USBIA-San Carlos Project | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorks -09-0018-CXNuonYuchengRichlands,project activities |US DOE 20% Wind| OpenUSAID Europe
Quantum Monte Carlo algorithms for electronic structure at the petascale; the endstation project.
Kim, J; Ceperley, D M; Purwanto, W; Walter, E J; Krakauer, H; Zhang, S W; Kent, P.R. C; Hennig, R G; Umrigar, C; Bajdich, M; Kolorenc, J; Mitas, L; Srinivasan, A
2008-10-01T23:59:59.000Z
Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schrodinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few quantum particles. QMC enjoys scaling favorable to quantum chemical methods, with a computational effort which grows with the second or third power of system size. This accuracy and scalability has enabled scientific discovery across a broad spectrum of disciplines. The current methods perform very efficiently at the terascale. The quantum Monte Carlo Endstation project is a collaborative effort among researchers in the field to develop a new generation of algorithms, and their efficient implementations, which will take advantage of the upcoming petaflop architectures. Some aspects of these developments are discussed here. These tools will expand the accuracy, efficiency and range of QMC applicability and enable us to tackle challenges which are currently out of reach. The methods will be applied to several important problems including electronic and structural properties of water, transition metal oxides, nanosystems and ultracold atoms.
PI Last Name First Name Department School Project Title Abril Carlos
Shyu, Mei-Ling
College of Arts & Sciences Mad Cow Motorcycle Project Onyango John Architecture School of Architecture Book and Journal Publications Penabad Carie Architecture School of Architecture Off the Map: Learning: Utopia and its Discontents Ramsey Kate Hi
A Monte Carlo Algorithm for Fast Projective Clustering Cecilia M. Procopiuc Michael Jones
Agarwal, Pankaj K.
Foundation research grants CCR9732287 and EIA9870724, by Army Research Office MURI grant DAAH04 96 database research has proposed com- puting projective clusters, in which points that are closely corre
Krylov-projected quantum Monte Carlo Method
Blunt, N. S.; Alavi, Ali; Booth, George H.
2015-07-31T23:59:59.000Z
problem is pro- jected into a stochastically sampled Krylov subspace, thus allowing finite-temperature and dynamical quanti- ties to be calculated. Since the method exploits spar- sity in the sampled wavefunctions, the stochastic dynamic avoids storing...
Fusion11 Conference Summary Carlos A. Bertulani,a
Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University
, the international project for thermonuclear fusion. This project (presently estimated at 15 billion euros) will open physics and material science. The generation of commercial en- ergy by using thermonuclear fusionFusion11 Conference Summary Carlos A. Bertulani,a Department of Physics and Astronomy, Texas A
Using Stochastic Discounted Cash Flow and Real Option Monte Carlo Simulation to Analyse the Impacts in the presence of a windfall profits tax. Real options Monte Carlo simulation is used to characterise from the project. The results highlight that Monte Carlo simulation paired with the real option
Marcus, Ryan C. [Los Alamos National Laboratory
2012-07-25T23:59:59.000Z
MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.
Horizontal Aggregations for Building Tabular Data Sets Carlos Ordonez
Ordonez, Carlos
Horizontal Aggregations for Building Tabular Data Sets Carlos Ordonez Teradata, NCR San Diego, CA, USA ABSTRACT In a data mining project, a significant portion of time is devoted to building a data set suitable for analysis. In a re- lational database environment, building such data set usu- ally requires
Physics-based Predictive Time Propagation Method for Monte Carlo Coupled Depletion Simulations
Johns, Jesse Merlin
2014-12-18T23:59:59.000Z
Monte Carlo techniques for numerical simulation has humble beginnings during the Manhattan project. They were developed to rein in intractable problems of nuclear implosion hydrodynamics, thermonuclear reactions, and computing neutron fluxes and core...
Physics-based Predictive Time Propagation Method for Monte Carlo Coupled Depletion Simulations
Johns, Jesse Merlin
2014-12-18T23:59:59.000Z
Monte Carlo techniques for numerical simulation has humble beginnings during the Manhattan project. They were developed to rein in intractable problems of nuclear implosion hydrodynamics, thermonuclear reactions, and computing neutron fluxes and core...
Quantum Gibbs ensemble Monte Carlo
Fantoni, Riccardo, E-mail: rfantoni@ts.infn.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Calle Larga S. Marta DD2137, I-30123 Venezia (Italy); Moroni, Saverio, E-mail: moroni@democritos.it [DEMOCRITOS National Simulation Center, Istituto Officina dei Materiali del CNR and SISSA Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)
2014-09-21T23:59:59.000Z
We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a classical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects, our scheme is viable even for systems with strong quantum delocalization in the degenerate regime of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of {sup 4}He in two dimensions.
San Carlos Apache Tribe - Energy Organizational Analysis
Rapp, James; Albert, Steve
2012-04-01T23:59:59.000Z
The San Carlos Apache Tribe (SCAT) was awarded $164,000 in late-2011 by the U.S. Department of Energy (U.S. DOE) Tribal Energy Program's "First Steps Toward Developing Renewable Energy and Energy Efficiency on Tribal Lands" Grant Program. This grant funded: ? The analysis and selection of preferred form(s) of tribal energy organization (this Energy Organization Analysis, hereinafter referred to as "EOA"). ? Start-up staffing and other costs associated with the Phase 1 SCAT energy organization. ? An intern program. ? Staff training. ? Tribal outreach and workshops regarding the new organization and SCAT energy programs and projects, including two annual tribal energy summits (2011 and 2012). This report documents the analysis and selection of preferred form(s) of a tribal energy organization.
Is Monte Carlo embarrassingly parallel?
Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Delft Nuclear Consultancy, IJsselzoom 2, 2902 LB Capelle aan den IJssel (Netherlands)
2012-07-01T23:59:59.000Z
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Zimmerman, G.B.
1997-06-24T23:59:59.000Z
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ion and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burns nd burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
Takahiro Mizusaki; Noritaka Shimizu
2012-01-27T23:59:59.000Z
We propose a new variational Monte Carlo (VMC) method with an energy variance extrapolation for large-scale shell-model calculations. This variational Monte Carlo is a stochastic optimization method with a projected correlated condensed pair state as a trial wave function, and is formulated with the M-scheme representation of projection operators, the Pfaffian and the Markov-chain Monte Carlo (MCMC). Using this method, we can stochastically calculate approximated yrast energies and electro-magnetic transition strengths. Furthermore, by combining this VMC method with energy variance extrapolation, we can estimate exact shell-model energies.
APR1400 LBLOCA uncertainty quantification by Monte Carlo method and comparison with Wilks' formula
Hwang, M.; Bae, S.; Chung, B. D. [Korea Atomic Energy Research Inst., 150 Dukjin-dong, Yuseong-gu, Daejeon (Korea, Republic of)
2012-07-01T23:59:59.000Z
An analysis of the uncertainty quantification for the PWR LBLOCA by the Monte Carlo calculation has been performed and compared with the tolerance level determined by Wilks' formula. The uncertainty range and distribution of each input parameter associated with the LBLOCA accident were determined by the PIRT results from the BEMUSE project. The Monte-Carlo method shows that the 95. percentile PCT value can be obtained reliably with a 95% confidence level using the Wilks' formula. The extra margin by the Wilks' formula over the true 95. percentile PCT by the Monte-Carlo method was rather large. Even using the 3 rd order formula, the calculated value using the Wilks' formula is nearly 100 K over the true value. It is shown that, with the ever increasing computational capability, the Monte-Carlo method is accessible for the nuclear power plant safety analysis within a realistic time frame. (authors)
Monte Carlo Methods in Quantum Field Theory
I. Montvay
2007-05-30T23:59:59.000Z
In these lecture notes some applications of Monte Carlo integration methods in Quantum Field Theory - in particular in Quantum Chromodynamics - are introduced and discussed.
Final Report: 06-LW-013, Nuclear Physics the Monte Carlo Way
Ormand, W E
2009-03-01T23:59:59.000Z
This is document reports the progress and accomplishments achieved in 2006-2007 with LDRD funding under the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. The project was a theoretical study to explore a novel approach to dealing with a persistent problem in Monte Carlo approaches to quantum many-body systems. The goal was to implement a solution to the notorious 'sign-problem', which if successful, would permit, for the first time, exact solutions to quantum many-body systems that cannot be addressed with other methods. In this document, we outline the progress and accomplishments achieved during FY2006-2007 with LDRD funding in the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. This project was funded under the Lab Wide LDRD competition at Lawrence Livermore National Laboratory. The primary objective of this project was to test the feasibility of implementing a novel approach to solving the generic quantum many-body problem, which is one of the most important problems being addressed in theoretical physics today. Instead of traditional methods based matrix diagonalization, this proposal focused a Monte Carlo method. The principal difficulty with Monte Carlo methods, is the so-called 'sign problem'. The sign problem, which will discussed in some detail later, is endemic to Monte Carlo approaches to the quantum many-body problem, and is the principal reason that they have not been completely successful in the past. Here, we outline our research in the 'shifted-contour method' applied the Auxiliary Field Monte Carlo (AFMC) method.
A 9 Monte Carlo Simulations Michael Bachmann
Bachmann, Michael
generally called "thermal fluctua- tions") or "lose" energy by friction effects (dissipation). The total Reweighting methods 9 3.1 Single-histogram reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-ensemble Monte Carlo methods 12 4.1 Replica-exchange Monte Carlo method (parallel tempering
Fast Monte Carlo for radiation therapy: the PEREGRINE Project (Conference)
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23Tribal EnergyCatalytic Coby ModsEnergy, science,Report) | SciTech Connect8) LEFT-WINGRIVER||
Fast Monte Carlo for radiation therapy: the PEREGRINE Project (Conference)
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23Tribal EnergyCatalyticPreparation andEnabling graphene nanoelectronics.DOE PAGESSciTechFINALiValves.|
Last Name First Name Department School Project Title Abril Carlos
Shyu, Mei-Ling
Beavers Gabriel Instrumental Performance Frost School of Music Gabriel Beavers Solo Album: Five in America Boutté Tony Vocal Performance Frost School of Music The Verlaine Songs of Gabriel Fauré WITH BONNIE PARKER AND OTHER LYRIC ESSAYS Takao Naoko Keyboard Performance Frost School of Music Mirror étude
Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator...
Office of Scientific and Technical Information (OSTI)
Journal Article: Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics Citation Details In-Document Search Title: Applications of FLUKA Monte Carlo Code for...
An Advanced Neutronic Analysis Toolkit with Inline Monte Carlo capability for BHTR Analysis
William R. Martin; John C. Lee
2009-12-30T23:59:59.000Z
Monte Carlo capability has been combined with a production LWR lattice physics code to allow analysis of high temperature gas reactor configurations, accounting for the double heterogeneity due to the TRISO fuel. The Monte Carlo code MCNP5 has been used in conjunction with CPM3, which was the testbench lattice physics code for this project. MCNP5 is used to perform two calculations for the geometry of interest, one with homogenized fuel compacts and the other with heterogeneous fuel compacts, where the TRISO fuel kernels are resolved by MCNP5.
UNIVERSIDAD CARLOS III ESCUELA POLITCNICA SUPERIOR
Martín-Solís, José Ramón
UNIVERSIDAD CARLOS III ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE FISICA ESTUDIO DE MEDIOS DE, el alcance por parte de los países tercermundistas de los niveles de consumo propios de las
fermions in superconductors Dr. Carlo Beenakker
Wu, Yih-Min
fermions in superconductors Topic Speaker Dr. Carlo Beenakker Instituut-Lorentz, Leiden University as fundamental building blocks, but in superconductors they can be constructed out of electron and hole
Monte Carlo simulation in systems biology
Schellenberger, Jan
2010-01-01T23:59:59.000Z
2 The history of Monte Carlo Sampling in Systems Biology 1.1simulation tools: the systems biology workbench and biospiceCellular and Molecular Biology. ASM Press, Washington
THE BEGINNING of the MONTE CARLO METHOD
. For a whole host of 125 #12;Monte Carlo reasons, he had become seriously inter- ested in the thermonuclear a preliminary computational model of a thermonuclear reaction for the ENIAC. He felt he could convince
Multiple quadrature by Monte Carlo techniques
Voss, John Dietrich
1966-01-01T23:59:59.000Z
of a multiple integral ordinarily hopeless to attempt by 1 classical methods. " In this paper the Monte Carlo Method of numerical quadrature is used to integrate some functions that are extremely difficult and tedious to integrate by any other known... and the table of known values can be extended. The method developed here may also be used to evaluate the distribution at any desired values of the parameters . C HAP TER II THEORETICAL CONSIDERATIONS Hammersley has said: "Every Monte Carlo computation...
Crossing the mesoscale no-mans land via parallel kinetic Monte Carlo.
Garcia Cardona, Cristina (San Diego State University); Webb, Edmund Blackburn, III; Wagner, Gregory John; Tikare, Veena; Holm, Elizabeth Ann; Plimpton, Steven James; Thompson, Aidan Patrick; Slepoy, Alexander (U. S. Department of Energy, NNSA); Zhou, Xiao Wang; Battaile, Corbett Chandler; Chandross, Michael Evan
2009-10-01T23:59:59.000Z
The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.
Monte Carlo simulation of quantum Zeno effect in the brain
Danko Georgiev
2014-12-11T23:59:59.000Z
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.
Fractured reservoir evaluation using Monte Carlo techniques
Sears, G.F.; Phillips, N.V.
