National Library of Energy BETA

Sample records for utah colorado north

  1. Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Utah (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Utah

  2. Colorado Natural Gas Processed in Utah (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Utah (Million Cubic Feet) Colorado Natural Gas Processed in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 286 3,677 4,194 3,499 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Colorado-Utah

  3. Enel North America Utah Geothermal Working Group Meeting | Open...

    Open Energy Info (EERE)

    America Utah Geothermal Working Group Meeting Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Enel North America Utah Geothermal Working Group Meeting...

  4. Colorado

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado

  5. Davis County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah Fruit Heights, Utah Kaysville, Utah Layton, Utah North Salt Lake, Utah South Weber, Utah Sunset, Utah Syracuse, Utah West Bountiful, Utah West Point, Utah Woods Cross,...

  6. National Uranium Resource Evaluation: Moab Quadrangle, Colorado and Utah

    SciTech Connect (OSTI)

    Campbell, J.A.; Franczyk, K.J.; Lupe, R.D.; Peterson, F.

    1982-09-01

    Portions of the Salt Wash Member of the Morrison, the Chinle, the Rico, the Cutler, and the Entrada Formations are favorable for uranium deposits that meet the minimum size and grade requirements of the US Department of Energy within the Moab 1' x 2' Quadrangle, Utah and Colorado. Nine areas are judged favorable for the Late Jurassic Salt Wash Member. The criteria used to evaluate these areas as favorable include the presence of (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Three favorable areas have been outlined for the Late Triassic Chinle Formation. The criteria used to evaluate these areas are the sandstone-to-shale ratios for the Chinle Formation and the distribution of the Petrified Forest Member of the Chinle, which is considered the source for the uranium. Two favorable areas have been delineated for the Permian Cutler Formation, and one for the Permian Rico Formation. The criteria used to outline favorable areas are the distribution of favorable facies within each formation. Favorable facies are those that are a result of deposition in environments that are transitional between fluvial and marine. One favorable area is outlined in the Jurassic Entrada Sandstone in the southeastern corner of the quadrangle in the Placerville district. Boundaries for this area were established by geologic mapping.

  7. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    SciTech Connect (OSTI)

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  8. Longwall mining thrives in Colorado's North Fork Valley

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2006-08-15

    With mining units poised for record-setting capacity and rail service restored, these mines in Colorado's North Fork valley are ready to cut coal. 4 photos.

  9. EIS-0450: TransWest Express Transmission Project; Wyoming, Colorado, Utah, and Nevada

    Broader source: Energy.gov [DOE]

    This EIS, prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Bureau of Land Management (Wyoming State Office), evaluates the potential environmental impacts of granting a right-of-way for the TransWest Express Transmission Project and amending a land use plan. The project consists of an overhead transmission line that would extend approximately 725 miles from south-central Wyoming, through Colorado and Utah. Western proposes to be a joint owner of the project.

  10. North Washington, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. North Washington is a census-designated place in Adams County, Colorado.1 References US Census Bureau 2005 Place to 2006 CBSA Retrieved...

  11. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  12. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses

  13. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar

  14. EIS-0442: Reauthorization of Permits, Maintenance, and Vegetation Management on Western Area Power Administration Transmission Lines on Forest Service Lands, Colorado, Nebraska, and Utah

    Broader source: Energy.gov [DOE]

    This EIS is being prepared jointly by DOE’s Western Area Power Administration and the U.S. Forest Service. The EIS evaluates the potential environmental impacts of Western’s proposed changes to vegetation management along its transmission line rights-of-way on National Forest System lands in Colorado, Utah, and Nebraska.

  15. The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents

    SciTech Connect (OSTI)

    Thomas Chidsey

    2008-09-30

    The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted

  16. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  17. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on the fishes of the Green River, Utah and Colorado

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Hayse, J.W.

    1995-09-01

    Aerial videography and modeling were used to evaluate the impacts of four hydropower operational scenarios at Flaming Gorge Dam, Utah, on trout and native fishes in the Green River, Utah and Colorado. The four operational scenarios studied were year-round high fluctuations, seasonally adjusted high fluctuations, seasonally adjusted moderate fluctuations, and seasonally adjusted steady flows. Impacts on trout were evaluated by examining differences among scenarios in the areas of inundated substrates that serve as spawning and feeding habitat. All scenarios would provide at least 23 acres per mile of habitat for spawning and food production; seasonally adjusted operations would provide additional areas during periods of sustained high release. Seasonally adjusted high fluctuations would increase inundated areas by 12 to 26% for a short period in winter and spring, but food production and reproduction would not be expected to increase. Seasonally adjusted moderate fluctuations and steady flows would produce similar increases in area, but the longer period of inundation could also result in increased food production and provide additional spawning sites for trout. Impacts on native fishes were assessed by examining daily changes in backwater nursery areas. Compared with year-round high fluctuations, the daily changes in backwater area would decrease by about 47, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. Similarly, daily stage fluctuations during the nursery period would decrease by 72, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. These reductions in daily fluctuations in backwater area and stage would improve conditions in nursery habitats and could in turn improve recruitment and overwinter survival. Introduced fish species could also benefit from the seasonally adjusted operational scenarios.

  18. Survey of literature relating to energy development in Utah's Colorado Plateau

    SciTech Connect (OSTI)

    Larsen, A.

    1980-06-01

    This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

  19. First North American longwall in pitching seams proven feasible. [Colorado

    SciTech Connect (OSTI)

    Reynolds, J.F.

    1983-12-01

    There are 1.4 Gt (1.5 billion st) of recoverable coal under less than 914 m (3,000 ft) of cover in Colorado in pitching seams. Snowmass Coal Co., in cooperation with the US Department of Energy, introduced the longwall mining method in pitching seams to North America. This venture is a coal mining research program directed toward the profitable production of coal under difficult mining conditions as found in pitching seams of the western US. Snowmass Coal classifies pitching seams into the following categories for longwall on the strike in seams 3 m (10 ft) or less thick: Flat = 0 to 10/sup 0/: Normal continuous mines and shuttle cars work efficiently. Slight = 10/sup 0/ to 22/sup 0/: The maximum pitch that rubber tired equipment will function. Moderate = 22/sup 0/ to 40/sup 0/: The angle of repose of mined coal. Steep = 40/sup 0/ to 60/sup 0/: The limit of safe use of this roof support. Vertical = over 60/sup 0/. The longwall roof support covered here will work in all pitches except vertical. The shearer and conveyor will work in flat through moderate conditions. Longwalling across strike with this equipment in seam pitch over 60/sup 0/ could be accomplished with an inclined face. Development of the first longwall panel began in 1979 and was completed in 1981. The longwall equipment was installed and mining began on Aug. 11, 1981. Snowmass' performance shows that the capacity of a longwall operating on moderate pitch, up to 45/sup 0/, should be the same as a flat seam longwall. With equipment now available, pitching seam longwall is not only feasible, but cost competitive. The actual roof support method of troika concept has excellent maneuverability, good support, and low maintenance. The shearer has proven power to operate on moderate pitching seams.

  20. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on riparian vegetation of the Green River, Utah and Colorado

    SciTech Connect (OSTI)

    LaGory, K.E.; Van Lonkhuyzen, R.A.

