National Library of Energy BETA

Sample records for utah permeable reactive

  1. Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at...

  2. Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site

    Broader source: Energy.gov [DOE]

    Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site 

  3. Permeable Reactive Barriers

    Broader source: Energy.gov [DOE]

    A permeable reactive barrier (PRB) is a zone of reactive material placed underground to intercept and react with a contaminant plume in ground water. Typically, PRBs are emplaced by replacing soils...

  4. Rejuvenating Permeable Reactive Barriers by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

  5. Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable

    Energy Savers [EERE]

    Reactive Barrier, Monticello, Utah | Department of Energy Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah PDF icon Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah More

  6. Field Projects: Monticello, Utah

    Broader source: Energy.gov [DOE]

    A permeable reactive barrier (PRB) of zero-valent iron is helping to clean up groundwater at a former uranium and vanadium ore processing mill at Monticello, Utah. LM managed remediation of...

  7. Final Report Phase II: Performance Evaluation of Permeable Reactive

    Energy Savers [EERE]

    Barriers and Potential for Rejuvenation by Chemical Flushing | Department of Energy Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing PDF icon Final Report Phase II:

  8. Hydraulic Conductivity of the Monticello Permeable Reactive Barrier...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Caon City, Colorado, Uranium Mill

  9. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect (OSTI)

    Snadra L. Fox; X. Xie; K. D. Schaller; E. P. Robertson; G. A. Bala

    2003-10-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones. Current technology relies on the use of cross-linking agents to initiate gelation. The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have produced a reactive alkaline-soluble biopolymer from Agrobacterium sp. ATCC no. 31749 that gels upon decreasing the pH of the polymeric solution. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability. Permeability modification was investigated by injecting solubilized biopolymer into Berea sandstone cores and defining the contribution of pH, salt, temperature, and Schuricht crude oil on biopolymer gelation. The biopolymer was soluble in KOH at a pH greater than 11.4 and gelled when the pH dropped below 10.8. The Berea sandstone core buffered the biopolymer solution, decreasing the pH sufficiently to form a gel, which subsequently decreased the permeability. The effluent pH of the control cores injected with 0.01 {und M} KOH (pH 12.0) and 0.10{und M} KOH (pH 13.0) decreased to 10.6 and 12.7, respectively. The permeability of the sandstone core injected with biopolymer was decreased to greater than 95% of the original permeability at 25 C in the presence of 2% NaCl, and Schuricht crude oil; however, the permeability increased when the temperature of the core was increased to 60 C. Residual resistance factors as high as 792 were seen in Berea cores treated with biopolymer. The buffering capacity of sandstone has been demonstrated to reduce the pH of a biopolymer solution sufficiently to cause the polymer to form a stable in-situ gel. This finding could potentially lead to alternate technology for permeability modification, thus extending the life of a reservoir and preventing premature abandonment.

  10. Performance of a Permeable Reactive Barrier Using Granular Zero-Valent

    Energy Savers [EERE]

    Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site | Department of Energy of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site PDF icon Performance of a

  11. Final Report- Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support

    Broader source: Energy.gov [DOE]

    Final Report - Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support

  12. Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final ReportPhase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical FlushingU. S. Environmental Protection Agency Region 8 SupportJanuary 2004

  13. Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation’s Cañon City, Colorado, Uranium Mill

    Broader source: Energy.gov [DOE]

    Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation’s Canon City, Colorado, Uranium Mill (April 2005)

  14. Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation’s Cañon City, Colorado, Uranium Mill

    Broader source: Energy.gov [DOE]

    Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation’s Cañon City, Colorado, Uranium Mill

  15. Organic/inorganic nanocomposites, methods of making, and uses as a permeable reactive barrier

    DOE Patents [OSTI]

    Harrup, Mason K.; Stewart, Frederick F.

    2007-05-15

    Nanocomposite materials having a composition including an inorganic constituent, a preformed organic polymer constituent, and a metal ion sequestration constituent are disclosed. The nanocomposites are characterized by being single phase, substantially homogeneous materials wherein the preformed polymer constituent and the inorganic constituent form an interpenetrating network with each other. The inorganic constituent may be an inorganic oxide, such as silicon dioxide, formed by the in situ catalyzed condensation of an inorganic precursor in the presence of the solvated polymer and metal ion sequestration constituent. The polymer constituent may be any hydrophilic polymer capable of forming a type I nanocomposite such as, polyacrylonitrile (PAN), polyethyleneoxide (PEO), polyethylene glycol (PEG), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), and combinations thereof. Nanocomposite materials of the present invention may be used as permeable reactive barriers (PRBs) to remediate contaminated groundwater. Methods for making nanocomposite materials, PRB systems, and methods of treating groundwater are also disclosed.

  16. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A.

    2003-10-01

    A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron, hydroxyapatite, magnesium oxide, and others. As the contaminant moves through the reactive material, the contaminant is either sorbed by the reactive material or chemically reacts with the material to form a less harmful substance. Because of the high risk associated with failure of a geological repository for nuclear waste, most nations favor a near-field multibarrier engineered system using backfill materials to prevent release of radionuclides into the surrounding groundwater.

  17. Evaluation of a permeable reactive barrier technology for use at Rocky Flats Environmental Technology Site (RFETS)

    SciTech Connect (OSTI)

    DWYER,BRIAN P.

    2000-01-01

    Three reactive materials were evaluated at laboratory scale to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The contaminants of concern (COCS) are uranium, TCE, PCE, carbon tetrachloride, americium, and vinyl chloride. The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a peculiar humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for the 903 Mound Site however, the iron filings were determined to be the least expensive media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the fill-scale demonstration of the reactive barrier technology. Additional design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were also determined and provided to the design team in support of the final design. The final design was completed by the Corps of Engineers in 1997 and the system was constructed in the summer of 1998. The treatment system began fill operation in December, 1998 and despite a few problems has been operational since. Results to date are consistent with the lab and pilot scale findings, i.e., complete removal of the contaminants of concern (COCs) prior to discharge to meet RFETS cleanup requirements. Furthermore, it is fair to say at this point in time that laboratory developed design parameters for the reactive barrier technology are sufficient for fuel scale design; however,the treatment system longevity and the long-term fate of the contaminants are questions that remain unanswered. This project along with others such as the Durango, CO and Monticello, UT reactive barriers will provide the data to determine the long-term effectiveness and return on investment (ROI) for this technology for comparison to the baseline pump and treat.

  18. Davis County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah Fruit Heights, Utah Kaysville, Utah Layton, Utah North Salt Lake, Utah South Weber, Utah Sunset, Utah Syracuse, Utah West Bountiful, Utah West Point, Utah Woods Cross,...

  19. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  20. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Ahmad Ghassemi

    2009-10-01

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

  1. POROSITY/PERMEABILITY CROSS-PLOTS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  2. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    SciTech Connect (OSTI)

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-02-27

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money.

  3. Wasatch County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Green Joules Pan Am Biofuels Inc Places in Wasatch County, Utah Charleston, Utah Daniel, Utah Heber, Utah Midway, Utah Park City, Utah Timber Lakes, Utah Wallsburg, Utah...

  4. Emery County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Clawson, Utah Cleveland, Utah Elmo, Utah Emery, Utah Ferron, Utah Green River, Utah Huntington, Utah Orangeville, Utah Retrieved from "http:en.openei.orgwindex.php?titleEmery...

  5. Milford, Utah FORGE Logo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logo Milford, Utah FORGE Logo Milford, Utah FORGE Logo More Documents & Publications Milford, Utah FORGE Logo Milford, Utah FORGE Map Milford, Utah FORGE Logo West Flank FORGE Logo ...

  6. Milford, Utah FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milford, Utah FORGE Map More Documents & Publications Milford, Utah FORGE Map Milford, Utah FORGE Logo Milford, Utah FORGE Map Newberry FORGE Map Milford, Utah FORGE Map Fallon ...

  7. Cache County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype B. Places in Cache County, Utah Amalga, Utah Avon, Utah Benson, Utah Cache, Utah Clarkston, Utah Cornish, Utah Cove, Utah Hyde Park, Utah...

  8. Variation in Hydraulic Conductivity Over Time at the Monticello Permeable

    Energy Savers [EERE]

    Reactive Barrier | Department of Energy Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier PDF icon Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier More Documents & Publications Hydraulic Conductivity of the Monticello

  9. Juab County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 5 Climate Zone Subtype B. Places in Juab County, Utah Eureka, Utah Levan, Utah Mona, Utah Nephi, Utah Rocky Ridge, Utah Santaquin, Utah Retrieved...

  10. Utah Department of Commerce | Open Energy Information

    Open Energy Info (EERE)

    Commerce Jump to: navigation, search Name: Utah Department of Commerce Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111 References: Utah Commerce Website1 This...

  11. Monticello, Utah, National Priorities List Sites Federal Facility...

    Office of Legacy Management (LM)

    ... restoration progress, and (5) operate the pump- and-treat groundwater contingency remedy ... situ permeable reactive barrier (PRB), (3) pump-and-treat remediation using ex situ ZVI ...

  12. BLM Utah State Office | Open Energy Information

    Open Energy Info (EERE)

    Utah State Office Jump to: navigation, search Logo: BLM Utah State Office Name: BLM Utah State Office Abbreviation: Utah Address: 440 West 200 South, Suite 500 Place: Salt Lake...

  13. Utah_cm_smith

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cindy and Mack Smith Site - Utah Wind Anemometer Loan Program Latitude: N. 37 deg. 44.034' Longitude: W. 109 deg. 17.28' Elevation: 6762' Placed in service: November 21, 2002...

  14. DOE - Office of Legacy Management -- Utah

    Office of Legacy Management (LM)

    Utah Utah ut_map Green River Site Mexican Hat Site Monticello Site Salt Lake City Sites (2)

  15. Utah Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy Corp., and the Utah Municipal Power Association's Cove Fort Station, which is located north of Beaver, Utah. Photo of the Bud L. Bonnett Geothermal Plant in Cove Fort Sulphurdale, UT

  16. Utah DEQ Air Permitting Branch Webpage | Open Energy Information

    Open Energy Info (EERE)

    link for Utah DEQ Air Permitting Branch Webpage Citation Utah Department of Environmental Quality. Utah DEQ Air Permitting Branch Webpage Internet. State of Utah. cited 201411...

  17. Utah Air Guidance Documents Webpage | Open Energy Information

    Open Energy Info (EERE)

    link for Utah Air Guidance Documents Webpage Citation Utah Department of Environmental Quality. Utah Air Guidance Documents Webpage Internet. State of Utah. cited 201411...

  18. Beaver County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Facility Blundell 2 Geothermal Facility Places in Beaver County, Utah Beaver, Utah Milford, Utah Minersville, Utah Retrieved from "http:en.openei.orgwindex.php?titleBeaver...

  19. Washington County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype B. Registered Energy Companies in Washington County, Utah Verdi Energy Group Places in Washington County, Utah Apple Valley, Utah Enterprise, Utah...

  20. Utah + workshop + GRR | OpenEI Community

    Open Energy Info (EERE)

    2012 - 14:45 Utah Meeting 1 Utah + workshop + GRR On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting flowcharts developed...

  1. Draper, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Draper is a city in Salt Lake County and Utah County, Utah. It falls under Utah's 2nd congressional...

  2. Utah DEQ Website | Open Energy Information

    Open Energy Info (EERE)

    Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Website Author Utah Department of Environmental Quality Published Utah Department of...

  3. Utah Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Logo: Utah Geological Survey Name: Utah Geological Survey Address: 1594 W. North Temple Place: Salt Lake City, Utah Zip: 84114-6100 Phone Number: 801.537.3300 Website:...

  4. Utah's Public Notice Website | Open Energy Information

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah's Public Notice Website Citation Utah.gov. Utah's Public Notice Website...

  5. University of Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Utah University of Utah FORGE logos 010416-06.jpg The Milford, Utah FORGE team, led by the University of Utah - Energy & Geoscience Institute (EGI), has identified a location where they propose to establish a geothermal laboratory. The proposed area has an established history of geothermal research and development, with a vast set of data from exploration wells and seismic stations that will help the Milford, Utah FORGE team characterize their potential site. The Milford, Utah

  6. Utah Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    Municipal Power Agency Place: Utah Phone Number: (801) 798-7489 Website: www.umpa.cc Facebook: https:www.facebook.compagesUtah-Municipal-Power-Agency152219714819535 Outage...

  7. Utah/Incentives | Open Energy Information

    Open Energy Info (EERE)

    RecruitmentSupport Yes City of St. George - Energy Efficient Homes Rebate Program (Utah) Utility Rebate Program No City of St. George - Energy Star Appliance Rebate Program (Utah)...

  8. Utah/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    UtahWind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >>...

  9. Utah Code Annotated | Open Energy Information

    Open Energy Info (EERE)

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  10. Orem, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah's 3rd congressional district.12 Registered Energy Companies in Orem, Utah Better Biodiesel Domestic Energy Partners Trulite Inc References US Census Bureau...

  11. Lehi, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah's 3rd congressional district.12 Registered Energy Companies in Lehi, Utah Tasco Engineering Inc References US Census Bureau Incorporated place and minor civil...

  12. Utah Solar Outlook March 2010

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  13. Utah/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    info@distributedwind.org Distributed Wind Energy Association Utah Wind Resources Utah Office of Energy Development: Wind Energy Information AWEA State Wind Energy Statistics: Utah...

  14. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect (OSTI)

    Siegrist, R.L.; Lowe, K.S.; Murdoch, L.D.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  15. Energy Incentive Programs, Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Energy Incentive Programs, Utah Updated February 2015 In 2009 Utah adopted a resolution that directs the Public Service Commission (PSC) to approve energy efficiency programs that will save at least 1% of electric utilities' annual retail sales, and 0.5% per year for gas utilities. Utah utilities budgeted over $65 million in 2013 to promote energy efficiency and load management in the state. What public-purpose-funded energy efficiency programs are available in my state? Utah has no

  16. Utah - UAC R907-1 - Utah Administrative Procedures | Open Energy...

    Open Energy Info (EERE)

    07-1 - Utah Administrative Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah - UAC R907-1 - Utah...

  17. In Situ Reduction of Aquifer Sediments to Create a Permeable Reactive Barrier to Remediate Chromate (CrO4 2-): BenchScale Tests to Determine Barrier Longevity

    SciTech Connect (OSTI)

    Szecsody, Jim E.; Fruchter, Jonathan S.; Vermeul, Vince R.; Williams, Mark D.; Devary, Brooks J.

    2005-01-02

    Laboratory tests were conducted to determine sediment geochemical properties needed to develop a design for implementation of the in-situ oxidation–reduction (redox) manipulation (ISRM) technology for chromate (CrO42–) remediation at a Superfund site and three other sites. A generalized hydrogeologic description of the Superfund site consist of a silty clay upper confining layer to a depth of ~6.71 m, the A1 unit from ~6.71 m to ~8.23 m, the A2 unit from ~8.23 m to ~10.67 m, and the A3 unit from ~10.67 m to ~12.19 m below ground surface. The A/B aquitard was encountered at a depth of ~12.19 m. The A1, A2, and A3 hydrostratigraphic units are all sandy gravels, but with considerable difference in fines content and subsequently, hydraulic conductivity. Hydraulic tests conducted in pilot test site monitoring wells indicate that the A1 unit has a 10 times lower hydraulic conductivity than the A2 unit, while the A3 unit hydraulic conductivity is significantly higher than that observed in the A2 unit (i.e., a trend of increasing permeability with depth). Calculated hydraulic conductivities, based on sieve analysis, show this same spatial trend. Results from a tracer injection test and electromagnetic borehole flow meter tests conducted at the site indicate a relatively high degree of formation heterogeneity. Laboratory experiments showed that chemical reduction yielded a redox capacity (0.26% iron(II)) that falls within the range of values observed in sediments analyzed from sites where field-scale deployment of the ISRM technology is currently in progress or being considered (0.1% Hanford 100D area, 0.24% Ft Lewis, 0.4% Moffett Federal Airfield). There was relatively little spatial variability in reducible iron (Fe) content between the three aquifer units. This mass of reducible Fe represents a sufficient quantity for a treatment zone emplaced to remain anoxic for 430 pore volumes, which would be expected to last tens of years, depending on aquifer flow rates and the concentration of oxidizing species in the groundwater. The geochemical analysis also indicated relatively low spatial variability in reducible Fe content although some depth dependent variability was indicated. Variation in the CrO42– concentration and flow rates between the A1 and A2 aquifer units indicated the necessity for greater reduction in the A2 aquifer unit, in order that both aquifer units prevent offsite CrO42– migration for the same amount of time. Results from these laboratory analyses of sediment core samples are used in conjunction with: (1) site specific geologic information obtained during installation of monitoring wells, (2) results from hydraulic tests conducted at the site, (3) electromagnetic borehole flow meter testing results, (4) results from a conservative tracer injection test, and (5) results of a series of S2O42– injection simulations of the field site, to develop a S2O42– injection strategy for deployment of the ISRM technology at sites to prevent offsite CrO42– migration.

  18. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  19. Annotated geothermal bibliography of Utah

    SciTech Connect (OSTI)

    Budding, K.E.; Bugden, M.H.

    1986-01-01

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  20. RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    Utah < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationUtah) Redirect page Jump to: navigation, search REDIRECT...

  1. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  2. Utah Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Lake City, Utah Zip: 84114 Phone Number: 801.965.4000 Website: www.udot.utah.govmainf?p100 References: UDOT homepage1 This article is a stub. You can help OpenEI by...

  3. Sandy, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Sandy is a city in Salt Lake County, Utah. It falls under Utah's 2nd congressional district.12 Registered...

  4. Utah Antidegradation Review Form | Open Energy Information

    Open Energy Info (EERE)

    Utah Antidegradation Review Form Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Antidegradation Review Form Form Type ApplicationNotice Form Topic...

  5. Utah Public Service Commission | Open Energy Information

    Open Energy Info (EERE)

    Lake City, Utah Zip: 84114 Phone Number: 801.530.6716 Website: www.psc.utah.govindex.html References: PSC homepage1 This article is a stub. You can help OpenEI by expanding...

  6. Utah Water Rights Flowchart | Open Energy Information

    Open Energy Info (EERE)

    Flowchart Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Rights Flowchart Abstract Provides access to flowchart of Utah's water rights...

  7. Utah Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    Utah Meeting 1 Home > Blogs > Kyoung's blog Kyoung's picture Submitted by Kyoung(150) Contributor 10 September, 2012 - 13:45 Utah + workshop + GRR On Thursday, September 6, we met...

  8. Milford, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Milford is a city in Beaver County, Utah. It falls under Utah's 3rd congressional...

  9. OpenEI Community - Utah + workshop + GRR

    Open Energy Info (EERE)

    Utah Meeting 1 http:en.openei.orgcommunityblogutah-meeting-1

    On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting...

  10. Monticello, Utah, Disposal and Processing Sites

    Office of Legacy Management (LM)

    Monticello, Utah, Disposal and Processing Sites This fact sheet provides information about the Monticello, Utah, Disposal and Processing Sites. These sites are managed by the U.S. Department of Energy Office of Legacy Management under the Comprehensive Environmental Response, Compensation, and Liability Act. Location of the Monticello, Utah, Disposal and Processing Sites Site Description and History The Monticello, Utah, Disposal and Processing Sites are located in and near the city of

  11. Pyrotechnic deflagration velocity and permeability

    SciTech Connect (OSTI)

    Begeal, D R; Stanton, P L

    1982-01-01

    Particle size, porosity, and permeability of the reactive material have long been considered to be important factors in propellant burning rates and the deflagration-to-detonation transition in explosives. It is reasonable to assume that these same parameters will also affect the deflagration velocity of pyrotechnics. This report describes an experimental program that addresses the permeability of porous solids (particulate beds), in terms of particle size and porosity, and the relationship between permeability and the behavior of pyrotechnics and explosives. The experimental techniques used to acquire permeability data and to characterize the pyrotechnic burning are discussed. Preliminary data have been obtained on the burning characteristics of titanium hydride/potassium perchlorate (THKP) and boron/calcium chromate (BCCR). With THKP, the velocity of a pressure wave (from hot product gases) in the unburned region shows unsteady behavior which is related to the initial porosity or permeability. Simultaneous measurements with pressure gauges and ion gauges reveal that the pressure wave precedes the burn front. Steady burning of BCCR was observed with pressure gauge diagnostics and with a microwave interferometry technique.