1987-01-01T23:59:59.000Z
Pro forma cash-flow analysis of petroleum ventures usually is considered as a deterministic model. In the last 10 years, Monte Carlo analysis has allowed the introduction of probability distributions of input variables in place of single-valued functions. Reserve determination and rate scheduling in these current Monte Carlo techniques have relied on the volumetric formula, which works well in nonfractured reservoirs. Recent massive drilling in fractured reservoirs has rendered this approach unusable. This paper develops a variation of the Arps rate-cumulative equation as a basic model for the determination of the distribution of original reserves and the decline rates. Continuation of the Monte Carlo technique into net present value analysis and internal rate of return (IRR) is also developed.
Quantitative Monte Carlo-based holmium-166 SPECT reconstruction
Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de [Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Viergever, Max A. [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)] [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)
2013-11-15T23:59:59.000Z
Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ?17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80% (SPECT-ppMC+DSW) to 76%–103% (SPECT-fMC). Furthermore, SPECT-fMC recovered whole-body activities were most accurate (A{sup est}= 1.06 × A ? 5.90 MBq, R{sup 2}= 0.97) and SPECT-fMC tumor absorbed doses were significantly higher than with SPECT-DSW (p = 0.031) and SPECT-ppMC+DSW (p = 0.031).Conclusions: The quantitative accuracy of {sup 166}Ho SPECT is improved by Monte Carlo-based modeling of the image degrading factors. Consequently, the proposed reconstruction method enables accurate estimation of the radiation absorbed dose in clinical practice.
Quantum Mechanical Single Molecule Partition Function from Path Integral Monte Carlo Simulations
Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian
2008-01-01T23:59:59.000Z
calculated from path integral Monte Carlo(PIMC) and harmoniccalculated from path integral Monte Carlo (PIMC) andFunction from Path Integral Monte Carlo Simulations Shaji
Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis
Wilson, Paul; Evans, Thomas; Tautges, Tim
2012-12-24T23:59:59.000Z
This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well-suited to coupling with the unstructured meshes that are used in other physics simulations.
Brain dynamics promotes function Carlos Lourenco
Lisboa, Universidade Técnica de
Brain dynamics promotes function Carlos Louren¸co 1 Faculty of Sciences of the University of Lisbon, 1049-001 Lisboa - Portugal Abstract. Dynamical structure in the brain promotes biological func- tion. Computational scientists have new opportunities to receive 'algorithmic' inspiration from brain processes
Monte Carlo Tools for Jet Quenching
Korinna Zapp
2011-09-07T23:59:59.000Z
A thorough understanding of jet quenching on the basis of multi-particle final states and jet observables requires new theoretical tools. This talk summarises the status and propects of the theoretical description of jet quenching in terms of Monte Carlo generators.
Monte Carlo event reconstruction implemented with artificial neural networks
Tolley, Emma Elizabeth
2011-01-01T23:59:59.000Z
I implemented event reconstruction of a Monte Carlo simulation using neural networks. The OLYMPUS Collaboration is using a Monte Carlo simulation of the OLYMPUS particle detector to evaluate systematics and reconstruct ...
John von Neumann Institute for Computing Monte Carlo Protein Folding
Hsu, Hsiao-Ping
John von Neumann Institute for Computing Monte Carlo Protein Folding: Simulations of Met://www.fz-juelich.de/nic-series/volume20 #12;#12;Monte Carlo Protein Folding: Simulations of Met-Enkephalin with Solvent-Accessible Area difficulties in applying Monte Carlo methods to protein folding. The solvent-accessible area method, a popular
Deterministic Simulation for Risk Management QuasiMonte Carlo beats
Papageorgiou, Anargyros
1 Deterministic Simulation for Risk Management QuasiMonte Carlo beats Monte Carlo for Value are widely used in pricing and risk management of complex financial instruments. Recently, quasiMonte Carlo and accuracy. In this paper we address the application of these deterministic methods to risk management. Our
Deterministic Simulation for Risk Management Quasi-Monte Carlo beats
Papageorgiou, Anargyros
1 Deterministic Simulation for Risk Management Quasi-Monte Carlo beats Monte Carlo for Value are widely used in pricing and risk management of complex financial instruments. Recently, quasi-Monte Carlo and accuracy. In this paper we address the application of these deterministic methods to risk management. Our
Project Fact Sheet Project Update
& Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on SiteProject Fact Sheet Project Update: Project Brief: The concept of the new scheme is to redevelop Gardens project http://www.imperial.ac.uk/princesgardens/ Construction Project Team: Project Facts
Random number stride in Monte Carlo calculations
Hendricks, J.S.
1990-01-01T23:59:59.000Z
Monte Carlo radiation transport codes use a sequence of pseudorandom numbers to sample from probability distributions. A common practice is to start each source particle a predetermined number of random numbers up the pseudorandom number sequence. This number of random numbers skipped between each source particles the random number stride, S. Consequently, the jth source particle always starts with the j{center dot}Sth random number providing correlated sampling'' between similar calculations. A new machine-portable random number generator has been written for the Monte Carlo radiation transport code MCNP providing user's control of the random number stride. First the new MCNP random number generator algorithm will be described and then the effects of varying the stride will be presented. 2 refs., 1 fig.
Project Fact Sheet Project Update
.imperial.ac.uk/biomedeng Construction Project Team: Project Facts & Figures: Budget: £13,095,963 Funding Source: SRIF II and Capital Plan Construction Project Programme: Start on Site: May 2005 End Date: April 2006 Occupation DateProject Fact Sheet Project Update: Project Brief: The works cover the refurbishment of floors 4, 5
Status of Monte-Carlo Event Generators
Hoeche, Stefan; /SLAC
2011-08-11T23:59:59.000Z
Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.
A Monte Carlo algorithm for degenerate plasmas
Turrell, A.E., E-mail: a.turrell09@imperial.ac.uk; Sherlock, M.; Rose, S.J.
2013-09-15T23:59:59.000Z
A procedure for performing Monte Carlo calculations of plasmas with an arbitrary level of degeneracy is outlined. It has possible applications in inertial confinement fusion and astrophysics. Degenerate particles are initialised according to the Fermi–Dirac distribution function, and scattering is via a Pauli blocked binary collision approximation. The algorithm is tested against degenerate electron–ion equilibration, and the degenerate resistivity transport coefficient from unmagnetised first order transport theory. The code is applied to the cold fuel shell and alpha particle equilibration problem of inertial confinement fusion.
Sandia Energy - Carlos MichelÃ©n
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million CubicRefiners SwitchBenefitsBeam LineSandian as PermalinkAtmosphericCapabilitiesCarlos
Monte Carlo errors with less errors
Ulli Wolff
2006-11-29T23:59:59.000Z
We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a better exploitation of expensive simulations. An effective integrated autocorrelation time is computed which is suitable to benchmark efficiencies of simulation algorithms with regard to specific observables of interest. A Matlab code is offered for download that implements the method. It can also combine independent runs (replica) allowing to judge their consistency.
Marcus, Ryan C. [Los Alamos National Laboratory
2012-07-24T23:59:59.000Z
Overview of this presentation is (1) Exascale computing - different technologies, getting there; (2) high-performance proof-of-concept MCMini - features and results; and (3) OpenCL toolkit - Oatmeal (OpenCL Automatic Memory Allocation Library) - purpose and features. Despite driver issues, OpenCL seems like a good, hardware agnostic tool. MCMini demonstrates the possibility for GPGPU-based Monte Carlo methods - it shows great scaling for HPC application and algorithmic equivalence. Oatmeal provides a flexible framework to aid in the development of scientific OpenCL codes.
Gray, Jeffrey J.
of Engineering Project Title GIS and Ecology Audience Approximately 40 students who enroll in the GIS and Ecology. Solution Geographic information systems software (GIS) is one of the most powerful emerging technologies today for the organization and analysis of spatial data. By integrating GIS tools into existing course
Gray, Jeffrey J.
. Pedagogical Issue One of the challenges in teaching the Introduction to Computer Music course is the lack flow and practices. These resources will provide an online space through which students will be able piece of this project will be an animated studio walkthrough requiring user interaction and providing
Metodos de Monte Carlo Paulo Roberto de Carvalho Junior
JÂ´unior MÂ´etodos de Monte Carlo #12;Exemplo: CÂ´alculo de Paulo Roberto de Carvalho JÂ´unior MÂ´etodos de Monte Carlo #12;Exemplo: CÂ´alculo de EquaÂ¸c~ao da Circunfer^encia: x2 + y2 = r2 x2 + y2 = 1 AQ Paulo Roberto de Carvalho JÂ´unior MÂ´etodos de Monte Carlo #12;Algoritmo: CÂ´alculo de double calc
Kinetic lattice Monte Carlo simulations of interdiffusion in...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Abstract: Point-defect-mediated diffusion processes are investigated in strained SiGe alloys using kinetic lattice Monte Carlo *KLMC* simulation technique. The KLMC...
Monte Carlo Simulations of the Corrosion of Aluminoborosilicate...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Monte Carlo Simulations of the Corrosion of Aluminoborosilicate Glasses. Abstract: Aluminum is one of the most common components included in nuclear waste glasses. Therefore,...
Universidad Carlos III de Madrid Departamento de Matem aticas
Moro, Esteban
Universidad Carlos III de Madrid, el Ministerio de Educaci#19;on y Cultura de Espa~na y el Laboratorio de Los
Quantum Monte Carlo methods for nuclear physics
J. Carlson; S. Gandolfi; F. Pederiva; Steven C. Pieper; R. Schiavilla; K. E. Schmidt; R. B. Wiringa
2015-04-29T23:59:59.000Z
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Quantum Monte Carlo methods for nuclear physics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Carlson, Joseph A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pederiva, Francesco [Univ. of Trento (Italy); Pieper, Steven C. [Argonne National Lab. (ANL), Argonne, IL (United States); Schiavilla, Rocco [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Schmidt, K. E, [Arizona State Univ., Tempe, AZ (United States); Wiringa, Robert B. [Argonne National Lab. (ANL), Argonne, IL (United States)
2012-01-01T23:59:59.000Z
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Quantum Monte Carlo methods for nuclear physics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.
2014-10-19T23:59:59.000Z
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore »interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Metallic lithium by quantum Monte Carlo
Sugiyama, G.; Zerah, G.; Alder, B.J.
1986-12-01T23:59:59.000Z
Lithium was chosen as the simplest known metal for the first application of quantum Monte Carlo methods in order to evaluate the accuracy of conventional one-electron band theories. Lithium has been extensively studied using such techniques. Band theory calculations have certain limitations in general and specifically in their application to lithium. Results depend on such factors as charge shape approximations (muffin tins), pseudopotentials (a special problem for lithium where the lack of rho core states requires a strong pseudopotential), and the form and parameters chosen for the exchange potential. The calculations are all one-electron methods in which the correlation effects are included in an ad hoc manner. This approximation may be particularly poor in the high compression regime, where the core states become delocalized. Furthermore, band theory provides only self-consistent results rather than strict limits on the energies. The quantum Monte Carlo method is a totally different technique using a many-body rather than a mean field approach which yields an upper bound on the energies. 18 refs., 4 figs., 1 tab.
The Imprints of IMBHs on the Structure of Globular Clusters: Monte-Carlo Simulations
Stefan Umbreit; John M. Fregeau; Frederic A. Rasio
2008-03-06T23:59:59.000Z
We present the first results of a series of Monte-Carlo simulations investigating the imprint of a central black hole on the core structure of a globular cluster. We investigate the three-dimensional and the projected density profile of the inner regions of idealized as well as more realistic globular cluster models, taking into account a stellar mass spectrum, stellar evolution and allowing for a larger, more realistic, number of stars than was previously possible with direct N-body methods. We compare our results to other N-body simulations published previously in the literature.
Monte Carlo Evaluation of Resampling-Based Hypothesis Tests
Boos, Dennis
of rejections. At each alternative this Monte Carlo estimate will be unbiased for the true power function of the function ( ), where (A) = 1 if A is true and = 0 otherwise. The connection to measurement error methods 1998 Abstract Monte Carlo estimation of the power of tests that require resampling can be very com
CERN-TH.6275/91 Monte Carlo Event Generation
Sjöstrand, Torbjörn
CERN-TH.6275/91 Monte Carlo Event Generation for LHC T. Sj¨ostrand CERN -- Geneva Abstract The necessity of event generators for LHC physics studies is illustrated, and the Monte Carlo approach is outlined. A survey is presented of existing event generators, followed by a more detailed study
RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda
RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda A. Kersch 1 W. Morokoff 2 A accuracy modeling of the radiative heat transfer from the heater to the wafer. Figure 1 shows the draft Carlo simulation is often used to solve radiative transfer problems where complex physical phenomena
RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS
RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS A. Kersch1 W. Moroko2 A. Schuster1 1Siemens of Quasi-Monte Carlo to this problem. 1.1 Radiative Heat Transfer Reactors In the manufacturing of the problems which can be solved by such a simulation is high accuracy modeling of the radiative heat transfer
A Theory of Supply Chains Carlos F. Daganzo
Daganzo, Carlos F.
