National Library of Energy BETA

Sample records for usi film products

  1. Universal Scientific Industrial USI Group | Open Energy Information

    Open Energy Info (EERE)

    Group is a design and manufacturing services company that is venturing into polysilicon production. References: Universal Scientific Industrial (USI Group)1 This article is a...

  2. Thermodynamics of formation of coffinite, USiO?

    SciTech Connect (OSTI)

    Guo, Xiaofeng; Szenknect, Stphanie; Mesbah, Adel; Labs, Sabrina; Clavier, Nicolas; Poinssot, Christophe; Curtius, Hildegard; Bosbach, Dirk; Ewing, Rodney C.; Burns, Peter C.; Dacheux, Nicolas; Navrotsky, Alexandra

    2015-05-26

    Coffinite, USiO?, is an important U(IV) mineral, but its thermodynamic properties are not well-constrained. In this work, two different coffinite samples were synthesized under hydrothermal conditions and purified from a mixture of products. The enthalpy of formation was obtained by high temperature oxide melt solution calorimetry. Coffinite is energetically metastable with respect to a mixture of UO? (uraninite) and SiO? (quartz) by 25.6 3.9 kJ/mol. Its standard enthalpy of formation from the elements at 25 C is -1,970.0 4.2 kJ/mol. Decomposition of the two samples was characterized by X-ray diffraction and by thermogravimetry and differential scanning calorimetry coupled with mass spectrometric analysis of evolved gases. Coffinite slowly decomposes to U?O? and SiO? starting around 450 C in air and thus has poor thermal stability in the ambient environment. The energetic metastability explains why coffinite cannot be synthesized directly from uraninite and quartz but can be made by low temperature precipitation in aqueous and hydrothermal environments. These thermochemical constraints are in accord with observations of the occurrence of coffinite in nature and are relevant to spent nuclear fuel corrosion.

  3. Thermodynamics of formation of coffinite, USiO₄

    SciTech Connect (OSTI)

    Guo, Xiaofeng; Szenknect, Stéphanie; Mesbah, Adel; Labs, Sabrina; Clavier, Nicolas; Poinssot, Christophe; Curtius, Hildegard; Bosbach, Dirk; Ewing, Rodney C.; Burns, Peter C.; Dacheux, Nicolas; Navrotsky, Alexandra

    2015-05-26

    Coffinite, USiO₄, is an important U(IV) mineral, but its thermodynamic properties are not well-constrained. In this work, two different coffinite samples were synthesized under hydrothermal conditions and purified from a mixture of products. The enthalpy of formation was obtained by high temperature oxide melt solution calorimetry. Coffinite is energetically metastable with respect to a mixture of UO₂ (uraninite) and SiO₂ (quartz) by 25.6 ± 3.9 kJ/mol. Its standard enthalpy of formation from the elements at 25 °C is -1,970.0 ± 4.2 kJ/mol. Decomposition of the two samples was characterized by X-ray diffraction and by thermogravimetry and differential scanning calorimetry coupled with mass spectrometric analysis of evolved gases. Coffinite slowly decomposes to U₃O₈ and SiO₂ starting around 450 °C in air and thus has poor thermal stability in the ambient environment. The energetic metastability explains why coffinite cannot be synthesized directly from uraninite and quartz but can be made by low temperature precipitation in aqueous and hydrothermal environments. These thermochemical constraints are in accord with observations of the occurrence of coffinite in nature and are relevant to spent nuclear fuel corrosion.

  4. Thermodynamics of formation of coffinite, USiO₄

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Xiaofeng; Szenknect, Stéphanie; Mesbah, Adel; Labs, Sabrina; Clavier, Nicolas; Poinssot, Christophe; Ushakov, Sergey V.; Curtius, Hildegard; Bosbach, Dirk; Ewing, Rodney C.; et al

    2015-05-26

    Coffinite, USiO₄, is an important U(IV) mineral, but its thermodynamic properties are not well-constrained. In this work, two different coffinite samples were synthesized under hydrothermal conditions and purified from a mixture of products. The enthalpy of formation was obtained by high temperature oxide melt solution calorimetry. Coffinite is energetically metastable with respect to a mixture of UO₂ (uraninite) and SiO₂ (quartz) by 25.6 ± 3.9 kJ/mol. Its standard enthalpy of formation from the elements at 25 °C is -1,970.0 ± 4.2 kJ/mol. Decomposition of the two samples was characterized by X-ray diffraction and by thermogravimetry and differential scanning calorimetry coupledmore » with mass spectrometric analysis of evolved gases. Coffinite slowly decomposes to U₃O₈ and SiO₂ starting around 450 °C in air and thus has poor thermal stability in the ambient environment. The energetic metastability explains why coffinite cannot be synthesized directly from uraninite and quartz but can be made by low temperature precipitation in aqueous and hydrothermal environments. These thermochemical constraints are in accord with observations of the occurrence of coffinite in nature and are relevant to spent nuclear fuel corrosion.« less

  5. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  6. Thin film production method and apparatus

    DOE Patents [OSTI]

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  7. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect (OSTI)

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized

  8. Alteration of Coffinite (USiO{sub 4}) Under Reducing and Oxidizing Conditions

    SciTech Connect (OSTI)

    Deditius, Artur Piotr; Utsunomiya, Satoshi; Ewing, Rodney C.

    2007-07-01

    Samples of natural coffinite (USiO{sub 4}.nH{sub 2}O) from Grants uranium region, New Mexico were investigated in order to understand the alteration process of coffinite under reducing and oxidizing conditions. Alteration of the primary coffinite under reducing conditions was promoted by organic acids, and as a result, secondary coffinite precipitated. Subsequently oxidizing fluids altered the coffinite, and (Na,K)-boltwoodite [(Na,K)(UO{sub 2})(SiO{sub 3}OH)(H{sub 2}O){sub 1.5}] and jachymovite [(UO{sub 2})(SO{sub 4})(OH){sub 14}(H{sub 2}O){sub 13}] precipitated with no rare earth elements. Based on the charge balance calculation, we suggest that the amount of U{sup 6+} in the coffinite is less than 0.2 [apfu] and U{sup 6+} is accommodated in the structure via substitution: U{sup 4+} + Si{sup 4+} {r_reversible} U{sup 6+} + 2(OH){sup -}. The high and variable totals for electron microprobe analyses indicate that H{sub 2}O is not an essential component in coffinite structure. The U-Pb ages of coffinite formation vary from 36.6-0 Ma suggesting that the coffinite has precipitated continuously in this period and organic matter can preserve reducing conditions even when oxidizing conditions dominate. (authors)

  9. Production of films and powders for semiconductor device applications

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath; Noufi, Rommel; Wang, Li

    1998-01-01

    A process for chemical bath deposition of selenide and sulfide salts as films and powders employable as precursors for the fabrication of solar cell devices. The films and powders include (1) Cu.sub.x Se.sub.n, wherein x=1-2 and n=1-3; (2) Cu.sub.x Ga.sub.y Se.sub.n, wherein x=1-2, y=0-1 and n=1-3; (3) Cu.sub.x In.sub.y Se.sub.n, wherein x=1-2.27, y=0.72-2 and n=1-3; (4) Cu.sub.x (InGa).sub.y Se.sub.n, wherein x=1-2.17, y=0.96-2 and n=1-3; (5) In.sub.y Se.sub.n, wherein y=1-2.3 and n=1-3; (6) Cu.sub.x S.sub.n, wherein x=1-2 and n=1-3; and (7) Cu.sub.x (InGa).sub.y (SeS).sub.n, wherein x=1-2, y=0.07-2 and n=0.663-3. A reaction vessel containing therein a substrate upon which will form one or more layers of semiconductor material is provided, and relevant solution mixtures are introduced in a sufficient quantity for a sufficient time and under favorable conditions into the vessel to react with each other to produce the resultant salt being prepared and deposited as one or more layers on the substrate and as a powder on the floor of the vessel. Hydrazine is present during all reaction processes producing non-gallium containing products and optionally present during reaction processes producing gallium-containing products to function as a strong reducing agent and thereby enhance reaction processes.

  10. Production of films and powders for semiconductor device applications

    DOE Patents [OSTI]

    Bhattacharya, R.N.; Noufi, R.; Li Wang

    1998-03-24

    A process is described for chemical bath deposition of selenide and sulfide salts as films and powders employable as precursors for the fabrication of solar cell devices. The films and powders include (1) Cu{sub x}Se{sub n}, wherein x=1--2 and n=1--3; (2) Cu{sub x}Ga{sub y}Se{sub n}, wherein x=1--2, y=0--1 and n=1--3; (3) Cu{sub x}In{sub y}Se{sub n}, wherein x=1--2.27, y=0.72--2 and n=1--3; (4) Cu{sub x}(InGa){sub y}Se{sub n}, wherein x=1--2.17, y=0.96--2 and n=1--3; (5) In{sub y}Se{sub n}, wherein y=1--2.3 and n=1--3; (6) Cu{sub x}S{sub n}, wherein x=1--2 and n=1--3; and (7) Cu{sub x}(InGa){sub y}(SeS){sub n}, wherein x=1--2, y=0.07--2 and n=0.663--3. A reaction vessel containing therein a substrate upon which will form one or more layers of semiconductor material is provided, and relevant solution mixtures are introduced in a sufficient quantity for a sufficient time and under favorable conditions into the vessel to react with each other to produce the resultant salt being prepared and deposited as one or more layers on the substrate and as a powder on the floor of the vessel. Hydrazine is present during all reaction processes producing non-gallium containing products and optionally present during reaction processes producing gallium-containing products to function as a strong reducing agent and thereby enhance reaction processes. 4 figs.

  11. Process for leveling film surfaces and products thereof

    DOE Patents [OSTI]

    Birkmire, R.W.; McCandless, B.E.

    1990-03-20

    Semiconductor films and photovoltaic devices prepared therefrom are provided wherein the semiconductor films have a specular surface with a texture less than about 0.25 micron greater than the average planar film surface and wherein the semiconductor films are surface modified by exposing the surface to an aqueous solution of bromine containing an acid or salt and continuing such exposure for a time sufficient to etch the surface. 8 figs.

  12. Microporous polymer films and methods of their production

    DOE Patents [OSTI]

    Aubert, J.H.

    1995-06-06

    A process is described for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquefied gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase. 9 figs.

  13. Amorphous tin-cadmium oxide films and the production thereof

    DOE Patents [OSTI]

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  14. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    DOE Patents [OSTI]

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  15. Mobilization of dust and exfoliation of erosion product films in tokamaks

    SciTech Connect (OSTI)

    Martynenko, Yu. V.; Nagel, M. Yu.

