National Library of Energy BETA

Sample records for utah national priorities

  1. Glen Canyon National Recreation Area, Lake Powell, Utah | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Glen Canyon National Recreation Area, Lake Powell, Utah Glen Canyon National Recreation Area, Lake Powell, Utah Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina used diesel generators to supply power. They used 65,000 gallons of diesel fuel per year that had to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill was significant,

  2. Camp William Utah National Guard Wind Farm II | Open Energy Informatio...

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Camp William Utah National Guard Wind Farm II Facility Camp William Utah National Guard Sector Wind energy Facility Type Community Wind Facility...

  3. Changing national policy priorities and the ROS

    SciTech Connect (OSTI)

    Daschle, T.

    1994-12-31

    This paper discusses the effects of changing national policy priorities regarding the use of reformulated fuels and oxygenated fuels. The importance of the use of oxygenated fuels in reducing carbon monoxide pollution of the atmosphere and ways for people to work together to achieve this goal are discussed. MTBE and ETBE are important additives in the fuels industry and the economic outlook affecting their usage is briefly described.

  4. Monticello, Utah, National Priorities List Sites Federal Facility...

    Office of Legacy Management (LM)

    ... Reactive Barrier The PRB was installed in 1999 as a technology demonstration project. ... remediation system was installed in May 2005 as a technology demonstration project. ...

  5. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    SciTech Connect (OSTI)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.; Wolverson, N.; Antrim, D.; Berg, J.; Witzel, F.

    1982-08-01

    The Wells 2/sup 0/ Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins are unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin.

  6. National Uranium Resource Evaluation: Elko Quadrangle, Nevada and Utah

    SciTech Connect (OSTI)

    Percival, T.J.; Bright, J.H.

    1982-07-01

    The Elko Quadrangle (1/sup 0/ x 2/sup 0/), Nevada and Utah, was evaluated to identify and delineate geologic environments favorable for the occurrence of uranium deposits. Geologic reconnaissance, radiometric surveys, and geochemical sampling programs were carried out in all identified environments in the quadrangle. Known and newly identified uranium occurrences were evaluated. All geologic environments, both favorable and unfavorable for the occurrence of uranium, were evaluated and compared to analogous environments known to contain uranium deposits. This study concludes that tuffs and sediments of the Humboldt Formation are favorable for initial-magmatic and sandstone uranium occurrences. Contact metasomatic and allogenic environments developed within the Park City limestones adjacent to the Delcer Buttes quartz monzonite are also favorable for uranium concentration. With the exception of unevaluated basins adjacent to possible igneous source rocks, all other identified geologic environments are considered unfavorable for uranium deposits.

  7. National Uranium Resource Evaluation: Moab Quadrangle, Colorado and Utah

    SciTech Connect (OSTI)

    Campbell, J.A.; Franczyk, K.J.; Lupe, R.D.; Peterson, F.

    1982-09-01

    Portions of the Salt Wash Member of the Morrison, the Chinle, the Rico, the Cutler, and the Entrada Formations are favorable for uranium deposits that meet the minimum size and grade requirements of the US Department of Energy within the Moab 1' x 2' Quadrangle, Utah and Colorado. Nine areas are judged favorable for the Late Jurassic Salt Wash Member. The criteria used to evaluate these areas as favorable include the presence of (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Three favorable areas have been outlined for the Late Triassic Chinle Formation. The criteria used to evaluate these areas are the sandstone-to-shale ratios for the Chinle Formation and the distribution of the Petrified Forest Member of the Chinle, which is considered the source for the uranium. Two favorable areas have been delineated for the Permian Cutler Formation, and one for the Permian Rico Formation. The criteria used to outline favorable areas are the distribution of favorable facies within each formation. Favorable facies are those that are a result of deposition in environments that are transitional between fluvial and marine. One favorable area is outlined in the Jurassic Entrada Sandstone in the southeastern corner of the quadrangle in the Placerville district. Boundaries for this area were established by geologic mapping.

  8. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    SciTech Connect (OSTI)

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  9. Recommendation 199: Recommendation to Remove Uncontaminated Areas of the Oak Ridge Reservation from the National Priorities List

    Broader source: Energy.gov [DOE]

    ORSSAB Recommends DOE Remove Uncontaminated Areas of the Oak Ridge Reservation from the National Priorities List.

  10. National Uranium Resource Evaluation, Ogden Quadrangle, Utah and Wyoming

    SciTech Connect (OSTI)

    Madson, M.E.; Reinhart, W.R.

    1982-03-01

    The Ogden 1/sup 0/ x 2/sup 0/ Quadrangle was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for the occurrence of uranium deposits. Geologic reconnaissance, geochemical sampling, airborne radiometric and hydrogeochemical data interpretation, detailed surface studies, and subsurface investigations were conducted. The Crawford Mountains, northern Fossil Basin and Darby Thrust zone areas were delineated as favorable. Within these areas, the Meade Peak Phosphatic Shale Member of the Permean Phosphoria Formation contains an environment favorable for Phosphoria-type uranium deposits. All other environments in the quadrangle are unfavorable for uranium deposits. The Bannock and Absaroka Thrust zones are unevaluated because of inadequate subsurface geologic information.

  11. National uranium resource evaluation, Marble Canyon Quadrangle, Arizona and Utah

    SciTech Connect (OSTI)

    Field, M T; Blauvelt, R P

    1982-05-01

    The Marble Canyon Quadrangle (2/sup 0/), northeast Arizona, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Known mines and prospects were examined; field reconnaissance was done in selected areas of the quadrangle; and a ground-water geochemical survey was made in the southeast third of the quadrangle. The Shinarump and Petrified Forest Members of the Triassic Chinle Formation, which is exposed in the western and northeastern parts of the quadrangle and is present beneath the surface of much of the quadrangle, were found favorable for channel-sandstone uranium deposits. A portion of the Cretaceous Toreva Formation in the southeast part of the quadrangle was found favorable for peneconcordant-sandstone uranium deposits. The western part of the quadrangle was found favorable for uranium concentrations in breccia pipes.

  12. Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: January-March 2016

    Office of Legacy Management (LM)

    6 April 2016 LMS/MNT/S14013 This page intentionally left blank U.S. Department of Energy Monticello NPL Sites FFA Quarterly Report: January-March 2016 April 2016 Doc. No. S14013 Page i Contents Abbreviations .................................................................................................................................. ii 1.0 Introduction ............................................................................................................................1 1.1 Quarterly

  13. Davis County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah Fruit Heights, Utah Kaysville, Utah Layton, Utah North Salt Lake, Utah South Weber, Utah Sunset, Utah Syracuse, Utah West Bountiful, Utah West Point, Utah Woods Cross,...

  14. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  15. Utah School Children "Help Utah Out, Turn off the Spout!" | Department

    Energy Savers [EERE]

    of Energy Utah School Children "Help Utah Out, Turn off the Spout!" Utah School Children "Help Utah Out, Turn off the Spout!" August 27, 2014 - 11:15am Addthis Students in the Nebo School District pose with the winning posters from a competition held by the Utah State Energy Program. |Photo courtesy of the National Energy Foundation Students in the Nebo School District pose with the winning posters from a competition held by the Utah State Energy Program. |Photo courtesy

  16. Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: July 1…September 30, 2015

    Office of Legacy Management (LM)

    (FFA) Quarterly Report: July 1-September 30, 2015 October 2015 LMS/MNT/S13350 This page intentionally left blank U.S. Department of Energy Monticello NPL Sites FFA Quarterly Report: July-September 2015 October 2015 Doc. No. S13350 Page i Contents Abbreviations .................................................................................................................................. ii 1.0 Introduction

  17. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training RangeSouth (UTTRS)

    SciTech Connect (OSTI)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01

    Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath

  18. Emery County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Clawson, Utah Cleveland, Utah Elmo, Utah Emery, Utah Ferron, Utah Green River, Utah Huntington, Utah Orangeville, Utah Retrieved from "http:en.openei.orgwindex.php?titleEmery...

  19. Wasatch County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Green Joules Pan Am Biofuels Inc Places in Wasatch County, Utah Charleston, Utah Daniel, Utah Heber, Utah Midway, Utah Park City, Utah Timber Lakes, Utah Wallsburg, Utah...

  20. Annotated geothermal bibliography of Utah

    SciTech Connect (OSTI)

    Budding, K.E.; Bugden, M.H.

    1986-01-01

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  1. National uranium resource evaluation program: hydrogeochemical and stream sediment reconnaissance basic data for Ely quadrangle, Nevada; Utah

    SciTech Connect (OSTI)

    Not Available

    1981-10-15

    Field and laboratory data are presented for 1937 sediment samples from the Ely Quadrangle, Nevada; Utah. The samples were collected by Savannah River Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  2. Milford, Utah FORGE Logo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logo Milford, Utah FORGE Logo Milford, Utah FORGE Logo More Documents & Publications Milford, Utah FORGE Logo Milford, Utah FORGE Map Milford, Utah FORGE Logo West Flank FORGE Logo ...

  3. Milford, Utah FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milford, Utah FORGE Map More Documents & Publications Milford, Utah FORGE Map Milford, Utah FORGE Logo Milford, Utah FORGE Map Newberry FORGE Map Milford, Utah FORGE Map Fallon ...

  4. The hazardous priority substances in Italy: National rules and environmental quality standard in marine environment

    SciTech Connect (OSTI)

    Maggi, Chiara Onorati, Fulvio Lamberti, Claudia Virno Cicero, Anna Maria

    2008-01-15

    Article number 16 of the Water Framework Directive (Directive 2000/60/EC) lays down the community strategy for establishment of harmonised quality standards for the priority substances and other substances posing a significant risk to the aquatic environment. In order to achieve the protection objectives of the Directive 2000/60/EC, the Italian Ministry of the Environment proposed the quality standards for surface water, sediments and biota related to the priority substances listed in the decision No. 2455/2001/EC of the European Parliament and of the Council of November 20 (2001) [Decision N. 2455/2001/EC of the European Parliament and of the Council of 20 November 2001. The list of priority substances in the field of water policy and amending Directive 2000/60/EC. Official Journal of the European Communities, 15.12.2001, p. 5]. Particularly, for the protection of the marine environment, the proposed Italian rules state that, from 1 January 2021, the concentrations of the hazardous priority substances in Italian marine and lagoon waters must be near the natural background for natural substances, like metals, and near zero for the anthropogenic one. According to Directive 2000/60/EC, the Italian Ministry of Environment issued in 2003 Decree 367 in which has derived 160 Environmental Quality Standard (EQS) for water and 27 Environmental Quality Objective (EQO) for sediment of marine coastal area, lagoons and coastal ponds. Biota quality standards have still to be fixed. The paper illustrates the criteria applied for the definition of the quality standards and some comments are presented.

  5. Cache County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype B. Places in Cache County, Utah Amalga, Utah Avon, Utah Benson, Utah Cache, Utah Clarkston, Utah Cornish, Utah Cove, Utah Hyde Park, Utah...

  6. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  7. Juab County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 5 Climate Zone Subtype B. Places in Juab County, Utah Eureka, Utah Levan, Utah Mona, Utah Nephi, Utah Rocky Ridge, Utah Santaquin, Utah Retrieved...

  8. Utah Department of Commerce | Open Energy Information

    Open Energy Info (EERE)

    Commerce Jump to: navigation, search Name: Utah Department of Commerce Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111 References: Utah Commerce Website1 This...

  9. BLM Utah State Office | Open Energy Information

    Open Energy Info (EERE)

    Utah State Office Jump to: navigation, search Logo: BLM Utah State Office Name: BLM Utah State Office Abbreviation: Utah Address: 440 West 200 South, Suite 500 Place: Salt Lake...

  10. Utah_cm_smith

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cindy and Mack Smith Site - Utah Wind Anemometer Loan Program Latitude: N. 37 deg. 44.034' Longitude: W. 109 deg. 17.28' Elevation: 6762' Placed in service: November 21, 2002...

  11. Field Projects: Monticello, Utah

    Broader source: Energy.gov [DOE]

    A permeable reactive barrier (PRB) of zero-valent iron is helping to clean up groundwater at a former uranium and vanadium ore processing mill at Monticello, Utah. LM managed remediation of...

  12. DOE - Office of Legacy Management -- Utah

    Office of Legacy Management (LM)

    Utah Utah ut_map Green River Site Mexican Hat Site Monticello Site Salt Lake City Sites (2)

  13. Priorities and Allocations Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-10-12

    The Order establishes responsibilities for administration of the DOE and NNSA priorities and allocations program for industrial products, materials, and services and requirements for maintaining a system for procurement of industrial products, materials, and services programs that promote the national defense and programs that are determined by DOE to maximize domestic energy supplies. Supersedes DOE O 5560.1A.

  14. Utah Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy Corp., and the Utah Municipal Power Association's Cove Fort Station, which is located north of Beaver, Utah. Photo of the Bud L. Bonnett Geothermal Plant in Cove Fort Sulphurdale, UT

  15. Beaver County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Facility Blundell 2 Geothermal Facility Places in Beaver County, Utah Beaver, Utah Milford, Utah Minersville, Utah Retrieved from "http:en.openei.orgwindex.php?titleBeaver...

  16. Utah DEQ Air Permitting Branch Webpage | Open Energy Information

    Open Energy Info (EERE)

    link for Utah DEQ Air Permitting Branch Webpage Citation Utah Department of Environmental Quality. Utah DEQ Air Permitting Branch Webpage Internet. State of Utah. cited 201411...

  17. Utah Air Guidance Documents Webpage | Open Energy Information

    Open Energy Info (EERE)

    link for Utah Air Guidance Documents Webpage Citation Utah Department of Environmental Quality. Utah Air Guidance Documents Webpage Internet. State of Utah. cited 201411...

  18. Washington County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype B. Registered Energy Companies in Washington County, Utah Verdi Energy Group Places in Washington County, Utah Apple Valley, Utah Enterprise, Utah...

  19. Priority Questions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    related to DOE Furnace NOPR LCC model and TSD Priority Questions A) It appears that the assignment of base case efficiency for each individual home is chosen based on a random assignment in the Base Case AFUE sheet D12. This ignores the likelihood that there is an economic motive for consumers in selecting condensing vs. non-condensing furnaces. That is, consumers who have good payback economics for condensing furnaces are actually less likely to be affected by a rule than those with poor

  20. Final report for Texas A&M University Group Contribution to DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data (and ASCR-funded collaboration between Sandia National Labs, Texas A&M University and University of Utah)

    SciTech Connect (OSTI)

    Rojas, Joseph Maurice

    2013-02-27

    We summarize the contributions of the Texas A\\&M University Group to the project (DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data - an ASCR-funded collaboration between Sandia National Labs, Texas A\\&M U, and U Utah) during 6/9/2011 -- 2/27/2013.

  1. Health assessment for Midvale Slag Site, Midvale, Utah, Region 8. CERCLIS No. UTD081834277. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1988-07-21

    The Midvale Slag Site (MSS) is on the National Priorities List. The site is located west of Midvale (Salt Lake County), Utah. MSS is a former copper and lead smelting facility. Approximately 2 million tons of slag containing lead, arsenic, cadmium, and potential radioactive contamination are present onsite. Arsenic, cadmium, copper, chromium, lead, silver, zinc slag, and bag-house dust are present on-site. Potential environmental pathways include contaminated ground water, surface water, soils, and contaminants entrained in air. MSS represents a public health concern to on-site employees, remedial workers, and area residents who have access to the site through inhalation and ingestion of, or direct contact with, contaminated media (soil, sediment, surface water, and ground water). Complete restriction of the site is warranted. In addition, the possibility for exposure through contaminated agricultural products, garden vegetables, fish, water fowl, and livestock cannot be overlooked.

  2. Health assessment for Hyde Park Landfill National Priorities List (NPL) site, Niagara Falls, New York, Region 2. CERCLIS No. NYD000831644. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-02-07

    The Hyde Park Landfill National Priorities List Site was used by Hooker Chemical and Plastic Corporation, now Occidental Chemical Corporation, to dispose of approximately 80,000 tons of waste from 1953 to 1975. Significant amounts of 2,3,7,8-tetrachlorodibenzo-p-dioxin is believed to be in the landfill. Site-related contaminants have been detected in the overburden and bedrock aquifers. Analyses of samples taken from ground water seeps at the Niagara Gorge Face also show site-related contaminants. Leachate from the landfill appears to have entered Bloody Run Creek. Sediment sample analyses from the creek show site-related contaminants. The 1985 U.S. Environmental Protection Agency Enforcement Decision Document outlines remedial activities to be conducted at the site. The site without remediation is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.

  3. CHARACTERIZATION REPORT FOR STRONTIUM TITANATE IN SWSA 7 AND ADJACENT PARCELS IN SUPPORT OF THE NATIONAL PRIORITIES LIST SITE BOUNDARY DEFINITION PROGRAM OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    David A. King

    2011-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office requested support from the Oak Ridge Institute for Science and Education (ORISE) contract to delineate the extent of strontium titanate (SrTiO3) contamination in and around Solid Waste Storage Area (SWSA) 7 as part of the Oak Ridge National Priorities List Site boundary definition program. The study area is presented in Fig. 1.1 relative to the Oak Ridge Reservation (ORR). The investigation was executed according to Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP) (DOE 2011) to supplement previous investigations noted below and to determine what areas, if any, have been adversely impacted by site operations.

  4. Utah + workshop + GRR | OpenEI Community

    Open Energy Info (EERE)

    2012 - 14:45 Utah Meeting 1 Utah + workshop + GRR On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting flowcharts developed...

  5. Draper, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Draper is a city in Salt Lake County and Utah County, Utah. It falls under Utah's 2nd congressional...

  6. Utah DEQ Website | Open Energy Information

    Open Energy Info (EERE)

    Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Website Author Utah Department of Environmental Quality Published Utah Department of...

  7. Utah Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Logo: Utah Geological Survey Name: Utah Geological Survey Address: 1594 W. North Temple Place: Salt Lake City, Utah Zip: 84114-6100 Phone Number: 801.537.3300 Website:...

  8. Utah's Public Notice Website | Open Energy Information

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah's Public Notice Website Citation Utah.gov. Utah's Public Notice Website...

  9. University of Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Utah University of Utah FORGE logos 010416-06.jpg The Milford, Utah FORGE team, led by the University of Utah - Energy & Geoscience Institute (EGI), has identified a location where they propose to establish a geothermal laboratory. The proposed area has an established history of geothermal research and development, with a vast set of data from exploration wells and seismic stations that will help the Milford, Utah FORGE team characterize their potential site. The Milford, Utah

  10. Utah Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    Municipal Power Agency Place: Utah Phone Number: (801) 798-7489 Website: www.umpa.cc Facebook: https:www.facebook.compagesUtah-Municipal-Power-Agency152219714819535 Outage...

  11. Utah/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    UtahWind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >>...

  12. Orem, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah's 3rd congressional district.12 Registered Energy Companies in Orem, Utah Better Biodiesel Domestic Energy Partners Trulite Inc References US Census Bureau...