  12. Permeable Reactive Barriers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE installed a PRB in October 1995 to treat ground water from a uranium mill tailings ... DOE also installed a PRB in October 1995 to treat ground water from a uranium mill ...

  13. Prospects for Utah look good

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2006-01-15

    Utah enjoys its first boom in over a generation. Recently Arch Coal, Andalex, CONSOl Energy and PacifiCorp ramped up their coal mining operations or re-opened closed facilities. Arch Coal's Skyline mine was able to mine over 200,0000 tons of coal throughout 2005 and its SUFCO mine produced 7.5 mt of coal during 2005. The article based largely on the recent 'Annual review and forecast of Utah coal', reports on developments in the state whose coal production could break records in 2006. 1 ref., 4 photos.

  14. Utah | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Utah Gamma Shield Thunder Exercise Concludes National Nuclear Security Administration (NNSA) and the FBI announced today the completion of the Gamma Shield Thunder counterterrorism table-top exercise at LDS Hospital. The exercise is part of NNSA's Silent Thunder table-top series, which is aimed at giving federal, state and local

  15. Spanish Fork, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spanish Fork is a city in Utah County, Utah. It falls under Utah's 3rd congressional...

  16. Utah Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Board Jump to: navigation, search Name: Utah Oil and Gas Board Address: 1594 West North Temple Place: Utah Zip: 84116 Website: oilgas.ogm.utah.gov Coordinates: 40.7721389,...

  17. American Fork, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. American Fork is a city in Utah County, Utah. It falls under Utah's 2nd congressional...

  18. Utah State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Name: Utah State Historic Preservation Offic Address: 300 S. Rio Grande Street Place: Salt Lake City, Utah Zip: 84101 Website: history.utah.gov...

  19. Utah Division of State History | Open Energy Information

    Open Energy Info (EERE)

    History Jump to: navigation, search Logo: Utah Division of State History Name: Utah Division of State History Address: 300 S. Rio Grande St. Place: Salt Lake City, Utah Zip: 84101...

  20. City of Murray, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Murray, Utah (Utility Company) Jump to: navigation, search Name: City of Murray Place: Utah Phone Number: (801) 264-2730 Website: www.murray.utah.govindex.aspx Outage...

  1. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) Absaroka thrust - Paleozoic-cored structures. The Mesozoic-cored structures subplay represents a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in this subplay produce crude oil and associated gas. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplay. It represents a very continuous and linear, hanging wall, ramp anticline where the Twin Creek is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in both subplays consist of long, narrow, doubly plunging anticlines.

  2. Enel North America Utah Geothermal Working Group Meeting | Open...

    Open Energy Info (EERE)

    America Utah Geothermal Working Group Meeting Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Enel North America Utah Geothermal Working Group Meeting...

  3. Utah Division of Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah. The Division of Public Utilities, makes recommendations to the Utah Public Service Commission for rate-making purposes, applications, hearings and other...

  4. Guide to Permitting Electric Transmission Lines in Utah | Open...

    Open Energy Info (EERE)

    GuidanceGuideHandbook Abstract Guide to permitting requirements of federal, state, and local agencies. Author Utah Office of Energy Development Published Utah Office of Energy...

  5. Utah Roses Greenhouse Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Roses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Utah Roses Greenhouse Low Temperature Geothermal Facility Facility Utah Roses Sector...

  6. Utah Application to Appropriate Water | Open Energy Information

    Open Energy Info (EERE)

    Utah Application to Appropriate Water Abstract Required application for obtaining a right to appropriate water in Utah. Form Type ApplicationNotice Form Topic Filing for Water...

  7. Utah Code Title 73, Chapter 3, Appropriation | Open Energy Information

    Open Energy Info (EERE)

    (Manner of acquiring water rights) as established by the Utah Legislature in Salt Lake City, Utah. Published NA Year Signed or Took Effect 2012 Legal Citation Not...

  8. Utah State Parks and Recreation | Open Energy Information

    Open Energy Info (EERE)

    Recreation Jump to: navigation, search Name: Utah State Parks and Recreation Address: 1594 W North Temple, Suite 116 Place: Salt Lake City, Utah Zip: 84116 Phone Number:...

  9. Utah State Prison Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Prison Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Utah State Prison Space Heating Low Temperature Geothermal Facility Facility Utah State...

  10. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Utah Region Middle School Regional Utah Nevada Regional Middle School Science...

  11. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the High School Coach page. Utah Region High School Regional Utah Nevada Regional High School...

  12. Energy & Geoscience Institute at the University of Utah | Open...

    Open Energy Info (EERE)

    Geoscience Institute at the University of Utah Jump to: navigation, search Name: Energy & Geoscience Institute at the University of Utah Address: 423 Wakara Way Suite 300 Place:...

  13. Utah Office of Energy Development | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Utah Office of Energy Development Address: PO Box 144845 Place: Salt Lake City, Utah Zip: 84114 Phone Number: 801-538-8732 Website:...

  14. Utah R850-27 Geothermal Steam | Open Energy Information

    Open Energy Info (EERE)

    in Utah outlining the authority for the Utah School and Institutional Trust Lands Administration (UTLA) to administer trust land in the state, including the leasing of trust land...

  15. Utah School and Institutional Trust Lands Administration | Open...

    Open Energy Info (EERE)

    School and Institutional Trust Lands Administration Jump to: navigation, search Logo: Utah School and Institutional Trust Lands Administration Name: Utah School and Institutional...

  16. Utah Division of Water Rights Information Webpage | Open Energy...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Division of Water Rights Information Webpage Citation Utah Division of...

  17. Utah's 3rd congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    district in Utah. Registered Energy Companies in Utah's 3rd congressional district Better Biodiesel Composite Tower Solutions Domestic Energy Partners Evergreen Clean Energy FT...

  18. ,"Utah Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Utah Crude Oil + Lease Condensate Proved Reserves ... AM" "Back to Contents","Data 1: Utah Crude Oil + Lease Condensate Proved Reserves ...

  19. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona ...

  20. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:56 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Utah Natural Gas in ...

  1. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151989" ,"Release ...

  2. Utah Antidegradation FAQ | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Utah Antidegradation FAQPermittingRegulatory GuidanceSupplemental Material Abstract...

  3. Elberta, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleElberta,Utah&oldid233710" Feedback Contact needs updating Image needs updating Reference needed Missing...

  4. Utah Antiquities Section | Open Energy Information

    Open Energy Info (EERE)

    sites and artifacts, educate the public about them, and assist professionals who are researching these cultural resources. References "Utah State History: Archaeology Website"...

  5. Utah Labor Commission | Open Energy Information

    Open Energy Info (EERE)

    The Utah Labor Commission is the regulatory agency responsible for preserving the balance established by the legislature for protecting the health, safety, and economic...

  6. Utah Geothermal Presentation Bloomquist | Open Energy Information

    Open Energy Info (EERE)

    on geothermal energy development in Utah. Authors Dr. R. Gordon Bloomquist and Ph.D Organization Washington State University Energy Program Published Bloomquist, 2004 DOI...

  7. Daniel, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Daniel, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4707885, -111.4146275 Show Map Loading map... "minzoom":false,"mappingservice"...

  8. Green River, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site near Green River, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Green River, Utah, Disposal Site Site Description and History The Green River disposal site is about 0.5 mile east of the Green River and 1.5 miles southeast of the city of Green River, Utah. The site consists of an

  9. Steven K. Krueger, University of Utah

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cumulus Convection and the Boundary Layer at the Southern Great Plains ACRF Steven K. Krueger, University of Utah from Arakawa and Jung (2003) Interactions of Cumulus...

  10. Utah Antidegradation Review Implementation Guidance | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Antidegradation Review Implementation GuidancePermittingRegulatory...

  11. Utah Geothermal Institutional Handbook | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Geothermal Institutional HandbookPermittingRegulatory GuidanceGuide...

  12. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  13. Teacher and Students Bring Renewables to Utah

    Broader source: Energy.gov [DOE]

    The light bulb went off for high school teacher Andy Swapp in 1999 when he realized he could do something good with Milford, Utah's powerful wind.

  14. Utah Success StoryA Performance Contracting Program

    Broader source: Energy.gov [DOE]

    Provides an overview case study of Utah's Performance Contracting Program. Author: Energy Services Coalition

  15. New Weatherization Training Center Opens in Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Training Center Opens in Utah New Weatherization Training Center Opens in Utah May 25, 2010 - 6:32pm Addthis The Utah weatherization assistance program built a new demonstration house to train weatherization workers. The Intermountain Weatherization Training Center is located in a warehouse in Clearfield, Utah. | Photo courtesy of Intermountain Weatherization Training Center The Utah weatherization assistance program built a new demonstration house to train weatherization workers.

  16. Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loan Program Utah's Clean Fuels and Vehicle Technology Loan Program to someone by E-mail Share Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Facebook Tweet about Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Twitter Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Google Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan

  17. Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Boost Sustainability Utah Paperbox Adds Workplace Charging to Boost Sustainability to someone by E-mail Share Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Facebook Tweet about Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Twitter Bookmark Alternative Fuels Data Center: Utah Paperbox Adds Workplace Charging to Boost Sustainability on Google Bookmark Alternative Fuels Data Center: Utah Paperbox

  18. Utah Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Utah Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 74 83 103...

  19. Utah

    U.S. Energy Information Administration (EIA) Indexed Site

  20. An Examination of Avoided Costs in Utah

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-01-07

    The Utah Wind Working Group (UWWG) believes there are currently opportunities to encourage wind power development in the state by seeking changes to the avoided cost tariff paid to qualifying facilities (QFs). These opportunities have arisen as a result of a recent renegotiation of Pacificorp's Schedule 37 tariff for wind QFs under 3 MW, as well as an ongoing examination of Pacificorp's Schedule 38 tariff for wind QFs larger than 3 MW. It is expected that decisions made regarding Schedule 38 will also impact Schedule 37. Through the Laboratory Technical Assistance Program (Lab TAP), the UWWG has requested (through the Utah Energy Office) that LBNL provide technical assistance in determining whether an alternative method of calculating avoided costs that has been officially adopted in Idaho would lead to higher QF payments in Utah, and to discuss the pros and cons of this method relative to the methodology recently adopted under Schedule 37 in Utah. To accomplish this scope of work, I begin by summarizing the current method of calculating avoided costs in Utah (per Schedule 37) and Idaho (the ''surrogate avoided resource'' or SAR method). I then compare the two methods both qualitatively and quantitatively. Next I present Pacificorp's four main objections to the use of the SAR method, and discuss the reasonableness of each objection. Finally, I conclude with a few other potential considerations that might add value to wind QFs in Utah.

  1. Park City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park City is a city in Summit County and Wasatch County, Utah. It falls under Utah's 1st...

  2. City of Logan, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Logan, Utah (Utility Company) Jump to: navigation, search Name: City of Logan Place: Utah Phone Number: (435) 716-9090 Website: www.loganutah.orgLP Outage Hotline: (435) 716-9090...

  3. City of Santa Clara, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Santa Clara, Utah (Utility Company) Jump to: navigation, search Name: City of Santa Clara Place: Utah Phone Number: (435) 673-6712 Website: www.sccity.org Outage Hotline: (435)...

  4. File:UtahEnergyForumSiting.pdf | Open Energy Information

    Open Energy Info (EERE)

    UtahEnergyForumSiting.pdf Jump to: navigation, search File File history File usage File:UtahEnergyForumSiting.pdf Size of this preview: 800 600 pixels. Go to page 1 2 3 4 5 6 7...

  5. Mt Wheeler Power, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    Mt Wheeler Power, Inc (Utah) Jump to: navigation, search Name: Mt Wheeler Power, Inc Place: Utah Phone Number: 1 775-289-8981 Website: mwpower.net Facebook: https:...

  6. RAPID/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    Temperature Gradient Wells UAC Rule R655-1 Wells Used for the Discovery and Production of Geothermal Energy in the State of Utah UC 73-22 Utah Geothermal Resource Conservation Act...

  7. ,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"10302015 12:25:01 PM" "Back to Contents","Data 1: Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035UT3" "Date","Utah Natural...

  8. Utah Division of Forestry, Fire and State Lands | Open Energy...

    Open Energy Info (EERE)

    of Forestry, Fire and State Lands Address: 1594 W. North Temple, Ste 3520 Place: Salt Lake City, Utah Zip: 84114-5703 Phone Number: 801.538.5555 Website: forestry.utah.gov...

  9. Utah Division of Water Rights | Open Energy Information

    Open Energy Info (EERE)

    Name: Utah Division of Water Rights Address: 1594 West North Temple, Suite 220 Place: Salt Lake City, Utah Zip: 84114-6300 Phone Number: 801.538.7240 Website:...

  10. Utah Division of Wildlife Resources | Open Energy Information

    Open Energy Info (EERE)

    Name: Utah Division of Wildlife Resources Address: 1594 W North Temple, Suite 2110, Box 146301 Place: Salt Lake City, Utah Zip: 84114-6301 Phone Number: 801-538-4745 Website:...

  11. West Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Mountain is a census-designated place in Utah County, Utah.1 References US Census...

  12. Spring Lake, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Lake is a census-designated place in Utah County, Utah.1 References US Census...

  13. Utah DEQ Energy Pre-Design Program | Open Energy Information

    Open Energy Info (EERE)

    Pre-Design Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Energy Pre-Design Program Abstract Provides information about Utah's...

  14. Utah Sensitive Species List Webpage | Open Energy Information

    Open Energy Info (EERE)

    Species List Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Sensitive Species List Webpage Abstract Provides access to Utah Sensitive...

  15. City of Blanding, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Blanding, Utah (Utility Company) Jump to: navigation, search Name: City of Blanding Place: Utah Phone Number: 435-678-2791 Website: www.blanding-ut.gov Outage Hotline:...

  16. Iron County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype B. Registered Energy Companies in Iron County, Utah Solar Unlimited USA Places in Iron County, Utah...

  17. Norton v Southern Utah Wilderness Alliance, 542 US 55 | Open...

    Open Energy Info (EERE)

    v Southern Utah Wilderness Alliance, 542 US 55 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: Norton v Southern Utah Wilderness Alliance,...

  18. DOE Issues Final Environmental Impact Statement for Moab, Utah...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impact Statement for Moab, Utah Site DOE Issues Final Environmental Impact Statement for Moab, Utah Site July 25, 2005 - 2:27pm Addthis WASHINGTON, DC - The U.S. ...

  19. Utah Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Recovery Act State Memo Utah Recovery Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Utah are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, alternative fuel vehicles, and the

  20. Workplace Charging Challenge Partner: Utah Paperbox | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Paperbox Workplace Charging Challenge Partner: Utah Paperbox Workplace Charging Challenge Partner: Utah Paperbox Joined the Challenge: May 2014 Headquarters: Salt Lake City, UT Charging Location: Salt Lake City, UT Domestic Employees: 220 Salt Lake City has a unique air quality problem. In the wintertime, the city gets temperature inversions which can trap pollution. This can make the city's air quality very unhealthy in a matter of days. While there is no magic bullet, Utah PaperBox

  1. Utah State Historic Preservation Programmatic Agreement | Department of

    Energy Savers [EERE]

    Utah Recovery Act State Memo Utah Recovery Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Utah are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, alternative fuel vehicles, and the

  2. Bibliography of Utah radioactive occurrences. Volume I

    SciTech Connect (OSTI)

    Doelling, H.H. comp.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  3. Bibliography of Utah radioactive occurrences. Volume II

    SciTech Connect (OSTI)

    Doelling, H.H.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  4. Liquid-permeable electrode

    DOE Patents [OSTI]

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  5. Stainless Steel Permeability

    SciTech Connect (OSTI)

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  6. DOE Announces Preferred Alternatives For Moab, Utah, Uranium Mill Tailings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Preferred Alternatives For Moab, Utah, Uranium Mill Tailings DOE Announces Preferred Alternatives For Moab, Utah, Uranium Mill Tailings April 6, 2005 - 11:33am Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the department's preferred alternatives for remediation of the Moab, Utah, Uranium Mill Tailings Remedial Action Project Site: active groundwater remediation, and offsite disposal of the tailings pile and other contaminated materials to the

  7. Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Utah (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Utah

  8. Camp William Utah National Guard Wind Farm II | Open Energy Informatio...

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Camp William Utah National Guard Wind Farm II Facility Camp William Utah National Guard Sector Wind energy Facility Type Community Wind Facility...

  9. Microsoft Word - DOE-ID-13-027 Utah EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Risk Assessment of Structural Integrity of Transportation Casks - University of Utah SECTION B. Project Description The University of Utah proposes to...

  10. Summit Park, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7457808, -111.6115928 Show Map Loading map... "minzoom":false,"mappingservice":"...

  11. Conjunctive Surface and Groundwater Management in Utah. Implications...

    Office of Scientific and Technical Information (OSTI)

    ... We contrast Utah's approach with efforts undertaken in neighboring states and by the ... Language: English Subject: 29 ENERGY PLANNING, POLICY, AND ECONOMY Word Cloud More Like ...

  12. Utah Nonpoint Source Pollution Management Plan | Open Energy...

    Open Energy Info (EERE)

    Nonpoint Source Pollution Management Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Nonpoint Source...

  13. DOE - Office of Legacy Management -- University of Utah Medical...

    Office of Legacy Management (LM)

    RESEARCH CENTER UT.02-1 - DOE Letter; Fiore to Schiager; Subject: Elimination of Bureau of Mines and University of Utah Sites from FUSRAP Consideration; October 13, 1987....

  14. Red Cliffs Campground, Cedar City District, Utah | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This photograph shows the field station at Red Cliffs Campground in Utah's Cedar City District. Photovoltaic power systems allow the people working in these remote areas to have ...

  15. Utah Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    References: DNR Homepage1 The Department of Natural Resources helps ensure Utah's quality of life by managing and protecting the state's natural resources. The Department...

  16. ,"Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  17. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  18. Saratoga Springs, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3491173, -111.9046567 Show Map Loading map... "minzoom":false,"mappingservice...

  19. Glen Canyon National Recreation Area, Lake Powell, Utah | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Glen Canyon National Recreation Area, Lake Powell, Utah Glen Canyon National Recreation Area, Lake Powell, Utah Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina used diesel generators to supply power. They used 65,000 gallons of diesel fuel per year that had to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill was significant,

  20. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map...

  1. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map Loading map... "minzoom":false,"mapping...

  2. Changes in Vegetation at the Monticello, Utah, Disposal Site...

    Energy Savers [EERE]

    the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Cover Using Caisson...

  3. RAPID/Geothermal/Land Access/Utah | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessUtah < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  4. Utah Water Quality Standards Workgroup Website | Open Energy...

    Open Energy Info (EERE)

    Quality Standards Workgroup Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Quality Standards Workgroup Website Abstract This...

  5. Utah's 1st congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Energy Companies in Utah's 1st congressional district Blue Source LLC Ciralight Emery Energy Company Eneco Inc EnergySolutions Inc Genifuel Green Joules GreenFire Energy...

  6. Utah Underground Storage Tank Installation Permit | Open Energy...

    Open Energy Info (EERE)

    Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type Application...

  7. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  8. Utah Division of Water Quality | Open Energy Information

    Open Energy Info (EERE)

    Ground Water Quality Protection Permitting Contact 2 Contacts.png Woody Campbell http:www.waterquality.utah.gov Retrieved from "http:en.openei.orgw...

  9. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  10. Utah Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Injection Control Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Underground Injection Control Program Webpage Abstract Provides...

