Powered by Deep Web Technologies
Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

RECIPIENT:Utah County STATE: UT PROJECT TITLE:  

NLE Websites -- All DOE Office Websites (Extended Search)

Utah County STATE: UT PROJECT TITLE: EECBG - Utah County Energy Efficiency Retrofits Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm...

2

Field Projects: Monticello, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Surveillance - Operations and Maintenance Long-Term Surveillance - Operations and Maintenance » Permeable Reactive Barriers » Field Projects: Monticello, Utah Field Projects: Monticello, Utah A permeable reactive barrier (PRB) of zero-valent iron is helping to clean up groundwater at a former uranium and vanadium ore processing mill at Monticello, Utah. LM managed remediation of tailings and tailings-contaminated material at this site. Cleanup of the mill site is regulated under the Comprehensive Environmental Response, Compensation, and Liability Act. Arsenic, molybdenum, nitrate, selenium, uranium, and vanadium are contaminants of concern in groundwater at the site. An Interim Record of Decision designated emplacement of a PRB hydraulically downgradient of the mill site to remove these contaminants. Results of both laboratory and

3

EA-1898: Southwest Regional Partnership on Carbon Sequestration Phase III Gordon Creek Project near Price, Utah in Carbon County  

Energy.gov (U.S. Department of Energy (DOE))

This EA will evaluate the environmental impacts of a proposal for Phase III field deployment to demonstrate commercial-scale carbon storage technologies.This Phase III large-scale carbon dioxide injection project will combine science and engineering from many disciplines to successfully sequester and monitor carbon storage. [NOTE: This EA has been cancelled].

4

RECIPIENT:Utah County STATE: UT PROJECT TITLE:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utah County STATE: UT Utah County STATE: UT PROJECT TITLE: EECBG - Utah County Energy Efficiency Retrofits Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-FOA-OOOOO13 EEOOOO889 GFO-O000889-002 EEO Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: Cx, EA, EIS APPENDIX AND NUMBER: Description: A11 Technical advice and planning assistance to international, national, state, and local organizations. A9 Information gathering (including, but not limited to, literature surveys, Inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

5

Synthetic fuels projects status report. Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming. Final report  

SciTech Connect

Energy resources are abundant in the six Federal Region 8 States of Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming. This publication provides a compilation of available data on energy resources and projected levels of development.

Grace, S.R.; Thoem, T.L.

1980-11-01T23:59:59.000Z

6

UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1  

Science Conference Proceedings (OSTI)

This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site.

NONE

1995-06-01T23:59:59.000Z

7

Utah/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Geothermal < Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Utah Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Utah Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Cove Fort Geothermal Project Oski Energy LLC 50 MW50,000 kW 50,000,000 W 50,000,000,000 mW 0.05 GW 5.0e-5 TW Phase II - Resource Exploration and Confirmation Cove Fort Geothermal Area Northern Basin and Range Geothermal Region Drum Mountain Geothermal Project Raser Technologies Inc Delta, Utah 0 MW0 kW

8

Status of Texas eastern's synfuels projects. [Kentucky, New Mexico, Wyoming, Utah  

SciTech Connect

The rationale for synfuel project and site selection is outlined and a brief description of four projects is presented. The Tri-State Project is a coal gasification/liquefaction project located on the Ohio River in Henderson County, Kentucky. It will convert about 10 million tons per year of high sulfur coal into SNG, transportation fuels and chemicals. The New Mexico Project is located in northwest N.M. east of the Navajo Indian Reservation. The plant will convert about 10 million tons of coal per year into SNG and methanol using the Lurgi process. The Lake DeSmet Project in north central Wyoming will also employ Lurgi Technology to produce SNG and methanol. The Paraho Oil Shale Module Project would produce 10,000 b/d of synthetic crude from oil shale in eastern Utah.

Homeyer, H.C.

1981-01-01T23:59:59.000Z

9

Property:Project Phase | Open Energy Information  

Open Energy Info (EERE)

Phase Phase Jump to: navigation, search Property Name Project Phase Property Type Text This is a property of type String. Pages using the property "Project Phase" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + Phase 2 + MHK Projects/ADM 3 + Phase ? + MHK Projects/ADM 4 + Phase ? + MHK Projects/ADM 5 + Phase 2 + MHK Projects/AW Energy EMEC + Phase 3 + MHK Projects/AWS II + Phase 1 + MHK Projects/Admirality Inlet Tidal Energy Project + Phase 1 + MHK Projects/Agucadoura + Phase 3 + MHK Projects/Alaska 1 + Phase 0 + MHK Projects/Alaska 13 + Phase ? + MHK Projects/Alaska 17 + Phase 0 + MHK Projects/Alaska 18 + Phase 0 + MHK Projects/Alaska 24 + Phase 0 + MHK Projects/Alaska 25 + Phase 0 + MHK Projects/Alaska 28 + Phase 0 +

10

Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Cancellation of Environmental Impact Statement Clean Power From Integrated Coal Ore Reduction Project, Provo, Utah August 31, 2004 Rejuvenating Permeable Reactive...

11

Home energy saver's program: a report on a demonstration project undertaken in Utah  

SciTech Connect

A demonstration project undertaken in Utah designed to test a Home Energy Saver Program (funded by the Federal Energy Administration) is described. The basic purposes of the program were: (1) to encourage and bring about a significant reduction in home energy use, and (2) to test the impact of various energy conservation research elements on homeowners' participation. The principal research elements tested were: direct mailing of HESP workbooks to single family homeowners; use of a telephone hotline; use of workshops; use of a coordinated media program; and use of church and community support. In addition, the impact of a contest drawing, designed to motivate homeowners to compute their potential annual energy savings, was tested. (MCW)

Jensen, G.F.

1977-06-01T23:59:59.000Z

12

Home Energy Savers' Program. A report on a demonstration project undertaken in Utah  

SciTech Connect

The Utah Home Energy Savers Program (HESP) is described and results are summarized. The project basically tested the impact of several research elements on homeowners participation through the use of: a direct mailing of 276,000 HESP workbooks to single-family homeowners; a telephone hotline to respond to incoming calls and to conduct an energy conservation survey; workshops to acquaint the citizenry with the facts of the national and statewide energy situation and the contents of the HESP workbook; a professional, commercial promotional firm to undertake a coordinated media program in support of the mailing of the HESP workbook; church and community sponshorship of the program; and selected methods of reaching sparsely populated areas.

Jensen, G.F.

1977-01-01T23:59:59.000Z

13

Utah geothermal commercialization planning. Semi-annual progress report, January 1, 1979--June 30, 1979  

DOE Green Energy (OSTI)

The effects of the Utah geothermal planning project were concentrated on the Utah geothermal legislation, the Roosevelt Hot Springs time phased project plan and the Salt Lake County area development plan. Preliminary findings indicate a potential for heat pump utilization, based on market interest and the existence of suitable groundwater conditions. (MHR)

Green, S.; Wagstaff, L.W.

1979-06-01T23:59:59.000Z

14

EIS-0450: TransWest Express 600 kV Direct Current Transmission Project in Wyoming, Colorado, Utah, and Nevada  

Energy.gov (U.S. Department of Energy (DOE))

Draft Environmental Impact Statement: Public Comment Period Ends 09/25/13This EIS, being prepared jointly by DOEs Western Area Power Administration and the Department of the Interiors Bureau of Land Management (Wyoming State Office), evaluates the environmental impacts of granting a right-of-way for the TransWest Express 600-kilovolt Direct Current Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

15

Teacher and Students Bring Renewables to Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teacher and Students Bring Renewables to Utah Teacher and Students Bring Renewables to Utah Teacher and Students Bring Renewables to Utah March 4, 2010 - 6:31am Addthis High School Teacher Andy Swapp sits behind a wind turbine. | Photo courtesy Andy Swapp High School Teacher Andy Swapp sits behind a wind turbine. | Photo courtesy Andy Swapp What does this project do? First Wind built 97 wind turbines for the first phase of the project, generating enough energy to power 45,000 homes per year, making it the state's largest wind farm. The turbines generated nearly $87 million in revenue for the people of Utah. The Wind Kids graduated from high school in 2007, some are now studying engineering and a few others now work for First Wind. Locals had accepted the powerful winds in Milford, Utah, as an everyday

16

Teacher and Students Bring Renewables to Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teacher and Students Bring Renewables to Utah Teacher and Students Bring Renewables to Utah Teacher and Students Bring Renewables to Utah March 4, 2010 - 6:31am Addthis High School Teacher Andy Swapp sits behind a wind turbine. | Photo courtesy Andy Swapp High School Teacher Andy Swapp sits behind a wind turbine. | Photo courtesy Andy Swapp What does this project do? First Wind built 97 wind turbines for the first phase of the project, generating enough energy to power 45,000 homes per year, making it the state's largest wind farm. The turbines generated nearly $87 million in revenue for the people of Utah. The Wind Kids graduated from high school in 2007, some are now studying engineering and a few others now work for First Wind. Locals had accepted the powerful winds in Milford, Utah, as an everyday

17

Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Consolidated Business Center Director Jack Craig visited the Moab Project sites in Utah on March 12. January 4, 2013 In the 1950s, one of the largest uranium deposits in the...

18

Microsoft Word - DOE-ID-13-076 Utah State EC B3-6.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

6 SECTION A. Project Title: Optical Fiber Based Laser System for Thermophysical Properties at Very High Temperatures - Utah State University SECTION B. Project Description Utah...

19

Project information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Amistad Project (Texas) Collbran Project (Colorado) Colorado River Storage Project Dolores Project (Colorado) Falcon Project (Texas) Provo River Project (Utah)...

20

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

22

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-07-13T23:59:59.000Z

23

Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-07-14T23:59:59.000Z

24

K Basins Sludge Treatment Project Phase 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basins Sludge Treatment Project Phase 1 K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report Herb G. Sutter Michael Poirier Art W. Etchells Gary Smith Kris Thomas Jim J. Davis Paul Macbeth November 16, 2009 Prepared by the U.S. Department of Energy Washington, D.C. K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report November 16, 2009 ii Herbert G. Sutter, Team Lead Date Michael Poirier, Team Member Date Arthur W. Etchells, Team Member Date Gary Smith, Team Member Date Kris Thomas, Team Member Date Jim J. Davis, Team Member Date Paul Macbeth, Team Member Date Signatures 11/09/2009 11/09/2009 11/09/2009 K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report November 16, 2009

25

Recovery Act State Memos Utah  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utah Utah For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

26

Utah's 1st congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

You can help OpenEI by expanding it. This page represents a congressional district in Utah. US Recovery Act Smart Grid Projects in Utah's 1st congressional district Western...

27

Project Financial Summary Report Concerning Financing Surface Facilities for a 50 Megawatt Geothermal Electric Power Plant Facility in Utah  

DOE Green Energy (OSTI)

This report summarizes the economic and financial conditions pertaining to geothermal electric power plant utilization of geothermal fluids produced from the Roosevelt Hot springs area of Utah. The first year of electric power generation is scheduled to be 1982. The non-resource facilities will be called ''surface facilities'' and include the gathering system, the power plant, the substation, and the injection system.

None

1978-06-23T23:59:59.000Z

28

Microsoft Word - DOE-ID-13-013 Utah State B1-31.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 SECTION A. Project Title: High Temperature Thermal Properties - Utah State University SECTION B. Project Description Utah State University proposes to purchase a Laser Flash Analysis (LFA) system for high temperature thermophysical properties analysis of nuclear materials. The LFA system combined with existing equipment will expand the ability to analyze and characterize thermophysical properties such as thermal diffusivity, thermal conductivity, specific heat capacity, thermal expansion coefficient, phase transition temperature, and phase transition enthalpy. SECTION C. Environmental Aspects / Potential Sources of Impact The action consists of purchasing equipment to be used in research and teaching. The action would not create additional

29

Yakima Basin Fish Passage Project, Phase 2  

DOE Green Energy (OSTI)

Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs.

Not Available

1991-08-01T23:59:59.000Z

30

An Examination of Avoided Costs in Utah  

E-Print Network (OSTI)

relevant basis for any gas price inputs in Utah. It proposedultimately accepted a natural gas price projection that wasin 2004 for this average gas price projection is $4.98/MMBtu

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

31

Cleveland Project Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Phase 2 Phase 2 Jump to: navigation, search Name Cleveland Project Phase 2 Facility Cleveland Project Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Lake Erie Energy Development Corporation Location Lake Erie OH Coordinates 41.725°, -81.802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.725,"lon":-81.802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Project Financial Summary Report Concerning Financing Surface Facilities for a 50 Megawatt Geothermal Electric Power Plant Facility in Utah  

SciTech Connect

This report summarizes the economic and financial conditions pertaining to geothermal electric power plant utilization of geothermal fluids produced from the Roosevelt Hot springs area of Utah. The first year of electric power generation is scheduled to be 1982. The non-resource facilities will be called ''surface facilities'' and include the gathering system, the power plant, the substation, and the injection system.

1978-06-23T23:59:59.000Z

33

Retail Unbundling - Utah  

Gasoline and Diesel Fuel Update (EIA)

Utah Retail Unbundling - Utah Status: The State has no unbundled service programs for residential customers. Overview: No retail unbundling program is being considered at this time...

34

PARS II Process Document - Project Phasing (Multiple CD-2 from...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Phasing (Multiple CD-2 from Single CD-1) PARS II Process Document - Project Phasing (Multiple CD-2 from Single CD-1) This document details the process by which projects...

35

Utah Southwest Regional Geothermal Development Operations Research Project. Appendix 10 of regional operations research program for development of geothermal energy in the Southeast United States. Final technical report, June 1977--August 1978  

DOE Green Energy (OSTI)

The Southwest Regional Geothermal Operations/Research project was initiated to investigate geothermal development in the five states within the region: Arizona, Colorado, Nevada, New Mexico, and Utah. Although the region changed during the first year to include Idaho, Montana, North Dakota, South Dakota, and Wyoming, the project objectives and procedures remained unchanged. The project was funded by the DOE/DGE and the Four Corners Regional Commission with participation by the New Mexico Energy Resources Board. The study was coordinated by the New Mexico Energy Institute at New Mexico State University, acting through a 'Core Team'. A 'state' team, assigned by the states, conducted the project within each state. This report details most of the findings of the first year's efforts by the Utah Operations/Research team. It is a conscientious effort to report the findings and activities of the Utah team, either explicitly or by reference. The results are neither comprehensive nor final, and should be regarded as preliminary efforts to much of what the Operations/Research project was envisioned to accomplish. In some cases the report is probably too detailed, in other cases too vague; hopefully, however, the material in the report, combined with the Appendices, will be able to serve as source material for others interested in geothermal development in Utah.

Green, Stanley; Wagstaff, Lyle W.

1979-01-01T23:59:59.000Z

36

Utah Southwest Regional Geothermal Development Operations Research Project. Appendix 10 of regional operations research program for development of geothermal energy in the Southeast United States. Final technical report, June 1977--August 1978  

SciTech Connect

The Southwest Regional Geothermal Operations/Research project was initiated to investigate geothermal development in the five states within the region: Arizona, Colorado, Nevada, New Mexico, and Utah. Although the region changed during the first year to include Idaho, Montana, North Dakota, South Dakota, and Wyoming, the project objectives and procedures remained unchanged. The project was funded by the DOE/DGE and the Four Corners Regional Commission with participation by the New Mexico Energy Resources Board. The study was coordinated by the New Mexico Energy Institute at New Mexico State University, acting through a 'Core Team'. A 'state' team, assigned by the states, conducted the project within each state. This report details most of the findings of the first year's efforts by the Utah Operations/Research team. It is a conscientious effort to report the findings and activities of the Utah team, either explicitly or by reference. The results are neither comprehensive nor final, and should be regarded as preliminary efforts to much of what the Operations/Research project was envisioned to accomplish. In some cases the report is probably too detailed, in other cases too vague; hopefully, however, the material in the report, combined with the Appendices, will be able to serve as source material for others interested in geothermal development in Utah.

Green, Stanley; Wagstaff, Lyle W.

1979-01-01T23:59:59.000Z

37

Hoover Dam Bypass Project Phase II  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1478 DOE/EA-1478 ENVIRONMENTAL ASSESSMENT Western' s Hoover Dam Bypass Project Phase II (Double-Circuiting a Portion of the Hoover-Mead #5 and #7 230-kV Transmission Lines with the Henderson-Mead #1 230-kV Transmission Line, Clark County, Nevada) Prepared for: U.S. Department of Energy Western Area Power Administration 615 S. 43 rd Avenue Phoenix, Arizona 85009 Prepared by: Transcon Environmental 3740 East Southern Avenue, Suite 218 Mesa, Arizona 85206 (480) 807-0095 October 2003 Western Area Power Administration Hoover Dam Bypass Project Phase II page i Environmental Assessment TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................................................1 1.1 Background..................................................................................................................................1

38

Utah Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utah Recovery Act State Memo Utah Recovery Act State Memo Utah Recovery Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Utah are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, alternative fuel vehicles, and the clean-up of legacy uranium processing sites. Through these investments, Utah's businesses, non-profits, and local governments are creating quality jobs today and positioning Utah to play an important role in the new energy economy of the future. Utah Recovery Act State Memo

39

CRAD, Safety Basis - Idaho Accelerated Retrieval Project Phase...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Accelerated Retrieval Project Phase II CRAD, Safety Basis - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line...

40

Utah's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Utah. Utah. US Recovery Act Smart Grid Projects in Utah's 2nd congressional district Western Electricity Coordinating Council Smart Grid Project Registered Research Institutions in Utah's 2nd congressional district Energy & Geoscience Institute Energy & Geoscience Institute at the University of Utah Registered Energy Companies in Utah's 2nd congressional district Amp Resources Blue Source LLC Ciralight Emery Energy Company Eneco Inc EnergySolutions Inc Genifuel Green Joules GreenFire Energy LLC Heliocentric InterContinental Hotels Group Materials and Systems Research MSRI N2Solar Pan Am Biofuels Inc Romeric Solar Unlimited USA Sound Geothermal Corporation Sunton United Energy LLC Tasco Engineering Inc Verdi Energy Group Wasatch Solar Retrieved from "http://en.openei.org/w/index.php?title=Utah%27s_2nd_congressional_district&oldid=20529

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

West Valley Demonstration Project Phase I Decommissioning - Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

42

Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 CX-004071: Categorical Exclusion Determination Utah Coal and Biomass Fueled Pilot Plant CX(s) Applied: A9, B3.1 Date: 09302010 Location(s): Kanab, Utah Office(s): Fossil...