A Theory of Supply Chains Carlos F. Daganzo Institute of Transportation Studies and Department by Carlos F. Daganzo #12;VI A Theory of Supply Chains PREFACE This work was stimulated by a comment made numerical methods being two nota- ble examples) I suspected that traffic flow theory might shed some light
Juan Carlos Algaba Marcos CC --3.0
Wang, Ming-Jye
#12;#12; #12; Juan Carlos Algaba Marcos CC -- 3.0 CC https VLBI 20 #12;VLBI VLBI Alfred Wegener 1912 VLBI Juan Carlos Algaba Marcos CC -- 3.0 Marcos CC -- 3.0 CC https://isp.moe.edu.tw/ccedu/service.php #12; Summit Camp Polar Service
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28T23:59:59.000Z
Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.
Monte Carlo techniques applied to PERT networks
McGowan, Lawrence Lee
1964-01-01T23:59:59.000Z
distribution is given by: f(t;A, B, , I!) = ~ (t-A) (B t) A t -B {5) n. P. (B-A) = 0 A 5+1 + B (r+I) The mean is given by elsewhere u-. lj'k+1) B-A I The variance is given by 2 (Ix+IF+2) (a+I+3) uB+ BA and the mode is given by II: The parameters...; Statistics MONTE CARLO TECHNIQUES APPLIED TO PERT NETWORKS A Thesis By IAWRENCE LEE MCGOWAN Approved as to style arid content by: Chairman Committee Head of Department Member of Comm'ttee Member of Committee i August 1964 '] i P 'f TABLE...
Exploring theory space with Monte Carlo reweighting
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13T23:59:59.000Z
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. In particular, we suggest procedures that allow more efficient collaboration between theoristsmore »and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less
Correlations in the Monte Carlo Glauber model
Jean-Paul Blaizot; Wojciech Broniowski; Jean-Yves Ollitrault
2014-09-12T23:59:59.000Z
Event-by-event fluctuations of observables are often modeled using the Monte Carlo Glauber model, in which the energy is initially deposited in sources associated with wounded nucleons. In this paper, we analyze in detail the correlations between these sources in proton-nucleus and nucleus-nucleus collisions. There are correlations arising from nucleon-nucleon correlations within each nucleus, and correlations due to the collision mechanism, which we dub twin correlations. We investigate this new phenomenon in detail. At the RHIC and LHC energies, correlations are found to have modest effects on size and eccentricity fluctuations, such that the Glauber model produces to a good approximation a collection of independent sources.
Parametric Learning and Monte Carlo Optimization
Wolpert, David H
2007-01-01T23:59:59.000Z
This paper uncovers and explores the close relationship between Monte Carlo Optimization of a parametrized integral (MCO), Parametric machine-Learning (PL), and `blackbox' or `oracle'-based optimization (BO). We make four contributions. First, we prove that MCO is mathematically identical to a broad class of PL problems. This identity potentially provides a new application domain for all broadly applicable PL techniques: MCO. Second, we introduce immediate sampling, a new version of the Probability Collectives (PC) algorithm for blackbox optimization. Immediate sampling transforms the original BO problem into an MCO problem. Accordingly, by combining these first two contributions, we can apply all PL techniques to BO. In our third contribution we validate this way of improving BO by demonstrating that cross-validation and bagging improve immediate sampling. Finally, conventional MC and MCO procedures ignore the relationship between the sample point locations and the associated values of the integrand; only th...
Exploring theory space with Monte Carlo reweighting
Gainer, James S. [Univ. of Florida, Gainesville, FL (United States); Lykken, Joseph [Fermi National Accelerator Laboratory, Batavia, IL (United States); Matchev, Konstantin T. [Univ. of Florida, Gainesville, FL (United States); Mrenna, Stephen [Fermi National Accelerator Laboratory, Batavia, IL (United States); Park, Myeonghun [The Univ. of Tokyo, Kashiwa (Japan)
2014-10-01T23:59:59.000Z
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. In particular, we suggest procedures that allow more efficient collaboration between theorists and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.
Monte Carlo Methods for Uncertainty Quantification Mathematical Institute, University of Oxford
Giles, Mike
Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford ERCOFTAC course on Mathematical Methods and Tools in Uncertainty Management and Quantification: Introduction and Monte Carlo basics some model applications random number generation Monte Carlo estimation
Project Fact Sheet Project Brief
.union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: £1,400,000 Funding Source: Capital PlanProject Fact Sheet Project Brief: In the first phase of the Union Building re that it adapts to meet the needs of a changing student body. The re-development plans are grounded in a full
Project Fact Sheet Project Brief
Facts & Figures: Budget: £3,500,000 Funding Source: SRIF III Construction Project Programme: StartProject Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors of work includes: · Building fabric replacement and revised space planning · New mechanical and electrical
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01T23:59:59.000Z
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Sequential Monte Carlo Methods for Protein Folding
Peter Grassberger
2004-08-26T23:59:59.000Z
We describe a class of growth algorithms for finding low energy states of heteropolymers. These polymers form toy models for proteins, and the hope is that similar methods will ultimately be useful for finding native states of real proteins from heuristic or a priori determined force fields. These algorithms share with standard Markov chain Monte Carlo methods that they generate Gibbs-Boltzmann distributions, but they are not based on the strategy that this distribution is obtained as stationary state of a suitably constructed Markov chain. Rather, they are based on growing the polymer by successively adding individual particles, guiding the growth towards configurations with lower energies, and using "population control" to eliminate bad configurations and increase the number of "good ones". This is not done via a breadth-first implementation as in genetic algorithms, but depth-first via recursive backtracking. As seen from various benchmark tests, the resulting algorithms are extremely efficient for lattice models, and are still competitive with other methods for simple off-lattice models.
Variance Reduction Techniques for Implicit Monte Carlo Simulations
Landman, Jacob Taylor
2013-09-19T23:59:59.000Z
The Implicit Monte Carlo (IMC) method is widely used for simulating thermal radiative transfer and solving the radiation transport equation. During an IMC run a grid network is constructed and particles are sourced into the problem to simulate...
An Analysis Tool for Flight Dynamics Monte Carlo Simulations
Restrepo, Carolina 1982-
2011-05-20T23:59:59.000Z
and analysis work to understand vehicle operating limits and identify circumstances that lead to mission failure. A Monte Carlo simulation approach that varies a wide range of physical parameters is typically used to generate thousands of test cases...
Shift: A Massively Parallel Monte Carlo Radiation Transport Package
Pandya, Tara M [ORNL; Johnson, Seth R [ORNL; Davidson, Gregory G [ORNL; Evans, Thomas M [ORNL; Hamilton, Steven P [ORNL
2015-01-01T23:59:59.000Z
This paper discusses the massively-parallel Monte Carlo radiation transport package, Shift, de- veloped at Oak Ridge National Laboratory. It reviews the capabilities, implementation, and parallel performance of this code package. Scaling results demonstrate very good strong and weak scaling behavior of the implemented algorithms. Benchmark results from various reactor problems show that Shift results compare well to other contemporary Monte Carlo codes and experimental results.
Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments
Pevey, Ronald E.
2005-09-15T23:59:59.000Z
Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL.
Lattice Monte Carlo Simulations of Polymer Melts
Hsiao-Ping Hsu
2015-03-03T23:59:59.000Z
We use Monte Carlo simulations to study polymer melts consisting of fully flexible and moderately stiff chains in the bond fluctuation model at a volume fraction $0.5$. In order to reduce the local density fluctuations, we test a pre-packing process for the preparation of the initial configurations of the polymer melts, before the excluded volume interaction is switched on completely. This process leads to a significantly faster decrease of the number of overlapping monomers on the lattice. This is useful for simulating very large systems, where the statistical properties of the model with a marginally incomplete elimination of excluded volume violations are the same as those of the model with strictly excluded volume. We find that the internal mean square end-to-end distance for moderately stiff chains in a melt can be very well described by a freely rotating chain model with a precise estimate of the bond-bond orientational correlation between two successive bond vectors in equilibrium. The plot of the probability distributions of the reduced end-to-end distance of chains of different stiffness also shows that the data collapse is excellent and described very well by the Gaussian distribution for ideal chains. However, while our results confirm the systematic deviations between Gaussian statistics for the chain structure factor $S_c(q)$ [minimum in the Kratky-plot] found by Wittmer et al.~\\{EPL {\\bf 77} 56003 (2007).\\} for fully flexible chains in a melt, we show that for the available chain length these deviations are no longer visible, when the chain stiffness is included. The mean square bond length and the compressibility estimated from collective structure factors depend slightly on the stiffness of the chains.
Broader source: Energy.gov [DOE]
Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.
Broader source: Energy.gov [DOE]
DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...
Schenato, Luca
RESEARCH PROJECTS FP7 February 13 #12; FP7 COOPERATION #12; INTERNATIONAL RESEARCH PROJECTS FP7 COOPERATION ENERGY PROJECT ACRONYM: EFONET PROJECT TITLE: Energy foresight network PROJECT
Physics and Algorithm Enhancements for a Validated MCNP/X Monte Carlo Simulation Tool, Phase VII
McKinney, Gregg W [Los Alamos National Laboratory
2012-07-17T23:59:59.000Z
Currently the US lacks an end-to-end (i.e., source-to-detector) radiation transport simulation code with predictive capability for the broad range of DHS nuclear material detection applications. For example, gaps in the physics, along with inadequate analysis algorithms, make it difficult for Monte Carlo simulations to provide a comprehensive evaluation, design, and optimization of proposed interrogation systems. With the development and implementation of several key physics and algorithm enhancements, along with needed improvements in evaluated data and benchmark measurements, the MCNP/X Monte Carlo codes will provide designers, operators, and systems analysts with a validated tool for developing state-of-the-art active and passive detection systems. This project is currently in its seventh year (Phase VII). This presentation will review thirty enhancements that have been implemented in MCNPX over the last 3 years and were included in the 2011 release of version 2.7.0. These improvements include 12 physics enhancements, 4 source enhancements, 8 tally enhancements, and 6 other enhancements. Examples and results will be provided for each of these features. The presentation will also discuss the eight enhancements that will be migrated into MCNP6 over the upcoming year.
The Monte Carlo method in quantum field theory
Colin Morningstar
2007-02-20T23:59:59.000Z
This series of six lectures is an introduction to using the Monte Carlo method to carry out nonperturbative studies in quantum field theories. Path integrals in quantum field theory are reviewed, and their evaluation by the Monte Carlo method with Markov-chain based importance sampling is presented. Properties of Markov chains are discussed in detail and several proofs are presented, culminating in the fundamental limit theorem for irreducible Markov chains. The example of a real scalar field theory is used to illustrate the Metropolis-Hastings method and to demonstrate the effectiveness of an action-preserving (microcanonical) local updating algorithm in reducing autocorrelations. The goal of these lectures is to provide the beginner with the basic skills needed to start carrying out Monte Carlo studies in quantum field theories, as well as to present the underlying theoretical foundations of the method.
Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials
J. E. Lynn; J. Carlson; E. Epelbaum; S. Gandolfi; A. Gezerlis; A. Schwenk
2014-11-09T23:59:59.000Z
We present the first Green's function Monte Carlo calculations of light nuclei with nuclear interactions derived from chiral effective field theory up to next-to-next-to-leading order. Up to this order, the interactions can be constructed in a local form and are therefore amenable to quantum Monte Carlo calculations. We demonstrate a systematic improvement with each order for the binding energies of $A=3$ and $A=4$ systems. We also carry out the first few-body tests to study perturbative expansions of chiral potentials at different orders, finding that higher-order corrections are more perturbative for softer interactions. Our results confirm the necessity of a three-body force for correct reproduction of experimental binding energies and radii, and pave the way for studying few- and many-nucleon systems using quantum Monte Carlo methods with chiral interactions.
Broader source: Energy.gov [DOE]
Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE materials, as well as efficient material integration and production process.
Monte Carlo sampling from the quantum state space. II
Yi-Lin Seah; Jiangwei Shang; Hui Khoon Ng; David John Nott; Berthold-Georg Englert
2015-04-27T23:59:59.000Z
High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the Markov-chain Monte Carlo method known as Hamiltonian Monte Carlo, or hybrid Monte Carlo, can be adapted to this context. It is applicable when an efficient parameterization of the state space is available. The resulting random walk is entirely inside the physical parameter space, and the Hamiltonian dynamics enable us to take big steps, thereby avoiding strong correlations between successive sample points while enjoying a high acceptance rate. We use examples of single and double qubit measurements for illustration.