  11. Utah Department of Environmental Quality Hazardous Waste Permits...

    Open Energy Info (EERE)

    Hazardous Waste Permits Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Hazardous Waste Permits...

  12. Utah Natural Gas Deliveries to Electric Power Consumers (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Date: 5312016 Referring Pages: Natural Gas Delivered to Electric Power Consumers Utah Natural Gas Consumption by End Use Electric Power Consumption of Natural Gas (Summary)

  13. RAPID/Geothermal/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    may make modifications to the final permit based on any comments submitted during review. Air Quality Assessment Process In Utah, developers may be required to obtain an Air...

  14. ,"Utah Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  15. Weber County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Weber County, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2602635, -111.9522491 Show Map Loading map... "minzoom":false,"mappingse...

  16. RAPID/Geothermal/Water Use/Utah | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseUtah < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  17. Utah Water Right Information Webpage | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Right Information Webpage Abstract Provides information about obtaining a water rights...

  18. Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  19. Eagle Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eagle Mountain, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3141169, -112.006882 Show Map Loading map... "minzoom":false,"mappings...

  20. Reconnaissance of the hydrothermal resources of Utah

    SciTech Connect (OSTI)

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  1. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

    2003-07-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall production of the well, identify areas that may be by-passed by a waterflood, and prevent rapid water breakthrough. In the eastern Paradox Basin, Colorado, optimal drilling, development, and production practices consist of increasing the mud weight during drilling operations before penetrating the overpressured Desert Creek zone; centralizing treatment facilities; and mixing produced water from pumping oil wells with non-reservoir water and injecting the mixture into the reservoir downdip to reduce salt precipitation, dispose of produced water, and maintain reservoir pressure to create a low-cost waterflood. During this quarter, technology transfer activities consisted of technical presentations to members of the Technical Advisory Board in Colorado and the Colorado Geological Survey. The project home page was updated on the Utah Geological Survey Internet web site.

  2. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

  3. Utah - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Enter Search Term(s): Search eia.gov A-Z Index A-Z Index A B C D E F G H I J K L M N O P Q R S T U V W XYZ U.S. States Utah Utah Profile State Profile and Energy Estimates ...

  4. Major Oil Plays in Utah and Vicinity

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Association of Petroleum Geologists, for presentation at the 2004 annual meeting in Dallas, Texas. Another abstract was submitted for consideration on basin-wide correlation of Green River Formation plays and subplays in the Uinta Basin in Utah. The project home page was updated on the Utah Geological Survey Internet web site.

  5. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  6. Utah School Children “Help Utah Out, Turn off the Spout!”

    Broader source: Energy.gov [DOE]

    Utah is working to ensure the resiliency of its future water and energy systems with funding from the Energy Department’s State Energy Program. In fact, the state developed its own Water Energy in Action educational program –in conjunction with the National Energy Foundation – to educate K-12 students and teachers about the many uses of water.

  7. Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

    Broader source: Energy.gov [DOE]

    Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

  8. Utah Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,497 100.0 Total Net Summer Renewable Capacity 528 7.0 Geothermal 42 0.6 Hydro Conventional 255 3.4 Solar - - Wind 222 3.0 Wood/Wood Waste - - MSW/Landfill Gas 9 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 42,249 100.0 Total Renewable

  9. Utah Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",7497,100 "Total Net Summer Renewable Capacity",528,7 " Geothermal",42,0.6 " Hydro Conventional",255,3.4 " Solar","-","-"

  10. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    SciTech Connect (OSTI)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  11. Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2005-10-01

    Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A., and high-volatile bituminous coal from the Uinta-Piceance basin of Utah, U.S.A. using a newly developed strain measurement apparatus. The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain. The swelling and shrinkage (strain) in the coal samples resulting from the adsorption of carbon dioxide, nitrogen, methane, helium, and a mixture of gases was measured. Sorption-induced strain processes were shown to be reversible and easily modeled with a Langmuir-type equation. Extended Langmuir theory was applied to satisfactorily model strain caused by the adsorption of gas mixtures using the pure gas Langmuir strain constants. The amount of time required to obtain accurate strain data was greatly reduced compared to other strain measurement methods. Sorption-induced changes in permeability were also measured as a function of pres-sure. Cleat compressibility was found to be variable, not constant. Calculated variable cleat-compressibility constants were found to correlate well with previously published data for other coals. During permeability tests, sorption-induced matrix shrinkage was clearly demonstrated by higher permeability values at lower pore pressures while holding overburden pressure constant. Measured permeability data were modeled using three dif-ferent permeability models from the open literature that take into account sorption-induced matrix strain. All three models poorly matched the measured permeability data because they overestimated the impact of measured sorption-induced strain on permeabil-ity. However, by applying an experimentally derived expression to the measured strain data that accounts for the confining overburden pressure, pore pressure, coal type, and gas type, the permeability models were significantly improved.

  12. Gas permeability of carbon aerogels

    SciTech Connect (OSTI)

    Kong, F.; LeMay, J.D.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W. (Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

    1993-12-01

    Carbon aerogels are synthesized via the aqueous polycondensation of resorcinol with formaldehyde, followed by supercritical drying and subsequent pyrolysis at 1050 [degree]C. As a result of their interconnected porosity, ultrafine cell/pore size, and high surface area, carbon aerogels have many potential applications such as supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, the permeability of carbon aerogels was calculated from equations based upon Darcy's law. Our measurements show that carbon aerogels have permeabilities on the order of 10[sup [minus]12] to 10[sup [minus]10] cm[sup 2] over the density range from 0.05--0.44 g/cm[sup 3]. Like many other aerogel properties, the permeability of carbon aerogels follows a power law relationship with density, reflecting differences in the average mesopore size. Comparing the results from this study with the permeability of silica aerogels reported by other workers, we found that the permeability of aerogels is governed by a simple universal flow equation. This paper discusses the relationship between permeability, pore size, and density in carbon aerogels.

  13. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  14. Colorado Natural Gas Processed in Utah (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Utah (Million Cubic Feet) Colorado Natural Gas Processed in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 286 3,677 4,194 3,499 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed Colorado-Utah

  15. Moon Lake Electric Assn Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    search Name: Moon Lake Electric Assn Inc Place: Utah Phone Number: ALTAMONT OFFICE (435) 454-3611 -- DUCHESNE OFFICE (435) 738-5322 -- RANGELY OFFICE (970) 675-2291 --...

  16. Empire Electric Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    search Name: Empire Electric Assn, Inc Place: Utah Phone Number: 970-565-4444 or 800-709-3726 Website: www.eea.coop Outage Hotline: 970-565-4444 or 800-709-3726 References:...

  17. Utah Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  18. Shining Energy-saving LEDs on Utah Starry Nights

    Broader source: Energy.gov [DOE]

    Utah is known for its magnificent night skies, where stargazers can catch a glimpse of constellations or a rogue shooting star. Now some rural towns have found a way to create even better views—and conserve energy.

  19. Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  20. BLM Offers Geothermal Leases in Utah, Idaho, and Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bureau of Land Management (BLM) announced in early November that it will hold a competitive lease sale for geothermal energy development on 61 parcels totaling nearly 200,000 acres in the states of Utah, Oregon, and Idaho.

  1. Box Elder County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Box Elder County is a county in Utah. Its FIPS County Code is 003. It is classified as...

  2. ,"Utah Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:16 AM" "Back to Contents","Data 1: Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  3. Utah - UDOT - Accommodation of Utilities and the Control and...

    Open Energy Info (EERE)

    UDOT - Accommodation of Utilities and the Control and Protection of State Highway Rights of Way Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Utah -...

  4. Utah State Historic Preservation Office Webpage | Open Energy...

    Open Energy Info (EERE)

    Office Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah State Historic Preservation Office Webpage Abstract Provides overview of the role...

  5. Utah Department of Environmental Quality Forms Webpage | Open...

    Open Energy Info (EERE)

    Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Forms Webpage Abstract Provides access to forms...

  6. Utah Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    laws and works with individuals, community groups, and businesses to protect the quality of our air, land and water in the state of Utah. The following Divisions make up...

  7. Carbon County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Carbon County is a county in Utah. Its FIPS County Code is 007. It is classified as ASHRAE...

  8. City of Monroe, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    (Utility Company) Jump to: navigation, search Name: City of Monroe Place: Utah Phone Number: 435.527.4621 Website: www.littlegreenvalley.com Outage Hotline: 435.527.4621...

  9. Utah Rules of Appellate Procedure | Open Energy Information

    Open Energy Info (EERE)

    of Appellate Procedure Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah Rules of Appellate ProcedureLegal Abstract...

  10. Utah Water Rights Fee Schedule | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Rights Fee Schedule Abstract Water rights fee schedule based on amount appropriated....

  11. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun ...

  12. Utah Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Utah Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 68,211 95,670 93,934 98,598 99,233 241,904 274,470 286,592 286,929 1990's 334,067 333,591 319,017 348,010 368,585 308,174 265,546 249,930 242,070 211,514 2000's 169,553 166,505 136,843 161,275 193,093 187,524 193,836 195,701 202,380 412,639 2010's 454,832 490,233 535,365 448,687 419,773 - = No Data

  13. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  14. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  15. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  16. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  17. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 469 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Wyoming

  18. Conjunctive Surface and Groundwater Management in Utah. Implications for

    Office of Scientific and Technical Information (OSTI)

    Oil Shale and Oil Sands Development (Technical Report) | SciTech Connect Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development Citation Details In-Document Search Title: Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully

  19. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  20. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  1. File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf | Open Energy...

    Open Energy Info (EERE)

    3UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Size of this...

  2. File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf | Open Energy...

    Open Energy Info (EERE)

    3UTEGeothermalSteamLeaseUtahTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf Size of this preview:...

  3. Utah Full Proof of Beneficial Use of Water | Open Energy Information

    Open Energy Info (EERE)

    Utah Full Proof of Beneficial Use of Water Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Full Proof of Beneficial Use of Water Abstract Proof of...

  4. Utah - UC 54-14 - Utility Facility Review Board Act | Open Energy...

    Open Energy Info (EERE)

    Utah - UC 54-14 - Utility Facility Review Board Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah - UC 54-14 - Utility...

  5. UC 19-6-401 et seq. - Utah Underground Storage Tank Act | Open...

    Open Energy Info (EERE)

    9-6-401 et seq. - Utah Underground Storage Tank Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 19-6-401 et seq. - Utah...

  6. UC 73-22 Utah Geothermal Resource Conservation Act | Open Energy...

    Open Energy Info (EERE)

    Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: UC 73-22 Utah Geothermal Resource...

  7. UC 73-22 - Utah Geothermal Resource Conservation Act | Open Energy...

    Open Energy Info (EERE)

    - Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 73-22 - Utah Geothermal Resource...

  8. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect (OSTI)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  9. Novel additives to retard permeable flow

    SciTech Connect (OSTI)

    Golombok, Michael; Crane, Carel; Ineke, Erik; Welling, Marco; Harris, Jon

    2008-09-15

    Low concentrations of surfactant and cosolute in water, can selectively retard permeable flow in high permeability rocks compared to low permeability ones. This represents a way forward for more efficient areal sweep efficiency when water flooding a reservoir during improved oil recovery. (author)

  10. Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,464 37 720 690 953 0 1,189 541 251 133 2010's 7 833 22 640 31 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Utah Dry Natural Gas

  11. Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 568 17 978 729 946 6 1,147 484 258 92 2010's 530 758 12 478 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Utah Dry Natural Gas Proved Reserves Dry

  12. Utah Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,592 1,685 1,725 1,224 934 902 750 922 893 725 2010's 718 679 518 523 538 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Utah

  13. Utah Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Utah Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 127 277 2000's 108 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Utah Natural Gas Liquids Proved Reserves

  14. Utah Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming (Million Cubic Feet) Utah Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 11,554 9,075 7,975 8,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed Utah-Wyoming

  15. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect (OSTI)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  16. Utah Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,329 32,637 32,966 1990's 34,697 35,627 36,145 37,816 39,183 40,101 40,107 40,689 42,054 43,861 2000's 47,201 47,477 50,202 51,063 51,503 55,174 55,821 57,741 59,502 60,781 2010's 61,976 62,885 63,383 64,114 65,134 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Energy Department Recognizes University of Utah in Better Buildings Challenge

    Broader source: Energy.gov [DOE]

    As part of President Obama’s Better Buildings Challenge, the Energy Department recognized the University of Utah today for its leadership in energy efficiency and for reducing energy use by 40 percent in a historic campus building, saving the University $57,000 a year.

  18. Thermally induced mechanical and permeability changes around...

    Office of Scientific and Technical Information (OSTI)

    A numerical investigation is conducted on the impacts of the thermal loading history on the evolution of mechanical response and permeability field of a fractured rock mass ...

  19. Correlation of hydrothermal sericite composition with permeability...

    Open Energy Info (EERE)

    of hydrothermal sericite composition with permeability and temperature, Coso Hot Springs geothermal field, Inyo County, California Jump to: navigation, search OpenEI Reference...

  20. Structural Settings Of Hydrothermal Outflow- Fracture Permeability...

    Open Energy Info (EERE)

    Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  1. Magma energy and geothermal permeability enhancement programs

    SciTech Connect (OSTI)

    Dunn, J.C.

    1985-01-01

    Accomplishments during FY85 and project plans for FY86 are described for the Magma Energy Extraction and Permeability Enhancement programs. (ACR)

  2. A Hydrothermal Model of the Roosevelt Hot Springs Area, Utah...

    Open Energy Info (EERE)

    hydrothermal system appears to be controlled to some extent by the details of the permeability structure in the immediate vicinity if the high surface heat flow region. Authors...

  3. Permeability Calculation in a Fracture Network - 12197

    SciTech Connect (OSTI)

    Lee, Cheo Kyung; Kim, Hyo Won [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, Sung Paal [Korea Atomic Energy Research Institute, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01

    Laminar flow of a viscous fluid in the pore space of a saturated fractured rock medium is considered to calculate the effective permeability of the medium. The effective permeability is determined from the flow field which is calculated numerically by using the finite element method. The computation of permeability components is carried out with a few different discretizations for a number of fracture arrangements. Various features such as flow field in the fracture channels, the convergence of permeability, and the variation of permeability among different fracture networks are discussed. The longitudinal permeability in general appears greater than the transverse ones. The former shows minor variations with fracture arrangement whereas the latter appears to be more sensitive to the arrangement. From the calculations of the permeability in a rock medium with a fracture network (two parallel fractures aligned in the direction of 45-deg counterclockwise from the horizontal and two connecting fractures(narrowing, parallel and widening) the following conclusions are drawn. 1. The permeability of fractured medium not only depends on the primary orientation of the main fractures but also is noticeably influenced by the connecting fractures in the medium. 2. The transverse permeability (the permeability in the direction normal to the direction of the externally imposed macro-scale pressure gradient) is only a fraction of the longitudinal one, but is sensitive to the arrangement of the connecting fractures. 3. It is important to figure out the pattern of the fractures that connect (or cross) the main fractures for reliable calculation of the transverse permeability. (authors)

  4. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Technical analysis of prospective photovoltaic systems in Utah.

    SciTech Connect (OSTI)

    Quiroz, Jimmy Edward; Cameron, Christopher P.

    2012-02-01

    This report explores the technical feasibility of prospective utility-scale photovoltaic system (PV) deployments in Utah. Sandia National Laboratories worked with Rocky Mountain Power (RMP), a division of PacifiCorp operating in Utah, to evaluate prospective 2-megawatt (MW) PV plants in different locations with respect to energy production and possible impact on the RMP system and customers. The study focused on 2-MW{sub AC} nameplate PV systems of different PV technologies and different tracking configurations. Technical feasibility was evaluated at three different potential locations in the RMP distribution system. An advanced distribution simulation tool was used to conduct detailed time-series analysis on each feeder and provide results on the impacts on voltage, demand, voltage regulation equipment operations, and flicker. Annual energy performance was estimated.

  6. Effect of Dead Algae on Soil Permeability

    SciTech Connect (OSTI)

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  7. Microsoft Word - DOE-ID-12-006 Utah EC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SECTION A. Project Title: Acquisition of Specific Equipment to Enhance Performance, Control and Operational Capability of the University of Utah TRIGA Facilities SECTION B....

  8. Completion of the Five-Year Reviews for the Monticello, Utah...

    Broader source: Energy.gov (indexed) [DOE]

    ... Workshop on Uranium Legacy Sites Optimizing the Use of Federal Lands Through Disposition DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah

  9. Microsoft Word - DOE-ID-14-014 Utah B1-31.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Description The University of Utah proposes to acquire an isothermal titration calorimeter (ITC) for the measurement of thermodynamic properties of actinide complexes, and...

  10. Landslides and debris flows in Ephraim Canyon, central Utah

    SciTech Connect (OSTI)

    Baum, R.L.; Fleming, R.W.

    1989-01-01

    The geology of 36 km{sup 2} in Ephraim Canyon, on the west side of the Wasatch Plateau, central Utah, was mapped at a scale of 1:12,000 following the occurrence of numerous landslides in 1983. The geologic map shows the distribution of the landslides and debris flows of 1983-86, as well as older landslide deposits, other surficial deposits, and bedrock. Several of the recent landslides are described and illustrated by means of maps or photographs.

  11. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997

    SciTech Connect (OSTI)

    Parra, J.O.; Collier, H.A.; Owen, T.E.

    1997-06-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

  12. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    Broader source: Energy.gov [DOE]

    Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

  13. Sustainability of Shear-Induced Permeability for EGS Reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study ...

  14. Stress-dependent permeability of fractured rock masses: A numerical...

    Office of Scientific and Technical Information (OSTI)

    permeability of fractured rock masses: A numerical study Citation Details In-Document Search Title: Stress-dependent permeability of fractured rock masses: A numerical study We ...

  15. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline ...

  16. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of ...

  17. Experiments and modeling of variably permeable carbonate reservoir samples in contact with CO₂-acidified brines

    SciTech Connect (OSTI)

    Smith, Megan M.; Hao, Yue; Mason, Harris E.; Carroll, Susan A.

    2014-12-31

    Reactive experiments were performed to expose sample cores from the Arbuckle carbonate reservoir to CO₂-acidified brine under reservoir temperature and pressure conditions. The samples consisted of dolomite with varying quantities of calcite and silica/chert. The timescales of monitored pressure decline across each sample in response to CO₂ exposure, as well as the amount of and nature of dissolution features, varied widely among these three experiments. For all samples cores, the experimentally measured initial permeability was at least one order of magnitude or more lower than the values estimated from downhole methods. Nondestructive X-ray computed tomography (XRCT) imaging revealed dissolution features including “wormholes,” removal of fracture-filling crystals, and widening of pre-existing pore spaces. In the injection zone sample, multiple fractures may have contributed to the high initial permeability of this core and restricted the distribution of CO₂-induced mineral dissolution. In contrast, the pre-existing porosity of the baffle zone sample was much lower and less connected, leading to a lower initial permeability and contributing to the development of a single dissolution channel. While calcite may make up only a small percentage of the overall sample composition, its location and the effects of its dissolution have an outsized effect on permeability responses to CO₂ exposure. The XRCT data presented here are informative for building the model domain for numerical simulations of these experiments but require calibration by higher resolution means to confidently evaluate different porosity-permeability relationships.

  18. Moisture Durability of Vapor Permeable Insulating Sheathing ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    drying (by virtue of its vapor permeability). However, it also allows inward-driven moisture to fow through the insulation and contact the water resisting barrier (WRB), which is ...