    1995-06-01

    Four hydropower operational scenarios at Flaming Gorge Dam were evaluated to determine their potential effects on riparian vegetation along the Green River in Utah and Colorado. Data collected in June 1992 indicated that elevation above the river had the largest influence on plant distribution. A lower riparian zone occupied the area between the approximate elevations of 800 and 4,200-cfs flows--the area within the range of hydropower operational releases. The lower zone was dominated by wetland plants such as cattail, common spikerush, coyote willow, juncus, and carex. An upper riparian zone was above the elevation of historical maximum power plant releases from the dam (4,200 cfs), and it generally supported plants adapted to mesic, nonwetland conditions. Common species in the upper zone included box elder, rabbitbrush, grasses, golden aster, and scouring rush. Multispectral aerial videography of the Green River was collected in May and June 1992 to determine the relationship between flow and the areas of water and the riparian zone. From these relationships, it was estimated that the upper zone would decrease in extent by about 5% with year-round high fluctuation, seasonally adjusted high fluctuation, and seasonally adjusted moderate fluctuation, but it would increase by about 8% under seasonally adjusted steady flow. The lower zone would increase by about 13% for both year-round and seasonally adjusted high fluctuation scenarios but would decrease by about 40% and 74% for seasonally adjusted moderate fluctuation and steady flows, respectively. These changes are considered to be relatively minor and would leave pre-dam riparian vegetation unaffected. Occasional high releases above power plant capacity would be needed for long-term maintenance of this relict vegetation.

  1. Utah Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy Corp., and the Utah Municipal Power Association's Cove Fort Station, which is located north of Beaver, Utah. Photo of the Bud L. Bonnett Geothermal Plant in Cove Fort Sulphurdale, UT

  2. EIS-0370: Windy Gap Firming Project; North Central Colorado

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Department of the Interior (Bureau of Reclamation, Great Plains Region), with DOE's Western Area Power Administration as a cooperating agency, evaluates the environmental impacts of a proposal to construct new water storage reservoir capacity southwest of Loveland, Colorado. Western has jurisdiction over the transmission line that would be relocated if the proposed action is implemented and would market additional power that may be generated as a result of the project.

  3. Utah Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Logo: Utah Geological Survey Name: Utah Geological Survey Address: 1594 W. North Temple Place: Salt Lake City, Utah Zip: 84114-6100 Phone Number: 801.537.3300 Website:...

  4. GEOPHYSICAL WELL LOG/CORE DESCRIPTIONS, CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  5. CROSS SECTIONS AND FIELD MAPS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; Craig D. Morgan; Kevin McClure; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  6. POROSITY/PERMEABILITY CROSS-PLOTS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  7. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay

  8. Uinta Arch Project: investigations of uranium potential in Precambrian X and older metasedimentary rocks in the Unita and Wasatch ranges, Utah and Colorado

    SciTech Connect (OSTI)

    Graff, P.J.; Sears, J.W.; Holden, G.S.

    1980-06-01

    This study is part of the United States Department of Energy's National Uranium Resource Evaluation Program to understand the geologic setting, amount, and availability of uranium resources within the boundaries of the United States. The systematic study of Precambrian quartz-pebble conglomerates and areas that may contain such conglomerates is an integral part of DOE's resource evaluation program, because deposits of world-wide importance occur in such terrains in Canada and South Africa, and because terrains similar to those producing uranium from quartz-pebble conglomerates exist elsewhere in the United States. Because of the ready availability of Tertiary sandstone and Colorado Plateau-type uranium deposits, large areas of Precambrian rocks in the US have not been fully assessed for uranium potential. Thus, the Uinta Arch Project was undertaken to assess the favorability of Precambrian metasedimentary rocks in northern Utah for deposits of uranium in Precambrian quartz-pebble conglomerates. Rocks of interest to this study are the thick, clastic sequences within the Uinta Arch that are considered to be of Early Proterozoic age. The Uinta Arch area is known to contain rocks which generally fit the lithologic characteristics that are understood to limit the occurrence of Precambrian fossil placers. However, detailed geology of these rocks and their exact fit to the model described for uraniferous conglomerates was not known. The primary goal of the Uinta Arch Project was to determine how well these Precambrian rocks resemble known deposits and to describe the favorability of placer uranium deposits.

  9. Utah State Parks and Recreation | Open Energy Information

    Open Energy Info (EERE)

    Recreation Jump to: navigation, search Name: Utah State Parks and Recreation Address: 1594 W North Temple, Suite 116 Place: Salt Lake City, Utah Zip: 84116 Phone Number:...

  10. Utah Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Board Jump to: navigation, search Name: Utah Oil and Gas Board Address: 1594 West North Temple Place: Utah Zip: 84116 Website: oilgas.ogm.utah.gov Coordinates: 40.7721389,...

  11. Colorado - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Colorado

  12. Colorado - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Colorado

  13. Colorado - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Colorado

  14. Reconnaissance of the hydrothermal resources of Utah

    SciTech Connect (OSTI)

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  15. Public Involvment Plan - Rifle, Colorado

    Office of Legacy Management (LM)

    ... Atomic Energy Commission (AEC) records from 1947 to 1958 show that 761,000 tons of ore ... that included the upgrading facilities at Slick Rock, Colorado, and Green River, Utah. ...

  16. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  17. Sidney-North Yuma 230-kV Transmission Line Project, Colorado and Nebraska

    SciTech Connect (OSTI)

    Not Available

    1991-06-01

    This report describes the need for a 230-kV overhead transmission line to supply power from Sidney, Nebraska to eastern Colorado. The alternative scenario compared to construction of the line is No Action. Rejected alternatives include underground lines and different routing paths, with a possible extension to the Sterling area. Both scenarios are evaluated for environmental effects, cost, and consequences for the eastern Colorado region. The proposed route is determined to be the environmentally preferred choice. 120 refs., 6 figs., 13 tabs. (MHB)

  18. Utah Division of Wildlife Resources | Open Energy Information

    Open Energy Info (EERE)

    Name: Utah Division of Wildlife Resources Address: 1594 W North Temple, Suite 2110, Box 146301 Place: Salt Lake City, Utah Zip: 84114-6301 Phone Number: 801-538-4745 Website:...

  19. Utah Division of Forestry, Fire and State Lands | Open Energy...

    Open Energy Info (EERE)

    of Forestry, Fire and State Lands Address: 1594 W. North Temple, Ste 3520 Place: Salt Lake City, Utah Zip: 84114-5703 Phone Number: 801.538.5555 Website: forestry.utah.gov...

  20. Utah Division of Water Rights | Open Energy Information

    Open Energy Info (EERE)

    Name: Utah Division of Water Rights Address: 1594 West North Temple, Suite 220 Place: Salt Lake City, Utah Zip: 84114-6300 Phone Number: 801.538.7240 Website:...

  1. EA-2008: Colorado River Storage Project Programmatic Operations and Maintenance Project; Coconino, Maricopa, Navajo, and Yavapai Counties (Arizona) and San Juan County (Utah)

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of Western’s programmatic operations and management (O&M) process and an integrated vegetation management (IVM) program on the Colorado River Storage Project System. O&M activities would consist of aerial and ground patrols, regular and preventive maintenance, inspections and repairs, and road repair. The IVM program would remove vegetation to protect facilities from fire, control the spread of noxious weeds to protect environmental quality, establish and maintain stable, low-growing plant communities in the ROW, and activities for public and worker safety around transmission lines and other facilities.

  2. DOE/EA-2008: Colorado River Storage Project Programmatic Operations and Maintenance Project; Coconino, Maricopa, Navajo, and Yavapai Counties (Arizona) and San Juan County (Utah)

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of Westerns programmatic operations and management (O&M) process and an integrated vegetation management (IVM) program on the Colorado River Storage Project System. O&M activities would consist of aerial and ground patrols, regular and preventive maintenance, inspections and repairs, and road repair. The IVM program would remove vegetation to protect facilities from fire, control the spread of noxious weeds to protect environmental quality, establish and maintain stable, low-growing plant communities in the ROW, and activities for public and worker safety around transmission lines and other facilities.