  13. Lehi, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah's 3rd congressional district.12 Registered Energy Companies in Lehi, Utah Tasco Engineering Inc References US Census Bureau Incorporated place and minor civil...

  14. Utah Code Annotated | Open Energy Information

    Open Energy Info (EERE)

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  15. Utah/Incentives | Open Energy Information

    Open Energy Info (EERE)

    RecruitmentSupport Yes City of St. George - Energy Efficient Homes Rebate Program (Utah) Utility Rebate Program No City of St. George - Energy Star Appliance Rebate Program (Utah)...

  16. Utah Solar Outlook March 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  17. Utah/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    info@distributedwind.org Distributed Wind Energy Association Utah Wind Resources Utah Office of Energy Development: Wind Energy Information AWEA State Wind Energy Statistics: Utah...

  18. Utah - UAC R907-1 - Utah Administrative Procedures | Open Energy...

    Open Energy Info (EERE)

    07-1 - Utah Administrative Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah - UAC R907-1 - Utah...

  19. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  20. RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    Utah < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationUtah) Redirect page Jump to: navigation, search REDIRECT...

  1. Wind Powering America - Outreach in Priority States (Poster)

    SciTech Connect (OSTI)

    Kelly, M.; Flowers, L.

    2009-04-01

    WPA works with 33 State Wind Working Groups to educate stakeholders on wind energy topics and to achieve the basics needed for effective wind development in a state. WPA has accelerated outreach and communication efforts with 13 priority states: Alaska, Arizona, Indiana, Maryland, Massachussetts, Michigan, Nebraska, Nevada, North Carolina, Ohio, South Dakota, Utah, and Virginia. These states have the potential to contribute substantially to the national portfolio of wind energy but do not yet have large amounts of wind energy applications on the ground. This is often due to barriers in in-state knowledge and understanding of wind energy issues and potential that impact the policy environment and the market environment. There are common regional issues among the states, and important learning opportunities can be gained by cross-training and sharing experiences. The Regional Wind Energy Institutes (RWEIs) are train-the-trainer organizations that work to develop a cadre of in-state outreach specialists who reach out to audiences of decisionmakers (e.g., the ag community, state and local officials, utilities, regulatory bodies) to build understanding, create public acceptance, take advantage of regional synergies, and eventually to impact polices and the market environment for effective wind implementation.

  2. Milford, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Milford is a city in Beaver County, Utah. It falls under Utah's 3rd congressional...

  3. Utah Public Service Commission | Open Energy Information

    Open Energy Info (EERE)

    Lake City, Utah Zip: 84114 Phone Number: 801.530.6716 Website: www.psc.utah.govindex.html References: PSC homepage1 This article is a stub. You can help OpenEI by expanding...

  4. Utah Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    Utah Meeting 1 Home > Blogs > Kyoung's blog Kyoung's picture Submitted by Kyoung(150) Contributor 10 September, 2012 - 13:45 Utah + workshop + GRR On Thursday, September 6, we met...

  5. Sandy, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Sandy is a city in Salt Lake County, Utah. It falls under Utah's 2nd congressional district.12 Registered...

  6. Utah Water Rights Flowchart | Open Energy Information

    Open Energy Info (EERE)

    Flowchart Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Rights Flowchart Abstract Provides access to flowchart of Utah's water rights...

  7. OpenEI Community - Utah + workshop + GRR

    Open Energy Info (EERE)

    Utah Meeting 1 http:en.openei.orgcommunityblogutah-meeting-1

    On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting...

  8. Utah Antidegradation Review Form | Open Energy Information

    Open Energy Info (EERE)

    Utah Antidegradation Review Form Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Antidegradation Review Form Form Type ApplicationNotice Form Topic...

  9. Utah Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Lake City, Utah Zip: 84114 Phone Number: 801.965.4000 Website: www.udot.utah.govmainf?p100 References: UDOT homepage1 This article is a stub. You can help OpenEI by...

  10. Categorical Exclusion Determinations: Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Categorical Exclusion Determinations: Utah Location Categorical Exclusion Determinations issued for actions in Utah. DOCUMENTS AVAILABLE FOR DOWNLOAD March 18, 2016 CX-100576 Categorical Exclusion Determination Structurally Controlled Geothermal Systems in the Eastern Great Basin Extensional Regime, Utah Award Number: DE-EE0006732 CX(s) Applied: A9, B3.1, B3.6 Geothermal Technologies Office Date: 03/18/2016 Location(s): UT Office(s): Golden Field Office October 23, 2015 CX-014392:

  11. Priority arbitration mechanism

    DOE Patents [OSTI]

    Garmire, Derrick L. (Kingston, NY); Herring, Jay R. (Poughkeepsie, NY); Stunkel, Craig B. (Bethel, CT)

    2007-03-06

    A method is provided for selecting a data source for transmission on one of several logical (virtual) lanes embodied in a single physical connection. Lanes are assigned to either a high priority class or to a low priority class. One of six conditions is employed to determine when re-arbitration of lane priorities is desired. When this occurs a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent after a lower priority transmission has been interrupted. Alternatively, a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent while a lower priority packet is waiting. If initialized correctly, the arbiter keeps all of the packets of a high priority packet contiguous, while allowing lower priority packets to be interrupted by the higher priority packets, but not to the point of starvation of the lower priority packets.

  12. Prospects for Utah look good

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2006-01-15

    Utah enjoys its first boom in over a generation. Recently Arch Coal, Andalex, CONSOl Energy and PacifiCorp ramped up their coal mining operations or re-opened closed facilities. Arch Coal's Skyline mine was able to mine over 200,0000 tons of coal throughout 2005 and its SUFCO mine produced 7.5 mt of coal during 2005. The article based largely on the recent 'Annual review and forecast of Utah coal', reports on developments in the state whose coal production could break records in 2006. 1 ref., 4 photos.

  13. BLM Lists 2011 Priority Renewable Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lists 2011 Priority Renewable Energy Projects BLM Lists 2011 Priority Renewable Energy Projects March 23, 2011 - 1:54pm Addthis The Bureau of Land Management (BLM) announced on March 8 its 2011 list of 19 priority projects for developing onshore renewable energy on national public lands. The priority list includes nine solar projects, five wind projects, and five geothermal projects throughout the western United States. The solar projects-eight in California and one in Arizona-have a potential

  14. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  15. Utah State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Name: Utah State Historic Preservation Offic Address: 300 S. Rio Grande Street Place: Salt Lake City, Utah Zip: 84101 Website: history.utah.gov...

  16. Utah Division of State History | Open Energy Information

    Open Energy Info (EERE)

    History Jump to: navigation, search Logo: Utah Division of State History Name: Utah Division of State History Address: 300 S. Rio Grande St. Place: Salt Lake City, Utah Zip: 84101...

  17. City of Murray, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Murray, Utah (Utility Company) Jump to: navigation, search Name: City of Murray Place: Utah Phone Number: (801) 264-2730 Website: www.murray.utah.govindex.aspx Outage...

  18. American Fork, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. American Fork is a city in Utah County, Utah. It falls under Utah's 2nd congressional...

  19. Utah Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Board Jump to: navigation, search Name: Utah Oil and Gas Board Address: 1594 West North Temple Place: Utah Zip: 84116 Website: oilgas.ogm.utah.gov Coordinates: 40.7721389,...

  20. Spanish Fork, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spanish Fork is a city in Utah County, Utah. It falls under Utah's 3rd congressional...

  1. Utah Division of Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah. The Division of Public Utilities, makes recommendations to the Utah Public Service Commission for rate-making purposes, applications, hearings and other...

  2. Guide to Permitting Electric Transmission Lines in Utah | Open...

    Open Energy Info (EERE)

    GuidanceGuideHandbook Abstract Guide to permitting requirements of federal, state, and local agencies. Author Utah Office of Energy Development Published Utah Office of Energy...

  3. Utah R850-27 Geothermal Steam | Open Energy Information

    Open Energy Info (EERE)

    in Utah outlining the authority for the Utah School and Institutional Trust Lands Administration (UTLA) to administer trust land in the state, including the leasing of trust land...

  4. Utah School and Institutional Trust Lands Administration | Open...

    Open Energy Info (EERE)

    School and Institutional Trust Lands Administration Jump to: navigation, search Logo: Utah School and Institutional Trust Lands Administration Name: Utah School and Institutional...

  5. Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at...

  6. Utah Application to Appropriate Water | Open Energy Information

    Open Energy Info (EERE)

    Utah Application to Appropriate Water Abstract Required application for obtaining a right to appropriate water in Utah. Form Type ApplicationNotice Form Topic Filing for Water...

  7. Enel North America Utah Geothermal Working Group Meeting | Open...

    Open Energy Info (EERE)

    America Utah Geothermal Working Group Meeting Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Enel North America Utah Geothermal Working Group Meeting...

  8. Energy & Geoscience Institute at the University of Utah | Open...

    Open Energy Info (EERE)

    Geoscience Institute at the University of Utah Jump to: navigation, search Name: Energy & Geoscience Institute at the University of Utah Address: 423 Wakara Way Suite 300 Place:...

  9. Utah Office of Energy Development | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Utah Office of Energy Development Address: PO Box 144845 Place: Salt Lake City, Utah Zip: 84114 Phone Number: 801-538-8732 Website:...

  10. Utah State Parks and Recreation | Open Energy Information

    Open Energy Info (EERE)

    Recreation Jump to: navigation, search Name: Utah State Parks and Recreation Address: 1594 W North Temple, Suite 116 Place: Salt Lake City, Utah Zip: 84116 Phone Number:...

  11. Utah State Prison Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Prison Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Utah State Prison Space Heating Low Temperature Geothermal Facility Facility Utah State...

  12. Utah Code Title 73, Chapter 3, Appropriation | Open Energy Information

    Open Energy Info (EERE)

    (Manner of acquiring water rights) as established by the Utah Legislature in Salt Lake City, Utah. Published NA Year Signed or Took Effect 2012 Legal Citation Not...

  13. Utah Roses Greenhouse Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Roses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Utah Roses Greenhouse Low Temperature Geothermal Facility Facility Utah Roses Sector...

  14. Utah's 3rd congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    district in Utah. Registered Energy Companies in Utah's 3rd congressional district Better Biodiesel Composite Tower Solutions Domestic Energy Partners Evergreen Clean Energy FT...

  15. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona ...

  16. Utah Division of Water Rights Information Webpage | Open Energy...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Division of Water Rights Information Webpage Citation Utah Division of...

  17. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Utah Region Middle School Regional Utah Nevada Regional Middle School Science...

  18. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the High School Coach page. Utah Region High School Regional Utah Nevada Regional High School...

  19. Utah Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Utah Natural Gas Plant Liquids Production (Million ... NGPL Production, Gaseous Equivalent Utah Natural Gas Plant Processing NGPL Production, ...

  20. Steven K. Krueger, University of Utah

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cumulus Convection and the Boundary Layer at the Southern Great Plains ACRF Steven K. Krueger, University of Utah from Arakawa and Jung (2003) Interactions of Cumulus...

  1. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  2. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  3. Utah Antidegradation Review Implementation Guidance | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Antidegradation Review Implementation GuidancePermittingRegulatory...

  4. Utah Geothermal Institutional Handbook | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Geothermal Institutional HandbookPermittingRegulatory GuidanceGuide...

  5. Mexican Hat, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Mexican Hat, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Mexican Hat, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Mexican Hat, Utah, Disposal Cell Site Location and History The Mexican Hat disposal site is located on the Navajo Reservation in southeast Utah, 1.5 miles southwest of the town of Mexican Hat and 1 mile south of the San

  6. Utah Geothermal Presentation Bloomquist | Open Energy Information

    Open Energy Info (EERE)

    on geothermal energy development in Utah. Authors Dr. R. Gordon Bloomquist and Ph.D Organization Washington State University Energy Program Published Bloomquist, 2004 DOI...

  7. Daniel, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Daniel, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4707885, -111.4146275 Show Map Loading map... "minzoom":false,"mappingservice"...

  8. Teacher and Students Bring Renewables to Utah

    Broader source: Energy.gov [DOE]

    The light bulb went off for high school teacher Andy Swapp in 1999 when he realized he could do something good with Milford, Utah's powerful wind.

  9. Utah Labor Commission | Open Energy Information

    Open Energy Info (EERE)

    The Utah Labor Commission is the regulatory agency responsible for preserving the balance established by the legislature for protecting the health, safety, and economic...

  10. Utah Antidegradation FAQ | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Utah Antidegradation FAQPermittingRegulatory GuidanceSupplemental Material Abstract...

  11. Elberta, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleElberta,Utah&oldid233710" Feedback Contact needs updating Image needs updating Reference needed Missing...

  12. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:56 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Utah Natural Gas in ...

  13. Utah Antiquities Section | Open Energy Information

    Open Energy Info (EERE)

    sites and artifacts, educate the public about them, and assist professionals who are researching these cultural resources. References "Utah State History: Archaeology Website"...

  14. Recovery Act State Memos Utah

    Broader source: Energy.gov (indexed) [DOE]

    Utah For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Technical analysis of prospective photovoltaic systems in Utah.

    SciTech Connect (OSTI)

    Quiroz, Jimmy Edward; Cameron, Christopher P.

    2012-02-01

    This report explores the technical feasibility of prospective utility-scale photovoltaic system (PV) deployments in Utah. Sandia National Laboratories worked with Rocky Mountain Power (RMP), a division of PacifiCorp operating in Utah, to evaluate prospective 2-megawatt (MW) PV plants in different locations with respect to energy production and possible impact on the RMP system and customers. The study focused on 2-MW{sub AC} nameplate PV systems of different PV technologies and different tracking configurations. Technical feasibility was evaluated at three different potential locations in the RMP distribution system. An advanced distribution simulation tool was used to conduct detailed time-series analysis on each feeder and provide results on the impacts on voltage, demand, voltage regulation equipment operations, and flicker. Annual energy performance was estimated.

  16. Utah Success StoryA Performance Contracting Program

    Broader source: Energy.gov [DOE]

    Provides an overview case study of Utah's Performance Contracting Program. Author: Energy Services Coalition

  17. Alternative Fuels Data Center: Utah Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Utah Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Utah Transportation

  18. Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loan Program Utah's Clean Fuels and Vehicle Technology Loan Program to someone by E-mail Share Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Facebook Tweet about Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Twitter Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Google Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan

  19. Red Cliffs Campground, Cedar City District, Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Red Cliffs Campground, Cedar City District, Utah Red Cliffs Campground, Cedar City District, Utah Photo of Field Station at Red Cliffs Campground in Utah's Cedar City District The Bureau of Land Management (BLM) has remote field stations in Arizona, California, Utah, Idaho, and Alaska. This photograph shows the field station at Red Cliffs Campground in Utah's Cedar City District. Photovoltaic power systems allow the people working in these remote areas to have the convenience of continuous

  20. Limited Groundwater Investigation of The Atlas Corporation Moab Mill, Moab, Utah

    SciTech Connect (OSTI)

    Easterly, CE

    2001-11-05

    The project described in this report was conducted by personnel from Oak Ridge National Laboratory's Grand Junction Office (ORNL/GJ). The purpose was to refine information regarding groundwater contamination emanating from the Atlas Corporation's former uranium mill in Moab, Utah.

  1. Green River, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site near Green River, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. ...

  2. Utah

    U.S. Energy Information Administration (EIA) Indexed Site

  3. An Examination of Avoided Costs in Utah

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-01-07

    The Utah Wind Working Group (UWWG) believes there are currently opportunities to encourage wind power development in the state by seeking changes to the avoided cost tariff paid to qualifying facilities (QFs). These opportunities have arisen as a result of a recent renegotiation of Pacificorp's Schedule 37 tariff for wind QFs under 3 MW, as well as an ongoing examination of Pacificorp's Schedule 38 tariff for wind QFs larger than 3 MW. It is expected that decisions made regarding Schedule 38 will also impact Schedule 37. Through the Laboratory Technical Assistance Program (Lab TAP), the UWWG has requested (through the Utah Energy Office) that LBNL provide technical assistance in determining whether an alternative method of calculating avoided costs that has been officially adopted in Idaho would lead to higher QF payments in Utah, and to discuss the pros and cons of this method relative to the methodology recently adopted under Schedule 37 in Utah. To accomplish this scope of work, I begin by summarizing the current method of calculating avoided costs in Utah (per Schedule 37) and Idaho (the ''surrogate avoided resource'' or SAR method). I then compare the two methods both qualitatively and quantitatively. Next I present Pacificorp's four main objections to the use of the SAR method, and discuss the reasonableness of each objection. Finally, I conclude with a few other potential considerations that might add value to wind QFs in Utah.

  4. Property:CSC-Priority | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Property Name CSC-Priority Property Type String Description Geothermal Case Study Challenge (CSC) area completion priority Allows Values Priority Area;Completed...

  5. City of Blanding, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Blanding, Utah (Utility Company) Jump to: navigation, search Name: City of Blanding Place: Utah Phone Number: 435-678-2791 Website: www.blanding-ut.gov Outage Hotline:...

  6. Mt Wheeler Power, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    Mt Wheeler Power, Inc (Utah) Jump to: navigation, search Name: Mt Wheeler Power, Inc Place: Utah Phone Number: 1 775-289-8981 Website: mwpower.net Facebook: https:...

  7. Utah Division of Wildlife Resources | Open Energy Information

    Open Energy Info (EERE)

    Name: Utah Division of Wildlife Resources Address: 1594 W North Temple, Suite 2110, Box 146301 Place: Salt Lake City, Utah Zip: 84114-6301 Phone Number: 801-538-4745 Website:...

  8. Utah Division of Forestry, Fire and State Lands | Open Energy...

    Open Energy Info (EERE)

    of Forestry, Fire and State Lands Address: 1594 W. North Temple, Ste 3520 Place: Salt Lake City, Utah Zip: 84114-5703 Phone Number: 801.538.5555 Website: forestry.utah.gov...

  9. Utah Division of Water Rights | Open Energy Information

    Open Energy Info (EERE)

    Name: Utah Division of Water Rights Address: 1594 West North Temple, Suite 220 Place: Salt Lake City, Utah Zip: 84114-6300 Phone Number: 801.538.7240 Website:...

  10. West Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Mountain is a census-designated place in Utah County, Utah.1 References US Census...

  11. Utah Sensitive Species List Webpage | Open Energy Information

    Open Energy Info (EERE)

    Species List Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Sensitive Species List Webpage Abstract Provides access to Utah Sensitive...

  12. Spring Lake, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Lake is a census-designated place in Utah County, Utah.1 References US Census...

  13. Utah DEQ Energy Pre-Design Program | Open Energy Information

    Open Energy Info (EERE)

    Pre-Design Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Energy Pre-Design Program Abstract Provides information about Utah's...

  14. Iron County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype B. Registered Energy Companies in Iron County, Utah Solar Unlimited USA Places in Iron County, Utah...

  15. Norton v Southern Utah Wilderness Alliance, 542 US 55 | Open...

    Open Energy Info (EERE)

    v Southern Utah Wilderness Alliance, 542 US 55 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: Norton v Southern Utah Wilderness Alliance,...

