National Library of Energy BETA

Sample records for utah geological survey

  1. Utah Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeedUratMaringaTaquaraUtah + workshop

  2. REMOTE SENSING GEOLOGICAL SURVEY

    E-Print Network [OSTI]

    sensing data used in CPRM geologic projects Future perspective: the Spectral Library of Geological Survey Pesquisa de Recursos Minerais (CPRM) is a state-owned company that carries out the functions of Brazil ­ CPRM #12;Examples of use of LANDSAT imagery in CPRM projects Field works planning ­ Enhancement

  3. Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year)

    E-Print Network [OSTI]

    Johnson, Cari

    Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year): General Academic Advising for Geology & Geophysics Majors ­ Ms. Judy for Geology Emphasis, Geoscience Major ­ Prof. Brenda Bowen (email: brenda.bowen@ utah.edu, office: 341 FASB

  4. Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year)

    E-Print Network [OSTI]

    Johnson, Cari

    Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year): General Academic Advising for Geology & Geophysics Majors ­ Ms. Judy.dinter@utah.edu, office: 321 FASB, phone 801-581-7937) Faculty Advisor for Geophysics Emphasis, Geoscience Major ­ Prof

  5. Department of Geology and Geophysics, University of Utah Spring 2002 down to earth

    E-Print Network [OSTI]

    Johnson, Cari

    1 Department of Geology and Geophysics, University of Utah Spring 2002 down to earth Message From of Bill Parry and Duke Picard resulted in openings in both Geological Engineer- ing and Sedimentary Geology. Our search for their replacements has been successful and we are once again at full strength

  6. Chemistry Major, Geology Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Geology Emphasis See www.chem.utah.edu for details or contact the chemistry for Scientists and Engineers I, II (1, 1) E. Chemistry, Geology Emphasis Core courses, plus: CHEM 3070 (3) GEO 1115 Laboratory for Introduction to Earth Systems (1) GEO 3060 Structural Geology

  7. Chemistry Major, Geology Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Geology Emphasis See www.chem.utah.edu for details or contact Professor Richard Laboratory for Scientists and Engineers I, II (1, 1) E. Chemistry, Geology Emphasis Core courses, plus: CHEM to Earth Systems (3) GEO 1115 Laboratory for Introduction to Earth Systems (1) GEO 3060 Structural Geology

  8. GEOTHERMAL GRADIENT DATA FOR UTAH Robert E. Blackett

    E-Print Network [OSTI]

    Laughlin, Robert B.

    of a geothermal system at depth. Temperature logs of boreholes are made by lowering a sensitive thermistor probeGEOTHERMAL GRADIENT DATA FOR UTAH by Robert E. Blackett February 2004 UTAH GEOLOGICAL SURVEY-gradient boreholes in Utah showing relative gradient magnitudes. PLATE Plate 1. Thermal-gradient boreholes in Utah

  9. Department of Geology and Geophysics-Frederick A. Sutton Building 115 South 1460 East, Room 383, Salt Lake City, Utah 84112-0102

    E-Print Network [OSTI]

    Johnson, Cari

    Department of Geology and Geophysics- Frederick A. Sutton Building to The University of Utah Department of Geology and Geophysics Donor's Information, to the Department of Geology and Geophysics of the University of Utah as an unrestricted gift. Fill out and sign

  10. Title: Alberta Geological Survey GIS Downloads Data Creator /

    E-Print Network [OSTI]

    Title: Alberta Geological Survey GIS Downloads Data Creator / Copyright Owner: Alberta Geological Survey Publisher: Alberta Geological Survey Edition: N/A Versions: N/A Publication Date: N/A Coverage Date(s): N/A Updates: N/A Abstract: Dataset contains geological information for the province of Alberta

  11. Bibliography of Utah radioactive occurrences. Volume I

    SciTech Connect (OSTI)

    Doelling, H.H. comp.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  12. Department of Geology and Geophysics Frederick A. Sutton Building 115 South 1460 East, Room 383, Salt Lake City, Utah 84112-0102 (801) 581-7162 FAX (801) 581-7065

    E-Print Network [OSTI]

    Johnson, Cari

    Department of Geology and Geophysics ­ Frederick A. Sutton Building 115 South 1460 East, Room 383/2012 Deed of Gift to The University of Utah Department of Geology and Geophysics Donor's Information, to the Department of Geology and Geophysics of the University of Utah as an unrestricted gift. Filled out and sign

  13. State Geological Survey Contributions to the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Data System (NGDS) with state-specific data by creating a national, sustainable, distributed, interoperable network of state geological survey-based data...

  14. Geology and Temperature Gradient Surveys Blue Mountain Geothermal...

    Open Energy Info (EERE)

    Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  15. State Geological Survey Contributions to NGDS Data Development...

    Open Energy Info (EERE)

    State Geological Survey Contributions to NGDS Data Development, Collection and Maintenance Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project...

  16. DENISE M. AKOB U.S. Geological Survey

    E-Print Network [OSTI]

    DENISE M. AKOB U.S. Geological Survey National Research Program (Water) 12201 Sunrise Valley Dr. w, U.S. Geological Survey, National Research Program (Water), Microbiology and Molecular Ecology Ecology w Environmental Microbiology w Bioremediation w Biogeochemistry PUBLICATIONS Akob, D. M.*, S. H

  17. DENISE M. AKOB U.S. Geological Survey

    E-Print Network [OSTI]

    DENISE M. AKOB U.S. Geological Survey National Research Program (Water) 430 National Center Reston, National Research Program (Water), Microbiology and Molecular Ecology Laboratory. 2012-current Environmental Microbiology w Bioremediation w Biogeochemistry w Bioenergy PUBLICATIONS 1. Keiner, R., A

  18. Bipole-dipole survey at Roosevelt Hot Springs, Thermal Area, Beaver County, Utah

    SciTech Connect (OSTI)

    Frangos, W.; Ward, S.H.

    1980-09-01

    A bipole-dipole electrical resistivity survey at Roosevelt Hot Springs thermal area, Beaver County, Utah was undertaken to evaluate the technique in a well-studied Basin and Range geothermal prospect. The major electrical characteristics of the area are clearly revealed but are not particularly descriptive of the geothermal system. More subtle variations of electrical resistivity accompanying the geothermal activity are detectable, although the influence of near-surface lateral resistivity variations imposes upon the survey design the necessity of a high station density. A useful practical step is to conduct a survey using transmitter locations and orientations which minimize the response of known features such as the resistivity boundary due to a range front fault. Survey results illustrate the effects of transmitter orientation and placement, and of subtle lateral resistivity variations. A known near-surface conductive zone is detected while no evidence is found for a deep conductive region.

  19. U.S. Geological Survey Library Classification By R. Scott Sasscer

    E-Print Network [OSTI]

    Torgersen, Christian

    U.S. Geological Survey Library Classification System By R. Scott Sasscer U.S. Geological Survey classification system is a tool for classifying and retrieving geoscience library materials. The index promotes.S. Geological Survey Library classification system / by R. Scott Sasscer. p. cm. ­ (U.S. Geological Survey

  20. BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 33, Part 1 CONTENTS Tertiary Geologic History Geology of the Deadman Canyon 7112-Minute Quadrangle, Carbon County, Utah, Utah. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .James Douglas Smith 135 Geology

  1. YOUNG GEOLOGY GEOLOGY OF THE

    E-Print Network [OSTI]

    Seamons, Kent E.

    YOUNG GEOLOGY UNIVERSITY May, 1962 GEOLOGY OF THE SOUTHERN WASATCH MOUNTAINS AND VICIN~IM,UTAH C O ....................J. Keith Rigby 80 Economic Geology of North-Central Utah ...,............... Kcnneth C.Bdodc 85 Rod Log ........................Lehi F. Hintze, J. Ka# Ri&, & ClydeT. Hardy 95 Geologic Map of Southern

  2. Geological control of springs and seeps in the Farmington Canyon Complex, Davis County, Utah 

    E-Print Network [OSTI]

    Skelton, Robyn Kaye

    1991-01-01

    number of studies were done in the area, and it was concluded that there is a direct correlation between the debris-flow initiation points and discharging ground water. A hydrogeologic study of Davis County found that the discharge of ground water.... TABLE OF CONTENTS Page . . Vl Vill Physiography of the Wasatch Front. . . . . Regional Geology. . Hydrogeology METHODOLOGY Selection of Canyons. . . Field Mapping. Regional Geology. . RESULTS. Centerville Canyon . Parrish Canyon. . Ford...

  3. Chinese Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:WestTexas: EnergyExportDLRGeological Survey Jump to:

  4. MEMBERS OF THE U.S. GEOLOGICAL SURVEY WORLD PETROLEUM ASSESSMENT 2000 TEAM

    E-Print Network [OSTI]

    Laughlin, Robert B.

    PETROLEUM ASSESSMENT 2000-- DESCRIPTION AND RESULTS U.S. Geological Survey World Energy Assessment Team Go PETROLEUM ASSESSMENT 2000-- DESCRIPTION AND RESULTS U.S. Geological Survey World Energy Assessment Team GoChapter LS MEMBERS OF THE U.S. GEOLOGICAL SURVEY WORLD PETROLEUM ASSESSMENT 2000 TEAM in U

  5. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  6. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    Hazards Response Products and Services When disaster strikes there is often an urgent need and high demand on recycled paper United States Geological Survey (USGS) Natural Hazards Response The primary goal of U.S. Geological Survey (USGS) Natural Hazards Response is to ensure that the disaster response community has

  7. ILLINOIS STATE GEOLOGICAL SURVEY Interior Cratonic Basins, 1991, edited by M. W. Leighton, D. R. Kalata, D. F. Oltz,

    E-Print Network [OSTI]

    Bethke, Craig

    ILLINOIS STATE GEOLOGICAL SURVEY Interior Cratonic Basins, 1991, edited by M. W. Leighton, D. R deformation along the plate margins. DONALD F. OLTZ Illinois State Geological Survey Champaign, Illinois

  8. Survey of literature relating to energy development in Utah's Colorado Plateau

    SciTech Connect (OSTI)

    Larsen, A.

    1980-06-01

    This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

  9. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

    E-Print Network [OSTI]

    , Arizona 2002 Water-Resources Investigations Report 02-4013 U.S. GEOLOGICAL SURVEY #12;For additional .............................................................................................................................. 10 The Power-Function Approach ......................................................................................................................... 14 Historical Wind Energy and Di

  10. U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS, AND NGL

    E-Print Network [OSTI]

    Laughlin, Robert B.

    AM-i Chapter AM U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS Survey (USGS) periodically conducts assessments of the oil, gas, and natural-gas liquids (NGL) resources by the USGS in1998 for undiscovered oil, gas, and NGL resources that reside in conventional accumulations

  11. This project was funded through the Illinois Department of Natural Resources and the Illinois State Geological Survey. Illinois State Water Survey Contract Report 2004-08.

    E-Print Network [OSTI]

    This project was funded through the Illinois Department of Natural Resources and the Illinois State Geological Survey. Illinois State Water Survey Contract Report 2004-08. Hydrologic Modeling of the Iroquois

  12. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

  13. AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current-

    E-Print Network [OSTI]

    issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U "Price and Availability List." Publications that may be listed in various U.S. Geological Survey catalogs given below. BY MAIL Books Professional Papers, Bulletins, Water-Supply Papers, Tech- niques of Water

  14. Patrick G. R. Jodice U.S. Geological Survey South Carolina Cooperative Fish and Wildlife Research Unit

    E-Print Network [OSTI]

    Jodice, Patrick

    Patrick G. R. Jodice U.S. Geological Survey South Carolina Cooperative Fish and Wildlife Research Clemson, South Carolina, 29634, USA Tel.: (Office) +1 864.656.6190, (Home) +1 864.653.3872 Email: pjodice-June 2004), U.S. Geological Survey, South Carolina Cooperative Fish and Wildlife Research Unit, Clemson

  15. U.S.Geological Survey Grant No. 01HQGR0018 EARTHQUAKE POTENTIAL OF MAJOR FAULTS OFFSHORE SOUTHERN CALIFORNIA

    E-Print Network [OSTI]

    Goldfinger, Chris

    U.S.Geological Survey Grant No. 01HQGR0018 EARTHQUAKE POTENTIAL OF MAJOR FAULTS OFFSHORE SOUTHERN;U.S.Geological Survey Grant No. 01HQGR0018 EARTHQUAKE POTENTIAL OF MAJOR FAULTS OFFSHORE SOUTHERN Major active faults offshore southern California are poorly known with respect to slip-rates and seismic

  16. U.S. Geological Survey Climate and Land Use Change Science Strategy--A Framework for Understanding

    E-Print Network [OSTI]

    U.S. Geological Survey Climate and Land Use Change Science Strategy--A Framework for Understanding. Clockwise left to right: Landsat 7 image of circular patterns in crop land near Garden City, Kansas, spring 2012. Photograph by Jerrod Wheeler, U.S. Geological Survey (USGS). Crop irrigation, South Dakota

  17. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    Strategic Plan: Fiscal Years 2007­2011 #12;This page has been left blank intentionally. #12;USGS Information, 2006, USGS Information Technology Strategic Plan: Fiscal Years 2007­2011: U.S. Geological Survey. #12;USGS Information Technology Strategic Plan: Fiscal Years 2007­2011 Background on USGS Mission

  18. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    history. Their evaluation enabled them to alert people in ar- eas at risk and also provide critical advice.S. GEOLOGICAL SURVEY--REDUCING THE RISK FROM VOLCANO HAZARDS N GUS S he world's only volcano crisis re- sponse to reduce risks from volcano hazards in the United States. Station at Subic Bay, 25 miles from Pinatubo

  19. U.S. Geological Survey Energy and Minerals Science Strategy--A Resource Lifecycle Approach

    E-Print Network [OSTI]

    of Agriculture National Agricultural Imagery Program. Wind turbines. Photograph by Don Becker, USGS. The BlueU.S. Geological Survey Energy and Minerals Science Strategy--A Resource Lifecycle Approach Circular and Minerals Science Strategy--A Resource Lifecycle Approach By Richard C. Ferrero, Jonathan J. Kolak, Donald J

  20. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    of U.S. Forest and Soil Organic Carbon Storage and Forest Biomass Carbon Sequestration Capacity #12 and Soil Organic Carbon Storage and Forest Biomass Carbon Sequestration Capacity By Eric T. Sundquist,1 carbon sequestration capacity: U.S. Geological Survey Open-File Report 2009­1283, 15 p., available

  1. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    -Level Changes in the Eastern Snake River Plain Aquifer at and near the Idaho National Laboratory, Idaho, 1949, Idaho, April 13, 2015.) #12;Hydrologic Influences on Water-Level Changes in the Eastern Snake River River Plain aquifer at and near the Idaho National Laboratory, Idaho, 1949­2014: U.S. Geological Survey

  2. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    U.S. Department of the Interior U.S. Geological Survey Fact Sheet 2007­3060 July 2007 Sinkholes Printed on recycled paper Catastrophic Sinkhole Collapse in Missouri Sinkholes are a common feature resources. What is a "Sinkhole"? A sinkhole is an area of ground that has no natural external surface

  3. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    source for science about the Earth, its natural and living resources, natural hazardsU.S. Department of the Interior U.S. Geological Survey Open-File Report 2010­1108 Effects of Building a Sand Barrier Berm to Mitigate the Effects of the Deepwater Horizon Oil Spill on Louisiana

  4. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    threaten public health and the health of our Nation's natural resources. U.S. Geological Survey (USGS affect human health and wellbeing. Societal demands for land, natural resources, quality of life, wind, climate trends, and natural hazards) compound those effects. These environmental drivers affect

  5. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    younger than ground water in the deep aquifer (Rupert and Plummer, 2004). Water first seeps downU.S. Department of the Interior U.S. Geological Survey Fact Sheet 2004­3051 July 2004 Ground-Water generally is the same as the rate of sand transport southwestward by water; together, the two mechanisms

  6. Major Oil Plays in Utah and Vicinity

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Assoc

  7. BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 26, Part 4

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 26, Part 4 The Fossil Vertebrates of Utah Salt Lake Gty, Utah 84102 W .E. Miller Deparlment~of Geology and Zoology Bngham Young Unrwerrrly Provo of Geology Brigham Young University Provo, Utah 84602 Editors W. Kenneth Hamblln Cynthia M. Gardner Issue

  8. 1 Geological Sciences GEOLOGICAL SCIENCES

    E-Print Network [OSTI]

    Vertes, Akos

    1 Geological Sciences GEOLOGICAL SCIENCES Geological sciences' faculty members are engaged in research on the geology and paleontology of the Appalachian and Rocky mountains, Asia and elsewhere. They collaborate with scientists from the U.S. Geological Survey and other international organizations. Research

  9. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    SciTech Connect (OSTI)

    Allison, M. Lee; Richard, Stephen M.

    2015-03-13

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use data in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.

  10. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    SciTech Connect (OSTI)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  11. Brigham Young University Geology Studies Volume 28, Part 2

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 28, Part 2 Lower and Middle Ordovician at Section G, Ibex, Utah. #12;A publication of the Department of Geology Brigham Young University Provo, Utah o ~ l z gUfziversity Geology Studies is published by the Department of Geology. This publication

  12. BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part I

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part I Preble Formation, a Cambrian Outer ..........................................................................J. Roger Olsen Geology of the Sterling Quadrangle, Sanpete County, Utah ..............................................................................James Michael Taylor Publications and Maps of the Geology Department Cover: Aertalphorograph rhowing

  13. BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part 3

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part 3 CONTENTS Studies for Students #lo, Geologic Guide to Provo Canyon and Weber Canyon, Central Wasatch Mountains, Utah ............................................................................................................................. Randy L. Chamberlain The Geology of the Drum Mountains, Millard and Juab Counties, Utah

  14. U.S. Department of the Interior June 2001 U.S. Geological Survey

    E-Print Network [OSTI]

    for ball clay (30% and 25%, respectively); foundry sand (25%), pet waste absorbent (22%), drilling mud (19. Gonzales Utah * Redmond Clay and Salt Co. Inc. Sanpete * Western Clay Co. Sevier Wyoming * American Colloid Johnson, Natrona, Washakie * M-I Drilling Fluids Inc. Big Horn * Wyo-Ben Inc. Big Horn *Asterisk indicates

  15. Geological Engineering Geological Engineering

    E-Print Network [OSTI]

    Wehlau, David

    1 Geological Engineering l 1 Geological Engineering www.geol.ca Queen's Geological Engineering Vicki Remenda, PEng ­ GEOENG Head Department of Geological Sciences and Geological Engineering Miller Hall Welcome to... Orientation CLASS OF 2018 What is Geological Engineering ? Geological Engineering

  16. Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    near Blue Mountain and Pumpernickel Valley near Winnemucca to study regional crustal structures to help understand the geologic framework of Blue Mountain and help in mineral and...

  17. Electromagnetic images of the Earth from near-surface to deep within the mantle Alan G. Jones (Geological Survey of Canada)

    E-Print Network [OSTI]

    Jones, Alan G.

    @cg.nrcan.gc.ca The natural-source magnetotelluric (MT) technique has one major advantage over all other electrical (Geological Survey of Canada) 615 Booth St., Room 218, Ottawa, Ontario, K1A 0E9, ajones

  18. Geology and Geothermal Potential of the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Geology and Geothermal Potential of the Roosevelt Hot Springs Area, Beaver County, Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Thesis: Geology and...

  19. 3D/4D MODELLING, VISUALIZATION AND INFORMATION FRAMEWORKS: CURRENT U.S. GEOLOGICAL SURVEY PRACTICE

    E-Print Network [OSTI]

    -slip scenarios; · Geologic models to define, assess, and bound resources and/or lithologic properties (water, oil frameworks and tectonic models to assess past tectonic displacements, earthquake potential, and fault properties) and also describe the methods and te

  20. A publication of the Department of Geology

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;A publication of the Department of Geology Brigharn Young University Provo, Utah 84602 Editors W. Kenneth Hamblin Cynthia M. Gardner Brigham Young University Geology Studies is published semiannually by the department. Geology Studies consists of graduate-student and staff research

  1. , UNIVERSITY Brigham Young University Geology Studies

    E-Print Network [OSTI]

    Seamons, Kent E.