  3. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect (OSTI)

    Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.

    2002-07-24

    This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells.

  4. Effects of Flaming Gorge Dam hydropower operations on sediment transport in the Browns Park reach of the Green River, Utah and Colorado

    SciTech Connect (OSTI)

    Williams, G.P.; Tomasko, D.; Cho, H.E.; Yin, S.C.L.

    1995-05-01

    Three methods for comparing sediment transport were applied to four proposed hydropower operational scenarios under study for Flaming Gorge Dam on the Green River in Utah. These methods were effective discharge, equilibrium potential, and cumulative sediment load with flow exceedance plots. Sediment loads transported by the Green River in the Browns Park reach were calculated with the Engelund-Hansen equation for three historical water years and four hydropower operational scenarios. A model based on the Engelund-Hansen equation was developed using site-specific information and validated by comparing predictions for a moderate water year with measured historical values. The three methods were used to assess the impacts of hydropower operational scenarios on sediment resources. The cumulative sediment load method provided the most useful information for impact evaluation. Effective discharge was not a useful tool because of the limited number of discrete flows associated with synthetic hydrographs for the hydropower operational scenarios. The equilibrium potential method was relatively insensitive to the variations in operating conditions, rendering it comparatively ineffective for impact evaluation.

  5. Emery County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Clawson, Utah Cleveland, Utah Elmo, Utah Emery, Utah Ferron, Utah Green River, Utah Huntington, Utah Orangeville, Utah Retrieved from "http:en.openei.orgwindex.php?titleEmery...

  6. Wasatch County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Green Joules Pan Am Biofuels Inc Places in Wasatch County, Utah Charleston, Utah Daniel, Utah Heber, Utah Midway, Utah Park City, Utah Timber Lakes, Utah Wallsburg, Utah...

  7. Milford, Utah FORGE Logo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logo Milford, Utah FORGE Logo Milford, Utah FORGE Logo More Documents & Publications Milford, Utah FORGE Logo Milford, Utah FORGE Map Milford, Utah FORGE Logo West Flank FORGE Logo ...

  8. Milford, Utah FORGE Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milford, Utah FORGE Map More Documents & Publications Milford, Utah FORGE Map Milford, Utah FORGE Logo Milford, Utah FORGE Map Newberry FORGE Map Milford, Utah FORGE Map Fallon ...

  9. Weld County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colorado Hudson, Colorado Johnstown, Colorado Keenesburg, Colorado Kersey, Colorado La Salle, Colorado Lochbuie, Colorado Longmont, Colorado Mead, Colorado Milliken, Colorado...

  10. DOE Issues Final Environmental Impact Statement for Moab, Utah Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Environmental Impact Statement for Moab, Utah Site DOE Issues Final Environmental Impact Statement for Moab, Utah Site July 25, 2005 - 2:27pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued its final environmental impact statement (EIS) for the Moab Uranium Mill Tailings Remedial Action Project Site, located on the bank of the Colorado River. The EIS details the preferred option of removal of the tailings pile and contaminated materials, along

  11. Colorado-Utah Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    286 3,677 4,194 3,499 2011-2014 Total Liquids Extracted (Thousand Barrels) 205 34 25 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 34

  12. Colorado-Utah Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    86 3,677 4,194 3,499 2011-2014 Total Liquids Extracted (Thousand Barrels) 205 34 25 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 34

  13. Cache County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype B. Places in Cache County, Utah Amalga, Utah Avon, Utah Benson, Utah Cache, Utah Clarkston, Utah Cornish, Utah Cove, Utah Hyde Park, Utah...

  14. Larimer County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colorado Fort Collins, Colorado Johnstown, Colorado Laporte, Colorado Loveland, Colorado Red Feather Lakes, Colorado Timnath, Colorado Wellington, Colorado Windsor, Colorado...

  15. Boulder County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colorado Boulder, Colorado Eldora, Colorado Eldorado Springs, Colorado Erie, Colorado Gold Hill, Colorado Gunbarrel, Colorado Jamestown, Colorado Lafayette, Colorado Longmont,...

  16. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  17. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

    2003-07-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall

  18. Rulison, Colorado, Site Fact Sheet

    Office of Legacy Management (LM)

    4 Fact Sheet This fact sheet provides information about the Rulison, Colorado, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Rulison, Colorado, Site Location of the Rulison, Colorado, Site Site Description and History The Rulison site is located 8,154 feet above sea level on the north fank of Battlement Mesa in western Colorado, approximately 12 miles southwest of the town of Rife and 8 miles southeast of the town of Parachute. On September 10, 1969,

  19. Colorado Electrical Transmission Grid

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  20. Colorado Regional Faults

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  1. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the

  2. Geothermal Prospects in Colorado

    Broader source: Energy.gov [DOE]

    Geothermal Prospects in Colorado presentation at the April 2013 peer review meeting held in Denver, Colorado.

  3. Juab County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 5 Climate Zone Subtype B. Places in Juab County, Utah Eureka, Utah Levan, Utah Mona, Utah Nephi, Utah Rocky Ridge, Utah Santaquin, Utah Retrieved...

  4. Colorado Potential Geothermal Pathways

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  5. Utah Department of Commerce | Open Energy Information

    Open Energy Info (EERE)

    Commerce Jump to: navigation, search Name: Utah Department of Commerce Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111 References: Utah Commerce Website1 This...

  6. Radiological survey of the inactive uranium-mill tailings at Durango, Colorado

    SciTech Connect (OSTI)

    Haywood, F.F.; Perdue, P.T.; Shinpaugh, W.H.; Ellis, B.S.; Chou, K.D.

    1980-03-01

    Results of a radiological survey of the inactive uranium-mill site at Durango, Colorado, conducted in April 1976, in cooperation with a team from Ford, Bacon and Davis Utah Inc., are presented together with descriptions of the instruments and techniques used to obtain the data. Direct above-ground gamma measurements and analysis of surface soil and sediment samples indicate movement of tailings from the piles toward Lightner Creek on the north and the Animas River on the east side of the piles. The concentration of /sup 226/Ra in the former raffinate pond area is only slightly above the background level. Two structures in Durango were found to contain high concentrations of airborne radon daughters, where tailings are known to have been utilized in construction. Near-background concentrations of radon daughters were found in a well-ventilated building close to the tailings.

  7. BLM Utah State Office | Open Energy Information

    Open Energy Info (EERE)

    Utah State Office Jump to: navigation, search Logo: BLM Utah State Office Name: BLM Utah State Office Abbreviation: Utah Address: 440 West 200 South, Suite 500 Place: Salt Lake...

  8. Field Projects: Monticello, Utah

    Broader source: Energy.gov [DOE]

    A permeable reactive barrier (PRB) of zero-valent iron is helping to clean up groundwater at a former uranium and vanadium ore processing mill at Monticello, Utah. LM managed remediation of...

  9. Utah_cm_smith

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cindy and Mack Smith Site - Utah Wind Anemometer Loan Program Latitude: N. 37 deg. 44.034' Longitude: W. 109 deg. 17.28' Elevation: 6762' Placed in service: November 21, 2002...

  10. DOE - Office of Legacy Management -- Utah

    Office of Legacy Management (LM)

    Utah Utah ut_map Green River Site Mexican Hat Site Monticello Site Salt Lake City Sites (2)

  11. Douglas County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Estates, Colorado Highlands Ranch, Colorado Larkspur, Colorado Littleton, Colorado Lone Tree, Colorado Louviers, Colorado Meridian, Colorado Parker, Colorado Perry Park, Colorado...

  12. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  13. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  14. Colorado Energy Office: Colorado Small Hydropower Handbook |...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Colorado Energy Office: Colorado Small Hydropower HandbookPermitting...