43

Geothermal Technologies Program: Utah  

DOE Green Energy (OSTI)

Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

Not Available

2005-06-01T23:59:59.000Z

44

Utah Heavy Oil Program  

Science Conference Proceedings (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

45

CRAD, Fire Protection - Idaho Accelerated Retrieval Project Phase II |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Protection - Idaho Accelerated Retrieval Project Phase Fire Protection - Idaho Accelerated Retrieval Project Phase II CRAD, Fire Protection - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Fire Protection program at the Idaho National Laboratory, Idaho Accelerated Retrieval Project Phase II. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Fire Protection - Idaho Accelerated Retrieval Project Phase II More Documents & Publications CRAD, Engineering - Idaho Accelerated Retrieval Project Phase II

46

CRAD, Management - Idaho Accelerated Retrieval Project Phase II |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management - Idaho Accelerated Retrieval Project Phase II Management - Idaho Accelerated Retrieval Project Phase II CRAD, Management - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Management at the Idaho National Laboratory, Idaho Accelerated Retrieval Project Phase II. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Idaho Accelerated Retrieval Project Phase II More Documents & Publications CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II

47

CRAD, Training - Idaho Accelerated Retrieval Project Phase II | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated Retrieval Project Phase II Accelerated Retrieval Project Phase II CRAD, Training - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Training Program at the Idaho National Laboratory, Idaho Accelerated Retrieval Project Phase II. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Idaho Accelerated Retrieval Project Phase II More Documents & Publications CRAD, Criticality Safety - Idaho Accelerated Retrieval Project Phase II

48

CRAD, Quality Assurance - Idaho Accelerated Retrieval Project Phase II |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Quality Assurance - Idaho Accelerated Retrieval Project Phase CRAD, Quality Assurance - Idaho Accelerated Retrieval Project Phase II CRAD, Quality Assurance - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Quality Assurance Program at the Idaho National Laboratory, Idaho Accelerated Retrieval Project Phase II. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Quality Assurance - Idaho Accelerated Retrieval Project Phase II More Documents & Publications CRAD, Radiological Controls - Idaho Accelerated Retrieval Project Phase II

49

CRAD, Engineering - Idaho Accelerated Retrieval Project Phase II |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated Retrieval Project Phase II Accelerated Retrieval Project Phase II CRAD, Engineering - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Engineering program at the Idaho National Laboratory, Idaho Accelerated Retrieval Project Phase II. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Idaho Accelerated Retrieval Project Phase II More Documents & Publications CRAD, Fire Protection - Idaho Accelerated Retrieval Project Phase II

50

Pilgrim Hot Springs Project - PHASE 1 | Open Energy Information  

Open Energy Info (EERE)

2012 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Pilgrim Hot Springs Project - PHASE 1 Citation Alaska Energy Wiki. Pilgrim...

51

CRAD, Criticality Safety - Idaho Accelerated Retrieval Project Phase II |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criticality Safety - Idaho Accelerated Retrieval Project Criticality Safety - Idaho Accelerated Retrieval Project Phase II CRAD, Criticality Safety - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Criticality Safety program at the Idaho National Laboratory, Idaho Accelerated Retrieval Project Phase II. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Criticality Safety - Idaho Accelerated Retrieval Project Phase II More Documents & Publications CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II

52

Categorical Exclusion Determinations: Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 23, 2010 April 23, 2010 CX-001971: Categorical Exclusion Determination Roy Energy Efficiency Retrofits CX(s) Applied: A11, B5.1 Date: 04/23/2010 Location(s): Roy, Utah Office(s): Energy Efficiency and Renewable Energy April 23, 2010 CX-001645: Categorical Exclusion Determination Compressed Natural Gas (CNG) Infrastructure Upgrade Project CX(s) Applied: A1, A9 Date: 04/23/2010 Location(s): Salt Lake City, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-002100: Categorical Exclusion Determination Utah-City-Sandy CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 04/22/2010 Location(s): Sandy, Utah Office(s): Energy Efficiency and Renewable Energy April 20, 2010 CX-001805: Categorical Exclusion Determination Topic A: Western Interconnection-Level Analysis and Planning

53

Categorical Exclusion Determinations: Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 4, 2011 June 4, 2011 CX-005941: Categorical Exclusion Determination Laboratory Activities-University of Utah (Recipient) CX(s) Applied: A9, B3.6 Date: 06/04/2011 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory May 26, 2011 CX-006027: Categorical Exclusion Determination Project Blue Energy CX(s) Applied: A9 Date: 05/26/2011 Location(s): Pleasant Grove City, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 26, 2011 CX-005954: Categorical Exclusion Determination Compressed Natural Gas (CNG)/Infrastructure Development (Station Upgrade) CX(s) Applied: B5.1 Date: 05/26/2011 Location(s): Heber City, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 20, 2011

54

Green River formation water flood demonstration project, Unita Basin, Utah. Quarterly technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect

The objective of this project was to understand the successful water flood in the Monument Butte unit and apply it to other units and other reservoirs. Expanding the Monument Butte Water Flood was also one of the objectives. This report provides progress in the areas of field drilling and production results and modeling the boundary unit.

Lomax, J.D.; Nielson, D.L.; Deo, M.D.

1995-06-01T23:59:59.000Z

55

Utah Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Utah Quick Facts. Utah produced 1.8 percent of U.S. coal in 2011, and shipped 30 percent of that production out of the State. Utah's five refineries process crude oil ...

56

Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah August 5, 2005 EIS-0355: EPA Notice of Availability of the Final Environmental Impact...

57

,"Utah Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Proved Nonproducing Reserves",5,"Annual",2011,"6301996" ,"Release Date:","812013"...

58

Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Energy Development Incentive (Personal) (Utah) The Alternative Energy Development Incentive (AEDI) is a post-performance non-refundable tax credit for 75% of new state...

59

Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assurance Planning (LEAP) CX(s) Applied: A9 Date: 04122010 Location(s): Herber, Utah Office(s): Electricity Delivery and Energy Reliability, National Energy Technology...

60

Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction Technologies Program CX(s) Applied: A1 Date: 09282011 Location(s): Utah Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Planning (LEAP) CX(s) Applied: A9 Date: 04122010 Location(s): Herber, Utah Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory April...

62

Utah State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

and Disposal). The DEQ administers Utah's environmental rules. Underground Disposal of Drilling Fluids (R649-3-25). The regulation allows injection of reserve pit drilling...

63

,"Utah Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

64

CRAD, Maintenance - Idaho Accelerated Retrieval Project Phase II |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Accelerated Retrieval Project Phase II Idaho Accelerated Retrieval Project Phase II CRAD, Maintenance - Idaho Accelerated Retrieval Project Phase II Feburary 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Maintenance program at the Idaho National Laboratory, Idaho Accelerated Retrieval Project Phase II. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Maintenance - Idaho Accelerated Retrieval Project Phase II More Documents & Publications CRAD, Maintenance - Los Alamos National Laboratory TA 55 SST Facility

65

Wind Course in Utah Takes Off | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Course in Utah Takes Off Wind Course in Utah Takes Off Wind Course in Utah Takes Off April 15, 2010 - 6:19pm Addthis Two women inspired by a school assignment that blossomed into a 200-megawatt wind farm in Milford, Utah, have developed a training program to help people launch wind projects. After hearing how shop teacher Andy Swapp and his eighth-grade students attracted the attention of a wind energy company with the wind potential data they collected from Andy's farm, Sara Baldwin and Bonnie Christiansen started to wonder. If everyday people like Andy and his students can facilitate the development of a wind park with 97 turbines, maybe other people in Utah could too. "We realized that we have great folks working on wind energy," says Sara, a senior policy and regulatory associate of Utah Clean Energy, a

66

Bureau of Land Management - Campground, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Management - Campground, Utah Land Management - Campground, Utah Bureau of Land Management - Campground, Utah October 7, 2013 - 9:47am Addthis Photo of Field Station at Red Cliffs Campground in Utah's Cedar City District The Bureau of Land Management (BLM) has remote field stations in Arizona, California, Utah, Idaho, and Alaska. This photograph shows the field station at Red Cliffs Campground in Utah's Cedar City District. Photovoltaic power systems allow the people working in these remote areas to have the convenience of continuous power. "The comfort and convenience of having 24-hour continuous power has been greatly appreciated by the users," said Trent Duncan of BLM, the mechanical engineer for the project. A standardized system design based on existing BLM systems was developed

67

Project: Advanced Gas-Phase Fire Retardants  

Science Conference Proceedings (OSTI)

... at understanding the condensed-phase chemistry related to ... Center) on the fundamental mechanisms of ... for the SFPE Handbook: Chemical Kinetics ...

2012-12-31T23:59:59.000Z

68

Utah/Incentives | Open Energy Information  

Open Energy Info (EERE)

Utah/Incentives Utah/Incentives < Utah Jump to: navigation, search Contents 1 Financial Incentive Programs for Utah 2 Rules, Regulations and Policies for Utah Download All Financial Incentives and Policies for Utah CSV (rows 1 - 55) Financial Incentive Programs for Utah Download Financial Incentives for Utah CSV (rows 1 - 39) Incentive Incentive Type Active Alternative Energy Development Incentive (Utah) Industry Recruitment/Support No Alternative Energy Development Incentive (Corporate) (Utah) Corporate Tax Credit Yes Alternative Energy Development Incentive (Personal) (Utah) Personal Tax Credit Yes Alternative Energy Manufacturing Tax Credit (Utah) Industry Recruitment/Support Yes City of St. George - Energy Efficient Homes Rebate Program (Utah) Utility Rebate Program No

69

CRAD, Conduct of Operations - Idaho Accelerated Retrieval Project Phase II  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conduct of Operations - Idaho Accelerated Retrieval Project Conduct of Operations - Idaho Accelerated Retrieval Project Phase II CRAD, Conduct of Operations - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2006 Commencement of Operations assessment of the Conduct of Operations program at the Idaho National Laboratory, Idaho Accelerated Retrieval Project Phase II. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Idaho Accelerated Retrieval Project Phase II More Documents & Publications

70

CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Idaho Accelerated Retrieval Project Emergency Management - Idaho Accelerated Retrieval Project Phase II CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Emergency Management program at the Idaho National Laboratory, Idaho Accelerated Retrieval Project Phase II. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Idaho Accelerated Retrieval Project Phase II More Documents & Publications CRAD, Emergency Management - Los Alamos National Laboratory TA 55 SST

71

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050UT3","N3010UT3","N3020UT3","N3035UT3","N3045UT3" "Date","Natural Gas Citygate Price in Utah (Dollars per Thousand Cubic Feet)","Utah Price of Natural...

72

Vermont gasifier project. Final report, Phase I  

DOE Green Energy (OSTI)

This report presents an engineering status report for the Vermont gasifier project. Technical areas of concern are discussed with the cyclone performance, agglomeration problems in the combustor, particlate emissions, valve design, deflagration venting, gasifier and combustion blower surge control, and other related areas. Attachments pertaining to the drawing and specification register are included.

NONE

1995-07-01T23:59:59.000Z

73

Condon Wind Project phase II | Open Energy Information  

Open Energy Info (EERE)

Project phase II Project phase II Jump to: navigation, search Name Condon Wind Project phase II Facility Condon Wind Project phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer SeaWest Energy Purchaser Bonneville Power Admin Location Gilliam County OR Coordinates 45.306062°, -120.255847° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.306062,"lon":-120.255847,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

PROJECT SELECTIONS FOR DOE PHASE III XLERATOR SMALL BUSINESS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROJECT SELECTIONS FOR DOE PHASE III XLERATOR SMALL BUSINESS PROJECT SELECTIONS FOR DOE PHASE III XLERATOR SMALL BUSINESS PROGRAM Biomass Technologies: Harvesting/Dewatering Technology for Algal Biofuels Renewable Algal Energy, LLC (Kingsport, Tenn.) - Algal Biodiesel via Innovative Harvesting and Aquaculture Systems - Renewable Algal Energy LLC, will leverage its experience in algal aquaculture, harvesting, and extraction, to demonstrate at small commercial-scale, improved, low cost, energy-efficient methods for harvesting and

75

Project Eagle Phase 1 Direct Wafer/Cell Solar Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Eagle Phase 1 Direct Wafer/Cell Solar Facility Project Eagle Phase 1 Direct Wafer/Cell Solar Facility 1366 Technologies Description of Proposed Action: The Department of Energy (DOE) proposed action is for the use of a federal loan guarantee by 1366 Technologies (1366) to support the renovation of an existing building, located at 159 Wells Avenue, Newton, Massachusetts, into a solar wafer production facility. The new facility would constitute Phase 1 of Project Eagle and accommodate 20 megawatts (MW) of multi crystalline silicon wafer production, laboratory areas, offices, and ancillary spaces. Phase 2 of Proje~y an existing DOE Categorical Exclusion and would occur at a site in _ _ _ _ . The Phase 1 facility in Newton, MA is an existing building of 50,600 square feet on a site approximately 4.7 acres. 1366 would renovate the interior of the facility to provide office

76

DOE Announces Preferred Alternatives For Moab, Utah, Uranium Mill Tailings  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON, DC The U.S. Department of Energy today announced the departments preferred alternatives for remediation of the Moab, Utah, Uranium Mill Tailings Remedial Action Project Site: active...

77

Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountain Region CX(s) Applied: A9, A11 Date: 12112009 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory December 2, 2009 Energy...

78

Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Resistivity Structure CX(s) Applied: A9 Date: 03102010 Location(s): Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office March 4, 2010...

79

Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy CX(s) Applied: A9, A11, B5.1 Date: 04262010 Location(s): Box Elder County, Utah Office(s): Energy Efficiency and Renewable Energy April 23, 2010 CX-001971: Categorical...

80

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,877,0,37,79,,,93,32,2,62...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Energy Manufacturing Tax Credit (Utah) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Tax Credit (Utah) Manufacturing Tax Credit (Utah) Alternative Energy Manufacturing Tax Credit (Utah) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Maximum Rebate Up to 100% of new state tax revenues (including, state, corporate, sales and withholding taxes) over the life of the project or 20 years, whichever is less. Program Info Start Date 05/12/2009 State Utah Program Type Industry Recruitment/Support Rebate Amount Determined on a case-by-case basis by the Governor's Office of Economic Development based on statutory guidelines and evaluation criteria. Provider Utah Governor's Office of Economic Development The Alternative Energy Development Incentive (AEDI) is a post-performance non-refundable tax credit for up to 100% of new state tax revenues

82

Kotzebue Wind Project Phase I | Open Energy Information  

Open Energy Info (EERE)

Kotzebue Wind Project Phase I Kotzebue Wind Project Phase I Facility Kotzebue Wind Project Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kotzebue Electric Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Electric Assoc. Location Kotzebue AK Coordinates 66.83907°, -162.551315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.83907,"lon":-162.551315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Stockholm Royal seaport prestudy phase (Smart Grid Project) | Open Energy  

Open Energy Info (EERE)

Royal seaport prestudy phase (Smart Grid Project) Royal seaport prestudy phase (Smart Grid Project) Jump to: navigation, search Project Name Stockholm Royal seaport prestudy phase Country Sweden Headquarters Location Stockholm, Sweden Coordinates 59.332787°, 18.064487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.332787,"lon":18.064487,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Integrated monitoring and surveillance system demonstration project: Phase I accomplishments  

Science Conference Proceedings (OSTI)

The authors present the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase I efforts. The rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include decisions to use Echelon LonWorks networking protocol and Microsoft Access for the data system needs, a preliminary design for the plutonium canning system glovebox, identification of facilities and materials available for the demonstration, determination of possibly affected facility documentation, and a preliminary list of available sensor technologies. Recently imposed changes in the overall project schedule and scope are also discussed and budgetary requirements for competition of Phase II presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase I deliverables.

Aumeier, S.E.; Walters, B.G.; Crawford, D.C. [and others

1997-01-15T23:59:59.000Z

85

Solano Wind Project Phase I | Open Energy Information  

Open Energy Info (EERE)

Phase I Phase I Jump to: navigation, search Name Solano Wind Project Phase I Facility Solano Wind Project Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento Municipal Utility District Developer Sacramento Municipal Utility District Energy Purchaser Sacramento Municipal Utility District Location Solano County CA Coordinates 38.165683°, -121.817186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.165683,"lon":-121.817186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Utah Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Utah Utah Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Selected Cities Layton LaytonGasPrices.com Automotive.com MapQuest.com Ogden OgdenGasPrices.com Automotive.com MapQuest.com Orem OremGasPrices.com Automotive.com MapQuest.com Provo ProvoGasPrices.com Automotive.com MapQuest.com Salt Lake City SaltLakeCityGasPrices.com Automotive.com MapQuest.com Sandy SandyGasPrices.com Automotive.com MapQuest.com West Jordan WestJordanGasPrices.com Automotive.com MapQuest.com West Valley City WestValleyCityGasPrices.com Other Utah Cities UtahGasPrices.com (search by city or ZIP code) - GasBuddy.com Utah Gas Prices (selected cities) - GasBuddy.com

87

Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah  

Science Conference Proceedings (OSTI)

This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

88

Federal Energy Management Program: Case Study - Hill Air Force Base, Utah  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study - Hill Case Study - Hill Air Force Base, Utah to someone by E-mail Share Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Facebook Tweet about Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Twitter Bookmark Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Google Bookmark Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Delicious Rank Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on Digg Find More places to share Federal Energy Management Program: Case Study - Hill Air Force Base, Utah on AddThis.com... Energy Savings Performance Contracts Assistance & Contacts Resources Laws & Regulations Energy Service Companies Awarded Projects

89

Solano Wind Project- phase II | Open Energy Information  

Open Energy Info (EERE)

Project- phase II Project- phase II Jump to: navigation, search Name Solano Wind Project- phase II Facility Solano Wind Project- phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento Municipal Utility District Developer NextEra Energy Resources Energy Purchaser Sacramento Municipal Utility District Location Solano County CA Coordinates 38.165683°, -121.817186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.165683,"lon":-121.817186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

EAST TEXAS FOREST INVENTORY (ETFI) PILOT PROJECT REMOTE SENSING PHASE  

E-Print Network (OSTI)

EAST TEXAS FOREST INVENTORY (ETFI) PILOT PROJECT REMOTE SENSING PHASE Dr. Daniel R. Unger, Remote Resources Institute Arthur Temple College of Forestry Stephen F. Austin State University Nacogdoches, Texas the forest resources of East Texas based on the premise that the quantification and qualification of forest

Hung, I-Kuai

91

CRAD, Occupational Safety & Health- Idaho Accelerated Retrieval Project Phase II  

Energy.gov (U.S. Department of Energy (DOE))

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene Program at the Idaho Accelerated Retrieval Project Phase II.