    , UNIVERSITY #12;Brigham Young University Geology Studies Volume 1 5 - 1968 Part 2 Studies for Students No. 1 Guide to the Geology of the Wasatch Mountain Front, Between Provo Canyon and Y Mountain, Northeast of Provo, Utah by J. Keith Rigby and Lehi F. Hintze #12;A publication of the Department of Geology

  2. HOME OF THE ILLINOIS STATE SCIENTIFIC SURVEYS Illinois Natural History Survey Illinois State Archaeological Survey Illinois State

    E-Print Network [OSTI]

    Bashir, Rashid

    Archaeological Survey · Illinois State Geological Survey · Illinois State Water Survey · Illinois Sustainable

  3. An analysis of Utah State Park visitors 

    E-Print Network [OSTI]

    Burns, Dennis C.

    1988-01-01

    the summer of 1987 (June 13 through September 11) . The questions were asked concurrent with a visitation study being conducted in the parks. Statewide, occupants of 1589 vehicles were surveyed from 12 representative parks, which represents 7, 649 park... phases of the survey. A series of questions were asked in order to profile the visitor to Utah State Parks. Information was compiled on type of use, activities in the parks, and state or country of residence. Further questions dealt with how often...

  4. U.S. Department of the Interior U.S. Geological Survey

    E-Print Network [OSTI]

    Laughlin, Robert B.

    ­5294 Geology and Resources of Some World Oil-Shale Deposits #12;Cover. Left: New Paraho Co. experimental oil specimen of Green River oil shale interbedded with gray layers of volcanic tuff from the Mahogany zone. Bottom right: Block diagram of the oil shale resources in the Mahogany zone in about 1,100 square miles

  5. ASTRONAUT'S GUIDE TO TERRESTRIAL IMPACT CRATERS R. A. F. Grieve, Geological Survey of Canada

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Earth Observation Project March, 1988 LPI Technical Report Number 88-03 Lunar and Planetary Institute Popigai Elgygytgyn Lonar Impact Craters in Africa Ouarkziz Tin Bider Bosumtwi Oasis BP was a dominant geologic process throughout the early solar system. For example, the oldest lunar surfaces

  6. BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 25,Part 1

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 25,Part 1 Papers reviewing geology of field trip areas, 31st annual meeting, Rocky Mountain Section, Geological Society of America, April 28 ....................................................................................................................................................... Geology of Volcanic Rocks and Mineral Deposits in the Southern Thomas Range, Utah: A Brief Summary

  7. Geologic Maps Geology 200

    E-Print Network [OSTI]

    Kammer, Thomas

    Geologic Maps Geology 200 Geology for Environmental Scientists #12;Geologic Map of the US #12;Symbols found on geologic maps #12;Horizontal Strata #12;Geologic map of part of the Grand Canyon. Each color represents a different formation. #12;Inclined Strata #12;Dome #12;Geologic map of the Black Hills

  8. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) A

  9. Reconnaissance of the hydrothermal resources of Utah

    SciTech Connect (OSTI)

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  10. Field Projects: Monticello, Utah

    Broader source: Energy.gov [DOE]

    A permeable reactive barrier (PRB) of zero-valent iron is helping to clean up groundwater at a former uranium and vanadium ore processing mill at Monticello, Utah. LM managed remediation of...

  11. Utah_k_harris

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kirk Harris Site - Utah Wind Anemometer Loan Program Latitude: N. 38 deg. 26.4' Longitude: W. 112 deg. 3' Elevation: 5279' Placed in service: November 19, 2002 Removed from...

  12. Utah_cm_smith

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cindy and Mack Smith Site - Utah Wind Anemometer Loan Program Latitude: N. 37 deg. 44.034' Longitude: W. 109 deg. 17.28' Elevation: 6762' Placed in service: November 21, 2002...

  13. Report on geological surveys in the 300-FF-1 operable unit

    SciTech Connect (OSTI)

    Sandness, G.A.

    1991-03-01

    This report describes a set of geophysical surveys performed by the Pacific Northwest Laboratory at selected locations within the 300-FF-1 Operable Unit at Hanford. Field work and preliminary data processing activities were initiated in September 1989. These actions were terminated by the Westinghouse Hanford Company before completion in December 1989. Work was reinitiated in October 1990, to complete the processing of the data that had already been collected and to report the results. Because the field work was only partially completed, the task objectives, as presented in the Statement of Work, could not be fully met. This report is, therefore, a progress report covering the work performed through December 11, 1989. This task involved (1) ground-penetrating radar surveys of the 618-4 and 618-5 Burial Grounds, and (2) ground-penetrating radar and electromagnetic induction surveys along the assumed routes of the abandoned process sewers and radioactive liquid waste sewers in the 300-FF-1 Operable Unit. The surveys in the burial grounds were intended to identify burial trenches and pits, to determine the depth of fill, and to locate waste materials, including any that might be outside the perimeter fences. The surveys along the sewer routes were intended, first, to confirm the locations of the sewers as shown on existing maps or to otherwise accurately determine their locations, and second, to attempt to identify locations of possible leaks. 3 refs., 3 figs., 2 tabs.

  14. Human Dimensions Tools and Resources1 Prepared by: U.S. Geological Survey, Colorado State University, U.S. Fish and Wildlife Service,

    E-Print Network [OSTI]

    Human Dimensions Tools and Resources1 Prepared by: U.S. Geological Survey, Colorado State...........................................................................................Page 20 1 For questions or more information about this tools and resources list, please contact Tara Teel.census.gov/acs/www/guidance_for_data_users/handbooks/ Social Science Data Analysis Network ­ provides print publications and online tools and resources to aid

  15. Electrical anisotropy of mineralized and non mineralized rocks T.J. Katsube, M.E. Best*, and Jones, A.G., Geological Survey of Canada

    E-Print Network [OSTI]

    Jones, Alan G.

    PP 10.2 Electrical anisotropy of mineralized and non mineralized rocks T.J. Katsube, M.E. Best*, and Jones, A.G., Geological Survey of Canada Summary Significant electrical resistivity anisotropy, up to 1 to understand the electrical mechanisms involved in such anisotropic processes in order to provide information

  16. U.S. GEOLOGICAL SURVEY SEDIMENT AND ANCILLARY DATA ON THE WORLD WIDE WEB Lisa M. Turcios, Student Trainee (Hydrology), and

    E-Print Network [OSTI]

    U.S. GEOLOGICAL SURVEY SEDIMENT AND ANCILLARY DATA ON THE WORLD WIDE WEB Lisa M. Turcios, Student (NWISWeb) data base yielded more than 2.6-million values of instantaneous-value sediment and ancillary data data. Ancillary variables, including water discharge and water temperature, in addition to a large

  17. Aging in Utah: Avoid Crisis

    E-Print Network [OSTI]

    Tipple, Brett

    Aging in Utah: Avoid Crisis Maximize Opportunity UTAH COMMISSION ON AGING Annual Report 2010-2011 #12;Page 1Utah Commission on Aging 2010-2011 Interim Report The Commission's statutory purpose is to: a. increase public and government understanding of the current and future needs of the state's aging

  18. Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodyn Energiesysteme GmbH JumpOcean | OpenSurvey,

  19. The US Agency for International Development--Los Alamos National Laboratory--US Geological Survey Central American Geothermal Resources Program

    SciTech Connect (OSTI)

    Heiken, G.; Goff, S. (Los Alamos National Lab., NM (United States)); Janik, K. (Geological Survey, Menlo Park, CA (United States). Branch of Igneous and Geothermal Processes)

    1992-01-01

    Interdisciplinary field teams for this energy assistance program consisted of staff from Los Alamos, the US Geological Survey, the country of the study, and consultants; this provided the wide range of expertise necessary for geothermal resource evaluation. The program was successful largely because of the field teams dedication to their goals of verifying new geothermal resources and of sharing exploration techniques with in-country collaborators. Training programs included the geochemical, geophysical, and geological techniques needed for geothermal exploration. However, the most important aspect was long-term field work with in-country collaborators. Four geothermal gradient coreholes were drilled, three in Honduras and one in Guatemala. One of the coreholes was co-financed with Honduras, and showed their commitment to the project. Three of the exploration holes encountered high-temperature fluids, which provided information on the nature and extent of the geothermal reservoirs at promising sites in both countries. A geothermal well logging system was built and is shared between four Central American countries. For the evaluation of geothermal fluids, a geochemistry laboratory was established in Tegucigalpa, Honduras; it is now self-sufficient, and is part of Honduras' energy program. Through the teaching process and by working with counterparts in the field, the team expanded its own experience with a wide variety of geothermal systems, an experience that will be beneficial in the future for both the US investigators and in-country collaborators. At the working-scientists level, new contacts were developed that may flourish and professional ties were strengthened between scientists from a variety of US agencies. Rather than competing for research and field budgets, they worked together toward a common goal.

  20. Brigham Young University Geology Studies Volume 29, Part 2

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 29, Part 2 CONTENTS Stratigraphy ...................................................................................................... Terry C. Gosney 27 Geology of the Champlin Peak Quadrangle,Juab and Millard Counties, Utah ..................................................................................................................................... David R. Keller 103 Publications and Maps of the Department of Geology 117 Cover: Rafted orjoreign

  1. VOLUMF -31, PART 1 BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES

    E-Print Network [OSTI]

    Seamons, Kent E.

    Y O U N G VOLUMF -31, PART 1 #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES VOLUME 31.PART 1 CONTENTS .................................................................. Ralph E.Lambert Geology of the Mount Ellen Quadrangle. Henry Mountains. Garfield County. Utah near White Horse Pass. Elko County. Nevada ............Stephen M Smith Geology of the Steele Butte

  2. Brigham Young University Geology Studies Volume 26, Part 3

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;P I - #12;Brigham Young University Geology Studies Volume 26, Part 3 Conodont Biostratigraphy-meeting field trip held in conjunction with the Rocky Mountain section, Geological Society of America of the Department of Geology Brigham Young University Provo, Utah 84602 Editors W. Kenneth Hamblin Cynthia M

  3. Brigham Young University Geology Studies Volume 26, Part 2

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 26, Part 2 CONTENTS A New Large Theropod................................................................................................................................................................ Danny J. Wyatt Publications and Maps of the Geology Department Cover: Cretaceouscoals near Castle Gate, Utab. #12;A publication of the Department of Geology Brigham Young University Provo, Utah 84602 Editors

  4. U.S. Geological Survey Circular 946, p. 29-33. 6. MASSIVEMUDSTONES INBASINANALYSIS AND PALEOCLIMATIC INTERPRETATIONOFTHE

    E-Print Network [OSTI]

    Olsen, Paul E.

    mudstones in the early Mesozoic basins sug- WE.O k n , LamonbDohertyGeological Observatory of Columbia

  5. JOURNAL OF SEDIMENTARY RESEARCH, VOL. 70, NO. 5, SEPTEMBER, 2000, P. 12221233 Copyright 2000, SEPM (Society for Sedimentary Geology) 1073-130X/00/070-1222/$03.00

    E-Print Network [OSTI]

    Johnson, Cari

    Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, U.S.A. e-mail: pwjewell of depositional environments and tectonic settings, and their chemistry and sedimentology has been studied at many

  6. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia

    E-Print Network [OSTI]

    Conway Morris, S.; Robison, Richard A.

    1988-12-29

    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS December 29, 1988 Paper 122 MORE SOFT-BODIED ANIMALS AND ALGAE FROM THE MIDDLE CAMBRIAN OF UTAH AND BRITISH COLUMBIA' Simon Conway Morris and R. A. Robison Department of Earth Sciences..., University of Cambridge, Downing Street, Cambridge CB2 3EQ, and Department of Geology, The University of Kansas, Lawrence, Kansas 66045 Abstract—Remains of noncalcareous algae and soft-bodied metazoans from Middle Cambrian strata of Utah (Spence, Wheeler...

  7. THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY

    E-Print Network [OSTI]

    Feschotte, Cedric

    THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY THE UNIVERSITY OF UTAH OFFICE OF SUSTAINABILITY GREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERGREENERFall 2010 - Spring 2011 GREENERGREENERGREENERGREENERGREENERGREENER Working for a Sustainable Campus

  8. 2013 REPORT ILLINOIS NATURAL HISTORY SURVEY

    E-Print Network [OSTI]

    Bashir, Rashid

    2013 REPORT ILLINOIS NATURAL HISTORY SURVEY ILLINOIS STATE ARCHAEOLOGICAL SURVEY ILLINOIS STATE State Geological Survey Illinois State Water Survey Illinois Sustainable Technology Center Awards GEOLOGICAL SURVEY ILLINOIS STATE WATER SURVEY ILLINOIS SUSTAINABLE TECHNOLOGY CENTER #12;#12;PRAIRIE RESEARCH

  9. Utah Solar Outlook March 2010

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  10. GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN,

    E-Print Network [OSTI]

    Seamons, Kent E.

    GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN, SOUTHERN UASCSTCH H Q - W T A X H E i i - UT&H #12;BRIGHAM YOUNG UNIVERSITY RESEARCH STUDIES Geology Seri,es Vol. 3 No. 2 April, 1956 GEOLOGY OF THE NORTHERN Department of Gedogy Provo, Utah #12;GEOLOGY OF THE NORTHERN PART OF DRY MOUNTAIN, SOUTHERN WASATCH M O U N

  11. Geology of the Shenandoah National Park Region

    E-Print Network [OSTI]

    Eaton, L. Scott

    1 Geology of the Shenandoah National Park Region 39th Annual Virginia Geological Field Conference October 2nd - 3rd, 2009 Scott Southworth U. S. Geological Survey L. Scott Eaton James Madison University Meghan H. Lamoreaux College of William & Mary William C. Burton U. S. Geological Survey Christopher M

  12. Bibliography of publications related to the Yucca Mountain Site Characterization Project prepared by U.S. Geological Survey personnel through April 1991

    SciTech Connect (OSTI)

    Glanzman, V.M.

    1991-11-01

    Personnel of the US Geological Survey have participated in nuclear-waste management studies in the State of Nevada since the mid-1970`s. A bibliography of publications prepared principally for the US Department of Energy Yucca Mountain Site Characterization Project (formerly Nevada Nuclear Waste Storage Investigations) through April 1991 contains 475 entries in alphabetical order. The listing includes publications prepared prior to the inception of the Nevada Nuclear Waste Storage Investigations Project in April 1977 and selected publications of interest to the Yucca Mountain region. 480 refs.

  13. The Geological Society of America Field Guide 11

    E-Print Network [OSTI]

    Frankel, Kurt L.

    43 The Geological Society of America Field Guide 11 2008 Active tectonics of the eastern California, Pennsylvania 16802, USA John M. Bartley Department of Geology and Geophysics, University of Utah, Salt Lake., Morrero, S., Owen, L.A., and Phillips, F., 2008, Active tectonics of the eastern California shear zone

  14. Brigham Young University Geology Studies Volume 23, Part 3-October 1976

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 23, Part 3-October 1976 Contents A Well ........................................................ E. Blair Maxfield 67 Publications and Maps of the Geology Department ............................ 163 #12;A publication of the Department of Geology Brigham Young University Provo, Utah 84602 Edltor W

  15. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

  16. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  17. November 47 Geological Society of America 2012 Annual Meeting

    E-Print Network [OSTI]

    Polly, David

    , Jason F., Illinois State Geological Survey, University of Illinois Urbana-Champaign, 615 E. Peabody Dr, Champaign, IL 61820, jthomaso@illinois.edu and KEEFER, Donald A., Illinois State Geological Survey, Prairie, Quaternary and Engineering Geology Section, Illinois State Geological Survey, 615 E. Peabody Drive, Champaign

  18. INTERAGENCY REPORT APOLLO 17 LANDING SITE GEOLOGY

    E-Print Network [OSTI]

    Rathbun, Julie A.

    INTERAGENCY REPORT APOLLO 17 LANDING SITE GEOLOGY UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY ASTROGEOLOGY #73 JUNE 1975 Prepared under NASA Contract T-5874A and W13,130 NATIONAL STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY INTERAGENCY REPORT: ASTROGEOLOGY 73 Part I

  19. NERC/BGS 2008 British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA; 2

    E-Print Network [OSTI]

    : · Mapping - field survey, high-res DSM, air photos · New BGS research: Focus: · YD glacial stratigraphy (Calib 5.0.2) are shown for Croftamie (overridden deposits), Mollands (postglacial sequence only facies type.B:Correlation of units between sites where the thickest sequences were recorded

  20. Utah School Children “Help Utah Out, Turn off the Spout!”

    Office of Energy Efficiency and Renewable Energy (EERE)

    Utah is working to ensure the resiliency of its future water and energy systems with funding from the Energy Department’s State Energy Program. In fact, the state developed its own Water Energy in Action educational program –in conjunction with the National Energy Foundation – to educate K-12 students and teachers about the many uses of water.

  1. Geological and geophysical studies of a geothermal area in the...

    Open Energy Info (EERE)

    pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks...

  2. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J. (US Geological Survey, Columbia River Research Laboratory, Western Fisheries Research Center, Cook, WA)

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  3. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2003-01-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1914. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for future genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the first year of a three-year study, this report is restricted to describing our work on the first two objectives only.

  4. Utah - UDOT - Accommodation of Utilities and the Control and...

    Open Energy Info (EERE)

    of Utilities and the Control and Protection of State Highway Rights of Way. Salt Lake County, Utah. Utah Department of Transportation. Accommodation of Utilities and...

  5. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Utah Division of Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah...

  6. Energy Department Recognizes University of Utah in Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Recognizes University of Utah in Better Buildings Challenge Energy Department Recognizes University of Utah in Better Buildings Challenge September 4, 2014 -...

  7. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  8. Surveys

    Broader source: Energy.gov [DOE]

    Surveys can be a useful way to gauge the opinions of your readers and learn more about your website's audiences, but you'll often need approval from the Office of Management and Budget (OMB) to run...

  9. Utah Commission on Aging April 1, 2008

    E-Print Network [OSTI]

    Tipple, Brett

    Lake County Aging Services Lynne Shaffer for Deborah Bayle United Way Archie Archuleta Ethnic Minorities William Cox Utah Association of Counties Alan Ormsby for LM Church Utah Department of Human or sold to other providers for underserved areas. The Medicaid Task Force was not renewed. Alan Ormsby

  10. THE UNIVERSITY OF UTAH RADIATION PROTECTION PROGRAM

    E-Print Network [OSTI]

    THE UNIVERSITY OF UTAH RADIATION PROTECTION PROGRAM The use of radiation sources at the University. The Radiation Safety Policy Manual contains the policies and general procedures for radiation protection of Utah entails both legal and moral obligations to provide training on the nature of radiation sources

  11. Utah Science, Technology, and Research (USTAR)

    E-Print Network [OSTI]

    Tipple, Brett

    companies in billion-dollar emerging industries and secure Utah's economic future. More than 180 Utah's Economy New Economy Strategies Endorsement Letter Summary Proposal Planning Process Summary Contributors to the USTAR Study USTAR Economic Development Initiative Planning Proposal Figure I. USTAR Economic Development

  12. Utah County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumaty Jump to:UAC R930-6 -permitCounty, Utah:

  13. Fault Segments and Step-overs : : Implications for Geohazards and Biohabitats

    E-Print Network [OSTI]

    Maloney, Jillian Marie

    2013-01-01

    U.S. Geological Survey, West Valley City, Utah 84119, USANV, USA U.S. Geological Survey, West Valley City, UT, USA (

  14. Utah Success Story—A Performance Contracting Program

    Broader source: Energy.gov [DOE]

    Provides an overview case study of Utah's Performance Contracting Program. Author: Energy Services Coalition

  15. FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN

    E-Print Network [OSTI]

    Chapter WF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN By R.M. Flores,1 C.W. Keighin,1 A.M. Ochs,2 P.D. Warwick,1 L.R. Bader,1 and E.C. Murphy3 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 3 North

  16. FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT,

    E-Print Network [OSTI]

    Chapter GF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT, GREATER GREEN RIVER BASIN, WYOMING By R.M. Flores,1 A.M. Ochs,2 and L.R. Bader1 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 1999

  17. Clean Cities: Utah Clean Cities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 2008 1BrowseCities to theUtah Clean Cities

  18. Aadland, R.K., and E.H. Bennett. 1979. Geologic Map of the Sandpoint Quadrangle, Idaho and Washington: Idaho Geological Survey, 1:250,000 Scale, 1 Plate.