  15. Utah DEQ Air Permitting Branch Webpage | Open Energy Information

    Open Energy Info (EERE)

    link for Utah DEQ Air Permitting Branch Webpage Citation Utah Department of Environmental Quality. Utah DEQ Air Permitting Branch Webpage Internet. State of Utah. cited 201411...

  16. Utah Air Guidance Documents Webpage | Open Energy Information

    Open Energy Info (EERE)

    link for Utah Air Guidance Documents Webpage Citation Utah Department of Environmental Quality. Utah Air Guidance Documents Webpage Internet. State of Utah. cited 201411...

  17. Beaver County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Facility Blundell 2 Geothermal Facility Places in Beaver County, Utah Beaver, Utah Milford, Utah Minersville, Utah Retrieved from "http:en.openei.orgwindex.php?titleBeaver...

  18. Washington County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype B. Registered Energy Companies in Washington County, Utah Verdi Energy Group Places in Washington County, Utah Apple Valley, Utah Enterprise, Utah...

  19. Utah + workshop + GRR | OpenEI Community

    Open Energy Info (EERE)

    2012 - 14:45 Utah Meeting 1 Utah + workshop + GRR On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting flowcharts developed...

  20. Draper, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Draper is a city in Salt Lake County and Utah County, Utah. It falls under Utah's 2nd congressional...

  1. Utah DEQ Website | Open Energy Information

    Open Energy Info (EERE)

    Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Website Author Utah Department of Environmental Quality Published Utah Department of...

  2. Utah's Public Notice Website | Open Energy Information

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah's Public Notice Website Citation Utah.gov. Utah's Public Notice Website...

  3. Green Colorado Credit Reserve

    Broader source: Energy.gov [DOE]

    The Green Colorado Credit Reserve (GCCR) is a loan loss reserve that was created by the Colorado Energy Office (CEO) to incentivize private lenders in Colorado to make small commercial loans up to ...

  4. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop

  5. University of Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Utah University of Utah FORGE logos 010416-06.jpg The Milford, Utah FORGE team, led by the University of Utah - Energy & Geoscience Institute (EGI), has identified a location where they propose to establish a geothermal laboratory. The proposed area has an established history of geothermal research and development, with a vast set of data from exploration wells and seismic stations that will help the Milford, Utah FORGE team characterize their potential site. The Milford, Utah

  6. Major Oil Plays in Utah and Vicinity

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed

  7. Utah Solar Outlook March 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  8. Utah/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    UtahWind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >>...

  9. Utah Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    Municipal Power Agency Place: Utah Phone Number: (801) 798-7489 Website: www.umpa.cc Facebook: https:www.facebook.compagesUtah-Municipal-Power-Agency152219714819535 Outage...

  10. Utah/Incentives | Open Energy Information

    Open Energy Info (EERE)

    RecruitmentSupport Yes City of St. George - Energy Efficient Homes Rebate Program (Utah) Utility Rebate Program No City of St. George - Energy Star Appliance Rebate Program (Utah)...

  11. Utah Code Annotated | Open Energy Information

    Open Energy Info (EERE)

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  12. Orem, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah's 3rd congressional district.12 Registered Energy Companies in Orem, Utah Better Biodiesel Domestic Energy Partners Trulite Inc References US Census Bureau...

  13. Lehi, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Utah's 3rd congressional district.12 Registered Energy Companies in Lehi, Utah Tasco Engineering Inc References US Census Bureau Incorporated place and minor civil...

  14. Colorado: Colorado's Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Colorado.

  15. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  16. Colorado School of Mines - Colorado Energy Research Institute...

    Open Energy Info (EERE)

    Mines - Colorado Energy Research Institute Jump to: navigation, search Name: Colorado School of Mines - Colorado Energy Research Institute Address: 1500 Illinois Street Place:...

  17. City of Colorado Springs, Colorado (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    from Colorado Springs Utilities) Jump to: navigation, search Name: Colorado Springs City of Place: Colorado Phone Number: 719-448-4800 Website: www.csu.orgPagesresidential....

  18. Eagle County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colorado Edwards, Colorado El Jebel, Colorado Gypsum, Colorado Minturn, Colorado Red Cliff, Colorado Vail, Colorado Retrieved from "http:en.openei.orgw...

  19. Las Animas County, Colorado: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    in Las Animas County, Colorado Aguilar, Colorado Branson, Colorado Cokedale, Colorado Kim, Colorado Starkville, Colorado Trinidad, Colorado Retrieved from "http:en.openei.org...

  20. Utah/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    info@distributedwind.org Distributed Wind Energy Association Utah Wind Resources Utah Office of Energy Development: Wind Energy Information AWEA State Wind Energy Statistics: Utah...

  1. Utah - UAC R907-1 - Utah Administrative Procedures | Open Energy...

    Open Energy Info (EERE)

    07-1 - Utah Administrative Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Utah - UAC R907-1 - Utah...

  2. Annotated geothermal bibliography of Utah

    SciTech Connect (OSTI)

    Budding, K.E.; Bugden, M.H.

    1986-01-01

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  3. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  4. RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    Utah < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationUtah) Redirect page Jump to: navigation, search REDIRECT...

  5. Saguache County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Saguache County, Colorado Bonanza, Colorado Center, Colorado Crestone, Colorado Moffat, Colorado Saguache, Colorado Retrieved from "http:en.openei.orgw...

  6. Prowers County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Colorado Granada, Colorado Hartman, Colorado Holly, Colorado Lamar, Colorado Wiley, Colorado Retrieved from "http:en.openei.orgwindex.php?titleProwersCounty,Color...

  7. Biofuels of Colorado LLC | Open Energy Information

    Open Energy Info (EERE)

    of Colorado LLC Jump to: navigation, search Name: Biofuels of Colorado LLC Place: Denver, Colorado Zip: 80216 Product: Biodiesel producer in Denver, Colorado. References: Biofuels...

  8. University of Colorado | Open Energy Information

    Open Energy Info (EERE)

    Colorado Jump to: navigation, search Name: University of Colorado Place: Boulder, Colorado Zip: 80309 Product: A public university in Colorado. Coordinates: 42.74962,...

  9. Colorado Ground Water Commission | Open Energy Information

    Open Energy Info (EERE)

    Colorado Ground Water Commission Jump to: navigation, search Name: Colorado Ground Water Commission Place: Colorado Website: water.state.co.usgroundwater References: Colorado...

  10. BLM Colorado State Office | Open Energy Information

    Open Energy Info (EERE)

    Colorado State Office Jump to: navigation, search Logo: BLM Colorado State Office Name: BLM Colorado State Office Abbreviation: Colorado Address: 2850 Youngfield Street Place:...

  11. Utah Public Service Commission | Open Energy Information

    Open Energy Info (EERE)

    Lake City, Utah Zip: 84114 Phone Number: 801.530.6716 Website: www.psc.utah.govindex.html References: PSC homepage1 This article is a stub. You can help OpenEI by expanding...

  12. Utah Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    Utah Meeting 1 Home > Blogs > Kyoung's blog Kyoung's picture Submitted by Kyoung(150) Contributor 10 September, 2012 - 13:45 Utah + workshop + GRR On Thursday, September 6, we met...

  13. Sandy, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Sandy is a city in Salt Lake County, Utah. It falls under Utah's 2nd congressional district.12 Registered...

  14. Utah Water Rights Flowchart | Open Energy Information

    Open Energy Info (EERE)

    Flowchart Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Water Rights Flowchart Abstract Provides access to flowchart of Utah's water rights...

  15. Milford, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Milford is a city in Beaver County, Utah. It falls under Utah's 3rd congressional...