  16. City of Santa Clara, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Santa Clara, Utah (Utility Company) Jump to: navigation, search Name: City of Santa Clara Place: Utah Phone Number: (435) 673-6712 Website: www.sccity.org Outage Hotline: (435)...

  17. File:UtahEnergyForumSiting.pdf | Open Energy Information

    Open Energy Info (EERE)

    UtahEnergyForumSiting.pdf Jump to: navigation, search File File history File usage File:UtahEnergyForumSiting.pdf Size of this preview: 800 600 pixels. Go to page 1 2 3 4 5 6 7...

  18. RAPID/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    Temperature Gradient Wells UAC Rule R655-1 Wells Used for the Discovery and Production of Geothermal Energy in the State of Utah UC 73-22 Utah Geothermal Resource Conservation Act...

  19. City of Logan, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Logan, Utah (Utility Company) Jump to: navigation, search Name: City of Logan Place: Utah Phone Number: (435) 716-9090 Website: www.loganutah.orgLP Outage Hotline: (435) 716-9090...

  20. ,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"10302015 12:25:01 PM" "Back to Contents","Data 1: Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035UT3" "Date","Utah Natural...

  1. Park City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park City is a city in Summit County and Wasatch County, Utah. It falls under Utah's 1st...

  2. Stakeholder Priorities in Wind Energy (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2011-05-01

    This presentation provides an overview of stakeholder priorities as they relate to wind power, including priorities by region and type.

  3. Utah Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6398,6830,6819,6897,6969 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  4. Monticello National Priorities List (NPL) Sites

    Office of Legacy Management (LM)

    ... subcontractors, UDOT, and Questar (natural gas provider) resumed upgrading utilities and ... Base: 65. 0 Cool Base: 65. 0 Hethod: Integration TWB 12:30p l:OOp 3:00p ll:30a 1:30a ...

  5. 1999 ESH&Q Liability Assessment Report of Envirocare of Utah, Inc. Clive, Utah

    SciTech Connect (OSTI)

    Trump, D. E.; Vilord, C. E.

    1999-07-01

    This report contains the results of an environment, safety, health, and quality (ESH&Q) assessment of the treatment technologies and treatment-related operations that was conducted of Envirocare of Utah, Inc. (EOU). EOU is a lowlevel radioactive and mixed Resource Conservation and Recovery Act (RCRA)- regulated haz.ardous low-level radioactive waste (mixed low-level waste) treatment/disposal facility located near Clive, Utah. An ESH&Q assessment of the EOU Clive, Utah facility treatment technologies and related treatment operations was conducted in mid-April 1999. The assessment was required as part of the technical evaluation of proposals received by Lockheed Martin Idaho Technologies Company (LMITCO) for modification of a mixed low-level radioactive waste disposal subcontract (No.K79-180572). The EOU Clive, Utah facility is proposed as a potential treatment/disposal facility for mixed low-level radioactive waste regulated under the RCRA and the Atomic Energy Act

  6. Middle Urals` pollution prevention priorities assessment project

    SciTech Connect (OSTI)

    Gonzalez, M.; Ott, R.L.; Chukanov, V.

    1995-09-13

    The Middle Urals is an important Russian industrial region. The key industries are also the most environmentally damaging: mining, metallurgical and chemical industries. There are some 600 large-sized and medium-sized enterprises located within the Middle Urals` region. Their annual solid and gaseous chemical releases have led to exceeding some maximum permissible contaminant concentrations by factors of tens and hundreds. The environmental problems of the Middle Urals are of such magnitude, seriousness, and urgency that the limited available resources can be applied only to the problems of the highest priority in the most cost-effective way. By the combined efforts of scientists from Lawrence Livermore National Laboratory (USA), Institute of Industrial Ecology (Ekaterinburg, Russia) and Russian Federal Nuclear Center (Snezhinsk, Russia) the project on Environmental Priorities Assessment was initiated in 1993. Because the project will cut across a spectrum of Russian environmental, social, and political issues, it has been established as a genuine Russian effort led by Russian principals. Russian participants are the prime movers and decision-makers, and LLNL participants are advisors. A preliminary project has been completed to gather relevant environmental data and to develop a formal proposal for the full priorities assessment project for submittal to the International Science and Technology Center. The proposed priorities assessment methodology will be described in this paper. The specific objectives of this project are to develop and to implement a methodology to establish Russian priorities for future pollution prevention efforts in a limited geographic region of the Middle Urals (a part of Chelyabinsk and Sverdlovsk Oblasts). This methodology will be developed on two geographic levels: local (town scale) and regional (region scale). Detailed environmental analysis will be performed on a local scale and extrapolated to the regional scale.

  7. LANL completes high-priority flood and erosion control work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab completes priority erosion controls LANL completes high-priority flood and erosion control work Crews installed 600 feet of water diversion barriers and removed more than 1,200 cubic yards of sediment in anticipation of flash flooding. July 11, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  8. Bibliography of Utah radioactive occurrences. Volume I

    SciTech Connect (OSTI)

    Doelling, H.H. comp.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  9. Bibliography of Utah radioactive occurrences. Volume II

    SciTech Connect (OSTI)

    Doelling, H.H.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  10. 1998 Priority Setting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    998 Priority Setting 1998 Priority Setting Draft of the 1998 Priority Setting for Standards and Test Procedure Rulemakings, June 27, 1997 priority_setting_fy98.pdf (4.27 MB) More Documents & Publications Appliance Standard Program - The FY 2003 Priority -Setting Summary Report and Actions Proposed - Appendix B Report to Congress on Appliance Energy Efficiency Rulemakings 9th

  11. Tailings Pile Seepage Model The Atlas Corporation Moab Mill Moab, Utah

    SciTech Connect (OSTI)

    Easterly, CE

    2001-11-05

    The project described in this report was conducted by personnel from Oak Ridge National Laboratory's Grand Junction Office (ORNL/GJ). This report has been prepared as a companion report to the Limited Groundwater Investigation of the Atlas Corporation Moab Mill, Moab, Utah. The purpose of this report is to present the results of the tailings pile seepage modeling effort tasked by the U.S. Nuclear Regulatory Commission (NRC).

  12. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  13. Microsoft Word - BPD Priority List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Priority Data Fields for the Building Performance Database (Updated 2014-12) Below is list of data fields ranked as the the priority fields in data collection for the purposes of BPD. These field names use the the Building Energy Data Exchange Specification 1.0 terms in order to clearly communicate the content of the fields and to facilitate easier data transfer. These fields have been determined to provide enough information to compare building energy performance. Mandatory fields are

  14. Regional economic activity and petroleum industry incentive policies: Utah`s Uintah Basin

    SciTech Connect (OSTI)

    Duffy-Deno, K.T.; Robinson, M.H.

    1995-12-31

    Proponents of petroleum industry subsidies often assert that such policies will have positive economic implications for rural communities. This paper examines the economic impacts of such a policy in Utah. Specifically, this paper quantifies the direct and indirect economic and fiscal impacts of a tax credit granted for oil and gas well workovers in Utah`s Uintah Basin. The analysis is made possible by an input-output model constructed specifically for Utah`s oil producing economy. The tax credit policy was found to generate a net fiscal loss for the state. However, it does generate employment in the Uintah Basin. The total per job cost to the state of generating an average of one job per year for 5 years through the tax credit policy is $24,056 (1991 dollars). However, if the public expenditure impacts are taken into account, then the cost per job could be as high as $48,423 (1991 dollars). Whether there are other ways to generate the same employment gains at a lower cost was lost in the political debate surrounding this petroleum industry tax credit. 8 refs., 2 figs., 9 tabs.

  15. DOE Announces Preferred Alternatives For Moab, Utah, Uranium Mill Tailings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Preferred Alternatives For Moab, Utah, Uranium Mill Tailings DOE Announces Preferred Alternatives For Moab, Utah, Uranium Mill Tailings April 6, 2005 - 11:33am Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the department's preferred alternatives for remediation of the Moab, Utah, Uranium Mill Tailings Remedial Action Project Site: active groundwater remediation, and offsite disposal of the tailings pile and other contaminated materials to the

  16. Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Utah (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Utah

  17. Utah's 1st congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Energy Companies in Utah's 1st congressional district Blue Source LLC Ciralight Emery Energy Company Eneco Inc EnergySolutions Inc Genifuel Green Joules GreenFire Energy...

  18. Conjunctive Surface and Groundwater Management in Utah. Implications...

    Office of Scientific and Technical Information (OSTI)

    We contrast Utah's approach with efforts undertaken in neighboring states and by the ... Language: English Subject: 29 ENERGY PLANNING, POLICY, AND ECONOMY Word Cloud More Like ...

  19. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade...

  20. Weber County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Weber County, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2602635, -111.9522491 Show Map Loading map... "minzoom":false,"mappingse...

  1. ,"Utah Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  2. Utah Nonpoint Source Pollution Management Plan | Open Energy...

    Open Energy Info (EERE)

    Nonpoint Source Pollution Management Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Nonpoint Source...

  3. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  4. Eagle Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eagle Mountain, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3141169, -112.006882 Show Map Loading map... "minzoom":false,"mappings...

  5. Saratoga Springs, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3491173, -111.9046567 Show Map Loading map... "minzoom":false,"mappingservice...

  6. Utah Department of Environmental Quality Hazardous Waste Permits...

    Open Energy Info (EERE)

    Hazardous Waste Permits Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Hazardous Waste Permits...

  7. Utah Underground Storage Tank Installation Permit | Open Energy...

    Open Energy Info (EERE)

    Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type Application...

  8. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  9. Utah Division of Water Quality | Open Energy Information

    Open Energy Info (EERE)

    Ground Water Quality Protection Permitting Contact 2 Contacts.png Woody Campbell http:www.waterquality.utah.gov Retrieved from "http:en.openei.orgw...

  10. RAPID/Geothermal/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    may make modifications to the final permit based on any comments submitted during review. Air Quality Assessment Process In Utah, developers may be required to obtain an Air...

  11. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map...

  12. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map Loading map... "minzoom":false,"mapping...

  13. Utah Underground Injection Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Injection Control Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Underground Injection Control Program Webpage Abstract Provides...

  14. RAPID/Geothermal/Water Use/Utah | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseUtah < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  15. Utah Water Right Information Webpage | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Right Information Webpage Abstract Provides information about obtaining a water rights...

  16. Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  17. Changes in Vegetation at the Monticello, Utah, Disposal Site...

    Energy Savers [EERE]

    the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Cover Using Caisson...

  18. Utah Quantity of Production Associated with Reported Wellhead...

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Utah Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade ...

  19. Utah Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful ...

  20. Utah Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    References: DNR Homepage1 The Department of Natural Resources helps ensure Utah's quality of life by managing and protecting the state's natural resources. The Department...

  1. ,"Utah Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release...

  2. Conjunctive Surface and Groundwater Management in Utah. Implications...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development Citation Details In-Document Search Title: Conjunctive Surface and ...

  3. Utah Property Owners Benefit with PACE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Property Owners Benefit with PACE Utah Property Owners Benefit with PACE August 2, 2016 - 4:15pm Addthis This solar energy system was installed at Hunt Electric, the first company in Utah to take advantage of C-PACE financing. This solar energy system was installed at Hunt Electric, the first company in Utah to take advantage of C-PACE financing. John Coggin John Coggin Communications Specialist, Weatherization and Intergovernmental Programs What are the key facts? From 2011 to 2014, the

  4. ,"Utah Natural Gas, Wet After Lease Separation Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet ... 1","Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  5. ,"Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  6. Summit Park, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7457808, -111.6115928 Show Map Loading map... "minzoom":false,"mappingservice":"...

  7. ,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves (Billion Cubic ...

  8. RAPID/Geothermal/Land Access/Utah | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessUtah < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  9. Utah Water Quality Standards Workgroup Website | Open Energy...

    Open Energy Info (EERE)

    Quality Standards Workgroup Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Quality Standards Workgroup Website Abstract This...

  10. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  11. ,"Utah and Wyoming Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ... ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production ...

  12. ,"Utah Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Expected Future Production ...

  13. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  14. Reconnaissance of the hydrothermal resources of Utah

    SciTech Connect (OSTI)

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  15. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

    2003-07-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall

  16. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop

  17. Utah State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utah State Historic Preservation Programmatic Agreement Utah State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. state_historic_preservation_programmatic_agreement_ut.pdf (681.47 KB) More Documents & Publications Kansas State Historic Preservation Programmatic Agreement Washington State Historic Preservation Programmatic Agreement Virginia State Historic Preservation

  18. Major Oil Plays in Utah and Vicinity

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed

  19. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  20. Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

    Broader source: Energy.gov [DOE]

    Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

  1. Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

    Broader source: Energy.gov [DOE]

    Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008

  2. Safety is the First Priority

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is the First Priority The project team completed a number of overlapping safety methods to assure the safety of individuals operating and in proximity to the hydrogen fuel cell including: ● Failure Mode Effects Analysis (FMEA) which identifies potential failure points and devises ways to mitigate them (engineered and administrative/operational controls). ● Independent review and approval of the design by the Hydrogen Safety Panel and the US Coast Guard, and informational review by the

  3. Roof Separation Highlights Bolting Priority

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP UPDATE: January 21, 2015 Roof Separation Highlights Bolting Priority On January 15, Mining and Ground Control Engineers at WIPP discovered that a portion of the ceiling in the Panel 3 access drift had fallen in a restricted access area. The roof fall was discovered during routine ground control and bulkhead inspections conducted by WIPP geotechnical staff, and the section that fell was estimated to be approximately 8' long by 8'wide and 24" thick. Access to this area has been

  4. 2012 Hanford Advisory Board Priorities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Priorities 2011.9.9 1/ 2 Health, Safety and Environmental Protection  Integrated Safety Management  Tank vapors  Monitor progress of Beryllium Corrective Action Plan Public Involvement  Public involvement Plan/Community Relations Plan  HAB as a component of public involvement  Strategic planning for public involvement Tank Farm and Waste Treatment Plant  Tank Farm and Waste Treatment and Immobilization Plant (WTP) system integration o Worker safety o Tank waste retrieval

  5. Colorado Natural Gas Processed in Utah (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Utah (Million Cubic Feet) Colorado Natural Gas Processed in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 286 3,677 4,194 3,499 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Colorado-Utah

  6. DOE - Office of Legacy Management -- University of Utah Medical Research

    Office of Legacy Management (LM)

    Center - UT 02 Utah Medical Research Center - UT 02 FUSRAP Considered Sites Site: UNIVERSITY OF UTAH, MEDICAL RESEARCH CENTER (UT.02) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Salt Lake City , Utah UT.02-2 Evaluation Year: 1987 UT.02-1 Site Operations: Research and development on animal inhalation of uranium dust during the 1950s. UT.02-2 Site Disposition: Eliminated - Radiation levels below criteria UT.02-1 UT.02-2 Radioactive

  7. Assistant Secretary Regalbuto Lays out Vision, Priorities to Advance Cleanup for EM Program

    Broader source: Energy.gov [DOE]

    DOE Assistant Secretary for Environmental Management Monica Regalbuto shared her vision for EM, laid out cleanup priorities, and emphasized the need to better leverage technology development to reduce costs in her address at DOE’s first National Cleanup Workshop.

  8. EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area Power Administration Transmission Lines on Forest Service Lands, Colorado, Nebraska, and Utah

    Broader source: Energy.gov [DOE]

    This EIS is being prepared jointly by DOE’s Western Area Power Administration and the U.S. Forest Service. The EIS evaluates the potential environmental impacts of Western’s proposed changes to vegetation management along its transmission line rights-of-way on National Forest System lands in Colorado, Utah, and Nebraska.

  9. Utah Renewable Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",191,164,254,279,277 "Hydro Conventional",747,539,668,835,696 "Solar","-","-","-","-","-" "Wind","-","-",24,160,448 ...

  10. Utah Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  11. Empire Electric Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    search Name: Empire Electric Assn, Inc Place: Utah Phone Number: 970-565-4444 or 800-709-3726 Website: www.eea.coop Outage Hotline: 970-565-4444 or 800-709-3726 References:...

  12. Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. Moon Lake Electric Assn Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    search Name: Moon Lake Electric Assn Inc Place: Utah Phone Number: ALTAMONT OFFICE (435) 454-3611 -- DUCHESNE OFFICE (435) 738-5322 -- RANGELY OFFICE (970) 675-2291 --...

  14. Carbon County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Carbon County is a county in Utah. Its FIPS County Code is 007. It is classified as ASHRAE...

  15. Utah Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  16. City of Monroe, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    (Utility Company) Jump to: navigation, search Name: City of Monroe Place: Utah Phone Number: 435.527.4621 Website: www.littlegreenvalley.com Outage Hotline: 435.527.4621...

  17. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  18. Utah Natural Gas Number of Residential Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  19. Utah Natural Gas Number of Commercial Consumers (Number of Elements...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  20. ,"Utah Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:16 AM" "Back to Contents","Data 1: Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  1. Box Elder County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Box Elder County is a county in Utah. Its FIPS County Code is 003. It is classified as...

  2. Utah Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    laws and works with individuals, community groups, and businesses to protect the quality of our air, land and water in the state of Utah. The following Divisions make up...

  3. BLM Offers Geothermal Leases in Utah, Idaho, and Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bureau of Land Management (BLM) announced in early November that it will hold a competitive lease sale for geothermal energy development on 61 parcels totaling nearly 200,000 acres in the states of Utah, Oregon, and Idaho.

  4. Utah State Historic Preservation Office Webpage | Open Energy...

    Open Energy Info (EERE)

    Office Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah State Historic Preservation Office Webpage Abstract Provides overview of the role...

  5. Utah Department of Environmental Quality Forms Webpage | Open...

    Open Energy Info (EERE)

    Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Forms Webpage Abstract Provides access to forms...

  6. Utah - UDOT - Accommodation of Utilities and the Control and...

    Open Energy Info (EERE)

    UDOT - Accommodation of Utilities and the Control and Protection of State Highway Rights of Way Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Utah -...

  7. Utah Rules of Appellate Procedure | Open Energy Information

    Open Energy Info (EERE)

    of Appellate Procedure Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah Rules of Appellate ProcedureLegal Abstract...

  8. Utah Water Rights Fee Schedule | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Rights Fee Schedule Abstract Water rights fee schedule based on amount appropriated....

  9. Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21,638 18,808 21,037 ...

  10. Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 ...

  11. Shining Energy-saving LEDs on Utah Starry Nights

    Broader source: Energy.gov [DOE]

    Utah is known for its magnificent night skies, where stargazers can catch a glimpse of constellations or a rogue shooting star. Now some rural towns have found a way to create even better views—and conserve energy.

  12. Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  13. Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. Utah Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",40306,44634,45466,42034,40599 " Coal",36856,37171,38020,35526,34057 " Petroleum",62,39,44,36,50 " Natural ...