    E-Print Network [OSTI]

    and the Bonneville Power Administration Alden, W. C. 1953. Physiography and glacial geology of western Montana Tribe of Idaho. Prepared for the Bonneville Power Administration, Portland, OR. Anders, P. J. 1994. Kootenai Tribe of Idaho. Prepared for the Bonneville Power Administration, Portland, OR. Anders, P.J. and M

  19. Geology Major www.geology.pitt.edu/undergraduate/geology.html

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Geology Major www.geology.pitt.edu/undergraduate/geology.html Revised: 03/2013 Geology is a scientific discipline that aims to understand every aspect of modern and ancient Earth. A degree in geology the field of geology, environmental and geotechnical jobs exist for people with BS degrees. A master

  20. MEDIA RELEASE --Jeff Rice, research librarian, University of Utah J. Willard Marriott Library,

    E-Print Network [OSTI]

    Clayton, Dale H.

    of Utah J. Willard Marriott Library, dale.t.snyder@utah.edu; (801) 652-7018 cell --Valoree Dowell, University of Utah Public Relations, v.dowell@ucomm.utah.edu, (801) 585-6861 office, (801) 403-3128 cell

  1. Utah Commission on Aging August 25, 2008

    E-Print Network [OSTI]

    Tipple, Brett

    in geriatrics. Senator Davis has agreed to open a bill file for the upcoming legislative cycle; he is discussing of Human Services William Cox Utah Association of Counties Sheriff Jim Winder Public Safety Other attendees

  2. Utah Commission on Aging June 3, 2008

    E-Print Network [OSTI]

    Tipple, Brett

    Thatcher for Kristin Cox Workforce Services Shauna O'Neil Salt Lake County Aging Services Lynne Shaffer for Deborah Bayle United Way Archie Archuleta Ethnic Minorities Alan Ormsby for LM Church Utah Department

  3. Utah Commission on Aging June 6, 2007

    E-Print Network [OSTI]

    Tipple, Brett

    Institutions Norma Matheson Chair Anne Peterson University of Utah Mayor JoAnn Seghini Midvale City Sara to the Commission for consideration. · Aging SMART: Denise Brooks distributed Aging SMART Sourcebook. Website is up

  4. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

  5. Utah

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa.

  6. 3D Geological Modelling In Bavaria - State-Of-The-Art At A State...

    Open Energy Info (EERE)

    3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 3D Geological...

  7. >3healthsciences.utah.edu/innovation University of Utah Health Sciences @utahinnovationinnovation 2012

    E-Print Network [OSTI]

    Capecchi, Mario R.

    >3healthsciences.utah.edu/innovation #12;University of Utah Health Sciences. IS IT REALLY POSSIBLE TO CREATE ALGORITHMS FOR INNOVATION? We think of ours as just the beginning. #12;table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 .. algorithms for innovation What if undergrads authored high-profile research papers? ALGORITHM

  8. Regional Gravity Survey of the Northern Great Salt Lake Desert...

    Open Energy Info (EERE)

    Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  9. October 27-30 Geological Society of America 2013 Annual Meeting

    E-Print Network [OSTI]

    Polly, David

    -D geologic mapping program--Paper Withdrawn Keefer, Donald A., Illinois State Geological Survey/710 Threedimensional geologic mapping of Lake County, Illinois: no small task Brown, Steven, E., Illinois State Geological Survey Separate workshop publication as: Thorleifson, L. H., Berg, R. C., and Russell, H. A. J

  10. Geological flows

    E-Print Network [OSTI]

    Yu. N. Bratkov

    2008-11-19

    In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

  11. Great Lakes Geologic Mapping Coalition -Annual Science Meeting April 15-17, 2014

    E-Print Network [OSTI]

    Polly, David

    :30 Housekeeping ­ the day's plans Kevin Kincare 8:45 Illinois State Geological Survey Olivier Caron 9:00 Indiana

  12. Computational Engineering and Science Program at the University of Utah

    E-Print Network [OSTI]

    Truong, Thanh N.

    Computational Engineering and Science Program at the University of Utah Carleton DeTar3 , Aaron L://www.chem.utah.edu/faculty/truong/index.html Abstract. We summarize the Computational Engineering and Science program at the University of Utah. Program and computational biology, and computational medicine. 1 Computational Engineering and Science Program The grand

  13. Utah Commission on Aging Minutes for February 17, 2006

    E-Print Network [OSTI]

    Tipple, Brett

    Elder Care Services Scott Wright University of Utah College of Nursing Nels Holmgren DAAS Lynn Samsel Department of Health Alan Ormsby Department of Aging and Adult Services John Bennett Utah Quality Growth was done in conjunction with the State of Utah, Department of Human Services, Division of Aging and Adult

  14. Vol. 10, No. 12 December 2000 GSA TODAYA Publication of the Geological Society of America

    E-Print Network [OSTI]

    Dornbos, Stephen Q.

    , Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112-1183, USA INSIDE. Volcanic-tectonic setting of Yellowstone-Newberry hotspot system. Volcanic elements are shown in gold and yellow (current locations of Yellowstone [Y] and Newberry [N] calderas in yellow), and tectonic elements

  15. DOE - Office of Legacy Management -- Utah

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, South Dakota, DisposalWestConnecticutUtah Utah

  16. Utah’s 2012 Legislature Holds Its Course – with What Foresight?

    E-Print Network [OSTI]

    Huefner, Robert Paul

    2013-01-01

    Finance, Summer 32(2):1–24. Montero, David (2012a) “It wasLake Tribune, February 9. Montero, David (2012b) “Utah Seeksfor Legislature” (Montero 2012a). But legislators denied

  17. Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management

    SciTech Connect (OSTI)

    Bullard, K.L.

    1994-08-01

    The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ``worst possible case`` flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services`s Hydrometeorological Report No. 49 (HMR 49).

  18. Central American geologic map project

    SciTech Connect (OSTI)

    Dengo, G.

    1986-07-01

    During the Northeast Quadrant Panel meeting of the Circum-Pacific Map Project held in Mexico City, February 1985, Central American panel members proposed and adopted plans for compiling a geologic map of Central America, probably at a scale of 1:500,000. A local group with participants from each country was organized and coordinated by Rolando Castillo, director, Central American School of Geology, University of Costa Rica, for the geologic aspects, and Fernando Rudin, director, Geographic Institute of Costa Rica, for the topographic base. In 1956, the US Geological Survey published a geologic map of the region at a scale of 1:1 million. Subsequent topographic and geologic mapping projects have provided a large amount of new data. The entire area is now covered by topographic maps at a scale of 1:50,000, and these maps have been used in several countries as a base for geologic mapping. Another regional map, the Metallogenic Map of Central America (scale = 1:2 million), was published in 1969 by the Central American Research Institute for Industry (ICAITI) with a generalized but updated geologic base map. Between 1969 and 1980, maps for each country were published by local institutions: Guatemala-Belize at 1:500,000, Honduras at 1:500,000, El Salvador at 1:100,000, Nicaragua at 1:1 million, Costa Rica at 1:200,000, and Panama at 1:1 million. This information, in addition to that of newly mapped areas, served as the base for the Central American part of the Geologic-Tectonic Map of the Caribbean Region (scale = 1:2.5 million), published by the US Geological Survey in 1980, and also fro the Northeast Quadrant Maps of the Circum-Pacific Region. The new project also involves bathymetric and geologic mapping of the Pacific and Caribbean margins of the Central American Isthmus. A substantial amount of new information of the Middle America Trench has been acquired through DSDP Legs 67 and 84.

  19. University of Utah Guatemala Archaeological Research Opportunities

    E-Print Network [OSTI]

    Tipple, Brett

    University of Utah Guatemala Archaeological Research Opportunities Dates: June 20, 2015 thru August 5, 2015 Credits 3 credits per course Course Number: Guatemala Field Research 3 Credit hours Anth Activity Fees: $1350 plus airfare to Guatemala City or Flores/ Santa Elena, Peten, Guatemala Deadline: May

  20. GEOLOGY, B.S.G. GEOLOGY OPTION

    E-Print Network [OSTI]

    Hamburger, Peter

    GEOLOGY, B.S.G. GEOLOGY OPTION (Fall 2015-Summer 2016) IPFW Residency Requirements: ____ 32 credits GEOLOGY BSG CORE COURSES (66 credits) *Note: grades of C- or better required in GEOL courses/2.0 GPA ______ 3 - 5 Credits in Geology or Geography with Laboratory (Select 1 of the following): ___3 GEOL G103

  1. Study of alternatives for future operations of the naval petroleum and oil shale reserves, NOSR-2, Uintah and Carbon Counties, Utah. Final report

    SciTech Connect (OSTI)

    1996-12-01

    The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.

  2. 1) Plan of Work: United States Geological Survey Seismic Imaging Study in the Cities of Reno and Sparks, Nevada, June 2009

    E-Print Network [OSTI]

    . Acquisition along the Truckee River Path will extend west from Rock Blvd., run along #12;2 Mill St. between. Survey work, during daylight hours only, will extend along the River west from Rock Blvd., through traffic. The truck-mounted vibrator will creep about 1 mile per day along the River path, street parking

  3. A Handbook for Geology Students Why study Geology?.............................................................................................3

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    1 A Handbook for Geology Students #12;2 Contents Why study Geology ..................................................................................7 Why Appalachian Geology?................................................................................10 Geology Faculty and Staff

  4. PHYSICAL GEOLOGY LABORATORY MANUAL

    E-Print Network [OSTI]

    Merguerian, Charles

    PHYSICAL GEOLOGY LABORATORY MANUAL Geology 001 Eleventh Edition by Professors Charles Merguerian and J Bret Bennington Department of Geology Hofstra University © 2010 #12;ii Table of Contents Lab and Find Out More about Geology at Hofstra Email: Geology professors can be contacted via Email: Full

  5. MEDIA RELEASE Heidi Brett, Marriott Library, Public Relations Specialist, Heidi.Brett@utah.edu,

    E-Print Network [OSTI]

    Clayton, Dale H.

    .Brett@utah.edu, 801-661-6764 Valoree Dowell, U of U National News Specialist, v.dowell@utah.edu, 801-585-6861 Jennifer

  6. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  7. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Environmental Management (EM)

    www.mdpi.comjournalremotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R....

  8. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  9. ,"Utah Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  10. Microsoft Word - utah_wind_speed_summary.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November (110102 - 111302) 6.3 mph Overall Average (110901 - 111302) 7.0 mph Kirk SmithLee Llewellyn Washington Correctional Facility Site Hurricane, Utah Average Wind...

  11. ,"Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  12. Conjunctive Surface and Groundwater Management in Utah: Implications...

    Office of Scientific and Technical Information (OSTI)

    Management in Utah: Implications for Oil Shale and Oil Sands Development Unconventional fuel development will require scarce water resources. In an environment characterized by...

  13. Principles of Historical Geology Geology 331

    E-Print Network [OSTI]

    Kammer, Thomas

    Unconformity #12;Application of the Principles of Historical Geology. What is present on the seismic cross geologist to understand stratigraphy and make correlations. #12;#12;William Smith's Geologic Map of England

  14. QUEEN'S UNIVERSITY GEOLOGICAL SCIENCES AND GEOLOGICAL ENGINEERING

    E-Print Network [OSTI]

    Sedimentology dalrymple@geol.queensu.ca Dr. M. Diederichs (Sabb Jan 15-July 15) Eng Geology; Geomech; Structural) Engineering Geology; Geohazards jhutchin@geol.queensu.ca Dr. N. James Sedimentology james@geol.queensu.ca Dr

  15. May 23, 2013 Geological Society of America 2013 NorthCentral Section Meeting

    E-Print Network [OSTI]

    Polly, David

    Illinois CURRY, B. Brandon, Prairie Research Institute, Illinois State Geological Survey, Champaign, IL in the lower Wabash Valley PHILLIPS, Andrew C., Illinois State Geological Survey, Prairie Research Institute, 615 E. Peabody, Champaign, IL 61820, aphillps@illinois.edu, CARON, Olivier, Illinois State Geological

  16. Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FARWashers |

  17. Fiscal Policy and Utah's Oil and Gas Industry

    E-Print Network [OSTI]

    features of Utah's oil and gas industry. The Oil and Gas Industry in Utah Reserves and Production Oil of production. New discoveries of oil and gas, as well as extensions of known oil and gas fields, increase and gas production has taken place on federal lands. · Oil and gas reserves are as much an economic

  18. UNIVERSITY OF UTAH INCOME ACCOUNTING & STUDENT LOAN SERVICES

    E-Print Network [OSTI]

    UNIVERSITY OF UTAH INCOME ACCOUNTING & STUDENT LOAN SERVICES 201 SOUTH 1460 EAST, ROOM 165 SALT FOR PREAUTHORIZED LOAN PAYMENTS I hereby authorize the University of Utah's Income Accounting & Student Loan the same to the financial institution and account listed below, for loan payments

  19. UNIVERSITY OF UTAH INCOME ACCOUNTING & STUDENT LOAN SERVICES

    E-Print Network [OSTI]

    UNIVERSITY OF UTAH INCOME ACCOUNTING & STUDENT LOAN SERVICES 201 SOUTH 1460 EAST, ROOM 165 TELEPHONE: 581-7344 FAX: 585-3898 AUTHORIZATION AGREEMENT FOR DIRECT DEPOSIT OF STUDENT ACCOUNT CREDIT I hereby authorize the University of Utah's Income Accounting & Student Loan Services Department

  20. A User Manual Utah's Leading Advocate For Quality Rental Housing

    E-Print Network [OSTI]

    Hart, Gus

    A User Manual Utah's Leading Advocate For Quality Rental Housing 448 East 6400 South Suite 460 Murray , Utah 84107 801-506-0204 Fax 801-484-8649 www.uaahq.org #12;#12;Without quality rental housing professionals and apartment builders who operate rental housing statewide. We want to make sure your experience

  1. For permission to copy, contact editing@geosociety.org 2003 Geological Society of America 1265

    E-Print Network [OSTI]

    Najman, Yani

    . Early-Middle Miocene paleodrainage and tectonics in the Pakistan Himalaya Yani Najman Department Imran Khan Sedimentary Geology Division, Geological Survey of Pakistan, Sariab Road, Quetta, Pakistan region, Potwar Pla- teau, Pakistan, are characterized by: (1) lithofacies indicative of deposition

  2. Regional Geologic Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

  3. Regional Geologic Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

  4. GEOLOGY (GEOL) Robinson Foundation

    E-Print Network [OSTI]

    Dresden, Gregory

    177Geology GEOLOGY (GEOL) Robinson Foundation PROFESSOR HARBOR ASSOCIATE PROFESSORS KNAPP, CONNORS ASSISTANT PROFESSORS GREER, RAHL MAJORS BACHELOR OF SCIENCE A major in geology leading to a Bachelor of Science degree consists of 50 credits as follows: 1. Geology 160, 185, 211, 311, 330, 350

  5. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  6. Computer Modelling of 3D Geological Surface

    E-Print Network [OSTI]

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  7. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  8. Utah's Public Notice Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumaty JumpRulesUtah's Public Notice Website

  9. Utah/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumaty JumpRulesUtah's Publicsource History

  10. Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumaty JumpRulesUtah's Publicsource

  11. Fairfield, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||New Jersey: EnergyUtah: Energy

  12. Springville, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:Spill PreventionJump to:Springville, New York:Utah:

  13. Milford, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLC Jump to:Utah: Energy Resources Jump to:

  14. Oakley, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato,Nyack,Florida:Utah: Energy Resources

  15. Utah + workshop + GRR | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeedUratMaringaTaquaraUtah + workshop +

  16. Sandy, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindI Jump to:Miguel,WastewaterRidgeUtah:

  17. Utah Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnited States:UserLabor Commission Jump to: navigation,Utah

  18. Benjamin, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,BelBelvedere,Benjamin, Utah: Energy Resources

  19. Charleston, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: Energy Resources Jump to: navigation,Utah: Energy

  20. BLM Utah State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado State Office JumpUtah State Office Jump to:

  1. Delta, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGridDeepi hassource HistoryDelta, Utah:

  2. OpenEI Community - Utah + workshop + GRR

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid Data available for download onst, 2012prepare forUtah

  3. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    SciTech Connect (OSTI)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  4. Predicting New Hampshire Indoor Radon Concentrations from geologic information and other covariates

    E-Print Network [OSTI]

    Apte, M.G.

    2011-01-01

    38961 Predicting New Hampshire Indoor Radon ConcentrationsRadon Potential Assessment of New Hampshire, Geologic Radoncollected in the New Hampshire Radon Survey. Fig. 2. The

  5. The influence of geology and land use on arsenic in stream sediments and ground waters in New England, USA

    E-Print Network [OSTI]

    The influence of geology and land use on arsenic in stream sediments and ground waters in New England, USA Gilpin R. Robinson Jr. a,*, Joseph D. Ayotte b a US Geological Survey, 954 National Center, Reston, VA 20192, United States b US Geological Survey, 361 Commerce Way, Pembroke, NH 03275-3719, United

  6. GEOLOGY 619 ADVANCED PETROLEUM GEOLOGY Wayne M. Ahr, Professor, CPG

    E-Print Network [OSTI]

    GEOLOGY 619 ­ ADVANCED PETROLEUM GEOLOGY Wayne M. Ahr, Professor, CPG Draft v.1 ­ October, 2008 Advanced Petroleum Geology is designed for graduate students in geology, geophysics, and engineering. This course differs from Geology 404 ­ Petroleum Geology ­ by its more rigorous treatment of subject matter

  7. Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section

    E-Print Network [OSTI]

    Harbor, David

    Geologic Maps and Structures Name ______________________________ Geology 100 ­ Harbor section The objectives of this lab are for you to learn the basic geologic structures in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic maps and geologic cross sections. A big part

  8. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  9. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  10. North Carolina Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA)Options Jump to:Nordwind Energieanlagen GmbHNorth

  11. AASG State Geological Survey | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice | DepartmentVery1, in:QuarterlyA SolarAA

  12. Wyoming State Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name: Wyoming Department ofInvestments Jump

  13. Florida Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL Solar Jump to:FenglilaiRenewablesFlore

  14. Idaho Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTLTechnologySA Jump to: navigation, search

  15. Semi-Annual Report Page 2Utah Commission on Aging 2012-2013 Semi-Annual Report

    E-Print Network [OSTI]

    Tipple, Brett

    Director of Human Services #12;Page 4Utah Commission on Aging 2012-2013 Semi-Annual Report William (Bill. The following Utah counties are Box Elder Cache Rich Weber Morgan Davis Salt Lake Utah Wasatch Summit

  16. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  17. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  18. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  19. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  20. APOLLO 14 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    * * *: {( APOLLO 14 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 14 VOICE TRANSCRIPT Pertaining to the geology of the landing site by N.G. Bailey and G.E. UI rich U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona 1975 #12;nils fOR.1 ~t.\\) IH. fl.HJ!Hl!ll( ".0

  1. APOLLO 11 .V O ICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    * * *: {( APOLLO 11 .V O ICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 11 VOICE TRANSCRIPT Pertaining to the geology of the landing site by N. G. Bailey and G. E. Ulrich U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona 1974 #12;USCOMM·OC 8265-P74THIS ~ORM 1\\1A) HI

  2. APOLLO 15 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    * * *: {( APOLLO 15 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 15 VOICE TRANSCRIPT Pertaining to the geology of the landing site ~ N.G. Bailey and G.E. Ulrich U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona 1~5 #12;BIBLIOGRAPHICDATA II. Report No. J2. 3

  3. APOLLO 16 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    * * *: {( APOLLO 16 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;- APOLLO 16 VOICE TRANSCRIPT Pertaining to the geology of the landIng site by N.G. Bai loey and G.E. Ulrich U.s. Geol:ogical Survey Branch of Astrogeology F]agstaff~ Arizona 1915 #12;FORM NTlS·315 UO-70

  4. STRATIGRAPHY, STRUCTURAL GEOLOGY, AND DUCTILE-AND BRITTLE FAULTS OF NEW YORK CITY

    E-Print Network [OSTI]

    Merguerian, Charles

    STRATIGRAPHY, STRUCTURAL GEOLOGY, AND DUCTILE- AND BRITTLE FAULTS OF NEW YORK CITY Charles in the 1800's and 1900's, the bedrock geology of the New York City area was mapped in systematic detail author of the United States Geological Survey New York City Folio (#83) published in 1902, outlined

  5. Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology.Understanding how the hydrologic cycle is affected by climate, trees and plants, soils, geology, topography, springs, or any Figure 1. The hydrologic cycle, or water cycle (courtesy of the US Geological Survey

  6. Evaluation of low-temperature geothermal potential in north-central Box Elder County, Utah

    SciTech Connect (OSTI)

    Davis, M.C.; Kolesar, P.T.