    2012-04-15

    The mobilization of dust (i.e., detachment and removal of dust grains from a substrate) and the exfoliation of a film of erosion products in tokamaks have been studied theoretically. The following mechanisms of dust mobilization have been taken into account: (i) sharp heating (thermal shock) as a result of, e.g., plasma disruption and edge instabilities; (ii) substrate vibrations; and (iii) gas and plasma flow (wind) action. The most effective mobilization takes place under the action of sharp heating. Power fluxes that are characteristic of edge instabilities can mobilize dust grains with dimensions within or even greater than 0.1-1 {mu}m. The velocities of detached grains reach {nu} {approx} 100 m/s for heavy grains and up to {nu} {approx} 300 m/s for the light ones. Conditions favoring the exfoliation of a film of erosion products are determined. It is shown that exfoliation under the action of edge instabilities can take place at a film thickness of h > 1 {mu}m. Under the action of thermal-shock-induced stresses, the exfoliated film flakes with a size ranging from fractions of a millimeter to several centimeters break into pieces.

  16. Electron-Stimulated Reactions and O-2 Production in Methanol-Covered Amorphous Solid Water Films

    SciTech Connect (OSTI)

    Akin, Minta C.; Petrik, Nikolay G.; Kimmel, Gregory A.

    2009-03-14

    The low-energy, electron-stimulated desorption (ESD) of molecular products from amorphous solid water (ASW) films capped with methanol is investigated versus methanol coverage (0 - 4 x 1015 cm-2) at 50 K using 100 eV incident electrons. The major ESD products from a monolayer of methanol on ASW are quite similar to the ESD products from bulk methanol film: H2, CH4, H2O, C2H6, CO, CH2O, and CH3OH. For 40 ML ASW films, the molecular oxygen, hydrogen, and water ESD yields from the ASW are suppressed with increasing methanol coverage, while the CH3OH ESD yield increases proportionally to the methanol coverage. The suppression of the water ESD products by methanol is consistent with the non-thermal reactions occurring preferentially at or near the ASW/vacuum interface and not in the interior of the film. The water and molecular hydrogen ESD yields from the water layer decrease exponentially with the methanol cap coverage with 1/e constants of ~ 0.6 x 1015 cm-2 and 1.6 x 1015 cm-2, respectively. In contrast, the O2 ESD from the water layer is very efficiently quenched by small amounts of methanol (1/e ~ 6.5 x 1013 cm-2). The rapid suppression of O2 production by small amounts of methanol is due to reactions between CH3OH and the precursors for the O2 - mainly OH radicals. A kinetic model for the O2 ESD which semi-quantitatively accounts for the observations is presented.

  17. Process for depositing thin film layers onto surfaces modified with organic functional groups and products formed thereby

    DOE Patents [OSTI]

    Tarasevich, B.J.; Rieke, P.C.

    1998-06-02

    A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups. 5 figs.

  18. Process for depositing thin film layers onto surfaces modified with organic functional groups and products formed thereby

    DOE Patents [OSTI]

    Tarasevich, Barbara J.; Rieke, Peter C.

    1998-01-01

    A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups.

  19. Method for production of free-standing polycrystalline boron phosphide film

    DOE Patents [OSTI]

    Baughman, Richard J.; Ginley, David S.

    1985-01-01

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  20. Free-standing polycrystalline boron phosphide film and method for production thereof

    DOE Patents [OSTI]

    Baughman, R.J.; Ginley, D.S.

    1982-09-09

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  1. The production of carbon nanofibers and thin films on palladium catalysts from ethylene oxygen mixtures

    SciTech Connect (OSTI)

    Phillips, Jonathan; Doorn, Stephen; Atwater, Mark; Leseman, Zayd; Luhrs, Claudia C; Diez, Yolanda F; Diaz, Angel M

    2009-01-01

    The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight 'weaves' of sub-micron filaments formed quickly. In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C2H4:02), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high-resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and x-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species.

  2. Production of lithium positive ions from LiF thin films on the anode in PBFA II

    SciTech Connect (OSTI)

    Green, T.A.; Stinnett, R.W.; Gerber, R.A.

    1995-09-01

    The production of positive lithium ions using a lithium-fluoride-coated stainless steel anode in the particle beam fusion accelerator PBFA II is considered from both the experimental and theoretical points of view. It is concluded that the mechanism of Li{sup +} ion production is electric field desorption from the tenth-micron-scale crystallites which compose the columnar growth of the LiF thin film. The required electric field is estimated to be of the order of 5 MV/cm. An essential feature of the mechanism is that the crystallites are rendered electronically conducting through electron-hole pair generation by MeV electron bombardment of the thin film during the operation of the diode. It is proposed that the ion emission mechanism is an electronic conductivity analogue to that discovered by Rollgen for lithium halide crystallites which were rendered ionically conducting by heating to several hundred degrees Celsius. Since an electric field desorption mechanism cannot operate if a surface flashover plasma has formed and reduced the anode electric field to low values, the possibility of flashover on the lithium fluoride coated anode of the PBFA II Li{sup +} ion source is studied theoretically. It is concluded with near certainty that flashover does not occur.

  3. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 thin films and powders

    DOE Patents [OSTI]

    Boyle, Timothy J.

    1999-01-01

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650.degree. C. and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures.

  4. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} thin films and powders

    DOE Patents [OSTI]

    Boyle, T.J.

    1999-01-12

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650 C and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures. 2 figs.

  5. Microreactor-Assisted Nanomaterial Deposition for Photovoltaic Thin-Film Production

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a research project whose goal is to develop and demonstrate a scalable microreactor-assisted nanomaterial deposition pilot platform for the production, purification, functionalization, and solution deposition of nanomaterials for PV applications.

  6. Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.

    SciTech Connect (OSTI)

    Kronawitter, Coleman X.; Antoun, Bonnie R.; Mao, Samuel S.

    2012-01-01

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  7. Innovative Thin Films LLC | Open Energy Information

    Open Energy Info (EERE)

    Thin Films LLC Place: Toledo, Ohio Zip: 43607 Product: Provider of altnernative energy thin film deposition technology. Coordinates: 46.440613, -122.847838 Show Map Loading...

  8. A NOVEL LOW THERMAL BUDGET THIN-FILM POLYSILICON FABRICATION PROCESS FOR LARGE-AREA, HIGH-THROUGHPUT SOLAR CELL PRODUCTION

    SciTech Connect (OSTI)

    Yue Kuo

    2010-08-15

    A novel thin-film poly-Si fabrication process has been demonstrated. This low thermal budget process transforms the single- and multi-layer amorphous silicon thin films into a poly-Si structure in one simple step over a pulsed rapid thermal annealing process with the enhancement of an ultrathin Ni layer. The complete poly-Si solar cell was fabricated in a short period of time without deteriorating the underneath glass substrate. The unique vertical crystallization process including the mechanism is discussed. Influences of the dopant type and process parameters on crystal structure will be revealed. The poly-Si film structure has been proved using TEM, XRD, Raman, and XPS methods. The poly-Si solar cell structure and the performance have been examined. In principle, the new process is potentially applicable to produce large-area thin-film poly-Si solar cells at a high throughput and low cost. A critical issue in this process is to prevent the excessive dopant diffusion during crystallization. Process parameters and the cell structure have to be optimized to achieve the production goal.

  9. China Lucky Film Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lucky Film Co Ltd Jump to: navigation, search Name: China Lucky Film Co Ltd Place: Baoding, Hebei Province, China Zip: 71054 Sector: Solar Product: China's photosensitive materials...

  10. SFC Ltd formerly SamWoo Film | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Korean manufacturer of various types of film, including light diffusion, printing, OHP, inkjet films and TPT-type backsheets for solar modules. Coordinates:...

  11. Nanocomposite films

    DOE Patents [OSTI]

    Mitlin, David; , Ophus, Colin; Evoy, Stephane; Radmilovic, Velimir; Mohammadi, Reza; Westra, Ken; Nelson-Fitzpatrick, Nathaniel; Lee, Zonghoon

    2010-07-20

    A thin-film composition of nanocrystal molybdenum in an amorphous metallic matrix may be formed by co-sputtering Mo with aluminum or nickel. NEMS cantilevers may be formed from the film. The films exhibit high nanoindentation hardness and a reduction in roughness and intrinsic stress, while maintaining resistivity in the metallic range.

  12. Magnetron sputtered boron films

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  13. Magnetron sputtered boron films

    DOE Patents [OSTI]

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  14. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  15. Methods for producing complex films, and films produced thereby...

    Office of Scientific and Technical Information (OSTI)

    This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ... A method for producing a film, the method comprising melting a layer of precursor ...

  16. Progress in thin film solar photovoltaic technologies

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L. )

    1991-01-01

    This paper focuses on the rapid recent advances made by thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, and cadmium telluride. It also indicates the several advantages of thin films. Various consumer products and power applications using thin film solar cells are also discussed. The increasing interest among the utilities for PV system applications is also elucidated.

  17. Applied Films Corporation | Open Energy Information

    Open Energy Info (EERE)

    Place: Longmont, Colorado Zip: 80504 Sector: Services, Solar Product: Provider of thin film deposition equipment and services, particularly to the solar industry....

  18. Film Vault

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  19. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  20. Anode film formation and control

    DOE Patents [OSTI]

    Koski, Oscar; Marschman, Steven C.

    1990-01-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film function to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al.sub.2 O.sub.3 concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film.

  1. Anode film formation and control

    DOE Patents [OSTI]

    Koski, O.; Marschman, S.C.

    1990-05-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

  2. Polymer films

    DOE Patents [OSTI]

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  3. Polymer films

    DOE Patents [OSTI]

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  4. Shin Etsu Film Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Film Co Ltd Jump to: navigation, search Name: Shin-Etsu Film Co Ltd Place: Tokyo, Japan Zip: 101-0047 Product: Japan-based firm that manufactures semiconductor and multicrystalline...

  5. Progress in thin film solar photovoltaic technologies

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.

    1989-12-01

    This paper focuses on the rapid recent advances made by thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, and cadmium telluride. It also indicates the several advantages of thin films. Various consumer products and power applications using thin film solar cells are also discussed. The increasing interest among the utilities for PV system applications is also elucidated. 29 refs., 8 figs., 3 tabs.

  6. Adhesive for solar control film

    SciTech Connect (OSTI)

    Penn, H.J.