  15. Utah Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Utah Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 68,211 95,670 93,934 98,598 99,233 241,904 274,470 286,592 286,929 1990's 334,067 333,591 319,017 348,010 368,585 308,174 265,546 249,930 242,070 211,514 2000's 169,553 166,505 136,843 161,275 193,093 187,524 193,836 195,701 202,380 412,639 2010's 454,832 490,233 535,365 448,687 419,773 - = No Data

  16. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  17. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  18. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar

  19. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  20. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 469 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Wyoming

  1. DOE Issues Final Environmental Impact Statement for Moab, Utah Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Environmental Impact Statement for Moab, Utah Site DOE Issues Final Environmental Impact Statement for Moab, Utah Site July 25, 2005 - 2:27pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued its final environmental impact statement (EIS) for the Moab Uranium Mill Tailings Remedial Action Project Site, located on the bank of the Colorado River. The EIS details the preferred option of removal of the tailings pile and contaminated materials, along

  2. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the

  3. STEABs Priorities through 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAB's Priorities through 2012 To actively support energy efficiency and renewable energy market growth throughout the United States: - Enhance State Regional EE & RE capacity: ...

  4. Priority Permit Processing for Green Buildings

    Broader source: Energy.gov [DOE]

    Buildings eligible for priority processing are those that meet the "energy and environmental design building standards". These standards can be achieved by earning either a Leadership in Energy...

  5. UC 73-22 Utah Geothermal Resource Conservation Act | Open Energy...

    Open Energy Info (EERE)

    Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: UC 73-22 Utah Geothermal Resource...

  6. UC 73-22 - Utah Geothermal Resource Conservation Act | Open Energy...

    Open Energy Info (EERE)

    - Utah Geothermal Resource Conservation Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 73-22 - Utah Geothermal Resource...

  7. UC 19-6-401 et seq. - Utah Underground Storage Tank Act | Open...

    Open Energy Info (EERE)

    9-6-401 et seq. - Utah Underground Storage Tank Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 19-6-401 et seq. - Utah...

  8. Utah Full Proof of Beneficial Use of Water | Open Energy Information

    Open Energy Info (EERE)

    Utah Full Proof of Beneficial Use of Water Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Full Proof of Beneficial Use of Water Abstract Proof of...

  9. File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf | Open Energy...

    Open Energy Info (EERE)

    3UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Size of this...

  10. File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf | Open Energy...

    Open Energy Info (EERE)

    3UTEGeothermalSteamLeaseUtahTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf Size of this preview:...

  11. Utah - UC 54-14 - Utility Facility Review Board Act | Open Energy...

    Open Energy Info (EERE)

    Utah - UC 54-14 - Utility Facility Review Board Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah - UC 54-14 - Utility...

  12. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  13. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  14. Microsoft Word - DOE-ID-11-009 Utah EC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 SECTION A. Project Title: Development of Nuclear Energy-Related Infrastructure and Capabilities at the Utah Nuclear Engineering Radiation Measurement Laboratory - University of Utah SECTION B. Project Description This project will upgrade the nuclear engineering measurement lab of the Nuclear Engineering Measurement Laboratory at the Utah Nuclear Engineering Program, University of Utah by purchasing two high energy resolution HPGe detector counting systems, a scintillation detector counting

  15. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect (OSTI)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  16. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect (OSTI)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  17. Microsoft Word - DOE-ID-14-014 Utah B1-31.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 SECTION A. Project Title: Development of Capabilities to Study the Thermodynamics of Nuclear Energy Related Infrastructure at the Utah Nuclear Engineering Program - University of Utah SECTION B. Project Description The University of Utah proposes to acquire an isothermal titration calorimeter (ITC) for the measurement of thermodynamic properties of actinide complexes, and the enhancement of coursework and research efforts

  18. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses

  19. Jefferson Lab Upgrade named near-term priority in Department of Energy's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20-year facility plan | Jefferson Lab Upgrade named near-term priority in Department of Energy's 20-year facility plan Jefferson Lab Upgrade named near-term priority in Department of Energy's 20-year facility plan November 11, 2003 The Thomas Jefferson National Accelerator Facility's 12 GeV (billion electron-volt) Upgrade was among the 12 projects identified as near-term priorities when Energy Secretary Spencer Abraham outlined the Department of Energy's 20-year facility plan on Nov. 10.

  20. Utah Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,592 1,685 1,725 1,224 934 902 750 922 893 725 2010's 718 679 518 523 538 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Utah

  1. Utah Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Utah Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 127 277 2000's 108 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Utah Natural Gas Liquids Proved Reserves

  2. Utah Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming (Million Cubic Feet) Utah Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 11,554 9,075 7,975 8,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Utah-Wyoming

  3. Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Utah Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,464 37 720 690 953 0 1,189 541 251 133 2010's 7 833 22 640 31 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Utah Dry Natural Gas

  4. Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Utah Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 568 17 978 729 946 6 1,147 484 258 92 2010's 530 758 12 478 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Utah Dry Natural Gas Proved Reserves Dry

  5. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect (OSTI)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  6. Supplemental Modeling and Analysis Report, Atlas Corporation Moab Mill, Moab, Utah

    SciTech Connect (OSTI)

    Easterly, CE

    2001-11-05

    The purpose of this report is to provide additional numerical modeling and data evaluation for the Atlas tailings pile near Moab, Utah. A previous report (Tailings Pile Seepage Model: The Atlas Corporation Moab Mill, Moab, Utah, January 9, 1998) prepared for the Nuclear Regulatory Commission (NRC) by Oak Ridge National Laboratory/Grand Junction (ORNL/GJ) presented the results of steady-state modeling of water flow and subsequent discharge to the underlying groundwater system. At the request of the Fish and Wildlife Service (FWS), this model was expanded to evaluate the impact of drainage from the tailings pile in addition to recharge from precipitation in a transient mode simulation. In addition, the FWS requested transient simulations of contaminant transport in the alluvial aquifer. Subsequently, NRC requested an evaluation of additional hydrologic issues related to the results presented in the Tailings Pile Seepage Model (ORNL/GJ 1998a) and the Limited Groundwater Investigation (ORNL/GJ 1998b). Funding for the report was provided by the U.S. Department of Energy. The following section lists the individual tasks with subsequent sections providing the results. A map for the Atlas Moab Mill site is presented in Fig. 1.1.

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  8. Utah Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,329 32,637 32,966 1990's 34,697 35,627 36,145 37,816 39,183 40,101 40,107 40,689 42,054 43,861 2000's 47,201 47,477 50,202 51,063 51,503 55,174 55,821 57,741 59,502 60,781 2010's 61,976 62,885 63,383 64,114 65,134 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Energy Department Recognizes University of Utah in Better Buildings Challenge

    Broader source: Energy.gov [DOE]

    As part of President Obama’s Better Buildings Challenge, the Energy Department recognized the University of Utah today for its leadership in energy efficiency and for reducing energy use by 40 percent in a historic campus building, saving the University $57,000 a year.

  10. Priority mitigation measures in non-energy sector in Kazakstan

    SciTech Connect (OSTI)

    Mizina, S.V.; Pilifosova, O.V.; Gossen, E.F.

    1996-12-31

    Fulfilling the Commitments on UN FCCC through the U.S. Country Studies Program, Kazakstan has developed the national GHG Inventory, vulnerability and adaptation assessment and estimated the possibility of mitigation measures in certain sectors. Next step is developing National Climate Change Action Plan. That process includes such major steps as setting priorities in mitigation measures and technologies, their comprehensive evaluation, preparation implementation strategies, developing the procedure of incorporation of the National Action Plan into other development plans and programs. This paper presents programs and measures that can reduce GHG emissions in non-energy sector. Measures in land-use change and forestry, agriculture and coal mining are considered. Current situation in non-energy sector of Kazakstan is discussed. The amount of GHG emissions reduction and cost analysis presented in this paper was developed with the use of IPCC recommendations.

  11. Appliance Standard Program - The FY 2003 Priority -Setting Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report and Actions Proposed - Appendix B Appliance Standard Program - The FY 2003 Priority ... Actions Proposed - Appendix C Appliance Standard Program - The FY 2003 Priority -Setting ...

  12. Basic research needs and priorities in solar energy. Volume II. Technology crosscuts for DOE

    SciTech Connect (OSTI)

    Jayadev, J S; Roessner, D eds.

    1980-01-01

    Priorities for basic research important to the future developments of solar energy are idenified, described, and recommended. SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas-and, within each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: crucial, important, and needed. A narrative accompanying the description of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

  13. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix E. Final report

    SciTech Connect (OSTI)

    1988-07-01

    This document provides Appendix E of the Remedial Action Plan (RAP) presented in 1988 for the stabilization of the inactive uranium mill tailings at the Mexican Hat, Utah site. The RAP was developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. The RAP has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action.

  14. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  15. Completion of the Five-Year Reviews for the Monticello, Utah...

    Broader source: Energy.gov (indexed) [DOE]

    ... Workshop on Uranium Legacy Sites Optimizing the Use of Federal Lands Through Disposition DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah

  16. Landslides and debris flows in Ephraim Canyon, central Utah

    SciTech Connect (OSTI)

    Baum, R.L.; Fleming, R.W.

    1989-01-01

    The geology of 36 km{sup 2} in Ephraim Canyon, on the west side of the Wasatch Plateau, central Utah, was mapped at a scale of 1:12,000 following the occurrence of numerous landslides in 1983. The geologic map shows the distribution of the landslides and debris flows of 1983-86, as well as older landslide deposits, other surficial deposits, and bedrock. Several of the recent landslides are described and illustrated by means of maps or photographs.

  17. Arsenic distribution in soils surrounding the Utah copper smelter

    SciTech Connect (OSTI)

    Ball, A.L.; Rom, W.N.; Glenne, B.

    1983-05-01

    We investigated the extent of arsenic contamination from a Utah copper smelter as reflected by arsenic residue accumulated in the surface soil. The highest arsenic concentrations occurred within 3 km of the smelter. Arsenic soil contamination was evident up to 10 km from the smelter, with the major transport direction being ESE. Data from the subsurface soil samples indicated that arsenic has also leached through the soil.

  18. Mitigation assessment results and priorities in China

    SciTech Connect (OSTI)

    Wu Zongxin; Wei Zhihong

    1996-12-31

    In this paper energy related CO2 emission projections of China by 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the AHP approach is used for helping assessment of priority technologies.

  19. Idaho National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Snake River Geothermal Consortium (SRGC) is a research partnership focused on advancing geothermal energy. Hosted by the Idaho National Laboratory (INL), SRGC proposes establishing FORGE as a resource for technology development, deployment, and validation. Their team includes members from national laboratories, universities, industry, and state and federal agencies. The technical team consists of members from Baker Hughes, the Center for Advanced Energy Studies (CAES) – Idaho National Laboratory, University of Idaho, Idaho State University, Boise State University, University of Wyoming - Campbell Scientific, Chena Power, Geothermal Resources Group, Idaho Department of Water Resources, Idaho Geologic Survey, Lawrence Livermore National Laboratory, Mink GeoHydro, National Renewable Energy Laboratory, University of Oklahoma, University of Utah, U.S. Geothermal, and the U.S. Geological Survey (USGS).

  20. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  1. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  2. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  3. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    Broader source: Energy.gov [DOE]

    Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

  4. 2015 Annual Inspection report for the DOE Monticello, Utah, Mill Tailings Site and Monticello Vicinity Properties

    Office of Legacy Management (LM)

    Annual Inspection Report for the DOE Monticello, Utah, Mill Tailings Site and Monticello Vicinity Properties December 2015 LMS/MNT/S13444 This page intentionally left blank U.S. Department of Energy 2015 Annual Inspection-Monticello, Utah December 2015 Doc. No. S13444 Page i Contents Abbreviations .................................................................................................................................. ii Executive Summary

  5. ORISE: Safety is our top priority

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Integrated Safety Management Voluntary Protection Program VPP Star Status Environment Work Smart Standards Oak Ridge Institute for Science Education Safety at ORISE At the Oak Ridge Institute for Science and Education (ORISE) safety is our number one priority. We not only have a tradition of safety at work, but strongly encourage our employees to carry this mindset beyond the workplace and into their homes and communities. Employees are trained in how to work safely and are required to

  6. Priorities for In-situ Aerosol Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Priorities for In-situ Aerosol Measurements Parameters * Aerosol light absorption coefficient - spectral, including UV, vis, and IR - as f(RH), and at ambient RH * Phase function - or relevant integral properties (how many?) * Ice nuclei * Scattering vs. RH, for RH>90% * CCN, as f(S, D p ) * Size distribution * Chemical composition - for determining climate forcing, vs. radiative effect Calibration * Number concentration * Size and shape * Light absorption reference method Characterization *

  7. Priority coding for control room alarms

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    Indicating the priority of a spatially fixed, activated alarm tile on an alarm tile array by a shape coding at the tile, and preferably using the same shape coding wherever the same alarm condition is indicated elsewhere in the control room. The status of an alarm tile can change automatically or by operator acknowledgement, but tones and/or flashing cues continue to provide status information to the operator.

  8. Completing Salt Waste Processing Facility is an EM Priority and...

    Office of Environmental Management (EM)

    Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup Progress Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup ...

  9. Appliance Standard Program - The FY 2003 Priority -Setting Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Actions Proposed - Appendix B | Department of Energy Report and Actions Proposed - Appendix B Appliance Standard Program - The FY 2003 Priority -Setting Summary Report and Actions Proposed - Appendix B This appendix contains data sheets for existing appliance standards program rulemaking priorities fy03_priority_setting_app_b.pdf (272.88 KB) More Documents & Publications 2006 Draft Rulemaking Activities Data Sheets Appliance Standards Program - The FY 2003 Priority Setting Report and

  10. Appliance Standards Program - The FY 2003 Priority Setting Report and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Actions Proposed - Appendix C | Department of Energy Appendix C Appliance Standards Program - The FY 2003 Priority Setting Report and Actions Proposed - Appendix C This appendix contains data sheets for new products that will be covered under appliance standards program rulemaking priorities fy03_priority_setting_app_c.pdf (783.32 KB) More Documents & Publications Appliance Standards Program - The FY 2003 Priority Setting Report and Actions Proposed -Appendix A 2006 Draft Rulemaking

  11. POLICY GUIDANCE MEMORANDUM #13 Reemployment Priority List Selections |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 Reemployment Priority List Selections POLICY GUIDANCE MEMORANDUM #13 Reemployment Priority List Selections The Department's RPL is designed to provide priority consideration to employees who have lost their jobs through reduction in force, or who have fully recovered from a compensable injury after more than 1 year. Employees may only receive priority consideration for positions that they are well-qualified for and that are in the local commuting area from which

  12. Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 36 58 2000's 91 100 91 76 61 52 164 174 140 235 2010's 257 258 368 312 261 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  13. Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 52 62 90 2010's 69 78 87 57 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Proved Reserves as of

  14. Utah Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 54 116 2010's 132 196 181 169 206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Proved

  15. Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 5 11 8 20 26 31 31 28 25 23 1990's 16 17 15 14 14 9 8 8 8 14 2000's 7 11 11 10 10 12 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  16. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  17. Utah Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Utah Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 44 -35 1980's -22 44 307 4 -44 -65 -68 -45 -424 260 1990's 8 126 136 43 -82 -63 44 -40 97 -56 2000's 4 135 13 40 113 65 -11 17 -4 1 2010's -80 134 289 -582 -20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  18. Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 58 54 1980's 61 79 87 68 76 73 60 60 40 64 1990's 71 81 111 165 184 165 180 177 216 220 2000's 226 288 286 278 282 308 349 365 417 447 2010's 432 449 478 456 433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  19. Utah Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Utah Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 93 62 97 1980's 156 413 60 93 41 27 51 12 3 9 1990's 55 21 37 11 43 19 126 164 133 618 2000's 266 269 368 230 299 596 1,408 744 801 164 2010's 106 643 447 117 164 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  20. Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Utah Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 79 202 89 1980's 123 84 99 42 257 83 78 144 277 84 1990's 101 83 99 24 201 74 79 34 110 322 2000's 110 606 490 767 278 112 502 325 564 491 2010's 219 341 1,926 444 617 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  1. Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Utah Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 37 117 62 1980's 293 414 55 176 80 111 51 281 86 87 1990's 112 204 161 337 172 69 125 293 645 801 2000's 177 805 207 188 475 186 218 1,113 379 1,342 2010's 872 813 1,349 484 752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. NNSA Corporate CPEP Process NNSA LOS ALAMOS NATIONAL SECURITY...

    National Nuclear Security Administration (NNSA)

    ... Safety Basis, Project Management, and Weapons and Non- Proliferation Product Quality. ... capabilities of the Laboratory and the nation's nuclear non-proliferation priorities. ...

  3. Utah's "Solar For Schools" Program Is Bringing New Light to Education |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Utah's "Solar For Schools" Program Is Bringing New Light to Education Utah's "Solar For Schools" Program Is Bringing New Light to Education November 12, 2010 - 9:54am Addthis Gil Sperling, U.S. Department of Energy; Elise Brown, Utah State Energy Program; Janet Jameson, Hillside Teacher; Prathusha Boppana, Hillside Student; Martell Menlove, Deputy Supt of Schools; Chuck McGinnis, Johnson Controls at the Solar for Schools ribbon cutting. | Department

  4. Utah UC 54-4, Authority of Commission Over Public Utilities ...

    Open Energy Info (EERE)

    4, Authority of Commission Over Public Utilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah UC 54-4, Authority of...

  5. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Utah

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Utah.

  6. Utah - UC 54-2 - Public Utilities Definitions | Open Energy Informatio...

    Open Energy Info (EERE)

    2 - Public Utilities Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Utah - UC 54-2 - Public Utilities...

  7. Utah UC 54-2-1, Public Utilities Definitions | Open Energy Information

    Open Energy Info (EERE)

    2-1, Public Utilities Definitions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah UC 54-2-1, Public Utilities...

  8. Utah State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  9. Low-Temperature Geothermal Water in Utah: A compilation of Data...

    Open Energy Info (EERE)

    Temperature Geothermal Water in Utah: A compilation of Data for Thermal Wells and Springs Through 1993 Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  10. Utah R652-20-3400 Geothermal Steam Leases | Open Energy Information

    Open Energy Info (EERE)

    Ruleregulation in Utah outlining the lease process for geothermal resources on (non-trust) state land Published NA Year Signed or Took Effect 2014 Legal Citation R652-20-3400...

  11. Utah - UAC R930-6 - Access Management | Open Energy Information

    Open Energy Info (EERE)

    UAC R930-6 - Access Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah - UAC R930-6 - Access ManagementLegal...

  12. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  13. Utah - T-223 Application for Right-of-Way Encroachment Permit...

    Open Energy Info (EERE)

    T-223 Application for Right-of-Way Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Utah - T-223 Application for Right-of-Way...

  14. Long-Term Flow Test No. 1, Roosevelt Hot Springs, Utah | Open...

    Open Energy Info (EERE)

    Flow Test No. 1, Roosevelt Hot Springs, Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Long-Term Flow Test No. 1, Roosevelt Hot Springs,...

  15. Utah. Code. Ann. 19-5-115: Spills or discharges of oil or...

    Open Energy Info (EERE)

    Utah. Code. Ann. 19-5-115: Spills or discharges of oil or other substance Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  16. LONG-TERM SURVEILLANCE PLAN FOR THE GREEN RIVER, UTAH DISPOSAL...

    Office of Legacy Management (LM)

    ... for the Green River, Utah site ...... 5-8 This plate is not available in PDF form For more information, contact the U.S. Department of Energy Grand Junction ...