    1984-12-01

    The low-temperature geothermal resources of north-central Box Elder County, Utah were assessed. Exploration techniques used included chemical analyses of water from wells and springs, temperature surveys, and temperature-depth measurements in unused wells within the study area. The highest water temperatures (31/sup 0/, 30/sup 0/, and 29/sup 0/C) recorded in this research were located in three separate geographic regions, suggesting that no single warm water occurrence dominates the study area. Total dissolved solid (TDS) concentrations ranged from 294 to 11,590 mg/l. Areas of warm water occurrences generally had TDS values of greater than 1100 mg/l. Reservoir temperatures were estimated using chemical geothermometers. Calculated temperatures ranged between 50/sup 0/ and 100/sup 0/C. Temperature-depth measurements were logged in 16 unused wells. Thermal gradients calculated from the profiles ranged from isothermal to 267/sup 0/C/km. The background gradient for the study area appears to be slightly above the average Basin and Range gradient of 35/sup 0/C/km. The highest gradients were calculated for the area approximately eight kilometers west of Snowville, Utah, which is also an area of warm water. 61 refs., 15 figs., 6 tabs.

  7. Environmental Geology Major www.geology.pitt.edu/uprogs.html

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Environmental Geology Major www.geology.pitt.edu/uprogs.html Revised: 04/2004 Environmental geology in environmental geology provides the diverse skills required to work in many different employment settings issues. Within the field of geology, environmental and geotechnical jobs exist for people with BS degrees

  8. Department of Geology and Geological Engineering University of Mississippi Announces

    E-Print Network [OSTI]

    Elsherbeni, Atef Z.

    Department of Geology and Geological Engineering University of Mississippi Announces Krista Pursuing a degree within the Geology & Geological Engineering department Record of financial need the University of Mississippi with a Bachelor of Science degree in geological engineering in 1982. After earning

  9. Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section

    E-Print Network [OSTI]

    Harbor, David

    Geologic Maps and Structures Name ______________________________ Geology 100 ­ Harbor section Read Ch. 7 before you begin. The objectives of this lab are for you to learn the basic geologic structures in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic

  10. Palaeo-redox from calcite REE at Sellafield UK, England GL et al 2005 s.haszeldine@ed.ac.uk Chemical Geology p1 Palaeo-redox conditions of groundwater during glaciation at Sellafield, UK revealed by

    E-Print Network [OSTI]

    Haszeldine, Stuart

    .haszeldine@ed.ac.uk Chemical Geology p1 Palaeo-redox conditions of groundwater during glaciation at Sellafield, UK revealed 668 3184) 2 British Geological Survey, Edinburgh, EH9 3LA, UK 3 British Geological Survey, Keyworth calcite REE at Sellafield UK, England GL et al 2005 s.haszeldine@ed.ac.uk Chemical Geology p2 Abstract

  11. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  12. GEOLOGY & GEOPHYSICS 2014-2015

    E-Print Network [OSTI]

    Bermúdez, José Luis

    GEOLOGY & GEOPHYSICS 2014-2015 Graduate Student Handbook - 1 · Geology & Geophysics Core Values - 2 · A Message from the Graduate Advisor - 3 · Department Organizations - 60 · Departmental Executive Committee - 61 · Geology& Geophysics Development Advisory Council

  13. Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify...

  14. Reflection Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    Activity Date 2011 - 2011 Usefulness useful DOE-funding Unknown Exploration Basis Seismic surveys ware conducted to gain a better understanding of the geology and structure of...

  15. 13 Dec 1997 ESF VEG Digital Data for Engineering Geology; Disaster or Benefit 1 Digital Data for EngineeringDigital Data for Engineering

    E-Print Network [OSTI]

    Hack, Robert

    13 Dec 1997 ESF VEG Digital Data for Engineering Geology; Disaster or Benefit 1 Digital Data for EngineeringDigital Data for Engineering Geology: Disaster or BenefitGeology: Disaster or Benefit Robert Hack Section Engineering Geology Centre for Technical Geosciences International Institute for Aerospace Survey

  16. A guided inquiry exercise has been developed to help teach the geology of the U.S. This exercise is intended for

    E-Print Network [OSTI]

    ABSTRACT A guided inquiry exercise has been developed to help teach the geology of the U knowledge of geology. Before beginning, students should be introduced to rock types and have a basic understanding of geologic time. This exercise uses three maps: the U.S. Geological Survey's "A Tapestry of Time

  17. Chapter 14 Geology and Soils

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in bold and acronyms are defined in Chapter 32, Glossary and Acronyms. Chapter 14 Geology and Soils This chapter describes existing geological and soil conditions in the...

  18. BS in GEOLOGY (694022) MAP Sheet Department of Geological Sciences

    E-Print Network [OSTI]

    Seamons, Kent E.

    351 Mineralogy Geol 352 Petrology Geol 370 Sedimentology and Stratigraphy Geol 375 Structural Geology

  19. Pacific Enewetak Atoll Crater Exploration (PEACE) Program, Enewetak Atoll, Republic of the Marshall Islands. Part 4. Analysis of borehole gravity surveys and other geologic and bathymetric studies in vicinity of Oak and Koa craters

    SciTech Connect (OSTI)

    Henry, T.W.; Wardlaw, B.R.

    1987-01-01

    The Pacific Enewetak Atoll Crater Exploration (PEACE) Program was established to resolve a number of questions for the Department of Defense (DOD) about the geologic and material-properties parameters of two craters (KOA and OAK), formed by near-surface bursts of high-yield thermonuclear devices on the northern margin of Enewetak Atoll, Marshall Islands, in 1958. The multidisciplinary studies conducted by the USGS in collaboration with other organizations during 1984 through 1987 were part of a much larger research initiative by the DNA to better understand the dynamic properties of strategic-scale nuclear bursts and the relevance of the Pacific Proving Grounds (PPG) craters to issues of strategic basing and targeting of nuclear weapons. Major topics include: Borehole gravity; Palentologic evidence for mixing; Electron paramagnetic resonance studies; Bathymetric studies of OAK crater; Constraints on densification and piping for OAK; and Additional studies of geologic crater models.

  20. Utah Center for Water Resources Research Annual Technical Report

    E-Print Network [OSTI]

    and Genetic Tools," and (4) "Reducing the Dangers of Low-Head Dams in Utah" These projects dealt. unflooded conditions; and (4) establishing a classification system for low head dams based on the dangers vegetation over time using high resolution imagery in several spectral bands obtained by application of low

  1. Utah Center for Water Resources Research Annual Technical Report

    E-Print Network [OSTI]

    Index Information System Development for NIDIS," (2) "Reducing the Dangers of Low-Head Dams in Utah", (3) establishing a classification system for low head dams based on the dangers created at various flow conditions community; (4) Investigating the value of using AggieAir, a low-cost, high-resolution multispectral remote

  2. UNIVERSITY OF UTAH HEALTH SCIENCES CONFIDENTIALITY AND INFORMATION

    E-Print Network [OSTI]

    Feschotte, Cedric

    UNIVERSITY OF UTAH HEALTH SCIENCES CONFIDENTIALITY AND INFORMATION SECURITY AGREEMENT WIKI - 1.1A Form - Confidentiality and Information Security Agreement.doc Rev: 08/13/2007 This form is a condition Sciences college should have each student in the class sign this document. 3. Students on Clinical

  3. Utah Commission on Aging Minutes for September 23, 2005 Meeting

    E-Print Network [OSTI]

    Tipple, Brett

    Sonnie Yudell Division of Adult and Aging Services Julie Rose KCPW Grant Howarth Community Nursing Services Brooke Adams Salt Lake Tribune Jilenne Gunther Division of Adult and Aging Services Kent Alderman Services Scott Wright University of Utah College of Nursing Lori Garf OPG Donna L. Russell DHS/EDO Angie

  4. State DOT: UTAH State Report Questions on NDT Testing

    E-Print Network [OSTI]

    are entirely non-destructive. We use maturity meters to approximate strength for opening to traffic, and haveState DOT: UTAH State Report Questions on NDT Testing 1. What NDT testing methods for concrete). Research: NDT methods being investigated include: Visual distress mapping, Pachometer testing, Resistivity

  5. Utah State University Web Standards Table of Contents

    E-Print Network [OSTI]

    Flann, Nicholas

    dark brown class is #333333 .The red class is # bf2f27 - The web template provides a common headerUtah State University Web Standards Table of Contents: 1. Introduction 1.1 About Web Identity...........................................2 1.2 General Web Standards.......................................2 1.3 Who should use the USU Web

  6. George Franklin Hepner http://geog.utah.edu/

    E-Print Network [OSTI]

    Dennison, Philip

    1/15 George Franklin Hepner http://geog.utah.edu/ Areas of Specialization Land resources analysis and management Geographic information science (GIS) Geography of terrorism Remote sensing industry policy and workforce development Professional Experience University (courses taught) Professor, Department of Geography

  7. 2006 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org. Geology; June 2006; v. 34; no. 6; p. 477480; doi: 10.1130/G22319.1; 6 figures. 477

    E-Print Network [OSTI]

    Boyer, Edmond

    2006 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org. Geology; June 2006; v. 34; no. 6; p. 477­480; doi: 10.1130/G22319.1; 6 figures´ Montpellier 2, 34095 Montpellier Cedex 05, France, and Geological Survey of Iran, P.O. Box 13185 1494, Tehran

  8. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect (OSTI)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift zone of Kilauea.

  9. 460:410--Field Geology COURSE INFORMATION

    E-Print Network [OSTI]

    sedimentology, stratigraphy, and structural geology. Students gain skills in geologic mapping on air: Structural Geology AND Stratigraphy or Sedimentary Geology; OR permission of instructors IV. Instructors 21 Aug Museum: Quiz; lectures and exercises on Fundy basin geology; stratigraphy & depositional

  10. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    SciTech Connect (OSTI)

    Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

  11. BS in GEOLOGY: Environmental Geology Emphasis (694029) MAP Sheet Department of Geological Sciences

    E-Print Network [OSTI]

    Seamons, Kent E.

    Mineralogy Geol 352 Petrology Geol 370 Sedimentology and Stratigraphy Geol 375 Structural Geology Geol 410

  12. Cellular Biology at the University of Utah The Department of Biology at the University of Utah invites applications for a tenure-

    E-Print Network [OSTI]

    Clayton, Dale H.

    Cellular Biology at the University of Utah The Department of Biology at the University of Utah invites applications for a tenure- track faculty position at the assistant professor level in cellular biology. Applicants should be addressing fundamental questions in any aspect of eukaryotic cellular

  13. Geologic and climatic controls on the formation of the Permian coal measures in the Sohagpur coal field, Madhya Pradesh, India

    SciTech Connect (OSTI)

    Milici, R.C.; Warwick, P.D.; Mukhopadhyah, A.; Adhikari, S.; Roy, S.P.; Bhattacharyya, S.

    1999-07-01

    The U.S. Geological Survey (USGS) and the Geological Survey of India (GSI) are concluding a cooperative study of the coking coal deposits in the Sohagpur coal field in central India. Because of the importance of coal in India's economy, the Coal Wing of the Geological Survey of India has studied the area intensely since the early 1980's. This report summarizes the overall stratigraphic, tectonic, and sedimentologic framework of the Sohagpur coal field area, and the interpretations of the geologic and climatic environments required for the accumulation of the thick Gondwana coal deposits, both coking and non-coking.

  14. Technical analysis of prospective photovoltaic systems in Utah.

    SciTech Connect (OSTI)

    Quiroz, Jimmy Edward; Cameron, Christopher P.

    2012-02-01

    This report explores the technical feasibility of prospective utility-scale photovoltaic system (PV) deployments in Utah. Sandia National Laboratories worked with Rocky Mountain Power (RMP), a division of PacifiCorp operating in Utah, to evaluate prospective 2-megawatt (MW) PV plants in different locations with respect to energy production and possible impact on the RMP system and customers. The study focused on 2-MW{sub AC} nameplate PV systems of different PV technologies and different tracking configurations. Technical feasibility was evaluated at three different potential locations in the RMP distribution system. An advanced distribution simulation tool was used to conduct detailed time-series analysis on each feeder and provide results on the impacts on voltage, demand, voltage regulation equipment operations, and flicker. Annual energy performance was estimated.

  15. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  16. Woodland Hills, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard Power Pty Ltd JumpWoodcliffWoodlakeHills, Utah:

  17. Student Competition: Siting Potential Dams at Camp Del Webb, Utah

    E-Print Network [OSTI]

    Wamser, William Kyle

    2007-11-14

    Siting Potential Dams at Camp Del Webb, Utah Presented By: Kyle Wamser Problem ? Camp Del Webb is Lacking an Onsite Lake ? High Adventure Bases generally need aquatics ? Large lake nearby, but transportation is required ? Possible Solution... hillshade ? Finding Possible Lake Locations ? Added three potential dam sites ? Calculated watersheds ? Extended dams through terrain to prevent runoff on the sides ? Calculated watershed dam elevation, which identified lakes Results...

  18. Grand County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia: EnergyGorlitz AGGranby, Connecticut:CanyonUtah:

  19. Millard County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLC Jump to:Utah:

  20. Lake Shore, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy Resources Jump to: navigation,Utah: Energy Resources Jump

  1. Piute County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehem BiomassMassachusetts:Piute County, Utah:

  2. RAPID/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎ | Geothermal‎RAPID/Geothermal/Exploration/Utah < RAPID‎ |

  3. RAPID/Geothermal/Well Field/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <Utah < RAPID‎ | Geothermal‎ |

  4. RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <UtahMontana

  5. Critical Issues Geologic mapping

    E-Print Network [OSTI]

    Polly, David

    , and productive cooperation with many other organizations all combine to enhance the IGS-bed methane, and geothermal energy. The IGS's important sources of information--geologic maps, rock and core technologies of energy production, such as integrated gasification combined cycle systems and underground coal

  6. Harris et al., eds., 2006, The Triassic-Jurassic Terrestrial Transition. New Mexico Museum of Natural History and Science Bulletin 37. AN OVERVIEWOFTHE PALEONTOLOGYOFUPPERTRIASSICAND

    E-Print Network [OSTI]

    Barnosky, Anthony D.

    AND VINCENTL.SANTUCCI4 1 Utah Geological Survey, PO Box 146100, Salt Lake City, UT 84114-6100; 2 University of Utah, 1390 E. Presidents Circle, Salt Lake City, UT 84112; 3 University of California, Department contain fossils. The arid environment of southwestern Utah, coupled with a long history of tectonic

  7. DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL

    E-Print Network [OSTI]

    Chapter PD DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL RESOURCES Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  8. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    in U.S. Geological Survey Oil Shale Assessment Team, ed. ,Oil shale resources in the Eocene Green River Formation,Assessment of in-place oil shale resources in the Eocene

  9. Geology and Geophysics 454: Engineering Geology Spring Semester, 2015, 3.0 Units

    E-Print Network [OSTI]

    1 Geology and Geophysics 454: Engineering Geology Spring Semester, 2015: "Engineering Geology" by Perry Rahn, or "Practical Engineering Geology" by Steve Hencher Class Themes This class emphasizes a modern approach to engineering geology

  10. The Lapworth Museum of Geology

    E-Print Network [OSTI]

    Birmingham, University of

    The Lapworth Museum of Geology www.lapworth.bham.ac.uk www.bham.ac.uk Events The Lapworth Lectures take place on evenings during University term time. These lectures are on a wide range of geological geological topics, usually based around collections in the museum. These provide an opportunity to see

  11. DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE

    E-Print Network [OSTI]

    DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE SURVIVAL MANUAL 2014-2015 SCHOOL OF OCEAN & EARTH SCIENCE & TECHNOLOGY UNIVERSITY OF HAWAI`I AT MNOA Updated January 2015 #12;INTRODUCTION 1 Geology OF GEOLOGY & GEOPHYSICS _ 2 Who We Are _ 2 Where To Get Help _ 2 POLICIES, PROCEDURES & REQUIREMENTS 3

  12. GEOLOGY, September 2010 823 INTRODUCTION

    E-Print Network [OSTI]

    Demouchy, Sylvie

    GEOLOGY, September 2010 823 INTRODUCTION Deformations around transpressive plate boundaries numerical models constrained by global positioning system (GPS) observations and Geology, September 2010; v. 38; no. 9; p. 823­826; doi: 10.1130/G30963.1; 3 figures; 1 table. © 2010 Geological Society

  13. September 2012 BASIN RESEARCH AND ENERGY GEOLOGY

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

  14. Cash Management Pool Guidelines The Cash Management Pool was established by the University of Utah as a pooled fund for

    E-Print Network [OSTI]

    Tipple, Brett

    Cash Management Pool Guidelines I. Purpose The Cash Management Pool was established the State of Utah Money Management Act, the Rules of the State Money Management Council, Utah State Board only be invested in authorized investments in accordance with the State of Utah Money Management Act

  15. Establishing MICHCARB, a geological carbon sequestration research...

    Office of Scientific and Technical Information (OSTI)

    Western Michigan University 58 GEOSCIENCES Geological carbon sequestration Enhanced oil recovery Characterization of oil, gas and saline reservoirs Geological carbon...

  16. MEDIA RELEASE --John Herbert, Head of Digital Technologies, J. Willard Marriott Library, University of Utah,

    E-Print Network [OSTI]

    Capecchi, Mario R.

    MEDIA RELEASE Contacts: --John Herbert, Head of Digital Technologies, J. Willard Marriott Library Maps at the University of Utah's J. Willard Marriott Library. The library has completed digitization Marriott Library, 801-585-9391, walter.jones@utah.edu --Dale Snyder, External Relations Director, J

  17. Active salt tectonics in the Needles District, Canyonlands (Utah) as detected by interferometric

    E-Print Network [OSTI]

    Mueller, Karl

    Active salt tectonics in the Needles District, Canyonlands (Utah) as detected by interferometric. Mueller, and J. Wahr (2007), Active salt tectonics in the Needles District, Canyonlands (Utah) as detected, overlying a mobile layer of evaporites (the Paradox Formation) that originated mostly as salt deposited

  18. MEDIA ADVISORY --Heidi Brett, Mariott Library, Heidi.brett@utah.edu , 801-661-6764

    E-Print Network [OSTI]

    Clayton, Dale H.

    MEDIA ADVISORY Contacts: --Heidi Brett, Mariott Library, Heidi.brett@utah.edu , 801-661-6764 --Judy Jarrow, Marriott Library, judy.jarrow@utah.edu ,801-581-3421 Friends of the Marriott Library Present Environmental Movement from Earth First! to Tim DeChristopher What-- A public lecture and reception to mark

  19. University of Utah Strategic Vision: Seven Core Commitments of the New U

    E-Print Network [OSTI]

    Tipple, Brett

    1 University of Utah Strategic Vision: Seven Core Commitments of the New U The University of Utah States in 2010 by the Creative Class Group, based on U.S. Census and Labor Statistics data. Along) engaging communities locally as well as globally. To achieve these goals, the New U maintains seven core

  20. Continuous Commissioning® of the Matheson Courthouse in Salt Lake City, Utah 

    E-Print Network [OSTI]

    Turner, W. D.; Deng, S.; Hood, J.; Butler, M.; Healy, R. K.

    2003-01-01

    Commissioning® 1 of the Matheson Courthouse in Salt Lake City, Utah. The Matheson Courthouse is a relatively new building, well-run, with a modern controls system. It is one of the most efficient buildings in Utah, averaging only $1.08 per square foot per year...