Kinetic Monte Carlo approach to modeling dislocation mobility
Cai, Wei
surface diffusion and growth processes [3], in which the energy barriers for the atomic mechanisms the evolution of a physical system through numerical sampling of (Markovian) sto- chastic processes. While the traditional Monte Carlo (MC) method is applied to sample systems in or close to the thermal equilibrium, k
A Monte Carlo Approach for Football Play Generation Kennard Laviers
Sukthankar, Gita Reese
A Monte Carlo Approach for Football Play Generation Kennard Laviers School of EECS U. of Central, adversarial games and demonstrate its utility at gen- erating American football plays for Rush Football 2008. In football, like in many other multi-agent games, the actions of all of the agents are not equally crucial
Reactor-based neutrino oscillation experiments Carlo Bemporad
Gratta, Giorgio
Reactor-based neutrino oscillation experiments Carlo Bemporad Istituto Nazionale di Fisica Nucleare 91125 (Published 18 March 2002) The status of neutrino oscillation searches employing nuclear reactors neutrinos produced in the sun and in the earth's atmosphere. The low energy of the reactor ¯e makes them
Evolutionary Monte Carlo for protein folding simulations Faming Lianga)
Liang, Faming
Evolutionary Monte Carlo for protein folding simulations Faming Lianga) Department of Statistics to simulations of protein folding on simple lattice models, and to finding the ground state of a protein. In all structures in protein folding. The numerical results show that it is drastically superior to other methods
A Referential Integrity Browser for Distributed Databases Carlos Ordonez1
Ordonez, Carlos
Rogelio Montero-Campos2 Carlos Garcia-Alvarado1 1 University of Houston 2 UNAM Houston, TX, USA Mexico on the Internet. Universidad Nacional Aut´onoma de M´exico. Authors Javier Garc´ia-Garc´ia and Rogelio Montero
Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations
Lisal, Martin
Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations C.M. COLINAa,b, *, C and speed of sound for carbon dioxide (CO2) in the supercritical region, using the fluctuation method based: Fluctuations; Carbon dioxide; 2CLJQ; JouleThomson coefficient; Speed of sound INTRODUCTION Simulation methods
Path Integral Monte-Carlo Calculations for Relativistic Oscillator
Alexandr Ivanov; Oleg Pavlovsky
2014-11-11T23:59:59.000Z
The problem of Relativistic Oscillator has been studied in the framework of Path Integral Monte-Carlo(PIMC) approach. Ultra-relativistic and non-relativistic limits have been discussed. We show that PIMC method can be effectively used for investigation of relativistic systems.
Calculating coherent pair production with Monte Carlo methods
Bottcher, C.; Strayer, M.R.
1989-01-01T23:59:59.000Z
We discuss calculations of the coherent electromagnetic pair production in ultra-relativistic hadron collisions. This type of production, in lowest order, is obtained from three diagrams which contain two virtual photons. We discuss simple Monte Carlo methods for evaluating these classes of diagrams without recourse to involved algebraic reduction schemes. 19 refs., 11 figs.
Monte Carlo Simulations of Thermal Conductivity in Nanoporous Si Membranes
1 Monte Carlo Simulations of Thermal Conductivity in Nanoporous Si Membranes Stefanie Wolf1 transport in Si nanomeshes. Phonons are treated semiclassically as particles of specific energy and velocity, ii) the roughness amplitude of the pore surfaces on the thermal conductivity of the nanomeshes. We
Nonlocal Monte Carlo algorithms for statistical physics applications
Janke, Wolfhard
magnets to polymers or proteins, to mention only a few classical problems. Quantum statistical problems different theoretical approaches such as field theory or series expansions, and, of course, with experimentsNonlocal Monte Carlo algorithms for statistical physics applications Wolfhard Janke1 Institut fu
Auxiliary field Monte Carlo for charged particles A. C. Maggs
Maggs, Anthony
~ . This is the wrong statistical weight for particles interacting via Coulomb's law. While evaluation of the energy; accepted 20 November 2003 This article describes Monte Carlo algorithms for charged systems using.1063/1.1642587 I. INTRODUCTION Fast methods for calculating Coulomb interactions are of the greatest importance
Collaborative Broker for Distributed Energy Resources Joo Carlos Ferreira1
da Silva, Alberto Rodrigues
Collaborative Broker for Distributed Energy Resources João Carlos Ferreira1 , Alberto Rodrigues da the design of a system to handle Distributed Energy Resources (DER), which is a new reality due Resources, Data Mining, Energy Broker, Collaborative Approach, Electric Vehicles, Energy Market, Smart Grids
MCMs: Early History and The Basics Monte Carlo Methods
Mascagni, Michael
: Early History and The Basics The Stars Align at Los Alamos The Technology The Technology Simulation viaMCMs: Early History and The Basics Monte Carlo Methods: Early History and The Basics Prof. Michael: http://www.cs.fsu.edu/mascagni #12;MCMs: Early History and The Basics Outline of the Talk Early History
Monte Carlo: in the beginning and some great expectations
Metropolis, N.
1985-01-01T23:59:59.000Z
The central theme will be on the historical setting and origins of the Monte Carlo Method. The scene was post-war Los Alamos Scientific Laboratory. There was an inevitability about the Monte Carlo Event: the ENIAC had recently enjoyed its meteoric rise (on a classified Los Alamos problem); Stan Ulam had returned to Los Alamos; John von Neumann was a frequent visitor. Techniques, algorithms, and applications developed rapidly at Los Alamos. Soon, the fascination of the Method reached wider horizons. The first paper was submitted for publication in the spring of 1949. In the summer of 1949, the first open conference was held at the University of California at Los Angeles. Of some interst perhaps is an account of Fermi's earlier, independent application in neutron moderation studies while at the University of Rome. The quantum leap expected with the advent of massively parallel processors will provide stimuli for very ambitious applications of the Monte Carlo Method in disciplines ranging from field theories to cosmology, including more realistic models in the neurosciences. A structure of multi-instruction sets for parallel processing is ideally suited for the Monte Carlo approach. One may even hope for a modest hardening of the soft sciences.
ENVIRONMENTAL MODELING: 1 APPLICATIONS: MONTE CARLO SENSITIVITY SIMULATIONS
Dimov, Ivan
SIMULATIONS TO THE PROBLEM OF AIR POLLUTION TRANSPORT 3 1.1 The Danish Eulerian Model #12;Chapter 1 APPLICATIONS: MONTE CARLO SENSITIVITY SIMULATIONS TO THE PROBLEM OF AIR POLLUTION of pollutants in a real-live scenario of air-pollution transport over Europe. First, the developed technique
Database Systems Research on Data Mining Carlos Ordonez
Ordonez, Carlos
García-García Universidad Nacional Autónoma de México Mexico City, Mexico ABSTRACT Data mining remainsDatabase Systems Research on Data Mining Carlos Ordonez University of Houston Houston, USA Javier mechanisms, algorithms, data structures and opti- mizations that enable data mining on large data sets. We
Romano, Paul K. (Paul Kollath)
2013-01-01T23:59:59.000Z
Monte Carlo particle transport methods are being considered as a viable option for high-fidelity simulation of nuclear reactors. While Monte Carlo methods offer several potential advantages over deterministic methods, there ...
Direct Monte Carlo simulation of chemical reaction systems: Dissociation and recombination
Anderson, James B.
Direct Monte Carlo simulation of chemical reaction systems: Dissociation and recombination Shannon Carlo simulations of a chemical reaction system with bimolecular and termolecular dissociation8 to be well suited for treating chemical reaction systems with nonequilibrium distributions, coupled gas
Types of random numbers and Monte Carlo Methods Pseudorandom number generation
Mascagni, Michael
Types of random numbers and Monte Carlo Methods Pseudorandom number generation Quasirandom number generation Conclusions WE246: Random Number Generation A Practitioner's Overview Prof. Michael Mascagni #12;Types of random numbers and Monte Carlo Methods Pseudorandom number generation Quasirandom number
Guan, Fada 1982-
2012-04-27T23:59:59.000Z
Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics...
Monte Carlo Methods for Uncertainty Quantification Mathematical Institute, University of Oxford
Giles, Mike
Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford ERCOFTAC course on Mathematical Methods and Tools in Uncertainty Management and Quantification Lecture 1: Introduction and Monte Carlo basics some model applications random number generation Monte
Danon, Yaron
defined in MCNP. There are a number of approaches in parallel high performance computing that can and 7,168 GPUs. The high performance computing industry is moving toward a hybrid computer model, where
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hogan, Robin
Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million Cubic Feet)setsManagement Program Management The OakSite |Project DevelopmentProject Gnome
San Carlos Apache Tribe Set to Break Ground on New Solar Project |
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma |EfficiencyCR-B-99-02Contact on2009:DOE Energy ConservationSacramento,Waste Management Â»
Hybrid Probabilistic Roadmap and Monte Carlo Methods for Biomolecule Conformational Changes
Han, Li
1 Hybrid Probabilistic Roadmap and Monte Carlo Methods for Biomolecule Conformational Changes Li Han 1 Keywords: Conformation space, conformational changes, Monte Carlo, probabilistic roadmaps. 1. In this work, we have developed a hybrid Probabilistic Roadmap and Monte Carlo planner for biomolecule
Spent Nuclear Fuel project, project management plan
Fuquay, B.J.
1995-10-25T23:59:59.000Z
The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project
Hunter, Philip
repositories. If these (generally) smaller institutions wished to continue to have access to these hosted repository spaces after the end of the project, it was proposed that these repository-lite services would be administered by the SDLC (the Scottish Digital...
Lemon Project Spring Symposium
Fashing, Norman
Lemon Project: A Journey of Reconciliation." The BOV defined Lemon "as a long- term research project
Molecular physics and chemistry applications of quantum Monte Carlo
Reynolds, P.J.; Barnett, R.N.; Hammond, B.L.; Lester, W.A. Jr.
1985-09-01T23:59:59.000Z
We discuss recent work with the diffusion quantum Monte Carlo (QMC) method in its application to molecular systems. The formal correspondence of the imaginary time Schroedinger equation to a diffusion equation allows one to calculate quantum mechanical expectation values as Monte Carlo averages over an ensemble of random walks. We report work on atomic and molecular total energies, as well as properties including electron affinities, binding energies, reaction barriers, and moments of the electronic charge distribution. A brief discussion is given on how standard QMC must be modified for calculating properties. Calculated energies and properties are presented for a number of molecular systems, including He, F, F , H2, N, and N2. Recent progress in extending the basic QMC approach to the calculation of ''analytic'' (as opposed to finite-difference) derivatives of the energy is presented, together with an H2 potential-energy curve obtained using analytic derivatives. 39 refs., 1 fig., 2 tabs.
The hybrid Monte Carlo Algorithm and the chiral transition
Gupta, R.
1987-01-01T23:59:59.000Z
In this talk the author describes tests of the Hybrid Monte Carlo Algorithm for QCD done in collaboration with Greg Kilcup and Stephen Sharpe. We find that the acceptance in the glubal Metropolis step for Staggered fermions can be tuned and kept large without having to make the step-size prohibitively small. We present results for the finite temperature transition on 4/sup 4/ and 4 x 6/sup 3/ lattices using this algorithm.
Testing trivializing maps in the Hybrid Monte Carlo algorithm
Georg P. Engel; Stefan Schaefer
2011-02-09T23:59:59.000Z
We test a recent proposal to use approximate trivializing maps in a field theory to speed up Hybrid Monte Carlo simulations. Simulating the CP^{N-1} model, we find a small improvement with the leading order transformation, which is however compensated by the additional computational overhead. The scaling of the algorithm towards the continuum is not changed. In particular, the effect of the topological modes on the autocorrelation times is studied.
Solar Feasibility Study May 2013 - San Carlos Apache Tribe
Rapp, Jim [Parametrix] [Parametrix; Duncan, Ken [San Carlos Apache Tribe] [San Carlos Apache Tribe; Albert, Steve [Parametrix] [Parametrix
2013-05-01T23:59:59.000Z
The San Carlos Apache Tribe (Tribe) in the interests of strengthening tribal sovereignty, becoming more energy self-sufficient, and providing improved services and economic opportunities to tribal members and San Carlos Apache Reservation (Reservation) residents and businesses, has explored a variety of options for renewable energy development. The development of renewable energy technologies and generation is consistent with the Tribe’s 2011 Strategic Plan. This Study assessed the possibilities for both commercial-scale and community-scale solar development within the southwestern portions of the Reservation around the communities of San Carlos, Peridot, and Cutter, and in the southeastern Reservation around the community of Bylas. Based on the lack of any commercial-scale electric power transmission between the Reservation and the regional transmission grid, Phase 2 of this Study greatly expanded consideration of community-scale options. Three smaller sites (Point of Pines, Dudleyville/Winkleman, and Seneca Lake) were also evaluated for community-scale solar potential. Three building complexes were identified within the Reservation where the development of site-specific facility-scale solar power would be the most beneficial and cost-effective: Apache Gold Casino/Resort, Tribal College/Skill Center, and the Dudleyville (Winkleman) Casino.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville PowerTariff Pages default Sign InCenter (LMI-EFRC) Hotel & TravelLimiting FactorsProjects Pages
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey Inside the Complex(MARSSIM)K.universities enProgrammingProgression of Project File
National Nuclear Security Administration (NNSA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23Tribal EnergyCatalytic Coby Mods 002, 006, 020,holiday | National Nuclear39omega |3/%2A en Project
PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples
is responsible for supporting the FDH and RL project offices with adequate day-to-day planning and review technical management, coordination, control, and reporting of project...
Project Management Lessons Learned
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2008-08-05T23:59:59.000Z
The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.
FZ2MC: A Tool for Monte Carlo Transport Code Geometry Manipulation
Hackel, B M; Nielsen Jr., D E; Procassini, R J
2009-02-25T23:59:59.000Z
The process of creating and validating combinatorial geometry representations of complex systems for use in Monte Carlo transport simulations can be both time consuming and error prone. To simplify this process, a tool has been developed which employs extensions of the Form-Z commercial solid modeling tool. The resultant FZ2MC (Form-Z to Monte Carlo) tool permits users to create, modify and validate Monte Carlo geometry and material composition input data. Plugin modules that export this data to an input file, as well as parse data from existing input files, have been developed for several Monte Carlo codes. The FZ2MC tool is envisioned as a 'universal' tool for the manipulation of Monte Carlo geometry and material data. To this end, collaboration on the development of plug-in modules for additional Monte Carlo codes is desired.
Broader source: Energy.gov [DOE]
This webinar covered introduction and barriers to individual renewable projects, resources for community and group buy projects, and permitting guidelines.