  17. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  18. Environmental assessment of remedial action at the Mexican Hat uranium mill tailings site, Mexican Hat, Utah. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. Remedial action must be performed in accordance with standards and with the concurrence of the US Nuclear Regulatory Commission and the Navajo Nation. The proposed action is to stabilize the tailings within the present tailings site by consolidating the tailings and associated contaminated soils into a recontoured pile. A radon barrier of compacted earth would be constructed over the pile, and various erosion control measures would be taken to assure the long-term stability of the pile. The no action alternative is also assessed in this document. 240 refs., 12 figs., 20 tabs.

  19. Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,806 5,621 6,286 6,775 8,970 7,970 6,596 1990's 10,573 4,597 3,866 3,241 3,322 18,520 18,570 16,478 19,481 15,930 2000's 16,394 14,578 17,163 16,398 15,802 17,216 20,221 21,715 18,169 20,222 2010's 22,022 23,209 28,165 28,165 25,336 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  20. Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,935 2,788 2,561 2000's 2,674 4,161 5,984 7,347 8,278 8,859 11,156 11,970 11,532 10,239 2010's 10,347 11,374 12,902 13,441 14,061 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  1. Utah Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Utah Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 165,253 169,776 159,889 2000's 164,557 159,299 163,379 154,125 155,891 160,275 187,399 219,700 224,188 214,220 2010's 219,213 222,227 223,039 247,285 242,457 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  2. Utah Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 17 16 17 17 17 17 17 17 17 17 17 17 2011 25 22 25 24 25 24 25 25 24 25 24 25 2012 24 23 24 24 24 24 24 24 24 24 24 24 2013 19 17 19 18 19 18 19 19 18 19 18 19 2014 22 20 22 22 22 22 22 22 22 22 22 22 2015 28 25 28 27 28 21 22 22 22 22 22 22 2016 25 22 25 24 24 23

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  3. Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 650 1980's 870 1,722 1,928 2,112 1,984 1,897 1,795 1,870 1,509 1,498 1990's 1,432 1,532 1,709 1,909 1,631 1,424 1,446 1,695 2,293 3,050 2000's 4,125 4,450 3,915 3,318 3,661 4,051 4,894 6,095 6,393 6,810

  4. Microsoft Word - DOE-ID-12-006 Utah EC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SECTION A. Project Title: Acquisition of Specific Equipment to Enhance Performance, Control and Operational Capability of the University of Utah TRIGA Facilities SECTION B. Project Description The objective of this project is to replace the University of Utah TRIGA Reactor heavy water-element handling tool and underwater vacuum cleaner, and to add a portable spectroscopy system and broad energy germanium detector to the facility operational capabilities. SECTION C. Environmental Aspects /

  5. Microsoft Word - DOE-ID-13-013 Utah State B1-31.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: High Temperature Thermal Properties - Utah State University SECTION B. Project Description Utah State University proposes to purchase a Laser Flash Analysis (LFA) system for high temperature thermophysical properties analysis of nuclear materials. The LFA system combined with existing equipment will expand the ability to analyze and characterize thermophysical properties such as thermal diffusivity, thermal conductivity, specific heat capacity, thermal expansion

  6. Microsoft Word - DOE-ID-13-027 Utah EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Risk Assessment of Structural Integrity of Transportation Casks - University of Utah SECTION B. Project Description The University of Utah proposes to assess the risk of loss of structural integrity of transportation casks and fuel cladding after extended storage. The project will include subjecting canisters to impact loads and puncture tests. Casks will be subjected to accelerated degradation due to chloride attacks to simulate the effects of exposure to

  7. Microsoft Word - DOE-ID-13-076 Utah State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SECTION A. Project Title: Optical Fiber Based Laser System for Thermophysical Properties at Very High Temperatures - Utah State University SECTION B. Project Description Utah State University proposes to develop a robust technique using lasers for the measurement of multiple thermophysical properties, such as thermal diffusivity, thermal conductivity, heat capacity, and melting point, at very high temperatures. Objectives include: 1. Design, build, and tune the measurement technique; 2.

  8. Microsoft Word - DOE-ID-14-075 Utah EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SECTION A. Project Title: - Development and Optimization of Voltammetric Methods for Real Time Analysis of Electrorefiner Salt with High Concentrations of Actinides and Fission Products - University of Utah SECTION B. Project Description The University of Utah proposes to develop a robust, accurate method for measuring key component concentrations in molten LiCl- KCl that can readily be implemented into real-time process monitoring systems. This will be accomplished by utilizing fundamental

  9. Appliance Standards Program - The FY 2003 Priority Setting Report and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Actions Proposed -Appendix A | Department of Energy Appendix A Appliance Standards Program - The FY 2003 Priority Setting Report and Actions Proposed -Appendix A This appendix identifies products with substantial energy savings potential warranting further analysis. It also describes the derivation of energy consumption and saving estimates for those products fy03_priority_setting_app_a.pdf (668.47 KB) More Documents & Publications Appliance Standards Program - The FY 2003 Priority

  10. Appliance Standards Program - The FY 2003 Priority Setting Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This appendix contains data sheets for new products that will be covered under appliance standards program rulemaking priorities PDF icon fy03prioritysettingappc.pdf More ...

  11. Identification of Low Emissions Agricultural Pathways and Priorities...

    Open Energy Info (EERE)

    Pathways and Priorities for Mitigation in Agricultural Landscapes using Integrated Assessment Modeling and Scenarios Jump to: navigation, search Name Identification of Low...

  12. Regional Workshop on Opportunities and Priorities for Low Carbon...

    Open Energy Info (EERE)

    Workshop on Opportunities and Priorities for Low Carbon Green Growth in Asia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Workshop on Opportunities and...

  13. Seven priorities for developing smart energy devices? | OpenEI...

    Open Energy Info (EERE)

    Seven priorities for developing smart energy devices? Home > Groups > Buildings Dc's picture Submitted by Dc(266) Contributor 11 September, 2014 - 14:15 Smart homes have promise...

  14. Statement on Budget Priorities for NNSA Weapons Activities before...

    National Nuclear Security Administration (NNSA)

    Budget Priorities for NNSA Weapons Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development February 14, 2013 INTRODUCTION Chairman ...

  15. Recommendation 214: Placing more emphasis and priority on evaluating technologies

    Broader source: Energy.gov [DOE]

    The ORSSAB recommends that DOE place more emphasis and priority on evaluating technologies that could make recycling excess materials cost effective.

  16. Broader National Security Missions | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broader National Security ... Broader National Security Missions Learn more For 70 years, the Y-12 National Security Complex has transformed in response to changing national security priorities and assigned missions, evolving technological opportunities, and growing concerns regarding health and public safety. As the global security situation has changed, the site has adapted - beginning as a uranium enrichment facility, transforming to a weapons manufacturing facility, and accepting new

  17. Basic research needs and priorities in solar energy. Volume I. Executive summary. Technology crosscuts for DOE

    SciTech Connect (OSTI)

    Jayadev, T S; Roessner, D eds.

    1980-01-01

    This report identifies, describes, and recommends priorities for basic research important to the future development of solar energy. In response to a request from the US Department of Energy, SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. SERI scientists relied heavily on the opinions of scientists polled, but weighted their own recommendations and opinions equally. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The Scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas and, wintin each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: Crucial, important, and needed. A narrative accompanying the descripton of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

  18. Priorities for toxic wastewater management in Pakistan

    SciTech Connect (OSTI)

    Rahman, A.

    1996-12-31

    This study assesses the number of industries in Pakistan, the total discharge of wastewater, the biological oxygen demand (BOD) load, and the toxicity of the wastewater. The industrial sector is a major contributor to water pollution, with high levels of BOD, heavy metals, and toxic compounds. Only 30 industries have installed water pollution control equipment, and most are working at a very low operational level. Priority industrial sectors for pollution control are medium- to large-scale textile industries and small-scale tanneries and electroplating industries. Each day the textile industries discharge about 85,000 m{sup 3} of wastewater with a high BOD, while the electroplating industries discharge about 23,000 m{sup 3} of highly toxic and hazardous wastewater. Various in-plant modifications can reduce wastewater discharges. Economic incentives, like tax rebates, subsidies, and soft loans, could be an option for motivating medium- to large-scale industries to control water pollution. Central treatment plants may be constructed for treating wastewater generated by small-scale industries. The estimated costs for the treatment of textile and electroplating wastewater are given. The legislative structure in Pakistan is insufficient for control of industrial pollution; not only do existing laws need revision, but more laws and regulations are needed to improve the state of affairs, and enforcement agencies need to be strengthened. 15 refs., 1 fig., 9 tabs.

  19. Environmental planning and priorities for the manager

    SciTech Connect (OSTI)

    Eggleston, T.E. )

    1993-01-01

    Industry and government spend in excess of $100 billion each year on pollution control. These funds are producing cleaner land, air, and water. They have also spawned a pollution control industry which today employs more than 175,000 people. While significant, this is only the initial investment of capital and human talent that cleaning up the environment will demand through the 1990's and into the next century. Industry is in the early phases of an explosion of environmentally-oriented activity. Industries who manage their priorities and respond proactively on environmental issues will be the more profitable in an economy increasingly influenced by environmental regulations and consumer activism. A series of issues will most likely dominate management of environmental concerns, including: pollution prevention--reducing pollutants before having to clean them up; recycling--reuse limits disposal problems while reducing pollutants generated by new manufacturing; private-public partnerships--these contractual relationships between public and private partners will become increasingly popular; energy use although large strides have been made in energy conservation, much remains to be done; technology innovation--this is the most fundamental tool for use in improving environmental quality. In order for industry to respond to the need, government will have to implement a series of economic, environmental, and social policies. Business then becomes the key element in advancing the policies established by government.

  20. Final Environmental Impact Statement to construct and operate a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    A Final Environmental Impact Statement (FEIS) related to the licensing of Envirocare of Utah, Inc.`s proposed disposal facility in Tooele county, Utah (Docket No. 40-8989) for byproduct material as defined in Section 11e.(2) of the Atomic Energy Act, as amended, has been prepared by the Office of Nuclear Material Safety and Safeguards. This statement describes and evaluates the purpose of and need for the proposed action, the alternatives considered, and the environmental consequences of the proposed action. The NRC has concluded that the proposed action evaluated under the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51, is to permit the applicant to proceed with the project as described in this Statement.

  1. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  2. Utah Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Utah Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 59,806 56,937 55,229 54,606 57,328 55,249 67,314 75,921 83,365 86,778 66,668 58,461 1991 61,574 54,369 50,745 51,761 54,314 60,156 66,484 70,498 74,646 75,367 70,399 63,453 1992 59,541 59,119 59,059 60,896 64,403 67,171 70,690 75,362 78,483 79,756 74,021 67,181 1993 61,308 56,251 52,595 52,028 58,713 65,349 69,968 75,120 80,183

  3. Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.16 0.15 1970's 0.15 0.17 0.17 0.19 0.41 0.48 0.50 0.61 0.64 0.72 1980's 1.12 1.10 3.06 3.40 4.08 3.52 2.90 1.88 2.39 1.58 1990's 1.70 1.54 1.63 1.77 1.54 1.15 1.39 1.86 1.73 1.93 2000's 3.28 3.52 1.99 4.11 5.24 7.16 5.49 NA 6.15 3.38 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA =

  4. Utah Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038 1,040 1,040 1,041 1,038 1,037 2015 1,039 1,046 1,047 1,049 1,043 1,043 1,043 1,043 1,042 1,044 1,044 1,046 2016 1,046 1,043 1,041 1,042 1,041 1,040

    % of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  5. Geology and resources of the Tar Sand Triangle, southeastern Utah

    SciTech Connect (OSTI)

    Dana, G.F.; Oliver, R.L.; Elliott, J.R.

    1984-05-01

    The Tar Sand Triangle is located in southeastern Utah between the Dirty Devil and Colorado Rivers and covers an area of about 200 square miles. The geology of the area consists of gently northwest dipping strata exposed in the box canyons and slopes of the canyonlands morphology. Strata in the area range in age from Jurassic to Permian. The majority of tar sand saturation is found in the Permian White Rim Sandstone Member of the Cutler Formation. The White Rim Sandstone Member consists of a clean, well-sorted sandstone which was deposited in a shallow marine environment. Resources were calculated from analytical data from the three coreholes drilled by the Laramie Energy Technology Center and other available data. The total in-place resources, determined from this study, are 6.3 billion barels. Previous estimates ranged from 2.9 to 16 million barrels. More coring and analyses will be necessary before a more accurate determination of resources can be attempted. 8 references, 11 figures, 7 tables.

  6. Idaho - IC 61-516 - Priority Designation for Electric Transmission...

    Open Energy Info (EERE)

    Idaho - IC 61-516 - Priority Designation for Electric Transmission Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  7. Material Testing Priorities for Hydrogen (H2) Infrastructure | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Material Testing Priorities for Hydrogen (H2) Infrastructure Material Testing Priorities for Hydrogen (H2) Infrastructure American Society of Mechanical Engineers (ASME) Pressure Boundary Needs, Tests and Data Requirements, Recent Testing by Secat, Inc. and Sandia pipeline_group_hayden_ms.pdf (979.17 KB) More Documents & Publications Hydrogen Embrittlement Fundamentals, Modeling, and Experiment Permeation, Diffusion, Solubility Measurements: Results and Issues From Cleanup to

  8. 2008-2012 Synthesized HAB Budget Advice Priorities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 Synthesized HAB Budget Advice Priorities Synthesized by EnviroIssues from 2008-2012 HAB Budget Advice 1 Overarching Budget Advice Commentary (lettered for ease of reference, not indicative of priority) Compliance Budget A. DOE field and Headquarters future budget planning and budget requests should be based on full compliance with regulatory and Consent Order requirements. B. All funding required to meet the TPA and regulatory requirements should be within the target budget, and requested

  9. Priority Areas For Past SCGSR Solicitations | U.S. DOE Office...

    Office of Science (SC) Website

    Priority Areas For Past SCGSR Solicitations DOE Office of Science Graduate Student ... Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR ...

  10. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  11. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  12. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  13. RD & D priorities for energy production and resource conservation from municipal solid waste

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This report identifies research, development, and demonstration (RD&D) needs and priorities associated with municipal solid waste (MSW) management technologies that conserve or produce energy or resources. The changing character of MSW waste management and the public`s heightened awareness of its real and perceived benefits and costs creates opportunities for RD&D in MSW technologies. Increased recycling, for example, creates new opportunities for energy, chemicals, and materials recovery. New technologies to control and monitor emissions from MSW combustion facilities are available for further improvement or application. Furthermore, emerging waste-to-energy technologies may offer environmental, economic, and other advantages. Given these developments, DOE identified a need to assess the RD&D needs and pdodties and carefully target RD&D efforts to help solve the carbon`s waste management problem and further the National Energy Strategy. This report presents such an assessment. It identifies and Documents RD&D needs and priorities in the broad area of MSW resource . recovery, focusing on efforts to make MSW management technologies commercially viable or to improve their commercial deployment over a 5 to l0 year period. Panels of technical experts identifies 279 RD&D needs in 12 technology areas, ranking about one-fifth of these needs as priorities. A ``Peer Review Group`` identified mass-burn combustion, ``systems studies,`` landfill gas, and ash utilization and disposal as high priority areas for RD&D based on cost and the impacts of further RD&D. The results of this assessment are intended to provide guidance to DOE concerning possible future RD&D projects.

  14. 2015 DOE National Cleanup Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 DOE National Cleanup Workshop 2015 DOE National Cleanup Workshop Assistant Secretary Regalbuto Lays out Vision, Priorities to Advance Cleanup for EM Program Assistant Secretary Regalbuto Lays out Vision, Priorities to Advance Cleanup for EM Program DOE Assistant Secretary for Environmental Management Monica Regalbuto speaks to more than 350 people at the National Cleanup Workshop just outside Washington, D.C. Read more Panelists Update Workshop Participants on Waste Isolation Pilot Plant

  15. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Dakota, Utah, Wyoming 100,001-500,000 Arizona, Arkansas, Iowa, Kansas, Nebraska, New Hampshire, North Carolina, Oklahoma, Rhode Island, South Carolina, Vermont 500,001-1...

  16. National Computational Infrastructure for Lattice Gauge Theory SciDAC-2 Closeout Report Indiana University Component

    SciTech Connect (OSTI)

    Gottlieb, Steven Arthur; DeTar, Carleton; Tousaint, Doug

    2014-07-24

    This is the closeout report for the Indiana University portion of the National Computational Infrastructure for Lattice Gauge Theory project supported by the United States Department of Energy under the SciDAC program. It includes information about activities at Indian University, the University of Arizona, and the University of Utah, as those three universities coordinated their activities.

  17. Salt Lake City, Utah A White House Climate Action Champions Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Lake City, Utah A White House Climate Action Champions Case Study INDEX Executive Summary.............................. 2 Climate Action Champion.................... 2 Project Spotlight.................................... 3 Challenges and lessons learned.......... 4 Resources & Contacts........................... 5 2 Executive Summary Salt Lake City has a robust set of ambitious climate goals that target reducing emissions while simultaneously prioritizing ways to become more resilient

  18. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, Utah

    SciTech Connect (OSTI)

    none,

    2013-09-01

    As the first net zero-energy production home certified in Utah, this house incorporates two 94% efficient tankless water heaters and two roof-mounted solar panels that preheat the home's water supply. This home won a 2013 Housing Innovation Award in the production builder category.

  19. EECBG Success Story: Shining Energy-Saving LEDs on Utah Starry Nights

    Broader source: Energy.gov [DOE]

    Thanks to an Energy Efficiency and Conservation Block Grant (EECBG), Utah is replacing streetlights with efficient LEDs across 14 rural communities. About 2,500 streetlights will be replaced and could save the town 20% to 50% on electricity bills. Learn more.

  20. Energy-related indoor environmental quality research: A priority agenda

    SciTech Connect (OSTI)

    Fisk, W.J.; Brager, G.; Burge, H.; Cummings, J.; Levin, H.; Loftness, V.; Mendell, M.J.; Persily, A.; Taylor, S.; Zhang, J.S.

    2002-08-01

    A multidisciplinary team of IEQ and energy researchers has defined a program of priority energy-related IEQ research. This paper describes the methods employed to develop the agenda, and 35 high priority research and development (R&D) project areas related to four broad goals: (1) identifying IEQ problems and opportunities; (2) developing and evaluating energy-efficient technologies for improving IEQ; (3) developing and evaluating energy-efficient practices for improving IEQ; and (4) encouraging or assisting the implementation of technologies or practices for improving IEQ. The identified R&D priorities reflect a strong need to benchmark IEQ conditions in small commercial buildings, schools, and residences. The R&D priorities also reflect the need to better understand how people are affected by IEQ conditions and by the related building characteristics and operation and maintenance practices. The associated research findings will provide a clearer definition of acceptable IEQ that is required to guide the development of technologies, practices, standards, and guidelines. Quantifying the effects of building characteristics and practices on IEQ conditions, in order to provide the basis for development of energy efficient and effective IEQ control measures, was also considered a priority. The development or advancement in a broad range of IEQ tools, technologies, and practices are also a major component of the priority research agenda. Consistent with the focus on ''energy-related'' research priorities, building ventilation and heating, ventilating and air conditioning (HVAC) systems and processes are very prominent in the agenda. Research related to moisture and microbiological problems, particularly within hot and humid climates, is also prominent within the agenda. The agenda tends to emphasize research on residences, small commercial buildings, and schools because these types of buildings have been underrepresented in prior research. Most of the research areas

  1. Priority service: managing risk by unbundling electric power service

    SciTech Connect (OSTI)

    Chao, H.P.; Oren, S.S.; Smith, S.A.; Wilson, R.B.