  1. Chemistry Major, Biological Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Biological Emphasis See www.chem.utah.edu for details or contact the chemistry advisor (advisor@chem.utah.edu) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225 General Chemistry Lab I, II (1

  2. Chemistry Major, Business Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Business Emphasis See www.chem.utah.edu for details or contact the chemistry advisor (advisor@chem.utah.edu) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225 General Chemistry Lab I, II (1

  3. Chemistry Major, Professional Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Professional Emphasis See www.chem.utah.edu for details or contact the chemistry advisor (advisor@chem.utah.edu) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225 General Chemistry Lab I, II (1

  4. University of Utah College of Social Work Undergraduate Certificate in Social Justice Advocacy

    E-Print Network [OSTI]

    Capecchi, Mario R.

    .ota@socwk.utah.edu, 801-581-8455, SW 228 Lam Nguyen, lam.nguyen@socwk.utah.edu, 801-585-1596, SW 210 #12;Certificate in Social Justice Advocacy Program Curriculum REQUIRED COURSES Title Credit Hrs SW 3550 - Social Diversity - Disability Studies X-list w/ OC TH 635 and 6350 PADMN 635 and 6350 3 SW 5535 - Social Justice Advocacy Skills

  5. Chemistry Major, Mathematics Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Advanced Analytical Chemistry Lab (2) CW CHEM 5710 Advanced Organic Chemistry Lab (2) CHEM 5720 AdvancedChemistry Major, Mathematics Emphasis See www.chem.utah.edu for details or contact the chemistry advisor (advisor@chem.utah.edu) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General

  6. Yukon Exploration and GEoloGY 2009 293 Soil reconnaissance of the Fort Selkirk volcanic field, Yukon (115I/13 and 14)

    E-Print Network [OSTI]

    Sanborn, Paul

    Yukon Exploration and GEoloGY 2009 293 Soil reconnaissance of the Fort Selkirk volcanic field of the Fort Selkirk volcanic field, Yukon (115I/13 and 14). In: Yukon Exploration and Geology 2009, K.E. MacFarlane, L.H. Weston and L.R. Blackburn (eds.), Yukon Geological Survey, p. 293-304. aBStraCt Valley

  7. Summit Park, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for the EntireOpen Energy(Colorado) |Park, Utah:

  8. Garfield County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy Resources Jump to:GardenKansas:Nebraska:Utah:

  9. Davis County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa:Minnesota: Energy ResourcesMissouri:Utah:

  10. Eagle Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, search Name: ETECMountain, Utah: Energy Resources

  11. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011Science (SC)Science (SC)Utah Regions National

  12. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011Science (SC)Science (SC)Utah Regions

  13. Spring Lake, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:Spill Prevention andWell Log JumpHill,Lake,Utah:

  14. Morgan County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio: EnergyMoodus,Pass,MoreKentucky:Ohio:Utah:

  15. Kane County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:JustKandiyohi County, Minnesota: EnergyUtah:

  16. Iron County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13RenewableIrem Geothermal Power PlantUtah: Energy

  17. Empire Electric Assn, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of theClimateElgin, Illinois:JVEmpire District ElectricUtah)

  18. City of Enterprise, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth, Iowa (Utility Company) Jump to:Enterprise, Utah

  19. City of Morgan City, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (Utility Company)Menasha,Monroe City,Moran,Utah (Utility

  20. Utah Associated Mun Power Sys | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeedUratMaringaTaquaraUtah + workshop

  1. Summit County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergy Information Recent Flow TestingSummitUtah:

  2. Town of Holden, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar TechnologiesCFRTopTenDanvers, MA)Utah (Utility

  3. Utah Division of Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnited States:User pageSandbox/Sparql2QualityUtah Division

  4. Utah Division of State History | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnited States:User pageSandbox/Sparql2QualityUtah

  5. Utah Division of Water Rights | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnited States:User pageSandbox/Sparql2QualityUtahRights

  6. Beaver County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, South Carolina ASHRAEInformationUtah

  7. Carbon County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: EnergyCounty,NewHatteras2ConnectionsUtah: Energy

  8. Box Elder County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to: navigation, searchElder County, Utah:

  9. Utah Natural Gas Underground Storage Volume (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentric viewing system for light|Underground Storage NetUtah

  10. Workplace Charging Challenge Partner: Utah Paperbox | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnum Group Workplace ChargingUtah

  11. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  12. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  13. Facies Analysis and Reservoir Characterization of Subtidal, Intertidal, and Supratidal Zones of the Mudstone-rich Entrada

    E-Print Network [OSTI]

    Seamons, Kent E.

    the Utah Geological Survey's Characterization of Utah's Hydrocarbon Reservoir and Potential New ReservesFacies Analysis and Reservoir Characterization of Subtidal, Intertidal, and Supratidal Zones Thomas H. Morris John H. Mcbride Scott M. Ritter Department of Geology Brigham Young University April

  14. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    W PROGRAMME Geological characterization prior to repositoryShort-term Characterization Program Geological Formations toexisting geological information, site characterization and

  15. Montana State University 1 Geology Option

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Geology Option The Geology Option is a degree program designed and private sectors in fields such as petroleum geology, mining geology, seismology (including earthquake and volcanic risk assessment), hydrology (surface and ground water) natural-hazard geology, environmental clean

  16. WSU B.S. Geology Curriculum (structural)

    E-Print Network [OSTI]

    Berdichevsky, Victor

    WSU B.S. Geology Curriculum Geology GEL 3300 (structural) GEL 3400 (sed/strat) Geology Elective 1 Geology Elective 2 Yr 1 Yr 2 Yr 3 Yr 4 PHY 2130/31 MAT 2010 PHY 2140/41 CHEM 1220/30 MAT 1800 Cognates GEL 5593 (writing intensive) GEL 3160 (petrology) GEL 3650 (field camp) Geology Elective 3 GEL 2130

  17. STUDENT GUIDE GEOLOGICAL ENGINEERING

    E-Print Network [OSTI]

    Michelson, David G.

    . There are a number of electives that you may choose to help you tailor the program to your individual interests conflicts or degree standing, contact the Undergraduate Program Coordinator in the Department of Earth-school courses in the program: CIVL 235 Plane Surveying, EOSC 223 Field Techniques, and one of either EOSC 328

  18. GEOLOGY, December 2009 1115 INTRODUCTION

    E-Print Network [OSTI]

    Törnqvist, Torbjörn E.

    for land movements is to use geological data. Salt- marsh sedimentary sequences enable the recon- struction-based approaches, because subtle tectonic effects are incorporated into both the geological and 20th century rates., 2005; Church et al., 2008). It is widely accepted that the tectonic component along the passive marg

  19. Geology and Geophysics 303: Structural Geology Fall Semester, 2015, 3.0 Units

    E-Print Network [OSTI]

    Geology and Geophysics 303: Structural Geology Fall Semester, 2015, 3.0 Units Lectures: MW 10 Geology: An Introduction, by Pollard and Martel (PM) Basic Methods of Structural Geology, by Marshak geologic structures depends largely on how we perceive them. Few geologic structures form by trivially

  20. Evolution: Geology and climate drive diversification

    E-Print Network [OSTI]

    Gillespie, RG; Roderick, GK

    2014-01-01

    on 7 May 2014. EVO LU TI O N Geology and climate driveIslands exemplify how geology and climate can interact toevents, the dynamics of geology and climate can be powerful

  1. GEOLOGY AND FRACTURE SYSTEM AT STRIPA

    E-Print Network [OSTI]

    Olkiewicz, O.

    2010-01-01

    of underground test site •• 1.5 Regional bedrock geology.Stripa mine, sub-till geology in the immediate mine area.Fig. 2.1 Stripa mine, sub-till geology in the immediate mine

  2. Geology, Environmental Science, Geography, Environmental Management

    E-Print Network [OSTI]

    Goodman, James R.

    2011 Geology, Environmental Science, Geography, Environmental Management Postgraduate Handbook #12 Environmental Management 14 Environmental Science 18 Geography 22 Geographic Information Science 26 Geology, Applied Geology and Geoscience 30 Course descriptions 36 Masters and PhD programmes 52 The Masters

  3. Indiana Board of Licensure for Professional Geologists Application to take the Association of State Boards of Geology (ASBOG) Exam

    E-Print Network [OSTI]

    Polly, David

    15, 2015 the Indiana Geological Survey and LPG Program WILL NO LONGER PROCESS payments received by email, voicemail or fax. We kindly request you make payments online at http://igs.indiana.edu/LPG

  4. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  5. Low-Temperature Geothermal Water in Utah: A compilation of Data...

    Open Energy Info (EERE)

    Low-Temperature Geothermal Water in Utah: A compilation of Data for Thermal Wells and Springs Through 1993 Jump to: navigation, search OpenEI Reference LibraryAdd to library Web...

  6. Pipe dream : why Utah's water managers continue to prioritize supply-side solutions

    E-Print Network [OSTI]

    Schaefer, Chloe

    2015-01-01

    More than 150 years ago, the Mormon pioneers entered the Salt Lake Valley and immediately set to work digging irrigation ditches and canals to harness what water there was for their farms. Since then, Utah water managers ...

  7. Utah. Code. Ann. § 19-5-115: Spills or discharges of oil or...

    Open Energy Info (EERE)

    Utah. Code. Ann. 19-5-115: Spills or discharges of oil or other substance Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute:...

  8. Miocene unroofing of the Canyon Range during extension along the Sevier Desert Detachment, west central Utah

    E-Print Network [OSTI]

    Stockli, Daniel F.; Linn, Jonathan K.; Walker, J. Douglas; Dumitru, Trevor A.

    2001-06-01

    Apatite fission track results from Neoproterozoic and Lower Cambrian quartzites collected from the Canyon Range in west central Utah reveal a significant early to middle Miocene cooling event (?19–15 Ma). Preextensional temperatures estimated from...

  9. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Utah

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Utah.

  10. Evidence for the generation of juvenile granitic crust during continental extension, Mineral Mountains Batholith, Utah

    E-Print Network [OSTI]

    Coleman, Drew S.; Walker, J. Douglas

    1992-07-10

    Field, chemical and isotopic data from the Miocene Mineral Mountains batholith in southwest Utah are consistent with the batholith being derived through differentiation of material recently separated from the lithospheric ...

  11. New Occurrences of the Unusual Trilobite Naraoia From the Cambrian of Idaho and Utah

    E-Print Network [OSTI]

    Robison, Richard A.

    1984-07-24

    arthropods and Anomalocaris from the Middle Cambrian of Utah. University of Kansas Paleontological Contributions, Paper 1 1 1 :1-24. Collins, Desmond, D. E. G. Briggs, and Simon Conway Morris. 1983. New Burgess shale fossil sites reveal Middle Cambrian faunal... arthropods and Anomalocaris from the Middle Cambrian of Utah. University of Kansas Paleontological Contributions, Paper 1 1 1 :1-24. Collins, Desmond, D. E. G. Briggs, and Simon Conway Morris. 1983. New Burgess shale fossil sites reveal Middle Cambrian faunal...

  12. West Virginia University Geology 404, Geology Field Camp

    E-Print Network [OSTI]

    Kammer, Thomas

    , Stratigraphy-Sedimentation. Grades: Grades are based on field exercises. The final grade is based on the maps to describe and log stratigraphic sequences of sedimentary rocks. 2. To learn how to construct geologic maps

  13. Dr Eugenio Carminati Associate Professor (Structural Geology)

    E-Print Network [OSTI]

    Dr Eugenio Carminati Associate Professor (Structural Geology) room 216 ph: +39 0649914950 fax a degree in Geological Sciences at the University of Milano with a thesis in Structural Geology. I achieved. I'm fellow of the Geological Society of Italy and of the American Geophysical union. Between 2004

  14. 242 Department of Geology Undergraduate Catalogue 201415

    E-Print Network [OSTI]

    242 Department of Geology Undergraduate Catalogue 2014­15 Department of Geology Chairperson: Abdel. Assistant Instructor: P Hajj-Chehadeh, Abdel-Halim The Department of Geology offers programs leading to the degree of Bachelor of Science in Geology, and Master of Science degrees in certain areas of the vast

  15. Assessment Report, Department of Geology August, 2012

    E-Print Network [OSTI]

    Bogaerts, Steven

    Assessment Report, Department of Geology August, 2012 1. Learning Goals ALL students in geology, classification schemes, geologic history and processes, and the structure of the Earth. 3. demonstrate an understanding of the variability, complexity, and interdependency of processes within geologic systems. 4. use

  16. Reprinted February 2003 4-H Geology

    E-Print Network [OSTI]

    Tullos, Desiree

    4-H 340 Reprinted February 2003 4-H Geology Member Guide OREGON STATE UNIVERSITY EXTENSION SERVICE #12;Contents 4-H Geology Project 3 Project Recommendations 3 Books on Geology 4 Trip Planning 4 Contests 7 Identification of Rocks and Minerals 7 Physical Properties of Minerals 8 Generalized Geologic

  17. Geological Visualization Tools and Structural Geology Geologists use several visualization tools to understand rock outcrop

    E-Print Network [OSTI]

    Li, X. Rong

    Geological Visualization Tools and Structural Geology Geologists use several visualization tools to understand rock outcrop relationships, regional patterns and subsurface geology in 3D and 4D. Geological maps to studying geologic maps. Cross sections are vertical "slices" into the earth that are used to interpret

  18. BACHELOR OF SCIENCE IN ENVIRONMENTAL GEOLOGY DEPARTMENT OF GEOLOGY AND PLANETARY SCIENCE

    E-Print Network [OSTI]

    Jiang, Huiqiang

    BACHELOR OF SCIENCE IN ENVIRONMENTAL GEOLOGY DEPARTMENT OF GEOLOGY AND PLANETARY SCIENCE WWW.GEOLOGY" for a complete range of advising information plus the latest Environmental Geology requirements. CORE COURSES (check each as completed): (30 credits) ____Choose one of the following introductory geology classes

  19. UNITED STATES GEOLOGICAL SURVEY DEPARTMENT OF THE INTERIOR

    Office of Scientific and Technical Information (OSTI)

    e s t i g a t i o n (1R)WA-5 USGS-OFR--82-714 DE84 900493 ASSESSMENT OF THE PETROLEUM, COAL,, AND GEOTHERMAL RESOURCES OF THE ECONOMIC COMMUNITY OF WEST AFRICAN STATES (ECOWAS)...

  20. United States Department of the Interior U. S. GEOLOGICAL SURVEY

    E-Print Network [OSTI]

    Division issued a supplemental Environmental Impact Statement to address seismic issues raised by the new basis for new seismic siting requirements for wastewater treatment plants. Private citizen groups have, regional tectonics, Puget Sound glacial stratigraphy #12;USGS Peer Review Plan 3 Reviewers will be selected

  1. U.S. Geological Survey China's Growing Appetite for Minerals

    E-Print Network [OSTI]

    (markets) · National security USGS research on minerals in development cycle-- o Based on 1929 work of USGS: Coal 45 1 Oil 4.7 6 Industrial minerals: Cement 42 1 Fluorspar 55 1 Rare earths 85 1 Metals: Aluminum 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 Year Millionmetrictons Canada China

  2. Idaho Geological Survey and University of Idaho Explore for Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of China Hat, a 60,000-year-old region of volcanic rock near Soda Springs, Idaho. The wells allow researchers to precisely measure heat coming out of the Earth, which will help...

  3. Geologic Survey of the Ewing Bank, Northern Gulf of Mexico 

    E-Print Network [OSTI]

    Brooks, Daniel M

    2014-04-04

    of the Cretaceous shelf to the present shelf break; in other areas, the marine processes dominate and the smaller rivers do not have high enough sedimentation rates for the fluvial processes to dominate shelf development (Rezak et 8 al., 1983... with a safety pin in the enclosed position and placed on its stand and secured to the deck. The lid was opened and the contents inspected for quality and acceptability of the sample. The overlaying water was siphoned off to expose the sediments for sub...

  4. REDUCING THE RISK FROM VOLCANO HAZARDS UNITED STATES GEOLOGICAL SURVEY

    E-Print Network [OSTI]

    systems, and cause jet engines to fail. USGS and other scientists with the Alaska Volcano Observatory eruptions. As the crew of KLM Flight 867 struggled to restart the plane's engines, "smoke" and a strong odor Mountains(7,000to11,000feethigh).Allfour engines had flamed out when the aircraft in- advertently entered

  5. State Geological Survey Contributions to NGDS Data Development, Collection

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jumpand Maintenance Geothermal Project | Open Energy

  6. United States Geological Survey, HIF | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeed Jump to:Foods JumpAgricultureHIF

  7. United States Geological Survey, LSC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeed Jump to:Foods JumpAgricultureHIFLSC

  8. State Geological Survey Contributions to the National Geothermal Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof2StandardFOA2-002 State Energy|System |

  9. UNITED STATES GEOLOGICAL SURVEY DEPARTMENT OF THE INTERIOR F

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the WeldonB100 Ambrosia'1(DOE)F. a%UCRL-53628 .D E

  10. Geology and Temperature Gradient Surveys Blue Mountain Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGeminiEnergyHawaii | Open EnergyStudyDiscovery,

  11. UNITED STATES GEOLOGICAL SURVEY DEPARTMENT OF THE INTERIOR

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scale Friction Sensitivity (BAM) Test . *UM-ASUF

  12. Idaho Geological Survey and University of Idaho Explore for Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls21,Equipment:Petroleum RefiningCleanup ProgramEnergy

  13. Geological Storage of CO2 from Power Niels Peter Christensen, Geological Survey of Denmark and

    E-Print Network [OSTI]

    agreed to adopt a 20% emission reduction target by 2020 for the EU, increasing to 30% if the USA agrees to increase generating capacity. Electricity demand continues to mount by around 1.5% each year, but existing infrastructure and electricity plants are reaching the end of their useful life. It is also important that the EU

  14. iUTAH Water Sustainability Graduate Research Fellows: Call for Proposals The NSF EPSCoR innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)

    E-Print Network [OSTI]

    Tipple, Brett

    R innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH) program announces a 2012-2013 call1 iUTAH Water Sustainability Graduate Research Fellows: Call for Proposals The NSF EPSCo broadly pertaining to water sustainability in the Wasatch Front are eligible to apply. This program

  15. Powering Triton's recent geological activity by obliquity tides: Implications for Pluto geology

    E-Print Network [OSTI]

    Nimmo, F.; Spencer, J.R.

    2015-01-01

    Strom, R. G. , 1995. The geology of Triton. In: Cruikshank,layering and instability. Geology 21, 299–302. Schenk, P.generating the surface geology and heat flow on Enceladus.

  16. Media Release --Heidi Brett, J. Willard Marriott Library Public Relations, 801-585-7758, Heidi.brett@utah.edu

    E-Print Network [OSTI]

    Clayton, Dale H.