    1984-01-31

    A water-activatable adhesive useful for adhering a solar film, polyester (polyethylene terephthalate) film, to glass or to metal substrates. The adhesive comprises the reacted product of (A) gamma-isocyanatopropyltriethoxy silane, containing a free isocyanate (NCO) group, and (B) a thermoplastic polyester formed by reacting (i) a dibasic acid selected from the group consisting of terephthalic acid, isophthalic acid and hexahydrophthalic acid, and mixtures thereof, with (ii) a polymethylene glycol of the formula HO(CH/sub 2/) /SUB x/ OH where x is an integer from 2 to 10, neopentyl glycol and glycerin, and mixtures thereof, and (iii) an aliphatic dibasic acid selected from the group consisting of those having the formula HOOC(CH/sub 2/) /SUB n/ COOH where n is an integer from 1 to 8, and mixtures of such acids, whereby substantially no free NCO remains in the adhesive. Solar film is used for absorbing and/or reflecting solar radiation. Solar film can be a single sheet of polyester dyed sufficiently to absorb the glare of bright sunlight, or it can be a single sheet of polyester, on one side of which a reflective metal (most often aluminum) is deposited in an amount which can be totally reflective or in an amount which still allows visible light transmission and over which a protective coating is deposited, or it can be a laminated structure of the reflective film adhered to a clear or dyed polyester film by which means the reflective metal is sandwiched between two layers of polyester film, or it can be a laminated structure of a reflective film to a polyolefin film.

  7. Institute of Photo Electronic Thin Film Devices and Technology...

    Open Energy Info (EERE)

    Place: Tianjin Municipality, China Zip: 300071 Sector: Solar Product: A thin-film solar cell research institute in China. References: Institute of Photo-Electronic Thin...

  8. PowerFilm Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    Solar Inc Place: Boone, Iowa Zip: 50036 7538 Product: Developer of a method for manufacturing thin-film amorphous silicon modules, from silane gas and plastic substrate, using...

  9. Project Profile: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Solexel-OC team is developing a BIPV roofing shingle product that includes low-profile solar modules and a unique attachment system that will be fastened directly to the roof and incorporates...

  10. Carbonaceous film coating

    DOE Patents [OSTI]

    Maya, Leon

    1989-01-01

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris[1,3,2]diazaborine[1,2-a:1'2'-c:1"2"-e]borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  11. Carbonaceous film coating

    DOE Patents [OSTI]

    Maya, L.

    1988-04-27

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris(1,3,2)diazaborine(1,2-a:1'2'-c:1''2''-e)borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  12. Ferroelectric ultrathin perovskite films

    DOE Patents [OSTI]

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  13. LTCC Thick Film Process Characterization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Girardi, M. A.; Peterson, K. A.; Vianco, P. T.

    2016-05-01

    Low temperature cofired ceramic (LTCC) technology has proven itself in military/space electronics, wireless communication, microsystems, medical and automotive electronics, and sensors. The use of LTCC for high frequency applications is appealing due to its low losses, design flexibility and packaging and integration capability. Moreover, we summarize the LTCC thick film process including some unconventional process steps such as feature machining in the unfired state and thin film definition of outer layer conductors. The LTCC thick film process was characterized to optimize process yields by focusing on these factors: 1) Print location, 2) Print thickness, 3) Drying of tapes and panels,more » 4) Shrinkage upon firing, and 5) Via topography. Statistical methods were used to analyze critical process and product characteristics in the determination towards that optimization goal.« less

  14. DOE - NNSA/NFO -- Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Films NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Nevada Field Office Current Film Library A large number of films depicting historical as well as current ...

  15. Genesis Solar Singapore formerly STP Production | Open Energy...

    Open Energy Info (EERE)

    search Name: Genesis Solar Singapore (formerly STP Production) Place: Singapore Product: Thin-film silicon PV company in Singapore, in which a 75% stake was bought by Genesis...

  16. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  17. Impact of magnetron configuration on plasma and film properties of sputtered aluminum nitride thin films

    SciTech Connect (OSTI)

    Duquenne, C.; Tessier, P. Y.; Besland, M. P.; Angleraud, B.; Jouan, P. Y.; Djouadi, M. A.; Aubry, R.; Delage, S.

    2008-09-15

    We have investigated the growth of the c-axis oriented aluminum nitride (AlN) thin films on (100) silicon by reactive dc magnetron sputtering at low temperature, considering the effect of the magnet configuration on plasma and film properties. It appears that a magnet modification can significantly modify both the plasma characteristics and the film properties. Electrical and optical characterizations of the plasma phase highlight that depending on the magnet configuration, two very different types of deposition process can be involved in the same deposition chamber. On the one hand, with a balanced magnetron (type 1), the deposition process enhances the production of AlN dimers in the plasma phase and enables to synthesize AlN films with different preferential orientations (100, 002, and even 101). On the other hand, a strongly unbalanced magnetron (type 2) provides a limited production of AlN species in the plasma phase and a strong increase in the ratio of ions to metal atom flux on the growing films. In the latter case, the ion energy provided by the ion flux to the growing film is typically in the 20-30 eV range. Thus, dense (002) oriented films with high crystalline quality are obtained without any substrate heating.

  18. Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470

    SciTech Connect (OSTI)

    van Hest, M.

    2013-08-01

    This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

  19. Magnetron sputtered boron films and Ti/B multilayer structures

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  20. Magnetron sputtered boron films and Ti/B multilayer structures

    DOE Patents [OSTI]

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  1. Magnetron sputtered boron films and TI/B multilayer structures

    DOE Patents [OSTI]

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  2. Magnetron sputtered boron films and TI/B multilayer structures

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  3. Solar films seen as cheaper alternative to reflective glass

    SciTech Connect (OSTI)

    Andrews, W.

    1982-06-28

    It costs only one-third as much to install solar film used with clear glass as it does to install reflective glass, and further savings will come in maintenance and replacement costs. Except for the Sunbelt, architects and builders are less enthusiastic about the solar films and reluctant to use them in quality construction because of their reputation for deteriorating. Manufacturers note that field-applied films are not as durable as factory-bonded reflective glass. Several users and architects report their experiences with solar-film performance. Two directories list 116 major manufacturers of doors and windows and 33 suppliers of window-treatment products. (DCK)

  4. Mesoporous-silica films, fibers, and powders by evaporation ...

    Office of Scientific and Technical Information (OSTI)

    Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution ...

  5. NREL: Photovoltaics Research - Polycrystalline Thin-Film Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers, postdocs, and students. CdTe Research CdTe-based thin-film solar cell modules currently represent one of the fastest-growing segments of commercial module production. ...

  6. Response Model for Kodak Biomax-MS Film to X Rays

    SciTech Connect (OSTI)

    Knauer, J.P.; Marshall, F.J.; Yaakobi, B.; Anderson, D.; Schmitt, B.A.; Chandler, K.M.; Pikuz, S.A.; Shelkovenko, T.A.; Mitchell, M.D.; Hammer, D.A.

    2007-01-24

    X-raysensitive film is used for a variety of imaging and spectroscopic diagnostics for high-temperature plasmas. New film becomes available as older films are phased out of production. Biomax-MS is a T-grain class of film that is proposed as a replacement for Kodak DEF film. A model of its response to x rays is presented. Data from dimensional measurements of the film, x-ray transmission measurements, SEM micrograph images, and x-ray calibration are used to develop this sensitivity model of Biomax-MS film as a function of x-ray energy and angle of incidence. Relative response data provide a check of the applicability of this model to determine the x-ray flux from spectrum data. This detailed film characterization starts with simple mathematical models and extends them to T-grain type film.

  7. Amorphous diamond films

    DOE Patents [OSTI]

    Falabella, Steven

    1998-01-01

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions.

  8. Film Collection Volume One

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  9. BPA Historical Films Promo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  10. Porous thin films

    DOE Patents [OSTI]

    Xu, Ting

    2015-11-17

    Compositions of porous thin films and methods of making are provided. The methods involve self-assembly of a cyclic peptide in the presence of a block copolymer.

  11. Film Collection Volume Two

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sag it for the best transmission of high-voltage electricity. It features wonderful animation and tower models. The next film, "The World Behind Your Light Switch" (1966),...

  12. Shading, Films and Window Attachments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Interior Louvered Shutter ("Venetian" Blind) 3 31 Roller Shade 4 55 Applied Film (standard solar control) 6 80 Applied Film (advanced or spectrally-selective) 10 125 ...

  13. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  14. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  15. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  16. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  17. Response model for Kodak Biomax-MS film to x rays

    SciTech Connect (OSTI)

    Knauer, J. P.; Marshall, F. J.; Yaakobi, B.; Anderson, D.; Schmitt, B. A.; Chandler, K. M.; Pikuz, S. A.; Shelkovenko, T. A.; Mitchell, M. D.; Hammer, D. A.

    2006-10-15

    X-ray-sensitive film is used for a variety of imaging and spectroscopic diagnostics for high-temperature plasmas. Replacement film must be found as older films are phased out of production. Biomax-MS is a 'T-grain' class of film that is proposed as a replacement for Kodak DEF and a model of its response to x rays is presented. Data from dimensional measurements of the film, x-ray transmission measurements, scanning electron microscopy micrograph images, and x-ray calibration are used to develop this sensitivity model of Biomax-MS film as a function of x-ray energy and angle of incidence. Relative response data provide a check of the applicability of this model to determine the x-ray flux from spectrum data. This detailed film characterization starts with simple mathematical models and extends them to T-grain-type film.

  18. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  19. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  20. Nuclear cask testing films misleading and misused

    SciTech Connect (OSTI)

    Audin, L.

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as ``proof`` to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests.

  1. SierraTherm Production Furnaces Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: California Zip: 95076 Product: US manufacturer of crystalline silicon and thin-film cell manufacturing equipment such as coating, diffusion, drying and PECVD...

  2. Patrick Kwan | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrick Kwan Graduate student Subtask 3 project: "Protein Film Electrochemistry for the Investigation of Redox Enzymes" Related links: Patrick Kwan explores solar fuel production

  3. Amorphous diamond films

    DOE Patents [OSTI]

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  4. Nanostructured thermoplastic polyimide films

    DOE Patents [OSTI]

    Aglan, Heshmat

    2015-05-19

    Structured films containing multi-walled carbon nanotubes ("MWCNTs") have enhanced mechanical performance in terms of strength, fracture resistance, and creep recovery of polyimide ("PI") films. Preferably, the loadings of MWCNTs can be in the range of 0.1 wt % to 0.5 wt %. The strength of the new PI films dried at 60.degree. C. increased by 55% and 72% for 0.1 wt % MWCNT and 0.5 wt % MWCNT loadings, respectively, while the fracture resistance increased by 23% for the 0.1 wt % MWCNTs and then decreases at a loading of 0.5 wt % MWCNTs. The films can be advantageously be created by managing a corresponding shift in the annealing temperature at which the maximum strength occurs as the MWCNT loadings increase.