    1986-03-01

    The basic features of the Priority Service approach for unbundling the equality attributes of electric power service is described. This paper pointed out how this unbundling of service provides an effective tool for managing the risks faced by electric utilities in the next decade. It is also interesting to compare the features of Priority Service to those that result from deregulation of supply in other industries. In the transportation and communications industries, a primary result of deregulation has been a substantial increase in product differentiation and the tailoring of products to specific customer needs. Thus Priority Service, as a means of product differentiation, offers an opportunity to capture some of the benefits of deregulation without the associated uncertainties and instabilities that are often introduced by deregulating markets. 2 figures, 5 tables.

  2. Singh receives ASM International fellowship | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Singh receives ASM International fellowship By Kate Thackrey * June 27, 2016 Tweet EmailPrint Dileep Singh of the Energy Systems Division at Argonne National Laboratory has been named a fellow of ASM International, formerly known as the American Society for Metals. Singh is the leader of Argonne's Energy Systems Thermal-Mechanical Technologies Group. He will be honored at the ASM awards dinner on October 25, 2016, in Salt Lake City, Utah. Singh was chosen "for pioneering contributions and

  3. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  4. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US

  5. Long-term surveillance plan for the Green River, Utah, disposal site

    SciTech Connect (OSTI)

    1997-06-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

  6. Long-term surveillance plan for the Green River, Utah disposal site. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

  7. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect (OSTI)

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  8. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

    Broader source: Energy.gov [DOE]

    The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

  9. Progress Report from University of Utah -- The Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT): Scientific Climate Data Visualization for BER and the Community

    SciTech Connect (OSTI)

    Silva, Claudio T

    2013-09-02

    Progress report from the work performed at the University of Utah for the UV-CDAT project before the team moved to NYU Poly.

  10. Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah

    SciTech Connect (OSTI)

    Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

    1980-03-01

    Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

  11. This fact sheet describes wetlands in and around Monticello, Utah, and what the

    Office of Legacy Management (LM)

    wetlands in and around Monticello, Utah, and what the U.S. Department of Energy (DOE) is doing to restore wetlands that are adversely affected by Monticello cleanup project activities. The purpose of the Monticello cleanup projects is to minimize risks to the public and the environment from exposure to uranium mill tailings and radon gas. The cleanup is being performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund.

  12. U.S. Department of Energy at Grand Junction 2003 Annual Inspection⎯Monticello, Utah

    Office of Legacy Management (LM)

    at Grand Junction 2003 Annual Inspection⎯Monticello, Utah November 2003 Page 1 2003 Annual Inspection of the Monticello Mill Tailings (USDOE) and Monticello Radioactively Contaminated Properties Sites Summary The Monticello site, which includes the U.S. Department of Energy (DOE) Monticello Mill Tailings Site (MMTS) and the Monticello Radioactively Contaminated Properties site, was inspected September 23-25, 2003. A follow-up inspection of the Soil and Sediment properties was conducted on

  13. EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  14. Assessment of cold-climate environmental research priorities

    SciTech Connect (OSTI)

    States, J.B.

    1983-04-01

    The Environmental Protection Agency (EPA) has consistently recognized that cold regions pose unique environmental problems. This report sets forth the conceptual framework and research plans for several high priority research areas. It provides the fundamental basis for implementation of the EPA Cold-Climate Environmental Research Program. This three- to five-year program encompasses both short- and long-term research of high relevance to the EPA and to the cold regions that it serves.

  15. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-08-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  16. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  17. Modification to the Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Volume 1, Text, Attachments 1--6. Final report

    SciTech Connect (OSTI)

    1989-01-01

    This document provides the modifications to the 1988 Remedial Action Plan (RAP) of the contaminated materials at the Monument Valley, Arizona, and Mexican Hat, Utah. The text detailing the modifications and attachments 1 through 6 are provided with this document. The RAP was developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents.

  18. 2013-03 "FY'2015 Budget Priorities" | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 "FY'2015 Budget Priorities" 2013-03 "FY'2015 Budget Priorities" It is the intent of the NNMCAB to utilize the opportunity DOE/EM has given to the stakeholders, to have input and participate into formulating budget requests and work priorities. Rec 2013-03 - May 8, 2013 (29.

  19. 2014-01 "FY 2016 Budget Priorities" | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 "FY 2016 Budget Priorities" 2014-01 "FY 2016 Budget Priorities" It is the intent of the NNMCAB to utilize the opportunity DOE/EM has given to the stakeholders, to have input and participate in formulating budget requests and work priorities. Rec 2014-01 - April 9, 2014 (260.29

  20. Completion of the Five-Year Reviews for the Monticello, Utah, Radioactively Contaminated Properties Site (Monticello Vicinity Properties) and the Monticello Mill Tailings Site

    Broader source: Energy.gov [DOE]

    Five-year reviews for the two Monticello, Utah, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites were completed in June 2012 by U.S. Department of Energy (DOE) Office of Legacy Management (LM), U.S. Environmental Protection Agency, and Utah Department of Environmental Quality.

  1. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

  2. A macro environmental risk assessment methodology for establishing priorities among risks to human health and the environment in the Philippines

    SciTech Connect (OSTI)

    Gernhofer, S.; Oliver, T.J.; Vasquez, R.

    1994-12-31

    A macro environmental risk assessment (ERA) methodology was developed for the Philippine Department of Environment and Natural Resources (DENR) as part of the US Agency for International Development Industrial Environmental Management Project. The DENR allocates its limited resources to mitigate those environmental problems that pose the greatest threat to human health and the environment. The National Regional Industry Prioritization Strategy (NRIPS) methodology was developed as a risk assessment tool to establish a national ranking of industrial facilities. The ranking establishes regional and national priorities, based on risk factors, that DENR can use to determine the most effective allocation of its limited resources. NRIPS is a systematic framework that examines the potential risk to human health and the environment from hazardous substances released from a facility, and, in doing so, generates a relative numerical score that represents that risk. More than 3,300 facilities throughout the Philippines were evaluated successfully with the NRIPS.

  3. Case studies of six high priority DOD installations

    SciTech Connect (OSTI)

    1994-11-01

    This is a supplement to the report entitled Environmental Cleanup: Too Many High Priority Sites Impede DOD`s Program. It provides six installation case studies addressing issues including the status of the restoration program, the cost of cleanup to date and projected costs, the cleanup options considered, the option selected, expected completion, and the applicable cleanup standards. The case studies also provide installation specific information on reasons installation was listed on the NPL, the regulatory process, cooperation between the installation and the regulatory agencies, staffing at the installations and the regulatory agencies, and the process for funding the cleanup.

  4. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    SciTech Connect (OSTI)

    2004-07-01

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  5. ,"Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  6. ,"Utah Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  7. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  8. ,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  9. ,"Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  10. ,"Utah Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ut2m.xls"

  11. ,"Utah Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  12. ,"Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  13. Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 1,001 895 872 - =

  14. Utah Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",23,33,34,34,42 "Hydro Conventional",255,255,256,256,255 "Solar","-","-","-","-","-" "Wind","-","-",19,222,222 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",4,5,5,9,9 "Other

  15. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    1997-06-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  16. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  17. Survey of literature relating to energy development in Utah's Colorado Plateau

    SciTech Connect (OSTI)

    Larsen, A.

    1980-06-01

    This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

  18. President's Energy Budget Invests in Innovation, Clean Energy, and National Security Priorities

    Broader source: Energy.gov [DOE]

    DOE also making tough budget choices and instituting management reform efforts to save taxpayer money

  19. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Text, Appendices A--C. Final report

    SciTech Connect (OSTI)

    1988-07-01

    This Remedial Action Plan (RAP) has been developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Appendices A,B, and C are provided as part of this document. Appendix A presents regulatory compliance issues, Appendix B provides details of the engineering design, and Appendix C presents the radiological support plan.

  20. Increased oil production and reserves utilizing secondary/teritiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Quarterly report, July 1 - September 30, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-10-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization: (1) interpretation of outcrop analogues; (2) reservoir mapping, (3) reservoir engineering analysis of the five project fields; and (4) technology transfer.

  1. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-07-14

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  2. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-01-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.

  3. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-12-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) field studies, (2) development well completion operations, (3) reservoir analysis and modeling, and (4) technology transfer. This paper reviews the status.

  4. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Technical progress report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-04-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  5. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-05-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  6. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1997-02-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Three activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buidups in the Paradox basin: (1) interpretation of new seismic data in the Mule field area, (2) reservoir engineering analysis of the Anasazi field, and (3) technology transfer.

  7. Geothermal rotary separator turbine: wellhead power system tests at Milford, Utah

    SciTech Connect (OSTI)

    Hughes, E.E.

    1983-08-01

    Through development of a separator/expander engine EPRI is improving the efficiency of single flash geothermal power systems. Under cost-shared contracts with Biphase Energy Systems and Utah Power and Light Company (UP and L), a wellhead power generating system has been built and tested. The wellhead unit has been operated for 4000 hours at Roosevelt Hot Springs near Milford, Utah. Phillips Petroleum Company operates the geothermal field at this site. The rotary separator turbine (RST) is a separating expander that increases the resource utilization efficiency by extracting power upstream of a steam turbine in either a 1-stage or 2-stage flash power system. The first power output was achieved October 28, 1981, six weeks after arrival of the RST at the site. The RST system produced 3270 MWh(e) gross and 2770 MWh(e) net to the UP and L grid. Total equivalent power produced by the wellhead RST (actual power output of the RST plus the power obtainable from the steam flow out of the RST) is 15 to 20 percent above the power that would be produced by an optimum 1-stage direct flash plant operated on the same geothermal well.

  8. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  9. Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah

    SciTech Connect (OSTI)

    Clements, Craig B.; Whiteman, Charles D.; Horel, John D.

    2003-06-01

    The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah minimum temperature record of -56 C. The evolution of cold-pool characteristics depended on the strength of prevailing flows above the basin. On an undisturbed day, a 30 C diurnal temperature range and a strong nocturnal potential temperature inversion (22 K in 100 m) were observed in the basin. Initially, downslope flows formed on the basin sidewalls. As a very strong potential temperature jump (17 K) developed at the top of the cold pool, however, the winds died within the basin and over the sidewalls. A persistent turbulent sublayer formed below the jump. Turbulent sensible heat flux on the basin floor became negligible shortly after sunset while the basin atmosphere continued to cool. Temperatures over the slopes, except for a 1 to 2-m-deep layer, became warmer than over the basin center at the same altitude. Cooling rates for the entire basin near sunset were comparable to the 90 W m-2 rate of loss of net longwave radiation at the basin floor, but these rates decreased to only a few watts per square meter by sunrise. This paper compares the observed cold-pool buildup in basins with inversion buildup in valleys.

  10. National Strategy for the Arctic Region | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Strategy for the Arctic Region National Strategy for the Arctic Region The National Strategy for the Arctic Region (NSAR) outlines strategic priorities intended to position the United States to respond effectively to emerging opportunities in the region, while simultaneously pursuing efforts to protect and conserve its unique environment. Signed by President Obama on May 10, 2013, the National Strategy builds upon existing initiatives by federal, state, local, and tribal authorities;

  11. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Matthews, M.L.; Alkema, K.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  12. Priority Areas For Past SCGSR Solicitations | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Priority Areas For Past SCGSR Solicitations DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program About the Office of Science Office of Science User Facilities Priority Areas For Past SCGSR Solicitations 2016 Solicitation 1 .pdf file (531KB) 2015 Solicitation 2 .pdf

  13. Office of Science Priority Research Areas for SCGSR Program | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Office of Science Priority Research Areas for SCGSR Program DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program About the Office of Science Office of Science User Facilities Priority Areas For Past SCGSR Solicitations Letters of Support Graduate

  14. Priority service: Unbundling the quality attributes of electric power: Interim report

    SciTech Connect (OSTI)

    Oren, S.S.; Smith, S.A.; Wilson, R.B.

    1986-11-01

    Priority service is a special kind of product differentiation that increases the range of choices available to customers. The basic idea is to unbundle service reliability into a spectrum of priority classes, each priced to reflect the cost to the utility of providing that quality of service. This report summarizes the concepts and insights developed during the initial phase of research, addressing issues of incentives, pricing, capacity planning, priority insurance, and market organizations.

  15. Uinta Arch Project: investigations of uranium potential in Precambrian X and older metasedimentary rocks in the Unita and Wasatch ranges, Utah and Colorado

    SciTech Connect (OSTI)

    Graff, P.J.; Sears, J.W.; Holden, G.S.

    1980-06-01

    This study is part of the United States Department of Energy's National Uranium Resource Evaluation Program to understand the geologic setting, amount, and availability of uranium resources within the boundaries of the United States. The systematic study of Precambrian quartz-pebble conglomerates and areas that may contain such conglomerates is an integral part of DOE's resource evaluation program, because deposits of world-wide importance occur in such terrains in Canada and South Africa, and because terrains similar to those producing uranium from quartz-pebble conglomerates exist elsewhere in the United States. Because of the ready availability of Tertiary sandstone and Colorado Plateau-type uranium deposits, large areas of Precambrian rocks in the US have not been fully assessed for uranium potential. Thus, the Uinta Arch Project was undertaken to assess the favorability of Precambrian metasedimentary rocks in northern Utah for deposits of uranium in Precambrian quartz-pebble conglomerates. Rocks of interest to this study are the thick, clastic sequences within the Uinta Arch that are considered to be of Early Proterozoic age. The Uinta Arch area is known to contain rocks which generally fit the lithologic characteristics that are understood to limit the occurrence of Precambrian fossil placers. However, detailed geology of these rocks and their exact fit to the model described for uraniferous conglomerates was not known. The primary goal of the Uinta Arch Project was to determine how well these Precambrian rocks resemble known deposits and to describe the favorability of placer uranium deposits.

  16. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722

  17. Bipole-dipole survey at Roosevelt Hot Springs, Thermal Area, Beaver County, Utah

    SciTech Connect (OSTI)

    Frangos, W.; Ward, S.H.

    1980-09-01

    A bipole-dipole electrical resistivity survey at Roosevelt Hot Springs thermal area, Beaver County, Utah was undertaken to evaluate the technique in a well-studied Basin and Range geothermal prospect. The major electrical characteristics of the area are clearly revealed but are not particularly descriptive of the geothermal system. More subtle variations of electrical resistivity accompanying the geothermal activity are detectable, although the influence of near-surface lateral resistivity variations imposes upon the survey design the necessity of a high station density. A useful practical step is to conduct a survey using transmitter locations and orientations which minimize the response of known features such as the resistivity boundary due to a range front fault. Survey results illustrate the effects of transmitter orientation and placement, and of subtle lateral resistivity variations. A known near-surface conductive zone is detected while no evidence is found for a deep conductive region.

  18. Utah Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Utah Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 0 0 4,438 4,892 5,360 5,222 5,427 5,204 2000's 5,052 4,813 5,469 4,837 4,850 4,533 4,510 4,516 5,103 5,338 2010's 5,307 5,392 5,681 7,539 8,283 - = No Data Reported; -- = Not Applicable;

  19. Gravity survey of the southwestern part of the sourthern Utah geothermal belt

    SciTech Connect (OSTI)

    Green, R.T.; Cook, K.L.

    1981-03-01

    A gravity survey covering an area of 6200 km/sup 2/ was made over the southwestern part of the southern Utah geothermal belt. The objective of the gravity survey is to delineate the geologic structures and assist in the understanding of the geothermal potential of the area. A total of 726 new gravity stations together with 205 existing gravity stations, are reduced to give: (1) a complete Bouguer gravity anomaly map, and (2) a fourth-order residual gravity anomaly map; both maps have a 2-mgal contour interval. The complete Bouguer gravity anomaly map shows an east-trending regional gravity belt with a total relief of about 70 mgal which crosses the central portion of the survey area. The gravity belt is attributed to a crustal lateral density variation of 0.1 gm/cc from a depth of 5 to 15 km.

  20. Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Utah Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32 84 41 1980's 9 3 11 8 3 0 0 5 3 0 1990's 0 5 0 8 1 2 17 0 0 4 2000's 0 4 0 0 5 4 45 4 64 0 2010's 0 1 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  1. sandia national labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sandia national labs

  2. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  3. Engineering assessment of inactive uranium mill tailings: Mexican Hat Site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U/sub 3/O/sub 8/ whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions.

  4. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect (OSTI)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  5. CARBON AND OXYGEN ISOTOPIC ANALYSIS: BUG, CHEROKEE, AND PATTERSON CANYON FIELDS, SAN JUAN COUNTY, UTAH

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey Jr; Kevin McClure; Craig D. Morgan; Stephen T. Nelson

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  6. 2009-05 "2011 Priorities for LANL Remediation" | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 "2011 Priorities for LANL Remediation" 2009-05 "2011 Priorities for LANL Remediation" Intent: The NNMCAB supports LANS/LANL in its goals for remediation of the Legacy Waste Sites. Rec 2009-05 - May 14, 2009 (133.73

  7. Geologic Analysis of Priority Basins for Exploration and Drilling

    SciTech Connect (OSTI)

    Carroll, H.B.; Reeves, T.K.

    1999-04-27

    There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

  8. Clean Energy Manufacturing Initiative: Regional and National Summit Series

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Workshops » Clean Energy Manufacturing Initiative: Regional and National Summit Series Clean Energy Manufacturing Initiative: Regional and National Summit Series The Clean Energy Manufacturing Initiative (CEMI) is a Department of Energy initiative focused on increasing American competitiveness in Clean Energy Manufacturing. CEMI is hosting a series of regional and national summits to gather input on manufacturing priorities, identify barriers and opportunities for

  9. International initiative to engage Iraq's science and technology community : report on the priorities of the Iraqi science and technology community.

    SciTech Connect (OSTI)

    Littlefield, Adriane C.; Munir, Ammar M.; Alnajjar, Abdalla Abdelaziz; Pregenzer, Arian Leigh

    2004-05-01

    This report describes the findings of the effort initiated by the Arab Science and Technology Foundation and the Cooperative Monitoring Center at Sandia National Laboratories to identify, contact, and engage members of the Iraqi science and technology (S&T) community. The initiative is divided into three phases. The first phase, the survey of the Iraqi scientific community, shed light on the most significant current needs in the fields of science and technology in Iraq. Findings from the first phase will lay the groundwork for the second phase that includes the organization of a workshop to bring international support for the initiative, and simultaneously decides on an implementation mechanism. Phase three involves the execution of outcomes of the report as established in the workshop. During Phase 1 the survey team conducted a series of trips to Iraq during which they had contact with nearly 200 scientists from all sections of the country, representing all major Iraqi S&T specialties. As a result of these contacts, the survey team obtained over 450 project ideas from Iraqi researchers. These projects were revised and analyzed to identify priorities and crucial needs. After refinement, the result is approximately 170 project ideas that have been categorized according to their suitability for (1) developing joint research projects with international partners, (2) engaging Iraqi scientists in solving local problems, and (3) developing new business opportunities. They have also been ranked as to high, medium, or low priority.