92

CRAD, Radiological Controls- Idaho Accelerated Retrieval Project Phase II  

Energy.gov (U.S. Department of Energy (DOE))

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Radiation Protection Program at the Idaho Accelerated Retrieval Project Phase II.

93

Utah.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Utah Utah www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

94

Utah.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Utah Utah www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

95

Alternative Energy Development Incentive (Personal) (Utah) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) (Utah) Personal) (Utah) Alternative Energy Development Incentive (Personal) (Utah) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Maximum Rebate 75% of new state tax revenues (including, state, corporate, sales and withholding taxes) over the life of the project or 20 years, whichever is less. Program Info Start Date 05/12/2009 State Utah Program Type Personal Tax Credit Rebate Amount 75% of new state tax revenues (including, state, corporate, sales and withholding taxes) over the life of the project or 20 years, whichever is less. Provider Office of Energy Development The Alternative Energy Development Incentive (AEDI) is a post-performance non-refundable tax credit for 75% of new state tax revenues (including,

96

Alternative Energy Development Incentive (Corporate) (Utah) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) (Utah) Corporate) (Utah) Alternative Energy Development Incentive (Corporate) (Utah) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Wind Maximum Rebate 75% of new state tax revenues (including, state, corporate, sales and withholding taxes) over the life of the project or 20 years, whichever is less. Program Info Start Date 05/12/2009 State Utah Program Type Corporate Tax Credit Rebate Amount 75% of new state tax revenues (including, state, corporate, sales and withholding taxes) over the life of the project or 20 years, whichever is less. Provider Office of Energy Development The Alternative Energy Development Incentive (AEDI) is a post-performance non-refundable tax credit for 75% of new state tax revenues (including,

97

PARS II Process Document Project Phasing (Multiple CD-2 from Single CD-1)  

Energy.gov (U.S. Department of Energy (DOE))

This document details the process by which projects that adopted Phasing approach (different phases of the same larger project are treated as separate sub-projects, resulting in multiple CD-2...

98

Kotzebue Wind Project Phase II & III | Open Energy Information  

Open Energy Info (EERE)

II & III II & III Jump to: navigation, search Name Kotzebue Wind Project Phase II & III Facility Kotzebue Wind Project Phase II & III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kotzebue Electric Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Electric Assoc. Location Kotzebue AK Coordinates 66.839104°, -162.556894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.839104,"lon":-162.556894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

DOE Issues Final Environmental Impact Statement for Moab, Utah Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for Moab, Utah Site Environmental Impact Statement for Moab, Utah Site DOE Issues Final Environmental Impact Statement for Moab, Utah Site July 25, 2005 - 2:27pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued its final environmental impact statement (EIS) for the Moab Uranium Mill Tailings Remedial Action Project Site, located on the bank of the Colorado River. The EIS details the preferred option of removal of the tailings pile and contaminated materials, along with ground water remediation. The tailings will be moved, predominately by rail, to the proposed Crescent Junction, Utah, site, more than 30 miles from the Colorado River. "Taking all facts into account, we believe the recommendations issued today provide the best solution to cleaning up Moab and protecting the River,"

100

The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors  

DOE Green Energy (OSTI)

The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

Not Available

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors  

DOE Green Energy (OSTI)

The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R&D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

Not Available

1992-07-01T23:59:59.000Z

102

BLM Utah State Office | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon BLM Utah State Office Jump to: navigation, search Logo: BLM Utah State Office Name BLM Utah...

103

"1. Intermountain Power Project","Coal","Los Angeles City of",1800  

U.S. Energy Information Administration (EIA) Indexed Site

Utah" Utah" "1. Intermountain Power Project","Coal","Los Angeles City of",1800 "2. Hunter","Coal","PacifiCorp",1336 "3. Huntington","Coal","PacifiCorp",911 "4. Lake Side Power Plant","Gas","PacifiCorp",557 "5. Currant Creek","Gas","PacifiCorp",540 "6. Bonanza","Coal","Deseret Generation & Tran Coop",458 "7. Gadsby","Gas","PacifiCorp",348 "8. KUCC","Coal","Kennecott Utah Copper Corporation",213 "9. Milford Wind Corridor I LLC","Other Renewables","Milford Wind Corridor Phase I LLC",204

104

Newcastle, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Newcastle, Utah: Energy Resources Jump to: navigation, search Name Newcastle, Utah Equivalent URI...

105

Utah Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Utah Municipal Power Agency Jump to: navigation, search Name Utah Municipal Power Agency...

106

PARS II Phased Project Reporting Process, V-2013-03-14 Page 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phased Project Reporting Process, V-2013-03-14 Page 1 Phased Project Reporting Process, V-2013-03-14 Page 1 PARS II Process Document PROJECT PHASING (MULTIPLE CD-2 FROM SINGLE CD-1) PURPOSE The purpose of this document is to describe the process of entering, managing, and reporting projects in PARS II that adopted Phasing approach. SCOPE This process applies to projects that are managed as a larger program through CD1 but are executed in phases with parts of the projects reaching CD2 approvals earlier than the main project. PROCESS The main goal of the process is to ensure that as new projects are created for various phases of the original CD1 program, DOE portfolio is not overstated in portfolio reports and to ensure that linking is retained in PARS II between original CD1 program and resulting CD2 project phases.

107

PARS II Phased Project Reporting Process, V-2013-03-14 Page 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phased Project Reporting Process, V-2013-03-14 Page 1 PARS II Process Document PROJECT PHASING (MULTIPLE CD-2 FROM SINGLE CD-1) PURPOSE The purpose of this document is to describe...

108

Manhattan Project: The War Enters Its Final Phase, 1945  

Office of Scientific and Technical Information (OSTI)

American troops approaching the beach, D-Day, June 6, 1944. THE WAR ENTERS ITS FINAL PHASE American troops approaching the beach, D-Day, June 6, 1944. THE WAR ENTERS ITS FINAL PHASE (1945) Events > Dawn of the Atomic Era, 1945 The War Enters Its Final Phase, 1945 Debate Over How to Use the Bomb, Late Spring 1945 The Trinity Test, July 16, 1945 Safety and the Trinity Test, July 1945 Evaluations of Trinity, July 1945 Potsdam and the Final Decision to Bomb, July 1945 The Atomic Bombing of Hiroshima, August 6, 1945 The Atomic Bombing of Nagasaki, August 9, 1945 Japan Surrenders, August 10-15, 1945 The Manhattan Project and the Second World War, 1939-1945 Harry Truman being sworn in as president, April 12, 1945. On April 12, 1945, only weeks before Germany's unconditional surrender on May 7, President Franklin Roosevelt died suddenly in Warm Springs, Georgia. Vice President Harry S. Truman, a veteran of the United States Senate, was now president. Truman had not been privy to many of Roosevelt's internal policy deliberations and had to be briefed extensively in his first weeks in office. One of these briefings, provided by Secretary of War Henry Stimson on April 25, concerned S-1 (the Manhattan Project). Stimson, with Leslie Groves present during part of the meeting, traced the history of the Manhattan Project, summarized its status, and detailed the timetable for testing and combat delivery. Truman asked numerous questions during the forty-five minute meeting and made it clear that he understood the relevance of the atomic bomb to upcoming diplomatic and military initiatives.

109

Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project  

DOE Green Energy (OSTI)

The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

NONE

1996-05-01T23:59:59.000Z

110

Microsoft Word - DOE-ID-11-009 Utah EC.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 SECTION A. Project Title: Development of Nuclear Energy-Related Infrastructure and Capabilities at the Utah Nuclear Engineering Radiation Measurement Laboratory - University of Utah SECTION B. Project Description This project will upgrade the nuclear engineering measurement lab of the Nuclear Engineering Measurement Laboratory at the Utah Nuclear Engineering Program, University of Utah by purchasing two high energy resolution HPGe detector counting systems, a scintillation detector counting system, a gas detector counting systems, and a digital oscilloscope. This equipment will be used for teaching purposes and in performing research. SECTION C. Environmental Aspects / Potential Sources of Impact Radioactive Material Use - Utah does neutron activation analysis when a sample is irradiated in their reactor and when safe to be

111

Hawaii Geothermal Project summary report for Phase I  

DOE Green Energy (OSTI)

Results of Phase I of the Hawaii Geothermal Project (HGP) are reported. It was a multidisciplinary research effort in the following program areas: (1) geophysical--exploratory surveys to define the most favorable areas for geothermal investigations; (2) engineering-- analytical models to assist in interpretation of geophysical results, and studies on energy recovery from hot brine; and (3) socioeconomic--legal and regulatory aspects of ownership and administration of geothermal resources, and economic planning studies on the impact of geothermal resources, and economic planning studies on the impact of geothermal power. The major emphasis of Phase I was on the Geophysical Program, since the issue of if and where geothermal resources exist is crucial to the project. However, parallel studies were initiated in all supporting programs, so that progress was made in identifying and clarifying the technological, environmental, legal, regulatory, social and economic problems that could impede the development of geothermal power in Hawaii. Although the analysis and interpretation of field data are still incomplete, the consensus developed early--both on the basis of preliminary geophysical results and from complementary studies conducted on the Big Island over the past several decades--that an exploratory drilling program would be essential to check out the subsurface conditions predicted by the surveys.

Not Available

1975-05-01T23:59:59.000Z

112

Tucson aqueduct phase A, a feature of central Arizona project  

Science Conference Proceedings (OSTI)

Construction and operation of 40 miles of aqueduct from the terminus of the Salt-Gila Aqueduct in southcentral Pinal County to the vicinity of Rillito in northern Pima County, Arizona are proposed. The project, which would constitute Phase A of the Tuscon Aqueduct Project would involve three pumping plants; 40 miles of open, concrete-lined canal; two miles of discharge pipeline; and 29 miles of 115-kilovolt overhead transmission line. Approximately 185,000 acres of farmland in Pinal and Pima counties could receive water via Phase A of the Tuscon Aqueduct. As a result, the amount of water pumped from the groundwater aquifer in this area would decrease. Lowering of the aquifer level that results in increased pumping costs and damaging land subsidence would be mitigated by importation of water via the aqueduct.Rights-of-way requirements would displace pecan orchards, desert grazing land, and wildlife habitat, and the canal would obstruct wildlife movements and would constitute a drowning hazard for wildlife. Structures and rock cuts would mar visual aesthetics. Historic and prehistoric archaeological sites would be affected. The aqueduct would interfere with some small surfacewater drainages and water would be lost due to evaporation. Recreational access to the west side of the Picacho Mountains would be hampered somewhat.

Not Available

1982-09-01T23:59:59.000Z

113

Microsoft Word - utah.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Utah NERC Region(s) ....................................................................................................... WECC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 7,497 39 Electric Utilities ...................................................................................................... 6,648 32 Independent Power Producers & Combined Heat and Power ................................ 849 44 Net Generation (megawatthours) ........................................................................... 42,249,355 35 Electric Utilities ...................................................................................................... 39,522,124 29

114

Microsoft Word - utah.doc  

Gasoline and Diesel Fuel Update (EIA)

Utah Utah NERC Region(s) ....................................................................................................... WECC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 7,497 39 Electric Utilities ...................................................................................................... 6,648 32 Independent Power Producers & Combined Heat and Power ................................ 849 44 Net Generation (megawatthours) ........................................................................... 42,249,355 35 Electric Utilities ...................................................................................................... 39,522,124 29

115

MAJOR OIL PLAYS IN UTAH AND VICINITY  

Science Conference Proceedings (OSTI)

Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall production of the well, identify areas that may be by-passed by a waterflood, and prevent rapid water breakthrough. In the eastern Paradox Basin, Colorado, optimal drilling, development, and production practices consist of increasing the mud weight during drilling operations before penetrating the overpressured Desert Creek zone; centralizing treatment facilities; and mixing produced water from pumping oil wells with non-reservoir water and injecting the mixture into the reservoir downdip to reduce salt precipitation, dispose of produced water, and maintain reservoir pressure to create a low-cost waterflood. During this quarter, technology transfer activities consisted of technical presentations to members of the Technical Advisory Board in Colorado and the Colorado Geological Survey. The project home page was updated on the Utah Geological Survey Internet web site.

Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

2003-07-01T23:59:59.000Z

116

MAJOR OIL PLAYS IN UTAH AND VICINITY  

Science Conference Proceedings (OSTI)

Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

2003-09-01T23:59:59.000Z

117

Alternative Fuels Data Center: Utah Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utah Information to Utah Information to someone by E-mail Share Alternative Fuels Data Center: Utah Information on Facebook Tweet about Alternative Fuels Data Center: Utah Information on Twitter Bookmark Alternative Fuels Data Center: Utah Information on Google Bookmark Alternative Fuels Data Center: Utah Information on Delicious Rank Alternative Fuels Data Center: Utah Information on Digg Find More places to share Alternative Fuels Data Center: Utah Information on AddThis.com... Utah Information This state page compiles information related to alternative fuels and advanced vehicles in Utah and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

118

Direct utilization of geothermal resources field experiments at Monroe, Utah. Final report, July 14, 1978-July 13, 1981  

DOE Green Energy (OSTI)

The City of Monroe, Utah undertook a project to demonstrate the economic and technical viability of utilizing a low temperature geothermal resource to provide space and hot water heating to commercial, municipal, and domestic users within the community. During the course of the project, resource development and assessment, including drilling of a production well, was successfully completed. Upon completion of the field development and assessment phase of the program and of a preliminary design of the district heating system, it was determined that the project as proposed was not economically viable. This was due to: (1) a significant increase in estimated capital equipment costs resulting from the general inflation in construction costs, the large area/low population density in Monroe, and a more remote fluid disposal well site than planned, could not balance increased construction costs, (2) a lower temperature resource than predicted, and (3) due to predicted higher pumping and operating costs. After a thorough investigation of alternatives for utilizing the resource, further project activities were cancelled because the project was no longer economical and an alternative application for the resource could not be found within the constraints of the project. The City of Monroe, Utah is still seeking a beneficial use for the 600 gpm, 164/sup 0/F geothermal well. A summary of project activities included.

Blair, C.K.; Owen, L.B. (eds.)

1982-12-01T23:59:59.000Z

119

Changes in Vegetation at the Monticello, Utah, Disposal Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changes in Vegetation at the Monticello, Utah, Disposal Site Changes in Vegetation at the Monticello, Utah, Disposal Site Changes in Vegetation at the Monticello, Utah, Disposal...

120

State Energy Program Assurances - Utah Governor Huntsman | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utah Governor Huntsman State Energy Program Assurances - Utah Governor Huntsman Letter from Utah Governor Huntsman providing Secretary Chu with the assurances needed so that...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

City of Logan, Utah (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Logan, Utah (Utility Company) Logan, Utah (Utility Company) Jump to: navigation, search Name City of Logan Place Utah Utility Id 11135 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Alternate energy net metering-Energy Rate for Excess Energy Sold to the Utility Commercial General Service-Distribution Voltage-single phase-Demand greater than 30 KW Industrial General Service-Distribution Voltage-single phase-Demand less than or equal

122

Recovery Efficiency Test Project Phase 2 activity report, Volume 1  

Science Conference Proceedings (OSTI)

The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

1989-02-01T23:59:59.000Z

123

Major Oil Plays in Utah and Vicinity  

Science Conference Proceedings (OSTI)

Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Assoc

Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

2003-12-31T23:59:59.000Z

124

Energy Efficient Buildings, Salt Lake County, Utah  

SciTech Connect

Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

125

Project W-519 TWRS privatization phase 1 infrastructure year 2000 compliance assessment project plan  

Science Conference Proceedings (OSTI)

This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-519, Tank Waste Remediation System Privatization Phase I Infrastructure Support. The purpose of this assessment is to give an overview of the project. This assessment will describe the methods, protocols, and practices to assure that equipment and systems do not have Y2K problems. This document will not be updated and any dates contained in this document are estimates and may change. The scope of project W-519 is to provide utilities and infrastructure to support construction and operation of the private contractor's facility to treat, immobilize, and dispose of tank waste. The private contractor's facility will be located on east side of 200E-area and north of Route 4s (near the defunct grout vaults). The utilities include potable and process water, construction and operational electrical power systems, and liquid effluent disposal transfer lines to the existing effluent treatment facility (ETF) and the liquid effluent retention facility (LERF).

BUSSELL, J.H.

1999-08-25T23:59:59.000Z

126

Annotated geothermal bibliography of Utah  

DOE Green Energy (OSTI)

The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

Budding, K.E.; Bugden, M.H. (comps.)