    Media Release Contacts: --Heidi Brett, J. Willard Marriott Library Public Relations, 801-585-7758, Heidi.brett@utah.edu --Remi Barron, University of Utah Public Relations, 801-581-7295, remi.O'Mara@rockymountainpower.net Marriott Library to Showcase Treasures Documenting the History of Electric Power February 2, 2012

  17. Quick Reference Online Grade Pos ng Sign on to the Campus Informa on Services (cis.utah.edu)

    E-Print Network [OSTI]

    Quick Reference Online Grade Pos ng Sign on to the Campus Informa on Services (cis.utah.edu): 1. Will not affect grades that have been saved. Saves the entered grades in the grade roster without pos ng@sa.utah.edu. #12; Quick Reference Online Grade Pos ng For further assistance, contact the Registra on & Records

  18. Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details or contact the chemistry advisor (advisor@chem.utah.edu) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225

  19. The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents

    SciTech Connect (OSTI)

    Thomas Chidsey

    2008-09-30

    The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted-marine facies constitute a significant reservoir potential, having both effective porosity and permeability when dissolution of skeletal grains, followed by dolomitization, has occurred. Two major types of diagenetic dolomite are observed in the Leadville Limestone at Lisbon field: (1) tight 'early' dolomite consisting of very fine grained (<5 {micro}m), interlocking crystals that faithfully preserve depositional fabrics; and (2) porous, coarser (>100-250 {micro}m), rhombic and saddle crystals that discordantly replace limestone and earlier very fine grained dolomite. Predating or concomitant with late dolomite formation are pervasive leaching episodes that produced vugs and extensive microporosity. Most reservoir rocks within Lisbon field appear to be associated with the second, late type of dolomitization and associated leaching events. Other diagenetic products include pyrobitumen, syntaxial cement, sulfide minerals, anhydrite cement and replacement, and late macrocalcite. Fracturing (solution enlarged) and brecciation (autobrecciation) caused by hydrofracturing are widespread within Lisbon field. Sediment-filled cavities, related to karstification of the exposed Leadville, are present in the upper third of the formation. Pyrobitumen and sulfide minerals appear to coat most crystal faces of the rhombic and saddle dolomites. The fluid inclusion and mineral relationships suggest the following sequence of events: (1) dolomite precipitation, (2) anhydrite deposition, (3) anhydrite dissolution and quartz precipitation, (4) dolomite dissolution and late calcite precipitation, (5) trapping of a mobile oil phase, and (6) formation of bitumen. Fluid inclusions in calcite and dolomite display variable liquid to vapor ratios suggesting reequilibration at elevated temperatures (50 C). Fluid salinities exceed 10 weight percent NaCl equivalent. Low ice melting temperatures of quartz- and calcite-hosted inclusions suggest chemically complex Ca-Mg-bearing brines associated with evaporite deposits were responsible for mineral deposition. The overall conclusion from th

  20. pre or co-requisite Geology Course Prerequisite Chart

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    pre or co-requisite Geology Course Prerequisite Chart 1101, 1102, 1103,1104, 1105 2250 3160 2500 hours geology junior standing; six hours geology depends on course senior standing, permission hours geology six hours geology Evolution of the Earth Geophysics Physical Geology , Historical Geology

  1. West Virginia University Geology 404, Geology Field Camp

    E-Print Network [OSTI]

    Kammer, Thomas

    .geo.wvu.edu/~kammer/geol404.htm Format: Five weeks of geologic field work in the Northern Rocky Mountains. Field areas, Wyoming, Bighorn Mountains, Wyoming, Yellowstone National Park, Grand Teton National Park, and Southwest will include the Black Hills, Big Horn Mountains, Yellowstone National Park, Grand Teton National Park

  2. www.geology.pdx.edu Undergraduate Degrees Offered

    E-Print Network [OSTI]

    , geomorphology, geomechanics, engineering geology, and teaching and learning. e PSU program serves geology majors Glaciology Geomechanics Environmental and engineering geology K-12 education In addition to their work

  3. Why Geology Matters: Decoding the Past, Anticipating the Future

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01

    Review: Why Geology Matters: Decoding the Past, AnticipatingUSA Macdougall, Doug. Why Geology Matters: Decoding theE-book available. Why Geology Matters pursues two goals: to

  4. Risk assessment framework for geologic carbon sequestration sites

    E-Print Network [OSTI]

    Oldenburg, C.

    2010-01-01

    Framework for geologic carbon sequestration risk assessment,for geologic carbon sequestration risk assessment, Energyfor Geologic Carbon Sequestration, Int. J. of Greenhouse Gas

  5. Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2009-01-01

    workshop on geologic carbon sequestration, 2002. Benson,verification of geologic carbon sequestration, Geophys. Res.CO 2 from geologic carbon sequestration sites, Vadose Zone

  6. Geologic report for the Weldon Spring Raffinate Pits Site

    SciTech Connect (OSTI)

    1984-10-01

    A preliminary geologic site characterization study was conducted at the Weldon Spring Raffinate Pits Site, which is part of the Weldon Spring Site, in St. Charles County, Missouri. The Raffinate Pits Site is under the custody of the Department of Energy (DOE). Surrounding properties, including the Weldon Spring chemical plant, are under the control of the Department of the Army. The study determined the following parameters: site stratigraphy, lithology and general conditions of each stratigraphic unit, and groundwater characteristics and their relation to the geology. These parameters were used to evaluate the potential of the site to adequately store low-level radioactive wastes. The site investigation included trenching, geophysical surveying, borehole drilling and sampling, and installing observation wells and piezometers to monitor groundwater and pore pressures.

  7. GEOLOGY, February 2009 155 INTRODUCTION

    E-Print Network [OSTI]

    Huybers, Peter

    GEOLOGY, February 2009 155 INTRODUCTION Polar layered deposits (PLD)--stratigraphic sequences revealed a more complex stratigraphy, which has also been hypothesized to contain orbital features (Laskar signal, we construct a model of the north PLD (NPLD) stratigraphy from space- craft images, measure

  8. GEOLOGY, April 2011 315 INTRODUCTION

    E-Print Network [OSTI]

    Stern, Robert J.

    GEOLOGY, April 2011 315 INTRODUCTION The Gulf of Mexico opened as the western- most arm of). In spite of this general understanding about when and how it opened, the Gulf of Mexico is a rare example transitional crust thought to have formed during Gulf of Mexico opening (Dobson and Buffler, 1997; Harry

  9. Geological Characterization of California's Offshore

    E-Print Network [OSTI]

    for the various data generated by the West Coast Regional Carbon Sequestration Partnership. The project's goals are to: · Perform a preliminary geologic characterization of the carbon dioxide sequestration of carbon sequestration potential. · For select formations previously studied in the Southern Sacramento

  10. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    SciTech Connect (OSTI)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  11. Hanford Borehole Geologic Information System (HBGIS)

    SciTech Connect (OSTI)

    Last, George V.; Mackley, Rob D.; Saripalli, Ratna R.

    2005-09-26

    This is a user's guide for viewing and downloading borehold geologic data through a web-based interface.

  12. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH’S UINTA BASIN

    SciTech Connect (OSTI)

    Keiter, Robert; Ruple, John; Holt, Rebecca; Tanana, Heather; McNeally, Phoebe; Tribby, Clavin

    2012-10-01

    Utah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource access and the prospect of consolidating resource holdings across a fragmented management landscape is critical to understanding the role Utah’s unconventional fuel resources may play in our nation’s energy policy. This Topical Report explains the historic roots of the “crazy quilt” of western land ownership, how current controversies over management of federal public land with wilderness character could impact access to unconventional fuels resources, and how land exchanges could improve management efficiency. Upon admission to the Union, the State of Utah received the right to title to more than one-ninth of all land within the newly formed state. This land is held in trust to support public schools and institutions, and is managed to generate revenue for trust beneficiaries. State trust lands are scattered across the state in mostly discontinuous 640-acre parcels, many of which are surrounded by federal land and too small to develop on their own. Where state trust lands are developable but surrounded by federal land, federal land management objectives can complicate state trust land development. The difficulty generating revenue from state trust lands can frustrate state and local government officials as well as citizens advocating for economic development. Likewise, the prospect of industrial development of inholdings within prized conservation landscapes creates management challenges for federal agencies. One major tension involves whether certain federal public lands possess wilderness character, and if so, whether management of those lands should emphasize wilderness values over other uses. On December 22, 2010, Secretary of the Interior Ken Salazar issued Secretarial Order 3310, Protecting Wilderness Characteristics on Lands Managed by the Bureau of Land Management. Supporters argue that the Order merely provides guidance regarding implementation of existing legal obligations without creating new rights or duties. Opponents describe Order 3310 as subverting congressional authority to designate Wilderness Areas and as closing millions of acres of public lands to energy development and commodity production. While opponents succeeded in temporarily defunding the Order’s implementation and forcing the Bureau of Land Management (BLM) to adopt a more collaborative approach, the fundamental questions remain: Which federal public lands possess wilderness characteristics and how should those lands be managed? The closely related question is: How might management of such resources impact unconventional fuel development within Utah? These questions remain pressing independent of the Order because the BLM, which manages the majority of federal land in Utah, is statutorily obligated to maintain an up-to-date inventory of federal public lands and the resources they contain, including lands with wilderness characteristics. The BLM is also legally obligated to develop and periodically update land use plans, relying on information obtained in its public lands inventory. The BLM cannot sidestep these hard choices, and failure to consider wilderness characteristics during the planning process will derail the planning effort. Based on an analysis of the most recent inventory data, lands with wilderness characteristics — whether already subject to mandatory protection under the Wilderness Act, subject to discretionary protections as part of BLM Resource Management Plan revisions, or potentially subject to new protections under Order 3310 — are unlikely to profoundly impact oil shale development within Utah’s Uinta Basin. Lands with wilderness characteristics are likely to v have a greater impact on oil sands resources, particularly those resources found in the southern part of the state. Management requirements independent of l

  13. Geological carbon sequestration: critical legal issues

    E-Print Network [OSTI]

    Watson, Andrew

    Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

  14. PRECAMBRIAN GEOLOGY OF THE OJO CALIENTE QUADRANGLE,

    E-Print Network [OSTI]

    Treiman, Allan H.

    PRECAMBRIAN GEOLOGY OF THE OJO CALIENTE QUADRANGLE, RIO ARRIBA AND TAOS COUNTIES, NEW MEXICO A THESIS SUBMITTED TO THE DEPARTMENT OF GEOLOGY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD Treiman June 1977 PRECAMBRIAN GEOLOGY OF THE OJO CALIENTE QUADRANGLE, RIO ARRIBA AND TAOS COUNTIES, NEW

  15. Inner model theoretic geology Gunter Fuchs

    E-Print Network [OSTI]

    Schindler, Ralf

    Inner model theoretic geology Gunter Fuchs Ralf Schindler November 18, 2014 Abstract One of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection in what was dubbed Set Theoretic Geology in that paper. One of the main results of [FHR] was that any

  16. Geological Society of America 3300 Penrose Place

    E-Print Network [OSTI]

    Chapman, Clark R.

    Geological Society of America 3300 Penrose Place P.O. Box 9140 Boulder, CO 80301 (303) 447 and restrictions: Copyright © 2002, The Geological Society of America, Inc. (GSA). All rights reserved. Copyright. Opinions presented in this publication do not reflect official positions of the Society. #12;Geological

  17. Bob Campbell Geology Museum Mission Statement

    E-Print Network [OSTI]

    Stuart, Steven J.

    Bob Campbell Geology Museum Mission Statement: To foster a greater awareness, understanding, and appreciation of the complex and dynamic nature of geology. The Museum's collection focuses on rocks, minerals and fossils of Southeastern US, but includes specimens from around the world. Bob Campbell Geology Museum

  18. GEOLOGY, B.S.G. ENVIRONMENTAL OPTION

    E-Print Network [OSTI]

    Hamburger, Peter

    GEOLOGY, B.S.G. ENVIRONMENTAL OPTION (Fall 2015-Summer 2016) IPFW Residency Requirements: ____ 32/Gen Ed GEOLOGY BSG CORE COURSES (66 credits) *Note: grades of C- or better required in GEOL courses/2.0 GPA ______ 3 - 5 Credits in Geology or Geography with Laboratory (Select 1 of the following): ___3

  19. Geological Carbon Storage: The Roles of Government

    E-Print Network [OSTI]

    Geological Carbon Storage: The Roles of Government and Industry in Risk Management ROSE MURPHY version of this publication, please send an email to Mark Jaccard (jaccard@sfu.ca). #12;8 Geological to a location suitable for long-term storage. CO2 can be stored in onshore or offshore geological formations

  20. FLORIDA STATE UNIVERSITY GEOLOGY FIELD CAMP

    E-Print Network [OSTI]

    FLORIDA STATE UNIVERSITY GEOLOGY FIELD CAMP IN NORTHERN NEW MEXICO May 9, through June 15, 2015 The Department of Earth, Ocean & Atmospheric Science, Geological Science at FSU offers a 6 semester-hour course in Field Geology (GLY4790). We have been teaching this highly successful course from a facility north

  1. GeoloGy (Geol) Robinson Foundation

    E-Print Network [OSTI]

    Dresden, Gregory

    182 GeoloGy (Geol) Robinson Foundation PROFESSOR HARBoR ASSOCIATE PROFESSORS KNAPP, CONNORS ASSISTANT PROFESSORS GREER, RAHL MAJORS BACHELOR OF SCIENCE Amajor in geology leading to a Bachelor of Science degree consists of 50 credits as follows: 1. Geology160,185,211,311,330,350,andacom- prehensive

  2. Courses: Geology (GEOL) Page 321Sonoma State University 2012-2013 Catalog Geology (GEOL)

    E-Print Network [OSTI]

    Ravikumar, B.

    Courses: Geology (GEOL) Page 321Sonoma State University 2012-2013 Catalog Geology (GEOL) GEOL 102 Our Dynamic Earth: intrODuctiOn tO GEOLOGy (3) Lecture, 2 hours; laboratory, 3 hours. A study. Emphasis on local geology, including earthquakes and other environmental aspects. Laboratory study

  3. Roadmap: Geology Environmental Geology -Bachelor of Science [AS-BS-GEOL-EGEO

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Geology ­ Environmental Geology - Bachelor of Science [AS-BS-GEOL-EGEO] College of Arts This roadmap is a recommended semester-by-semester plan of study for this major. However, courses on page 2 General Elective 8 #12;Roadmap: Geology ­ Environmental Geology - Bachelor of Science [AS

  4. ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has

    E-Print Network [OSTI]

    Mateo, Jill M.

    ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has promoted the systematic philosophical and fundamental study of geology since 1893. The Journal publishes original research are available for rental. For more information contact: J-advertising@press.uchicago.edu Journal of Geology

  5. Formal Concept Analysis in Geology 1 7 Formal Concept Analysis in Geology

    E-Print Network [OSTI]

    Belohlavek, Radim

    Formal Concept Analysis in Geology 1 7 Formal Concept Analysis in Geology: Attribute Tables-attribute knowledge is vague (fuzzy), which is typical of sciences like geology, biology etc. Basically, formal of fuzzy data and its possible applications in geological and related sciences. The presen- #12;Formal

  6. Courses: Geology (GEOL) Page 319Sonoma State University 2015-2016 Catalog Geology (GEOL)

    E-Print Network [OSTI]

    Ravikumar, B.

    Courses: Geology (GEOL) Page 319Sonoma State University 2015-2016 Catalog Geology (GEOL) geoL 102 our dynAMiC eArtH: introduCtion to geoLogy (3) Lecture, 2 hours; laboratory, 3 hours. A study. Emphasis on local geology, including earthquakes and other environmental as- pects. Laboratory study

  7. Mathematical Geology, Vol. 34, No. 1, January 2002 ( C 2002) On Modelling Discrete Geological Structures

    E-Print Network [OSTI]

    Baran, Sándor

    Mathematical Geology, Vol. 34, No. 1, January 2002 ( C 2002) On Modelling Discrete Geological there is a large amount of missing observations, which often is the case in geological applications. We make,predictions,MarkovchainMonteCarlo,simulatedannealing,incomplete observations. INTRODUCTION In many geological applications, there is an interest in predicting properties

  8. ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has

    E-Print Network [OSTI]

    Mateo, Jill M.

    ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has promoted the systematic philosophical and fundamental study of geology since 1893. The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology

  9. Courses: Geology (GEOL) Page 325Sonoma State University 2014-2015 Catalog Geology (GEOL)

    E-Print Network [OSTI]

    Ravikumar, B.

    Courses: Geology (GEOL) Page 325Sonoma State University 2014-2015 Catalog Geology (GEOL) geoL 102 our dynAMiC eArtH: introduCtion to geoLogy (3) Lecture, 2 hours; laboratory, 3 hours. A study. Empha- sis on local geology, including earthquakes and other environmental aspects. Labo- ratory study

  10. 2004 The Outcrop 13http://www.geology.wisc.edu PROFESSIONAL HONORS

    E-Print Network [OSTI]

    Johnson, Clark M.

    sedimentology at Hamilton College. · Evan Franseen, MS 1985, PhD 1989, of the Kansas Geologi- cal Survey, shared of Visitors. Maria Mutti, incoming Councilor for Sedimentology, did an MS here with Toni Simo. The continuing and largest societies for sedimentology and paleontology. Graduate student Elizabeth Clechenko discusses her

  11. Physical Geology Laboratory Manual Charles Merguerian and J Bret Bennington

    E-Print Network [OSTI]

    Merguerian, Charles

    Physical Geology Laboratory Manual Charles Merguerian and J Bret Bennington Geology Department Hofstra University © 2006 #12;i PHYSICAL GEOLOGY LABORATORY MANUAL Ninth Edition Professors Charles Merguerian and J Bret Bennington Geology Department Hofstra University #12;ii ACKNOWLEDGEMENTS We thank

  12. ACCOUNT REQUEST FORM Submit the completed form to adsystems@sa.utah.edu.

    E-Print Network [OSTI]

    :____________________________________________________ Employee ID: ___________________________________________________ Requested Nolij Role and http://regulations.utah.edu/it/4-004.php) PRIVACY & FERPA: see Privacy Rights/Student Directory for security and confidentiality of employee records and files as described in University Policy 4-001 & 4

  13. Facies architecture of the Upper Sego member of the Mancos Shale Formation, Book Cliffs, Utah 

    E-Print Network [OSTI]

    Robinson, Eric D.

    2006-04-12

    The Late Cretaceous upper Sego Member of the Mancos Shale exposed in the Book Cliffs of east-central Utah is a 30 m thick sandstone wedge that overlies the Anchor Mine Tongue of the Mancos Shale and underlies coastal plain deposits of the Neslen...

  14. CDC's National Environmental Public Health Tracking Network UTAH Keeping Track, Promoting Health

    E-Print Network [OSTI]

    CS225774_N CDC's National Environmental Public Health Tracking Network UTAH Keeping Track, Promoting Health "CDC's National Environmental Public Health Tracking Network is the most important accomplishment of the past decade." Thomas A. Burke, Ph.D., M.P.H. Associate Dean for Public Health Practice

  15. Chemistry Major, Chemical Engineering Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Chemical Engineering Emphasis See www.chem.utah.edu for details or contact Laboratory for Scientists and Engineers I, II (1, 1) F. Chemistry, Chemical Engineering Emphasis Core courses (2) CHEM 5750 Advanced Chemical Biology Lab (2) Chemical Engineering Emphasis Classes: CH EN 2800

  16. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, Utah

    SciTech Connect (OSTI)

    none,

    2013-09-01

    As the first net zero-energy production home certified in Utah, this house incorporates two 94% efficient tankless water heaters and two roof-mounted solar panels that preheat the home's water supply. This home won a 2013 Housing Innovation Award in the production builder category.

  17. NO gas loss from biologically crusted soils in Canyonlands National Park, Utah

    E-Print Network [OSTI]

    Barger, Nichole

    , Colorado Plateau, Nitrogen fixation, Nitrogen gas loss, Nitric oxide Abstract. In this study, we examined N pathways. Nitrogen gas loss as NO and N2O have been shown to increase dramatically in soils where N-1 NO gas loss from biologically crusted soils in Canyonlands National Park, Utah NICHOLE N. BARGER

  18. Boullier The fault zone geology 1 Fault zone geology: lessons from drilling through the Nojima and 1

    E-Print Network [OSTI]

    Boyer, Edmond

    Boullier The fault zone geology 1 Fault zone geology: lessons from active faults with the aim of 11 learning about the geology of the fault all 18 their objectives, have still contributed to a better geological

  19. MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 Geology and Geoenvironment

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 1 Geology and Geoenvironment MSc Programme STUDENT HANDBOOK Applied Environmental Geology, Stratigraphy Paleontology, Geography and Environment, Dynamic Geology and Tectonics/ Hydrogeology, Geophysics

  20. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    SciTech Connect (OSTI)

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

  1. B.S. GEOLOGY (Geology Subplan) CHECKLIST of required courses for major Geology Core Courses: 9-10 courses, 33-34 credits

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    B.S. GEOLOGY (Geology Subplan) CHECKLIST of required courses for major Geology Core Courses: 9 - Experiencing Geology Lab and either GEOSCI 103 - Intro to Oceanography or GEOSCI 105 - Dynamic Earth 4 (1) (4 semester GEOSCI 201 ­ History of the Earth 4 1st or 2nd year, spring semester GEOSCI 231 ­ Geological Field

  2. An Overview of Geologic Carbon Sequestration Potential in California

    SciTech Connect (OSTI)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  3. Interlocking Cross-Laminatd Timber (ICLT) for Rural Architecture Ryan E. Smith & Jeff Cramer, ITAC, University of Utah

    E-Print Network [OSTI]

    Tipple, Brett

    Interlocking Cross-Laminatd Timber (ICLT) for Rural Architecture Ryan E. Smith-grade wood to be used in a high value structural situation, estimated to last - Department of Agriculture, Forest Products Laboratory University of Utah, Technology

  4. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  5. A Summary of the Geology, Geochemistry, and Geophysics of the...