  10. Human dimensions in cyber operations research and development priorities.

    SciTech Connect (OSTI)

    Forsythe, James Chris; Silva, Austin Ray; Stevens-Adams, Susan Marie; Bradshaw, Jeffrey

    2012-11-01

    Within cyber security, the human element represents one of the greatest untapped opportunities for increasing the effectiveness of network defenses. However, there has been little research to understand the human dimension in cyber operations. To better understand the needs and priorities for research and development to address these issues, a workshop was conducted August 28-29, 2012 in Washington DC. A synthesis was developed that captured the key issues and associated research questions. Research and development needs were identified that fell into three parallel paths: (1) human factors analysis and scientific studies to establish foundational knowledge concerning factors underlying the performance of cyber defenders; (2) development of models that capture key processes that mediate interactions between defenders, users, adversaries and the public; and (3) development of a multi-purpose test environment for conducting controlled experiments that enables systems and human performance measurement. These research and development investments would transform cyber operations from an art to a science, enabling systems solutions to be engineered to address a range of situations. Organizations would be able to move beyond the current state where key decisions (e.g. personnel assignment) are made on a largely ad hoc basis to a state in which there exist institutionalized processes for assuring the right people are doing the right jobs in the right way. These developments lay the groundwork for emergence of a professional class of cyber defenders with defined roles and career progressions, with higher levels of personnel commitment and retention. Finally, the operational impact would be evident in improved performance, accompanied by a shift to a more proactive response in which defenders have the capacity to exert greater control over the cyber battlespace.

  11. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah

    SciTech Connect (OSTI)

    1993-02-01

    This document is a revision of the original Mexiacan Hat Remedial Action Plan (RAP) and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. This RAP has been developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3. 0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 presents the water resources protection strategy. Section 6.0 summarizes the plan for ensuring health and safety protection for the surrounding community and the on- site workers. Section 7.0 lists the responsibilities of the project participants. Section 8.0 describes the features of the long-term surveillance and maintenance plan.

  12. 2010-06 "Budget Priorities for FY'12 and Baseline Change Proposal with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Budgets at LANL" | Department of Energy 6 "Budget Priorities for FY'12 and Baseline Change Proposal with Future Budgets at LANL" 2010-06 "Budget Priorities for FY'12 and Baseline Change Proposal with Future Budgets at LANL" The intent of this recommendation is to provide LASO with the priorities, which the NNMCAB believes are important to the citizens of Northern New Mexico in the large program to clean up the legacy waste at LANL. Rec 2010-06 - March 31, 2010

  13. 2016-02 "Fiscal Year 2018 Budget Priorities" | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 "Fiscal Year 2018 Budget Priorities" 2016-02 "Fiscal Year 2018 Budget Priorities" It is the intent of this recommendation that the NNMCAB have input into developing the budget priorities for the FY 2018, in order to assist in the completion of legacy clean-up work to be included in the newly established Order on Consent. It is also intended to maximize time and effort and taxpayer dollars. Rec 2016-02 - March 30, 2016 (510.03 KB) More Documents & Publications 2016-03

  14. Security | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Security The Y-12 National Security Complex places the highest priority on maintaining and improving its security posture. We employ security police officers, cyber security specialists, and other personnel to safeguard our security assets. Y-12 continuously monitors local and world events to prepare for potential risks to the site, our information and our employees. Security personnel also participate in numerous assessments each year to ensure readiness in protecting the site's vital

  15. National SCADA Test Bed Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROTECTING ENERGY INFRASTRUCTURE BY IMPROVING THE SECURITY OF CONTROL SYSTEMS Improving the security of energy control systems has become a national priority. Since the mid-1990's, security experts have become increasingly concerned about the threat of malicious cyber attacks on the vital supervisory control and data acquisition (SCADA) and distributed control systems (DCS) used to monitor and manage our energy infrastructure. Many of the systems still in use today were designed to operate in

  16. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in New Mexico, Arizona, Nevada, Utah and California, called the Southwest US Seismo-Acoustic Network (SUSSAN), which will provide more data to improve the accuracy of...

  17. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn More Navillum Nanotechnologies University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When ...

  18. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Utah Navillum Nanotechnologies developed a process to fabricate quantum dots and other types of semiconducting nanocrystals. When used in liquid crystal...

  19. U.N. Secretary General tells NREL Clean Energy a Top Priority...

    Open Energy Info (EERE)

    U.N. Secretary General tells NREL Clean Energy a Top Priority Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2017) Super contributor 31...

  20. Environmental Programs: Status of Work and Current Priorities for FY13

    SciTech Connect (OSTI)

    Jones, Patricia

    2012-08-17

    Presentation outline is: Mission/overview, Regulatory framework, Current status of cleanup, Shift in priorities to address highest risk, Removal of above-ground waste, Continued focus on protecting water resources, and Priorities for fiscal year 2013. LANL's Environmental Mission is to: (1) Repack and ship legacy transuranic waste containers; (2) Investigate and remediate Cold War (legacy) hazardous and radioactive waste areas; (3) Demolish unused buildings; (4) Disposition solid waste from Laboratory operations; and (5) Lifecycle cost nearly $3 billion.

  1. Completing Salt Waste Processing Facility is an EM Priority and Key to SRS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cleanup Progress | Department of Energy Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup Progress Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup Progress January 14, 2016 - 12:40pm Addthis SRS employees and contractors gather to celebrate SWPF contractor Parsons' Star status, the highest recognition in the Voluntary Protection Program (VPP). DOE launched VPP in 1994 to encourage and recognize excellence in occupational

  2. 2008-09 "DOE/LANL Funding Priorities" | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 "DOE/LANL Funding Priorities" 2008-09 "DOE/LANL Funding Priorities" The intent of this recommendation is to get DOE to request the funding at the full level provided in the 2006 Certified EM Baseline necessary to assure Consent Order deliverables will be met by 2015 deadline. Rec 2008-09 - September 24, 2008 (20.46

  3. Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.21 1970's 0.21 0.22 0.28 0.29 0.34 0.54 0.67 1.40 1.72 1.88 1980's 2.94 3.17 2.67 2.94 2.99 3.19 2.93 2.66 2.84 2.18 1990's 2.25 2.51 2.25 1.91 1.94 1.57 1.68 2.20 2.05 1.92 2000's 3.19 2.97 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not

  4. Utah Natural Gas in Underground Storage - Change in Working Gas from Same

    U.S. Energy Information Administration (EIA) Indexed Site

    Month Previous Year (Percent) Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2 -26.2 -3.2 0.1 32.2 -15.2 -19.1 -18.8 -21.7 -3.8 2.1 1992 -35.0 -4.5 68.2 48.2 46.1 36.5 13.8 0.4 -13.6 -18.6 5.0 6.8 1993 -6.8 -42.8 -72.3 -83.7 -48.5 -4.4 1.6 3.6 11.8 35.5 17.2 37.2 1994 66.2 69.4 210.9 497.9 131.8 40.0 34.2 32.4 40.9 25.7 26.4 36.0 1995 28.4 93.2 100.2 78.2 40.9

  5. Characterization of LaVerkin Springs water and methods for its reuse in energy development. [Utah

    SciTech Connect (OSTI)

    Eisenhauer, R.J.

    1981-11-01

    Analytical water data obtained from a 9-month test program at the LVS (LaVerkin Springs) site, which is located in Washington County, Southwestern Utah, were evaluated. Fresh water and the water after processing through various pretreatment steps and after ED (electrodialysis) desalting were characterized. Upgrading water quality by various physical and chemical treatment methods and by desalting processes was demonstrated by the LVS site test program. The relative merit of different methods of treatment, disposal, and reuse of LVS water were studied. The objectives of the study were to evaluate methods for preventing high salinity LVS water from entering the Virginia River and for utilizing the processed water in energy development. The disposal of water by (1) deep well injection, (2) use as a secondary coolant in a binary cooling tower, (3) use in solar salt-gradient ponds, and (4) use as a transport media for coal slurry pipelines were found to be technically feasible. Use of LVS water to transport coal to a consuming powerplant and subsequent reuse in a binary cooling tower and/or solar salt-gradient ponds would achieve both objectives of salt reduction and energy conservation. Because LVS water has a salt content of 9500 mg/L and a boron content of 5 mg/L, it cannot be directly used for irrigation.

  6. Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,944 46,944 46,944 46,944 48,144 46,944 49,350 50,457 51,244 51,397 42,464 42,464 1991 42,454 42,454 44,628 44,342 45,120 49,179 51,258 49,908 48,558 47,678 47,118 47,118 1992 47,118 47,739 48,770 49,900 50,972 52,189 53,369 54,688 55,934 57,208 49,578 49,736 1993 49,736 49,742 49,749 50,238 51,803 51,028 52,377 53,704 54,973 54,847

  7. Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,862 9,993 8,285 7,662 9,184 8,305 17,964 25,464 32,121 35,381 24,204 15,997 1991 19,120 11,915 6,118 7,419 9,193 10,977 15,226 20,591 26,089 27,689 23,281 16,335 1992 12,422 11,379 10,289 10,996 13,431 14,981 17,321 20,674 22,548 22,548 24,443 17,445 1993 11,572 6,509 2,846 1,790 6,910 14,321 17,591 21,416 25,209 30,558 28,654

  8. Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,017 1980's 1,284 2,057 2,253 2,472 2,325 2,288 2,205 2,341 1,984 1,940 1990's 1,887 2,001 2,018 2,198 1,917 1,701 1,747 2,005 2,502 3,371 2000's 4,472 4,753 4,274 3,617 3,951 4,359 5,211 6,463 6,714 7,411 2010's 7,146 8,108 7,775 7,057 6,970 - = No Data

  9. Eolian sabkha sandstones in the Nugget Sandstone (Jurassic), Vernal area, Utah

    SciTech Connect (OSTI)

    Schenk, C.J.; Peterson, F. (Geological Survey, Denver, CO (United States))

    1991-06-01

    The Jurassic Nugget Sandstone in the Vernal, Utah, area is characterized by thick (up to 25 m) sets of cross-stratified eolian dune sandstone separated by either erosional planar bounding surfaces or thin (mostly < 3 m) sandstones interpreted as sabkha sandstones. Structures in Nugget sabkha sandstones are predominantly wavy or irregular bedding and thin, remnant sets of dune cross-strata consisting of eolian ripple and avalanche strata. The types of sedimentary structures and erosional features in Nugget sabkha sandstones indicate a close relationship between sand deposition and erosion and fluctuations in the local water table. Thin, remnant eolian dune sets are common in Nugget sabkha sandstones. The remnant sets form when dunes migrating across a sabkha are partially wetted as the water table rises slightly (on a scale of tens of centimeters); the lower part of the dune with wetted sand remains on the sabkha as the rest of the dune continues to migrate. Typically, ripple strata of the dune apron and the toes of avalanche strata are preserved in dune remnants. The avalanche strata, being slightly coarser grained, are preferentially deflated, leaving microtopography. This topography is commonly filled in with ripple strata that form as dry sand again blows across the sabkha. Stacked sets of remnant dunes separated by erosional surfaces illustrate the control of sand deposition on eolian sabkhas by the local water table.

  10. Microsoft Word - S07321_FFA

    Office of Legacy Management (LM)

    10 January 2011 Doc. No. S07321 Page 1 Monticello, Utah, National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: October 1-December 31, 2010 This report summarizes project status and activities implemented October through December 2010 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) Site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the United States

  11. Microsoft Word - S08308_FFA_ jul_sep_2011

    Office of Legacy Management (LM)

    1 October 2011 Doc. No. S08308 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: July 1-September 30, 2011 1.0 Introduction This report summarizes the status of the Monticello Vicinity Properties (MVP) and the Monticello Mill Tailings Site (MMTS). Both of these sites are located in and near Monticello, Utah. The reporting period is from July through September 2011. The report includes a summary of projected near-term activity and reporting

  12. Microsoft Word - S08830_FFA

    Office of Legacy Management (LM)

    January-March 2012 March 2012 Doc. No. S08830 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement Quarterly Report: January 1-March 31, 2012 1.0 Introduction This report summarizes the status of the Monticello Vicinity Properties (MVP) and the Monticello Mill Tailings Site (MMTS), located in and near Monticello, Utah, for the period of January 1, 2012, through March 2012. The report also includes a summary of projected near- term activity and reporting

  13. Low Income Consumer Utility Issues: A National Perspective

    SciTech Connect (OSTI)

    Eisenberg, J

    2001-03-26

    This report has been prepared to provide low-income advocates and other stakeholders information on the energy burden faced by low-income customers and programs designed to alleviate that burden in various states. The report describes programs designed to lower payments, manage arrearages, weatherize and provide other energy efficiency measures, educate consumers, increase outreach to the target It discusses the costs and benefits of the population, and evaluate the programs. various options--to the degree this information is available--and describes attempts to quantify benefits that have heretofore not been quantified. The purpose of this report is to enable the low-income advocates and others to assess the options and design program most suitable for the citizens of their states or jurisdictions. It is not the authors' intent to recommend a particular course of action but, based on our broad experience in the field, to provide the information necessary for others to do so. We would be happy to answer any questions or provide further documentation on any of the material presented herein. The original edition of this report was prepared for the Utah Committee on Consumer Services, pursuant to a contract with the National Consumer Law Center (NCLC), to provide information to the Utah Low-Income Task Force established by the Utah Public Service, Commission. Attachment 1 is drawn from NCLC's 1998 Supplement to its Access to Utility Services; NCLC plans to update this list in 2001, and it will be available then from NCLC. This report has been updated by the authors for this edition.

  14. FORGE Teams | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ormat Technologies Inc., and Itasca Consulting Group University of Utah Location: Milford City, Utah Key Partners: Utah Geological Survey, Murphy-Brown LLC, Idaho National...

  15. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  16. National Competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competition National Clean Energy Business Plan Competition The National Clean Energy Business Plan Competition inspired nearly 300 university teams across the country to create new businesses to commercialize promising energy technologies developed at U.S. universities and the National Laboratories. After pitching their business plans to panels of judges at the regional semifinals and finals, six teams advanced to the national competition for a chance to compete in the popular vote and a grand

  17. Keeping the Nation's Energy Flowing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Nation's Energy Flowing Keeping the Nation's Energy Flowing March 29, 2013 - 10:58am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability What does this mean for me? The Department's priority is reflected in its investment in cybersecurity for energy delivery systems and energy reliability modernization. We closely collaborate with Federal, State and local governments, and industry. Our lives are constantly being

  18. Pacific Northwest National Laboratory Institutional Plan FY 2004-2008

    SciTech Connect (OSTI)

    Quadrel, Marilyn J.

    2004-04-15

    This Institutional Plan for FY 2004-2008 is the principal annual planning document submitted to the Department of Energy's Office of Science by Pacific Northwest National Laboratory in Richland, Washington. This plan describes the Laboratory's mission, roles, and technical capabilities in support of Department of Energy priorities, missions, and plans. It also describes the Laboratory strategic plan, key planning assumptions, major research initiatives, and program strategy for fundamental science, energy resources, environmental quality, and national security.

  19. ,"Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release

  20. Evaluation of low-temperature geothermal potential in Cache Valley, Utah. Report of investigation No. 174

    SciTech Connect (OSTI)

    de Vries, J.L.

    1982-11-01

    Field work consisted of locating 90 wells and springs throughout the study area, collecting water samples for later laboratory analyses, and field measurement of pH, temperature, bicarbonate alkalinity, and electrical conductivity. Na/sup +/, K/sup +/, Ca/sup +2/, Mg/sup +2/, SiO/sub 2/, Fe, SO/sub 4//sup -2/, Cl/sup -/, F/sup -/, and total dissolved solids were determined in the laboratory. Temperature profiles were measured in 12 additional, unused walls. Thermal gradients calculated from the profiles were approximately the same as the average for the Basin and Range province, about 35/sup 0/C/km. One well produced a gradient of 297/sup 0/C/km, most probably as a result of a near-surface occurrence of warm water. Possible warm water reservoir temperatures were calculated using both the silica and the Na-K-Ca geothermometers, with the results averaging about 50 to 100/sup 0/C. If mixing calculations were applied, taking into account the temperatures and silica contents of both warm springs or wells and the cold groundwater, reservoir temperatures up to about 200/sup 0/C were indicated. Considering measured surface water temperatures, calculated reservoir temperatures, thermal gradients, and the local geology, most of the Cache Valley, Utah area is unsuited for geothermal development. However, the areas of North Logan, Benson, and Trenton were found to have anomalously warm groundwater in comparison to the background temperature of 13.0/sup 0/C for the study area. The warm water has potential for isolated energy development but is not warm enough for major commercial development.

  1. Geomorphology and failure history of the earthquake-induced Farmington Siding landslide complex, Davis County, Utah

    SciTech Connect (OSTI)

    Lowe, M.; Harty, K.M. )

    1993-04-01

    The Farmington Siding landslide complex covers an area of 19.5 km[sup 2] in central Davis County. First identified and mapped in the 1970s, the feature was classified by previous researchers as a liquefaction-induced lateral spread based on surface geomorphology and exposures on the landslide complex. This was the first landslide in Utah to be attributed to earthquake-induced liquefaction. Geomorphic and geologic evidence indicate that the Farmington Sliding landslide complex likely consists of liquefaction-induced landslides that failed by means of both flow failure and lateral spreading. The landslide complex is located in an area underlain primarily by fine-grained deposits of Pleistocene Lake Bonneville and Holocene Great Salt Lake. Geomorphic features of the landslide complex include main and minor scarps, hummocks, closed depressions, and transverse lineaments. The main scarp consists mostly of a series of arcuate scallops near the left flank of the landslide, but it is a relatively linear, single scarp near the right flank of the landslide. Hummocks and closed depressions are most common near the head region of the landslide complex. Failure of the Farmington Sliding landslide complex has occurred at least twice. The older, distal portion of the landslide complex is cut by the Gilbert shoreline of the Bonneville lake cycle, indicating that landsliding occurred more than 10,000 years ago. In the younger portion of the landslide complex, landsliding has disrupted the Gilbert shoreline. Radiocarbon age estimates from trenches on a hummock near the main scarp of the younger landslide indicate that slope failure occurred sometime between about 2,730 [+-] 370 cal. yr B.P. and 4,530 [+-] 300 cal. yr B.P., possibly during the penultimate or antepenultimate surface-faulting earthquake on the Weber segment of the Wasatch fault zone.

  2. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect (OSTI)

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  3. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  4. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    Allison, M.L.