  16. Utah Antidegradation Review Form | Open Energy Information

    Open Energy Info (EERE)

    Utah Antidegradation Review Form Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Antidegradation Review Form Form Type ApplicationNotice Form Topic...

  17. Utah Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Lake City, Utah Zip: 84114 Phone Number: 801.965.4000 Website: www.udot.utah.govmainf?p100 References: UDOT homepage1 This article is a stub. You can help OpenEI by...

  18. OpenEI Community - Utah + workshop + GRR

    Open Energy Info (EERE)

    Utah Meeting 1 http:en.openei.orgcommunityblogutah-meeting-1

    On Thursday, September 6, we met in Salt Lake City with Utah state agencies to review geothermal permitting...

  19. Categorical Exclusion Determinations: Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Categorical Exclusion Determinations: Utah Location Categorical Exclusion Determinations issued for actions in Utah. DOCUMENTS AVAILABLE FOR DOWNLOAD March 18, 2016 CX-100576 Categorical Exclusion Determination Structurally Controlled Geothermal Systems in the Eastern Great Basin Extensional Regime, Utah Award Number: DE-EE0006732 CX(s) Applied: A9, B3.1, B3.6 Geothermal Technologies Office Date: 03/18/2016 Location(s): UT Office(s): Golden Field Office October 23, 2015 CX-014392:

  20. Prospects for Utah look good

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2006-01-15

    Utah enjoys its first boom in over a generation. Recently Arch Coal, Andalex, CONSOl Energy and PacifiCorp ramped up their coal mining operations or re-opened closed facilities. Arch Coal's Skyline mine was able to mine over 200,0000 tons of coal throughout 2005 and its SUFCO mine produced 7.5 mt of coal during 2005. The article based largely on the recent 'Annual review and forecast of Utah coal', reports on developments in the state whose coal production could break records in 2006. 1 ref., 4 photos.

  1. Colorado, Processing Sites

    Office of Legacy Management (LM)

    Old and New Rifle, Colorado, Processing Sites September 2014 LMS/RFO-RFN/S11940 This page intentionally left blank LMS/RFO-RFN/S11940 2014 Verification Monitoring Report for the Old and New Rifle, Colorado, Processing Sites September 2014 This page intentionally left blank U.S. Department of Energy 2014 Verification Monitoring Report for the Old and New Rifle, Colorado, Processing Sites September 2014 Doc. No. S11940 Page i Contents Abbreviations

  2. Colorado Springs, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Energy Companies in Colorado Springs, Colorado American Agri diesel LLC American Solar Technology Diamond Wire Technology LLC Larankelo Mobile Energy...

  3. Lower Colorado River Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Lower Colorado River Authority's communications requirements Lower Colorado River Authority (134.07

  4. Utah School Children "Help Utah Out, Turn off the Spout!" | Department

    Energy Savers [EERE]

    of Energy Utah School Children "Help Utah Out, Turn off the Spout!" Utah School Children "Help Utah Out, Turn off the Spout!" August 27, 2014 - 11:15am Addthis Students in the Nebo School District pose with the winning posters from a competition held by the Utah State Energy Program. |Photo courtesy of the National Energy Foundation Students in the Nebo School District pose with the winning posters from a competition held by the Utah State Energy Program. |Photo courtesy

  5. OpenEI Community - Colorado

    Open Energy Info (EERE)

    Colorado Meeting http:en.openei.orgcommunityblogcolorado-meeting

    Yesterday, we held a meeting with Colorado state agencies and geothemral developers to review the...

  6. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-08-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  7. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  8. American Fork, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. American Fork is a city in Utah County, Utah. It falls under Utah's 2nd congressional...

  9. Utah State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Name: Utah State Historic Preservation Offic Address: 300 S. Rio Grande Street Place: Salt Lake City, Utah Zip: 84101 Website: history.utah.gov...

  10. Utah Division of State History | Open Energy Information

    Open Energy Info (EERE)

    History Jump to: navigation, search Logo: Utah Division of State History Name: Utah Division of State History Address: 300 S. Rio Grande St. Place: Salt Lake City, Utah Zip: 84101...

  11. City of Murray, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Murray, Utah (Utility Company) Jump to: navigation, search Name: City of Murray Place: Utah Phone Number: (801) 264-2730 Website: www.murray.utah.govindex.aspx Outage...

  12. Spanish Fork, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spanish Fork is a city in Utah County, Utah. It falls under Utah's 3rd congressional...

  13. Rio Grande County, Colorado: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    B. Places in Rio Grande County, Colorado Center, Colorado Del Norte, Colorado Monte Vista, Colorado South Fork, Colorado Retrieved from "http:en.openei.orgw...

  14. Chaffee County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colorado BBI International Sun Dog Energy Places in Chaffee County, Colorado Buena Vista, Colorado Poncha Springs, Colorado Salida, Colorado Retrieved from "http:...

  15. Elbert County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Climate Zone Subtype B. Places in Elbert County, Colorado Elizabeth, Colorado Kiowa, Colorado Ponderosa Park, Colorado Simla, Colorado Retrieved from...

  16. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect (OSTI)

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  17. Eagle County, Colorado Data Dashboard

    Broader source: Energy.gov [DOE]

    The data dashboard for Eagle County, Colorado, a partner in the Better Buildings Neighborhood Program.

  18. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:56 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Utah Natural Gas in ...

  19. Utah Labor Commission | Open Energy Information

    Open Energy Info (EERE)

    The Utah Labor Commission is the regulatory agency responsible for preserving the balance established by the legislature for protecting the health, safety, and economic...

  20. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  1. Utah Antidegradation Review Implementation Guidance | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Antidegradation Review Implementation GuidancePermittingRegulatory...

  2. Utah Geothermal Institutional Handbook | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Geothermal Institutional HandbookPermittingRegulatory GuidanceGuide...

  3. Mexican Hat, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Mexican Hat, Utah, Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Mexican Hat, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Mexican Hat, Utah, Disposal Cell Site Location and History The Mexican Hat disposal site is located on the Navajo Reservation in southeast Utah, 1.5 miles southwest of the town of Mexican Hat and 1 mile south of the San

  4. Utah Geothermal Presentation Bloomquist | Open Energy Information

    Open Energy Info (EERE)

    on geothermal energy development in Utah. Authors Dr. R. Gordon Bloomquist and Ph.D Organization Washington State University Energy Program Published Bloomquist, 2004 DOI...

  5. Daniel, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Daniel, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4707885, -111.4146275 Show Map Loading map... "minzoom":false,"mappingservice"...

  6. Utah Antiquities Section | Open Energy Information

    Open Energy Info (EERE)

    sites and artifacts, educate the public about them, and assist professionals who are researching these cultural resources. References "Utah State History: Archaeology Website"...

  7. Steven K. Krueger, University of Utah

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cumulus Convection and the Boundary Layer at the Southern Great Plains ACRF Steven K. Krueger, University of Utah from Arakawa and Jung (2003) Interactions of Cumulus...

  8. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  9. Utah Antidegradation FAQ | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Utah Antidegradation FAQPermittingRegulatory GuidanceSupplemental Material Abstract...

  10. Elberta, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    2006 CBSA Retrieved from "http:en.openei.orgwindex.php?titleElberta,Utah&oldid233710" Feedback Contact needs updating Image needs updating Reference needed Missing...

  11. Teacher and Students Bring Renewables to Utah

    Broader source: Energy.gov [DOE]

    The light bulb went off for high school teacher Andy Swapp in 1999 when he realized he could do something good with Milford, Utah's powerful wind.