1986-01-01T23:59:59.000Z

127

Hawaii Geothermal Project: initial Phase II progress report  

DOE Green Energy (OSTI)

Results of Phase I of the Hawaii Geothermal Project (HGP), which consisted of a two-year study on the potential of geothermal energy for the Big Island of Hawaii, are reviewed. One conclusion from Phase I was that preliminary results looked sufficiently encouraging to warrant the drilling of the first experimental geothermal well in the Puna area of the Big Island. During the first two months of drilling, parallel activity has continued in all research and support areas. Additional gravity, seismic, and electrical surveys were conducted; water and rock samples were collected; and analysis and interpretation of data has proceeded. Earlier work on mathematical and physical modeling of geothermal reservoirs was expanded; analysis of liquid-dominated geothermal systems continued; and studies on testing of geothermal wells were initiated. An environmental assessment statement of HGP No. 1 was prepared and baselines established for crucial environmental parameters. Economic, legal, and regulatory studies were completed and alternatives identified for the development of geothermal power in Hawaii. Early stages of the drilling program proceeded slowly. The initial 9 7/8-inch drill hole to 400 feet, as well as each of the three passes required to open the hole to 26 inches, were quite time consuming. Cementing of the 20-inch surface casing to a depth of 400 feet was successfully accomplished, and drilling beyond that depth has proceeded at a reasonable rate. Penetration below the surface casing to a depth of 1050 feet was accomplished at a drilling rate in excess of 150 feet per day, with partial circulation over the entire range.

Not Available

1976-02-01T23:59:59.000Z

128

Energy Efficient Buildings, Salt Lake County, Utah  

DOE Green Energy (OSTI)

Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

129

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

Science Conference Proceedings (OSTI)

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

130

Test Plan for Hydrogen Getters Project - Phase II  

DOE Green Energy (OSTI)

Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (''poison'') the effectiveness of the hydrogen getter. The result of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP. Phase II for the Hydrogen Getters Project will focus on four primary objectives: Conduct measurements of the relative permeability of hydrogen and chlorinated VOCs through Tedlar (and possibly other candidate packaging materials) Test alternative getter systems as alternatives to semi-permeable packaging materials. Candidates include DEB/Pd/Al2O3 and DEB/Cu-Pd/C. Develop, test, and deploy kinetic optimization model Perform drum-scale test experiments to demonstrate getter effectiveness

Mroz, G.

1999-02-05T23:59:59.000Z

131

Recovery Efficiency Test Project: Phase 1, Activity report  

SciTech Connect

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

132

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

NONE

1995-09-01T23:59:59.000Z

133

Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004  

DOE Green Energy (OSTI)

The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

Not Available

2004-07-01T23:59:59.000Z

134

WEB RESOURCE: High Temperature Materials 21 Project (Phase 2)  

Science Conference Proceedings (OSTI)

Feb 10, 2007... thermal efficiency of power generation systems and advanced aeroengines. ... SOURCE: Harada, H. "High Temperature Materials 21 Project...

135

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents DE-FC26-03NT15424 Project Goal The overall goals of this study are to 1) develop and demonstrate techniques and exploration methods never tried on the Leadville Limestone; 2) target areas for exploration; 3) increase deliverability from new and old Leadville fields through detailed reservoir characterization; 4) reduce exploration costs and risk, especially in environmentally sensitive areas; and 5) add new oil discoveries and reserves. The project is being conducted in two phases, each with specific objectives. The objective of Phase 1 (Budget Period I) is to conduct a case study of the Leadville reservoir at Lisbon field (the largest Leadville producer) in San Juan County, UT, in order understand the reservoir characteristics and facies that can be applied regionally.

136

Utah Department of Commerce | Open Energy Information  

Open Energy Info (EERE)

Commerce Commerce Jump to: navigation, search Name Utah Department of Commerce Address 160 East 300 South Place Salt Lake City, Utah Zip 84111 References Utah Commerce Website[1] This article is a stub. You can help OpenEI by expanding it. Utah Department of Commerce is an organization based in Salt Lake City, Utah. The Utah Department of Commerce was established in its current form in 1983 out of the previous Department of Business Regulation, which replaced the Utah Trade Commission in 1941. The Legislative Findings creating the Department recognize that businesses and professions are beneficial to Utah and notes that the primary purpose of the Department's regulation is the general public interest. MAILING ADDRESS: SM Box 146701 Salt Lake City, UT 84114-6701

137

Results for the LISA Phase Measurement System Project  

E-Print Network (OSTI)

This article presents some of the more topical results of a study into the LISA phase measurement system. This system is responsible for measuring the phase of the heterodyne signal caused by the interference of the laser beams between the local and far spacecraft. Interactions with the LISA systems that surround the phase measurement system imply additional non-trivial requirements on the phase measurement system.

David Summers; David Hoyland

2004-11-01T23:59:59.000Z

138

PARS II Process Document - Project Phasing (Multiple CD-2 from...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARS II Process Document - On Hold Projects.pdf More Documents & Publications ESAAB SOP Requirements to coordinate agreements, milestones and decision documents (AMDD) PARS II...

139

Bio-Based Phase Change Materials Research Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Based Phase Change Materials Research Based Phase Change Materials Research Project Bio-Based Phase Change Materials Research Project The Department of Energy is currently conducting research into the development of low cost, bio-based phase change materials for building envelopes. Because insulation keeps hot air out inside buildings during the summer and outside during the winter, developing low cost materials can both drive down the cost of insulation and reduce energy costs. Project Description This project seeks to develop a low cost manufacturing process for the production of phase change materials (PCMs), and to subsequently evaluate the PCM pellets produced to provide improved insulation in buildings. Project Partners Research is being undertaken between the Department of Energy, Oak Ridge

140

Helical Screw Expander Evaluation Project. Final report  

DOE Green Energy (OSTI)

A functional 1-MW geothermal electric power plant that featured a helical screw expander was produced and then tested in Utah in 1978 to 1979 with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing operation on two-phase geothermal fluids. The Project also produced a computer-equipped data system, an instrumentation and control van, and a 1000-kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Additional testing was performed in Mexico in 1980 under a cooperative test program using the same test array, and machine efficiency was measured at 62% maximum with the rotors partially coated with scale, compared with approximately 54% maximum in Utah with uncoated rotors, confirming the importance of scale deposits within the machine on performance. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

McKay, R.

1982-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Continuous contour phase plate design. Final report, Project 2.  

SciTech Connect

We describe an iterative optimization algorithm developed for continuous contour phase plate design. With the help of this algorithm, a kinoform plate was designed to transform the square supergaussian beam into round supergaussian one. The phase function derived by the proposed method is smooth, has analytical representation, and has no singularities. Drawback is that this function does not provide smoothing of the incoming intensity distribution like random phase plates do and output intensity should be sensitive to variations of the illuminating light amplitude.

Shmalhausen, V.I.

1996-05-01T23:59:59.000Z

142

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

NONE

1995-09-01T23:59:59.000Z

143

Hawaii Geothermal Project summary report for Phase I  

DOE Green Energy (OSTI)

The phase I activities are summarized as follows: management, the geophysical program, the engineering program, the environmental--socioeconomic program, and the drilling program. (MHR)

Not Available

1975-05-01T23:59:59.000Z

144

Results for the LISA Phase Measurement System Project  

E-Print Network (OSTI)

This article is the write up of a presentation made at the 5th International LISA Symposium. It reviews some of the more topical results of an ESA funded study into the LISA phase measurement system. This system is responsible for measuring the phase of the heterodyne signal caused by the interference of the laser beams between the local and far spacecraft.

Summers, D; Summers, David; Hoyland, David

2004-01-01T23:59:59.000Z

145

Energy Incentive Programs, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utah Utah Energy Incentive Programs, Utah October 29, 2013 - 1:19pm Addthis Updated December 2012 What public-purpose-funded energy efficiency programs are available in my state? Utah has no public-purpose-funded energy efficiency programs. However, in March of 2011 the Governor's Office released a new 10-year strategic energy plan that identifies a number of potential future energy efficiency improvement strategies. What utility energy efficiency programs are available to me? Utah utilities budgeted nearly $85 million in 2011 to promote energy efficiency and load management in the state. In 2009 the Utah legislature adopted a resolution that directs the Utah Public Service Commission (PSC) to approve energy efficiency programs that will save at least 1% of electric utilities' annual retail sales, and 0.5% per year for gas

146

Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dispersivity Testing of Zero-Valent Iron Treatment Cells: Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 More Documents & Publications Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable

147

Mitigation Action Plan Phase I Lovell Yellowtail and Basin-Lovell Transmission Line Rebuild Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigation Action Plan Phase I Lovell Yellowtail and Basin-Lovell Transmission Line Rebuild Project Big Horn and Carbon Counties, Montana and Big Horn County, Wyoming MITIGATION ACTION IDENTIFIER RESPONSIBLE PARTY FOR IMPLEMENTING MITIGATION ACTION LOCATION IF AVAILABLE/ STRUCTURE NUMBERS PARTY RESPONSIBLE FOR MONITORING AND ENSURING COMPLIANCE 1 Construction Contractor Western Maintenance Standard Construction Project Practices will be implemented through Phases I of Project construction and operation (Table 2.1-3 in the Final EA.) Western Construction (during Construction Phase) Western Maintenance (During maintenance of facility) NPS - WESTERN INTERAGENCY AGREEMENT FOR BIGHORN CANYON NRA 2 NPS, Western The Interagency Agreement between United

148

Geothermal studies at the University of Utah Research Institute  

SciTech Connect

The University of Utah Research Institute (WRI) is a self-supporting corporation organized in December 1972 under the Utah Non-Profit Corporation Association Act. Under its charter, the Institute is separate in its operations and receives no direct financial support from either the University of Utah or the State of Utah. The charter includes provisions for WRI to conduct both public and proprietary scientific work for governmental agencies, academic institutions, private industry, and individuals. WRI is composed of five divisions, shown in Figure 1: the Earth Science Laboratory (ESL), the Environmental Studies Laboratory (EVSL), the Center for Remote Sensing and Cartography (CRSC), the Engineering Technology Laboratory (ETL) and the Atmospheric Physics Laboratory (APL). The Earth Science Laboratory has a staff of geologists, geochemists and geophysicists who have a broad range of experience in geothermal research and field projects as well as in mineral and petroleum exploration. The Environmental Studies Laboratory offers a variety of technical services and research capabilities in the areas of air quality and visibility, acid precipitation, surface and groundwater contamination, and environmentally caused stress in vegetation. The Center for Remote Sensing and Cartography offers applied research and services with a full range of remote sensing and mapping capability, including satellite and airborne imagery processing and interpretation. The Engineering Technology Laboratory is currently studying the interaction of the human body with electromagnetic radiation. The Atmospheric Physics Laboratory is developing hygroscopic droplet growth theory and orographic seeding models for dispersal of fog.

None

1988-07-01T23:59:59.000Z

149

Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"  

Science Conference Proceedings (OSTI)

The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The projects research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The projects literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a heat mirror that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nations future electricity and transportation needs that is entirely home grown and carbon free. As CPV enter the nations utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this projects findings.

Slade, A; Turner, J; Stone, K; McConnell, R

2008-09-02T23:59:59.000Z

150

Geology of Roosevelt Hot Springs KGRA, Beaver County, Utah  

DOE Green Energy (OSTI)

The Roosevelt Hot Springs KGRA is located on the western margin on the Mineral Mountains in Beaver County, Utah. The bedrock geology of the area is presented. It is dominated by metamorphic and plutonic rocks of Precambrian age as well as felsic plutonic phases of the Tertiary Mineral Mountains Pluton. Rhyolite flows, domes, and pyroclastics reflect igneous activity between 0.8 and 0.5 million years ago. All lithologies present in the map area are described in detail with an emphasis on characteristics which will allow them to be distinguished in drill cuttings. The geothermal system at Roosevelt Hot Springs KGRA is structurally controlled with reservoir rocks demonstrating little primary permeability. North to north-northeast trending faults are the youngest structures in the area, and they control present fumarolic activity and recent hot spring activity which has deposited opaline and chalcedonic sinters. It is proposed here that the geothermal reservoirs are controlled primarily by intersections of the principal zones of faulting. Logs from Thermal Power Utah State 72-16, Getty Oil Utah State 52-21, and six shallow thermal gradient holes drilled by the University of Utah are presented in this report and have been utilized in the construction of geologic cross sections of the geothermal field.

Nielson, D.L.; Sibbett, B.S.; McKinney, D.B.; Hulen, J.B.; Moore, J.N.; Samberg, S.M.

1978-12-01T23:59:59.000Z

151

MAJOR PLAYS IN UTAH AND VICINITY  

SciTech Connect

Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land-use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the second project year (July 1 through September 30, 2003). This work included (1) describing the Conventional Southern Uinta Basin Play, subplays, and outcrop reservoir analogs of the Uinta Green River Conventional Oil and Gas Assessment Unit (Eocene Green River Formation), and (2) technology transfer activities. The Conventional Oil and Gas Assessment Unit can be divided into plays having a dominantly southern sediment source (Conventional Southern Uinta Basin Play) and plays having a dominantly northern sediment source (Conventional Northern Uinta Basin Play). The Conventional Southern Uinta Basin Play is divided into six subplays: (1) conventional Uteland Butte interval, (2) conventional Castle Peak interval, (3) conventional Travis interval, (4) conventional Monument Butte interval, (5) conventional Beluga interval, and (6) conventional Duchesne interval fractured shale/marlstone. We are currently conducting basin-wide correlations to define the limits of the six subplays. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. Outcrop analogs for each subplay except the Travis interval are found in Indian and Nine Mile Canyons. During this quarter, the project team members submitted an abstract to the American Association of Petroleum Geologists for presentation at the 2004 annual national convention in Dallas, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

Craig D. Morgan; Thomas C. Chidsey

2003-11-01T23:59:59.000Z

152

Second Phase of Innovative Technology Project to Capture CO2, Produce  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Phase of Innovative Technology Project to Capture CO2, Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio August 9, 2012 - 1:00pm Addthis Washington, DC - A novel method to capture carbon dioxide (CO2) from flue gas and produce biofuels has been formally launched in the second phase of a Department of Energy (DOE) project at a nursery in Ohio. Successful application of the process could eventually help reduce greenhouse gas emissions and provide a source of liquid biofuels and biogas, reducing U.S. dependence on foreign energy sources. Touchstone Research Laboratory in Triadelphia, W.Va., successfully inoculated four biomass production ponds with algae at Cedar Lane Farms in

153

Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program:  

Open Energy Info (EERE)

Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Focus Area: Clean Fossil Energy Topics: System & Application Design Website: www.sciencedirect.com/science?_ob=MiamiImageURL&_cid=277910&_user=10&_ Equivalent URI: cleanenergysolutions.org/content/carbon-dioxide-co2-capture-project-ph Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This paper describes results of Phase 2 of the Storage Program of the

154

Second Phase of Innovative Technology Project to Capture CO2, Produce  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Phase of Innovative Technology Project to Capture CO2, Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio August 9, 2012 - 1:00pm Addthis Washington, DC - A novel method to capture carbon dioxide (CO2) from flue gas and produce biofuels has been formally launched in the second phase of a Department of Energy (DOE) project at a nursery in Ohio. Successful application of the process could eventually help reduce greenhouse gas emissions and provide a source of liquid biofuels and biogas, reducing U.S. dependence on foreign energy sources. Touchstone Research Laboratory in Triadelphia, W.Va., successfully inoculated four biomass production ponds with algae at Cedar Lane Farms in

155

The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3  

Science Conference Proceedings (OSTI)

The World Climate Research Programme Project for Intercomparison of Land Surface Parameterization Schemes (PILPS) is moving into its second and third phases that will exploit observational data and consider the performance of land surface schemes ...

A. Henderson-Sellers; A. J. Pitman; P. K. Love; P. Irannejad; T. H. Chen

1995-04-01T23:59:59.000Z

156

SECA Fuel Cell Program Moves Two Key Projects Into Next Phase | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SECA Fuel Cell Program Moves Two Key Projects Into Next Phase SECA Fuel Cell Program Moves Two Key Projects Into Next Phase SECA Fuel Cell Program Moves Two Key Projects Into Next Phase February 5, 2009 - 12:00pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) has selected two projects for continuation within the Department's Solid State Energy Conversion Alliance (SECA) Program research portfolio. The projects--led by FuelCell Energy, in partnership with VersaPower Systems, and Siemens Energy--have successfully demonstrated solid oxide fuel cells (SOFCs) designed for aggregation and use in coal-fueled central power generation. Further development of these low-cost, near-zero emission fuel cell systems will substantially contribute to solving the Nation's energy security, climate, and water challenges.

157

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project |  

Open Energy Info (EERE)

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title BSU GHP District Heating and Cooling System (PHASE I) Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description The Project will result in the construction of the largest ground source geothermal-based closed loop GHP heating and cooling system in America. Phase I of the Project began with the design, competitive bidding, and contract award for the drilling and "looping" of 1,800 boreholes in sports fields and parking lots on the north side of campus. The components of the entire Project include: (1) 4,100 four hundred feet deep boreholes spread over about 25 acres of sport fields and parking lots (Phase I will involve 1,800 boreholes spread over about 8 acres); (2) Each Phase will require a district energy station (about 9,000 sq. feet) that will each contain (A) two 2,500 ton heat pump chillers (which can produce 150 degree (F) water for heating purposes and 42 degree (F) water for cooling purposes); and (B) a variety of water pumps, electrical and other control systems; (3) a closed loop piping system that continuously circulates about 20,000 gallons of water (no anti-freeze) per minute through the boreholes, energy stations, a (two pipe) hot water loop and a (two pipe) chilled water loop (no water is drawn from the aquifer at any point in the operation); and (4) hot/chilled water-to-air heat exchangers in each of the buildings.

158

Episodic Dust Events of Utahs Wasatch Front and Adjoining Region  

Science Conference Proceedings (OSTI)

Episodic dust events cause hazardous air quality along Utahs Wasatch Front and dust loading of the snowpack in the adjacent Wasatch Mountains. This paper presents a climatology of episodic dust events of the Wasatch Front and adjoining region ...

W. James Steenburgh; Jeffrey D. Massey; Thomas H. Painter

2012-09-01T23:59:59.000Z

159

Recovery Efficiency Test Project: Phase 1, Activity report  

SciTech Connect

This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.

Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.; Saradji, B.; Salamy, S.P.