    1996-08-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide (CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  5. Geothermal heating retrofit at the Utah State Prison Minimum Security Facility. Final report, March 1979-January 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This report is a summary of progress and results of the Utah State Prison Geothermal Space Heating Project. Initiated in 1978 by the Utah State Energy Office and developed with assistance from DOE's Division of Geothermal and Hydropower Technologies PON program, final construction was completed in 1984. The completed system provides space and water heating for the State Prison's Minimum Security Facility. It consists of an artesian flowing geothermal well, plate heat exchangers, and underground distribution pipeline that connects to the existing hydronic heating system in the State Prison's Minimum Security Facility. Geothermal water disposal consists of a gravity drain line carrying spent geothermal water to a cooling pond which discharges into the Jordan River, approximately one mile from the well site. The system has been in operation for two years with mixed results. Continuing operation and maintenance problems have reduced the expected seasonal operation from 9 months per year to 3 months. Problems with the Minimum Security heating system have reduced the expected energy contribution by approximately 60%. To date the system has saved the prison approximately $18,060. The total expenditure including resource assessment and development, design, construction, performance verification, and reporting is approximately $827,558.

  6. 2009-04 "Priorities for ARRA Stimulus Funding for Environmental Clean-up at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LANL" | Department of Energy 4 "Priorities for ARRA Stimulus Funding for Environmental Clean-up at LANL" 2009-04 "Priorities for ARRA Stimulus Funding for Environmental Clean-up at LANL" The intent of this recommendation is to encourage LASO and the DOE Office of Environmental Management to shoe immediate and beneficial acceleration of the clean-up of legacy waste at LANL and to encourage additional ARRA funding be provided for the use at LANL. Further, the intent of

  7. Appliance Standard Program - The FY 2003 Priority -Setting Summary Report and Actions Proposed - Appendix B

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APPENDIX B: Data Sheets for Existing Products Table of Contents Product Rulemaking Priority Page Product Rulemaking Priority Page Commercial Air-Cooled Central A/C & Air-Source HP, 65-240 kBtu/h Standards High B-1 High Intensity Discharge Lamps Determination High B-27 Central A/C & HP, 3 phase, < 65 kBtu/h Standards Medium B-2 Test Procedure Low B-28 Clothes Dryers Standards Low B-3 Lamps, Fluorescent Standards Low B-29 Test Procedure Low B-4 Test Procedure Low B-30 Clothes Washers

  8. Update on U.S. Department of Energy Residential Program Priorities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Program Priorities Update on U.S. Department of Energy Residential Program Priorities These presentations offer information about current Building America program goals and activities, as outlined in the Technical Update meeting on July 24-26, 2013. plenary_werling.pdf (18.83 MB) plenary_rashkin.pdf (10.46 MB) More Documents & Publications Why Are We Here? Building America Technical Update Meeting: What We Know, and What We Don't Know Building America Top

  9. 100-kWp photovoltaic power system at Natural Bridges National Monument

    SciTech Connect (OSTI)

    Solman, F.J.; Helfrich, J.H.; Lyon, E.F.; Benoit, A.E.

    1980-01-01

    The Natural Bridges National Monument in southeastern Utah is the location of the world's largest solar photovoltaic power system. This system, which operates in a stand-alone mode without utility backup, supplies from 300 to 400 kWh/day of 60-Hz AC electrical energy to the diversified loads in the monument headquarters area. A diesel-powered generator serves as backup for the system. The solutions to a number of problems encountered in the design, fabrication, testing and early operation of the system are discussed.

  10. ASC Predictive Science Academic Alliance Program (PSAAP) II Review of the Carbon Capture Multidisciplinary Science Center (CCMSC) at the University of Utah

    SciTech Connect (OSTI)

    Still, C. H.; Ferencz, R. M.; Hoekstra, R. J.; Hungerford, A. L.; Kuhl, A. L.; Montoya, D. R.; Wagner, J.

    2015-06-08

    The review was conducted on March 31 – April 1, 2015 at the University of Utah. Overall the review team was impressed with the work presented and found that the CCMSC had met or exceeded all of their Year 1 milestones. Specific details, comments and recommendations are included in this document.

  11. Hydrologic characterization of the Fry Canyon, Utah site prior to field demonstration of reactive chemical barriers to control radionuclide and trace-element contamination in ground water

    SciTech Connect (OSTI)

    Naftz, D.L.; Freethey, G.W.; Davis, J.A.

    1997-12-31

    The Fry Canyon Site in southeastern Utah has been selected as a long term demonstration site to assess the performance of selected reaction barrier technologies for the removal of uranium and other trace elements from ground water. Objectives include site characterization and evaluation of barrier technologies.

  12. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    SciTech Connect (OSTI)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  13. Consent Order, Lawrence Livermore National National Security...

    Office of Environmental Management (EM)

    Lawrence Livermore National National Security, LLC - WCO-2010-01 Consent Order, Lawrence Livermore National National Security, LLC - WCO-2010-01 October 29, 2010 Issued to Lawrence ...

  14. A lock-free priority queue design based on multi-dimensional linked lists

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dechev, Damian; Zhang, Deli

    2015-04-03

    The throughput of concurrent priority queues is pivotal to multiprocessor applications such as discrete event simulation, best-first search and task scheduling. Existing lock-free priority queues are mostly based on skiplists, which probabilistically create shortcuts in an ordered list for fast insertion of elements. The use of skiplists eliminates the need of global rebalancing in balanced search trees and ensures logarithmic sequential search time on average, but the worst-case performance is linear with respect to the input size. In this paper, we propose a quiescently consistent lock-free priority queue based on a multi-dimensional list that guarantees worst-case search time of O(logN)more » for key universe of size N. The novel multi-dimensional list (MDList) is composed of nodes that contain multiple links to child nodes arranged by their dimensionality. The insertion operation works by first injectively mapping the scalar key to a high-dimensional vector, then uniquely locating the target position by using the vector as coordinates. Nodes in MDList are ordered by their coordinate prefixes and the ordering property of the data structure is readily maintained during insertion without rebalancing nor randomization. Furthermore, in our experimental evaluation using a micro-benchmark, our priority queue achieves an average of 50% speedup over the state of the art approaches under high concurrency.« less

  15. A lock-free priority queue design based on multi-dimensional linked lists

    SciTech Connect (OSTI)

    Dechev, Damian; Zhang, Deli

    2015-04-03

    The throughput of concurrent priority queues is pivotal to multiprocessor applications such as discrete event simulation, best-first search and task scheduling. Existing lock-free priority queues are mostly based on skiplists, which probabilistically create shortcuts in an ordered list for fast insertion of elements. The use of skiplists eliminates the need of global rebalancing in balanced search trees and ensures logarithmic sequential search time on average, but the worst-case performance is linear with respect to the input size. In this paper, we propose a quiescently consistent lock-free priority queue based on a multi-dimensional list that guarantees worst-case search time of O(logN) for key universe of size N. The novel multi-dimensional list (MDList) is composed of nodes that contain multiple links to child nodes arranged by their dimensionality. The insertion operation works by first injectively mapping the scalar key to a high-dimensional vector, then uniquely locating the target position by using the vector as coordinates. Nodes in MDList are ordered by their coordinate prefixes and the ordering property of the data structure is readily maintained during insertion without rebalancing nor randomization. Furthermore, in our experimental evaluation using a micro-benchmark, our priority queue achieves an average of 50% speedup over the state of the art approaches under high concurrency.

  16. Appliance Standard Program - The FY 2003 Priority -Setting Summary Report and Actions Proposed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appliance Standards Program The FY 2003 Priority- Setting Summary Report and Actions Proposed Date: August 22, 2002 Table of Contents i EXECUTIVE SUMMARY.............................................................................................. iv 1 Energy Conservation Program - Product Prioritization Process.......1-1 1.1 Background on Appliance Standards Program........................................... 1-1 1.2 DOE Authority to Add Products

  17. The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents

    SciTech Connect (OSTI)

    Thomas Chidsey

    2008-09-30

    The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted

  18. Charter for the Commission to Review the Effectiveness of the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Laboratories | Department of Energy Charter for the Commission to Review the Effectiveness of the National Energy Laboratories Charter for the Commission to Review the Effectiveness of the National Energy Laboratories Two phases are planned for the Commission. In Phase 1, the objective of the Commission is to address whether the Department of Energy's (DOE) national laboratories are properly aligned with the Department's strategic priorities; have clear, well understood, and properly

  19. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae; Morgan, Craig; Carney, Stephanie

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary

  20. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

    SciTech Connect (OSTI)

    N /A

    2005-08-05

    The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) {section} 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments

  1. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on the fishes of the Green River, Utah and Colorado

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Hayse, J.W.

    1995-09-01

    Aerial videography and modeling were used to evaluate the impacts of four hydropower operational scenarios at Flaming Gorge Dam, Utah, on trout and native fishes in the Green River, Utah and Colorado. The four operational scenarios studied were year-round high fluctuations, seasonally adjusted high fluctuations, seasonally adjusted moderate fluctuations, and seasonally adjusted steady flows. Impacts on trout were evaluated by examining differences among scenarios in the areas of inundated substrates that serve as spawning and feeding habitat. All scenarios would provide at least 23 acres per mile of habitat for spawning and food production; seasonally adjusted operations would provide additional areas during periods of sustained high release. Seasonally adjusted high fluctuations would increase inundated areas by 12 to 26% for a short period in winter and spring, but food production and reproduction would not be expected to increase. Seasonally adjusted moderate fluctuations and steady flows would produce similar increases in area, but the longer period of inundation could also result in increased food production and provide additional spawning sites for trout. Impacts on native fishes were assessed by examining daily changes in backwater nursery areas. Compared with year-round high fluctuations, the daily changes in backwater area would decrease by about 47, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. Similarly, daily stage fluctuations during the nursery period would decrease by 72, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. These reductions in daily fluctuations in backwater area and stage would improve conditions in nursery habitats and could in turn improve recruitment and overwinter survival. Introduced fish species could also benefit from the seasonally adjusted operational scenarios.

  2. Priority Questions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In the discussion of product switching methodology, page 8J-5 of the TSD, it is indicated ... Given this uncertainty, why did DOE choose to move away from using the 15 year industry ...

  3. A strategy for resolving high-priority Hanford Site radioactive waste storage tank safety issues

    SciTech Connect (OSTI)

    Babad, H.; DeFigh-Price, C.; Fulton, J.C.

    1993-02-01

    High-activity radioactive waste has been stored in large underground storage tanks at the US Department of Energy`s (DOE) Hanford Site in Eastern Washington State since 1944. Since then, more than 227,000 m{sup 3} (60 Mgal) of waste have been accumulated in 177 tanks. These caustic wastes consist of many different chemicals. The waste forms include liquids, slurries, salt cakes, and sludges. A number of safety issues have been raised about these wastes, and resolution of these issues is a top priority of DOE. A Waste Tank Safety Program has been established to resolve these high-priority safety issues. This paper will deal with three of these issues. The issues described are the release of flammable vapors from single- and double-shell tanks, the existence of organic chemicals, and/or ferrocyanide ion-containing fuel-rich mixtures of nitrate and nitrite salts in single-shell tanks.

  4. Road to the hydrogen highway | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Road Tripping through the Geothermal Frontier Road Tripping through the Geothermal Frontier Addthis Geothermal Well Head, Utah 1 of 5 Geothermal Well Head, Utah This geothermal well head is located near the University of Utah's FORGE candidate site. The area is already renewables-friendly, with a wind farm nearby. Image: Elisabet Metcalfe, EERE Snake River Plain, Idaho 2 of 5 Snake River Plain, Idaho The mountainous view captures INL's Snake River Plain candidate site which is located on the

  5. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  6. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community invited to learn about emerging technologies July 6, 2016 DisrupTech showcases innovation from Los Alamos National Laboratory LOS ALAMOS, N.M., July 6, 2016-New technologies emerging from Los Alamos National Laboratory that address everything from fusion energy to medical testing will be on display for members of the community, investors and business leaders at the DisrupTech showcase, Thursday, July 14, starting at 1:00 p.m. at the Los Alamos Golf Course Event Center. "We call it

  7. Radiological Sites in Hawaii Complete NNSA Security Enhancements | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Radiological Sites in Hawaii Complete NNSA Security Enhancements August 12, 2011 HONOLULU - The National Nuclear Security Administration (NNSA) today recognized the state of Hawaii and the city and county of Honolulu for completing security enhancements on all high priority radiological materials. The voluntary enhancements came with the assistance of NNSA's Global Threat Reduction Initiative (GTRI) and further improve radiological material security

  8. National Idling Reduction Network News - June 2012

    Energy Savers [EERE]

    ... The text of the executive order is available at http:ucair.utah.gov... Purchase and installation of 11 eTRUs 193,421 Channel Fish Company, Inc. (East Boston) ...

  9. Salazar, Chu Announce Next Step in Nation's March toward Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    planning will help us site solar projects in the right ... "Our country has incredible renewable resources, innovative ... Arizona, California, Colorado, Nevada, New Mexico, and Utah. ...

  10. 2015-02 "Budget Priorities for FY 2016 for LANL EM Clean-up Work" |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 "Budget Priorities for FY 2016 for LANL EM Clean-up Work" 2015-02 "Budget Priorities for FY 2016 for LANL EM Clean-up Work" It is the intent of the of this recommendation that the NNMCAB have input into developing the budget priorities for FY 2016, in order to assist in the completion of clean up scope on the CO requirements. Rec 2015-02 - March 11, 2015 (288.7

  11. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix D. Final report

    SciTech Connect (OSTI)

    1988-07-01

    This appendix is an assessment of the present conditions of the inactive uranium mill site near Mexican Hat, Utah. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan. Plan is to characterize the conditions at the mill and tailings site so that the Remedial Action Contractor may complete final designs of the remedial action.

  12. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  13. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility Former Army Ranger wins Sandia-sponsored student of the year award Former Army Ranger Damon Alcorn recently received the Sandia National Laboratories-Livermore Chamber of Commerce Student of the Year Award. Presented at the Chamber's State of the City Luncheon last month, the annual award highlights a Las Positas College student with exemplary academic... NNSA makers and hackers engage innovation and partnerships NNSA's labs change the world everyday through cutting-edge

  14. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which

  15. Six Utah plants help fuel rise in geothermal projects | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Power Wind Awards | Department of Energy The U.S. Department of Energy, together with the American Public Power Association (APPA), today recognized the Oklahoma Municipal Power Authority (OMPA) and Silicon Valley Power (SVP) of Santa Clara, California, as the winners of the 2014 Public Power Wind Awards. The awards, presented at the APPA National Conference in Denver, Colorado, recognize publicly owned utilities that demonstrate outstanding leadership in advancing wind power in the United

  16. Scenarios of forestry carbon sequestration measures in the Russian Federation and priorities for action plan

    SciTech Connect (OSTI)

    Kokorin, A.O.

    1996-12-31

    Development of forestry mitigation strategy under Russian transition economy conditions has many difficulties and specific features. The most important factors are: shortage in funds; absence of well defined legislation, rules and standards; absence of adequate control systems; weak transport infrastructure and export problems. Assessment of economic possibilities, potential, short- and middle-term measures show that strategies have to be focused on improvement and promotion of current carbon sequestration activity. Five baseline forestry scenario (No. 1) and four other scenarios (No. 2 - No. 5) for 2000-2040 were developed. Each scenario covers all forested area but provides separate analysis of 30 `forestry ecoregions`. Three types of forestry management were included in scenarios: clear-cut logging and reforestation (by scenarios No. 2 and No. 3); selective logging and thinning (No. 4); measures to prevent and manage fires (No. 5). The baseline scenario results in a constant net-sink of about 150 MtC/yr. An increase in clear-cut logging on the basis of current forestry practice will cause a rapid drop of net-sink. Implementation of a modest increase in clear-cut logging with active forest fire and selective logging measures could provide with a slight increase of net-sink. Consideration of scenarios helps identify regional forestry priorities for Russian Climate Change Action Plan. The priorities by region include: European-Ural: (1) creation of economy mechanism to increase forestry effectiveness on the same cutting areas, (2) assistance to natural reforestation. Central and North-East Siberia: promotion of forest fire protection system. South Siberia and Primorie and Priamurie: limit of clear-cut logging and creation market situation for better forestry efficiency. The proposed Joint Implementation Vologda reforestation project which is being considered now by special bodies of the USA and the Russian Federation is in good agreement with these priorities.

  17. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    N E W U T I L I T Y B U S I N E S S M O D E L S : Utility and Regulatory Models for the Modern Era Ronald Lehr former Public Utilities Commissioner A M E R I C A ' S POWER PLAN A m e r i c a ' s P o w e r P l a n Ralph Cavanagh, Natural Resources Defense Council Peter Fox-Penner, Brattle Group Tom King, National Grid Richard Sedano, Regulatory Assistance Project Alison Silverstein, former Federal Energy Regulatory Lisa Wood, Edison Foundation's Institute for Electric Efficiency We would like to

  18. National SCADA Test Bed - Enhancing control systems security in the energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sector (September 2009) | Department of Energy SCADA Test Bed - Enhancing control systems security in the energy sector (September 2009) National SCADA Test Bed - Enhancing control systems security in the energy sector (September 2009) Improving the security of energy control systems has become a national priority. Since the mid-1990's, security experts have become increasingly concerned about the threat of malicious cyber attacks on the vital supervisory control and data acquisition (SCADA)

  19. 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional and Local Energy Issues, September 2006 | Department of Energy 6-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006 This Action Agenda is intended to provide the situational context in which the annual Combined Heat and Power (CHP) roadmap workshop will set its priorities for the upcoming year

  20. Oceanographic restriction and deposition of the Permian Park City and Phosphoria formations, northeastern Utah and western Wyoming

    SciTech Connect (OSTI)

    Whalen, M.T. )

    1991-03-01

    Detailed lithofacies analyses of the Permian Park City Formation, in northeastern Utah and western Wyoming, reveal that it was deposited in both open and restricted continental shelf and slope environments bordering the Oquirrh and Sublett basins. The Park City and the intercalated Phosphoria Formation document the interplay between carbonate, clastic, evaporite, and organic-rich sedimentation, fluctuating sea-level and bottom water oxygenated, and oceanic upwelling. New data from the Park City and Phosphoria formations imply that paleoceanographic models for the deposition of these units must be revised. Both physical and chemical restriction, resulting from paleogeographic constraints, regressive conditions, and the decay of organic matter produced in nutrient-rich upwelled waters, were important to the development of lithofacies patterns. Evidence of restriction includes massive and bedded anhydrite deposits and calcite replaced anhydrite nodules, carbonate facies with low levels of bioturbation and significant quantities of authigenic pyrite, and laminated black, organic-rich shales indicating low oxygen conditions. Park City and Phosphoria lithofacies imply that upwelling began during regression that resulted from a glacio-eustatic drop in sea level. This was accompanied by a greater pole-to-equator temperature gradient and intensified atmospheric circulation that induced eastern ocean basin upwelling. Physical and chemical restriction of marginal Permian basins was important in the development of dysaerobic to anaerobic conditions that facilitated the preservation of organic matter.