  12. Energy & Geoscience Institute at the University of Utah | Open...

    Open Energy Info (EERE)

    Geoscience Institute at the University of Utah Jump to: navigation, search Name: Energy & Geoscience Institute at the University of Utah Address: 423 Wakara Way Suite 300 Place:...

  13. Utah Office of Energy Development | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Utah Office of Energy Development Address: PO Box 144845 Place: Salt Lake City, Utah Zip: 84114 Phone Number: 801-538-8732 Website:...

  14. Utah State Prison Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Prison Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Utah State Prison Space Heating Low Temperature Geothermal Facility Facility Utah State...

  15. Utah Code Title 73, Chapter 3, Appropriation | Open Energy Information

    Open Energy Info (EERE)

    (Manner of acquiring water rights) as established by the Utah Legislature in Salt Lake City, Utah. Published NA Year Signed or Took Effect 2012 Legal Citation Not...

  16. Utah Division of Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah. The Division of Public Utilities, makes recommendations to the Utah Public Service Commission for rate-making purposes, applications, hearings and other...

  17. Guide to Permitting Electric Transmission Lines in Utah | Open...

    Open Energy Info (EERE)

    GuidanceGuideHandbook Abstract Guide to permitting requirements of federal, state, and local agencies. Author Utah Office of Energy Development Published Utah Office of Energy...

  18. Utah R850-27 Geothermal Steam | Open Energy Information

    Open Energy Info (EERE)

    in Utah outlining the authority for the Utah School and Institutional Trust Lands Administration (UTLA) to administer trust land in the state, including the leasing of trust land...

  19. Utah School and Institutional Trust Lands Administration | Open...

    Open Energy Info (EERE)

    School and Institutional Trust Lands Administration Jump to: navigation, search Logo: Utah School and Institutional Trust Lands Administration Name: Utah School and Institutional...

  20. Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at...

  1. Utah Application to Appropriate Water | Open Energy Information

    Open Energy Info (EERE)

    Utah Application to Appropriate Water Abstract Required application for obtaining a right to appropriate water in Utah. Form Type ApplicationNotice Form Topic Filing for Water...

  2. Utah Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Utah Natural Gas Plant Liquids Production (Million ... NGPL Production, Gaseous Equivalent Utah Natural Gas Plant Processing NGPL Production, ...

  3. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Utah Region Middle School Regional Utah Nevada Regional Middle School Science...

  4. Utah Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the High School Coach page. Utah Region High School Regional Utah Nevada Regional High School...

  5. Utah Division of Water Rights Information Webpage | Open Energy...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Division of Water Rights Information Webpage Citation Utah Division of...

  6. Utah Roses Greenhouse Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Roses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Utah Roses Greenhouse Low Temperature Geothermal Facility Facility Utah Roses Sector...

  7. Utah's 3rd congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    district in Utah. Registered Energy Companies in Utah's 3rd congressional district Better Biodiesel Composite Tower Solutions Domestic Energy Partners Evergreen Clean Energy FT...

  8. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona ...

  9. Recovery Act State Memos Utah

    Broader source: Energy.gov (indexed) [DOE]

    Utah For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Colorado Heat Flow Data from IHFC

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: The International Heat Flow Commission (IHFC) Publication Date: 2012 Title: Colorado IHFC Data Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: Abstract: This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database (www.heatflow.und.edu/index2.html). The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication. Spatial Domain: Extent: Top: 4522121.800672 m Left: 165356.134075 m Right: 621836.776246 m Bottom: 4097833.419676 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude Of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich

  11. Denver, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Organizations in Denver, Colorado Northern Colorado Clean Energy Cluster Wirth Chair in Sustainable Development, University of Colorado Denver Registered Energy Companies in...

  12. Colorado Renewable Energy Society | Open Energy Information

    Open Energy Info (EERE)

    Colorado Renewable Energy Society Name: Colorado Renewable Energy Society Address: PO Box 933 Place: Golden, Colorado Zip: 80402 Region: Rockies Area Website: www.cres-energy.org...

  13. Loveland, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Colorado. It falls under Colorado's 4th congressional district.12 Registered Energy Companies in Loveland, Colorado Abound Solar Bekk Tech BekkTech LLC Hydraulic...

  14. Aspen, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Fork Valley - Energy Efficient Appliance Program (Colorado) Roaring Fork Valley - Energy Smart Colorado Renewable Energy Rebate Program (Colorado) References US Census Bureau...

  15. Alliance for Sustainable Colorado | Open Energy Information

    Open Energy Info (EERE)

    for Sustainable Colorado Jump to: navigation, search Logo: Alliance for Sustainable Colorado Name: Alliance for Sustainable Colorado Address: 1536 Wynkoop Street Place: Denver,...

  16. Denver, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Policy Organizations in Denver, Colorado Northern Colorado Clean Energy Cluster Wirth Chair in Sustainable Development, University of Colorado Denver Registered...

  17. Field Projects: Durango, Colorado

    Broader source: Energy.gov [DOE]

    Personnel from Sandia National Laboratories in New Mexico installed four permeable reactive barriers  PRBs at the Durango, Colorado, Uranium Mill Tailings Radiation Control Act Title I site in...

  18. Ft. Carson Army Base, Colorado Springs, Colorado | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ft. Carson Army Base, Colorado Springs, Colorado Ft. Carson Army Base, Colorado Springs, Colorado Photo of High-Bay Aviation Maintenance Facility at Butts Army Airfield Fort Carson U.S. Army Base is located south of Colorado Springs, Colorado. It was the first Federal facility to install a "solar wall"-a solar ventilation air preheating system. The solar wall heats Ft. Carson's new high-bay aviation maintenance facility at Butts Army Airfield by pre-warming air as much as 54°F and

  19. ASTER Thermal Anomalies in western Colorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2013-01-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: ASTER Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2σ, and areas with temperature equal to 1σ to 2σ, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4547052.446651 m Left: 158917.090117 m Right: 4101162.228281 m Bottom: 4101162.228281 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  20. Utah Success StoryA Performance Contracting Program

    Broader source: Energy.gov [DOE]

    Provides an overview case study of Utah's Performance Contracting Program. Author: Energy Services Coalition

  1. Lower Colorado River Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Lower Colorado River Authority on Smart Grid communications requirements Lower Colorado River Authority (349.31

  2. Colorado: Colorado's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Colorado.

  3. Red Cliffs Campground, Cedar City District, Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Red Cliffs Campground, Cedar City District, Utah Red Cliffs Campground, Cedar City District, Utah Photo of Field Station at Red Cliffs Campground in Utah's Cedar City District The Bureau of Land Management (BLM) has remote field stations in Arizona, California, Utah, Idaho, and Alaska. This photograph shows the field station at Red Cliffs Campground in Utah's Cedar City District. Photovoltaic power systems allow the people working in these remote areas to have the convenience of continuous

  4. Alternative Fuels Data Center: Utah Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Utah Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Utah Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Utah Transportation

  5. Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loan Program Utah's Clean Fuels and Vehicle Technology Loan Program to someone by E-mail Share Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Facebook Tweet about Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Twitter Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Google Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan

  6. EIS-0395: San Luis Rio Colorado Project, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to construct and operate a proposed transmission line originating at the proposed San Luis Rio Colorado (SLRC) Power Center in Sonora, Mexico, interconnect with Western's existing Gila Substation, and continue to Arizona Public Service Company’s (APS) North Gila Substation

  7. Engineering assessment of inactive uranium mill tailings, Gunnison Site, Gunnison, Colorado: summary

    SciTech Connect (OSTI)

    none,

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Gunnison site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Gunnison, Colorado. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the ivnvestigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the combined 540,000 dry tons of tailings and the 435,400 tons of contaminated waste at the Gunnison site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The 10 alternative actions presented in this engineering assessment range from stabilization of the site in its present location with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to disposal sites along with decontamination of the Gunnison site (Options II through X). Cost estimates for the 10 options range from about $8,900,000 for stabilization in-place, to about $14,000,000 for disposal in the North Alkali Creek area at a distance of about 18 mi. Truck haulage would be used to transport the tailings and contaminated materials from the Gunnison site to the selected disposal site. Three principal alternatives for the reprocessing of the Gunnison tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocesssing. The cost of the uranium recovered would be about $250 and $230/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981.

