at the Mexican Hat uranium mill tailings site, Mexican Hat, Utah. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. Remedial action must be performed in accordance with standards and with the concurrence of the US Nuclear Regulatory Commission and the Navajo Nation. The proposed action is to stabilize the tailings within the present tailings site by consolidating the tailings and associated contaminated soils into a recontoured pile. A radon barrier of compacted earth would be constructed over the pile, and various erosion control measures would be taken to assure the long-term stability of the pile. The no action alternative is also assessed in this document. 240 refs., 12 figs., 20 tabs.