  19. Fracture-permeability behavior of shale

    SciTech Connect (OSTI)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  20. Fracture-permeability behavior of shale

    SciTech Connect (OSTI)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO? sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  1. Fracture-permeability behavior of shale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  2. System for reactivating catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  3. Utah Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Utah Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 44 -35 1980's -22 44 307 4 -44 -65 -68 -45 -424 260 1990's 8 126 136 43 -82 -63 44 -40 97 -56 2000's 4 135 13 40 113 65 -11 17 -4 1 2010's -80 134 289 -582 -20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  4. Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 58 54 1980's 61 79 87 68 76 73 60 60 40 64 1990's 71 81 111 165 184 165 180 177 216 220 2000's 226 288 286 278 282 308 349 365 417 447 2010's 432 449 478 456 433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  5. Utah Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Utah Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 93 62 97 1980's 156 413 60 93 41 27 51 12 3 9 1990's 55 21 37 11 43 19 126 164 133 618 2000's 266 269 368 230 299 596 1,408 744 801 164 2010's 106 643 447 117 164 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  6. Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 79 202 89 1980's 123 84 99 42 257 83 78 144 277 84 1990's 101 83 99 24 201 74 79 34 110 322 2000's 110 606 490 767 278 112 502 325 564 491 2010's 219 341 1,926 444 617 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 37 117 62 1980's 293 414 55 176 80 111 51 281 86 87 1990's 112 204 161 337 172 69 125 293 645 801 2000's 177 805 207 188 475 186 218 1,113 379 1,342 2010's 872 813 1,349 484 752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. Utah Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 551 627 550 1990's 1,508 631 783 345 252 713 923 3,379 3,597 3,625 2000's 3,576 3,535 949 924 312 191 274 278 313 293 2010's 293 286 302 323 328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  9. Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 5 11 8 20 26 31 31 28 25 23 1990's 16 17 15 14 14 9 8 8 8 14 2000's 7 11 11 10 10 12 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  10. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  11. Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 36 58 2000's 91 100 91 76 61 52 164 174 140 235 2010's 257 258 368 312 261 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  12. Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 52 62 90 2010's 69 78 87 57 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Proved Reserves as of

  13. Utah Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 54 116 2010's 132 196 181 169 206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Proved

  14. Utah Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",191,164,254,279,277 "Hydro Conventional",747,539,668,835,696 "Solar","-","-","-","-","-" "Wind","-","-",24,160,448 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill Gas",15,31,24,48,56 "Other

  15. Utah Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",40306,44634,45466,42034,40599 " Coal",36856,37171,38020,35526,34057 " Petroleum",62,39,44,36,50 " Natural Gas",3389,7424,7366,6444,6455 " Other Gases","-","-",36,28,36 "Nuclear","-","-","-","-","-" "Renewables",952,734,970,1322,1476 "Pumped

  16. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  18. Utah's "Solar For Schools" Program Is Bringing New Light to Education |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Utah's "Solar For Schools" Program Is Bringing New Light to Education Utah's "Solar For Schools" Program Is Bringing New Light to Education November 12, 2010 - 9:54am Addthis Gil Sperling, U.S. Department of Energy; Elise Brown, Utah State Energy Program; Janet Jameson, Hillside Teacher; Prathusha Boppana, Hillside Student; Martell Menlove, Deputy Supt of Schools; Chuck McGinnis, Johnson Controls at the Solar for Schools ribbon cutting. | Department

  19. Utah. Code. Ann. 19-5-115: Spills or discharges of oil or...

    Open Energy Info (EERE)

    Utah. Code. Ann. 19-5-115: Spills or discharges of oil or other substance Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  20. Utah - UC 54-2 - Public Utilities Definitions | Open Energy Informatio...

    Open Energy Info (EERE)

    2 - Public Utilities Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah - UC 54-2 - Public Utilities...

  1. Utah UC 54-2-1, Public Utilities Definitions | Open Energy Information

    Open Energy Info (EERE)

    2-1, Public Utilities Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah UC 54-2-1, Public Utilities...

  2. Low-Temperature Geothermal Water in Utah: A compilation of Data...

    Open Energy Info (EERE)

    Temperature Geothermal Water in Utah: A compilation of Data for Thermal Wells and Springs Through 1993 Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  3. Utah UC 54-4, Authority of Commission Over Public Utilities ...

    Open Energy Info (EERE)

    4, Authority of Commission Over Public Utilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah UC 54-4, Authority of...

  4. LONG-TERM SURVEILLANCE PLAN FOR THE GREEN RIVER, UTAH DISPOSAL...

    Office of Legacy Management (LM)

    ... for the Green River, Utah site ...... 5-8 This plate is not available in PDF form For more information, contact the U.S. Department of Energy Grand Junction ...

  5. Utah - UAC R930-6 - Access Management | Open Energy Information

    Open Energy Info (EERE)

    UAC R930-6 - Access Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah - UAC R930-6 - Access ManagementLegal...

  6. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Utah

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Utah.

  7. Utah R652-20-3400 Geothermal Steam Leases | Open Energy Information

    Open Energy Info (EERE)

    Ruleregulation in Utah outlining the lease process for geothermal resources on (non-trust) state land Published NA Year Signed or Took Effect 2014 Legal Citation R652-20-3400...

  8. Long-Term Flow Test No. 1, Roosevelt Hot Springs, Utah | Open...

    Open Energy Info (EERE)

    Flow Test No. 1, Roosevelt Hot Springs, Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Long-Term Flow Test No. 1, Roosevelt Hot Springs,...

  9. Utah - T-223 Application for Right-of-Way Encroachment Permit...

    Open Energy Info (EERE)

    T-223 Application for Right-of-Way Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Utah - T-223 Application for Right-of-Way...

  10. Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,806 5,621 6,286 6,775 8,970 7,970 6,596 1990's 10,573 4,597 3,866 3,241 3,322 18,520 18,570 16,478 19,481 15,930 2000's 16,394 14,578 17,163 16,398 15,802 17,216 20,221 21,715 18,169 20,222 2010's 22,022 23,209 28,165 28,165 25,336 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Utah Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,329 32,637 32,966 1990's 34,697 35,627 36,145 37,816 39,183 40,101 40,107 40,689 42,054 43,861 2000's 47,201 47,477 50,202 51,063 51,503 55,174 55,821 57,741 59,502 60,781 2010's 61,976 62,885 63,383 64,114 65,134 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Utah Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 414,020 418,569 432,377 1990's 453,023 455,649 467,664 484,438 503,583 523,622 562,343 567,786 588,364 609,603 2000's 641,111 657,728 660,677 678,833 701,255 743,761 754,554 778,644 794,880 810,442 2010's 821,525 830,219 840,687 854,389 869,052 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,935 2,788 2,561 2000's 2,674 4,161 5,984 7,347 8,278 8,859 11,156 11,970 11,532 10,239 2010's 10,347 11,374 12,902 13,441 14,061 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  14. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,732 2,754 2,715 6,514 8,701 8,919 9,615 1990's 9,146 9,141 8,745 9,285 9,951 8,492 8,549 8,141 7,985 7,880 2000's 8,276 5,436 4,534 4,481 3,370 3,914 3,739 2,779 2,206 1,573 2010's 1,616 3,063 3,031 5,996 4,782 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Utah Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Utah Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 165,253 169,776 159,889 2000's 164,557 159,299 163,379 154,125 155,891 160,275 187,399 219,700 224,188 214,220 2010's 219,213 222,227 223,039 247,285 242,457 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  16. Utah Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Utah Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,158 74,698 52,324 21,491 48,654 49,378 58,356 1990's 57,098 62,241 86,682 93,894 154,907 153,804 168,944 174,275 190,230 194,413 2000's 218,283 215,527 250,118 202,784 250,261 267,766 319,268 NA 276,340 389,830

  17. Utah Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 17 16 17 17 17 17 17 17 17 17 17 17 2011 25 22 25 24 25 24 25 25 24 25 24 25 2012 24 23 24 24 24 24 24 24 24 24 24 24 2013 19 17 19 18 19 18 19 19 18 19 18 19 2014 22 20 22 22 22 22 22 22 22 22 22 22 2015 28 25 28 27 28 21 22 22 22 22 22 22 2016 25 22

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  18. Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 650 1980's 870 1,722 1,928 2,112 1,984 1,897 1,795 1,870 1,509 1,498 1990's 1,432 1,532 1,709 1,909 1,631 1,424 1,446 1,695 2,293 3,050 2000's 4,125 4,450 3,915 3,318 3,661 4,051 4,894 6,095 6,393 6,810

  19. An Experimental Study of Micron-Size Zero-Valent Iron Emplacement in Permeable Porous Media Using Polymer-Enhanced Fluids

    SciTech Connect (OSTI)

    Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

    2005-12-22

    At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. One possible cause for premature chromate breakthrough is associated with the presence of high-permeability zones in the aquifer. In these zones, groundwater moves relatively fast and is able to oxidize iron more rapidly. There is also a possibility that the high-permeability flow paths are deficient in reducing equivalents (e.g. reactive iron), required for barrier performance. One way enhancement of the current barrier reductive capacity can be achieved is by the addition of micron-scale zero-valent iron to the high-permeability zones within the aquifer. The potential emplacement of zero-valent iron (Fe0) into high-permeability Hanford sediments (Ringold Unit E gravels) using shear-thinning fluids containing polymers was investigated in three-dimensional wedge-shaped aquifer models. Polymers were used to create a suspension viscous enough to keep the Fe0 in solution for extended time periods to improve colloid movement into the porous media without causing a permanent detrimental decrease in hydraulic conductivity. Porous media were packed in the wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone in between two low-permeability zones or a high-permeability channel surrounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments.

  20. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  1. Experiments and modeling of variably permeable carbonate reservoir samples in contact with CO₂-acidified brines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Megan M.; Hao, Yue; Mason, Harris E.; Carroll, Susan A.

    2014-12-31

    Reactive experiments were performed to expose sample cores from the Arbuckle carbonate reservoir to CO₂-acidified brine under reservoir temperature and pressure conditions. The samples consisted of dolomite with varying quantities of calcite and silica/chert. The timescales of monitored pressure decline across each sample in response to CO₂ exposure, as well as the amount of and nature of dissolution features, varied widely among these three experiments. For all samples cores, the experimentally measured initial permeability was at least one order of magnitude or more lower than the values estimated from downhole methods. Nondestructive X-ray computed tomography (XRCT) imaging revealed dissolution featuresmore » including “wormholes,” removal of fracture-filling crystals, and widening of pre-existing pore spaces. In the injection zone sample, multiple fractures may have contributed to the high initial permeability of this core and restricted the distribution of CO₂-induced mineral dissolution. In contrast, the pre-existing porosity of the baffle zone sample was much lower and less connected, leading to a lower initial permeability and contributing to the development of a single dissolution channel. While calcite may make up only a small percentage of the overall sample composition, its location and the effects of its dissolution have an outsized effect on permeability responses to CO₂ exposure. The XRCT data presented here are informative for building the model domain for numerical simulations of these experiments but require calibration by higher resolution means to confidently evaluate different porosity-permeability relationships.« less

  2. Endothelial cell permeability to water and antipyrine

    SciTech Connect (OSTI)

    Garrick, R.A.

    1986-03-05

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water (/sup 3/HHO) and /sup 14/C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for /sup 3/HHO through the packed cells (D), the intracellular material (D/sub 2/), and the extracellular material (D/sub 1/) were 0.682, 0.932 and 2.45 x 10/sup -5/ cm/sup 2/ s/sup -1/ and for AP were 0.273, 0.355 and 1.13 x 10/sup -5/ cm/sup 2/ s/sup -1/ respectively. The permeability coefficient calculated by the series-parallel pathway model for /sup 3/HHO was higher than that for AP and for both /sup 3/HHO and AP were lower than those calculated for isolated lung cells and erythrocytes.

  3. Patterns of permeability in eolian deposits

    SciTech Connect (OSTI)

    Goggin, D.J.; Chandler, M.A.; Kocurek, G.; Lake, L.W.

    1988-06-01

    The eolian, Jurassic Page sandstone of northeastern Arizona is marked by a highly ordered heterogeneity. The heterogeneity is expressed by the intricate association of stratification types, which are a direct result of the depositional processes. The dominant stratification types in eolian reservoirs are grainflow, grainfall, and wind-ripple deposits, which form on the lee faces of migrating dunes; interdune deposits, which form between migrating dunes; and extra-erg deposits, which occur sporadically when other depositional environments encroach upon an eolian system. These stratification types each have a unique permeability range, which implies that the fluid migration routes in eolian reservoirs will be dictated by the geometry and types of stratification present. One of the most important aspects of this study is the correlation of qualitative geologic descriptions with quantitative variables such as permeability. About 2,000 measurements were made with a field minipermeameter on an outcrop of the Page sandstone. These data show that three distinct permeability modes directly relate to the different stratification types.

  4. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-08-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  5. Review of existing reactive transport software

    SciTech Connect (OSTI)

    Glassley, W., LLNL

    1998-02-03

    Simulations of thermal and hydrological evolution following the potential emplacement of a subterranean nuclear waste repository at Yucca Mountain, NV provide data that suggest the inevitability of dependent, simultaneous chemical evolution in this system. These chemical changes will modify significantly both the magnitude and structure of local porosity and permeability; hence, they will have a dynamic feedback effect on the evolving thermal and hydrological regime. Yet, despite this intimate interdependence of transport and chemical processes, a rigorous quantitative analysis of the post- emplacement environment that incorporates this critical feedback mechanism has not been completed to date. As an initial step in this direction, the present document outlines the fundamental chemical and transport processes that must be accounted for in such an analysis, and reviews the inventory of existing software that encodes these processed in explicitly coupled form. A companion report describes the prioritization of specific capabilities that are needed for modeling post-emplacement reactive transport at Yucca Mountain.

  6. Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium

    Energy Savers [EERE]

    Alpena Biorefinery Alpena Biorefinery Alpena Biorefinery The American Process Inc. (API) Alpena Biorefinery converts the industrial waste stream from a neighboring board manufacturing mill into a cellulosic biofuel and by-product. API's innovative conversion process has helped the mill to significantly reduce its waste treatment costs, increase its economic viability, and improve the job retention outlook for its 200 employees. In addition to assisting this major employer in Alpena, Michigan,

  7. Utah Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Utah Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,633 3,266 3,412 1970's 1,493 3,822 3,382 3,489 3,958 3,659 4,032 4,524 3,570 3,950 1980's 4,075 5,219 3,930 4,180 4,259 3,874 10,139 12,396 21,237 18,302 1990's 17,579 14,392 11,851 13,300 13,780 13,679 10,970 17,872 11,801 11,407 2000's 12,795 11,379 3,352 3,404 3,381 2,815 2,911 2,729 3,280 8,489 2010's

  8. Geology and resources of the Tar Sand Triangle, southeastern Utah

    SciTech Connect (OSTI)

    Dana, G.F.; Oliver, R.L.; Elliott, J.R.

    1984-05-01

    The Tar Sand Triangle is located in southeastern Utah between the Dirty Devil and Colorado Rivers and covers an area of about 200 square miles. The geology of the area consists of gently northwest dipping strata exposed in the box canyons and slopes of the canyonlands morphology. Strata in the area range in age from Jurassic to Permian. The majority of tar sand saturation is found in the Permian White Rim Sandstone Member of the Cutler Formation. The White Rim Sandstone Member consists of a clean, well-sorted sandstone which was deposited in a shallow marine environment. Resources were calculated from analytical data from the three coreholes drilled by the Laramie Energy Technology Center and other available data. The total in-place resources, determined from this study, are 6.3 billion barels. Previous estimates ranged from 2.9 to 16 million barrels. More coring and analyses will be necessary before a more accurate determination of resources can be attempted. 8 references, 11 figures, 7 tables.

  9. Utah Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038 1,040 1,040 1,041 1,038 1,037 2015 1,039 1,046 1,047 1,049 1,043 1,043 1,043 1,043 1,042 1,044 1,044 1,046 2016 1,046 1,043

    % of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9

  10. Utah Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Utah Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 59,806 56,937 55,229 54,606 57,328 55,249 67,314 75,921 83,365 86,778 66,668 58,461 1991 61,574 54,369 50,745 51,761 54,314 60,156 66,484 70,498 74,646 75,367 70,399 63,453 1992 59,541 59,119 59,059 60,896 64,403 67,171 70,690 75,362 78,483 79,756 74,021 67,181 1993 61,308 56,251 52,595 52,028 58,713 65,349 69,968 75,120 80,183

  11. Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.16 0.15 1970's 0.15 0.17 0.17 0.19 0.41 0.48 0.50 0.61 0.64 0.72 1980's 1.12 1.10 3.06 3.40 4.08 3.52 2.90 1.88 2.39 1.58 1990's 1.70 1.54 1.63 1.77 1.54 1.15 1.39 1.86 1.73 1.93 2000's 3.28 3.52 1.99 4.11 5.24 7.16 5.49 NA 6.15 3.38 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA =

  12. Reactive power compensator

    DOE Patents [OSTI]

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  13. Reactive Power Compensator.

    DOE Patents [OSTI]

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  14. Gas permeability measurements for film envelope materials

    DOE Patents [OSTI]

    Ludtka, G.M.; Kollie, T.G.; Watkin, D.C.; Walton, D.G.

    1998-05-12

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the ``body-filled panel.`` Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials. 4 figs.

  15. Gas permeability measurements for film envelope materials

    DOE Patents [OSTI]

    Ludtka, Gerard M.; Kollie, Thomas G.; Watkin, David C.; Walton, David G.

    1998-01-01

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the "body-filled panel". Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials.

  16. Gas permeable electrode for electrochemical system

    DOE Patents [OSTI]

    Ludwig, Frank A.; Townsend, Carl W.

    1989-01-01

    An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.

  17. Methods and apparatuses for reagent delivery, reactive barrier formation, and pest control

    DOE Patents [OSTI]

    Gilmore, Tyler [Pasco, WA; Kaplan, Daniel I [Aiken, SC; Last, George [Richland, WA

    2002-07-09

    A reagent delivery method includes positioning reagent delivery tubes in contact with soil. The tubes can include a wall that is permeable to a soil-modifying reagent. The method further includes supplying the reagent in the tubes, diffusing the reagent through the permeable wall and into the soil, and chemically modifying a selected component of the soil using the reagent. The tubes can be in subsurface contact with soil, including groundwater, and can be placed with directional drilling equipment independent of groundwater well casings. The soil-modifying reagent includes a variety of gases, liquids, colloids, and adsorbents that may be reactive or non-reactive with soil components. The method may be used inter alia to form reactive barriers, control pests, and enhance soil nutrients for microbes and plants.

  18. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    SciTech Connect (OSTI)

    Lenormand, R.; Thiele, M.R.

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  19. National Uranium Resource Evaluation: Moab Quadrangle, Colorado and Utah

    SciTech Connect (OSTI)

    Campbell, J.A.; Franczyk, K.J.; Lupe, R.D.; Peterson, F.

    1982-09-01

    Portions of the Salt Wash Member of the Morrison, the Chinle, the Rico, the Cutler, and the Entrada Formations are favorable for uranium deposits that meet the minimum size and grade requirements of the US Department of Energy within the Moab 1' x 2' Quadrangle, Utah and Colorado. Nine areas are judged favorable for the Late Jurassic Salt Wash Member. The criteria used to evaluate these areas as favorable include the presence of (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Three favorable areas have been outlined for the Late Triassic Chinle Formation. The criteria used to evaluate these areas are the sandstone-to-shale ratios for the Chinle Formation and the distribution of the Petrified Forest Member of the Chinle, which is considered the source for the uranium. Two favorable areas have been delineated for the Permian Cutler Formation, and one for the Permian Rico Formation. The criteria used to outline favorable areas are the distribution of favorable facies within each formation. Favorable facies are those that are a result of deposition in environments that are transitional between fluvial and marine. One favorable area is outlined in the Jurassic Entrada Sandstone in the southeastern corner of the quadrangle in the Placerville district. Boundaries for this area were established by geologic mapping.

  20. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    SciTech Connect (OSTI)

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  1. Assessing the relative permeability of heterogeneous reservoir rock

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Assessing the relative permeability of heterogeneous reservoir rock Citation Details In-Document Search Title: Assessing the relative permeability of heterogeneous reservoir rock Reservoir engineers are often faced with heterogeneous core material, for which conventional methods of estimating relative permeability are susceptible to error and may lead to incorrect conclusions regarding displacement efficiency, wettability and reservoir performance.