Properties of Reactive Oxygen Species by Quantum Monte Carlo
Andrea Zen; Bernhardt L. Trout; Leonardo Guidoni
2014-06-16T23:59:59.000Z
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of Chemistry, Biology and Atmospheric Science. Nevertheless, the electronic structure of such species is a challenge for ab-initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as $N^3-N^4$, where $N$ is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.
FABI WORK IN NATIVE PINE FORESTS IN GUATEMALA Project title: Understanding pest and pathogen on common pine species in Guatemala, particularly those under testing as hybrid partners with Pinus patula, the University of San Carlos and the private forestry sector in Guatemala to discuss the project and avenues
Global neutrino parameter estimation using Markov Chain Monte Carlo
Steen Hannestad
2007-10-10T23:59:59.000Z
We present a Markov Chain Monte Carlo global analysis of neutrino parameters using both cosmological and experimental data. Results are presented for the combination of all presently available data from oscillation experiments, cosmology, and neutrinoless double beta decay. In addition we explicitly study the interplay between cosmological, tritium decay and neutrinoless double beta decay data in determining the neutrino mass parameters. We furthermore discuss how the inference of non-neutrino cosmological parameters can benefit from future neutrino mass experiments such as the KATRIN tritium decay experiment or neutrinoless double beta decay experiments.
Markov Chain Monte Carlo Method without Detailed Balance
Hidemaro Suwa; Synge Todo
2010-10-13T23:59:59.000Z
We present a specific algorithm that generally satisfies the balance condition without imposing the detailed balance in the Markov chain Monte Carlo. In our algorithm, the average rejection rate is minimized, and even reduced to zero in many relevant cases. The absence of the detailed balance also introduces a net stochastic flow in a configuration space, which further boosts up the convergence. We demonstrate that the autocorrelation time of the Potts model becomes more than 6 times shorter than that by the conventional Metropolis algorithm. Based on the same concept, a bounce-free worm algorithm for generic quantum spin models is formulated as well.
Validation of Phonon Physics in the CDMS Detector Monte Carlo
McCarthy, K.A.; Leman, S.W.; Anderson, A.J.; /MIT; Brandt, D.; /SLAC; Brink, P.L.; Cabrera, B.; Cherry, M.; /Stanford U.; Do Couto E Silva, E.; /SLAC; Cushman, P.; /Minnesota U.; Doughty, T.; /UC, Berkeley; Figueroa-Feliciano, E.; /MIT; Kim, P.; /SLAC; Mirabolfathi, N.; /UC, Berkeley; Novak, L.; /Stanford U.; Partridge, R.; /SLAC; Pyle, M.; /Stanford U.; Reisetter, A.; /Minnesota U. /St. Olaf Coll.; Resch, R.; /SLAC; Sadoulet, B.; Serfass, B.; Sundqvist, K.M.; /UC, Berkeley /Stanford U.
2012-06-06T23:59:59.000Z
The SuperCDMS collaboration is a dark matter search effort aimed at detecting the scattering of WIMP dark matter from nuclei in cryogenic germanium targets. The CDMS Detector Monte Carlo (CDMS-DMC) is a simulation tool aimed at achieving a deeper understanding of the performance of the SuperCDMS detectors and aiding the dark matter search analysis. We present results from validation of the phonon physics described in the CDMS-DMC and outline work towards utilizing it in future WIMP search analyses.
Monte Carlo beam capture and charge breeding simulation
Kim, J.S.; Liu, C.; Edgell, D.H.; Pardo, R. [FAR-TECH, Inc., 10350 Science Center Drive, San Diego, California 92121 (United States); FAR-TECH, Inc., 10350 Science Center Drive, San Diego, California 92121 (United States) and University of Rochester, Rochester, New York (United States); Argonne National Laboratory, Argonne, Illinois (United States)
2006-03-15T23:59:59.000Z
A full six-dimensional (6D) phase space Monte Carlo beam capture charge-breeding simulation code examines the beam capture processes of singly charged ion beams injected to an electron cyclotron resonance (ECR) charge breeder from entry to exit. The code traces injected beam ions in an ECR ion source (ECRIS) plasma including Coulomb collisions, ionization, and charge exchange. The background ECRIS plasma is modeled within the current frame work of the generalized ECR ion source model. A simple sample case of an oxygen background plasma with an injected Ar +1 ion beam produces lower charge breeding efficiencies than experimentally obtained. Possible reasons for discrepancies are discussed.
Monte Carlo Tools for charged Higgs boson production
K. Kovarik
2014-12-18T23:59:59.000Z
In this short review we discuss two implementations of the charged Higgs boson production process in association with a top quark in Monte Carlo event generators at next-to-leading order in QCD. We introduce the MC@NLO and the POWHEG method of matching next-to-leading order matrix elements with parton showers and compare both methods analyzing the charged Higgs boson production process in association with a top quark. We shortly discuss the case of a light charged Higgs boson where the associated charged Higgs production interferes with the charged Higgs production via t tbar-production and subsequent decay of the top quark.
Electron scattering in helium for Monte Carlo simulations
Khrabrov, Alexander V.; Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2012-09-15T23:59:59.000Z
An analytical approximation for differential cross-section of electron scattering on helium atoms is introduced. It is intended for Monte Carlo simulations, which, instead of angular distributions based on experimental data (or on first-principle calculations), usually rely on approximations that are accurate yet numerically efficient. The approximation is based on the screened-Coulomb differential cross-section with energy-dependent screening. For helium, a two-pole approximation of the screening parameter is found to be highly accurate over a wide range of energies.
Monte Carlo tests of Orbital-Free Density Functional Theory
D. I. Palade
2014-12-12T23:59:59.000Z
The relationship between the exact kinetic energy density in a quantum system in the frame of Density Functional Theory and the semiclassical functional expression for the same quantity is investigated. The analysis is performed with Monte Carlo simulations of the Kohn-Sham potentials. We find that the semiclassical form represents the statistical expectation value of the quantum nature. Based on the numerical results, we propose an empirical correction to the existing functional and an associated method to improve the Orbital-Free results.
A Look at general cavity theory through a code incorporating Monte Carlo techniques
Weyland, Mark Duffy
1989-01-01T23:59:59.000Z
material, the wall, being exponentially attenuated into the dosimeter, or the cavity. This assumption was investigated in this research using the Monte Carlo techniques in a modern computer code EGS4, Appropriate geometries were defined in the code and a... and relate the measured dose to that within the material, Monte Carlo techniques have been used to simulate the irradiation of various materials. The computer code EGS4 uses Monte Carlo techniques to simulate the randomness of radiation interactions...
Four-quark energies in SU(2) lattice Monte Carlo using a tetrahedral geometry
A. M. Green; J. Lukkarinen; P. Pennanen; C. Michael; S. Furui
1994-12-05T23:59:59.000Z
This contribution -- a continuation of earlier work -- reports on recent developments in the calculation and understanding of 4-quark energies generated using lattice Monte Carlo techniques.
Monte Carlo model for electron degradation in methane
Bhardwaj, Anil
2015-01-01T23:59:59.000Z
We present a Monte Carlo model for degradation of 1-10,000 eV electrons in an atmosphere of methane. The electron impact cross sections for CH4 are compiled and analytical representations of these cross sections are used as input to the model.model.Yield spectra, which provides information about the number of inelastic events that have taken place in each energy bin, is used to calculate the yield (or population) of various inelastic processes. The numerical yield spectra, obtained from the Monte Carlo simulations, is represented analytically, thus generating the Analytical Yield Spectra (AYS). AYS is employed to obtain the mean energy per ion pair and efficiencies of various inelastic processes.Mean energy per ion pair for neutral CH4 is found to be 26 (27.8) eV at 10 (0.1) keV. Efficiency calculation showed that ionization is the dominant process at energies >50 eV, for which more than 50% of the incident electron energy is used. Above 25 eV, dissociation has an efficiency of 27%. Below 10 eV, vibrational e...
Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data
Zourari, K.; Peppa, V.; Papagiannis, P., E-mail: ppapagi@phys.uoa.gr [Medical Physics Laboratory, Medical School, University of Athens, 75 Mikras Asias, 11527 Athens (Greece); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain)] [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Siebert, Frank-André [Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel 24105 (Germany)] [Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel 24105 (Germany)
2014-04-15T23:59:59.000Z
Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 20–1090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (20–1090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [“Diagnostic x-ray shielding design based on an empirical model of photon attenuation,” Health Phys. 44, 507–517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [“Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities,” Med. Phys. 34, 1398–1404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions: The data of this work allow for the accurate calculation of structural shielding thickness, taking into account the spectral variation with shield thickness, and broad beam conditions, in a realistic geometry. The simplicity of calculations also obviates the need for the use of crude transmission data estimates such as the half and tenth value layer indices. Although this study was primarily designed for brachytherapy, results might also be useful for radiology and nuclear medicine facility design, provided broad beam conditions apply.
Iskuulpa Watershed ProjectIskuulpa Watershed Project BPA Project # 199506001BPA Project # 199506001
Hydroelectric Power Project impacts Improve natural salmonid habitat and production #12;Project ActivitiesProject Activities Land purchaseLand purchase HEP evaluationHEP evaluation Rest from livestockRest from livestock;Project ActivitiesProject Activities Land purchaseLand purchase HEP evaluationHEP evaluation Rest from
Schulze, Tim
An Energy Localization Principle and its Application to Fast Kinetic Monte Carlo Simulation of Michigan, Ann Arbor, MI 48109-1109 Abstract Simulation of heteroepitaxial growth using kinetic Monte Carlo (KMC) is often based on rates determined by differences in elastic energy between two configurations
MONTE CARLO SIMULATION METHOD By Ronald R. Charpentier and Timothy R. Klett
Laughlin, Robert B.
EMCEE and Emc2 are Monte-Carlo simulation programs for assessing undiscovered conventional oil and gasChapter MC MONTE CARLO SIMULATION METHOD By Ronald R. Charpentier and Timothy R. Klett in U in the toolbar to return. U.S. GEOLOGICAL SURVEY WORLD PETROLEUM ASSESSMENT 2000-- DESCRIPTION AND RESULTS U
Author's personal copy Monte Carlo methods for design and analysis of radiation detectors
Shultis, J. Kenneth
Author's personal copy Monte Carlo methods for design and analysis of radiation detectors William L Radiation detectors Inverse problems Detector design a b s t r a c t An overview of Monte Carlo as a practical method for designing and analyzing radiation detectors is provided. The emphasis is on detectors
BAYESIAN INFERENCE FOR MODELS OF TRANSCRIPTIONAL REGULATION USING MARKOV CHAIN MONTE CARLO SAMPLING
Opper, Manfred
]. In this contribution we present a Markov chain Monte Carlo (MCMC) sampler which infers the TF activity based on a modelBAYESIAN INFERENCE FOR MODELS OF TRANSCRIPTIONAL REGULATION USING MARKOV CHAIN MONTE CARLO SAMPLING]. Transcription of genes is controlled by proteins which can bind to particular base-sequences of DNA
Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions
Anderson, James B.
Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions Shannon D and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal
A New Monte Carlo Simulation Method for Tolerance Analysis of Kinematically Constrained Assemblies
A New Monte Carlo Simulation Method for Tolerance Analysis of Kinematically Constrained Assemblies Abstract A generalized Monte Carlo simulation method is presented for tolerance analysis of mechanical assemblies with small kinematic adjustments. This is a new tool for assembly tolerance analysis based
Path Integral Monte Carlo Calculation of the Deuterium Hugoniot B. Militzer and D. M. Ceperley
Militzer, Burkhard
Path Integral Monte Carlo Calculation of the Deuterium Hugoniot B. Militzer and D. M. Ceperley-Champaign, Urbana, IL 61801 (January 21, 2000) Restricted path integral Monte Carlo simulations have been used#11;ects and the dependence on the time step of the path integral. Further, we compare the results
Continuous Contour Monte Carlo for Marginal Density Estimation With an Application to a
Liang, Faming
; Gelman and Meng 1998), reverse logistic regression (Geyer 1994), marginal likelihood (Chib 1995; Chib; Reversible jump Markov chain Monte Carlo; Stochastic approximation; Wang-Landau algorithm. 1. INTRODUCTION;Continuous Contour Monte Carlo 609 variety of approaches including reversible jump MCMC (Green 1995; Green
Kinetic Monte Carlo simulations of the response of carbon nanotubes to electron irradiation
Krasheninnikov, Arkady V.