1988-04-01T23:59:59.000Z

160

Categorical Exclusion Determinations: Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utah Utah Categorical Exclusion Determinations: Utah Location Categorical Exclusion Determinations issued for actions in Utah. DOCUMENTS AVAILABLE FOR DOWNLOAD July 22, 2013 CX-010613: Categorical Exclusion Determination Hyper Scratcher Tool: A Patented Oil, Gas, Disposal, & Injection Well Tool for Enhancing Production CX(s) Applied: B5.12 Date: 07/22/2013 Location(s): Utah Offices(s): National Energy Technology Laboratory May 20, 2013 CX-010523: Categorical Exclusion Determination Fracture Evolution Following Hydraulic Stimulations within EGS Reservoirs CX(s) Applied: A9, B3.1, B3.6 Date: 05/20/2013 Location(s): Utah Offices(s): Golden Field Office May 17, 2013 CX-010417: Categorical Exclusion Determination Above-Ground Routine Transmission Line Maintenance CX(s) Applied: B1.3

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Utah Labor Commission | Open Energy Information  

Open Energy Info (EERE)

Labor Commission Labor Commission Jump to: navigation, search Name Utah Labor Commission Address 160 East 300 South, 3rd Floor Place Salt Lake City, Utah Zip 84114-6600 Phone number (801) 530-6800 Website http://laborcommission.utah.go References Website[1] This article is a stub. You can help OpenEI by expanding it. Utah Labor Commission is an organization based in Salt Lake City, Utah. The Utah Labor Commission is the regulatory agency responsible for preserving the balance established by the legislature for protecting the health, safety, and economic well-being of employees and employers. It is a multi-division state agency directed by a Commissioner who is appointed by the Governor. The Commissioner oversees the various functions of the divisions within the Commission.

162

New bern biomass to energy project Phase I: Feasibility study  

DOE Green Energy (OSTI)

Weyerhaeuser, together with Amoco and Carolina Power & Light, performed a detailed evaluation of biomass gasification and enzymatic processing of biomass to ethanol. This evaluation assesses the potential of these technologies for commercial application to determine which technology offers the best opportunity at this time to increase economic productivity of forest resources in an environmentally sustainable manner. The work performed included preparation of site-specific plant designs that integrate with the Weyerhaeuser New Bern, North Carolina pulp mill to meet overall plant energy requirements, cost estimates, resource and product market assessments, and technology evaluations. The Weyerhaeuser team was assisted by Stone & Webster Engineering Corporation and technology vendors in developing the necessary data, designs, and cost information used in this comparative study. Based on the information developed in this study and parallel evaluations performed by Weyerhaeuser and others, biomass gasification for use in power production appears to be technically and economically viable. Options exist at the New Bern mill which would allow commercial scale demonstration of the technology in a manner that would serve the practical energy requirements of the mill. A staged project development plan has been prepared for review. The plan would provide for a low-risk and cost demonstration of a biomass gasifier as an element of a boiler modification program and then allow for timely expansion of power production by the addition of a combined cycle cogeneration plant. Although ethanol technology is at an earlier stage of development, there appears to be a set of realizable site and market conditions which could provide for an economically attractive woody-biomass-based ethanol facility. The market price of ethanol and the cost of both feedstock and enzyme have a dramatic impact on the projected profitability of such a plant.

Parson, F.; Bain, R.

1995-10-01T23:59:59.000Z

163

Sunnyside, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Sunnyside, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

164

Mantua, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Mantua, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

165

Huntington, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Huntington, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

166

Grantsville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Grantsville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

167

Fairview, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fairview, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

168

Kaysville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Kaysville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

169

Harrisville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Harrisville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

170

Clinton, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Clinton, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

171

Sterling, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Sterling, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

172

Hatch, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Hatch, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

173

Riverdale, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Riverdale, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

174

Willard, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Willard, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

175

Trenton, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Trenton, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

176

Orderville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Orderville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

177

Monticello, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Monticello, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

178

Nibley, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Nibley, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

179

Ballard, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Ballard, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

180

Eureka, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Eureka, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Orangeville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Orangeville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

182

Morgan, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Morgan, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

183

Howell, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Howell, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

184

Ephraim, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Ephraim, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

185

Hurricane, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Hurricane, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

186

Monroe, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Monroe, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

187

Paradise, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Paradise, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

188

Farmington, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Farmington, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

189

Lewiston, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Lewiston, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

190

Woodruff, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Woodruff, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

191

Glendale, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Glendale, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

192

Providence, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Providence, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

193

,"Utah Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","52013" ,"Release Date:","7...

194

Centerville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Centerville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

195

Marysvale, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Marysvale, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

196

Smithfield, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Smithfield, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

197

Paragonah, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Paragonah, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

198

Amalga, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Amalga, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

199

Cannonville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Cannonville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

200

Moroni, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Moroni, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gunnison, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Gunnison, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

202

Hyrum, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Hyrum, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

203

Clearfield, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Clearfield, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

204

Centerfield, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Centerfield, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

205

Ogden, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Ogden, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

206

Tropic, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Tropic, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

207

Manti, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Manti, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

208

Lyman, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Lyman, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

209

,"Utah Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Proved Reserves",10,"Annual",2011,"6301977" ,"Release Date:","81...

210

Escalante, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Escalante, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

211

Plymouth, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Plymouth, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

212

Perry, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Perry, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

213

Kingston, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Kingston, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

214

Corinne, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Corinne, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

215

Bicknell, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Bicknell, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

216

Syracuse, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Syracuse, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

217

Duchesne, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Duchesne, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

218

Price, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Price, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

219

Moab, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Moab, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

220

Ferron, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Ferron, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Beaver, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Beaver, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

222

Levan, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Levan, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

223

Energy Crossroads: Utility Energy Efficiency Programs Utah |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utah Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Bonneville Power Administration Information for Businesses Rocky Mountain Power (formerly...

224

Altamont, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Altamont, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

225

Layton, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Layton, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

226

Cornish, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Cornish, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

227

,"Utah Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

228

Torrey, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Torrey, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

229

Antimony, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Antimony, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

230

Bountiful, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Bountiful, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

231

Panguitch, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Panguitch, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

232

Elwood, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Elwood, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

233

Richmond, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Richmond, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

234

Scofield, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Scofield, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

235

Newton, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Newton, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

236

Huntsville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Huntsville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

237

Kanab, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Kanab, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

238

Sunset, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Sunset, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

239

Myton, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Myton, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

240

Emery, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Emery, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wellsville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Wellsville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

242

Hooper, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Hooper, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

243

Mayfield, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Mayfield, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

244

Parowan, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Parowan, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

245

Alton, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Alton, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

246

Millville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Millville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

247

Honeyville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Honeyville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

248

Nephi, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Nephi, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

249

Tremonton, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Tremonton, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

250

Henrieville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Henrieville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

251

Loa, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Loa, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

252

Roosevelt, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Roosevelt, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

253

Elmo, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Elmo, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

254

Mendon, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Mendon, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

255

Bluffdale, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Bluffdale, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

256

Cleveland, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Cleveland, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

257

Portage, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Portage, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

258

Helper, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Helper, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

259

Wellington, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Wellington, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

260

Clarkston, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Clarkston, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Uintah, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Uintah, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

262

Blanding, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Blanding, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

263

Naples, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Naples, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

264

Circleville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Circleville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

265

Clawson, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Clawson, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

266

Tabiona, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Tabiona, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

267

Logan, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Logan, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

268

Mona, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Mona, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

269

Wales, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Wales, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

270

Minersville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Minersville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

271

Fielding, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fielding, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

272

Kanarraville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Kanarraville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

273

Enoch, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Enoch, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

274

Junction, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Junction, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

275

Snowville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Snowville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

276

Deweyville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Deweyville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

277

Roy, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Roy, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

278

Randolph, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Randolph, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

279

Garland, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Garland, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

280

Vernal, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Vernal, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fayette, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fayette, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

282

Laketown, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Laketown, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

283

Boulder, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Boulder, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

284

,"Utah Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

285

,"Utah Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

286

Categorical Exclusion Determinations: Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 27, 2010 CX-004194: Categorical Exclusion Determination Cretaceous Mancos Shale Uinta Basin, Utah: Resource Potential and Best Practices For an Emerging Shale CX(s)...

287

An Examination of Avoided Costs in Utah  

E-Print Network (OSTI)

cost inpu t assumptions, the Utah Wind Working Group may wish to consider pursuing two other poss ible sources of revenue: renewable energy

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

288

,"Utah Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Underground Natural Gas...

289

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing  

Open Energy Info (EERE)

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Details Activities (6) Areas (1) Regions (0) Abstract: This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE. Author(s): William R. Henkle, Joel Ronne Published: Geothermal Technologies Legacy Collection, 2008 Document Number: Unavailable DOI: Unavailable Source: View Original Report Compound and Elemental Analysis At Reese River Area (Henkle & Ronne, 2008)

290

Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at...

291

Utah Kerosene Wholesale/Resale Volume by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene Sales for Resale Refiner Sales Volumes; Utah Kerosene Refiner Sales Volumes; Utah Sales for Resale Refiner Sales Volumes of Aviation Fuels ...

292

Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona...

293

Utah State Parks and Recreation | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Utah State Parks and Recreation Jump to: navigation, search Name Utah State Parks and...

294

Utah Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic...

295

Local Option- Industrial Facilities and Development Bonds (Utah)  

Energy.gov (U.S. Department of Energy (DOE))

Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

296

Uranium Mill Tailings Remedial Action Project 1994 environmental report  

Science Conference Proceedings (OSTI)

This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

NONE

1995-08-01T23:59:59.000Z

297

Developing Secure Power Systems Professional Competence: Alignment and Gaps in Workforce Development Programs for Phase 2 of the Secure Power Systems Professional project  

SciTech Connect

This is the final report of Phase 2 of the Secure Power Systems Professional project, a 3 phase project. DOE will post to their website upon release.

O'Neil, Lori Ross; Assante, Michael; Tobey, D. H.; Conway, T. J.; Vanderhorst, Jr, T. J.; Januszewski, III, J.; leo, R.; Perman, K.

2013-08-26T23:59:59.000Z

298

Alternative Fuels Data Center: Utah Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utah Laws and Utah Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Utah. Your Clean Cities coordinator at Utah

299

Uranium Exploration Report 2007 Cottonwood District, Utah  

E-Print Network (OSTI)

, undertook several field trips to determine the state of the uranium mining industry in Colorado and Utah. These field trips included active mines, abandoned mines, and active mills. Samples from some of the minesMNGN 599 Uranium Exploration Report 2007 Cottonwood District, Utah Erik Hunter Colorado School

300

City of Morgan City, Utah (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Morgan City Morgan City Place Utah Utility Id 12928 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial- City Demand Single Phase Commercial Large Commercial- City Demand Three Phase Large Commercial- City Demand Three Phase Commercial Large Commercial- City Demand Three Phase Commercial Large Commercial- City Demand Three Phase Commercial Large Commercial- City Demand Three Phase Commercial Large Commercial- Country Demand Single Phase Commercial

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Utah Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Utah Geological Survey Utah Geological Survey Name Utah Geological Survey Address 1594 W. North Temple Place Salt Lake City, Utah Zip 84114-6100 Phone number 801.537.3300 Website http://geology.utah.gov/ Coordinates 40.7713859°, -111.9367973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7713859,"lon":-111.9367973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Utah Public Service Commission | Open Energy Information  

Open Energy Info (EERE)

Utah Public Service Commission Utah Public Service Commission Name Utah Public Service Commission Address 160 East 300 South Place Salt Lake City, Utah Zip 84114 Phone number 801.530.6716 Website http://www.psc.utah.gov/index. Coordinates 40.7627771°, -111.8866213° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7627771,"lon":-111.8866213,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Utah + workshop + GRR | OpenEI Community  

Open Energy Info (EERE)

9 9 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142234889 Varnish cache server Utah + workshop + GRR Home Kyoung's picture Submitted by Kyoung(155) Contributor 10 September, 2012 - 13:45 Utah Meeting #1 Utah + workshop + GRR On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting flowcharts developed byt the GRR Team. Many of the flowcharts had been reviewed and vetted by agency officials prior to the meeting. In addition to workshoping Utah flowcharts, the

304

Utah Meeting #1 | OpenEI Community  

Open Energy Info (EERE)

Utah Meeting #1 Utah Meeting #1 Home > Groups > Geothermal Regulatory Roadmap Kyoung's picture Submitted by Kyoung(155) Contributor 10 September, 2012 - 13:45 Utah + workshop + GRR On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting flowcharts developed byt the GRR Team. Many of the flowcharts had been reviewed and vetted by agency officials prior to the meeting. In addition to workshoping Utah flowcharts, the agencies identified federal permits required that had previously been missing from the roadmap, including Above-Ground Storage Tank permit, the Local Source Water Protection Plan Evaluation Process, and a State Groundwater Discharge Permit. The roadmap has been adjusted to incorporate these three flowcharts into Section 14. The GRR Team will

305

Utah/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Transmission < Utah Jump to: navigation, search UtahTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Utah is part of the Western Interconnection power grid and the Western Electricity Coordinating Council (WECC). WECC includes the provinces of Alberta and British Columbia, the northern portion of Baja California, Mexico, and all or portions of the 14 Western states between.

306

Clean Cities: Utah Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utah Clean Cities Coalition Utah Clean Cities Coalition The Utah Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Utah Clean Cities coalition Contact Information Robin Erickson 435-634-4361 robin.erickson@utahcleancities.org Sophia Jackson 801-535-7736 sophia.jackson@utahcleancities.org Coalition Website Clean Cities Coordinators Coord Robin Erickson Coord Coord Sophia Jackson Coord Photo of Robin Erickson Robin Erickson has been the director of the Utah Clean Cities coalition since 2007. Serving as a staff of one and raising funds for a part-time college intern, she has been the primary rallying point for the organization: staffing committees, organizing events and training workshops, and preparing grants in partnership with stakeholders. Erickson

307

Phase II Final Project Report Paso del Norte Watershed Council Coordinated Water Resources Database and GIS Project  

E-Print Network (OSTI)

The Coordinated Water Resources Database and GIS Project (Project) was developed to provide improved access to regional water resources data in the Paso del Norte region for regional water stakeholders to make timely decisions in water operations and flood control. Tasks accomplished in Phase II include the complete migration of the Project Website and related databases to the ArcIMS software, which provides a better spatial query capacity. The database was enhanced by incorporating more gauge stations, limited groundwater data (well information, water levels, water quality, and pumpage) and other new data, and strengthened data sharing by implementing FGDC classic metadata. Protocols were explored for data sharing and spatial queries and opportunities for more active participation of volunteer regional data providers in the Project. The linkage of the PdNWC database with future groundwater and surface water model development was also assessed. Based on the experiences gained in the Project, the following recommendations for future Project work include: * Continued compilation of new data sources not yet included in the Project to enhance data sharing, * Installation of additional new monitoring stations and equipment and inclusion of these monitoring sites in future ArcIMS map products to fill data gaps and provide additional real-time data, * Strengthening the links with the Upper Rio Grande Water Operations Model (URGWOM) being advanced by the USACE. Special focus will be given to serving DEM and orthophoto data recently transferred from the USACE to NMWRRI and enhancing direct Web linkages with USACE and URGWOM project activities to improve model development capacity and enhance sharing of modeling results, * Development and implementation of a user needs survey focusing on new data sets of interest, enhanced access mechanisms, and other suggestions to improve the Project Website, * Development and making available online for download a Microsoft Access database of Project water resource data to provide search and query functions, * Development of an online help tutorial that would support online searches of the database, making the site easier for end users to navigate and utilize, and * Continuity in the exploration of future funding opportunities for Project activities, especially through linkages with other regional data compilation and modeling projects. Part I of this report presents major historical and technical components of the Phase II development of the Database and GIS prepared by C. Brown, Z. Sheng, and M. Bourdon. Groundwater elements of interest, relevant to the development of the coordinated database and to the integral comprehension of the watersheds mission and planning are also included as Part II of this report. This part, prepared by Z. Sheng and others, presents the sources of regional groundwater resources data compiled by different federal and state entities and outlines suggestions for regional groundwater data to be implemented with an ArcIMS interface so that this data can be shared and accessed by all Paso del Norte Watershed Council stakeholders. Part III, prepared by R. Srinivasan, presents the technical challenges posed to data sharing by multiple data collectors and sources and summarizes the different protocols available for an effective transfer and sharing of data through a GIS ArcIMS interface. Part IV, prepared by Z. Sheng and D. Zhang, explores the possibility to link the Database Project to a comprehensive development of regional hydrological models within the Rio Grande reach between Elephant Butte Dam, in New Mexico, and Fort Quitman, Texas. Finally, Part V, prepared by C. Brown, Z. Sheng, and M. Bourdon, presents closing comments as well as a summary of the recommendations made throughout the document. Dr. Hanks provided assistance in summarizing preliminary user survey results

Brown, Christopher; Sheng, Zhuping; Bourdon, Marc

2007-11-01T23:59:59.000Z

308

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

Albert Calderon

2003-01-28T23:59:59.000Z

309

Phase II Calderon Process to Produce Direct Reduced Iron Research and Development Project  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

Albert Calderon

2003-06-30T23:59:59.000Z

310

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.

Albert Calderon

2003-04-28T23:59:59.000Z

311

A phased approach to cooperative environmental management R&D projects with Russian institutes  

SciTech Connect

An important aspect of technology exchange between the US and the Former Society Union (FSU) countries is the identification and implementation of cooperative projects that are mutually beneficial. The US Department of Energy (DOE) and its national laboratories have established a four-phase approach to identify and further develop Russian technologies that could contribute to solving DOE environmental management problems. Following an initial screening and identification of potential technologies, the country-to-country interaction is formally initiated in the first phase through a small-scale pilot project study. This phase consists of an evaluation of the specific technology for DOE applications, and provides an opportunity for both US and Russian scientists and engineers to validate the use of the technology for a specific DOE requirement. The successful completion of this phase establishes the basis for continuing the technology development into the second phase, which includes laboratory testing in Russia. In the third phase, the technology is laboratory tested in the US, most likely at those DOE national laboratories having the capability and greatest interest in the particular technology area. The fourth and final phase consist of a commercialization process that establishes a partnership with a US business to finalize development of the technology and to prepare for implementation within the DOE complex. An example of this phased approach is a current high-level waste separation cooperative project between the Khlopin Radium Institute and the DOE through Sandia National Laboratories (SNL) and Science Applications International Corporation (SAIC). This effort has not only enhanced separations technology for the DOE, but has also provided an example of a working process for future cooperative projects.