  5. Quantitative film radiography

    SciTech Connect (OSTI)

    Devine, G.; Dobie, D.; Fugina, J.; Hernandez, J.; Logan, C.; Mohr, P.; Moss, R.; Schumacher, B.; Updike, E.; Weirup, D.

    1991-02-26

    We have developed a system of quantitative radiography in order to produce quantitative images displaying homogeneity of parts. The materials that we characterize are synthetic composites and may contain important subtle density variations not discernible by examining a raw film x-radiograph. In order to quantitatively interpret film radiographs, it is necessary to digitize, interpret, and display the images. Our integrated system of quantitative radiography displays accurate, high-resolution pseudo-color images in units of density. We characterize approximately 10,000 parts per year in hundreds of different configurations and compositions with this system. This report discusses: the method; film processor monitoring and control; verifying film and processor performance; and correction of scatter effects.

  6. TAMPERPROOF FILM BADGE

    DOE Patents [OSTI]

    Kocher, L.F.

    1958-10-01

    A persornel dosimeter film badge made of plastic, with provision for a picture of the wearer and an internal slide containing photographic film that is sensitive to various radiations, is described. Four windows made of differing material selectively attenuate alpha, beta, gamma rays, and neutrons so as to distinguish the particular type of radiation the wearer was subjected to. In addition, a lead shield has the identification number of the wearer perforated thereon so as to identify the film after processing. An internal magnetically actuated latch securely locks the slide within the body, and may be withdrawn only upon the external application of two strong magnetic forces in order to insure that the wearer or other curious persons will not accidentally expose the film to visual light.

  7. Polymer film composite transducer

    DOE Patents [OSTI]

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  8. Thin film tritium dosimetry

    DOE Patents [OSTI]

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  9. Magnetoresistance of Au films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, D. L.; Song, X. H.; Zhang, X.; Zhang, Xiaoguang

    2014-12-10

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  10. Multifunctional thin film surface

    DOE Patents [OSTI]

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  11. Process for preparing group Ib-IIIa-VIa semiconducting films

    DOE Patents [OSTI]

    Birkmire, Robert W.; Schultz, Jerold M.; Marudachalam, Matheswaran; Hichri, Habib

    1997-01-01

    Methods are provided for the production of supported monophasic group I-III-VI semiconductor films. In the subject methods, a substrate is coated with group I and III elements and then contacted with a reactive group VI element containing atmosphere under conditions sufficient to produce a substrate coated with a composite of at least two different group I-III-IV alloys. The resultant composite coated substrate is then annealed in an inert atmosphere under conditions sufficient to convert the composite coating to a monophasic group I-III-VI semiconductor film. The resultant supported semiconductor films find use in photovoltaic applications, particularly as absorber layers in solar cells.

  12. Process for preparing group Ib-IIIa-VIa semiconducting films

    DOE Patents [OSTI]

    Birkmire, R.W.; Schultz, J.M.; Marudachalam, M.; Hichri, H.

    1997-10-07

    Methods are provided for the production of supported monophasic group I-III-VI semiconductor films. In the subject methods, a substrate is coated with group I and III elements and then contacted with a reactive group VI element containing atmosphere under conditions sufficient to produce a substrate coated with a composite of at least two different group I-III-IV alloys. The resultant composite coated substrate is then annealed in an inert atmosphere under conditions sufficient to convert the composite coating to a monophasic group I-III-VI semiconductor film. The resultant supported semiconductor films find use in photovoltaic applications, particularly as absorber layers in solar cells. 4 figs.

  13. Thin films and uses

    DOE Patents [OSTI]

    Baskaran, Suresh; Graff, Gordon L.; Song, Lin

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  14. Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications

    SciTech Connect (OSTI)

    David M. Dean

    2012-10-30

    Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is the key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.

  15. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  16. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  17. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  18. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  19. Methods for producing complex films, and films produced thereby

    SciTech Connect (OSTI)

    Duty, Chad E.; Bennett, Charlee J. C.; Moon, Ji -Won; Phelps, Tommy J.; Blue, Craig A.; Dai, Quanqin; Hu, Michael Z.; Ivanov, Ilia N.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Ott, Ronald D.; Parish, Chad M.; Walker, Steven

    2015-11-24

    A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.

  20. Diamond films: Historical perspective

    SciTech Connect (OSTI)

    Messier, R.

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  1. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  2. Dynamics of helium films

    SciTech Connect (OSTI)

    Clements, B.E.; Epstein, J.L.; Krotscheck, E.; Tymczak, C.J.; Saarela, M.

    1992-11-01

    The authors present quantitative calculations for the static structure and the dynamics of quantum liquid films on a translationally invariant substrate. The excitation spectrum is calculated by solving the equations of motion for time-dependent one- and two-body densities. They find significant corrections to the Feynman spectrum for the phonon-like collective excitations. 8 refs., 2 figs.

  3. Orientation filtering for crystalline films

    DOE Patents [OSTI]

    Smith, H.I.; Atwater, H.A.; Thompson, C.V.; Geis, M.W.

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations. 7 figs.

  4. Process to form mesostructured films

    DOE Patents [OSTI]

    Brinker, C. Jeffrey; Anderson, Mark T.; Ganguli, Rahul; Lu, Yunfeng

    1999-01-01

    This invention comprises a method to form a family of supported films film with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts.

  5. Thin-film optical initiator

    DOE Patents [OSTI]

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  6. Orientation filtering for crystalline films

    DOE Patents [OSTI]

    Smith, Henry I.; Atwater, Harry A.; Thompson, Carl V.; Geis, Michael W.

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations.

  7. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  8. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  9. Method for making carbon films

    DOE Patents [OSTI]

    Tan, Ming X.

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  10. Method for making carbon films

    DOE Patents [OSTI]

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  11. Method for forming metallic silicide films on silicon substrates by ion beam deposition

    DOE Patents [OSTI]

    Zuhr, Raymond A. (Oak Ridge, TN); Holland, Orin W. (Oak Ridge, TN)

    1990-01-01

    Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

  12. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  13. NREL and Company Researchers Team Up on Thin-Film Solar Cells...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Company Researchers Team Up on Thin-Film Solar Cells November 12, 2003 Golden, Colo. - An Austin, Tex.-based company is moving toward commercial production of advanced ...

  14. Photovoltaic Films - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Photovoltaic Films Los Alamos National Laboratory Contact LANL About This Technology LANL&rsquo;s solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. LANL's solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. Technology Marketing SummaryThe rising total cost of energy

  15. Frequency mixer having ferromagnetic film

    DOE Patents [OSTI]

    Khitun, Alexander; Roshchin, Igor V.; Galatsis, Kosmas; Bao, Mingqiang; Wang, Kang L.

    2016-03-29

    A frequency conversion device, which may include a radiofrequency (RF) mixer device, includes a substrate and a ferromagnetic film disposed over a surface of the substrate. An insulator is disposed over the ferromagnetic film and at least one microstrip antenna is disposed over the insulator. The ferromagnetic film provides a non-linear response to the frequency conversion device. The frequency conversion device may be used for signal mixing and amplification. The frequency conversion device may also be used in data encryption applications.

  16. Fabrication of amorphous diamond films

    DOE Patents [OSTI]

    Falabella, Steven

    1995-01-01

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions.

  17. Process to form mesostructured films

    DOE Patents [OSTI]

    Brinker, C.J.; Anderson, M.T.; Ganguli, R.; Lu, Y.F.

    1999-01-12

    This invention comprises a method to form a family of supported films with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts. 12 figs.

  18. Introduction to BPA Film Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Information Act Investor Relations Library Privacy Publications Tribal Affairs Introduction to BPA Film Collection: Volume One, Disc One, 1939-1954 An error occurred. Try...

  19. DOE - NNSA/NFO -- Current Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Films > Current Nevada Field Office Film Library Instructions: Click the Windows Media or MPG Movie link to view the video Film details are listed on the right Refer to the Viewing Instructions

  20. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  1. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1997-04-08

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide. 5 figs.

  2. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, David F.; Kwan, Simon W.

    1997-01-01

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide.

  3. Electrical initiation of an energetic nanolaminate film

    DOE Patents [OSTI]

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  4. Thin Film Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    help OpenEI by expanding it. Thin Film Solar Technologies is a company located in South Africa . References "Thin Film Solar Technologies" Retrieved from "http:...

  5. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  6. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  7. System for measuring film thickness

    DOE Patents [OSTI]

    Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  8. Liquid-film electron stripper

    DOE Patents [OSTI]

    Gavin, Basil F.

    1986-01-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one said of the disc's periphery and with a highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90.degree. angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  9. Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying

    SciTech Connect (OSTI)

    Dom, Rekha; Sivakumar, G.; Hebalkar, Neha Y.; Joshi, Shrikant V.; Borse, Pramod H.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Highly economic solution precursor route capable of producing films/coating even for mass scale production. Black-Right-Pointing-Pointer Pure spinel phase ZnFe{sub 2}O{sub 4} porous, immobilized films deposited in single step. Black-Right-Pointing-Pointer Parameter optimization yields access to nanostructuring in SPPS method. Black-Right-Pointing-Pointer The ecofriendly immobilized ferrite films were active under solar radiation. Black-Right-Pointing-Pointer Such magnetic system display advantage w.r.t. recyclability after photocatalyst extraction. -- Abstract: Deposition of pure spinel phase, photocatalytic zinc ferrite films on SS-304 substrates by solution precursor plasma spraying (SPPS) has been demonstrated for the first time. Deposition parameters such as precursor solution pH, concentration, film thickness, plasma power and gun-substrate distance were found to control physico-chemical properties of the film, with respect to their crystallinity, phase purity, and morphology. Alkaline precursor conditions (7 < pH {<=} 10) were found to favor oxide film formation. The nanostructured films produced under optimized conditions, with 500 mM solution at pH {approx} 8.0, yielded pure cubic phase ZnFe{sub 2}O{sub 4} film. Very high/low precursor concentrations yielded mixed phase, less adherent, and highly inhomogeneous thin films. Desired spinel phase was achieved in as-deposited condition under appropriately controlled spray conditions and exhibited a band gap of {approx}1.9 eV. The highly porous nature of the films favored its photocatalytic performance as indicated by methylene blue de-coloration under solar radiation. These immobilized films display good potential for visible light photocatalytic applications.

  10. Photoelectrochemical hydrogen production

    SciTech Connect (OSTI)

    Rocheleau, R.; Misra, A.; Miller, E.