    Open Energy Info (EERE)

    Area, Utah Authors S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan and J. R. Bowman Published Journal...

  6. A visitation reporting system for Utah state parks 

    E-Print Network [OSTI]

    Burns, Dennis C.

    1988-01-01

    100 percent. Possible reasons for the large percent difference in some of the parks may be related to poor traffic counter placement or inordinately large numbers of non-recreation vehicles tripping the meter. ACKNOWLEDGEMENTS This professional... of the estimation model Excerpt from Forest Service Handbook Comparison of Parks: Percent of Recreating Vehicles vs percent Difference between PPV and "b" 73 75 80 84 VITA 87 LIST OF TABLES Table 1 Time periods sampled Page 12 2 Visitor use survey...

  7. GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

  8. Regional geophysics, Cenozoic tectonics and geologic resources...

    Open Energy Info (EERE)

    adjoining regions Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Regional geophysics, Cenozoic tectonics and geologic resources of the...

  9. Carbonic Acid Shows Promise in Geology, Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprising Secrets of Carbonic Acid Probing the Surprising Secrets of Carbonic Acid Berkeley Lab Study Holds Implications for Geological and Biological Processes October 23,...

  10. Geology and Geophysics at The University of Kansas Geology's High-Tech Revolution

    E-Print Network [OSTI]

    GHAWKER Geology and Geophysics at The University of Kansas Fall 2009 Geology's High-Tech Revolution Associates Program of the Kansas University Endowment Association. The High-Tech Revolution A geologist

  11. Flemish fieldstone: unravelling lithological differences and diagenesis Research Unit: Sedimentary Geology and Engineering Geology

    E-Print Network [OSTI]

    Gent, Universiteit

    Flemish fieldstone: unravelling lithological differences and diagenesis Research Unit: Sedimentary Geology and Engineering Geology Topic: Fieldstone, natural stone, diagenesis, microscopy with a great interest in sedimentation processes and diagenesis, in petrology and Flemish stratigraphy

  12. Engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah

    SciTech Connect (OSTI)

    none,

    1981-08-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Green River site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Green River, Utah. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  13. Utah-based utility puts NGVs on a money-saving fast track

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    Mountain Fuel Supply Co. began using natural gas as a vehicle fuel in 1983, when it converted 22 of its fleet vehicles and built its first natural gas fueling station. At the time, its primary motivation was economics. Now, however, with increased concern about Utah`s air quality, environmental protection is another important factor. Since 1983, the utility`s NGV program has accelerated to become one of the nation`s most successful. Mountain Fuels` NGV marketing department consistently set up aggressive campaigns to promote the alternative fuel and worked closely with private and government organizations within its service area to promote clean natural gas. Today, Mountain Fuel has helped establish a refueling infrastructure of more than 80 NGV refueling facilities supporting nearly 2,000 NGVs in the company`s service area. The paper discusses the development and implementation of the NGV program.

  14. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

    Broader source: Energy.gov [DOE]

    The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

  15. Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain

    E-Print Network [OSTI]

    Conway Morris, S.; Robison, Richard A.

    1986-01-09

    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS January 9, 1986 Paper 117 MIDDLE CAMBRIAN PRIAPULIDS AND OTHER SOFT-BODIED FOSSILS FROM UTAH AND SPAIN' S. CONWAY MORRIS and R. A. ROBISON Department of Earth Sciences, University of Cambridge...- tion rather than the original biotic assemblage (Conway Morris, 1981; Conway Morris and Robison, 1982). If this is correct then such soft- bodied faunas may provide a guide to original diversity and paleoecologic insights more reli- able than those...

  16. Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration

    E-Print Network [OSTI]

    Zhou, R.

    2010-01-01

    Monitoring Geological Carbon Sequestration Authors: RongmaoGeological Carbon Sequestration ABSTRACT Injection andmonitoring geological carbon sequestration. ACKNOWLEDGEMENTS

  17. Jeffrey A. Karson Structural Geology & Tectonics Born November 3, 1949

    E-Print Network [OSTI]

    Raina, Ramesh

    Jeffrey A. Karson Structural Geology & Tectonics Born November 3, 1949 204 Heroy Geology Laboratory-443-3363 Syracuse, NY 13244-1070 email: jakarson@syr.edu Education B.S. (Geology) Case Institute of Technology (CWRU), 1972 M.S. (Geology) State University of New York at Albany (SUNYA), 1975 Ph.D. (Geology) State

  18. Geologic mapping of tectonic planets Vicki L. Hansen *

    E-Print Network [OSTI]

    Hansen, Vicki

    Geologic mapping of tectonic planets Vicki L. Hansen * Department of Geological Sciences, Southern 2000; accepted 14 January 2000 Abstract Geological analysis of planets typically begins with the construction of a geologic map of the planets' surfaces using remote data sets. Geologic maps provide the basis

  19. Petroleum Geology Conference series doi: 10.1144/0070921

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Petroleum Geology Conference series doi: 10.1144/0070921 2010; v. 7; p. 921-936Petroleum Geology Collection to subscribe to Geological Society, London, Petroleum Geologyhereclick Notes on January 5, 2011Downloaded by by the Geological Society, London © Petroleum Geology Conferences Ltd. Published #12;An

  20. SRS Geology/Hydrogeology Environmental Information Document

    SciTech Connect (OSTI)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  1. Survey Data 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Knowledge of surface sediment distribution in Galveston Bay is important because it allows us to better understand how the bay works and how human activities impact the bay and its ecosystems. In this project, six areas of bay bottom were surveyed...

  2. Panel Organization 1. Panel on Structural Geology & Geoengineering

    E-Print Network [OSTI]

    Appendix A Panel Organization 1. Panel on Structural Geology & Geoengineering Chair: Dr. Clarence R Technical Exchange (open) Panel on Structural Geology & Geoengineering Denver, Colorado Topic: DOE & Performance Analysis and the Panel on Structural Geology & Geoengineering Denver, Colorado Topic: Repository

  3. Panel Organization 1. Panel on Structural Geology & Geoengineering

    E-Print Network [OSTI]

    Appendix A Panel Organization 1. Panel on Structural Geology & Geoengineering Chair: Dr. Clarence R) Panel on Structural Geology & Geoengineering Denver, Colorado Topic: DOE presentation on the exploratory and the Panel on Structural Geology & Geoengineering Denver, Colorado Topic: Repository system design

  4. Ronald Greeley Planetary Geology Scholarship for Undergraduate Students

    E-Print Network [OSTI]

    Rhoads, James

    Ronald Greeley Planetary Geology Scholarship for Undergraduate Students Application ASU ID#: Date of 5 RESEARCH PROJECT The Ronald Greeley Planetary Geology Scholarship includes an undergraduate research component in planetary geology, which must be conducted in collaboration with a member

  5. Brigham Young University Geology Studies Volume 28, Part 3

    E-Print Network [OSTI]

    Seamons, Kent E.

    #12;Brigham Young University Geology Studies Volume 28, Part 3 CONTENTS Three Creeks Caldera ................................................................................................................................... Scott Dean Geology of the Antelope Peak Area of the Southern .................................................................................................................. Craig D. Hall Geology of the Longlick and White Mountain Area, Southern San Francisco Mountains

  6. COACHE Faculty Job Satisfaction Survey SURVEY INSTRUMENT

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    2011-2012 Survey Instrument Theme Benchmark Question Responses Historic Data Available EligibleCOACHE Faculty Job Satisfaction Survey SURVEY INSTRUMENT 2011-12 © 2011 President & Fellows in Higher Education Faculty Job Satisfaction Survey 2011-2012 Survey Instrument Theme Benchmark Question

  7. Journal of the Geological Society, London, Vol. 154, 1997, pp. 961973, 10 figs, 2 tables. Printed in Great Britain The age and tectonic significance of dolerite dykes in western Norway

    E-Print Network [OSTI]

    Andersen, Torgeir Bjørge

    in Great Britain The age and tectonic significance of dolerite dykes in western Norway TROND H. TORSVIK1,3 , TORGEIR B. ANDERSEN2 , ELIZABETH A. EIDE1 & HARALD J. WALDERHAUG3 1 Geological Survey of Norway, PB 3006 Lade, N-7002 Trondheim, Norway 2 Department of Geology, University of Oslo, PO Box 1047, 0316 Blindern

  8. 2003 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org. Geology; December 2003; v. 31; no. 12; p. 10971100; 4 figures; Data Repository item 2003163. 1097

    E-Print Network [OSTI]

    Licciardi, Joseph M.

    : Evidence from the Ghazij Formation, Balochistan, Pakistan William C. Clyde Department of Earth Sciences, and Geological Survey of Pakistan, Sariab Road, Box 15, Quetta, Pakistan Philip D. Gingerich Department of western Pakistan records continental sedimentation and mammalian dispersal associated with initial India

  9. Role of Geological and Geophysical Data in Modeling a Southwestern...

    Open Energy Info (EERE)

    a ground-water flow model of the Animas Valley, southwest New Mexico. Complete Bouguer gravity anomaly maps together with seismic-refraction profiles, geologic maps, geologic,...

  10. Geologic interpretation of gravity and magnetic data in the Salida...

    Open Energy Info (EERE)

    Geologic interpretation of gravity and magnetic data in the Salida region, Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geologic...

  11. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...

    Open Energy Info (EERE)

    GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOLOGY...

  12. UNIVERSITY OF HAWAII AT MANOA DEPARTMENT OF GEOLOGY AND GEOPHYSICS

    E-Print Network [OSTI]

    UNIVERSITY OF HAWAII AT MANOA DEPARTMENT OF GEOLOGY AND GEOPHYSICS Graduate Admissions 1680 East * Geophysics & Tectonics; Marine & Environmental Geology; Planetary Geosciences; Volcanology, Geochemistry

  13. On leakage and seepage from geological carbon sequestration sites

    E-Print Network [OSTI]

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-01-01

    from Geologic Carbon Sequestration Sites Orlando Lawrencefrom Geologic Carbon Sequestration Sites Farrar, C.D. , M.L.1999. Reichle, D. et al. , Carbon sequestration research and

  14. doi: 10.1130/0091-7613(1995)0232.3.CO;2 1995;23;117-120Geology

    E-Print Network [OSTI]

    Johnson, Cari

    1995-01-01

    of Utah, Salt Lake City, Utah 84112 ABSTRACT Many black shales, phosphorites, and cherts that formed such as the Phosphoria sea. INTRODUCTION Ever since plate tectonic theory gained widespread acceptance, earth scientists

  15. Heavy crude and tar sands: Hydrocarbons for the 21st century. Volume 1, Geology, characterization and mining

    SciTech Connect (OSTI)

    Meyer, R.F. [ed.] [Geological Survey, Washington, DC (United States)

    1991-12-31

    Volume 1 is concerned with the geology of the resources and with the mining of those occurring at or near the earth`s surface. The chemical characterization of natural bitumens and heavy oil is the subject of 15 papers. These concentrate on those properties which govern the exploitability and use of these hydrocarbons. Six reports deal with exploration for bitumens and certain aspects of their later development. No less than three of the papers investigate the trace metals and their possible role in comprehending the occurrence of the bitumens and, therefore, the clues they may offer for the location of additional deposits. Another eight reports are concerned directly with the geologic occurrence of specific resource accumulations. These deposits are found in Canada, China, Madagascar, Nigeria, and Venezuela. One report describes a model that may be applied in basin analysis for predicting the composition of heavy oils expelled from the sources rocks of the basin. Additional papers then characterize the resources found in Indonesia, Iran, and the USA. Volume 1 concludes with the reports on the many kinds of bitumen extraction and use. Not only are innovative techniques evolving for the extraction of the material but also for its economic enhancement through the exploitation of coproducts. Ten papers deal with bitumen mining and its present, or prospective, utilization in places like the Mongolia Republic, the State of Utah in the USA, Trinidad in Latin America or Nigeria in Africa. Each paper has been processed separately for the Energy Science and Technology Database.

  16. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    Archer, David

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  17. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    David Archer

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  18. Global Warming in Geologic Time

    ScienceCinema (OSTI)

    David Archer

    2010-01-08

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  19. Page 1 | B.S. in Geology | Academic Plan of Study Updated April 2014 B.S. in Geology

    E-Print Network [OSTI]

    Wang, Yongge

    in topics like sedimentology, structural geology and mineralogy. Extracurricular experiences are important in the subjects of geomorphology, sedimentology, and structural geology. In addition, students at UNC Charlotte

  20. GEOL 102 Historical Geology Exam 1 Review

    E-Print Network [OSTI]

    Holtz Jr., Thomas R.

    & Last Appearance Datum; Zone Other Methods of Stratigraphy Magnetostratigraphy (Chron); Sequence Stratigraphy (Sequence) #12;Geologic Column Chronostratigraphy (Rock) Geochronology (Time) Eonthem Eon Erathem Facies concept Transgressions (onlap sequences) & Regressions (offlap sequences) Sources of coastline

  1. GEOLOGIC NOTE Fault linkage and graben

    E-Print Network [OSTI]

    Fossen, Haakon

    . Schultz $ Geomechanics-Rock Fracture Group, Department of Geological Sciences and Engineering/172 (1982), and his Ph.D. in geomechanics from Purdue University (1987). He worked at the Lunar

  2. Department of Geology & Geophysics University of Hawaii

    E-Print Network [OSTI]

    Department of Geology & Geophysics University of Hawaii THE APPLICATION CHECKLIST SEND THESE ITEMS TO : University of Hawaii Graduate Division Admissions Office 2540 Maile Way, Spalding Hall 354 Honolulu, HI 96822 Original application and fees. http://www.hawaii

  3. 149Department of Geology Graduate Catalogue 201516

    E-Print Network [OSTI]

    , hydro, wind, solar, and geothermal methods, with practical applications. P part time #12;150 Department of planimetric geological maps, profiles and mosaics from vertical photographs using pocket and mirror

  4. 149Department of Geology Graduate Catalogue 201415

    E-Print Network [OSTI]

    , hydro, wind, solar, and geothermal methods, with practical applications. P Part time #12;150 Department of planimetric geological maps, profiles and mosaics from vertical photographs using pocket and mirror

  5. Department of Geological Sciences Postgraduate Handbook 2015

    E-Print Network [OSTI]

    Hickman, Mark

    Field Work and Equipment Costs 18 Careers in Geology 19 Postgraduate Programme 20 Teaching Staff 21 Design your Degree 22 Contact Information Cover Image Drilling Machine called `Sissi', NEAT Gotthard Base

  6. JUDSON MEAD GEOLOGIC FIELD STATION OF INDIANA UNIVERSITY 2013 APPLICATION FOR ADMISSION

    E-Print Network [OSTI]

    Polly, David

    Geology G Structural Geology G Sedimentology/Stratigraphy G Sedimentology/Stratigraphy G Sophomore G

  7. Utah. Code. Ann. § 19-5-115: Spills or discharges of oil or other

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumaty JumpRulesUtah's Public Notice

  8. Utah. Code. Ann. § 19-6-102: Definitions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumaty JumpRulesUtah's Public Notice2:

  9. Utah. Code. Ann. § 19-6-108: New nonhazardous solid or hazardous waste

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumaty JumpRulesUtah's Public

  10. Publications and geothermal sample library facilities of the Earth Science Laboratory, University of Utah Research Institute

    SciTech Connect (OSTI)

    Wright, Phillip M.; Ruth, Kathryn A.; Langton, David R.; Bullett, Michael J.

    1990-03-30

    The Earth Science Laboratory of the University of Utah Research Institute has been involved in research in geothermal exploration and development for the past eleven years. Our work has resulted in the publication of nearly 500 reports, which are listed in this document. Over the years, we have collected drill chip and core samples from more than 180 drill holes in geothermal areas, and most of these samples are available to others for research, exploration and similar purposes. We hope that scientists and engineers involved in industrial geothermal development will find our technology transfer and service efforts helpful.

  11. Long-term surveillance plan for the South Clive disposal site Clive, Utah

    SciTech Connect (OSTI)

    NONE

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. This LSTP describes the long-term surveillance program the DOE will implement to ensure the South Clive disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  12. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-06-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  13. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  14. Beaver County, Utah ASHRAE 169-2006 Climate Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, South Carolina ASHRAEInformationUtah ASHRAE

  15. Industry survey for horizontal wells. Final report

    SciTech Connect (OSTI)

    Wilson, D.D.; Kaback, D.S. [CDM Federal Programs Corp., Denver, CO (United States); Denhan, M.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Watkins, D. [CDM Federal Programs Corp., Aiken, SC (United States)

    1993-07-01

    An international survey of horizontal environmental wells was performed during May and June of 1993. The purpose of the survey was to provide the environmental industry with an inventory of horizontal environmental wells and information pertaining to the extent of the use of horizontal environmental wells, the variety of horizontal environmental well applications, the types of geologic and hydrogeologic conditions within which horizontal environmental wells have been installed, and the companies that perform horizontal environmental well installations. Other information, such as the cost of horizontal environmental well installations and the results of tests performed on the wells, is not complete but is provided as general information with the caveat that the information should not be used to compare drilling companies. The result of the survey is a catalogue of horizontal environmental wells that are categorized by the objective or use of the wells, the vertical depth of the wells, and the drilling company contracted to install the wells.

  16. CRISM: Exploring the Geology of Mars Tech Splash Open Music

    E-Print Network [OSTI]

    CRISM: Exploring the Geology of Mars Tech Splash Open Music Exploring the geology of Mars Marineris simply pulled apart, we would expect the geology on the North and South side of the canyon that make up the rocks. Using the CRISM data we can put together a very simplistic geologic profile

  17. Missouri University of Science and Technology 1 Geology and Geophysics

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    Missouri University of Science and Technology 1 Geology and Geophysics Graduate work in Geology are designed to provide you with an understanding of the fundamentals and principles of geology, geochemistry and Environmental Geochemistry · Mineralogy/Petrology/Economic Geology · Geophysics/Tectonics/Remote Sensing

  18. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­?scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­? specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­?scale analyses is to provide a basis for regional-­?scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­? resolution characterization of a state-­?sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­?scale geology. For the RMCCS project, the outcomes of these local-­?scale studies provide a starting point for future local-­?scale site characterization efforts in the Rocky Mountain region.

  19. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  20. Source document compilation: Los Alamos investigations related to the environment, engineering, geology, and hydrology, 1961--1990. Volume 2

    SciTech Connect (OSTI)

    Purtymun, W.D. [comp.

    1994-03-01

    This document is a compilation of informal reports, letters, and memorandums regarding geologic and hydrologic studies and investigations such as foundation investigations for structures, drilling or coring for environmental studies, development of water supply, or construction of test or observation wells for monitoring. Also included are replies requested for specific environmental, engineering, geologic, and hydrologic problems. The purpose of this document is to preserve and make the original data available to the environmental studies that are now in progress at Los Alamos and provide a reference for and supplement the LAMS report ``Records of Observation Wells, Test Holes, Test Wells, Supply Wells, Springs, and Surface water stations at Los Alamos: with Reference to the Geology and Hydrology,`` which is in preparation. The informal reports and memorandums are listed chronologically from December 1961 to January 1990. Item 208 is a descriptive history of the US Geological Survey`s activities at Los Alamos from 1946 through 1972. The history includes a list of published and unpublished reports that cover geology, hydrology, water supply, waste disposal, and environmental monitoring in the Los Alamos area.

  1. Source document compilation: Los Alamos investigations related to the environment, engineering, geology, and hydrology, 1961--1990. Volume 1

    SciTech Connect (OSTI)

    Purtymun, W.D. [comp.