  2. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  3. Reactive power compensating system

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  4. Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT Prepared By Terry Brown, Jeffrey Morris, Patrick Richards and Joel...

  5. Fractured rock stress-permeability relationships from in situ...

    Office of Scientific and Technical Information (OSTI)

    Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings Citation Details In-Document Search Title: Fractured...

  6. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  7. Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal...

    Open Energy Info (EERE)

    Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and...

  8. TEST DEVICE FOR MEASURING PERMEABILITY OF A BARRIER MATERIAL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partners (27) Visual Patent Search Success Stories Return to Search TEST DEVICE FOR ... Transfer Website Abstract: A test device for measuring permeability of a barrier material. ...

  9. Evaluation of methods for measuring relative permeability of...

    Office of Scientific and Technical Information (OSTI)

    Dept.; Howarth, S.M. Sandia National Labs., Albuquerque, NM (United States) 05 NUCLEAR FUELS; WIPP; RESERVOIR ROCK; ANHYDRITE; PERMEABILITY; MEASURING METHODS; SITE...

  10. Fluid permeability measurement system and method

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis; Renner, Michael John

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  11. Gas permeable electrode for electrochemical system

    DOE Patents [OSTI]

    Ludwig, F.A.; Townsend, C.W.

    1989-09-12

    An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.

  12. Hydraulic Permeability of Resorcinol-Formaldehyde Resin

    SciTech Connect (OSTI)

    Taylor, Paul Allen

    2010-01-01

    An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing the oxygenated simulant into the feed tank. The dissolved oxygen (DO) concentration of the recirculating simulant was monitored, and the amount of oxygen that reacted with the resin was determined from the change in the DO concentration of the recirculating simulant solution. Prior to hydraulic testing the resin for runs 2 and 3 was covered with the simulant solution and irradiated in a spent fuel element at the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Both batches of resin were irradiated to a total gamma dose of 177 Mrad, but the resin for run 2 reached a maximum temperature during irradiation of 51 C, while the resin for run 3 reached a temperature of 38 C. The different temperatures were the result of the operating status of HFIR at the time of the irradiation and were not part of the test plan; however, the results clearly show the impact of the higher-temperature exposure during irradiation. The flow rate and pressure drop data from the test loop runs show that irradiating the RF resin reduces both the void fraction and the permeability of the resin bed. The mechanism for the reduction in permeability is not clear because irradiation increases the particle size of the resin beads and makes them deform less under pressure. Microscopic examination of the resin beads shows that they are all smooth regular spheres and that irradiation or oxygen uptake did not change the shape of the beads. The resin reacts rapidly with DO in the simulant solution, and the reaction with oxygen reduces the permeability of a bed of new resin by about 10% but has less impact on the permeability of irradiated resin. Irradiation increases the toughness of the resin beads, probably by initiating cross-linking reactions in them. Oxygen uptake reduces the crush strength of both new and irradiated resin; however, the pressures that caused the beads to crush are much higher than would be expected during the operation of an ion exchange column. There was no visible evidence of broken beads in any of the resin samples taken from the test loop. Reaction with oxygen red

  13. The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents

    SciTech Connect (OSTI)

    Thomas Chidsey

    2008-09-30

    The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted-marine facies constitute a significant reservoir potential, having both effective porosity and permeability when dissolution of skeletal grains, followed by dolomitization, has occurred. Two major types of diagenetic dolomite are observed in the Leadville Limestone at Lisbon field: (1) tight 'early' dolomite consisting of very fine grained (<5 {micro}m), interlocking crystals that faithfully preserve depositional fabrics; and (2) porous, coarser (>100-250 {micro}m), rhombic and saddle crystals that discordantly replace limestone and earlier very fine grained dolomite. Predating or concomitant with late dolomite formation are pervasive leaching episodes that produced vugs and extensive microporosity. Most reservoir rocks within Lisbon field appear to be associated with the second, late type of dolomitization and associated leaching events. Other diagenetic products include pyrobitumen, syntaxial cement, sulfide minerals, anhydrite cement and replacement, and late macrocalcite. Fracturing (solution enlarged) and brecciation (autobrecciation) caused by hydrofracturing are widespread within Lisbon field. Sediment-filled cavities, related to karstification of the exposed Leadville, are present in the upper third of the formation. Pyrobitumen and sulfide minerals appear to coat most crystal faces of the rhombic and saddle dolomites. The fluid inclusion and mineral relationships suggest the following sequence of events: (1) dolomite precipitation, (2) anhydrite deposition, (3) anhydrite dissolution and quartz precipitation, (4) dolomite dissolution and late calcite precipitation, (5) trapping of a mobile oil phase, and (6) formation of bitumen. Fluid inclusions in calcite and dolomite display variable liquid to vapor ratios suggesting reequilibration at elevated temperatures (50 C). Fluid salinities exceed 10 weight percent NaCl equivalent. Low ice melting temperatures of quartz- and calcite-hosted inclusions suggest chemically complex Ca-Mg-bearing brines associated with evaporite deposits were responsible for mineral deposition. The overall conclusion from these analyses indicates late dolomitization, saddle dolomite, and dolomite cement precipitation, as well as sulfides and brecciation, may have developed from hydrothermal events that can greatly improve reservoir quality. The result can be the formation of large, diagenetic-type, hydrocarbon traps. The reservoir characteristics, particularly diagenetic overprinting and history, can be applied regionally to other fields and exploration trends in the Paradox Basin. Stable carbon and oxygen isotope data indicate that all Lisbon field Leadville dolomites were likely associated with brines whose composition was enriched in {sup 18}O compared with Late Mississippian seawater. The Leadville replacement dolomite's temperatures of precipitation ranged from about 140 to 194 F ({approx} 60 to 90 C). Saddle dolomite cements were precipitated at temperatures greater than 194 F (>90 C).

  14. Reactive facies: An approach for parameterizing field-scale reactive

    Office of Scientific and Technical Information (OSTI)

    transport models using geophysical methods (Journal Article) | SciTech Connect Reactive facies: An approach for parameterizing field-scale reactive transport models using geophysical methods Citation Details In-Document Search Title: Reactive facies: An approach for parameterizing field-scale reactive transport models using geophysical methods Authors: Sassen, D. ; Hubbard, S. S. ; Bea, S. ; Spycher, N. ; Chen, J. ; Spycher, N. ; Denham, M. Publication Date: 2012-05-01 OSTI Identifier:

  15. Reactive facies: An approach for parameterizing field-scale reactive

    Office of Scientific and Technical Information (OSTI)

    transport models using geophysical methods (Journal Article) | SciTech Connect Reactive facies: An approach for parameterizing field-scale reactive transport models using geophysical methods Citation Details In-Document Search Title: Reactive facies: An approach for parameterizing field-scale reactive transport models using geophysical methods × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and

  16. Limited Groundwater Investigation of The Atlas Corporation Moab Mill, Moab, Utah

    SciTech Connect (OSTI)

    Easterly, CE

    2001-11-05

    The project described in this report was conducted by personnel from Oak Ridge National Laboratory's Grand Junction Office (ORNL/GJ). The purpose was to refine information regarding groundwater contamination emanating from the Atlas Corporation's former uranium mill in Moab, Utah.

  17. EECBG Success Story: Shining Energy-Saving LEDs on Utah Starry Nights

    Broader source: Energy.gov [DOE]

    Thanks to an Energy Efficiency and Conservation Block Grant (EECBG), Utah is replacing streetlights with efficient LEDs across 14 rural communities. About 2,500 streetlights will be replaced and could save the town 20% to 50% on electricity bills. Learn more.

  18. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, Utah

    SciTech Connect (OSTI)

    none,

    2013-09-01

    As the first net zero-energy production home certified in Utah, this house incorporates two 94% efficient tankless water heaters and two roof-mounted solar panels that preheat the home's water supply. This home won a 2013 Housing Innovation Award in the production builder category.

  19. Reactive Air Aluminization

    SciTech Connect (OSTI)

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  20. Hydrogen-permeable composite metal membrane and uses thereof

    DOE Patents [OSTI]

    Edlund, David J.; Friesen, Dwayne T.

    1993-06-08

    Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

  1. Permeability of hydrogen isotopes through nickel-based alloys

    SciTech Connect (OSTI)

    Edge, E.M.; Mitchell, D.J.

    1983-04-01

    Permeabilities and diffusivities of deuterium in several nickel-based alloys were measured in this investigation. Measurements were made by the gas-phase breakthrough technique in the temperature range 200 to 450/sup 0/C with applied pressures ranging from 1 to 100 kPa. The results were extrapolated to predict the permeabilities (K) of the alloys at room temperature. The alloy with the smallest deuterium permeability is Carpenter 49, for which K = 4.3 x 10/sup -18/ mol s/sup -1/ m/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The permeability of deuterium in Kovar or Ceramvar is about 80% greater than that for Carpenter 49. Premeabilities of Inconel 625, Inconel 718, Inconel 750 and Monel K-500 are all equal to about 5 x 10/sup -17/ mol m/sup -1/ s/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The validity (from a statistical standpoint) of the extrapolation of the permeabilities to room temperature is considered in detail. Published permeabilities of stainless steels and nickel-iron alloys are also reviewed. The greatest differences in permeabilities among the nickel-based alloys appear to be associated with the tendency for some alloys to form protective oxide layers. Permeabilities of deuterium through laminates containing copper are smaller than for any of the iron-nickel alloys.

  2. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  3. Characterization and estimation of permeability correlation structure from performance data

    SciTech Connect (OSTI)

    Ershaghi, I.; Al-Qahtani, M.

    1997-08-01

    In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

  4. IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2002-09-30

    Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

  5. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect (OSTI)

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  6. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

    Broader source: Energy.gov [DOE]

    The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

  7. Porosity, permeability, and their relationship in granite, basalt, and tuff

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report.

  8. Hydrogen permeable protective coating for a catalytic surface

    DOE Patents [OSTI]

    Liu, Ping; Tracy, C. Edwin; Pitts, J. Roland; Lee, Se-Hee

    2007-06-19

    A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.

  9. Preliminary relative permeability estimates of methanehydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

    2006-05-08

    The relative permeability to fluids in hydrate-bearing sediments is an important parameter for predicting natural gas production from gas hydrate reservoirs. We estimated the relative permeability parameters (van Genuchten alpha and m) in a hydrate-bearing sand by means of inverse modeling, which involved matching water saturation predictions with observations from a controlled waterflood experiment. We used x-ray computed tomography (CT) scanning to determine both the porosity and the hydrate and aqueous phase saturation distributions in the samples. X-ray CT images showed that hydrate and aqueous phase saturations are non-uniform, and that water flow focuses in regions of lower hydrate saturation. The relative permeability parameters were estimated at two locations in each sample. Differences between the estimated parameter sets at the two locations were attributed to heterogeneity in the hydrate saturation. Better estimates of the relative permeability parameters require further refinement of the experimental design, and better description of heterogeneity in the numerical inversions.

  10. Progress Report from University of Utah -- The Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT): Scientific Climate Data Visualization for BER and the Community

    SciTech Connect (OSTI)

    Silva, Claudio T

    2013-09-02

    Progress report from the work performed at the University of Utah for the UV-CDAT project before the team moved to NYU Poly.

  11. Inexpensive, Environmentally Friendly and Highly Permeable Lignin-Based Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exchangers - Energy Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Inexpensive, Environmentally Friendly and Highly Permeable Lignin-Based Ion Exchangers Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary For more than 10 years, a partnership between Kazakh and US researchers has led to the synthesis and testing of highly permeable ion-exchangers. These materials possess an increased

  12. Modeling shear failure and permeability enhancement due to coupled

    Office of Scientific and Technical Information (OSTI)

    Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs (Conference) | SciTech Connect Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs Citation Details In-Document Search Title: Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs The connectivity and accessible surface area of flowing

  13. Electrical Calcium Test for Measuring Barrier Permeability - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Electrical Calcium Test for Measuring Barrier Permeability National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Electrical Calcium Test for Measuring Barrier Permeability, Webinar Presentation by Arrelaine A. Dameron (7,247 KB) PDF Document Publication NREL's e-Ca Test: A Scalable, High-Sensitivity Water Permeation Measurement Methodology (511

  14. Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah

    SciTech Connect (OSTI)

    Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

    1980-03-01

    Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

  15. Tailings Pile Seepage Model The Atlas Corporation Moab Mill Moab, Utah

    SciTech Connect (OSTI)

    Easterly, CE

    2001-11-05

    The project described in this report was conducted by personnel from Oak Ridge National Laboratory's Grand Junction Office (ORNL/GJ). This report has been prepared as a companion report to the Limited Groundwater Investigation of the Atlas Corporation Moab Mill, Moab, Utah. The purpose of this report is to present the results of the tailings pile seepage modeling effort tasked by the U.S. Nuclear Regulatory Commission (NRC).

  16. EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  17. A Tariff for Reactive Power

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

  18. Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively Contaminated Properties Site (Monticello Vicinity Properties) and the Monticello Mill Tailings Site

    Broader source: Energy.gov [DOE]

    Five-year reviews for the two Monticello, Utah, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites were completed in June 2012 by U.S. Department of Energy (DOE) Office of Legacy Management (LM), U.S. Environmental Protection Agency, and Utah Department of Environmental Quality.

  19. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  20. The Interfacial-Area-Based Relative Permeability Function

    SciTech Connect (OSTI)

    Zhang, Z. F.; Khaleel, Raziuddin

    2009-09-25

    CH2M Hill Plateau Remediation Company (CHPRC) requested the services of the Pacific Northwest National Laboratory (PNNL) to provide technical support for the Remediation Decision Support (RDS) activity within the Soil & Groundwater Remediation Project. A portion of the support provided in FY2009, was to extend the soil unsaturated hydraulic conductivity using an alternative approach. This alternative approach incorporates the Brooks and Corey (1964), van Genuchten (1980), and a modified van Genuchten water-retention models into the interfacial-area-based relative permeability model presented by Embid (1997). The general performance of the incorporated models is shown using typical hydraulic parameters. The relative permeability models for the wetting phase were further examined using data from literature. Results indicate that the interfacial-area-based model can describe the relative permeability of the wetting phase reasonably well.

  1. Preliminary relative permeability estimates of methanehydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

    2006-05-08

    The relative permeability to fluids in hydrate-bearingsediments is an important parameter for predicting natural gas productionfrom gas hydrate reservoirs. We estimated the relative permeabilityparameters (van Genuchten alpha and m) in a hydrate-bearing sand by meansof inverse modeling, which involved matching water saturation predictionswith observations from a controlled waterflood experiment. We used x-raycomputed tomography (CT) scanning to determine both the porosity and thehydrate and aqueous phase saturation distributions in the samples. X-rayCT images showed that hydrate and aqueous phase saturations arenon-uniform, and that water flow focuses in regions of lower hydratesaturation. The relative permeability parameters were estimated at twolocations in each sample. Differences between the estimated parametersets at the two locations were attributed to heterogeneity in the hydratesaturation. Better estimates of the relative permeability parametersrequire further refinement of the experimental design, and betterdescription of heterogeneity in the numerical inversions.

  2. Water retention and gas relative permeability of two industrial concretes

    SciTech Connect (OSTI)

    Chen Wei; Liu Jian; Brue, Flore; Skoczylas, Frederic; Davy, C.A.; Bourbon, Xavier; Talandier, Jean

    2012-07-15

    This experimental study aims at identifying the water retention properties of two industrial concretes to be used for long term underground nuclear waste storage structures. Together with water retention, gas transfer properties are identified at varying water saturation level, i.e. relative gas permeability is assessed directly as a function of water saturation level S{sub w}. The influence of the initial de-sorption path and of the subsequent re-saturation are analysed both in terms of water retention and gas transfer properties. Also, the influence of concrete microstructure upon water retention and relative gas permeability is assessed, using porosity measurements, analysis of the BET theory from water retention properties, and MIP. Finally, a single relative gas permeability curve is proposed for each concrete, based on Van Genuchten-Mualem's statistical model, to be used for continuous modelling approaches of concrete structures, both during drying and imbibition.

  3. Apparatus for providing directional permeability measurements in subterranean earth formations

    DOE Patents [OSTI]

    Shuck, Lowell Z.

    1977-01-01

    Directional permeability measurements are provided in a subterranean earth formation by injecting a high-pressure gas from a wellbore into the earth formation in various azimuthal directions with the direction having the largest pressure drop being indicative of the maximum permeability direction. These measurements are provided by employing an inflatable boot containing a plurality of conduits in registry with a like plurality of apertures penetrating the housing at circumferentially spaced-apart locations. These conduits are, in turn, coupled through a valved manifold to a source of pressurized gas so that the high-pressure gas may be selectively directed through any conduit into the earth formation defining the bore with the resulting difference in the pressure drop through the various conduits providing the permeability measurements.

  4. Upscaling verticle permeability within a fluvio-aeolian reservoir

    SciTech Connect (OSTI)

    Thomas, S.D.; Corbett, P.W.M.; Jensen, J.L.

    1997-08-01

    Vertical permeability (k{sub v}) is a crucial factor in many reservoir engineering issues. To date there has been little work undertaken to understand the wide variation of k{sub v} values measured at different scales in the reservoir. This paper presents the results of a study in which we have modelled the results of a downhole well tester using a statistical model and high resolution permeability data. The work has demonstrates and quantifies a wide variation in k{sub v} at smaller, near wellbore scales and has implications for k{sub v} modelling at larger scales.

  5. Reactive Air Aluminizing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Reactive Air Aluminizing Pacific Northwest National Laboratory Contact PNNL About This Technology Reactive Air Aluminizing process diagram ...

  6. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  7. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  8. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    SciTech Connect (OSTI)

    2004-07-01

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  9. Survey of literature relating to energy development in Utah's Colorado Plateau

    SciTech Connect (OSTI)

    Larsen, A.

    1980-06-01

    This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

  10. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Energy Savers [EERE]

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  11. ,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"Utah Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  13. ,"Utah Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  14. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  15. ,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  16. ,"Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  17. ,"Utah Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n5290ut2m.xls"

  18. ,"Utah Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  19. ,"Utah Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  1. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 1,001 895 872 - =

  2. Utah Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",23,33,34,34,42 "Hydro Conventional",255,255,256,256,255 "Solar","-","-","-","-","-" "Wind","-","-",19,222,222 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",4,5,5,9,9 "Other

  3. Utah Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6398,6830,6819,6897,6969 " Coal",4891,4871,4871,4871,4903 " Petroleum",35,25,25,25,23 " Natural Gas",1473,1934,1923,2002,2042 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",282,293,313,521,528 "Pumped

  4. Mechanisms of formation damage in matrix-permeability geothermal wells

    SciTech Connect (OSTI)

    Bergosh, J.L.; Wiggins, R.B.; Enniss, D.O.

    1982-04-01

    Tests were conducted to determine mechanisms of formation damage that can occur in matrix permeability geothermal wells. Two types of cores were used in the testing, actual cores from the East Mesa Well 78-30RD and cores from a fairly uniform generic sandstone formation. Three different types of tests were run. The East Mesa cores were used in the testing of the sensitivity of core to filtrate chemistry. The tests began with the cores exposed to simulated East Mesa brine and then different filtrates were introduced and the effects of the fluid contrast on core permeability were measured. The East Mesa cores were also used in the second series of tests which tested formation sandstone cores were used in the third test series which investigated the effects of different sizes of entrained particles in the fluid. Tests were run with both single-particle sizes and distributions of particle mixes. In addition to the testing, core preparation techniques for simulating fracture permeability were evaluated. Three different fracture formation mechanisms were identified and compared. Measurement techniques for measuring fracture size and permeability were also developed.

  5. Importance of Low Permeability Natural Gas Reservoirs (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40% of natural gas production and about 35% of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in darcies.)