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  11. Ferromagnetic thin films

    DOE Patents [OSTI]

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  12. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  13. Flexible Thin-Film Silicon Solar Cells

    SciTech Connect (OSTI)

    Vijh, Aarohi; Cao, Simon; Mohring, Brad

    2014-01-11

    High fuel costs, environmental concerns and issues of national energy security have brought increasing attention to a distributed generation program for electricity based on solar technology. Rooftop photovoltaic (PV) systems provide distributed generation since the power is consumed at the point of production, thus eliminating the need for costly additional transmission lines. However, most current photovoltaic modules are heavy and require a significant amount of labor and accessory hardware such as mounting frames for installation on rooftops. This makes rooftop systems impractical or cost prohibitive in many instances. Under this project, Xunlight has advanced its manufacturing process for the production of lightweight, flexible thin-film silicon based photovoltaic modules, and has enhanced the reliability and performance of Xunlights products. These modules are easily unrolled and adhered directly to standard commercial roofs without mounting structures or integrated directly into roofing membrane materials for the lowest possible installation costs on the market. Importantly, Xunlight has now established strategic alliances with roofing material manufacturers and other OEMs for the development of building integrated photovoltaic roofing and other PV-enabled products, and has deployed its products in a number of commercial installations with these business partners.

  14. Tailoring nanocrystalline diamond film properties

    DOE Patents [OSTI]

    Gruen, Dieter M.; McCauley, Thomas G.; Zhou, Dan; Krauss, Alan R.

    2003-07-15

    A method for controlling the crystallite size and growth rate of plasma-deposited diamond films. A plasma is established at a pressure in excess of about 55 Torr with controlled concentrations of hydrogen up to about 98% by volume, of unsubstituted hydrocarbons up to about 3% by volume and an inert gas of one or more of the noble gases and nitrogen up to about 98% by volume. The volume ratio of inert gas to hydrogen is preferably maintained at greater than about 4, to deposit a diamond film on a suitable substrate. The diamond film is deposited with a predetermined crystallite size and at a predetermined growth rate.

  15. Vapor deposition of thin films

    SciTech Connect (OSTI)

    Smith, D.C.; Pattillo, S.G.; Laia, J.R. Jr.; Sattelberger, A.P.

    1990-10-05

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl){sub 3}, iridium(allyl){sub 3}, molybdenum(allyl){sub 4}, tungsten(allyl){sub 4}, rhenium (allyl){sub 4}, platinum(allyl){sub 2}, or palladium(allyl){sub 2} are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  16. Liquid-film electron stripper

    DOE Patents [OSTI]

    Leemann, B.T.; Yourd, R.B.

    1982-03-09

    A thin freestanding oil film is produced in vacuum by directing an oil stream radially inward to the hollow-ground sharp outer edge of a rotating disc. The sides of the edge are roughened somewhat to aid in dispersing oil from the disc. Oil is removed from the surface of disc to prevent formation of oil droplets which might spin off the disc and disrupt the oil film. An ion beam is directed through the thin oil film so that electrons are stripped from the ions to increase their charge.

  17. Liquid-film electron stripper

    DOE Patents [OSTI]

    Leemann, Beat T.; Yourd, Roland B.

    1984-01-01

    A thin freestanding oil film is produced in vacuum by directing an oil stream radially inward to the hollow-ground sharp outer edge of a rotating disc. The sides of the edge are roughened somewhat to aid in dispersing oil from the disc. Oil is removed from the surface of disc to prevent formation of oil droplets which might spin off the disc and disrupt the oil film. An ion beam is directed through the thin oil film so that electrons are stripped from the ions to increase their charge.

  18. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  19. Advances in Thin-Film Proton-Reaction Cell Experiments

    SciTech Connect (OSTI)

    George H. Miley; Giovanna Selvaggi; Andy Tate; Carlos Castano

    2000-11-12

    Thin-film electrodes (layers of the order of thousands of angstroms) offer several very important advantages for cold fusion research: Good reproducibility has been demonstrated, an extremely high power density is obtained in the thin film, and reaction rates can be optimized by appropriate selection of materials and interfaces. The motivation for thin films stems from the Swimming Electron Theory, which predicts that enhanced reaction rates can occur with the careful selection of interface materials. Recent experiments have concentrated on the measurement of the H or D loading (atoms H/atom metal), using thin (1-m-long, 50-{mu}m-diam) wires to simulate thin films. Wires facilitate measurement of the loading as a function of time during a run by use of a simple resistivity measurement. These experiments show that excess heat production is associated with a dynamic resistivity oscillation, both being suddenly initiated (coincidence within 2 to 3 s) when a D/Pd loading ratio >0.9 9 is achieved. The counterpart of these experiments involves use of a unique compact electrode design where thin films are coated onto a small glass slide to provide both the anode and cathode. Experiments with these compact electrodes have consistently produced >100 W/cm{sup 3} metal.

  20. HTS thin films: Passive microwave components and systems integration issues

    SciTech Connect (OSTI)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.

    1994-12-31

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  1. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, Jerome J.; Halpern, Bret L.

    1994-01-01

    A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.

  2. Flexible barrier film, method of forming same, and organic electronic device including same

    DOE Patents [OSTI]

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  3. Fabrication of amorphous diamond films

    DOE Patents [OSTI]

    Falabella, S.

    1995-12-12

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  4. Process for forming planarized films

    DOE Patents [OSTI]

    Pang, Stella W.; Horn, Mark W.

    1991-01-01

    A planarization process and apparatus which employs plasma-enhanced chemical vapor deposition (PECVD) to form plarnarization films of dielectric or conductive carbonaceous material on step-like substrates.

  5. Film holder for radiographing tubing

    DOE Patents [OSTI]

    Davis, Earl V.; Foster, Billy E.

    1976-01-01

    A film cassette is provided which may be easily placed about tubing or piping and readily held in place while radiographic inspection is performed. A pair of precurved light-impervious semi-rigid plastic sheets, hinged at one edge, enclose sheet film together with any metallic foils or screens. Other edges are made light-tight with removable caps, and the entire unit is held securely about the object to be radiographed with a releasable fastener such as a strip of Velcro.

  6. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  7. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  8. DOE - NNSA/NFO -- Nevada Field Office Film Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Films > Current NFO Films NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Nevada Field Office Current Film Library Instructions: Click the Document Title or Thumbnail ...

  9. Optical, electrical and surface properties of annealed CdO:Mg thin films prepared by spray pyrolysis

    SciTech Connect (OSTI)

    Karakaya, Seniye E-mail: oozbas@ogu.edu.tr; Ozbas, Omer E-mail: oozbas@ogu.edu.tr

    2013-12-16

    The use of transparent conducting oxides in optoelectronic and photovoltaic devices has encouraged research on this field in recent years. Especially, cadmium oxide is a promising material for solar cell application but also for photodiodes and gas sensors. Mg doped CdO (CdO:Mg) films have been prepared on glass substrates by the ultrasonic spray pyrolysis (USP) technique. After the production, the films have been annealed in air atmosphere at 475C and half hour. Results on surface, optical and electrical properties of the films as a function of the thermal annealing have been reported. Thicknesses of the films have been determined by the filmetrics thin film measurement system. Transmission and absorbance spectra have been taken by UV-vis spectrophotometer. Atomic Force Microscopy (AFM) analysis indicates that the roughness of the surface decreases upon increasing Mg concentration. The minimum resistivity value of the films was 210{sup ?3} ? cm.

  10. Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy

    SciTech Connect (OSTI)

    Bartzsch, Stefan Oelfke, Uwe; Lott, Johanna; Welsch, Katrin; Bruer-Krisch, Elke

    2015-07-15

    Purpose: Microbeam radiation therapy (MRT) is a still preclinical tumor therapy approach that uses arrays of a few tens of micrometer wide parallel beams separated by a few 100 ?m. The production, measurement, and planning of such radiation fields are a challenge up to now. Here, the authors investigate the feasibility of radiochromic film dosimetry in combination with a microscopic readout as a tool to validate peak and valley doses in MRT, which is an important requirement for a future clinical application of the therapy. Methods: Gafchromic{sup } HD-810 and HD-V2 films are exposed to MRT fields at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF) and are afterward scanned with a microscope. The measured dose is compared with Monte Carlo calculations. Image analysis tools and film handling protocols are developed that allow accurate and reproducible dosimetry. The performance of HD-810 and HD-V2 films is compared and a detailed analysis of the resolution, noise, and energy dependence is carried out. Measurement uncertainties are identified and analyzed. Results: The dose was measured with a resolution of 5 1000 ?m{sup 2} and an accuracy of 5% in the peak and between 10% and 15% in the valley region. As main causes for dosimetry uncertainties, statistical noise, film inhomogeneities, and calibration errors were identified. Calibration errors strongly increase at low doses and exceeded 3% for doses below 50 and 70 Gy for HD-V2 and HD-810 films, respectively. While the grain size of both film types is approximately 2 ?m, the statistical noise in HD-V2 is much higher than in HD-810 films. However, HD-810 films show a higher energy dependence at low photon energies. Conclusions: Both film types are appropriate for dosimetry in MRT and the microscope is superior to the microdensitometer used before at the ESRF with respect to resolution and reproducibility. However, a very careful analysis of the image data is required. Dosimetry at

  11. Cobalt deposition in oxide films on reactor pipework. Final report

    SciTech Connect (OSTI)

    Bridle, D.A.; Bird, E.J.; Mitchell, C.R.

    1986-03-01

    This report details results of a program carried out by the UKAEA on the Winfrith SGHWR, to study the incorporation of cobalt into the corrosion product films formed on PWR primary circuit materials (stainless steel 304L, Inconel-600 and Zircaloy-4). An electromagnetic filter has been operated on a once through basis directly on the primary coolant blowdown line to remove particulate impurities. This has permitted an examination of the relative importance of soluble and insoluble species in the formation of corrosion product films. The selected alloys have been exposed to coolant up and downstream from the filter unit and data are presented which provide a detailed analysis of the coolant at these situations, with respect to soluble and insoluble, chemical and radiochemical species. Characterization of the corrosion product films has been carried out using scanning electron microscopy coupled with energy dispersive analysis using x-rays. Radiochemical analyses have been carried out using ..gamma..-spectrometry. The effectiveness of decontamination using Low Oxidation state Metal Ion (LOMI) reagent has been studied and data are presented on decontamination rates. 21 tabs.

  12. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  13. Production and characterization of thin film group IIIB, IVB...