    1994-03-01

    This document is a compilation of informal reports, letters, and memorandums regarding geologic and hydrologic studies and investigations such as foundation investigations for structures, drilling or coring for environmental studies, development of water supply, or construction of test or observation wells for monitoring. Also included are replies requested for specific environmental, engineering, geologic, and hydrologic problems. The purpose of this document is to preserve and make the original data available to the environmental studies that are now in progress at Los Alamos and provide a reference for and supplement the LAMS report ``Records of Observation Wells, Test Holes, Test Wells, Supply Wells, Springs, and Surface water stations at Los Alamos: with Reference to the Geology and Hydrology,`` which is in preparation. The informal reports and memorandums are listed chronologically from December 1961 to January 1990. Item 208 is a descriptive history of the US Geological Survey`s activities at Los Alamos from 1946 through 1972. The history includes a list of published and unpublished reports that cover geology, hydrology, water supply, waste disposal, and environmental monitoring in the Los Alamos area.

  2. Geology and Geohazards in Taiwan Geologic Field Course and Study Abroad Experience

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Geology and Geohazards in Taiwan Geologic Field Course and Study Abroad Experience Winter Break the tropics over winter break? Sunday, March 2, 14 #12;Contents: The Course Why Taiwan Logistics The Instructors The Cost Comments from 2013 Fact Sheet & Links GEOLOGYANDGEOHAZARDS TAIWAN2013 Sunday, March 2, 14

  3. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  4. USING THE UTAH ENERGY BALANCE SNOW MELT MODEL TO QUANTIFY SNOW AND GLACIER MELT IN THE HIMALAYAN REGION

    E-Print Network [OSTI]

    Tarboton, David

    USING THE UTAH ENERGY BALANCE SNOW MELT MODEL TO QUANTIFY SNOW AND GLACIER MELT IN THE HIMALAYAN of glacier ice as a substrate and generation of melt from the ice substrate when seasonal snow has melted for the entire domain. Therefore, regional variability in snow and glacier melting is computed. Outflow can

  5. How to set up WebAssign The class key for this course is utah 6162 8688

    E-Print Network [OSTI]

    Singh, Anurag

    How to set up WebAssign The class key for this course is utah 6162 8688 What to purchase: The text. Regardless of whether you do this, you must purchase Enhanced WebAssign (EWA), which will be used for homework, and additionally gives you many resources alongside the book. The textbook/WebAssign can

  6. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Alkema, K. [Utah Dept. of Health, Salt Lake City, UT (United States). Environmental Health Div.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  7. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  8. Relationship of compaction bands in Utah to Laramide fault-related folding Richard A. Schultz

    E-Print Network [OSTI]

    Geomechanics--Rock Fracture Group, Department of Geological Sciences and Engineering/172, University of Nevada localization in rock that can impede subsurface uid ow and thus are also important to groundwater and petroleum

  9. Comparison of methods for geologic storage of carbon dioxide in saline formations

    SciTech Connect (OSTI)

    Goodman, Angela L. [U.S. DOE; Bromhal, Grant S. [U.S. DOE; Strazisar, Brian [U.S. DOE; Rodosta, Traci D. [U.S. DOE; Guthrie, William J. [U.S. DOE; Allen, Douglas E. [ORISE; Guthrie, George D. [U.S. DOE

    2013-01-01

    Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

  10. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  11. Lake Survey DETROIT, MICH.

    E-Print Network [OSTI]

    ; · Lake Survey Center DETROIT, MICH. NOAA TM NOS LSC 06 NOAA Technical Memorandum NOS LSC 06 U. S Winter 1971_72 R. A. Ass.,i Lake Survey Center National Ocean Survey, NOAA Detroit, Michigan I ABSTRACT

  12. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

    2010-01-01

    offshore oil production. Geology 27:1047–1050 Shindell DT,between the subsurface geology and gas-phase (methane)emission distribution. Geology and seeps Vertical migration

  13. Kinetics of the Dissolution of Scheelite in Groundwater: Implications for Environmental and Economic Geology

    E-Print Network [OSTI]

    Montgomery, Stephanie Danielle

    2012-01-01

    Tungsten, Its History, Geology, Ore-dressing, Metallurgy,5.1 Implications for Environmental Geology…………………………..26 5.2Implications for Economic Geology………………………………..27 6. Future

  14. 1. Study programme for the Master of Science in Geology, 120 Higher Education Credits, at

    E-Print Network [OSTI]

    geology, paleoecology and paleontology, sedimentology and glacial geology, stratigraphy, geochronology sedimentology ­ processes, sediments and landform systems 2. Quaternary Geology: Paleoecological methods

  15. Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2009-01-01

    to two geologic carbon sequestration sites, Energy Procedia,for Geologic Carbon Sequestration Based on Effectivefor geologic carbon sequestration risk assessment, Energy

  16. Case studies of the application of the Certification Framework to two geologic carbon sequestration sites

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2009-01-01

    from geologic carbon sequestration sites: unsaturated zoneverification of geologic carbon sequestration, Geophys. Res.to two geologic carbon sequestration sites Curtis M.

  17. Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01

    from geologic carbon sequestration sites: unsaturated zone2 from geologic carbon sequestration sites: CO 2 migrationGeologic Carbon Sequestration as a Global Strategy to

  18. Notice to Suppliers Fraudulent Purchase Order Activity via Email or Other The University of Utah Purchasing Department wants to alert suppliers to an active email

    E-Print Network [OSTI]

    Capecchi, Mario R.

    Notice to Suppliers ­ Fraudulent Purchase Order Activity via Email or Other Means The University of Utah Purchasing Department wants to alert suppliers to an active email ordering scam that involves

  19. GEOLOGIC NOTE A simple model of gas

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    GEOLOGIC NOTE A simple model of gas production from hydrofractured horizontal wells in shales Tad Patzek, Frank Male, and Michael Marder ABSTRACT Assessing the production potential of shale gas can a nonlinear initial boundary value problem for transient flow of real gas that may sorb on the rock and solve

  20. Geological and geotechnical databases and developments

    E-Print Network [OSTI]

    Hack, Robert

    in NL - Hack & Tegtmeier 17 Tower of Pisa (trial and error....) Tower of Pisa (photo Pisa, 2006) #12 was adjusted, result: Pisa a leaning curved tower, Delft a leaning bended tower Oude Kerk, Delft, The Netherlands (photo Oude Kerk (Delft), 2006) Tower of Pisa (photo Pisa, 2006) #12;9 October 2007 Geological

  1. GEOL 102: Historical Geology Final Exam Review

    E-Print Network [OSTI]

    Holtz Jr., Thomas R.

    collides with western North America Triassic Climates: Redbeds; Coal Gap; Megamonsoons Tr marine life: Rise patterns of: The Geologic History of major sections of North America (East, Gulf Coast, Midwest plate underneath western North America; standard Andean-style orogeny. Fransiscan mélange; molasse

  2. Geological Society of America 3300 Penrose Place

    E-Print Network [OSTI]

    Rose, William I.

    runoff at Volcán Santiaguito, Guatemala Andrew J.L. Harris* Hawaii Institute of Geophysics-57, Zona 13, Guatemala City, Guatemala Elly Bunzendahl Department of Geological Engineering and Sciences at the Santiaguito dome complex (Guatemala) results in continuous lahar activity and river bed aggradation downstream

  3. 145Department of Geology Graduate Catalogue 201314

    E-Print Network [OSTI]

    Shihadeh, Alan

    . An introduction to seismic, gravity, and magnetic methods and their interpretation procedures and applications and their methods of interpretation. Pre- or corequisites: GEOL 221 and GEOL 222. GEOL 306 Economic Minerals Geology.2; 3 cr. A course on the principles of air photo interpretation and remote sensing; the construction

  4. Geological Society of America Special Paper 255

    E-Print Network [OSTI]

    Hacker, Bradley R.

    Mesozoichigh-pressurerocks in theKlamath Mountains and SierraNevada Bradley R. Hacker* Departmentof Earth and Space, 1990) and tains and easternSierra Nevada attest to convergencebetween B. R. Hacker (unpublished data:Departmentof Geology,StanfordUniversity,Stanford, Nevada. California 94305-2115. Hacker,B.R.,andGoodge,J. W., 1990

  5. Geological Society of America Special Paper 255

    E-Print Network [OSTI]

    Hacker, Bradley R.

    and Trinity terrane of theKlamath Mountains with theFeatherRiver terrane of theSierraNevada Bradley R. Hacker. The California94305-2115. descriptionsof the Central Metamorphic Belt, the Trinity terrane, Hacker, B. R:Boulder, Colorado, Geological Society of America Special Paper255. 75 - #12;76 Hacker and Peacock I and the Feather

  6. Geological Modeling of Dahomey and Liberian Basins 

    E-Print Network [OSTI]

    Gbadamosi, Hakeem B.

    2010-01-16

    in the last 10 years or so. We proposed geological descriptions of these two Basins. The key characteristics of the two models are the presence of channels and pinch-outs for depths of between 1 km and 2 km (these values are rescaled for our numerical purposes...

  7. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-02-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  8. Paleontology and Geology of Indiana Department of Geological Sciences | P. David Polly 1

    E-Print Network [OSTI]

    Polly, David

    . Iowa Tracheophyta (vascular plants) Spores, New Albany Shale Sporing bodies, Dugger Fm. #12;Department (conifers) Walchia, Abo Fm. New Mexico (Permian) #12;Department of Geological Sciences | P. David Polly 5

  9. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01

    GEOLOGICAL FORMATIONS IN UKRAINE D.P. Khrushchov , and V.M.25.1. Subdivision of the Ukraine on conditions of R A Win geological formations. UKRAINE CH. Figure 25.2. Concept

  10. Internal Geology and Evolution of the Redondo Dome, Valles Caldera...

    Open Energy Info (EERE)

    Internal Geology and Evolution of the Redondo Dome, Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Internal Geology...

  11. UNIVERSITY OF HAWAII AT MANOA DEPARTMENT OF GEOLOGY AND GEOPHYSICS

    E-Print Network [OSTI]

    UNIVERSITY OF HAWAII AT MANOA DEPARTMENT OF GEOLOGY AND GEOPHYSICS Graduate Admissions 1680 East's admissibility into the Graduate Program in Geology and Geophysics at the University of Hawaii at Manoa. Strongly

  12. System-level modeling for geological storage of CO2

    E-Print Network [OSTI]

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    of Geologic Storage of CO2, in Carbon Dioxide Capture forFormations - Results from the CO2 Capture Project: GeologicBenson, Process Modeling of CO2 Injection into Natural Gas

  13. Engineering assessment of inactive uranium mill tailings: Mexican Hat site, Mexican Hat, Utah. Summary

    SciTech Connect (OSTI)

    none,

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Mexican Hat site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Mexican Hat, Utah. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.2 million tons of tailings at the Mexican Hat site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $15,200,000 for stabilization in place, to about $45,500,000 for disposal at a distance of about 16 mi. Three principal alternatives for the reprocessing of the Mexican Hat tailings were examined: (a) heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $115/lb of U/sub 3/O/sub 8/ whether by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Mexican Hat tailings for uranium recovery is not economically attractive under present conditions.

  14. Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect (OSTI)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: • Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. • Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. • CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  15. Map of Geologic Sequestration Training and Research Projects

    Broader source: Energy.gov [DOE]

    A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

  16. Risk assessment framework for geologic carbon sequestration sites

    E-Print Network [OSTI]

    Oldenburg, C.

    2010-01-01

    carbon sequestration risk assessment, in Carbon Dioxidecarbon sequestration risk assessment, Energy Procedia,Risk Assessment Framework for Geologic Carbon Sequestration

  17. What can I do with a degree in Geology?

    E-Print Network [OSTI]

    Hickman, Mark

    What can I do with a degree in Geology? Science Planning your career Choosing a career involves.canterbury.ac.nz/liaison/best_prep.shtml What is Geology? Geology in the twenty-first century is a fascinating, exciting,incredibly diverse,earthquakes,dramatic and varied geomorphology,and its 500 million years of pre and post-Gondwana geological history,is one

  18. Assessment of Brine Management for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Breunig, Hanna M.

    2014-01-01

    for  Geologic  Carbon  Sequestration. ”   International  of  Energy.  “Carbon  Sequestration  Atlas  of  the  Water  Extracted  from  Carbon  Sequestration  Projects."  

  19. GEODETIC SURVEY SPECIAL PUBLICATIONS

    E-Print Network [OSTI]

    . SP #4 OUT OF PRINT U.S. COAST AND GEODETIC SURVEY. ... GEODESY. THE TRANSCONTINENTAL TRIANGULATION

  20. STEP Participant Survey Report

    Broader source: Energy.gov [DOE]

    STEP Participant Survey Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  1. Towards Reliable SubDivision of Geological Areas: Interval Approach

    E-Print Network [OSTI]

    Kreinovich, Vladik

    Towards Reliable Sub­Division of Geological Areas: Interval Approach David D. Coblentz 1;2 , Vladik difficult to produce a reliable subdivision. The subdivision of a geological zone into segments is often, and often, we do not have a statistically sufficient amount of thoroughly analyzed geological samples

  2. Towards Reliable SubDivision of Geological Areas: Interval Approach

    E-Print Network [OSTI]

    Kreinovich, Vladik

    Towards Reliable Sub­Division of Geological Areas: Interval Approach David D. Coblentz 1;2 , Vladik Difficult to Produce a Reliable Subdivision The subdivision of a geological zone into segments is often the area, and often, we do not have a statistically sufficient amount of thoroughly analyzed geological

  3. The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage

    E-Print Network [OSTI]

    The Subsurface Fluid Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski S Mechanics of Geologic Carbon Dioxide Storage by Michael Lawrence Szulczewski Submitted to the Department capture and storage (CCS), CO2 is captured at power plants and then injected into deep geologic reservoirs

  4. Lab 4: Plate Tectonics Locating Geologic Hazards Introduction

    E-Print Network [OSTI]

    Chen, Po

    1 Lab 4: Plate Tectonics ­ Locating Geologic Hazards Introduction The likelihood of major geologic hazards associated with the lithosphere, such as earthquakes and volcanoes, is not uniform around provides a ready explanation for the distribution of these types of geologic hazards. It is useful

  5. Wednesday, March 25, 2009 VENUS GEOLOGY, VOLCANISM, TECTONICS, AND RESURFACING

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Wednesday, March 25, 2009 VENUS GEOLOGY, VOLCANISM, TECTONICS, AND RESURFACING 3:00 p.m. Waterway. The Geological History of Venus: Constraints from Buffered Crater Densities [#1096] We apply buffered crater density technique to a new global geological map of Venus (Ivanov, 2008) and obtain robust constraints

  6. One-Year Term Position Department of Geology

    E-Print Network [OSTI]

    POSITION VACANCY One-Year Term Position Department of Geology Brandon University is a leader are invited for a one-year term sabbatical replacement position in the Department of Geology, effective August) in Geology. Experience in undergraduate teaching would be an asset. Teaching responsibilities: The ideal

  7. Semantic e-Science and Geology Clinton Smyth1

    E-Print Network [OSTI]

    Poole, David

    Semantic e-Science and Geology Clinton Smyth1 , David Poole2 and Rita Sharma3 1 Georeference Online@cs.ubc.ca Abstract e-Science, as implemented for the study of geology with Geographic Information Systems over the Internet, has highlighted the need for standardization in the semantics of geology, and stimulated

  8. MAJOR TO CAREER GUIDE B.S. Geology

    E-Print Network [OSTI]

    Walker, Lawrence R.

    MAJOR TO CAREER GUIDE B.S. Geology College of Sciences geoscience.unlv.edu/ Mission of the College: MPE-A 130 www.unlv.edu/sciences/advising About the Geology Career Geoscientists are stewards understanding of Earth processes and history. Value of the Geology Degree Opportunities for interesting

  9. CHAPTER II GEOLOGY Blank page retained for pagination

    E-Print Network [OSTI]

    CHAPTER II GEOLOGY #12;Blank page retained for pagination #12;SHORELINES AND COASTS OF THE GULF or discordant with the grain (dominant trend) of the geologic structures of a coastal regi?n, but King (1942, pIOnal geology, geomorphology, sedimentation, oceanography of the inshore zone, meteorology, climatology, biol

  10. Geology and Geophysics College of Science code-BS

    E-Print Network [OSTI]

    Kihara, Daisuke

    Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Professional Elective (3xxxx and above) (6) EAPS 49000 Geology Field Experience (summer) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics Fall 2015 Department of Earth, Atmospheric, and Planetary

  11. Geology and Geophysics College of Science code-BS

    E-Print Network [OSTI]

    Kihara, Daisuke

    Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Geology Field Experience (summer) (3) Science/Engineering Elective (2xxxx or above) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics http

  12. State of Oregon Department of Geology and Mineral Industries

    E-Print Network [OSTI]

    Goldfinger, Chris

    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist A ND M INERALINDUSTRIES 1937 2009 1 Oregon Department of Geology and Mineral Industries, Coastal Field Department of Geology and Mineral Industries Special Paper 41 Published in conformance with ORS 516

  13. SAN DIEGO STATE UNIVERSITY GEOL 508 Advanced Field Geology

    E-Print Network [OSTI]

    Kimbrough, David L.

    SAN DIEGO STATE UNIVERSITY GEOL 508 Advanced Field Geology Course Syllabus Spring 2011 Instructor: Professor David L. Kimbrough email: dkimbrough@geology.sdsu.edu, Phone: 594-1385 Office: GMCS-229A; Office Necessary: Field notebook similar to "Rite in the Rain" all-weather Geological Field Book No., 540F J

  14. University of North Carolina Wilmington Master of Science in Geology

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    University of North Carolina Wilmington Master of Science in Geology Department of Geography & Geology Program Review 2001-2007 Self-Study December 2007 Self-Study Program Review Committee: Richard Laws, Chair Nancy Grindlay, Geology Graduate Coordinator Doug Gamble, Eric Henry, John Huntsman

  15. State of Oregon Department of Geology and Mineral Industries

    E-Print Network [OSTI]

    Goldfinger, Chris

    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist Open-File Report O-08-14 PRELIMINARY GEOLOGIC MAPS OF THE CORVALLIS, WREN, AND MARYS PEAK 7 G Y A ND M INERALINDUSTRIES 1937 2008 1 Oregon Department of Geology and Mineral Industries, Grants

  16. GEOLOGY, B.A. (Fall 2015-Summer 2016)

    E-Print Network [OSTI]

    Hamburger, Peter

    GEOLOGY, B.A. (Fall 2015-Summer 2016) IPFW Residency Requirements: ____ 32 credits at 200 level credits 300­400 level ____2.0 GPA Degree/Major/Gen Ed ____C- or above in Major/Gen Ed GEOLOGY BA CORE in Geology or Geography with Laboratory (Select 1 of the following): ___3 GEOL G103 Earth Science: Materials

  17. Geology and Geophysics College of Science code-BS

    E-Print Network [OSTI]

    Kihara, Daisuke

    Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Professional Elective (3xxxx and above) (6) EAPS 49000 Geology Field Experience (summer) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics Fall 2014 Department of Earth, Atmospheric, and Planetary

  18. UNLV B.S. Geology 2008-2010 Catalog

    E-Print Network [OSTI]

    Walker, Lawrence R.

    UNLV B.S. Geology 2008-2010 Catalog Log-in to your student account at UNLV to access your: required ONLY to reach 124 total credits (these can be ANY 100-400 level courses offered at UNLV) Geology Major Requirements: Minimum grade C or better Geology Core Course Requirements GEOL 101/101D Intro

  19. Inverse Modelling in Geology by Interactive Evolutionary Computation

    E-Print Network [OSTI]

    Boschetti, Fabio

    Inverse Modelling in Geology by Interactive Evolutionary Computation Chris Wijns a,b,, Fabio of geological processes, in the absence of established numerical criteria to act as inversion targets, requires evolutionary computation provides for the inclusion of qualitative geological expertise within a rigorous

  20. Geological and mathematical framework for failure modes in granular rock

    E-Print Network [OSTI]

    Borja, Ronaldo I.

    Geological and mathematical framework for failure modes in granular rock Atilla Aydina, *, Ronaldo I. Borjab , Peter Eichhubla,1 a Department of Geological and Environmental Sciences, Stanford processes in granular rock and provide a geological framework for the corresponding structures. We describe