  6. Tritium Permeability of Incoloy 800H and Inconel 617

    SciTech Connect (OSTI)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2012-07-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm)three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  7. Tritium Permeability of Incoloy 800H and Inconel 617

    SciTech Connect (OSTI)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2011-09-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950 C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm) - three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  8. Supplemental Modeling and Analysis Report, Atlas Corporation Moab Mill, Moab, Utah

    SciTech Connect (OSTI)

    Easterly, CE

    2001-11-05

    The purpose of this report is to provide additional numerical modeling and data evaluation for the Atlas tailings pile near Moab, Utah. A previous report (Tailings Pile Seepage Model: The Atlas Corporation Moab Mill, Moab, Utah, January 9, 1998) prepared for the Nuclear Regulatory Commission (NRC) by Oak Ridge National Laboratory/Grand Junction (ORNL/GJ) presented the results of steady-state modeling of water flow and subsequent discharge to the underlying groundwater system. At the request of the Fish and Wildlife Service (FWS), this model was expanded to evaluate the impact of drainage from the tailings pile in addition to recharge from precipitation in a transient mode simulation. In addition, the FWS requested transient simulations of contaminant transport in the alluvial aquifer. Subsequently, NRC requested an evaluation of additional hydrologic issues related to the results presented in the Tailings Pile Seepage Model (ORNL/GJ 1998a) and the Limited Groundwater Investigation (ORNL/GJ 1998b). Funding for the report was provided by the U.S. Department of Energy. The following section lists the individual tasks with subsequent sections providing the results. A map for the Atlas Moab Mill site is presented in Fig. 1.1.

  9. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  10. Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah

    SciTech Connect (OSTI)

    Clements, Craig B.; Whiteman, Charles D.; Horel, John D.

    2003-06-01

    The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah minimum temperature record of -56 C. The evolution of cold-pool characteristics depended on the strength of prevailing flows above the basin. On an undisturbed day, a 30 C diurnal temperature range and a strong nocturnal potential temperature inversion (22 K in 100 m) were observed in the basin. Initially, downslope flows formed on the basin sidewalls. As a very strong potential temperature jump (17 K) developed at the top of the cold pool, however, the winds died within the basin and over the sidewalls. A persistent turbulent sublayer formed below the jump. Turbulent sensible heat flux on the basin floor became negligible shortly after sunset while the basin atmosphere continued to cool. Temperatures over the slopes, except for a 1 to 2-m-deep layer, became warmer than over the basin center at the same altitude. Cooling rates for the entire basin near sunset were comparable to the 90 W m-2 rate of loss of net longwave radiation at the basin floor, but these rates decreased to only a few watts per square meter by sunrise. This paper compares the observed cold-pool buildup in basins with inversion buildup in valleys.

  11. Geothermal rotary separator turbine: wellhead power system tests at Milford, Utah

    SciTech Connect (OSTI)

    Hughes, E.E.

    1983-08-01

    Through development of a separator/expander engine EPRI is improving the efficiency of single flash geothermal power systems. Under cost-shared contracts with Biphase Energy Systems and Utah Power and Light Company (UP and L), a wellhead power generating system has been built and tested. The wellhead unit has been operated for 4000 hours at Roosevelt Hot Springs near Milford, Utah. Phillips Petroleum Company operates the geothermal field at this site. The rotary separator turbine (RST) is a separating expander that increases the resource utilization efficiency by extracting power upstream of a steam turbine in either a 1-stage or 2-stage flash power system. The first power output was achieved October 28, 1981, six weeks after arrival of the RST at the site. The RST system produced 3270 MWh(e) gross and 2770 MWh(e) net to the UP and L grid. Total equivalent power produced by the wellhead RST (actual power output of the RST plus the power obtainable from the steam flow out of the RST) is 15 to 20 percent above the power that would be produced by an optimum 1-stage direct flash plant operated on the same geothermal well.

  12. In-situ method to remove iron and other metals from solution in groundwater down gradient from permeable reactive barrier

    DOE Patents [OSTI]

    Carpenter, Clay E.; Morrison, Stanley J.

    2001-07-03

    This invention is directed to a process for treating the flow of anaerobic groundwater through an aquifer with a primary treatment media, preferably iron, and then passing the treated groundwater through a second porous media though which an oxygenated gas is passed in order to oxygenate the dissolved primary treatment material and convert it into an insoluble material thereby removing the dissolved primary treatment material from the groundwater.

  13. Technology Solutions Case Study: Moisture Durability of Vapor Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    2013-10-01

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  14. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Matthews, M.L.; Alkema, K.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  15. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  16. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOE Patents [OSTI]

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  17. Test device for measuring permeability of a barrier material

    DOE Patents [OSTI]

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  18. The hydrogen permeability of Pd{sub 4}S

    SciTech Connect (OSTI)

    O'Brien, Casey; Miller, James; Gellman, Andrew; Morreale, Bryan

    2011-04-01

    Hydrogen permeates rapidly through pure Pd membranes, but H{sub 2}S, a common minor component in hydrogen-containing streams, produces a Pd{sub 4}S film on the Pd surface that severely retards hydrogen permeation. Hydrogen still permeates through the bi-layered Pd{sub 4}S/Pd structure, indicating that the Pd{sub 4}S surface is active for H{sub 2} dissociation; the low hydrogen permeability of the Pd4S film is responsible for the decreased rate of hydrogen transport. In this work, the hydrogen permeability of Pd{sub 4}S was determined experimentally in the 623-773 K temperature range. Bi-layered Pd{sub 4}S/Pd foils were produced by exposing pure Pd foils to H{sub 2}S. H{sub 2} fluxes through the bi-layered Pd{sub 4}S/Pd foils were measured during exposure to both pure H{sub 2} and a 1000 ppm H{sub 2}S in H{sub 2} gas mixture. Our results show that H{sub 2}S slows hydrogen permeation through Pd mainly by producing a Pd{sub 4}S film on the Pd surface that is roughly an order-of-magnitude less permeable to hydrogen (k{sub Pd{sub 4}S} = 10{sup ?7.5} exp(?0.22 eV/k{sub B}T) molH{sub 2}/m/s/Pa{sup 1/2}) than pure Pd. The presence of H{sub 2}S in the gas stream results in greater inhibition of hydrogen transport than can be explained by the very low permeability of Pd{sub 4}S. H{sub 2}S may block H2 dissociation sites at the Pd{sub 4}S surface.

  19. A Collection of Complex Permittivity and Permeability Measurements

    SciTech Connect (OSTI)

    Barry, W.; Byrd, J.; Johnson, J.; Smithwick, J.

    1993-02-01

    We present the results of measurements of the complex permittivity and permeability over a frequency range of 0.1-5.1 GHz for a range of microwave absorbing materials used in a variety of accelerator applications. We also describe the automated measurement technique which uses swept-frequency S-parameter measurements made on a strip transmission line device loaded with the material under test.

  20. Correlating Spatial Heterogeneities in Porosity and Permeability with Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poisoning within an Individual Catalyst Particle using X-ray Microscopy | Stanford Synchrotron Radiation Lightsource Correlating Spatial Heterogeneities in Porosity and Permeability with Metal Poisoning within an Individual Catalyst Particle using X-ray Microscopy Wednesday, August 21, 2013 - 1:30pm SLAC, Conference Room 137-226 Presented by Darius Morris, Stanford Synchrotron Radiation Lightsource Fluid catalytic cracking (FCC) is a refining process for converting large and/or heavy

  1. Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1 1 1980's 1 0 2 1 0 2 0 3 0 1 1990's 0 0 4 0 0 3 0 0 0 0 2000's 15 5 2 7 11 4 0 0 0 4 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  2. Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32 84 41 1980's 9 3 11 8 3 0 0 5 3 0 1990's 0 5 0 8 1 2 17 0 0 4 2000's 0 4 0 0 5 4 45 4 64 0 2010's 0 1 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  3. Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,956 1,503 2,113 1970's 633 2,115 1,978 2,435 4,193 7,240 9,150 7,585 8,325 14,123 1980's 7,594 511 5,965 4,538 8,375 9,001 13,289 17,671 16,889 16,211 1990's 19,719 13,738 12,611 12,526 13,273 27,012 27,119 24,619 27,466 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 834 1990's 822 913 1,006 1,061 1,303 1,127 1,339 1,475 1,643 1,978 2000's 4,178 4,601 3,005 3,220 3,657 4,092 4,858 5,197 5,578 5,774 2010's 6,075 6,469 6,900 7,030 7,275 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6.85 5.52 5.42 5.27 4.90 4.73 4.49 5.37 5.42 5.32 2000's 5.72 7.24 6.33 7.09 7.81 9.10 10.55 8.33 8.08 10.01 2010's 11.61 13.01 15.02 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  6. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722

  7. Gravity survey of the southwestern part of the sourthern Utah geothermal belt

    SciTech Connect (OSTI)

    Green, R.T.; Cook, K.L.

    1981-03-01

    A gravity survey covering an area of 6200 km/sup 2/ was made over the southwestern part of the southern Utah geothermal belt. The objective of the gravity survey is to delineate the geologic structures and assist in the understanding of the geothermal potential of the area. A total of 726 new gravity stations together with 205 existing gravity stations, are reduced to give: (1) a complete Bouguer gravity anomaly map, and (2) a fourth-order residual gravity anomaly map; both maps have a 2-mgal contour interval. The complete Bouguer gravity anomaly map shows an east-trending regional gravity belt with a total relief of about 70 mgal which crosses the central portion of the survey area. The gravity belt is attributed to a crustal lateral density variation of 0.1 gm/cc from a depth of 5 to 15 km.

  8. Utah Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Utah Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 0 0 4,438 4,892 5,360 5,222 5,427 5,204 2000's 5,052 4,813 5,469 4,837 4,850 4,533 4,510 4,516 5,103 5,338 2010's 5,307 5,392 5,681 7,539 8,283 - = No Data Reported; -- = Not Applicable;

  9. Bipole-dipole survey at Roosevelt Hot Springs, Thermal Area, Beaver County, Utah

    SciTech Connect (OSTI)

    Frangos, W.; Ward, S.H.

    1980-09-01

    A bipole-dipole electrical resistivity survey at Roosevelt Hot Springs thermal area, Beaver County, Utah was undertaken to evaluate the technique in a well-studied Basin and Range geothermal prospect. The major electrical characteristics of the area are clearly revealed but are not particularly descriptive of the geothermal system. More subtle variations of electrical resistivity accompanying the geothermal activity are detectable, although the influence of near-surface lateral resistivity variations imposes upon the survey design the necessity of a high station density. A useful practical step is to conduct a survey using transmitter locations and orientations which minimize the response of known features such as the resistivity boundary due to a range front fault. Survey results illustrate the effects of transmitter orientation and placement, and of subtle lateral resistivity variations. A known near-surface conductive zone is detected while no evidence is found for a deep conductive region.

  10. Wave-induced pore pressure and effective stresses in a porous seabed with variable permeability

    SciTech Connect (OSTI)

    Jeng, D.S.; Seymour, B.R.

    1996-12-31

    An evaluation of wave-induced soil response is particularly useful for geotechnical and coastal engineers involved in the design of foundations for offshore structures. To simplify the mathematical procedure, most theories available for the wave/seabed interaction problem have assumed a porous seabed with uniform permeability, despite strong evidence of variable permeability. This paper proposes an analytical solution for the wave induced soil response in a porous seabed with variable permeability. Verification is available through reduction to the simple case of uniform permeability. The numerical results indicate that the effect of variable soil permeability on pore pressure and effective stresses is significant.

  11. Engineering assessment of inactive uranium mill tailings: Mexican Hat Site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U/sub 3/O/sub 8/ whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions.

  12. Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect (OSTI)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: • Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. • Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. • CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  13. CARBON AND OXYGEN ISOTOPIC ANALYSIS: BUG, CHEROKEE, AND PATTERSON CANYON FIELDS, SAN JUAN COUNTY, UTAH

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey Jr; Kevin McClure; Craig D. Morgan; Stephen T. Nelson

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  14. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  15. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  16. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training RangeSouth (UTTRS)

    SciTech Connect (OSTI)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01

    Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.

  17. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2003-01-30

    Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region are natural laboratories for studying the factors that promote long-term storage of CO{sub 2}. They also provide sites for storing additional CO{sub 2} if it can be separated from the flue gases of coal-fired power plants in this part of the U.S.A. These natural reservoirs are developed primarily in sandstones and dolomites; shales, mudstones and anhydrite form seals. In many fields, stacked reservoirs are present, indicating that the gas has migrated up through the section. There are also geologically young travertine deposits at the surface, and CO{sub 2}-charged groundwater and springs in the vicinity of known CO{sub 2} occurrences. These near-surface geological and hydrological features also provide examples of the environmental effects of leakage of CO{sub 2} from reservoirs, and justify further study. During reporting period covered here (the first quarter of Year 3 of the project, i.e. October 1-December 31, 2002), the main achievements were: (1) Planning workshop for project participants as well as other Utah researchers involved in CO{sub 2} projects (22 October, 2002), and Utah Geological Survey, Salt Lake City; (2) Presentation of paper to special CO{sub 2} sequestration session at the Geological Society of America Annual Meeting, Denver, 29 October, 2002; (3) Presentation of paper to special CO{sub 2} sequestration session at the Fall Meeting of American Geophysical Union, San Francisco, 10 December, 2002; (4) Identification of dawsonite (sodium-aluminum carbonate) as a late stage mineral deposited in CO{sub 2} feedzone at Springerville, Arizona; (5) Successful matching of known physical constraints to flow beneath the Hunter cross section being used to simulate the effects of CO{sub 2} injection. In about 1000 years, most injected CO{sub 2} may be lost to the surface from the three shallowest reservoirs considered, assuming no reactive processes; and (6) Inclusion of reactive processes in numerical simulations, and indication that CO{sub 2} is sequestered for at 1000 years in form of dissolved CO{sub 2} and carbonate mineral precipitation.

  18. Oxygen-permeable ceramic membranes for gas separation

    SciTech Connect (OSTI)

    Balachandran, U.; Ma, B.; Maiya, P.S.; Dusek, J.T.; Mieville, R.L.; Picciolo, J.J.

    1998-02-01

    Mixed-conducting oxides have a wide range of applications, including fuel cells, gas separation systems, sensors, and electrocatalytic equipment. Dense ceramic membranes made of mixed-conducting oxides are particularly attractive for gas separation and methane conversion processes. Membranes made of Sr-Fe-Co oxide, which exhibits high combined electronic and oxygen ionic conductivities, can be used to selectively transport oxygen during the partial oxidation of methane to synthesis gas (syngas, i.e., CO + H{sub 2}). The authors have fabricated tubular Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes and tested them (some for more than 1,000 h) in a methane conversion reactor that was operating at 850--950 C. An oxygen permeation flux of {approx} 10 scc/cm{sup 2} {center_dot} min was obtained at 900 C in a tubular membrane with a wall thickness of 0.75 mm. Using a gas-tight electrochemical cell, the authors have also measured the steady-state oxygen permeability of flat Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes as a function of temperature and oxygen partial pressure(pO{sub 2}). Steady-state oxygen permeability increases with increasing temperature and with the difference in pO{sub 2} on the two sides of the membrane. At 900 C, an oxygen permeability of {approx} 2.5 scc/cm{sup 2} {center_dot} min was obtained in a 2.9-mm-thick membrane. This value agrees with that obtained in methane conversion reactor experiments. Current-voltage (I-V) characteristics determined in the gas-tight cell indicate that bulk effect, rather than surface exchange effect, is the main limiting factor for oxygen permeation of {approx} 1-mm-thick Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes at elevated temperatures (> 650 C).

  19. Em Response of a Conductive, Permeable Spherical Shell

    Energy Science and Technology Software Center (OSTI)

    2005-10-24

    This code calculates the spectral response of conductive, permeable, shell in a conductive whole space using a closed form solution. The source is either a uniform field (approximately valid when the size of the sphere is small compared to the distance to the source) or the field of dipole (and by superposition, the field of a finite loop). The code is particularly useful in showing that the typical UXO (usually shells), the response is significantlymore » different at intermediate to late times compared to solids of the same materials.« less

  20. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  1. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  2. Reactive composite compositions and mat barriers

    DOE Patents [OSTI]

    Langton, Christine A. (Aiken, SC); Narasimhan, Rajendran (Evans, GA); Karraker, David G. (Aiken, SC)

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  3. Reactive barrier technologies for treatment of contaminated groundwater at Rocky Flats

    SciTech Connect (OSTI)

    Marozas, D.C.; Bujewski, G.E.; Castaneda, N.

    1997-12-31

    The U.S. Department of Energy (DOE) Office of Science and Technology Subsurface Contaminants Focus Area is supporting the investigation of reactive barrier technologies to mitigate the risks associated with mixed organic/radioactive waste at several DOE sites. Groundwater from a small contaminated plume at the Rocky Flats Environmental Technology Site (RFETS) is being used to evaluate passive reactive material treatment. Permeable reactive barriers which intercept contaminants and destroy the VOC component while containing radionuclides are attractive for a number of reasons relating to public and regulatory acceptance. In situ treatment keeps contaminants away from the earth`s surface, there is no above-ground treatment equipment that could expose workers and the public and operational costs are expected to be lower than currently used technologies. This paper will present results from preliminary site characterization and in-field small-scale column testing of reactive materials at RFETS. Successful demonstration is expected to lead to full-scale implementation of the technology at several DOE sites, including Rocky Flats.

  4. Evaporite Caprock Integrity. An experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Megan M.; Sholokhova, Yelena; Hao, Yue; Carroll, Susan A.

    2012-07-25

    Characterization and geochemical data are presented from a core-flooding experiment on a sample from the Three Fingers evaporite unit forming the lower extent of caprock at the Weyburn-Midale reservoir, Canada. This low-permeability sample was characterized in detail using X-ray computed microtomography before and after exposure to CO 2-acidified brine, allowing mineral phase and voidspace distributions to be quantified in three dimensions. Solution chemistry indicated that CO 2-acidified brine preferentially dissolved dolomite until saturation was attained, while anhydrite remained unreactive. Dolomite dissolution contributed to increases in bulk permeability through the formation of a localized channel, guided by microfractures as well asmore » porosity and reactive phase distributions aligned with depositional bedding. An indirect effect of carbonate mineral reactivity with CO 2-acidified solution is voidspace generation through physical transport of anhydrite freed from the rock matrix following dissolution of dolomite. The development of high permeability fast pathways in this experiment highlights the role of carbonate content and potential fracture orientations in evaporite caprock formations considered for both geologic carbon sequestration and CO 2-enhanced oil recovery operations.« less

  5. Permeability of CoNbZr amorphous thin films over a wide frequency range

    SciTech Connect (OSTI)

    Koyama, H.; Tsujimoto, H.; Shirae, K.

    1987-09-01

    CoNbZr amorphous films have attracted the attention of many researchers because of their high saturation magnetization, high permeability, low coercivity, and nearly zero magnetostriction. For these films to be used, one of the important magnetic properties is the behavior of the permeability over a wide frequency range. We have measured the permeability of a square-shaped magnetic film (13 mm x 55 mm) sputtered on a glass substrate from 1 MHz to 400 MHz using a stripline. Over 400 MHz, the permeability of the magnetic film was measured using a ring-shaped sample mounted in a coaxial fixture. The wall motion permeability of CoNbZr amorphous films decreases from 1 kHz to nearly zero at 1 MHz. The rotation permeability is constant to 100 MHz and ferromagnetic resonance is observed near 1 GHz.