    Office of Scientific and Technical Information (OSTI)

    A recent short history of reactive evaporation by D. M. ... Information: (c) 2015 American Vacuum Society; Country ... Country of Publication: United States Language: English ...

  14. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator

    SciTech Connect (OSTI)

    Zhou Xiang; Shen Ruiqi; Ye Yinghua; Zhu Peng; Hu Yan; Wu Lizhi

    2011-11-01

    An investigation on the influence of Al/CuO reactive multilayer films (RMFs) additives on exploding foil initiator was performed in this paper. Cu film and Cu/Al/CuO RMFs were produced by using standard microsystem technology and RF magnetron sputtering technology, respectively. Scanning electron microscopy characterization revealed the distinct layer structure of the as-deposited Al/CuO RMFs. Differential scanning calorimetry was employed to ascertain the amount of heat released in the thermite reaction between Al films and CuO films, which was found to be 2024 J/g. Electrical explosion tests showed that 600 V was the most matching voltage for our set of apparatus. The explosion process of two types of films was observed by high speed camera and revealed that compared with Cu film, an extra distinct combustion phenomenon was detected with large numbers of product particles fiercely ejected to a distance of about six millimeters for Cu/Al/CuO RMFs. By using the atomic emission spectroscopy double line technique, the reaction temperature was determined to be about 6000-7000 K and 8000-9000 K for Cu film and Cu/Al/CuO RMFs, respectively. The piezoelectricity of polyvinylidene fluoride film was employed to measure the average velocity of the slapper accelerated by the explosion of the films. The average velocities of the slappers were calculated to be 381 m/s and 326 m/s for Cu film and Cu/Al/CuO RMFs, respectively, and some probable reasons were discussed with a few suggestions put forward for further work.

  15. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  16. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  17. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  18. DOE - NNSA/NFO -- Historical Test Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1950-57 http:www.nv.doe.govlibraryfilmsFilmsLibrary051.jpg 800052 Atomic Guided Missiles 1955 http:www.nv.doe.govlibraryfilmsFilmsLibrary052.jpg 800053 Meeting the ...

  19. Proximity effects of superconducting multilayer film

    SciTech Connect (OSTI)

    Xueyu, C.; Daole, Y.

    1984-07-01

    The proximity effects of superconducting multilayer films composed of different metals are considered. The relationship between the critical temperature of a superconducting multilayer film with strong heterogeneity and its geometric structure is given.

  20. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  1. The Film Scanning and Reanalysis Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Film Scanning National Security Science Latest Issue:July 2015 past issues All Issues submit The Film Scanning and Reanalysis Project Scientists on a search-and-rescue...

  2. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  3. Liquid film target impingement scrubber

    DOE Patents [OSTI]

    McDowell, William J.; Coleman, Charles F.

    1977-03-15

    An improved liquid film impingement scrubber is provided wherein particulates suspended in a gas are removed by jetting the particle-containing gas onto a relatively small thin liquid layer impingement target surface. The impingement target is in the form of a porous material which allows a suitable contacting liquid from a pressurized chamber to exude therethrough to form a thin liquid film target surface. The gas-supported particles collected by impingement of the gas on the target are continuously removed and flushed from the system by the liquid flow through each of a number of pores in the target.

  4. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  5. Silicon nanocrystal inks, films, and methods

    DOE Patents [OSTI]

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  6. DOE - NNSA/NFO -- Test Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Historical Test Films > Film Page NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Historical Test Film Instructions: Click the Windows Media or MPG Movie link below the thumbnail to view the video Film details are listed on the right under Description Click the Full Text link for additional information about the video Refer to the Viewing Instructions and FAQs

  7. Biaxially oriented film on flexible polymeric substrate

    DOE Patents [OSTI]

    Finkikoglu, Alp T.; Matias, Vladimir

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  8. Shading, Films and Window Attachments Market Report

    Broader source: Energy.gov [DOE]

    Shading, Films and Window Attachments (SFWA) Market Report, March 13, 2016, from the Consortium for Building Energy Innovation.

  9. Method of producing thin cellulose nitrate film

    DOE Patents [OSTI]

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  10. Processing and modeling issues for thin-film solar cell devices. Final report

    SciTech Connect (OSTI)

    Birkmire, R.W.; Phillips, J.E.

    1997-11-01

    During the third phase of the subcontract, IEC researchers have continued to provide the thin film PV community with greater depth of understanding and insight into a wide variety of issues including: the deposition and characterization of CuIn{sub 1-x}Ga{sub x}Se{sub 2}, a-Si, CdTe, CdS, and TCO thin films; the relationships between film and device properties; and the processing and analysis of thin film PV devices. This has been achieved through the systematic investigation of all aspects of film and device production and through the analysis and quantification of the reaction chemistries involved in thin film deposition. This methodology has led to controlled fabrications of 15% efficient CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells over a wide range of Ga compositions, improved process control of the fabrication of 10% efficient a-Si solar cells, and reliable and generally applicable procedures for both contacting and doping films. Additional accomplishments are listed below.

  11. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  12. Thin film solar energy collector

    SciTech Connect (OSTI)

    Farrauto, R.J.; Myers, H.; Williams, J.C.

    1982-03-23

    A solar energy collector has improved absorptance and emissivity levels comprising: (1) a silver-copper oxide-rhodium oxide solar absorption film, (2) a cerium oxide interlayer and a substrate of quartz, silica glass or metal. The cerium oxide interlayer minimizes agglomeration of the metal particles, maintains a relatively low thermal emittance and improves overall stability.

  13. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  14. Carbon film electrodes for super capacitor applications

    DOE Patents [OSTI]

    Tan, Ming X.

    1999-01-01

    A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  15. Carbon film electrodes for super capacitor applications

    SciTech Connect (OSTI)

    Tan, M.X.

    1999-11-30

    A microporous carbon film for use as electrodes in energy storage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm{sup 2} and 1 g/cm{sup 2} and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  16. Method for fabricating hafnia films

    DOE Patents [OSTI]

    Hu, Michael Z [Knoxville, TN

    2007-08-21

    The present invention comprises a method for fabricating hafnia film comprising the steps of providing a substrate having a surface that allows formation of a self-assembled monolayer thereon via covalent bonding; providing an aqueous solution that provides homogeneous hafnium ionic complexes and hafnium nanoclusters wherein the aqueous solution is capable of undergoing homogeneous precipitation under controlled conditions for a desired period of time at a controlled temperature and controlled solution acidity for desired nanocluster nucleation and growth kinetics, desired nanocluster size, desired growth rate of film thickness and desired film surface characteristics. The method further comprising forming the self-assembled monolayer on the surface of the substrate wherein the self-assembled monolayer comprises a plurality of hydrocarbon chains cross-linked together along the surface of the substrate, the hydrocarbon chains being uniformly spaced from one another and wherein each of the hydrocarbon chains having a functional anchoring group at a first end of the chain covalently bonded with the surface of the substrate and each of the hydrocarbon chains having a functional terminating group projected away from the surface wherein the functional terminating group provides a bonding site for the hafnium film to grow; and exposing the substrate to the aqueous solution for a desired period of time at a controlled temperature wherein the hafnium ionic complexes and the hafnium nanoclusters are deposited on the bonding site of the functional terminating group thereby forming the hafnia film wherein the hafnium bonded to the hydrocarbons and to one another provide a uniform ordered arrangement defined by the uniform arrangement of the hydrocarbons.

  17. Magnetron sputtered boron films for increasing hardness of a metal surface

    DOE Patents [OSTI]

    Makowiecki, Daniel M.; Jankowski, Alan F.

    2003-05-27

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  18. HiPIMS: a New Generation of Film Deposition Techniques for SRF Applications

    SciTech Connect (OSTI)

    Valente-Feliciano, Anne-Marie

    2013-09-01

    Over the years, Nb/Cu technology, despite its shortcomings due to the commonly used magnetron sputtering, has positioned itself as an alternative route for the future of accelerator superconducting structures. Avenues for the production of thin films tailored for Superconducting RF (SRF) applications are showing promise with recent developments in ionized PVD coating techniques, i.e. vacuum deposition techniques using energetic ions. Among these techniques, High power impulse magnetron sputtering (HiPIMS) is a promising emerging technique which combines magnetron sputtering with a pulsed power approach. This contribution describes the benefits of energetic condensation for SRF films and the characteristics of the HiPIMS technology. It describes the on-going efforts pursued in different institutions to exploit the potential of this technology to produce bulk-like Nb films and go beyond Nb performance with the development of film systems, based on other superconducting materials and multilayer structures.

  19. Carbon Film Electrodes For Super Capacitor Applications

    DOE Patents [OSTI]

    Tan, Ming X.

    1999-07-20

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  20. Zinc oxide thin film acoustic sensor

    SciTech Connect (OSTI)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  1. Field Emission and Nanostructure of Carbon Films

    SciTech Connect (OSTI)

    Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

    1999-11-29

    The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded. However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.

  2. Method of making reflecting film reflector

    DOE Patents [OSTI]

    Cottingham, James G.

    1980-01-01

    A reflector of the reflecting film type is disclosed and which may be used in a heliostatic system for concentrating solar energy and comprising a reflecting film bonded to an appropriate rigid substrate in such a way that specularity of a very high order is achieved. A method of bonding the reflecting film to the substrate is also disclosed and comprises the steps of initially adhering the film to a smooth, clean flat rigid surface with a non-bonding liquid between the rigid surface and film, and then bonding the substrate and film. The non-bonding liquid has a molecular adhesion greater than any stresses due to handling or curing of the bonding agent which is applied between the film and the opposing surface of the rigid substrate.

  3. Subwavelength films for standoff radiation dosimetry

    SciTech Connect (OSTI)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan L.; Suter, Jonathan D.

    2015-05-22

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiation-sensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  4. Apparatus and Process for the Mass Production of Photovoltaic Modules -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Apparatus and Process for the Mass Production of Photovoltaic Modules Colorado State University Contact CSU About This Technology Technology Marketing Summary A high throughput thin film device manufacturing process that produces stable, high efficiency devices and, at the same time, limits environmental and occupational exposure to toxic compounds. Description This innovation is a high throughput thin film device manufacturing process that produces stable, high

  5. Effect of processor temperature on film dosimetry

    SciTech Connect (OSTI)

    Srivastava, Shiv P.; Das, Indra J.

    2012-07-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d{sub max.}, 10 Multiplication-Sign 10 cm{sup 2}, 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6 Degree-Sign C (85-105 Degree-Sign F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

  6. Photopatternable sorbent and functionalized films

    DOE Patents [OSTI]

    Grate, Jay W.; Nelson, David A.