Matalucci, R.V. [Sandia National Labs., Albuquerque, NM (United States); Albert, T.E. [Science Applications International Corp., Clearwater, FL (United States)

1994-10-01T23:59:59.000Z

312

Medical Records Retrieval Track results University Of Utah  

Science Conference Proceedings (OSTI)

Page 1. Medical Records Retrieval Track results University Of Utah Summary Statistics Run ID BMIUOUens Prcessing ...

2013-02-12T23:59:59.000Z

313

OECD/NEA Agesta Decontamination Project. Phase 1, final report. Volume 1. Project description and overview of results  

SciTech Connect

The objective of the Agesta Decontamination Project, which has been organized by the Nuclear Energy Agency, Paris, is to utilize the four primary loops of the Agesta reactor to demonstrate decontamination methods for PWR primary systems. The first phase of the project consisted of laboratory scale tests. The test programme consisted of decontamination tests on steam generator tubing and other active material from Agesta and number of operating reactors as well as material compatibility tests on standardized samples of a representative selection of modern PWR primary system materials. The results show that all six processes in general met the acceptance criteria both regarding decontamination and corrosion. The decontamination results with the hard chemistries were rather uneven. 4 refs., 2 figs., 5 tabs.

Not Available

1982-12-01T23:59:59.000Z

314

Alternative Fuels Data Center: Utah Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utah Points of Contact Utah Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Utah Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Utah Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Utah Points of Contact on Google Bookmark Alternative Fuels Data Center: Utah Points of Contact on Delicious Rank Alternative Fuels Data Center: Utah Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Utah Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Points of Contact The following people or agencies can help you find more information about Utah's clean transportation laws, incentives, and funding opportunities.

315

Microsoft Word - CX-LanePhaseSeparationProjects_FY13_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2012 6, 2012 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Michael Marleau - TEP-TPP-1 Project Manager Proposed Action: Lane Substation 500/230-kV Transformer Phase Separation Project Project Work Order Number: 00298187 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions or modifications to electric power transmission facilities Location: Lane Substation, Lane County, Oregon Township 17 South, Range 5 East, Section 36 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to increase the physical distance that separates each phase of the 500/230-kiloVolt transformer banks at BPA's Lane Substation. The reason for the increased distance is to minimize the effects of a transformer fire or explosion as

316

Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase 2 Report: Oahu Wind Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada Subcontract Report NREL/SR-5500-50414 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada

317

Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Utah: Energy Resources Utah: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3209801,"lon":-111.0937311,"alt":0,"address":"Utah","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Utah Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Logo: Utah Department of Transportation Name Utah Department of Transportation Address 4501 South 2700 West Place Salt Lake City, Utah Zip 84114 Phone number 801.965.4000 Website http://www.udot.utah.gov/main/ Coordinates 40.6724141°, -111.9579795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6724141,"lon":-111.9579795,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

OpenEI Community - Utah + workshop + GRR  

Open Energy Info (EERE)

Meeting #1 Meeting #1 http://en.openei.org/community/blog/utah-meeting-1 On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting flowcharts developed byt the GRR Team.  Many of the flowcharts had been reviewed and vetted by agency officials prior to the meeting.  In addition to workshoping Utah flowcharts, the agencies identified federal permits required that had previously been missing from the roadmap, including Above-Ground Storage Tank permit, the Local Source Water Protection Plan Evaluation Process, and a State Groundwater Discharge Permit.  The roadmap has been adjusted to incorporate thesutah-meeting-1"

320

Categorical Exclusion Determinations: Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 11, 2009 December 11, 2009 CX-000416: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s) Applied: A9, A11 Date: 12/11/2009 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-002605: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s) Applied: A9, A11 Date: 12/11/2009 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory December 2, 2009 CX-000228: Categorical Exclusion Determination Utah County Salt Lake CX(s) Applied: A9, A11, B5.1 Date: 12/02/2009 Location(s): Salt Lake County, Utah

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An Examination of Avoided Costs in Utah  

E-Print Network (OSTI)

has been officially adopted in Idaho would lead to higher QFin Utah (per Schedule 37) and Idaho (the surrogate avoidedResource (SAR) Method Used in Idaho QFs up to 10 MW are

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

322

,"Utah Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas...

323

An Examination of Avoided Costs in Utah  

DOE Green Energy (OSTI)

The Utah Wind Working Group (UWWG) believes there are currently opportunities to encourage wind power development in the state by seeking changes to the avoided cost tariff paid to qualifying facilities (QFs). These opportunities have arisen as a result of a recent renegotiation of Pacificorp's Schedule 37 tariff for wind QFs under 3 MW, as well as an ongoing examination of Pacificorp's Schedule 38 tariff for wind QFs larger than 3 MW. It is expected that decisions made regarding Schedule 38 will also impact Schedule 37. Through the Laboratory Technical Assistance Program (Lab TAP), the UWWG has requested (through the Utah Energy Office) that LBNL provide technical assistance in determining whether an alternative method of calculating avoided costs that has been officially adopted in Idaho would lead to higher QF payments in Utah, and to discuss the pros and cons of this method relative to the methodology recently adopted under Schedule 37 in Utah. To accomplish this scope of work, I begin by summarizing the current method of calculating avoided costs in Utah (per Schedule 37) and Idaho (the ''surrogate avoided resource'' or SAR method). I then compare the two methods both qualitatively and quantitatively. Next I present Pacificorp's four main objections to the use of the SAR method, and discuss the reasonableness of each objection. Finally, I conclude with a few other potential considerations that might add value to wind QFs in Utah.

Bolinger, Mark; Wiser, Ryan

2005-01-07T23:59:59.000Z

324

EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah Summary This EA evaluates the...

325

Projected changes in late 21st century tropical cyclone frequency in thirteen coupled climate models from the Coupled Model Intercomparison Project Phase 5  

Science Conference Proceedings (OSTI)

Changes in tropical cyclone (TC) frequency under anthropogenic climate change are examined for thirteen global models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), using the OWZP TC detection method developed by the authors in ...

K. J. Tory; S. S. Chand; J. L. McBride; H. Ye; R. A. Dare

326

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2005-01-25T23:59:59.000Z

327

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

Albert Calderon

2006-04-19T23:59:59.000Z

328

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

Albert Calderon

2006-01-30T23:59:59.000Z

329

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon; Reina Calderon

2004-01-27T23:59:59.000Z

330

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2004-07-28T23:59:59.000Z

331

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2005-07-29T23:59:59.000Z

332

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2004-04-27T23:59:59.000Z

333

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2004-10-28T23:59:59.000Z

334

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2005-01-26T23:59:59.000Z

335

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

SciTech Connect

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort which will last 42 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets and coke.

Albert Calderon

2003-10-22T23:59:59.000Z

336

Phase II Calderon Process to Produce Direct Reduced Iron Research and Development Project  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase 1 was successfully completed. The project was then re-directed to the making of iron units. In 2000, U.S. Steel teamed up with Calderon for a joint effort to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy by using iron ore concentrate and coal as raw materials, both materials being appreciably lower in cost than using iron pellets, briquettes, sinter and coke.

Albert Calderon

2007-03-31T23:59:59.000Z

337

Supply curve impacts of Quick Start projects in Phase 1 of the Resource Supply Expansion Program  

DOE Green Energy (OSTI)

The Pacific Northwest Laboratory (PNL) prepared this report under contract to the Bonneville Power Administration (Bonneville), as part of the Resource Supply Expansion Project (RSEP). RSEP is a regional program instituted by Bonneville to expand conservation and renewable generation options available to resource planners and utilities. Resource alternatives are increased by RSEP through demonstration projects designed in a collaborative process that targets specific barriers to resource development including institutional, market, and reliability barriers. RSEP was launched with several projects that were designed and implemented quickly in 1992 to lay a foundation for future collaboration. The purpose of this report is to introduce the goal and structure of RSEP and to describe the so-called ``Quick Start`` RSEP projects in Phase One of RSEP. This description includes a preliminary estimate of the energy savings and/or other expected impacts of RSEP projects funded in FY 1992 and 1993. Similar estimates are also included for Bonneville projects to confirm wind and geothermal generation potential. Bonneville`s Geothermal Confirmation Agenda preceded implementation of RSEP, although it has a similar objective and collaborative approach.

Wright, G.A.; Warwick, W.M.; Durfee, D.L.

1993-12-01T23:59:59.000Z

338

A genetic algorithm-based method for look-ahead scheduling in the finishing phase of construction projects  

Science Conference Proceedings (OSTI)

Genetic algorithms (GAs) are widely used in finding solutions for resource constrained multi-project scheduling problems (RCMPSP) in construction projects. In the finishing phase of a complex construction project, each room forms a confined space for ... Keywords: Genetic algorithm (GA), Look-ahead schedule (LAS), RCMPSP, RCPSP, Simulation

Ning Dong; Dongdong Ge; Martin Fischer; Zuhair Haddad

2012-10-01T23:59:59.000Z

339

Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252  

Science Conference Proceedings (OSTI)

This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project.

NONE

1995-01-31T23:59:59.000Z

340

Draft Air Pathway Report: Phase 1 of the Hanford Environmental Dose Reconstruction Project  

SciTech Connect

This report summarizes the air pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project, conducted by Battelle staff at the Pacific Northwest Laboratory under the direction of an independent Technical Steering Panel. The HEDR Project is estimating historical radiation doses that could have been received by populations near the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the air-pathway dose reconstruction sought to determine whether dose estimates could be calculated for populations in the 10 counties nearest the Hanford Site from atmospheric releases of iodine-131 from the site from 1944--1947. Phase 1 demonstrated the following: HEDR-calculated source-term estimates of iodine-131 releases to the atmosphere were within 20% of previously published estimates; calculated vegetation concentrations of iodine-131 agree well with previously published measurements; the highest of the Phase 1 preliminary dose estimates to the thyroid are consistent with independent, previously published estimates of doses to maximally exposed individuals; and relatively crude, previously published measurements of thyroid burdens for Hanford workers are in the range of average burdens that the HEDR model estimated for similar reference individuals'' for the period 1944--1947. 4 refs., 10 figs., 9 tabs.

Not Available

1990-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Final Report for Phase I Northern California CO2 Reduction Project  

SciTech Connect

On June 8, 2009, the U. S. Department of Energy's National Energy Technology Laboratory released a Funding Opportunity Announcement (DE-FOA 0000015) with the title, Recovery Act: Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO{sub 2} Use. C6 Resources (C6), an affiliate of Shell Oil Company, responded with a proposal for Technology Area 1: Large-scale industrial carbon capture and sequestration (CCS) projects from industrial sources. As DOE Federally Funded Research and Development Center (FFRDC) Contractors, Lawrence Livermore National Laboratory (LBNL) and Lawrence Berkeley National Laboratory (LLNL) proposed to collaborate with C6 and perform technical tasks, which C6 included in the C6 proposal, titled the Northern California CO{sub 2} Reduction Project. The proposal was accepted for Phase I funding and C6 received DOE Award DEFE0002042. LLNL and LBNL each received Phase I funding of $200,000, directly from DOE. The essential task of Phase I was to prepare a proposal for Phase II, which would be a five-year, detailed technical proposal, budget, and schedule for a complete carbon capture, transportation, and geologic storage project, with the objective of starting the injection of 1 million tons per year of industrial CO2 by the end of FY2015. LLNL and LBNL developed technical proposals (and DOE Field Work Proposals [FWPs]) for many aspects of the geologic testing and CO{sub 2} monitoring that were included in the C6 Phase II proposal, which C6 submitted by the deadline of April 16, 2010. This document is the Final Report for LLNL's Phase I efforts and is presented in two parts. Part 1 is the complete text of the technical proposal provided to C6 by LLNL and LBNL for inclusion in the C6 Phase II proposal. Because of space limitations, however, C6 may not have included all of this information in their proposal. In addition to developing the proposal presented below, LLNL's Bill Foxall and Laura Chiarmonte, in collaboration with LBNL, undertook preliminary technical work evaluating the potential for induced seismicity in Solano County. Part 2 presents technical work preformed during Phase I in the development of a preliminary Certification Framework: Leakage Risk Assessment for CO{sub 2} Injection at the Montezuma Hills Site, Solano County, California, co-authored by LLNL and LBNL collaborators.

Wagoner, J

2010-10-26T23:59:59.000Z

342

Phase 1 Characterization sampling and analysis plan West Valley demonstration project.  

SciTech Connect

The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

Johnson, R. L. (Environmental Science Division)

2011-06-30T23:59:59.000Z

343

Alternative Fuels Data Center: Utah Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Other The list below contains summaries of all Utah laws and incentives related to Other.

344

Utah Division of Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Utah Division of Public Utilities Utah Division of Public Utilities Jump to: navigation, search Name Utah Division of Public Utilities Address 160 East 300 South Place Salt Lake City, Utah Zip 84111 Phone number 800-874-0904 Website http://publicutilities.utah.go References Website[1] This article is a stub. You can help OpenEI by expanding it. Utah Division of Public Utilities is an organization based in Salt Lake City, Utah. The Division of Public Utilities, makes recommendations to the Utah Public Service Commission for rate-making purposes, applications, hearings and other issues affecting quality of service. The Division also handles and investigates consumer complaints and monitors utility operations to ensure compliance with Public Service Commission rules, regulations and orders.

345

Alternative Fuels Data Center: Utah Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and...

346

Alternative Fuels Data Center: Utah Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Exemptions The list below contains summaries of all Utah laws and incentives related

347

Sandy, Utah Manufacturing Site, BD Medical Award Recipient of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Award Recipient of the ENERGY STAR Challenge for Industry Sandy, Utah Manufacturing Site BD Medical 9450 S. State Street Sandy, UT 84070 The BD Medical facility in Sandy, Utah is...

348

,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

2013 3:31:47 PM" "Back to Contents","Data 1: Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSUTMMCF" "Date","Utah Natural Gas...

349

Evaluating Precipitation Modification under Drought Conditions for Utah Agriculture  

Science Conference Proceedings (OSTI)

The impacts of the 1934 and 1977 droughts in the seven Climatological regions of Utah were examined using a linear programming model that simulated crop and livestock production in Utah for 1979. Crop and range production equations wee developed ...

Gregory M. Perry; Terrence F. Glover

1986-12-01T23:59:59.000Z

350

Alternative Fuels Data Center: Utah Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives Listed below are the summaries of all current Utah laws, incentives, regulations, funding opportunities, and other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. You

351

Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Ethanol The list below contains summaries of all Utah laws and incentives related

352

Alternative Fuels Data Center: Utah Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Grants The list below contains summaries of all Utah laws and incentives related

353

Alternative Fuels Data Center: Utah Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Other The list below contains summaries of all Utah laws and incentives related to Other.

354

Alternative Fuels Data Center: Utah Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for EVs The list below contains summaries of all Utah laws and incentives related to EVs. State Incentives

355

Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utah Paperbox Adds Utah Paperbox Adds Workplace Charging to Boost Sustainability to someone by E-mail Share Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Facebook Tweet about Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Twitter Bookmark Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Google Bookmark Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Delicious Rank Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Digg Find More places to share Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on AddThis.com...

356

Alternative Fuels Data Center: Utah Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Other The list below contains summaries of all Utah laws and incentives related to Other.

357

Results of the Boeing/DOE DECC Phase 1 stirling engine project  

DOE Green Energy (OSTI)

Phase I of Boeing Company/DOE Dish Engine Critical Component (DECC) Project started in April of 1998 and was completed in 1999. The Phase I objectives, schedule, and test results are presented in this paper. These data shows the power, energy, and mirror performance are comparable to that when the hardware was first manufactured 15 years ago. During the Phase I and initial Phase II test period the on-sun system accumulated over 3,800 hours of solar-powered operating time, accumulated over 4,500 hours of concentrator solar tracking time, and generated over 50,000 kWh of grid-compatible electrical energy. The data also shows that the system was available 95 {percent} of the time when the sun's insolation level was above approximately 300 w/m{sup 2}, and achieved a daily energy efficiency between 20{percent} and 26{percent}. A second concentrator was refurbished during Phase I and accumulated over 2,200 hours of solar track time. A second Stirling engine operated 24 hours a day in a test cell in Sweden and accumulated over 6,000 test hours. Discussion of daily operation shows no major problems encountered during the testing that would prevent commercialization of the technology. Further analysis of the test data shows that system servicing with hydrogen, coolant and lubricating oil should not be a major O and M cost.

STONE,KENNETH W.; CLARK,TERRY; NELVING,HANS; DIVER JR.,RICHARD B.

2000-03-02T23:59:59.000Z

358

Blasting practices and explosives accidents in Utah coal mines  

SciTech Connect

Practices in use in Utah are commended and accidents incident to blasting are reviewed with suggestions as to future avoidance.

Parker, D.J.

1935-01-01T23:59:59.000Z

359

Utah Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Utah Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

360

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

Science Conference Proceedings (OSTI)

Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

2009-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Utah State Prison Space Heating with Geothermal Heat - Resource Assessment Report Crystal Hot Springs Geothermal Area  

DOE Green Energy (OSTI)

Reported herein is a summary of work conducted under the Resource Assessment Program-Task 2, for the Utah State Prison Geothermal Space Heating Project at Crystal Hot Springs, Draper, Utah. Assessment of the geothermal resource in and around the Utah State Prison property began in october of 1979 with an aeromagnetic and gravity survey. These tasks were designed to provide detailed subsurface structural information in the vicinity of the thermal springs so that an informed decision as to the locations of test and production holes could be made. The geophysical reconnaissance program provided the structural details needed to focus the test drilling program on the most promising production targets available to the State Prison. The subsequent drilling and well testing program was conducted to provide information to aid fin the siting and design of a production well and preliminary design activities. As part of the resource assessment portion of the Utah State Prison Geothermal Project, a program for periodic geophysical monitoring of the Crystal Hot Springs resource was developed. The program was designed to enable determination of baseline thermal, hydraulic, and chemical characteristics in the vicinity of Crystal Hot Springs prior to production and to provide a history of these characteristics during resource development.