  8. Costilla County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype B. Places in Costilla County, Colorado Blanca, Colorado Fort Garland, Colorado San Luis, Colorado Retrieved from "http:en.openei.orgwindex.php?titleCostillaCounty,...

  9. Colorado/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Colorado Wind Resources Colorado Energy Office AWEA State Wind Energy Statistics: Colorado Colorado Center for Renewable Energy...

  10. Sedgwick County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    5 Climate Zone Subtype B. Places in Sedgwick County, Colorado Julesburg, Colorado Ovid, Colorado Sedgwick, Colorado Retrieved from "http:en.openei.orgw...

  11. Ouray County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype B. Registered Energy Companies in Ouray County, Colorado Alternative Power Enterprises Places in Ouray County, Colorado Loghill Village, Colorado Ouray, Colorado Ridgway,...

  12. Colorado's 3rd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Appliance Program (Colorado) Roaring Fork Valley - Energy Smart Colorado Renewable Energy Rebate Program (Colorado) Utility Companies in Colorado's 3rd congressional district Black...

  13. New Mexico Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming...

  14. Tennessee Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  15. Maryland Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  16. Nevada Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  17. South Dakota Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  18. Missouri Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  19. Mississippi Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other...

  20. Notes and Definitions

    Weekly Natural Gas Storage Report (EIA)

    Oklahoma, and Texas Mountain Region Arizona, Colorado, Idaho, Montana, Nebraska, New Mexico, Nevada, North Dakota, South Dakota, Utah, and Wyoming Pacific Region California,...

  1. Green River, Utah, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site near Green River, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. ...

  2. Utah

    U.S. Energy Information Administration (EIA) Indexed Site

  3. An Examination of Avoided Costs in Utah

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-01-07

    The Utah Wind Working Group (UWWG) believes there are currently opportunities to encourage wind power development in the state by seeking changes to the avoided cost tariff paid to qualifying facilities (QFs). These opportunities have arisen as a result of a recent renegotiation of Pacificorp's Schedule 37 tariff for wind QFs under 3 MW, as well as an ongoing examination of Pacificorp's Schedule 38 tariff for wind QFs larger than 3 MW. It is expected that decisions made regarding Schedule 38 will also impact Schedule 37. Through the Laboratory Technical Assistance Program (Lab TAP), the UWWG has requested (through the Utah Energy Office) that LBNL provide technical assistance in determining whether an alternative method of calculating avoided costs that has been officially adopted in Idaho would lead to higher QF payments in Utah, and to discuss the pros and cons of this method relative to the methodology recently adopted under Schedule 37 in Utah. To accomplish this scope of work, I begin by summarizing the current method of calculating avoided costs in Utah (per Schedule 37) and Idaho (the ''surrogate avoided resource'' or SAR method). I then compare the two methods both qualitatively and quantitatively. Next I present Pacificorp's four main objections to the use of the SAR method, and discuss the reasonableness of each objection. Finally, I conclude with a few other potential considerations that might add value to wind QFs in Utah.

  4. Remotely Sensed Thermal Anomalies in western Colorado

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Landsat Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2σ, and areas with temperature equal to 1σ to 2σ, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4546381.234113 m Left: 140556.857021 m Right: 573390.000000 m Bottom: 4094583.641581 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth

  5. Geothermal Prospects in Colorado | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prospects in Colorado Geothermal Prospects in Colorado Geothermal Prospects in Colorado presentation at the April 2013 peer review meeting held in Denver, Colorado. garrett_peer2013.pdf (2 MB) More Documents & Publications Geothermal Prospects in Colorado Stanford Geothermal Workshop 2012 Annual Meeting Fiscal Year 2013 Budget Request Briefing

  6. Geology and resources of the Tar Sand Triangle, southeastern Utah

    SciTech Connect (OSTI)

    Dana, G.F.; Oliver, R.L.; Elliott, J.R.

    1984-05-01

    The Tar Sand Triangle is located in southeastern Utah between the Dirty Devil and Colorado Rivers and covers an area of about 200 square miles. The geology of the area consists of gently northwest dipping strata exposed in the box canyons and slopes of the canyonlands morphology. Strata in the area range in age from Jurassic to Permian. The majority of tar sand saturation is found in the Permian White Rim Sandstone Member of the Cutler Formation. The White Rim Sandstone Member consists of a clean, well-sorted sandstone which was deposited in a shallow marine environment. Resources were calculated from analytical data from the three coreholes drilled by the Laramie Energy Technology Center and other available data. The total in-place resources, determined from this study, are 6.3 billion barels. Previous estimates ranged from 2.9 to 16 million barrels. More coring and analyses will be necessary before a more accurate determination of resources can be attempted. 8 references, 11 figures, 7 tables.

  7. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    SciTech Connect (OSTI)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.; Wolverson, N.; Antrim, D.; Berg, J.; Witzel, F.

    1982-08-01

    The Wells 2/sup 0/ Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins are unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin.

  8. City of Logan, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Logan, Utah (Utility Company) Jump to: navigation, search Name: City of Logan Place: Utah Phone Number: (435) 716-9090 Website: www.loganutah.orgLP Outage Hotline: (435) 716-9090...

  9. File:UtahEnergyForumSiting.pdf | Open Energy Information

    Open Energy Info (EERE)

    UtahEnergyForumSiting.pdf Jump to: navigation, search File File history File usage File:UtahEnergyForumSiting.pdf Size of this preview: 800 600 pixels. Go to page 1 2 3 4 5 6 7...

  10. West Mountain, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Mountain is a census-designated place in Utah County, Utah.1 References US Census...

  11. Utah Sensitive Species List Webpage | Open Energy Information

    Open Energy Info (EERE)

    Species List Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Sensitive Species List Webpage Abstract Provides access to Utah Sensitive...

  12. Spring Lake, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Lake is a census-designated place in Utah County, Utah.1 References US Census...

  13. Utah DEQ Energy Pre-Design Program | Open Energy Information

    Open Energy Info (EERE)

    Pre-Design Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah DEQ Energy Pre-Design Program Abstract Provides information about Utah's...

  14. Iron County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype B. Registered Energy Companies in Iron County, Utah Solar Unlimited USA Places in Iron County, Utah...

  15. ,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"10302015 12:25:01 PM" "Back to Contents","Data 1: Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035UT3" "Date","Utah Natural...

  16. City of Blanding, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Blanding, Utah (Utility Company) Jump to: navigation, search Name: City of Blanding Place: Utah Phone Number: 435-678-2791 Website: www.blanding-ut.gov Outage Hotline:...

  17. Mt Wheeler Power, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    Mt Wheeler Power, Inc (Utah) Jump to: navigation, search Name: Mt Wheeler Power, Inc Place: Utah Phone Number: 1 775-289-8981 Website: mwpower.net Facebook: https:...

  18. City of Santa Clara, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Santa Clara, Utah (Utility Company) Jump to: navigation, search Name: City of Santa Clara Place: Utah Phone Number: (435) 673-6712 Website: www.sccity.org Outage Hotline: (435)...

  19. RAPID/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    Temperature Gradient Wells UAC Rule R655-1 Wells Used for the Discovery and Production of Geothermal Energy in the State of Utah UC 73-22 Utah Geothermal Resource Conservation Act...