Kinetic Monte Carlo simulations of the response of carbon nanotubes to electron irradiation J of Technology, Finland (Dated: January 12, 2007) Irradiation is increasingly used nowadays to tailor of nanotubes to irradiation is still lacking, we have implemented the kinetic Monte Carlo method with Bortz
Population Monte Carlo algorithms Yukito Iba The Institute of Statistical Mathematics
Iba, Yukito
279 ¤ Population Monte Carlo algorithms Yukito Iba The Institute of Statistical Mathematics iba algorithm Summary We give a cross-disciplinary survey on "population" Monte Carlo algorithms. In these algorithms, a set of "walkers" or "particles" is used as a representation of a high-dimensional vector
A Statement on Higher Education Policy in Kevin B. Korb, Carlo Kopp and Lloyd Allison
Allison, Lloyd
A Statement on Higher Education Policy in Australia Kevin B. Korb, Carlo Kopp and Lloyd Allison,carlo,lloydg@cs.monash.edu.au Summary Policy on higher education in Australia has become highly political since the massive expansion of the changes which have been imposed upon the higher education sector during the Dawkins period and thereafter
Hybrid Probabilistic RoadMap -Monte Carlo Motion Planning for Closed Chain Systems with
Han, Li
Hybrid Probabilistic RoadMap - Monte Carlo Motion Planning for Closed Chain Systems with Spherical@clarku.edu Abstract-- In this paper we propose a hybrid Probabilistic RoadMap - Monte Carlo (PRM-MC) motion planner and connect a large number of robot configurations in order to build a roadmap that reflects the properties
Monte Carlo Simulation of Dense Polymer Melts Using Event Chain Algorithms
Tobias Alexander Kampmann; Horst-Holger Boltz; Jan Kierfeld
2015-07-23T23:59:59.000Z
We propose an efficient Monte Carlo algorithm for the off-lattice simulation of dense hard sphere polymer melts using cluster moves, called event chains, which allow for a rejection-free treatment of the excluded volume. Event chains also allow for an efficient preparation of initial configurations in polymer melts. We parallelize the event chain Monte Carlo algorithm to further increase simulation speeds and suggest additional local topology-changing moves ("swap" moves) to accelerate equilibration. By comparison with other Monte Carlo and molecular dynamics simulations, we verify that the event chain algorithm reproduces the correct equilibrium behavior of polymer chains in the melt. By comparing intrapolymer diffusion time scales, we show that event chain Monte Carlo algorithms can achieve simulation speeds comparable to optimized molecular dynamics simulations. The event chain Monte Carlo algorithm exhibits Rouse dynamics on short time scales. In the absence of swap moves, we find reptation dynamics on intermediate time scales for long chains.
SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations
Baes, Maarten
2015-01-01T23:59:59.000Z
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can...
Single temperature for Monte Carlo optimization on complex landscapes
Tolkunov, Denis
2012-01-01T23:59:59.000Z
We propose a new strategy for Monte Carlo (MC) optimization on rugged multidimensional landscapes. The strategy is based on querying the statistical properties of the landscape in order to find the temperature at which the mean first passage time across the current region of the landscape is minimized. Thus, in contrast to other algorithms such as simulated annealing (SA), we explicitly match the temperature schedule to the statistics of landscape irregularities. In cases where this statistics is approximately the same over the entire landscape, or where non-local moves couple distant parts of the landscape, single-temperature MC will outperform any other MC algorithm with the same move set. We also find that in strongly anisotropic Coulomb spin glass and traveling salesman problems, the only relevant statistics (which we use to assign a single MC temperature) is that of irregularities in low-energy funnels. Our results may explain why protein folding in nature is efficient at room temperatures.
Monte Carlo Simulation Tool Installation and Operation Guide
Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.
2013-09-02T23:59:59.000Z
This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.
Improving multivariate Horner schemes with Monte Carlo tree search
J. Kuipers; J. A. M. Vermaseren; A. Plaat; H. J. van den Herik
2012-07-30T23:59:59.000Z
Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.
The Quantum Energy Density: Improved Efficiency for Quantum Monte Carlo
Krogel, Jaron T; Kim, Jeongnim; Ceperley, David M
2013-01-01T23:59:59.000Z
We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, defined in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon "gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy differences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more efficiently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.
Strain in the mesoscale kinetic Monte Carlo model for sintering
Bjørk, R; Tikare, V; Olevsky, E; Pryds, N
2014-01-01T23:59:59.000Z
Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate densification by vacancy annihilation removes an isolated pore site at a grain boundary and collapses a column of sites extending from the vacancy to the surface of sintering compact, through the center of mass of the nearest grain. Using this algorithm, the existing published kMC models are shown to produce anisotropic strains for homogeneous powder compacts with aspect ratios different from unity. It is shown that the line direction biases shrinkage strains in proportion the compact dimension aspect ratios. A new algorithm that corrects this bias in strains is proposed; the direction for collapsing the column is determined by choosing a random sample face and subsequently a random point on that face as the end point for...
Peelle's pertinent puzzle using the Monte Carlo technique
Kawano, Toshihiko [Los Alamos National Laboratory; Talou, Patrick [Los Alamos National Laboratory; Burr, Thomas [Los Alamos National Laboratory; Pan, Feng [Los Alamos National Laboratory
2009-01-01T23:59:59.000Z
We try to understand the long-standing problem of the Peelle's Pertinent Puzzle (PPP) using the Monte Carlo technique. We allow the probability density functions to be any kind of form to assume the impact of distribution, and obtain the least-squares solution directly from numerical simulations. We found that the standard least squares method gives the correct answer if a weighting function is properly provided. Results from numerical simulations show that the correct answer of PPP is 1.1 {+-} 0.25 if the common error is multiplicative. The thought-provoking answer of 0.88 is also correct, if the common error is additive, and if the error is proportional to the measured values. The least squares method correctly gives us the most probable case, where the additive component has a negative value. Finally, the standard method fails for PPP due to a distorted (non Gaussian) joint distribution.
Lifting -- A Nonreversible Markov Chain Monte Carlo Algorithm
Vucelja, Marija
2015-01-01T23:59:59.000Z
Markov Chain Monte Carlo algorithms are invaluable numerical tools for exploring stationary properties of physical systems -- in particular when direct sampling is not feasible. They are widely used in many areas of physics and other sciences. Most common implementations are done with reversible Markov chains -- Markov chains that obey detailed balance. Reversible Markov chains are sufficient in order for the physical system to relax to equilibrium, but it is not necessary. Here we review several works that use "lifted" or nonreversible Markov chains, which violate detailed balance, yet still converge to the correct stationary distribution (they obey the global balance condition). In certain cases, the acceleration is a square root improvement at most, to the conventional reversible Markov chains. We introduce the problem in a way that makes it accessible to non-specialists. We illustrate the method on several representative examples (sampling on a ring, sampling on a torus, an Ising model on a complete graph...
The neutron instrument Monte Carlo library MCLIB: Recent developments
Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.; Thelliez, T.G.
1998-12-31T23:59:59.000Z
A brief review is given of the developments since the ICANS-XIII meeting made in the neutron instrument design codes using the Monte Carlo library MCLIB. Much of the effort has been to assure that the library and the executing code MC{_}RUN connect efficiently with the World Wide Web application MC-WEB as part of the Los Alamos Neutron Instrument Simulation Package (NISP). Since one of the most important features of MCLIB is its open structure and capability to incorporate any possible neutron transport or scattering algorithm, this document describes the current procedure that would be used by an outside user to add a feature to MCLIB. Details of the calling sequence of the core subroutine OPERATE are discussed, and questions of style are considered and additional guidelines given. Suggestions for standardization are solicited, as well as code for new algorithms.
Hybrid Monte Carlo simulation on the graphene hexagonal lattice
Richard Brower; Claudio Rebbi; David Schaich
2012-04-24T23:59:59.000Z
One of the many remarkable properties of graphene is that in the low energy limit the dynamics of its electrons can be effectively described by the massless Dirac equation. This has prompted investigations of graphene based on the lattice simulation of a system of 2-dimensional fermions on a square staggered lattice. We demonstrate here how to construct the path integral for graphene working directly on the graphene hexagonal lattice. For the nearest neighbor tight binding model interacting with a long range Coulomb interaction between the electrons, this leads to the hybrid Monte Carlo algorithm with no sign problem. The only approximation is the discretization of the Euclidean time. So as we extrapolate to the time continuum limit, the exact tight binding solution maybe found numerically to arbitrary precession on a finite hexagonal lattice. The potential for this approach is tested on a single hexagonal cell.
Improved version of the PHOBOS Glauber Monte Carlo
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Loizides, C.; Nagle, J.; Steinberg, P.
2015-09-01T23:59:59.000Z
“Glauber” models are used to calculate geometric quantities in the initial state of heavy ion collisions, such as impact parameter, number of participating nucleons and initial eccentricity. Experimental heavy-ion collaborations, in particular at RHIC and LHC, use Glauber Model calculations for various geometric observables for determination of the collision centrality. In this document, we describe the assumptions inherent to the approach, and provide an updated implementation (v2) of the Monte Carlo based Glauber Model calculation, which originally was used by the PHOBOS collaboration. The main improvement w.r.t. the earlier version (v1) (Alver et al. 2008) is the inclusion of Tritium,more »Helium-3, and Uranium, as well as the treatment of deformed nuclei and Glauber–Gribov fluctuations of the proton in p +A collisions. A users’ guide (updated to reflect changes in v2) is provided for running various calculations.« less
Quality assurance for the ALICE Monte Carlo procedure
M. Ajaz; Seforo Mohlalisi; Peter Hristov; Jean Pierre Revol
2009-04-10T23:59:59.000Z
We implement the already existing macro,$ALICE_ROOT/STEER /CheckESD.C that is ran after reconstruction to compute the physics efficiency, as a task that will run on proof framework like CAF. The task was implemented in a C++ class called AliAnalysisTaskCheckESD and it inherits from AliAnalysisTaskSE base class. The function of AliAnalysisTaskCheckESD is to compute the ratio of the number of reconstructed particles to the number of particle generated by the Monte Carlo generator.The class AliAnalysisTaskCheckESD was successfully implemented. It was used during the production for first physics and permitted to discover several problems (missing track in the MUON arm reconstruction, low efficiency in the PHOS detector etc.). The code is committed to the SVN repository and will become standard tool for quality assurance.
Broader source: Energy.gov [DOE]
A 2004 amendment to the state constitution authorizes the state to attract super projects by issuing bonds to fund a project’s infrastructure, limited to 5% of the net general revenues during the...
Koh, Wonshill
2013-02-22T23:59:59.000Z
The light propagation in highly scattering turbid media composed of the particles with different size distribution is studied using a Monte Carlo simulation model implemented in Standard C. Monte Carlo method has been widely utilized to study...
Khamsi, Mohamed Amine
Fixed Point and Selection Theorems in Hyperconvex Spaces M. A. Khamsi, W. A. Kirk, and Carlos their thanks to the sponsors for generous support and hospitality. 1 #12;2 M. A. KHAMSI, W. A. KIRK, AND CARLOS
Clean Coal Projects (Virginia)
Broader source: Energy.gov [DOE]
This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.
Project 1640 Palomar Procedures
Project 1640 Palomar Procedures Version 0.1 7/7/08 2:11:08 PM #12;2 Project 1640 Design..................................................................................................................... 1 Palomar Procedures
Project Finance and Investments
Broader source: Energy.gov [DOE]
Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture
Broader source: Energy.gov (indexed) [DOE]
and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Actual FY 2011 Pre- &...
Office of Environmental Management (EM)
Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011...
Office of Environmental Management (EM)
and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- &...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- &...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP...
Broader source: Energy.gov (indexed) [DOE]
Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- &...
Broader source: Energy.gov (indexed) [DOE]
and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Final FY 2012 Pre- & Post-CAP Final...
Broader source: Energy.gov (indexed) [DOE]
2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....
Office of Environmental Management (EM)
1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....
Office of Environmental Management (EM)
3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....
Falls Creek Hydroelectric Project
Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett
2007-06-12T23:59:59.000Z
This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.
Straub, John E.
Statistical-Temperature Monte Carlo and Molecular Dynamics Algorithms Jaegil Kim,* John E. Straub. A novel molecular dynamics algorithm (STMD) applicable to complex systems and a Monte Carlo algorithmRevLett.97.050601 PACS numbers: 05.10.ÿa, 02.70.Rr, 87.18.Bb The Wang-Landau (WL) Monte Carlo (MC) algorithm
Manhattan Project | Department of Energy
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Manhattan Project Manhattan Project Manhattan Project New Manhattan Project Interactive Website The Department of Energy traces its origins to World War II and the Manhattan...
MRIP Operations Team Projects (2012 Funded) Project Name Project Description Project Objectives
MRIP Operations Team Projects (2012 Funded) Project Name Project Description Project Objectives vessel registries to conduct recreational catch and effort surveys. Develop a recreational fishing. Accuracy Funded 2012 Oregon Shore and EstuaryBoat Survey Design Review Develop a new or revised
Coupled Deterministic-Monte Carlo Transport for Radiation Portal Modeling
Smith, Leon E.; Miller, Erin A.; Wittman, Richard S.; Shaver, Mark W.
2008-01-14T23:59:59.000Z
Radiation portal monitors are being deployed, both domestically and internationally, to detect illicit movement of radiological materials concealed in cargo. Evaluation of the current and next generations of these radiation portal monitor (RPM) technologies is an ongoing process. 'Injection studies' that superimpose, computationally, the signature from threat materials onto empirical vehicle profiles collected at ports of entry, are often a component of the RPM evaluation process. However, measurement of realistic threat devices can be both expensive and time-consuming. Radiation transport methods that can predict the response of radiation detection sensors with high fidelity, and do so rapidly enough to allow the modeling of many different threat-source configurations, are a cornerstone of reliable evaluation results. Monte Carlo methods have been the primary tool of the detection community for these kinds of calculations, in no small part because they are particularly effective for calculating pulse-height spectra in gamma-ray spectrometers. However, computational times for problems with a high degree of scattering and absorption can be extremely long. Deterministic codes that discretize the transport in space, angle, and energy offer potential advantages in computational efficiency for these same kinds of problems, but the pulse-height calculations needed to predict gamma-ray spectrometer response are not readily accessible. These complementary strengths for radiation detection scenarios suggest that coupling Monte Carlo and deterministic methods could be beneficial in terms of computational efficiency. Pacific Northwest National Laboratory and its collaborators are developing a RAdiation Detection Scenario Analysis Toolbox (RADSAT) founded on this coupling approach. The deterministic core of RADSAT is Attila, a three-dimensional, tetrahedral-mesh code originally developed by Los Alamos National Laboratory, and since expanded and refined by Transpire, Inc. [1]. MCNP5 is used to calculate sensor pulse-height tallies. RADSAT methods, including adaptive, problem-specific energy-group creation, ray-effect mitigation strategies and the porting of deterministic angular flux to MCNP for individual particle creation are described in [2][3][4]. This paper discusses the application of RADSAT to the modeling of gamma-ray spectrometers in RPMs.