  6. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    SciTech Connect (OSTI)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  7. Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes

    SciTech Connect (OSTI)

    Krumschnabel, Gerhard . E-mail: Gerhard.Krumschnabel@uibk.ac.at; Manzl, Claudia; Berger, Christian; Hofer, Bettina

    2005-11-15

    We have previously shown that, in trout hepatocytes, exposure to a high dose of copper (Cu) leads to disruption of Ca{sup 2+} homeostasis and elevated formation of reactive oxygen species (ROS), with the latter ultimately causing cell death. In the present study, we aimed at identifying, using a lower Cu concentration, the role of mitochondria in this scenario, the potential involvement of the mitochondrial permeability transition (MPT), and the mode of cell death induced by the metal. Incubation with 10 {mu}M Cu resulted in a strong stimulation of ROS formation, and after 2 h of exposure a significant increase of both apoptotic and necrotic cells was seen. Co-incubation of Cu-treated hepatocytes with the iron-chelator deferoxamine significantly inhibited ROS production and completely prevented cell death. The origin of the radicals generated was at least partly mitochondrial, as visualized by confocal laser scanning microscopy. Furthermore, ROS production was diminished by inhibition of mitochondrial respiration, but since this also aggravated the elevation of intracellular Ca{sup 2+} induced by Cu, it did not preserve cell viability. In a sub-population of cells, Cu induced a decrease of mitochondrial membrane potential and occurrence of the MPT. Cyclosporin A, which did not inhibit ROS formation, prevented the onset of the MPT and inhibited apoptotic, but not necrotic, cell death. Cu-induced apoptosis therefore appears to be dependent on induction of the MPT, but the prominent contribution of mitochondria to ROS generation also suggests an important role of mitochondria in necrotic cell death.

  8. Spectral SP: A New Approach to Mapping Reservoir Flow and Permeability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spectral SP: A New Approach to Mapping Reservoir Flow and Permeability presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon hawaiigeophysicsplane...

  9. Spectral SP: A New Approach to Mapping Reservoir Flow and Permeability

    Broader source: Energy.gov [DOE]

    Spectral SP: A New Approach to Mapping Reservoir Flow and Permeability presentation at the April 2013 peer review meeting held in Denver, Colorado.

  10. Sustainability of Shear-Induced Permeability for EGS Reservoirs … A Laboratory Study

    Broader source: Energy.gov [DOE]

    Sustainability of Shear-Induced Permeability for EGS Reservoirs … A Laboratory Study presentation at the April 2013 peer review meeting held in Denver, Colorado.

  11. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOE Patents [OSTI]

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  12. Amino resin modified polymer gels for permeability control

    SciTech Connect (OSTI)

    Shu, P.

    1989-03-07

    An aqueous cross-linked gel formed by a polysaccharide polymer, an aminoplast resin, and transitional metal ions is described, comprising: (a) water; (b) about 0.2 to about 5.0 wt. percent of a cross-linkable polysaccharide polymer selected from the group consisting of polysaccharide bipolymers and cellulose derivatives having at least one functional group selected from a member of the group consisting of an amine, an amide, a hydroxyl, or a thiol group; (c) about 0.02 to about 5.0 wt. percent of an aminoplast resin which reinforces the polymer; and (d) sufficient transitional metal ions to form a gel of a size and strength sufficient to close one or more permeable zones in a formation under substantially all pH conditions.

  13. Amino resin modified xanthan polymer gels for permeability profile control

    SciTech Connect (OSTI)

    Shu, P.

    1988-01-05

    A process for closing pores in a hydrocarbonaceous fluid bearing formation to obtain improved sweep efficiency during a water flood oil recovery operation wherein the process comprises injecting into the formation a gellable composition is described comprising: (a) water; (b) about 0.2 to about 5.0 wt. percent of a cross linkable polysaccharide biopolymer having at least one functional group selected from a member of the group consisting of an amine, an amide, a hydroxyl, or a thiol group; (c) about 0.02 to about 5.0 wt. percent of an aminoplast resin which reinforces the biopolymer; and (d) sufficient transitional metal ions to form a gel of a size and strength sufficient to close one or more permeable zones in the formation under substantially all pH conditions.

  14. System and method for measuring permeability of materials

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis; Renner, Michael John

    2013-07-09

    Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  15. Report on Hydrologic Flow in Low-Permeability Media

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Birkholzer, Jens

    2013-11-13

    We demonstrate that under normal conditions (under which there are no intersections between tunnels/drifts and conductive geological structures, such as faults), the water flow velocity in the damage zone, as a result of non-Darcian flow behavior, is extremely small such that solute transport is dominated by diffusion, rather than advection. We show that unless non-Darcian flow behavior is considered, significant errors can occur in the measured relative-permeability values. We propose a hypothesis to consider the temperature impact based on limited test results from the petroleum literature. To consider the bedding effects, we present an empirical relationship between water flux and hydraulic gradient for non-Darcian water flow in anisotropic cases.

  16. Moisture Durability with Vapor-Permeable Insulating Sheathing

    SciTech Connect (OSTI)

    Lepage, R.; Lstiburek, J.

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  17. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.

  18. Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.21 1970's 0.21 0.22 0.28 0.29 0.34 0.54 0.67 1.40 1.72 1.88 1980's 2.94 3.17 2.67 2.94 2.99 3.19 2.93 2.66 2.84 2.18 1990's 2.25 2.51 2.25 1.91 1.94 1.57 1.68 2.20 2.05 1.92 2000's 3.19 2.97 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  19. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2 -26.2 -3.2 0.1 32.2 -15.2 -19.1 -18.8 -21.7 -3.8 2.1 1992 -35.0 -4.5 68.2 48.2 46.1 36.5 13.8 0.4 -13.6 -18.6 5.0 6.8 1993 -6.8 -42.8 -72.3 -83.7 -48.5 -4.4 1.6 3.6 11.8 35.5 17.2 37.2 1994 66.2 69.4 210.9 497.9 131.8 40.0 34.2 32.4 40.9 25.7 26.4 36.0 1995 28.4 93.2 100.2 78.2 40.9

  20. Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,944 46,944 46,944 46,944 48,144 46,944 49,350 50,457 51,244 51,397 42,464 42,464 1991 42,454 42,454 44,628 44,342 45,120 49,179 51,258 49,908 48,558 47,678 47,118 47,118 1992 47,118 47,739 48,770 49,900 50,972 52,189 53,369 54,688 55,934 57,208 49,578 49,736 1993 49,736 49,742 49,749 50,238 51,803 51,028 52,377 53,704 54,973 54,847

  1. Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,862 9,993 8,285 7,662 9,184 8,305 17,964 25,464 32,121 35,381 24,204 15,997 1991 19,120 11,915 6,118 7,419 9,193 10,977 15,226 20,591 26,089 27,689 23,281 16,335 1992 12,422 11,379 10,289 10,996 13,431 14,981 17,321 20,674 22,548 22,548 24,443 17,445 1993 11,572 6,509 2,846 1,790 6,910 14,321 17,591 21,416 25,209 30,558 28,654

  2. Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,017 1980's 1,284 2,057 2,253 2,472 2,325 2,288 2,205 2,341 1,984 1,940 1990's 1,887 2,001 2,018 2,198 1,917 1,701 1,747 2,005 2,502 3,371 2000's 4,472 4,753 4,274 3,617 3,951 4,359 5,211 6,463 6,714 7,411 2010's 7,146 8,108 7,775 7,057 6,970 - = No Data

  3. Eolian sabkha sandstones in the Nugget Sandstone (Jurassic), Vernal area, Utah

    SciTech Connect (OSTI)

    Schenk, C.J.; Peterson, F. (Geological Survey, Denver, CO (United States))

    1991-06-01

    The Jurassic Nugget Sandstone in the Vernal, Utah, area is characterized by thick (up to 25 m) sets of cross-stratified eolian dune sandstone separated by either erosional planar bounding surfaces or thin (mostly < 3 m) sandstones interpreted as sabkha sandstones. Structures in Nugget sabkha sandstones are predominantly wavy or irregular bedding and thin, remnant sets of dune cross-strata consisting of eolian ripple and avalanche strata. The types of sedimentary structures and erosional features in Nugget sabkha sandstones indicate a close relationship between sand deposition and erosion and fluctuations in the local water table. Thin, remnant eolian dune sets are common in Nugget sabkha sandstones. The remnant sets form when dunes migrating across a sabkha are partially wetted as the water table rises slightly (on a scale of tens of centimeters); the lower part of the dune with wetted sand remains on the sabkha as the rest of the dune continues to migrate. Typically, ripple strata of the dune apron and the toes of avalanche strata are preserved in dune remnants. The avalanche strata, being slightly coarser grained, are preferentially deflated, leaving microtopography. This topography is commonly filled in with ripple strata that form as dry sand again blows across the sabkha. Stacked sets of remnant dunes separated by erosional surfaces illustrate the control of sand deposition on eolian sabkhas by the local water table.

  4. Interfacial Structure and Reactivity | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a robust, molecular-scale understanding of its structure and reactivity? Research Context The transport of ions across the electrodeelectrolyte interface can lead to kinetic...

  5. Directional Reactive Power Ground Plane Transmission - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketing SummaryORNL researchers have developed a pioneering power alternative to batteries using directional reactive power. Batteries are currently the primary option for...

  6. Shock Desensitization Experiments and Reactive Flow Modeling...

    Office of Scientific and Technical Information (OSTI)

    Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Citation Details In-Document Search Title: Shock Desensitization Experiments ...

  7. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2008-08-05

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  8. An efficient permeability scaling-up technique applied to the discretized flow equations

    SciTech Connect (OSTI)

    Urgelli, D.; Ding, Yu

    1997-08-01

    Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.

  9. Computational Modeling of Fluid Flow through a Fracture in Permeable Rock

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H

    2010-01-01

    Laminar, single-phase, finite-volume solutions to the NavierStokes equations of fluid flow through a fracture within permeable media have been obtained. The fracture geometry was acquired from computed tomography scans of a fracture in Berea sandstone, capturing the small-scale roughness of these natural fluid conduits. First, the roughness of the two-dimensional fracture profiles was analyzed and shown to be similar to Brownian fractal structures. The permeability and tortuosity of each fracture profile was determined from simulations of fluid flow through these geometries with impermeable fracture walls. A surrounding permeable medium, assumed to obey Darcys Law with permeabilities from 0.2 to 2,000 millidarcies, was then included in the analysis. A series of simulations for flows in fractured permeable rocks was performed, and the results were used to develop a relationship between the flow rate and pressure loss for fractures in porous rocks. The resulting frictionfactor, which accounts for the fracture geometric properties, is similar to the cubic law; it has the potential to be of use in discrete fracture reservoir-scale simulations of fluid flow through highly fractured geologic formations with appreciable matrix permeability. The observed fluid flow from the surrounding permeable medium to the fracture was significant when the resistance within the fracture and the medium were of the same order. An increase in the volumetric flow rate within the fracture profile increased by more than 5% was observed for flows within high permeability-fractured porous media.

  10. Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting

    SciTech Connect (OSTI)

    Dale E. Brown (Pyrotek); Puja B. Kadolkar (ORNL)

    2005-12-15

    The primary goal of this project was to develop and validate new classes of cost-effective low-permeability ceramic and refractory components for handling molten aluminum in both melting and casting environments. Three approaches were employed with partial to full success to achieve this goal: (1) Develop materials and methods for sealing surface porosity in thermal-shock-resistant ceramic refractories; (2) Develop new ceramic coatings for extreme service in molten aluminum operations, with particular emphasis on coatings based on highly stable oxide phases; and (3) Develop new monolithic refractories designed for lower-permeability applications using controlled porosity gradients and particle size distributions. The results of the research work and the field tests performed utilizing these three approaches are listed below: (1) It was demonstrated that high-density IR heating could be a tool for altering and sealing the surface porosity of fused silica. However, the process was not very cost-effective. (2) A low-cost glaze composition having a coefficient of thermal expansion (CTE) similar to that of a DFS tube was identified and was successfully tested for its integrity and adherence to DFS. Although the glaze acted as a barrier between the molten aluminum and the DFS, persistent porosity and crazing within the glaze affected its performance during the reactivity tests, thus acting as an obstacle in scaling up production of this glaze. (3) Pyrotek's XL glaze showed great success in improving the life of the DFS tubes. Pyrotek has reported an increasing market demand for the XL-coated DFS tubes, which exhibit useful lifetimes three times better than those of uncoated tubes. (4) A computer model to optimize particle size distribution for reduced permeability was developed and successfully applied to casting formulations. Silica riser tubes produced using these new formulations have been tested in a commercial aluminum casting facility and have been reported to increase the life of the DFS tubes by 700%. (5) If all the DFS riser tubes used in LPD casting of aluminum automotive components are replaced with the better, longer-lasting castable riser tubes, the potential national energy savings is estimated to be 206 billion Btu/year.

  11. ,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  12. ,"Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release

  13. ,"Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next

  14. Evaluation of low-temperature geothermal potential in Cache Valley, Utah. Report of investigation No. 174

    SciTech Connect (OSTI)

    de Vries, J.L.

    1982-11-01

    Field work consisted of locating 90 wells and springs throughout the study area, collecting water samples for later laboratory analyses, and field measurement of pH, temperature, bicarbonate alkalinity, and electrical conductivity. Na/sup +/, K/sup +/, Ca/sup +2/, Mg/sup +2/, SiO/sub 2/, Fe, SO/sub 4//sup -2/, Cl/sup -/, F/sup -/, and total dissolved solids were determined in the laboratory. Temperature profiles were measured in 12 additional, unused walls. Thermal gradients calculated from the profiles were approximately the same as the average for the Basin and Range province, about 35/sup 0/C/km. One well produced a gradient of 297/sup 0/C/km, most probably as a result of a near-surface occurrence of warm water. Possible warm water reservoir temperatures were calculated using both the silica and the Na-K-Ca geothermometers, with the results averaging about 50 to 100/sup 0/C. If mixing calculations were applied, taking into account the temperatures and silica contents of both warm springs or wells and the cold groundwater, reservoir temperatures up to about 200/sup 0/C were indicated. Considering measured surface water temperatures, calculated reservoir temperatures, thermal gradients, and the local geology, most of the Cache Valley, Utah area is unsuited for geothermal development. However, the areas of North Logan, Benson, and Trenton were found to have anomalously warm groundwater in comparison to the background temperature of 13.0/sup 0/C for the study area. The warm water has potential for isolated energy development but is not warm enough for major commercial development.

  15. Geomorphology and failure history of the earthquake-induced Farmington Siding landslide complex, Davis County, Utah

    SciTech Connect (OSTI)

    Lowe, M.; Harty, K.M. )

    1993-04-01

    The Farmington Siding landslide complex covers an area of 19.5 km[sup 2] in central Davis County. First identified and mapped in the 1970s, the feature was classified by previous researchers as a liquefaction-induced lateral spread based on surface geomorphology and exposures on the landslide complex. This was the first landslide in Utah to be attributed to earthquake-induced liquefaction. Geomorphic and geologic evidence indicate that the Farmington Sliding landslide complex likely consists of liquefaction-induced landslides that failed by means of both flow failure and lateral spreading. The landslide complex is located in an area underlain primarily by fine-grained deposits of Pleistocene Lake Bonneville and Holocene Great Salt Lake. Geomorphic features of the landslide complex include main and minor scarps, hummocks, closed depressions, and transverse lineaments. The main scarp consists mostly of a series of arcuate scallops near the left flank of the landslide, but it is a relatively linear, single scarp near the right flank of the landslide. Hummocks and closed depressions are most common near the head region of the landslide complex. Failure of the Farmington Sliding landslide complex has occurred at least twice. The older, distal portion of the landslide complex is cut by the Gilbert shoreline of the Bonneville lake cycle, indicating that landsliding occurred more than 10,000 years ago. In the younger portion of the landslide complex, landsliding has disrupted the Gilbert shoreline. Radiocarbon age estimates from trenches on a hummock near the main scarp of the younger landslide indicate that slope failure occurred sometime between about 2,730 [+-] 370 cal. yr B.P. and 4,530 [+-] 300 cal. yr B.P., possibly during the penultimate or antepenultimate surface-faulting earthquake on the Weber segment of the Wasatch fault zone.

  16. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect (OSTI)

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  17. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  18. General Reactive Atomistic Simulation Program

    Energy Science and Technology Software Center (OSTI)

    2004-09-22

    GRASP (General Reactive Atomistic Simulation Program) is primarily intended as a molecular dynamics package for complex force fields, The code is designed to provide good performance for large systems, either in parallel or serial execution mode, The primary purpose of the code is to realistically represent the structural and dynamic properties of large number of atoms on timescales ranging from picoseconds up to a microsecond. Typically the atoms form a representative sample of some material,more » such as an interface between polycrystalline silicon and amorphous silica. GRASP differs from other parallel molecular dynamics codes primarily due to it’s ability to handle relatively complicated interaction potentials and it’s ability to use more than one interaction potential in a single simulation. Most of the computational effort goes into the calculation of interatomic forces, which depend in a complicated way on the positions of all the atoms. The forces are used to integrate the equations of motion forward in time using the so-called velocity Verlet integration scheme. Alternatively, the forces can be used to find a minimum energy configuration, in which case a modified steepest descent algorithm is used.« less

  19. Regional hydrology of the Green River-Moab area, northwestern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Rush, F.E.; Whitfield, M.S.; Hart, I.M.

    1982-12-01

    The Green River-Moab area encompasses about 7800 square kilometers or about 25% of the Paradox basin. The entire Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite (salt) beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Confining beds consist of evaporite beds of mostly salt, and overlying and underlying thick sequences of rocks with minimal permeability; above and below these confining beds are aquifers. The upper Mesozoic sandstone aquifer, probably is the most permeable hydrogeologic unit of the area and is the subject of this investigation. The principal component of groundwater outflow from this aquifer probably is subsurface flow to regional streams (the Green and Colorado Rivers) and is about 100 million cubic meters per year. All other components of outflow are relatively small. The average annual recharge to the aquifer is about 130 million cubic meters, of which about 20 million cubic meters is from local precipitation. For the lower aquifer, all recharge and discharge probably is by subsurface flow and was not estimated. The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. Brines are present in the confining beds, but solution of beds of salt probably is very slow in most parts of the area. No brine discharges have been identified.

  20. Permeability of consolidated incinerator facility wastes stabilized with portland cement

    SciTech Connect (OSTI)

    Walker, B.W.

    2000-04-19

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as a method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and offgas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as wastewater. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete, and will continue to be treated this way for listed waste burns and scrubber solutions that do not meet the ETF Waste Acceptance Criteria (WAC). The disposal plan for Ashcrete and special case blowcrete is to bury these containerized waste forms in shallow unlined trenches in E-Area. The WAC for intimately mixed, cement-based wasteforms intended for direct disposal specifies limits on compressive strength and permeability. Simulated waste and actual CIF ash and scrubber solution were mixed in the laboratory and cast into wasteforms for testing. Test results and related waste disposal consequences are given in this report.

  1. Gelled polymer systems for permeability modification in petroleum reservoirs

    SciTech Connect (OSTI)

    Willhite, G.P.; Green, D.W.; Thiele, J.L.; McCool, C.S.; Mertes, K.B.

    1991-09-01

    The research program described in this report was conducted to improve the performance and predictability of in situ gelation processes designed to increase volumetric sweep efficiency of fluid displacement processes. A principal objective of this research was to develop procedures for design and evaluation of permeability modification processes. Research was conducted in three broad areas: (1) Physical and Chemical Characterization of Gelling Systems (2) In situ Gelation and (3) Mathematical Modeling of In Site Gelation. Gelling systems used chromium as the crosslinking agent. Polyacrylamide and polysaccharides gelling systems were studied. Research was conducted on the chemical structure of polymer/metal ion complexes, kinetics of the reduction of Cr(6) to Cr(3) by thiourea, kinetics of oligomerization and uptake of chromium by polyacrylamide and rheology of chromium/polysaccharide gelling systems. Studies of polymer/metal ion complexes were conducted using solutions of pure monomer, dimer and trimer forms of chromium. A mathematical model was developed to examine the kinetics of Cr(3) oligomerization and uptake of chromium by polyacrylamide. Rheological studies were completed on chromium/polysaccharide gels. In situ gelation experiments were conducted using a bis-ethylenediamine chromium complex and chromium(3) polyacrylamide gelling systems in sandpacks. A numerical model of in situ gelation of chromium/polyacrylamide systems was developed for linear displacement in a sandpack. The numerical model is based on filtration mechanisms and is consistent with experimental data and models developed in this research program. 103 figs., 21 tabs.