  20. Park City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park City is a city in Summit County and Wasatch County, Utah. It falls under Utah's 1st...

  1. Norton v Southern Utah Wilderness Alliance, 542 US 55 | Open...

    Open Energy Info (EERE)

    v Southern Utah Wilderness Alliance, 542 US 55 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: Norton v Southern Utah Wilderness Alliance,...

  2. Colorado Geothermal Commercialization Program

    SciTech Connect (OSTI)

    Healy, F.C.

    1980-04-01

    Chaffee County, located in central Colorado, has immense potential for geothermal development. This report has been prepared to assist residents and developers in and outside the area to develop the hydrothermal resources of the county. Data has been collected and interpreted from numerous sources in order to introduce a general description of the area, estimate energy requirements, describe the resources and postulate a development plan. Electric power generation and direct heat application potential for the region are described.

  3. Utah Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6398,6830,6819,6897,6969 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  4. Colorado Water Courts | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Water Courts Abstract This is the website for Colorado Water Courts. Author Colorado...

  5. AMF Deployment, Steamboat Springs, Colorado

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and...

  6. Golden, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Golden, Colorado Ampulse Ampulse Corporation Blue Sun Biodiesel LLC Colorado Fuel Cell Center CFCC Energistic Systems Energy Solutions Partners, LLC Industrial Solar...

  7. Colorado - Access Permit Application File Review Checklist |...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Colorado - Access Permit Application File Review Checklist Author Colorado Department of Transportation...

  8. Colorado/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Yes Building Energy Code (Colorado) Building Energy Code Yes City and County of Denver - Solar Panel Permitting (Colorado) SolarWind Permitting Standards Yes City of Aspen -...

  9. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make ...

  10. Colorado Renewable Resource Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Product: Colorado-based cooperative and forestry producer, that targets the use of woody biomass to generate heat or electricity. References: Colorado Renewable Resource...

  11. Northern Colorado Clean Cities | Open Energy Information

    Open Energy Info (EERE)

    Cities Jump to: navigation, search Name: Northern Colorado Clean Cities Address: PO Box 759 Place: Johnstown, Colorado Zip: 80534 Region: Rockies Area Number of Employees:...

  12. Colorado Meeting | OpenEI Community

    Open Energy Info (EERE)

    Colorado Meeting Home > Blogs > Kyoung's blog Kyoung's picture Submitted by Kyoung(150) Contributor 7 March, 2013 - 10:24 1031 regulations Colorado Yesterday, we held a meeting...

  13. Colorado Water Quality Certification General Information | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Colorado Water Quality Certification General InformationLegal Abstract The Colorado Department of...

  14. Colorado Renewable Energy Collaboratory | Open Energy Information

    Open Energy Info (EERE)

    Collaboratory Jump to: navigation, search Logo: Colorado Renewable Energy Collaboratory Name: Colorado Renewable Energy Collaboratory Address: 410 17th Street, Suite 1400 Place:...

  15. Golden, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Society Registered Energy Companies in Golden, Colorado Ampulse Ampulse Corporation Blue Sun Biodiesel LLC Colorado Fuel Cell Center CFCC Energistic Systems Energy Solutions...

  16. Colorado Construction Dewatering General Permit | Open Energy...

    Open Energy Info (EERE)

    Colorado Construction Dewatering General Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Colorado Construction Dewatering...

  17. Colorado Energy Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Name: Colorado Energy Office Address: 1580 Logan Street, Suite 100 Place: Denver, CO Zip: 80203 Website: www.colorado.govenergy Coordinates:...

  18. Carbondale, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    3rd congressional district.12 Registered Policy Organizations in Carbondale, Colorado Sustainability Center of the Rockies Registered Energy Companies in Carbondale, Colorado...

  19. Niwot, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    place in Boulder County, Colorado.1 Registered Energy Companies in Niwot, Colorado Quantum Energy LLC References US Census Bureau 2005 Place to 2006 CBSA Retrieved from...

  20. Colorado Natural Gas- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Colorado Natural Gas offers the Excess is Out Program for residential and commercial customers in Colorado. Incentives are available for purchasing and installing energy efficient furnaces, boilers...

  1. Colorado General Permit for Construction Dewatering Activities...

    Open Energy Info (EERE)

    Frequently Asked Questions. Colorado Department of Public Health and Environment. 4p. GuideHandbook sent to Retrieved from "http:en.openei.orgwindex.php?titleColorado...

  2. Colorado Division of Wildlife | Open Energy Information

    Open Energy Info (EERE)

    Wildlife Jump to: navigation, search Name: Colorado Parks and Wildlife Address: 1313 Sherman Street, Suite 618 Place: Denver, Colorado Zip: 80203 Phone Number: (303) 866-3437...

  3. 1999 ESH&Q Liability Assessment Report of Envirocare of Utah, Inc. Clive, Utah

    SciTech Connect (OSTI)

    Trump, D. E.; Vilord, C. E.

    1999-07-01

    This report contains the results of an environment, safety, health, and quality (ESH&Q) assessment of the treatment technologies and treatment-related operations that was conducted of Envirocare of Utah, Inc. (EOU). EOU is a lowlevel radioactive and mixed Resource Conservation and Recovery Act (RCRA)- regulated haz.ardous low-level radioactive waste (mixed low-level waste) treatment/disposal facility located near Clive, Utah. An ESH&Q assessment of the EOU Clive, Utah facility treatment technologies and related treatment operations was conducted in mid-April 1999. The assessment was required as part of the technical evaluation of proposals received by Lockheed Martin Idaho Technologies Company (LMITCO) for modification of a mixed low-level radioactive waste disposal subcontract (No.K79-180572). The EOU Clive, Utah facility is proposed as a potential treatment/disposal facility for mixed low-level radioactive waste regulated under the RCRA and the Atomic Energy Act

  4. Colorado STEP Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Natural Gas Gross Withdrawals (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21,103 24,172 24,435 25,590 23,263 23,548 23,557 24,550 23,440 24,584 25,178 31,698 1992 28,269 26,307 25,490 26,125 27,205 27,139 26,396 27,842 27,128 28,391 29,527 34,175 1993 32,694 29,383 33,718 34,380 36,385 33,931 32,995 34,802 33,910 35,488 36,448 39,870 1994 39,207 35,941 38,103 38,734 41,588 36,686 38,457 39,010

  5. Bibliography of Utah radioactive occurrences. Volume II

    SciTech Connect (OSTI)

    Doelling, H.H.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  6. Bibliography of Utah radioactive occurrences. Volume I

    SciTech Connect (OSTI)

    Doelling, H.H. comp.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  7. CARBON AND OXYGEN ISOTOPIC ANALYSIS: BUG, CHEROKEE, AND PATTERSON CANYON FIELDS, SAN JUAN COUNTY, UTAH

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey Jr; Kevin McClure; Craig D. Morgan; Stephen T. Nelson

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  8. Town of Estes Park, Colorado (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Estes Park, Colorado (Utility Company) Jump to: navigation, search Name: Town of Estes Park Place: Colorado Phone Number: 970-586-5331 Website: www.colorado.govpacifictowno...

  9. Adams County, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colorado Access Venture Partners Energy Generation Facilities in Adams County, Colorado Metro Wastewater Reclamation District Biomass Facility Places in Adams County, Colorado...

  10. Colorado Governor s Energy Office | Open Energy Information

    Open Energy Info (EERE)

    Governor s Energy Office Jump to: navigation, search Name: Colorado Governor's Energy Office Place: Denver, Colorado Zip: 80203 Product: Governor's Energy Office of Colorado...