None

1981-12-01T23:59:59.000Z

362

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT  

Science Conference Proceedings (OSTI)

This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron (hot metal) consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy. The work which is labeled as Phase II will take place at two levels; namely, the bench scale level and the process development unit (PDU) level. The bench scale work is being divided into two parts; the construction and operation of Bench Scale No.1 to make hot metal direct as one part and the construction and operation of Bench Scale No.2 to make DRI with its conversion to hot metal as the second part. The work at the PDU consists of getting the PDU which exists ready for advancing the activities from bench scale to PDU level.

Albert Calderon

2001-10-24T23:59:59.000Z

363

Yakima River Basin Fish Passage Phase II Fish Screen Construction, Project Completion Report.  

DOE Green Energy (OSTI)

On December 5, 1980, Congress passed the Pacific Northwest Electric Power Planning and Conservation Act (Public Law 96-501). The Act created the Northwest Power Planning Council (now the Northwest Power and Conservation Council). The Council was charged with the responsibility to prepare a Regional Conservation and Electric Power Plan and to develop a program to protect, mitigate, and enhance fish and wildlife including related spawning grounds and habitat on the Columbia River and its tributaries. The Council adopted its Fish and Wildlife Program on November 15, 1982. Section 800 of the Program addresses measures in the Yakima River Basin. The Yakima measures were intended to help mitigate hydroelectric impacts in the basin and provide off-site mitigation to compensate for fish losses caused by hydroelectric project development and operations throughout the Columbia River Basin. The Bonneville Power Administration (BPA) was designated as a major source of funding for such off-site mitigation measures and was requested to initiate discussions with the appropriate Federal project operators and the Council to determine the most expeditious means for funding and implementing the program. The primary measures proposed for rapid implementation in the Yakima River basin were the installation of fish passage and protective facilities. Sec. 109 of The Hoover Power Plant Act of 1984, authorized the Secretary of the Interior to design, construct, operate, and maintain fish passage facilities within the Yakima River Basin. Under Phase I of the program, improvements to existing fish passage facilities and installation of new fish ladders and fish screens at 16 of the largest existing diversion dams and canals were begun in 1984 and were completed in 1990. The Yakima Phase II fish passage program is an extension of the Phase I program. In 1988, the Yakama Nation (YN) submitted an application to amend Sections 803(b) and 1403(4.5) of the Northwest Power and Conservation Council's Columbia River Basin Fish and Wildlife Program to begin preliminary design on the Phase II fish screen program. Based on citizen and agency endorsement, the Council approved the amendment in 1989. The Council authorized BPA to provide funding for Phase II screens through the Fish and Wildlife Program. BPA then asked the Bureau of Reclamation to provide engineering and design expertise to the Phase II projects.

Hudson, R. Dennis

2008-01-01T23:59:59.000Z

364

Generating Economic Development from a Wind Power Plant in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts  

Wind Powering America (EERE)

Generating Economic Development from a Wind Power Generating Economic Development from a Wind Power Project in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts Sandra Reategui Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 January 2009 DOE/GO-102009-2760 Acknowledgements ....................................................................................................................... 1 Introduction ................................................................................................................................... 2 Report Overview ......................................................................................................................... 2

365

Categorical Exclusion Determinations: Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 20, 2011 December 20, 2011 CX-007447: Categorical Exclusion Determination Clean Cities Transportation Petroleum Reduction Technologies Program CX(s) Applied: B5.1 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007446: Categorical Exclusion Determination Clean Cities Transportation Petroleum Reduction Technologies Program CX(s) Applied: B5.1 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007445: Categorical Exclusion Determination Clean Cities Transportation Petroleum Reduction Technologies Program CX(s) Applied: B5.1 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 15, 2011 CX-007468: Categorical Exclusion Determination

366

Utah/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Wind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Utah Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate?

367

Advanced conceptual design report solid waste retrieval facility, phase I, project W-113  

SciTech Connect

Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

Smith, K.E.

1994-03-21T23:59:59.000Z

368

Microsoft Word - DOE-ID-12-006 Utah EC.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 SECTION A. Project Title: Acquisition of Specific Equipment to Enhance Performance, Control and Operational Capability of the University of Utah TRIGA Facilities SECTION B. Project Description The objective of this project is to replace the University of Utah TRIGA Reactor heavy water-element handling tool and underwater vacuum cleaner, and to add a portable spectroscopy system and broad energy germanium detector to the facility operational capabilities. SECTION C. Environmental Aspects / Potential Sources of Impact The action consists of funding the purchase of equipment and instruments for an existing program. The action would not create additional environmental impacts above those already occurring at the university. SECTION D. Determine the Level of Environmental Review (or Documentation) and Reference(s): Identify the applicable

369

Microsoft Word - DOE-ID-12-006 Utah EC.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 SECTION A. Project Title: Acquisition of Specific Equipment to Enhance Performance, Control and Operational Capability of the University of Utah TRIGA Facilities SECTION B. Project Description The objective of this project is to replace the University of Utah TRIGA Reactor heavy water-element handling tool and underwater vacuum cleaner, and to add a portable spectroscopy system and broad energy germanium detector to the facility operational capabilities. SECTION C. Environmental Aspects / Potential Sources of Impact The action consists of funding the purchase of equipment and instruments for an existing program. The action would not create additional environmental impacts above those already occurring at the university. SECTION D. Determine the Level of Environmental Review (or Documentation) and Reference(s): Identify the applicable

370

MHK Projects/University of Manchester Phase 1 and 2 NaREC | Open Energy  

Open Energy Info (EERE)

University of Manchester Phase 1 and 2 NaREC University of Manchester Phase 1 and 2 NaREC < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.1294,"lon":-1.50652,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

371

Snow Mass over North America: Observations and Results from the Second Phase of the Atmospheric Model Intercomparison Project  

Science Conference Proceedings (OSTI)

Eighteen global atmospheric general circulation models (AGCMs) participating in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2) are evaluated for their ability to simulate the observed spatial and temporal variability ...

Allan Frei; Ross Brown; James A. Miller; David A. Robinson

2005-10-01T23:59:59.000Z

372

Utah Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Pilot oil shale projects have been undertaken in the area, but current technology for wresting oil from kerogen is costly and water-intensive.

373

SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY  

Science Conference Proceedings (OSTI)

The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

2009-04-29T23:59:59.000Z

374

Alternative Fuels Data Center: Utah Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Vehicle Owner/Driver

375

Utah Division of Wildlife Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Jump to: navigation, search Logo: Utah Division of Wildlife Resources Name Utah Division of Wildlife Resources Address 1594 W North Temple, Suite 2110, Box 146301 Place Salt Lake City, Utah Zip 84114-6301 Phone number 801-538-4745 Website http://wildlife.utah.gov/dwr/a References Webpage[1] This article is a stub. You can help OpenEI by expanding it. Utah Division of Wildlife Resources is an organization based in Salt Lake City, Utah. References ↑ "Webpage" Retrieved from "http://en.openei.org/w/index.php?title=Utah_Division_of_Wildlife_Resources&oldid=536488" Categories: Government Agencies Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

376

New Weatherization Training Center Opens in Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Weatherization Training Center Opens in Utah New Weatherization Training Center Opens in Utah New Weatherization Training Center Opens in Utah May 25, 2010 - 6:32pm Addthis The Utah weatherization assistance program built a new demonstration house to train weatherization workers. The Intermountain Weatherization Training Center is located in a warehouse in Clearfield, Utah. | Photo courtesy of Intermountain Weatherization Training Center The Utah weatherization assistance program built a new demonstration house to train weatherization workers. The Intermountain Weatherization Training Center is located in a warehouse in Clearfield, Utah. | Photo courtesy of Intermountain Weatherization Training Center Stephen Graff Former Writer & editor for Energy Empowers, EERE Most warehouses are filled with items such as equipment, boxes and food.

377

Alternative Fuels Data Center: Utah Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Driving / Idling

378

Air pathway report: Phase I of the Hanford Environmental Dose Reconstruction Project  

SciTech Connect

Phase 1 of the air-pathway portion of the Hanford Environmental Dose Reconstruction (HEDR) Project sought to determine whether dose estimates could be calculated for populations in the 10 counties nearest the Hanford Site from atmospheric releases of iodine-131 from the site from 1944--1947. Phase 1 demonstrated the following: HEDR-calculated source-term estimates of iodine-131 releases to the atmosphere were within 20% of previously published estimates; calculated vegetation concentrations of iodine-131 agree well with previously published measurements; the highest of the Phase 1 preliminary dose estimates to the thyroid are consistent with independent, previously published estimates of doses to maximally exposed individuals; and, relatively crude, previously published measurements of thyroid burdens for Hanford workers are in the range of average burdens that the HEDR model estimated for similar reference individuals'' for the period 1944--1947. Preliminary median dose estimates summed over the year 1945--1947 for the primary pathway, air-pasture-cow-milk-thyroid, ranged from low median values of 0.006 rad for upwind adults who obtained milk from backyard cows not on pasture to high median values of 68.0 rad for downwind infants who drank milk from pasture-fed cows. Extremes of the estimated range are a low of essentially zero to upwind adults and a high of almost 3000 rem to downwind infants. 37 refs., 37 figs., 2 tabs.

Not Available

1991-07-01T23:59:59.000Z

379

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

Facility UDEQ Utah Department of Environmental Quality UDOT Utah Department of Transportation U.S. Department of Energy Monticello NPL Sites FFA Quarterly Report:...

380

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

1 1 July 2011 Doc. No. S07978 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: April 1-June 30, 2011 This report summarizes project status and activities implemented April through June 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency (EPA) National Priorities List (NPL) in 1989 and 1986, respectively. The U.S. Department of Energy (DOE) implemented remedial actions at the MVP in 1986 and at the MMTS in 1989, to conform to requirements of the Comprehensive Environmental Response, Compensation, and Liability

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

31, 2011 31, 2011 April 2011 Doc. No. S07666 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: January 1-March 31, 2011 This report summarizes project status and activities implemented January through March 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency (EPA) National Priorities List (NPL) in 1989 and 1986, respectively. The U.S. Department of Energy (DOE) implemented remedial actions at the MVP in 1986 and at the MMTS in 1989, to conform to requirements of the Comprehensive Environmental Response, Compensation, and Liability

382

This fact sheet describes wetlands in and around Monticello, Utah, and what the  

Office of Legacy Management (LM)

wetlands in and around Monticello, Utah, and what the U.S. Department of Energy (DOE) is wetlands in and around Monticello, Utah, and what the U.S. Department of Energy (DOE) is doing to restore wetlands that are adversely affected by Monticello cleanup project activities. The purpose of the Monticello cleanup projects is to minimize risks to the public and the environment from exposure to uranium mill tailings and radon gas. The cleanup is being performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund. Wetlands Background A wetland is an area along a waterway, body of water, spring, or seep where soils are saturated by surface water or ground water often enough to support vegetation that has adapted to such conditions. While some wetlands are extensive, a wetland also can be an

383

Phase 1 Final status survey plan for the West Valley demonstration project.  

SciTech Connect

This plan provides the technical basis and associated protocols to support Phase 1 final status survey (FSS) data collection and interpretation as part of the West Valley Demonstration Project Phase 1 Decommissioning Plan process. This plan is consistent with the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). The Phase 1 Decommissioning Plan provides the relevant derived concentration guideline levels (DCGLs) for the Phase 1 radionuclides of interest. This plan includes protocols that will be applied to the deep excavations planned for Waste Management Area (WMA) 1 and WMA 2, for surface soils outside the WMA 1 and WMA 2 excavations that do not have contamination impacts at depths greater than one meter, and for areas that are used for Phase 1 contaminated soil lay-down purposes. All excavated and lay-down areas will be classified as MARSSIM Class 1 areas. Surface soils that have not been excavated, are not expected to exceed DCGLs, and do not have contamination impacts at depths greater than one meter will be divided into either Class 1 or Class 2 areas depending on the expected potential for surface soil contamination in those areas. The plan uses gamma scans combined with biased soil samples to address DCGLemc concerns. The plan uses systematic soil sampling combined with area factors to address DCGLw and DCGLemc concerns. The Sign test will be used to statistically evaluate DCGLw compliance. If the results from the characterization sampling and analysis plan (CSAP) data collection indicate that background may be a significant issue for Sign test implementation, the Wilcoxon rank sum (WRS) test will be used instead to demonstrate DCGLw compliance. A reference area will be selected on the basis of CSAP data results if the WRS test becomes a necessity. The WMA 1 excavation footprint includes approximately 476 foundation pilings that will be trimmed and left in place. Piling-specific systematic and biased sampling will be conducted to address concerns that these pilings may have served as preferential flow pathways into the underlying Lavery till. Phase 1 FSS data collection results will be summarized, presented, and interpreted in one or more FSS reports.

Johnson, R. L. (Environmental Science Division)

2011-05-31T23:59:59.000Z

384

National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance basic data for Ely quadrangle, Nevada; Utah  

Science Conference Proceedings (OSTI)

Field and laboratory data are presented for 1937 sediment samples from the Ely Quadrangle, Nevada; Utah. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

Not Available

1981-10-15T23:59:59.000Z

385

Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 1  

Science Conference Proceedings (OSTI)

The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3.

Not Available

1993-05-01T23:59:59.000Z

386

Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah  

SciTech Connect

The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

Jr., Chidsey, Thomas C.; Allison, M. Lee

1999-11-02T23:59:59.000Z

387

Selection of dominant radionuclides for Phase 1 of the Hanford Environmental Dose Reconstruction Project  

Science Conference Proceedings (OSTI)

The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions from nuclear operations at Hanford since their inception in 1944. A vital step in the estimation of radiation doses is the determination of the source term,'' that is, the quantities of radionuclides that were released to the environment from the various Hanford operations. Hanford operations have at various times involved hundreds of different radionuclides, some in relatively large quantities. Those radionuclides present in the largest quantities, although significant from an operational handling point of view, may not necessarily have been those of greatest concern for offsite radiation dose. This report documents the selection of the dominant radionuclides (those that may have resulted in the largest portion of the received doses) in the source term for Phase 1 of the HEDR Project, that is, for atmospheric releases from 1944 through 1947 and for surface water releases from 1964 through 1966. 15 refs., 3 figs., 10 tabs.

Napier, B.A.

1991-07-01T23:59:59.000Z

388

NETL: Oil & Natural Gas Projects - Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 DE-NT0005671 Goal The goal of this project is to overcome existing water-related environmental barriers to possible oil shale development in the Uinta Basin, Utah. Data collected from this study will help alleviate problems associated with disposal of produced saline water, which is a by-product of methods used to facilitate conventional hydrocarbon production. Performers Utah Geological Survey, Salt Lake City, Utah, 84114 Collaborators Uinta Basin Petroleum Companies: Questar, Anadarko, Newfield, Enduring Resources, Bill Barrett, Berry Petroleum, EOG Resources, FIML, Wind River Resources, Devon, Rosewood, Flying J, Gasco, Mustang Fuel,

389

City of Murray, Utah (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Murray Murray Place Utah Utility Id 13137 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Ultra Large Industrial General Service Ultra Large - Multiple Meters Industrial General Service- Large Industrial General service-small Industrial Residential-Single phase Residential Security Outdoor Lighting-150Watt Luminaire Lighting Security Outdoor Lighting-400 Watt Luminaire Lighting

390

Moon Lake Electric Assn Inc (Utah) | Open Energy Information  

Open Energy Info (EERE)

Moon Lake Electric Assn Inc Moon Lake Electric Assn Inc Place Utah Utility Id 12866 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1]Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GREENWAY RATE FOR SCHEDULE GS-1 Commercial GREENWAY RATE FOR SCHEDULE R Residential GS (General Service 3 phase Secondary) Commercial Large Power Primary Service Industrial Large Power Secondary Service Industrial Large Power Service Industrial Residential Service Residential

391

Recovery Efficiency Test Project Phase 2 activity report, Volume 1. Final report  

Science Conference Proceedings (OSTI)

The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

1989-02-01T23:59:59.000Z

392

Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah  

DOE Green Energy (OSTI)

Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

1980-03-01T23:59:59.000Z

393

Alternative Fuels Data Center: Utah Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

394

Alternative Fuels Data Center: Utah Laws and Incentives for Aftermarket  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Conversions to someone by E-mail Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Aftermarket Conversions on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Aftermarket Conversions on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Aftermarket Conversions on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Aftermarket Conversions on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

395

Alternative Fuels Data Center: Utah Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Purchaser to someone by E-mail Purchaser to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Purchaser on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Purchaser on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Purchaser on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Purchaser on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Purchaser on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

396

Enel North America Utah Geothermal Working Group Meeting | Open Energy  

Open Energy Info (EERE)

Enel North America Utah Geothermal Working Group Meeting Enel North America Utah Geothermal Working Group Meeting Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Enel North America Utah Geothermal Working Group Meeting Abstract Abstract unavailable. Authors John Snow and Fausto Batini Published Enel Nort America, 04/22/2008 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Enel North America Utah Geothermal Working Group Meeting Citation John Snow,Fausto Batini. 04/22/2008. Enel North America Utah Geothermal Working Group Meeting. Cedar City, UT. Enel Nort America. 24p. Retrieved from "http://en.openei.org/w/index.php?title=Enel_North_America_Utah_Geothermal_Working_Group_Meeting&oldid=680551" Categories: References Geothermal References

397

Alternative Fuels Data Center: Utah Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Dealer to someone by E-mail Alternative Fuel Dealer to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