    2006-01-31

    A composition containing a polymer, a crosslinker and a photo-activatable catalyst is placed on a substrate. The composition is exposed to a predetermined pattern of light, leaving an unexposed region. The light causes the polymer to become crosslinked by hydrosilylation. A solvent is used to remove the unexposed composition from the substrate, leaving the exposed pattern to become a sorbent polymer film that will absorb a predetermined chemical species when exposed to such chemical species.

  7. Deposited films with improved microstructures

    DOE Patents [OSTI]

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1984-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or large planar surfaces.

  8. Large-area silicon-film{sup {trademark}} panels and solar cells. Phase I annual technical report, July 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Rand, J.A.; Barnett, A.M.; Checchi, J.C.; Culik, J.S.

    1996-06-01

    AstroPower is establishing a low cost manufacturing process for Silicon-Film{trademark} solar cells and panels by taking advantage of the continuous nature of the Silicon-Film{trademark} technology. Under this effort, each step used in Silicon-Film{trademark} panel fabrication is being developed into a continuous/in-line manufacturing process. The following benefits are expected: an accelerated reduction of PV manufacturing cost for installed systems; a foundation for significantly increased production capacity; and a reduction in handling and waste streams. The process development will be based on a new 31-cm wide continuous Silicon-Film{trademark} sheet. Long-term goals include the development of a 24W, 30 cm x 60 cm Silicon-Film{trademark} solar cell and a manufacturing capability for a 384W, 4 inches x 8 inches Silicon-Film{trademark} panel for deployment in utility-scale applications.

  9. Tuneable dielectric films having low electrical losses

    DOE Patents [OSTI]

    Dimos, Duane Brian; Schwartz, Robert William; Raymond, Mark Victor; Al-Shareef, Husam Niman; Mueller, Carl; Galt, David

    2000-01-01

    The present invention is directed to a method for forming dielectric thin films having substantially reduced electrical losses at microwave and millimeter wave frequencies relative to conventional dielectric thin films. The reduction in losses is realized by dramatically increasing the grain sizes of the dielectric films, thereby minimizing intergranular scattering of the microwave signal due to grain boundaries and point defects. The increase in grain size is realized by heating the film to a temperature at which the grains experience regrowth. The grain size of the films can be further increased by first depositing the films with an excess of one of the compoents, such that a highly mobile grain boundary phase is formed.

  10. Method for forming porous platinum films

    DOE Patents [OSTI]

    Maya, Leon

    2000-01-01

    A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.

  11. Domain epitaxy for thin film growth

    DOE Patents [OSTI]

    Narayan, Jagdish

    2005-10-18

    A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature T.sub.growth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature T.sub.anneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness h.sub.c. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.

  12. Ambient-pressure silica aerogel films

    SciTech Connect (OSTI)

    Prakash, S.S. [New Mexico Univ., Albuquerque, NM (United States); Brinker, C.J. [New Mexico Univ., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States); Hurd, A.J. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    Very highly porous (aerogel) silica films with refractive index in the range 1.006--1.05 (equivalent porosity 98.5--88%) were prepared by an ambient-pressure process. It was shown earlier using in situ ellipsometric imaging that the high porosity of these films was mainly attributable to the dilation or `springback` of the film during the final stage of drying. This finding was irrefutably reconfirmed by visually observing a `springback` of >500% using environmental scanning electron microscopy (ESEM). Ellipsometry and ESEM also established the near cent per cent reversibility of aerogel film deformation during solvent intake and drying. Film thickness profile measurements (near the drying line) for the aerogel, xerogel and pure solvent cases are presented from imaging ellipsometry. The thickness of these films (crack-free) were controlled in the range 0.1-3.5 {mu}m independent of refractive index.

  13. Electrodeposition of Zn based nanostructure thin films for photovoltaic applications

    SciTech Connect (OSTI)

    Al-Bathi, S. A. M.

    2015-03-30

    We present here a systematic study on the synthesis thin films of various ZnO, CdO, Zn{sub x}Cd{sub 1-x} (O) and ZnTe nanostructures by electrodeposition technique with ZnCl{sub 2,} CdCl{sub 2} and ZnSO{sub 4} solution as starting reactant. Several reaction parameters were examined to develop an optimal procedure for controlling the size, shape, and surface morphology of the nanostructure. The results showed that the morphology of the products can be carefully controlled through adjusting the concentration of the electrolyte. The products present well shaped Nanorods arrays at specific concentration and temperature. UV-VIS spectroscopy and X-ray diffraction results show that the product presents good crystallinity. A possible formation process has been proposed.

  14. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey, Thomas M.; Burrell; Anthony K.; Jia; Quanxi; Lin; Yuan

    2009-10-20

    A polymer assisted deposition process for deposition of metal oxide films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films and the like. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  15. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey, Thomas M.; Burrell, Anthony K.; Jia, Quanxi; Lin, Yuan

    2008-04-29

    A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  16. Exploding conducting film laser pumping apparatus

    DOE Patents [OSTI]

    Ware, K.D.; Jones, C.R.

    1984-04-27

    The 342-nm molecular iodine and the 1.315-..mu..m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  17. Anisotropic conducting films for electromagnetic radiation applications

    DOE Patents [OSTI]

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  18. Method of producing amorphous thin films

    DOE Patents [OSTI]

    Brusasco, Raymond M.

    1992-01-01

    Disclosed is a method of producing thin films by sintering which comprises: a. coating a substrate with a thin film of an inorganic glass forming parulate material possessing the capability of being sintered, and b. irridiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed.

  19. Electrochemical photovoltaic cell having ternary alloy film

    DOE Patents [OSTI]

    Russak, Michael A.

    1984-01-01

    A thin film compound semiconductor electrode comprising CdSe.sub.1-x Te.sub.x (0.ltoreq.x.ltoreq.1) is deposited on a transparent conductive substrate. An electrolyte contacts the film to form a photoactive site. The semiconductor material has a narrow energy bandgap permitting high efficiency for light conversion. The film may be fabricated by: (1) co-evaporation of two II-VI group compounds with a common cation, or (2) evaporation of three elements, concurrenty.

  20. Processing approach towards the formation of thin-film Cu(In,Ga)Se2

    DOE Patents [OSTI]

    Beck, Markus E.; Noufi, Rommel

    2003-01-01

    A two-stage method of producing thin-films of group IB-IIIA-VIA on a substrate for semiconductor device applications includes a first stage of depositing an amorphous group IB-IIIA-VIA precursor onto an unheated substrate, wherein the precursor contains all of the group IB and group IIIA constituents of the semiconductor thin-film to be produced in the stoichiometric amounts desired for the final product, and a second stage which involves subjecting the precursor to a short thermal treatment at 420.degree. C.-550.degree. C. in a vacuum or under an inert atmosphere to produce a single-phase, group IB-III-VIA film. Preferably the precursor also comprises the group VIA element in the stoichiometric amount desired for the final semiconductor thin-film. The group IB-IIIA-VIA semiconductor films may be, for example, Cu(In,Ga)(Se,S).sub.2 mixed-metal chalcogenides. The resultant supported group IB-IIIA-VIA semiconductor film is suitable for use in photovoltaic applications.

  1. Thermal valorization of post-consumer film waste in a bubbling bed gasifier

    SciTech Connect (OSTI)

    Martínez-Lera, S. Torrico, J.; Pallarés, J.; Gil, A.

    2013-07-15

    Highlights: • Film waste from packaging is a common waste, a fraction of which is not recyclable. • Gasification can make use of the high energy value of the non-recyclable fraction. • This waste and two reference polymers were gasified in a bubbling bed reactor. • This experimental research proves technical feasibility of the process. • It also analyzes impact of composition and ER on the performance of the plant. - Abstract: The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m{sup 3} and cold gas efficiencies up to 60%.

  2. Thin film reactions on alloy semiconductor substrates

    SciTech Connect (OSTI)

    Olson, D.A.

    1990-11-01

    The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

  3. Exploding conducting film laser pumping apparatus

    DOE Patents [OSTI]

    Ware, Kenneth D.; Jones, Claude R.

    1986-01-01

    Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  4. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey,Thomas M.; Burrell,Anthony K.; Jia,Quanxi; Lin,Yuan

    2012-02-28

    A polymer assisted deposition process for deposition of metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be conformal on a variety of substrates including non-planar substrates. In some instances, the films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  5. BPA shares new collection of historical films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Line" (1950), a richly detailed film about power engineering that uses animation, tower models and field footage to show how Bonneville built the largest...

  6. Sputtered Thin Film Photovoltaics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Sputtered Thin Film Photovoltaics Naval Research Laboratory Contact NRL About This Technology ...

  7. Superhydrophobic Thin Film Coatings - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Industrial Technologies ... Find More Like This Return to Search Superhydrophobic Thin Film Coatings Oak Ridge ...

  8. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    SciTech Connect (OSTI)

    Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; Wood, S. R.; Dooryhee, E.; Johnson, D. C.; Iversen, B. B.; Billinge, S.

    2015-07-05

    By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.

  9. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; Wood, S. R.; Dooryhee, E.; Johnson, D. C.; Iversen, B. B.; Billinge, S.

    2015-07-05

    By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less

  10. Relationship between the structure and electrical characteristics of diamond-like carbon films

    SciTech Connect (OSTI)

    Takabayashi, Susumu Otsuji, Taiichi; Yang, Meng; Ogawa, Shuichi; Hayashi, Hiroyuki; Jeko, Radek; Takakuwa, Yuji

    2014-09-07

    To elucidate the relationship between the structure and the electrical characteristics of diamond-like carbon (DLC) films, DLC films were synthesized in a well-controlled glow discharge with the aid of photoelectrons in an argon/methane atmosphere. The dielectric constant and breakdown strength of the films exhibited opposite behaviors, depending on the total pressure during the synthesis. The product of these two values decreased monotonically as the pressure increased. The Raman spectra were analyzed with a Voigt-type formula. Based on the results, the authors propose the sp{sup 2} cluster model for the DLC structure. This model consists of conductive clusters of sp{sup 2} carbons surrounded by a dielectric matrix sea of sp{sup 2} carbon, sp{sup 3} carbon, and hydrogen, and indicates that the dielectric constant of the whole DLC film is determined by the balance between the dielectric constant of the matrix and the total size of the clusters, while the breakdown strength is determined by the reciprocal of the cluster size. The model suggests that a high-? DLC film can be synthesized at a middle pressure and consists of well-grown sp{sup 2} clusters and a dense matrix. A low-? DLC film can be synthesized both at low and high pressures. The sp{sup 2} cluster model explains that a low-? DLC film synthesized at low pressure consists of a dense matrix and a low density of sp{sup 2} clusters, and exhibits a high breakdown strength. On the other hand, a low-? film synthesized at high pressure consists of a coarse matrix and a high density of clusters and exhibits a low breakdown strength.