  2. Characterization of tungsten films and their hydrogen permeability

    SciTech Connect (OSTI)

    Nemani?, Vincenc Kova?, Janez; Lungu, Cristian; Porosnicu, Corneliu; Zajec, Bojan

    2014-11-01

    Prediction of tritium migration and its retention within fusion reactors is uncertain due to a significant role of the structural disorder that is formed on the surface layer after plasma exposure. Tungsten films deposited by any of the suitable methods are always disordered and contain a high density of hydrogen traps. Experiments on such films with hydrogen isotopes present a suitable complementary method, which improves the picture of the hydrogen interaction with fusion relevant materials. The authors report on the morphology, composition, and structure of tungsten films deposited by the thermionic vacuum arc method on highly permeable Eurofer substrates. Subsequently, hydrogen permeation studies through these films were carried out in a wide pressure range from 20 to 1000 mbars at 400?C. The final value of the permeation coefficient for four samples after 24?h at 400?C was between P?=?3.2??10{sup ?14}?mol?H{sub 2}/(m?s?Pa{sup 0.5}) and P?=?1.1??10{sup ?15}?mol H{sub 2}/(m s Pa{sup 0.5}). From the time evolution of the permeation flux, it was shown that diffusivity was responsible for the difference in the steady fluxes, as solubility was roughly the same. This is confirmed by XRD data taken on these samples.

  3. Measurement of Interfacial Area Production and Permeability within Porous Media

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.

    2010-01-01

    An understanding of the pore-level interactions that affect multi-phase flow in porous media is important in many subsurface engineering applications, including enhanced oil recovery, remediation of dense non-aqueous liquid contaminated sites, and geologic CO2 sequestration. Standard models of two-phase flow in porous media have been shown to have several shortcomings, which might partially be overcome using a recently developed model based on thermodynamic principles that includes interfacial area as an additional parameter. A few static experimental studies have been previously performed, which allowed the determination of static parameters of the model, but no information exists concerning the interfacial area dynamic parameters. A new experimental porous flow cell that was constructed using stereolithography for two-phase gas-liquid flow studies was used in conjunction with an in-house analysis code to provide information on dynamic evolution of both fluid phases and gas-liquid interfaces. In this paper, we give a brief introduction to the new generalized model of two-phase flow model and describe how the stereolithography flow cell experimental setup was used to obtain the dynamic parameters for the interfacial area numerical model. In particular, the methods used to determine the interfacial area permeability and production terms are shown.

  4. Noise modeling from high-permeability shields using Kirchhoff equations

    SciTech Connect (OSTI)

    Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J

    2010-01-01

    Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding magnetic noise of conductive materials, especially of magnetic shields (DC or rf) based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have rf shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems arbitrary shapes and complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies the knowledge of the noise correlation between sensors is as important as the knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for any geometrically shaped shield and multiple sensor systems. The approach uses a fraction of the processing power of other approaches and with a multiple sensor system our approach not only calculates the noise for each sensor but it also calculates the noise correlation matrix between sensors. Here we will show the algorithm and examples where it can be implemented.

  5. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    SciTech Connect (OSTI)

    Birkle, P.; Pruess, K.; Xu, T.; Figueroa, R.A. Hernandez; Lopez, M. Diaz; Lopez, E. Contreras

    2008-10-01

    Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months of reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity and permeability reduction due to calcite precipitation, which is promoted by the retrograde solubility of this mineral. Using treated water that performed well in the laboratory flow experiments was found to avoid excessive precipitation, and allowed injection to proceed.

  6. Permeability computation on a REV with an immersed finite element method

    SciTech Connect (OSTI)

    Laure, P. [Laboratoire J.-A. Dieudonne, CNRS UMR 6621, Universite de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, Cedex 02 (France); Puaux, G.; Silva, L.; Vincent, M. [MINES ParisTech, CEMEF-Centre de Mise en Forme des Materiaux, CNRS UMR 7635, BP 207 1 rue Claude, Daunesse 06904 Sophia Antipolis cedex (France)

    2011-05-04

    An efficient method to compute permeability of fibrous media is presented. An immersed domain approach is used to represent the porous material at its microscopic scale and the flow motion is computed with a stabilized mixed finite element method. Therefore the Stokes equation is solved on the whole domain (including solid part) using a penalty method. The accuracy is controlled by refining the mesh around the solid-fluid interface defined by a level set function. Using homogenisation techniques, the permeability of a representative elementary volume (REV) is computed. The computed permeabilities of regular fibre packings are compared to classical analytical relations found in the bibliography.

  7. Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures

    SciTech Connect (OSTI)

    Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; Andr Niemeijer; Hideaki Yasuhara

    2009-03-30

    This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

  8. Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123

    SciTech Connect (OSTI)

    Diabira, I.; Castanier, L.M.; Kovscek, A.R.

    2001-04-19

    An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.

  9. Used to Calibrate Thermistors on In Situ Permeable Flow Sensors

    Energy Science and Technology Software Center (OSTI)

    1996-12-01

    The software package is comprised of three programs which together are used to calibrate thermistors in an In Situ Permable Flow Sensor. TBATH controls a temperature controlled bath/circulator. The code monitors the temperature of a set of previously calibrated thermistors located in a tank through which the fluid from the bath is circulated. After the temperature has reached and maintained thermal equilibrium for a specified period of time, the bath/circulator is instructed by the programmore » to change the temperature set point to the next specified temperature. An arbitrary number of temperature calibration points can be specified allowing thermistors to be calibrated on a continuous basis without human intervention. CALIB is used to merge two data files that are collected during a temperature calibration run. During calibration of the thermistors on an In Situ Permeable Flow Sensor, the known temperatures in the temperaure controlled tank are recorded in one computer file in one format while the electrical resistance of the thermistors being calibrated is collected in a different file with a different format. This software reads in the two files and writes out a third file with all of the data in it that is required to calculate the calibration coefficients of the thermistors on the probe. POLYFIT is used to calculate the calibration coefficients which permit the temperature of a thermistor to ba calculated from its electrical resistance. During calibration of a thermistor, the electrical resistance of the thermistor is measured at four or more known temperatures and the data sent to this software. The program calculates the coefficients of a fourth order polynomial relating the inverse of the absolute temperature to the natural log of the electrical resistance. Once these coefficients are known, the polynomial can be evaluated with any measured electrical resistance to calculate the equivalent temperature.« less

  10. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement

    Office of Environmental Management (EM)

    Volumes IV Chapters 4 -5 Comment Responses U.S. Department of Energy Office of Environmental Management Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Final Environmental Impact Statement i Contents Volume IV 4.0 Responses............................................................................................................................4-1 4.1 Response Index Tables

  11. EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area Power Administration Transmission Lines on Forest Service Lands, Colorado, Nebraska, and Utah

    Broader source: Energy.gov [DOE]

    This EIS is being prepared jointly by DOE’s Western Area Power Administration and the U.S. Forest Service. The EIS evaluates the potential environmental impacts of Western’s proposed changes to vegetation management along its transmission line rights-of-way on National Forest System lands in Colorado, Utah, and Nebraska.

  12. Reactivity control assembly for nuclear reactor

    DOE Patents [OSTI]

    Bollinger, Lawrence R. (Schenectady, NY)

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  13. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

    1998-09-08

    A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

  14. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, Tyler J.; Holdren, Jr., George R.; Kaplan, Daniel I.

    1998-01-01

    A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

  15. Characterization of Dual-Fuel Reactivity Controlled Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) ...

  16. Reactive power and harmonic compensation based on the generalized...

    Office of Scientific and Technical Information (OSTI)

    Conference: Reactive power and harmonic compensation based on the generalized instantaneous reactive power theory for three-phase power systems Citation Details In-Document Search ...

  17. Comparison of Conventional Diesel and Reactivity Controlled Compressio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine Comparison of Conventional Diesel and Reactivity Controlled Compression ...

  18. Reactivity of Ozone with Solid Potassium Iodide Investigated...

    Office of Scientific and Technical Information (OSTI)

    Reactivity of Ozone with Solid Potassium Iodide Investigated by Atomic Force Microscopy Citation Details In-Document Search Title: Reactivity of Ozone with Solid Potassium...

  19. Factors affecting initial permeability of Co-substituted Ni-Zn-Cu ferrites

    SciTech Connect (OSTI)

    Byun, T.Y.; Byeon, S.C.; Hong, K.S.; Kim, C.K.

    1999-09-01

    Iron deficient compositions of (Ni{sub 0.2}Cu{sub 0.2}Zn{sub 0.6}){sub 1.02{minus}x}Co{sub x}Fe{sub 1.98}O{sub 4} (0 {le} x {le} 0.05) were prepared to investigate their initial permeability dependence on cobalt contents. Extrinsic factors such as grain size and sintered density change little in samples sintered at 900 C, so their effects on permeability can be neglected. Intrinsic factors such as saturation magnetization, magnetocrystalline anisotropy (K{sub 1}) and magnetoelastic anisotropy (K{sub {sigma}}) can not account for the variation of initial permeability with Co content. Measurement of thermoelectric power shows that the concentration of cation vacancies increases with Co content. Therefore, the local induced anisotropy increases by the ordering of Co ions cia increased cation vacancy concentration. This increase in induced anisotropy results in the decrease of initial permeability.

  20. Poly 3D fault modeling scripts/data for permeability potential of Washington State geothermal prospects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Michael Swyer

    2015-02-05

    Matlab scripts/functions and data used to build Poly3D models and create permeability potential GIS layers for 1) Mount St Helen's, 2) Wind River Valley, and 3) Mount Baker geothermal prospect areas located in Washington state.

  1. Modeling of coupled heat transfer and reactive transport processesin...

    Office of Scientific and Technical Information (OSTI)

    Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the ...

  2. Third invitational well-testing symposium: well testing in low permeability environments

    SciTech Connect (OSTI)

    Doe, T.W.; Schwarz, W.J.

    1981-03-01

    The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted. (DLC)

  3. Motion-induced radiation in a cavity with conducting and permeable plates

    SciTech Connect (OSTI)

    Sarabadani, Jalal; Miri, MirFaez

    2007-05-15

    We consider a conducting and a permeable plate immersed in the vacuum of a scalar field. We calculate the photon production rate when two plates at a distance H oscillate with a frequency {omega}{sub p}. For H{omega}{sub p}/({pi}c)<2, the angular spectrum and photon production rates are significantly different from those of a conventional cavity with two conducting or two permeable plates.

  4. Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico

    SciTech Connect (OSTI)

    Daigle, Hugh; Cook, Ann; Malinverno, Alberto

    2015-10-14

    Hydrate-bearing sands are being actively explored because they contain the highest concentrations of hydrate and are the most economically recoverable hydrate resource. However, relatively little is known about the mechanisms or timescales of hydrate formation, which are related to methane supply, fluid flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeability measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (hydrate-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused hydrate formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for hydrate formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and hydrate formation in hydrate-bearing sands.

  5. A multi-state magnetic memory dependent on the permeability of Metglas

    SciTech Connect (OSTI)

    Petrie, J. R.; Wieland, K. A.; Timmerwilke, J. M.; Burke, R. A.; Newburgh, G. A.; Fischer, G. A.; Edelstein, A. S.; Barron, S. C.; Burnette, J. E.

    2015-04-06

    A three-state magnetic memory was developed based on differences in the magnetic permeability of a soft ferromagnetic media, Metglas 2826MB (Fe{sub 40}Ni{sub 38}Mo{sub 4}B{sub 18}). By heating bits of a 250 nm thick Metglas film with 70–100 mW of laser power, we were able to tune the local microstructure, and hence, the permeability. Ternary memory states were created by using lower laser power to enhance the initial permeability through localized atomic rearrangement and higher power to reduce the permeability through crystallization. The permeability of the bits was read by detecting variations in an external 32 Oe probe field within 10 μm of the media via a magnetic tunnel junction read head. Compared to data based on remanent magnetization, these multi-permeability bits have enhanced insensitivity to unexpected field and temperature changes. We found that data was not corrupted after exposure to fields of 1 T or temperatures of 423 K, indicating the effectiveness of this multi-state approach for safely storing large amounts of data.

  6. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  7. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  8. Environmental assessment of remedial action at the Mexican Hat uranium mill tailings site, Mexican Hat, Utah. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. Remedial action must be performed in accordance with standards and with the concurrence of the US Nuclear Regulatory Commission and the Navajo Nation. The proposed action is to stabilize the tailings within the present tailings site by consolidating the tailings and associated contaminated soils into a recontoured pile. A radon barrier of compacted earth would be constructed over the pile, and various erosion control measures would be taken to assure the long-term stability of the pile. The no action alternative is also assessed in this document. 240 refs., 12 figs., 20 tabs.

  9. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on the fishes of the Green River, Utah and Colorado

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Hayse, J.W.

    1995-09-01

    Aerial videography and modeling were used to evaluate the impacts of four hydropower operational scenarios at Flaming Gorge Dam, Utah, on trout and native fishes in the Green River, Utah and Colorado. The four operational scenarios studied were year-round high fluctuations, seasonally adjusted high fluctuations, seasonally adjusted moderate fluctuations, and seasonally adjusted steady flows. Impacts on trout were evaluated by examining differences among scenarios in the areas of inundated substrates that serve as spawning and feeding habitat. All scenarios would provide at least 23 acres per mile of habitat for spawning and food production; seasonally adjusted operations would provide additional areas during periods of sustained high release. Seasonally adjusted high fluctuations would increase inundated areas by 12 to 26% for a short period in winter and spring, but food production and reproduction would not be expected to increase. Seasonally adjusted moderate fluctuations and steady flows would produce similar increases in area, but the longer period of inundation could also result in increased food production and provide additional spawning sites for trout. Impacts on native fishes were assessed by examining daily changes in backwater nursery areas. Compared with year-round high fluctuations, the daily changes in backwater area would decrease by about 47, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. Similarly, daily stage fluctuations during the nursery period would decrease by 72, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. These reductions in daily fluctuations in backwater area and stage would improve conditions in nursery habitats and could in turn improve recruitment and overwinter survival. Introduced fish species could also benefit from the seasonally adjusted operational scenarios.

  10. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  11. Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daigle, Hugh; Cook, Ann; Malinverno, Alberto

    2015-10-14

    Hydrate-bearing sands are being actively explored because they contain the highest concentrations of hydrate and are the most economically recoverable hydrate resource. However, relatively little is known about the mechanisms or timescales of hydrate formation, which are related to methane supply, fluid flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeabilitymore » measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (hydrate-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused hydrate formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for hydrate formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and hydrate formation in hydrate-bearing sands.« less

  12. RESERVOIR CHARACTERIZATION OF THE LOWER GREEN RIVER FORMATION, SOUTHWEST UINTA BASIN, UTAH

    SciTech Connect (OSTI)

    Milind D. Deo

    2003-02-11

    Reservoir simulations of different fields in the Green River Formation are reported. Most extensive simulations were performed on the Monument Butte Northeast unit. Log data were used to construct detailed geostatistical models, which were upscaled to obtain reasonable number of grid blocks for reservoir simulation. Porosities, permeabilities, and water saturations required for reservoir simulation were thus generated. Comparison of the production results with the field data revealed that there was a phenomenological deficiency in the model. This was addressed by incorporating hydraulic fractures into the models. With this change, much better agreement between simulation results and field data was obtained. Two other fields, Brundage Canyon and Uteland Butte, were simulated in primary production. Only preliminary simulations were undertaken since a number of critical data elements were missing and could not be obtained from the operators. These studies revealed that the production performance of the Brundage Canyon field is much better than what can be predicted from simulations of a typical non-fractured, undersaturated reservoir. Uteland Butte field performance was that of a typical undersaturated reservoir.

  13. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  14. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  15. Nuclear engine flow reactivity shim control

    DOE Patents [OSTI]

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  16. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    SciTech Connect (OSTI)

    Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

    2008-10-15

    During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

  17. IMPACT OF CURING TEMPERATURE ON THE SATURATED LIQUID PERMEABILITY OF SALTSTONE

    SciTech Connect (OSTI)

    Williams, F.; Harbour, J.

    2011-02-14

    This report focuses on the impact of curing temperature on the performance properties of simulated Saltstone mixes. The key performance property of interest is saturated liquid permeability (measured as hydraulic conductivity), an input to the Performance Assessment (PA) modeling for the Saltstone Disposal Facility (SDF). Therefore, the current study was performed to measure the dependence of saturated hydraulic conductivity on curing temperature of Saltstone mixes, to correlate these results with measurements of Young's moduli on the same samples and to compare the Scanning Electron Microscopy (SEM) images of the microstructure at each curing temperature in an effort to associate this significant changes in permeability with changes in microstructure. This work demonstrated that the saturated liquid permeability of Saltstone mixes depends significantly on the curing temperature. As the curing temperature increases, the hydraulic conductivity can increase over three orders of magnitude from roughly 10{sup -9} cm/sec to 10{sup -6} cm/sec over the temperature range of 20 C to 80 C. Although an increased aluminate concentration (at 0.22 M) in the ARP/MCU waste stream improves (decreases) saturated permeability for samples cured at lower temperatures, the permeabilities for samples cured at 60 C to 80 C are the same as the permeabilities measured for an equivalent mix but with lower aluminate concentration. Furthermore, it was demonstrated that the unsaturated flow apparatus (UFA) system can be used to measure hydraulic conductivity of Saltstone samples. The permeability results obtained using the UFA centrifuge system were equivalent within experimental error to the conventional permeameter results (the falling head method) obtained at MACTEC. In particular the UFA technique is best suited for the range of hydraulic conductivities between 10{sup -10} cm/sec to 10{sup -6} cm/sec. Measurements of dynamic Young's moduli (E) for these mixes revealed a correlation between E and hydraulic conductivity. Therefore, it is possible to use E values to estimate the values of hydraulic conductivity. Measurement of Young's modulus is much easier than the measurement of permeability of Saltstone mixes and facilitates the measurement of the time dependence hydraulic conductivity. The results presented in this report show that changes in permeability as a function of curing temperature appear to be related to microstructural changes in the cured Saltstone mixes. Backscattered electron microscopy images revealed significant differences between the samples cured at different temperatures.

  18. Experimental determination of the relationship between permeability and microfracture-induced damage in bedded salt

    SciTech Connect (OSTI)

    Pfeifle, T.W.

    1998-03-01

    The development of deep underground structures (e.g., shafts, mines, storage and disposal caverns) significantly alters the stress state in the rock near the structure or opening. The effect of such an opening is to concentrate the far-field stress near the free surface. For soft rock such as salt, the concentrating effect of the opening induces deviatoric stresses in the salt that may be large enough to initiate microcracks which then propagate with time. The volume of rock susceptible to damage by microfracturing is often referred to as the disturbed rock zone and, by its nature, is expected to exhibit high permeability relative to that of the native, far-field rock. This paper presents laboratory data that characterize microfracture-induced damage and the effect this damage has on permeability for bedded salt from the Waste Isolation Pilot Plant located in southeastern New Mexico. Damage is induced in the salt through a series of tertiary creep experiments and quantified in terms of dilatant volumetric strain. The permeability of damaged specimens is then measured using nitrogen gas as the permeant. The range in damage investigated included dilatant volumetric strains from less than 0.03 percent to nearly 4.0 percent. Permeability values corresponding to these damage levels ranged from 1 {times} 10{sup {minus}18} m{sup 2} to 1 {times} 10{sup {minus}12} m{sup 2}. Two simple models were fitted to the data for use in predicting permeability from dilatant volumetric strain.

  19. Determination of the permeability of carbon aerogels by gas flow measurements

    SciTech Connect (OSTI)

    Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

    1992-04-01

    Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy's law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

  20. Determination of the permeability of carbon aerogels by gas flow measurements

    SciTech Connect (OSTI)

    Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

    1992-04-01

    Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy`s law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.