398

Alternative Fuels Data Center: Utah Laws and Incentives for Registration /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Registration / Licensing to someone by E-mail Registration / Licensing to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Registration / Licensing on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Registration / Licensing on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Registration / Licensing on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Registration / Licensing on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Registration / Licensing on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Registration / Licensing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

399

Alternative Fuels Data Center: Utah Laws and Incentives for Acquisition /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

400

Alternative Fuels Data Center: Utah Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Orem, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orem, Utah: Energy Resources Orem, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2968979°, -111.6946475° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2968979,"lon":-111.6946475,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Henefer, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Henefer, Utah: Energy Resources Henefer, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0166127°, -111.4982578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0166127,"lon":-111.4982578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Benjamin, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Benjamin, Utah: Energy Resources Benjamin, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0982875°, -111.731318° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0982875,"lon":-111.731318,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Provo, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Provo, Utah: Energy Resources Provo, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2338438°, -111.6585337° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2338438,"lon":-111.6585337,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Utah Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Volumes Delivered to Consumers

406

Delta, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delta, Utah: Energy Resources Delta, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3521777°, -112.57717° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3521777,"lon":-112.57717,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Elberta, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Elberta, Utah: Energy Resources Elberta, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.952778°, -111.955556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.952778,"lon":-111.955556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Midway, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Midway, Utah: Energy Resources Midway, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.5121772°, -111.4743545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5121772,"lon":-111.4743545,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Francis, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Francis, Utah: Energy Resources Francis, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6105076°, -111.2807363° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6105076,"lon":-111.2807363,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Lehi, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lehi, Utah: Energy Resources Lehi, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3916172°, -111.8507662° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3916172,"lon":-111.8507662,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Utah Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 93,084 97,539 101,216 104,637 109,135 112,135 1990-2013

412

Genola, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Genola, Utah: Energy Resources Genola, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9963426°, -111.8432692° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9963426,"lon":-111.8432692,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Daniel, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Daniel, Utah: Energy Resources Daniel, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4707885°, -111.4146275° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4707885,"lon":-111.4146275,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Samak, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Samak, Utah: Energy Resources Samak, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6174509°, -111.2137891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6174509,"lon":-111.2137891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Utah Natural Gas Gross Withdrawals and Production  

Gasoline and Diesel Fuel Update (EIA)

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Gross Withdrawals NA NA NA NA NA NA 1991-2013 From Gas Wells NA NA NA NA NA NA 1991-2013

416

Utah Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

417

Draper, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Draper, Utah: Energy Resources Draper, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.5246711°, -111.8638226° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5246711,"lon":-111.8638226,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Santaquin, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Santaquin, Utah: Energy Resources Santaquin, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9755101°, -111.7852106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9755101,"lon":-111.7852106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Coalville, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coalville, Utah: Energy Resources Coalville, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9177251°, -111.3993634° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9177251,"lon":-111.3993634,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Kamas, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kamas, Utah: Energy Resources Kamas, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.643007°, -111.2807384° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.643007,"lon":-111.2807384,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Utah Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 97,539 101,216 104,637 109,135 112,135 113,539 1990-2013

422

Utah Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

423

Utah Antiquities Section | Open Energy Information  

Open Energy Info (EERE)

Antiquities Section Antiquities Section Jump to: navigation, search Name Utah Antiquities Section Address 300 S. Rio Grande Street Place Salt Lake City, Utah Zip 84101 Coordinates 40.7623958°, -111.9047846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7623958,"lon":-111.9047846,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Wallsburg, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wallsburg, Utah: Energy Resources Wallsburg, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3877339°, -111.4224058° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3877339,"lon":-111.4224058,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Lindon, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lindon, Utah: Energy Resources Lindon, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3432857°, -111.7207608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3432857,"lon":-111.7207608,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

E-Print Network (OSTI)

Food and Drug Administration Green Energy Management Systemthe project team used Green Energy Management System (GEMS)the project team used Green Energy Management System (GEMS)

Lewis, Glen

2010-01-01T23:59:59.000Z

427

Reconnaissance of the hydrothermal resources of Utah  

DOE Green Energy (OSTI)

Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

Rush, F.E.

1983-01-01T23:59:59.000Z

428

Final report for the ASC gas-powder two-phase flow modeling project AD2006-09.  

SciTech Connect

This report documents activities performed in FY2006 under the ''Gas-Powder Two-Phase Flow Modeling Project'', ASC project AD2006-09. Sandia has a need to understand phenomena related to the transport of powders in systems. This report documents a modeling strategy inspired by powder transport experiments conducted at Sandia in 2002. A baseline gas-powder two-phase flow model, developed under a companion PEM project and implemented into the Sierra code FUEGO, is presented and discussed here. This report also documents a number of computational tests that were conducted to evaluate the accuracy and robustness of the new model. Although considerable progress was made in implementing the complex two-phase flow model, this project has identified two important areas that need further attention. These include the need to compute robust compressible flow solutions for Mach numbers exceeding 0.35 and the need to improve conservation of mass for the powder phase. Recommendations for future work in the area of gas-powder two-phase flow are provided.

Evans, Gregory Herbert; Winters, William S.

2007-01-01T23:59:59.000Z

429

Local Option - Commercial PACE Financing (Utah) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Commercial PACE Financing (Utah) Local Option - Commercial PACE Financing (Utah) Local Option - Commercial PACE Financing (Utah) < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Design & Remodeling Windows, Doors, & Skylights Construction Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Solar Buying & Making Electricity Energy Sources Water Water Heating Wind Program Info State Utah Program Type PACE Financing Provider Office of Energy Development Senate Bill 221 of 2013 authorizes local governments to adopt Commercial* Property Assessed Clean Energy (C-PACE) financing programs. C-PACE allows

430

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

431

,"Utah Natural Gas Liquids Lease Condensate, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",201...

432

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

433

,"Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",20...

434

Utah Percent of Historical Oil Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Utah Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

435

Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

436

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

437

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

438

Utah Natural Gas Delivered to Commercial Consumers for the Account...  

Gasoline and Diesel Fuel Update (EIA)

Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Utah Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet)...

439

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

440

,"Utah Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade...

442

Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade...

443

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

444

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic...

445

Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

446

Utah Quantity of Production Associated with Reported Wellhead...  

Annual Energy Outlook 2012 (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Utah Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade...

447

Utah Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

448

Utah Roses Greenhouse Low Temperature Geothermal Facility | Open...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Utah Roses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name...

449

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

450

Utah Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

451

,"Utah Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

452

,"Utah Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annua...

453

,"Utah Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2011,"6302009" ,"Release...

454

,"Utah Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

455

Utah Associated-Dissolved Natural Gas, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0...

456

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

457

Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic...

458

,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","52013"...

459

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Field Discoveries (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

460

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet)...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Utah Nonassociated Natural Gas, Wet After Lease Separation, New...  

U.S. Energy Information Administration (EIA) Indexed Site

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet)...

462

(PhD), Metallurgical Engineering, University of Utah  

Science Conference Proceedings (OSTI)

Abstract Scope, I am Meenakshisundaram Ramanathan, doing my PhD in Metallurgical Engineering at the University of Utah, Salt Lake City, USA, under the...

463

,"Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011 ,"Release...

464

,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

465

,"Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2011...

466

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6...

467

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

468

Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1...

469

,"Utah Lease Condensate Proved Reserves, Reserve Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2011,"6...

470

,"Utah Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

471

Utah Natural Gas Liquids Lease Condensate, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

in Nonproducing Reservoirs (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

472

Utah Coalbed Methane Proved Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane New Field Discoveries Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production...

473

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

474

,"Utah Crude Oil + Lease Condensate Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2011 ,"Release...

475

Utah Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

476

Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

477

,"Utah Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry...

478

,"Utah Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

479

,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","...

480

Green River, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green River, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

Note: This page contains sample records for the topic "utah project phase" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Utah - State Energy Profile Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Economy ; Population and Employment: Utah: U.S. Rank: Period: Population 2.9 million 34 2012 Civilian Labor Force 1.4 million

482

Utah Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

483

Background chemistry for chemical warfare agents and decontamination processes in support of delisting waste streams at the U.S. Army Dugway Proving Ground, Utah  

SciTech Connect

The State of Utah, Department of Environmental Quality (DEQ), Division of Solid and Hazardous Waste (DSHW), has declared residues resulting from the demilitarization, treatment, cleanup, and testing of military chemical agents to be hazardous wastes. These residues have been designated as corrosive, reactive, toxic, and acute hazardous (Hazardous Waste No. F999). The RCRA regulations (40 Code of Federal Regulations [CFR] 260-280), the Utah Administrative Code (R-315), and other state hazardous waste programs list specific wastes as hazardous but allow generators to petition the regulator to {open_quotes}delist,{close_quotes} if it can be demonstrated that such wastes are not hazardous. The U.S. Army Test and Evaluation Command (TECOM) believes that certain categories of F999 residues are not hazardous and has obtained assistance from Argonne National Laboratory (Argonne) to make the delisting demonstration. The objective of this project is to delist chemical agent decontaminated residues resulting from materials testing activities and to delist a remediation residue (e.g., contaminated soil). To delist these residues, it must be demonstrated that the residues (1) do not contain hazardous quantities of the listed agents; (2) do not contain hazardous quantities of constituents listed in 40 CFR Part 261, Appendix VIII; (3) do not exhibit other characteristics that could define the residues as hazardous; and (4) do not fail a series of acute toxicity tests. The first phase will focus on a subset of the F999 wastes generated at the U.S. Army Dugway Proving Ground (DPG), where the Army tests the effects of military chemical agents and agent-decontamination procedures on numerous military items. This effort is identified as Phase I of the Delisting Program. Subsequent phases will address other DPG chemical agent decontaminated residues and remediation wastes and similar residues at other installations.

Rosenblatt, D.H.; Small, M.J.; Kimmell, T.A.; Anderson, A.W.

1996-04-01T23:59:59.000Z

484

Microsoft Word - DOE-ID-11-009 Utah EC.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Title: Development of Nuclear Energy-Related Infrastructure and Capabilities at the Utah Nuclear Engineering Radiation Measurement Laboratory - University of Utah SECTION B....

485

Environmental restoration program pollution prevention checklist guide for the evaluation of alternatives project phase  

SciTech Connect

Evaluation of alternative studies determine what decontamination and decommissioning (D&D) alternatives are presented to regulators for facility and site cleanup. A key consideration in this process is the waste to be generated. Minimizing the volume and toxicity of this waste will ultimately contribute to the selection of the best clean-up option. The purpose of this checklist guide is to assist the user with incorporating pollution prevention/waste minimization (PP/WM) in all Evaluation of Alternatives (EV) phase projects of the Environmental Restoration (ER) Program. This guide will assist users with documenting PP/WM activities for technology transfer and reporting requirements. Automated computer screens will be created from the checklist data to help users implement and evaluate waste reduction. Users can then establish numerical performance measures to measure progress in planning, training, self-assessments, field implementation, documentation, and technology transfer. Cost savings result as users train and assess themselves, eliminating expensive process waste assessments and audit teams.

Not Available

1993-09-01T23:59:59.000Z

486

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

Science Conference Proceedings (OSTI)

5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-11-03T23:59:59.000Z

487

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect

5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-12-15T23:59:59.000Z

488

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

489

Cirrus Parcel Model Comparison Project. Phase 1: The Critical Components to Simulate Cirrus Initiation Explicitly  

Science Conference Proceedings (OSTI)

The Cirrus Parcel Model Comparison Project, a project of the GCSS [Global Energy and Water Cycle Experiment (GEWEX) Cloud System Studies] Working Group on Cirrus Cloud Systems, involves the systematic comparison of current models of ice crystal ...

Ruei-Fong Lin; David O'C. Starr; Paul J. DeMott; Richard Cotton; Kenneth Sassen; Eric Jensen; Bernd Krcher; Xiaohong Liu

2002-08-01T23:59:59.000Z

490

Fiscal Policy and Utah's Oil and Gas Industry  

E-Print Network (OSTI)

unconventional sources, such as oil sands and oil shale. It is important to note that overall reserve figures. Although Utah contains large deposits of oil shale and oil sands, both of which can be processed to yield from oil shale and oil sands is exempt from the state oil and gas severance tax. Utah also levies

Provancher, William

491

Pharmacotherapy Outcomes Research Center University of Utah College of Pharmacy  

E-Print Network (OSTI)

with the University of Utah Distinguished Teaching Award). Her teaching and research interests include the human sidePORC Pharmacotherapy Outcomes Research Center University of Utah College of Pharmacy MISSION STATEMENT Our mission is to design and conduct outcomes research studies that assess the value of therapy

Provancher, William

492

Utah's Coal Industry: Economic Contributions and Future Prospects  

E-Print Network (OSTI)

Utah's Coal Industry: Economic Contributions and Future Prospects Pamela S. Perlich, Senior's coal industry has played a significant role in the economic development of the state for well over developments. The first section of this paper presents an overview of the coal industry in Utah, examining

493

National Park Service - Lake Powell, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Powell, Utah Lake Powell, Utah National Park Service - Lake Powell, Utah October 7, 2013 - 9:58am Addthis Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages. This is the largest PV system the NPS has installed with 115 kilowatts of energy being produced. A 59% improvement in energy efficiency has been

494

DOE - Office of Legacy Management -- University of Utah Medical Research  

Office of Legacy Management (LM)

Utah Medical Research Utah Medical Research Center - UT 02 FUSRAP Considered Sites Site: UNIVERSITY OF UTAH, MEDICAL RESEARCH CENTER (UT.02) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Salt Lake City , Utah UT.02-2 Evaluation Year: 1987 UT.02-1 Site Operations: Research and development on animal inhalation of uranium dust during the 1950s. UT.02-2 Site Disposition: Eliminated - Radiation levels below criteria UT.02-1 UT.02-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium UT.02-2 Radiological Survey(s): Yes UT.02-2 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to UNIVERSITY OF UTAH, MEDICAL RESEARCH CENTER UT.02-1 - DOE Letter; Fiore to Schiager; Subject: Elimination of

495

Utah Office of Energy Development | Open Energy Information  

Open Energy Info (EERE)

Utah Office of Energy Development Utah Office of Energy Development Jump to: navigation, search Name Utah Office of Energy Development Address PO Box 144845 Place Salt Lake City, Utah Zip 84114 Phone number 801-538-8732 Website http://www.energy.utah.gov Coordinates 40.75959°, -111.88815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.75959,"lon":-111.88815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

496

In Situ Mercury Stabilization (ISMS) Treatment: Technology Maturation Project Phase I Status Report  

SciTech Connect

Mercury (Hg) was used to separate lithium-6 isotope for weapons production at the Y-12 Plant in Oak Ridge in the 1950s and 1960s. As much as two million pounds of elemental mercury was 'lost' or unaccounted for and a large portion of that material is believed to have entered the environment. The DOE site office in Oak Ridge has identified Hg pollution in soils, sediments, and streams as the most significant environmental challenge currently faced. In industry, large amounts of mercury have been used to manufacture products (e.g., fluorescent light bulbs, thermometers) and for chemical processing (e.g., production of chlorine and alkali via mercury electrochemical cells) and many of these industrial sites are now polluted with mercury contaminated soil as a result of previous releases and/or inadvertent leaks. Remediation techniques for Hg contaminated soils are either based on thermal desorption and recovery of the mercury or excavation and shipping of large volumes of material to remote facilities for treatment and disposal. Both of these alternatives are extremely costly. The Brookhaven National Laboratory (BNL) Environmental Research & Technology Division (ERTD) has demonstrated, in laboratory-scale experiments, the viability of treating mercury contaminated soils by means of sulfide treatment rods inserted into the soil through a process known as In Situ Mercury Stabilization (ISMS). This approach is partly based on BNL's patented and successfully licensed ex situ process for Hg treatment, Sulfur Polymer Stabilization/Solidification (SPSS) which converts Hg to the more stable sulfide form. The original experiments showed that Hg homogeneously distributed in soil rapidly migrates to form a high concentration zone of chemically stable mercuric sulfide near the treatment rods while concentrations of Hg in surrounding areas away from the treatment rods are depleted to acceptable levels. BSA has subsequently filed for patent protection on the ISMS technology. If further developed it has the potential for large-scale in-situ treatment of contaminated soils that could substantially reduce the prohibitive cost of thermal desorption and/or excavation and disposal. Licensing and spin-off technology development opportunities would then be viable. Depending on performance and regulatory acceptance, the treated mercury could either be excavated for disposal elsewhere or left in place as a stable alternative. Excavated spent treatment rods could be processed by the SPSS process to reduce the potential for dispersion and lower leachability even further. The Phase I objectives of the In Situ Mercury Stabilization Treatment Process Technology Maturation Project were to: (1) replicate the original bench-scale results that formed the basis for BNL's patent application, i.e., mercury contamination in soil will migrate to and react with 'rods' containing sulfur and/or sulfur compounds, (2) provide enough information to evaluate a decision to conduct further development, and (3) establish some of the critical parameters that require further technology maturation during Phase II. The information contained in this report summarizes the work conducted in Phase I to meet these objectives.

Kalb,P.D.; Milian, L.

2008-03-01T23:59:59.000Z

497

Prototypical Rod Consolidation Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 2  

Science Conference Proceedings (OSTI)

The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports.

Not Available

1993-05-01T23:59:59.000Z

498

Prototypical Rod Construction Demonstration Project. Phase 3, Final report: Volume 1, Cold checkout test report, Book 3  

Science Conference Proceedings (OSTI)

The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 3 discusses the following topics: Downender Test Results and Analysis Report; NFBC Canister Upender Test Results and Analysis Report; Fuel Assembly Handling Fixture Test Results and Analysis Report; and Fuel Canister Upender Test Results and Analysis Report.

Not Available

1993-05-01T23:59:59.000Z

499

Shape Stable and Highly Conductive Nano-Phase-Change Materials Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy is currently conducting research into shape-stable and highly conductive nano-phase change materials.

500

Phase 1 can-in-canister cold pour tests for the Plutonium Immobilization Project  

Science Conference Proceedings (OSTI)

This report discusses the Phase 1 Tests. Details on the test plan, hardware configuration, and test results are given.

Smith, M.E.

2000-01-20T23:59:59.000Z