  11. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  12. Polymer-assisted deposition of films and preparation of carbon...

    Office of Scientific and Technical Information (OSTI)

    Polymer-assisted deposition of films and preparation of carbon nanotube arrays using the films Citation Details In-Document Search Title: Polymer-assisted deposition of films and ...

  13. Guidelines for modeling projecting fenestration products

    SciTech Connect (OSTI)

    Arasteh, D.K.; Finlayson, E.; Curcija, D.; Baker, J.; Huizenga, C.

    1998-10-01

    Heat transfer patterns in projecting fenestration products (greenhouse windows, skylights, etc.) are different from those in typical planar window products. The projecting surfaces often radiate to each other, thereby invalidating the commonly used assumption that fenestration product interior surfaces radiate to a uniform room air temperature. The convective portion of the surface heat transfer coefficient also is significantly different from the one used with planar geometries and is even more dependent on geometry and location. Projecting fenestration product profiles must, therefore, be modeled in their entirety. This paper presents the results of complete cross-sectional, variable film coefficient, two-dimensional heat transfer modeling of two greenhouse windows using the next generation of window-specific heat transfer modeling tools. The use of variable film coefficient models is shown to increase the accuracy with which simulation tools can compute U-factors. Simulated U-factors also are determined using conventional constant film coefficient algorithms. The results from both sets of simulations are compared with measured values.

  14. Photobiomolecular metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2003-05-06

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  15. Thin film solar energy collector

    DOE Patents [OSTI]

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  16. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction ...

  17. Solvothermal Thin Film Deposition of Electron Blocking Layers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers...

  18. Radiochromic Film Measurement of Spatial Uniformity for a Laser...

    Office of Scientific and Technical Information (OSTI)

    Radiochromic Film Measurement of Spatial Uniformity for a Laser Generated X-ray Environment Citation Details In-Document Search Title: Radiochromic Film Measurement of Spatial...

  19. Solar Thin Films Inc formerly American United Global Inc | Open...

    Open Energy Info (EERE)

    Films Inc formerly American United Global Inc Jump to: navigation, search Name: Solar Thin Films Inc (formerly American United Global Inc) Place: New York, New York Zip: 10038...

  20. Fabricating Dielectric Ceramic Films on Copper Foils | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabricating Dielectric Ceramic Films on Copper Foils Technology available for licensing: A method for coating a ceramic film on copper foil. Process creates higher performing and ...

  1. Partial Shade Stress Test for Thin-Film Photovoltaic Modules...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partial Shade Stress Test for Thin-Film Photovoltaic Modules Preprint Timothy J. ... Partial shade stress test for thin-film photovoltaic modules Timothy J Silverman , ...

  2. Thinner Film Silicon Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thin film silicon solar cells with a potential increase in photon energy conversion of up to 20%, a significant improvement over conventional thin film photovoltaic technologies. ...

  3. Low-temperature plasma-deposited silicon epitaxial films: Growth...

    Office of Scientific and Technical Information (OSTI)

    Low-temperature plasma-deposited silicon epitaxial films: Growth and properties Citation Details In-Document Search Title: Low-temperature plasma-deposited silicon epitaxial films:...

  4. Hydrogen Transport Properties of Palladium Film Prepared by Colloidal...

    Office of Scientific and Technical Information (OSTI)

    Transport Properties of Palladium Film Prepared by Colloidal Spray Deposition Citation Details In-Document Search Title: Hydrogen Transport Properties of Palladium Film Prepared by ...

  5. Partial Shading in Monolithic Thin Film PV Modules: Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Presented at the PV Module ...

  6. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems 2009 ...

  7. Dirac semimetal films as spin conductors on topological substrates...

    Office of Scientific and Technical Information (OSTI)

    Dirac semimetal films as spin conductors on topological substrates Citation Details In-Document Search Title: Dirac semimetal films as spin conductors on topological substrates ...

  8. Dirac semimetal films as spin conductors on topological substrates...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Dirac semimetal films as spin conductors on topological substrates Title: Dirac semimetal films as spin conductors on topological substrates ...

  9. Ultralow-fatigue shape memory alloy films (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Ultralow-fatigue shape memory alloy films Citation Details In-Document Search Title: Ultralow-fatigue shape memory alloy films Authors: Chluba, Christoph ; Ge, Wenwei ; Lima de ...

  10. Evaluation of crystallinity and film stress in yttria-stabilized...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Evaluation of crystallinity and film stress in yttria-stabilized zirconia thin films Citation Details In-Document Search Title: Evaluation of crystallinity and ...

  11. Development of a Low Cost Ultra Specular Advanced Polymer Film...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Ultra Specular Advanced Polymer Film Solar Reflector Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector This presentation was delivered at the ...

  12. Isotopes Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes Products Isotopes Products Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Products stress and rest Stress and rest Rb-82 PET images in a patient with dipyridamole stress-inducible lateral wall and apical ischemia. (http://www.fac.org.ar/scvc/llave/image/machac/machaci.htm#f2,3,4) Strontium-82 is supplied to our customers for use in Sr-82/Rb-82 generator technologies. The generators in turn are supplied to

  13. Diamond film growth argon-carbon plasmas

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.; Liu, Shengzhong; Pan, Xianzheng; Zuiker, Christopher D.

    1998-01-01

    A method and system for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate.

  14. Diamond film growth from fullerene precursors

    DOE Patents [OSTI]

    Gruen, Dieter M.; Liu, Shengzhong; Krauss, Alan R.; Pan, Xianzheng

    1997-01-01

    A method and system for manufacturing diamond film. The method involves forming a fullerene vapor, providing a noble gas stream and combining the gas with the fullerene vapor, passing the combined fullerene vapor and noble gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the fullerene and deposition of a diamond film on a substrate.

  15. Organic conductive films for semiconductor electrodes

    DOE Patents [OSTI]

    Frank, A.J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  16. Improved liquid-film electron stripper

    DOE Patents [OSTI]

    Gavin, B.F.

    1984-11-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one side of the disc's periphery and with highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90/sup 0/ angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  17. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect (OSTI)

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  18. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, Martin; Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    1998-01-01

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  19. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  20. Thin films of mixed metal compounds

    SciTech Connect (OSTI)

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  1. Organic conductive films for semiconductor electrodes

    DOE Patents [OSTI]

    Frank, Arthur J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor overcoated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  2. Perpendicularly magnetized {tau}-MnAl (001) thin films epitaxied on GaAs

    SciTech Connect (OSTI)

    Nie, S. H.; Zhu, L. J.; Lu, J.; Pan, D.; Wang, H. L.; Yu, X. Z.; Xiao, J. X.; Zhao, J. H.

    2013-04-15

    Perpendicularly magnetized {tau}-MnAl films have been epitaxied on GaAs (001) by molecular-beam epitaxy. Crystalline quality and magnetic properties of the samples were strongly dependent on growth temperature. The highest coercivity of 10.7 kOe, saturation magnetization of 361.4 emu/cm{sup 3}, perpendicular magnetic anisotropy constant of 13.65 Merg/cm{sup 3}, and magnetic energy product of 4.44 MGOe were achieved. These tunable magnetic properties make MnAl films valuable as excellent and cost-effective alternative for not only high density perpendicular magnetic recording storage and spintronics devices but also permanent magnets.

  3. Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers

    DOE Patents [OSTI]

    Babcock, W.C.; Friesen, D.T.

    1988-11-01

    Novel semipermeable membranes and thin film composite (TFC) gas separation membranes useful in the separation of oxygen, nitrogen, hydrogen, water vapor, methane, carbon dioxide, hydrogen sulfide, lower hydrocarbons, and other gases are disclosed. The novel semipermeable membranes comprise the polycondensation reaction product of two complementary polyfunctional compounds, each having at least two functional groups that are mutually reactive in a condensation polymerization reaction, and at least one of which is selected from siloxanes, alkoxsilyls and aryloxysilyls. The TFC membrane comprises a microporous polymeric support, the surface of which has the novel semipermeable film formed thereon, preferably by interfacial polymerization.

  4. Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers

    DOE Patents [OSTI]

    Babcock, Walter C.; Friesen, Dwayne T.

    1988-01-01

    Novel semiperimeable membranes and thin film composite (TFC) gas separation membranes useful in the separation of oxygen, nitrogen, hydrogen, water vapor, methane, carbon dioxide, hydrogen sulfide, lower hydrocarbons, and other gases are disclosed. The novel semipermeable membranes comprise the polycondensation reaction product of two complementary polyfunctional compounds, each having at least two functional groups that are mutually reactive in a condensation polymerization reaction, and at least one of which is selected from siloxanes, alkoxsilyls and aryloxysilyls. The TFC membrane comprises a microporous polymeric support, the surface of which has the novel semipermeable film formed thereon, preferably by interfacial polymerization.

  5. CIGS Thin-Film Solar Cell Research at NREL: FY04 Results and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accomplishments (Conference) | SciTech Connect CIGS Thin-Film Solar Cell Research at NREL: FY04 Results and Accomplishments Citation Details In-Document Search Title: CIGS Thin-Film Solar Cell Research at NREL: FY04 Results and Accomplishments × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  6. Forest Products

    Broader source: Energy.gov [DOE]

    Purchased energy remains the third largest manufacturing cost for the forest products industry–despite its extensive use of highly efficient co-generation technology. The industry has worked with...

  7. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  8. Thin palladium films on silicon and titanium

    SciTech Connect (OSTI)

    Harris, L.A.

    1982-12-01

    Films of Pd from 20 to 160A thick were deposited on sputter-etched Si and on Ti films of Si and then tested electrochemically in 0.5M H/sub 2/SO/sub 4/. The behavior characteristic of Pd metal was lost with prolonged storage or with extended electrochemical cycling. The thinner films produced oxidation and reduction peaks in the voltammograms similar to the hydrogen peaks observed with Pt. Hydrogen sorption measured from voltammograms at different sweep rates and by pulse measurements indicates a definite diffusion component that begins to limit hydrogen sorption for P films thicker than about 80A. Shifts of the oxygen reduction peak indicate an increase in oxygen bonding strength as the films are made thinner.

  9. Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint

    SciTech Connect (OSTI)

    Jorgensen, G.; Gee, R.; DiGrazia, M.

    2010-10-01

    Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

  10. Transparent conducting oxides and production thereof

    DOE Patents [OSTI]

    Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

    2014-06-10

    Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.