Perfetti, Christopher M [ORNL; Rearden, Bradley T [ORNL
2014-01-01T23:59:59.000Z
This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.
History and invention in the structure of Terra nostra by Carlos Fuentes
Valdez, Irma O
1991-01-01T23:59:59.000Z
an Garcia (Member) Victor Arizpe (Head of Department) May l991 ABSTRACT History and Invention in the Structure of T~rr ~N~r by Carlos Fuentes. (May 1991) Irma O. Valdez, B. A. , Normal Pablo Livas; M. A. , Normal Superior del Estado Chair... ~Trra Nostr ds Carlos Fosotss. (mayo 1991) Irma O. Valdez, Certificado de Educacion, Normal Pablo Livas; Maestrla, Normal Superior del Estado Chair of Advisory Committee: Dr. Bart I ewis La obra literaria de Carlos Fuentes es muy amplia e...
Franke, B. C. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Prinja, A. K. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)
2013-07-01T23:59:59.000Z
The stochastic Galerkin method (SGM) is an intrusive technique for propagating data uncertainty in physical models. The method reduces the random model to a system of coupled deterministic equations for the moments of stochastic spectral expansions of result quantities. We investigate solving these equations using the Monte Carlo technique. We compare the efficiency with brute-force Monte Carlo evaluation of uncertainty, the non-intrusive stochastic collocation method (SCM), and an intrusive Monte Carlo implementation of the stochastic collocation method. We also describe the stability limitations of our SGM implementation. (authors)
A study of the contrast of a submerged disc using Monte Carlo techniques
Hagan, Donald Frank
1980-01-01T23:59:59.000Z
in the simulation of lioht interactions within the Earth's ocean system. Using the Monte Carlo computer program the contrast of a Secchi disc and its ocean background was calculated. A Secchi disc 1s a horizontal disc in the ocean that is v1ewed from the surface... of samples which requires more computation time. Before the advent of high speed computers, the Monte Carlo Method was generally useless because of the massive amount of computation it required. The Monte Carlo Method is fairly simple in application...
Enhanced physics design with hexagonal repeated structure tools using Monte Carlo methods
Carter, L L; Lan, J S; Schwarz, R A
1991-01-01T23:59:59.000Z
This report discusses proposed new missions for the Fast Flux Test Facility (FFTF) reactor which involve the use of target assemblies containing local hydrogenous moderation within this otherwise fast reactor. Parametric physics design studies with Monte Carlo methods are routinely utilized to analyze the rapidly changing neutron spectrum. An extensive utilization of the hexagonal lattice within lattice capabilities of the Monte Carlo Neutron Photon (MCNP) continuous energy Monte Carlo computer code is applied here to solving such problems. Simpler examples that use the lattice capability to describe fuel pins within a brute force'' description of the hexagonal assemblies are also given.
treatment of the ge- ometry, but successive versions added such features as cross-section libraries and green above. As the temperature of the plasma decreases, lattice-like peaks begin to form in the pair
Monte Carlo sampling from the quantum state space. I
Jiangwei Shang; Yi-Lin Seah; Hui Khoon Ng; David John Nott; Berthold-Georg Englert
2015-04-27T23:59:59.000Z
High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the standard strategies of rejection sampling, importance sampling, and Markov-chain sampling can be adapted to this context, where the samples must obey the constraints imposed by the positivity of the statistical operator. For a comparison of these sampling methods, we generate sample points in the probability space for two-qubit states probed with a tomographically incomplete measurement, and then use the sample for the calculation of the size and credibility of the recently-introduced optimal error regions [see New J. Phys. 15 (2013) 123026]. Another illustration is the computation of the fractional volume of separable two-qubit states.
Monte Carlo simulation of the terrestrial hydrogen exosphere
Hodges, R.R. Jr. [Univ. of Texas, Dallas, TX (United States)
1994-12-01T23:59:59.000Z
Methods for Monte Carlo simulation of planetary exospheres have evolved from early work on the lunar atmosphere, where the regolith surface provides a well defined exobase. A major limitation of the successor simulations of the exospheres of Earth and Venus is the use of an exobase surface as an artifice to separate the collisional processes of the thermosphere from a collisionles exosphere. In this paper a new generalized approach to exosphere simulation is described, wherein the exobase is replaced by a barometric depletion of the major constitents of the thermosphere. Exospheric atoms in the thermosphere-exosphere transition region, and in the outer exosphere as well, travel in ballistic trajectories that are interrupted by collisons with the background gas, and by charge exchange interactions with ionospheric particles. The modified simulator has been applied to the terrestrial hydrogen exosphere problem, using velocity dependent differential cross sections to provide statistically correct collisional scattering in H-O and H-H(+) interactions. Global models are presented for both solstice and equinox over the effective solar cycle range of the F{sub 10.7} index (80 to 230). Simulation results show significant differences with previous terrestrial exosphere models, as well as with the H distributions of the MSIS-86 thermosphere model.
Monte Carlo Simulations of Cosmic Rays Hadronic Interactions
Aguayo Navarrete, Estanislao; Orrell, John L.; Kouzes, Richard T.
2011-04-01T23:59:59.000Z
This document describes the construction and results of the MaCoR software tool, developed to model the hadronic interactions of cosmic rays with different geometries of materials. The ubiquity of cosmic radiation in the environment results in the activation of stable isotopes, referred to as cosmogenic activities. The objective is to use this application in conjunction with a model of the MAJORANA DEMONSTRATOR components, from extraction to deployment, to evaluate cosmogenic activation of such components before and after deployment. The cosmic ray showers include several types of particles with a wide range of energy (MeV to GeV). It is infeasible to compute an exact result with a deterministic algorithm for this problem; Monte Carlo simulations are a more suitable approach to model cosmic ray hadronic interactions. In order to validate the results generated by the application, a test comparing experimental muon flux measurements and those predicted by the application is presented. The experimental and simulated results have a deviation of 3%.
Monte Carlo Sampling of Negative-temperature Plasma States
John A. Krommes; Sharadini Rath
2002-07-19T23:59:59.000Z
A Monte Carlo procedure is used to generate N-particle configurations compatible with two-temperature canonical equilibria in two dimensions, with particular attention to nonlinear plasma gyrokinetics. An unusual feature of the problem is the importance of a nontrivial probability density function R0(PHI), the probability of realizing a set {Phi} of Fourier amplitudes associated with an ensemble of uniformly distributed, independent particles. This quantity arises because the equilibrium distribution is specified in terms of {Phi}, whereas the sampling procedure naturally produces particles states gamma; {Phi} and gamma are related via a gyrokinetic Poisson equation, highly nonlinear in its dependence on gamma. Expansion and asymptotic methods are used to calculate R0(PHI) analytically; excellent agreement is found between the large-N asymptotic result and a direct numerical calculation. The algorithm is tested by successfully generating a variety of states of both positive and negative temperature, including ones in which either the longest- or shortest-wavelength modes are excited to relatively very large amplitudes.
Monte Carlo simulations of lattice models for single polymer systems
Hsu, Hsiao-Ping, E-mail: hsu@mpip-mainz.mpg.de [Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz (Germany)
2014-10-28T23:59:59.000Z
Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N?O(10{sup 4}). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and ?(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.
A review of Monte Carlo simulations of polymers with PERM
Hsiao-Ping Hsu; Peter Grassberger
2011-07-06T23:59:59.000Z
In this review, we describe applications of the pruned-enriched Rosenbluth method (PERM), a sequential Monte Carlo algorithm with resampling, to various problems in polymer physics. PERM produces samples according to any given prescribed weight distribution, by growing configurations step by step with controlled bias, and correcting "bad" configurations by "population control". The latter is implemented, in contrast to other population based algorithms like e.g. genetic algorithms, by depth-first recursion which avoids storing all members of the population at the same time in computer memory. The problems we discuss all concern single polymers (with one exception), but under various conditions: Homopolymers in good solvents and at the $\\Theta$ point, semi-stiff polymers, polymers in confining geometries, stretched polymers undergoing a forced globule-linear transition, star polymers, bottle brushes, lattice animals as a model for randomly branched polymers, DNA melting, and finally -- as the only system at low temperatures, lattice heteropolymers as simple models for protein folding. PERM is for some of these problems the method of choice, but it can also fail. We discuss how to recognize when a result is reliable, and we discuss also some types of bias that can be crucial in guiding the growth into the right directions.
Nuclear Force from Monte Carlo Simulations of Lattice Quantum Chromodynamics
S. Aoki; T. Hatsuda; N. Ishii
2008-10-24T23:59:59.000Z
The nuclear force acting between protons and neutrons is studied in the Monte Carlo simulations of the fundamental theory of the strong interaction, the quantum chromodynamics defined on the hypercubic space-time lattice. After a brief summary of the empirical nucleon-nucleon (NN) potentials which can fit the NN scattering experiments in high precision, we outline the basic formulation to derive the potential between the extended objects such as the nucleons composed of quarks. The equal-time Bethe-Salpeter amplitude is a key ingredient for defining the NN potential on the lattice. We show the results of the numerical simulations on a $32^4$ lattice with the lattice spacing $a \\simeq 0.137 $fm (lattice volume (4.4 fm)$^4$) in the quenched approximation. The calculation was carried out using the massively parallel computer Blue Gene/L at KEK. We found that the calculated NN potential at low energy has basic features expected from the empirical NN potentials; attraction at long and medium distances and the repulsive core at short distance. Various future directions along this line of research are also summarized.
Livingston Campus Geothermal Project The Project
Delgado, Mauricio
Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes
Protein folding and phylogenetic tree reconstruction using stochastic approximation Monte Carlo
Cheon, Sooyoung
2007-09-17T23:59:59.000Z
folding problems. The numerical results indicate that it outperforms simulated annealing and conventional Monte Carlo algorithms as a stochastic optimization algorithm. We also propose one method for the use of secondary structures in protein folding...
Xu, Sheng, S.M. Massachusetts Institute of Technology
2013-01-01T23:59:59.000Z
In order to use Monte Carlo methods for reactor simulations beyond benchmark activities, the traditional way of preparing and using nuclear cross sections needs to be changed, since large datasets of cross sections at many ...
Monte Carlo and thermal hydraulic coupling using low-order nonlinear diffusion acceleration
Herman, Bryan R. (Bryan Robert)
2014-01-01T23:59:59.000Z
Monte Carlo (MC) methods for reactor analysis are most often employed as a benchmark tool for other transport and diffusion methods. In this work, we identify and resolve a few of the issues associated with using MC as a ...
Show me the way to Monte Carlo: density-based trajectory Steven Strachan1
Murray-Smith, Roderick
with a combination of Global Positioning System data, a music player, inertial sen- sing, magnetic bearing data, magnetic bearing data and Monte Carlo samp- ling and modulates a listener's music in order to guide them
Improvements and applications of the Uniform Fission Site method in Monte Carlo
Hunter, Jessica Lynn
2014-01-01T23:59:59.000Z
Monte Carlo methods for reactor analysis have been in development with the eventual goal of full-core analysis. To attain results with reasonable uncertainties, large computational resources are needed. Variance reduction ...
Ruolo dell’intellettuale e 'guerra di posizione:' da Gramsci a Carlo Giuliani, ragazzo
Sassi, Mauro
2011-01-01T23:59:59.000Z
13. Jonathan Neale, You are G8, we are 6 billion: the truth229. 14. Carlo Lucarelli, G8: cronaca di una battaglia (di imporre la cancellazione del G8, ma dopo il rifiuto delle
Universidad Rey Juan Carlos Escuela Superior de Ciencias Experimentales y Tecnologia
Pantrigo Fernández, Juan José
Universidad Rey Juan Carlos Escuela Superior de Ciencias Experimentales y Tecnolog´ia Departamento), que es el ´area de estudio de sistemas que permiten al usuario transmitir informaci´on a un ordenador
Paris-Sud XI, Université de
Politica nell'età moderna, Florence, Olschki, 2003, p. 547-558. VERSION MISE A JOUR EN AVRIL 2006 Jean "Religione, Cultura e Politica nell'età moderna, Carlo Ossola, Marcello Verga, Maria Antonietta Visceglia (Ed
Combining Strategies for Parallel Stochastic Approximation Monte Carlo Algorithm of Big Data
Lin, Fang-Yu
2014-10-15T23:59:59.000Z
of iterations and is prone to get trapped into local optima. On the other hand, Stochastic Approximation in Monte Carlo algorithm (SAMC), a very sophisticated algorithm in theory and applications, can avoid getting trapped into local optima and produce more...
Walsh, Jonathan A. (Jonathan Alan)
2014-01-01T23:59:59.000Z
This thesis presents the development and analysis of computational methods for efficiently accessing and utilizing nuclear data in Monte Carlo neutron transport code simulations. Using the OpenMC code, profiling studies ...
Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte The Monte Carlo technique is used to calculate electrical as well as thermoelectric transport properties ballistic thermionic transport and fully diffusive thermoelectric transport is also described. DOI: 10
Pasciak, Alexander Samuel
2007-04-25T23:59:59.000Z
Advancements in parallel and cluster computing have made many complex Monte Carlo simulations possible in the past several years. Unfortunately, cluster computers are large, expensive, and still not fast enough to make the ...
MARKOV CHAIN MONTE CARLO FOR AUTOMATED TRACKING OF GENEALOGY IN MICROSCOPY VIDEOS
MARKOV CHAIN MONTE CARLO FOR AUTOMATED TRACKING OF GENEALOGY IN MICROSCOPY VIDEOS KATHLEEN CHAMPION of the nuclei in the images and their genealogies. Evan Tice '09 has already developed some code that aims
Parallel Markov Chain Monte Carlo Methods for Large Scale Statistical Inverse Problems
Wang, Kainan
2014-04-18T23:59:59.000Z
but also the uncertainty of these estimations. Markov chain Monte Carlo (MCMC) is a useful technique to sample the posterior distribution and information can be extracted from the sampled ensemble. However, MCMC is very expensive to compute, especially...
Exponentially-convergent Monte Carlo for the One-dimensional Transport Equation
Peterson, Jacob Ross
2014-04-23T23:59:59.000Z
singular problems. Computational results are presented demonstrating the efficacy of the new approach. We tested our ECMC algorithm against standard Monte Carlo and found the ECMC method to be generally much more efficient. For a manufacture solution...
Fourth-order diffusion Monte Carlo algorithms for solving quantum many-body problems
Forbert, HA; Chin, Siu A.
2001-01-01T23:59:59.000Z
By decomposing the important sampled imaginary time Schrodinger evolution operator to fourth order with positive coefficients, we derived a number of distinct fourth-order diffusion Monte Carlo algorithms. These sophisticated algorithms require...
Radiative transfer in the earth's atmosphere-ocean system using Monte Carlo techniques
Bradley, Paul Andrew
1987-01-01T23:59:59.000Z
TRANSFER PROBLEM MONTE CARLO METHOD Assumptions of the Model Photon Pathlength Emulation Techniques Sampling Scattering Functions: Angles and Probabilities Emulation of an Interface Computing the Radiance by Statistical Estimation Determination... radiance values in both the atmosphere and the ocean from the scattering functions and other input data, with a Monte Carlo computer code. The polarization ot the radiation was taken into account by Kattawar et al. s in their computation...
PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code
Iandola, F N; O'Brien, M J; Procassini, R J
2010-11-29T23:59:59.000Z
Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.
Energy Efficiency/ Renewable Energy (EE/RE) Projects in Texas Public Schools
Haberl, J.; Kim, H.; Mukhopadhyay, J.; Baltazar, J. C.; Do, S.; Kim, K.; Lewis, C.; Yazdani, B.; Yarborough, J.
2011-01-01T23:59:59.000Z
. 1 Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools Jeff Haberl, Hyojin Kim, Jaya Mukhopadhyay, Juan-Carlos Baltazar...-Cevantes, Sung Lok Do, Kee Han Kim, Cyndi Lewis, Bahman Yazdani – Energy Systems Laboratory James Yarborough, U.S.E.P.A. Energy Systems Laboratory p. 2 Why care about energy efficiency-renewable energy in schools? • Lower energy costs • May help...
Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools
Haberl, J.; Kim, H.; Mukhopadhyay, J.; Cervantes, J.C.; Do, S.; Kim, K.; Cyndi Lewis, C.; Yazdani, B.; Yarborough, J.
Energy Systems Laboratory p. 1 Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools Jeff Haberl, Hyojin Kim, Jaya... Mukhopadhyay, Juan-Carlos Baltazar-Cevantes, Sung Lok Do, Kee Han Kim, Cyndi Lewis, Bahman Yazdani – Energy Systems Laboratory James Yarborough, U.S.E.P.A. ESL-TR-11-11-01 Energy Systems Laboratory p. 2 Why care about energy efficiency-renewable...
Energy Efficiency/ Renewable Energy (EE/RE) Projects in Texas Public Schools
Haberl, J.; Kim, H.; Mukhopadhyay, J.; Baltazar, J. C.; Do, S.; Kim, K.; Lewis, C.; Yazdani, B.; Yarborough, J.
2011-01-01T23:59:59.000Z
Energy Systems Laboratory p. 1 Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools Jeff Haberl, Hyojin Kim, Jaya... Mukhopadhyay, Juan-Carlos Baltazar-Cevantes, Sung Lok Do, Kee Han Kim, Cyndi Lewis, Bahman Yazdani – Energy Systems Laboratory James Yarborough, U.S.E.P.A. Energy Systems Laboratory p. 2 Why care about energy efficiency-renewable energy in schools...
MONTE CARLO SIMULATION OF METASTABLE OXYGEN PHOTOCHEMISTRY IN COMETARY ATMOSPHERES
Bisikalo, D. V.; Shematovich, V. I. [Institute of Astronomy of the Russian Academy of Sciences, Moscow (Russian Federation); Gérard, J.-C.; Hubert, B. [Laboratory for Planetary and Atmospheric Physics (LPAP), University of Liège, Liège (Belgium); Jehin, E.; Decock, A. [Origines Cosmologiques et Astrophysiques (ORCA), University of Liège (Belgium); Hutsemékers, D. [Extragalactic Astrophysics and Space Observations (EASO), University of Liège (Belgium); Manfroid, J., E-mail: B.Hubert@ulg.ac.be [High Energy Astrophysics Group (GAPHE), University of Liège (Belgium)
2015-01-01T23:59:59.000Z
Cometary atmospheres are produced by the outgassing of material, mainly H{sub 2}O, CO, and CO{sub 2} from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical processes lead to the production of other species generally absent from the nucleus, such as OH. Although all comets are different, they all have a highly rarefied atmosphere, which is an ideal environment for nonthermal photochemical processes to take place and influence the detailed state of the atmosphere. We develop a Monte Carlo model of the coma photochemistry. We compute the energy distribution functions (EDF) of the metastable O({sup 1}D) and O({sup 1}S) species and obtain the red (630 nm) and green (557.7 nm) spectral line shapes of the full coma, consistent with the computed EDFs and the expansion velocity. We show that both species have a severely non-Maxwellian EDF, that results in broad spectral lines and the suprathermal broadening dominates due to the expansion motion. We apply our model to the atmosphere of comet C/1996 B2 (Hyakutake) and 103P/Hartley 2. The computed width of the green line, expressed in terms of speed, is lower than that of the red line. This result is comparable to previous theoretical analyses, but in disagreement with observations. We explain that the spectral line shape does not only depend on the exothermicity of the photochemical production mechanisms, but also on thermalization, due to elastic collisions, reducing the width of the emission line coming from the O({sup 1}D) level, which has a longer lifetime.
Utility of Monte Carlo Modelling for Holdup Measurements.
Belian, Anthony P.; Russo, P. A. (Phyllis A.); Weier, Dennis R. (Dennis Ray),
2005-01-01T23:59:59.000Z
Non-destructive assay (NDA) measurements performed to locate and quantify holdup in the Oak Ridge K25 enrichment cascade used neutron totals counting and low-resolution gamma-ray spectroscopy. This facility housed the gaseous diffusion process for enrichment of uranium, in the form of UF{sub 6} gas, from {approx} 20% to 93%. Inventory of {sup 235}U inventory in K-25 is all holdup. These buildings have been slated for decontaminatino and decommissioning. The NDA measurements establish the inventory quantities and will be used to assure criticality safety and meet criteria for waste analysis and transportation. The tendency to err on the side of conservatism for the sake of criticality safety in specifying total NDA uncertainty argues, in the interests of safety and costs, for obtaining the best possible value of uncertainty at the conservative confidence level for each item of process equipment. Variable deposit distribution is a complex systematic effect (i.e., determined by multiple independent variables) on the portable NDA results for very large and bulk converters that contributes greatly to total uncertainty for holdup in converters measured by gamma or neutron NDA methods. Because the magnitudes of complex systematic effects are difficult to estimate, computational tools are important for evaluating those that are large. Motivated by very large discrepancies between gamma and neutron measurements of high-mass converters with gamma results tending to dominate, the Monte Carlo code MCNP has been used to determine the systematic effects of deposit distribution on gamma and neutron results for {sup 235}U holdup mass in converters. This paper details the numerical methodology used to evaluate large systematic effects unique to each measurement type, validates the methodology by comparison with measurements, and discusses how modeling tools can supplement the calibration of instruments used for holdup measurements by providing realistic values at well-defined confidence levels for dominating systematic effects.
Review of Monte Carlo simulations for backgrounds from radioactivity
Selvi, Marco [INFN - Sezione di Bologna (Italy)] [INFN - Sezione di Bologna (Italy)
2013-08-08T23:59:59.000Z
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (?, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories and by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (?, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.
Howard, Jeff W.
2005-05-10T23:59:59.000Z
As a 4-H volunteer, you will find that projects are useful tools for teaching a wide variety of skills to young people. This publication will help you plan and evaluate 4-H learning projects....
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and project planning documentation (in general) to enable an upgrade project to proceed. Power Systems has provided complete design and analysis services for the INL 138-kV...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Power Projects Falcon-Amistad: This project consists of two dams on the Rio Grande River between Texas and Mexico. The United States and Mexico share and operate separate...
Information Technology Project Management
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2012-12-03T23:59:59.000Z
The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1, dated 1-16-2013, cancels DOE O 415.1.
Information Technology Project Management
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2012-12-03T23:59:59.000Z
The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.
Broader source: Energy.gov [DOE]
View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Battocletti, Liz
The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey
Wythe, Kathy
2007-01-01T23:59:59.000Z
of the projects are listed below. ? Peach CreekWater Quality Improvement Project ? Monitoring and Educational Programs Focused on Bacteria and Nutrient Runoff on Dairy Operations in the LeonWatershed ? Development of the Plum CreekWPP ? Impact of Proper... Star Healthy Streams * ? Environmental Management of Grazing Lands * *TWRI-managed projects More information on the initiative is available at www.tsswcb.state.tx.us/managementprogram/ initiatives/bacteria. Bacteria Projects Across the State...
Battocletti, Liz
2013-07-09T23:59:59.000Z
The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey
Choi, Myunghee [Retired] [Retired; Chan, Vincent S. [General Atomics] [General Atomics
2014-02-28T23:59:59.000Z
This final report describes the work performed under U.S. Department of Energy Cooperative Agreement DE-FC02-08ER54954 for the period April 1, 2011 through March 31, 2013. The goal of this project was to perform iterated finite-orbit Monte Carlo simulations with full-wall fields for modeling tokamak ICRF wave heating experiments. In year 1, the finite-orbit Monte-Carlo code ORBIT-RF and its iteration algorithms with the full-wave code AORSA were improved to enable systematical study of the factors responsible for the discrepancy in the simulated and the measured fast-ion FIDA signals in the DIII-D and NSTX ICRF fast-wave (FW) experiments. In year 2, ORBIT-RF was coupled to the TORIC full-wave code for a comparative study of ORBIT-RF/TORIC and ORBIT-RF/AORSA results in FW experiments.
Kansas Advanced Semiconductor Project
Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.
2007-09-21T23:59:59.000Z
KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.
Environmental of Forestry Projects
Environmental Impact Assessment of Forestry Projects #12;EnvironmentalImpactAssessment 2 Flow chart EnvironmentalImpactAssessment Environmental Impact Assessment of Forestry Projects This booklet describes how the Environmental Impact Assessment Regulations are applied to the forestry related projects, afforestation
PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans...
qualitativelysubjectively assess the project risk. The approach is modeled after project risk assessment processes outlined in standard project management texts and training...
The ALPS project: open source software for strongly correlated systems
F. Alet; P. Dayal; A. Grzesik; A. Honecker; M. Koerner; A. Laeuchli; S. R. Manmana; I. P. McCulloch; F. Michel; R. M. Noack; G. Schmid; U. Schollwoeck; F. Stoeckli; S. Todo; S. Trebst; M. Troyer; P. Werner; S. Wessel; for the ALPS collaboration
2004-10-15T23:59:59.000Z
We present the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). The software is available from our web server at http://alps.comp-phys.org.
A Fano cavity test for Monte Carlo proton transport algorithms
Sterpin, Edmond, E-mail: esterpin@yahoo.fr [Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels (Belgium)] [Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels (Belgium); Sorriaux, Jefferson; Souris, Kevin [Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels, Belgium and Université catholique de Louvain, ICTEAM institute, Chemin du cyclotron 6, 1348 Louvain-la-Neuve (Belgium)] [Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels, Belgium and Université catholique de Louvain, ICTEAM institute, Chemin du cyclotron 6, 1348 Louvain-la-Neuve (Belgium); Vynckier, Stefaan [Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels, Belgium and Département de Radiothérapie, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 54, 1200 Brussels (Belgium)] [Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels, Belgium and Département de Radiothérapie, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 54, 1200 Brussels (Belgium); Bouchard, Hugo [Département de radio-oncologie, Centre hospitalier de l’Université de Montréal (CHUM), 1560 Sherbrooke est, Montréal, Québec H2L 4M1 (Canada)] [Département de radio-oncologie, Centre hospitalier de l’Université de Montréal (CHUM), 1560 Sherbrooke est, Montréal, Québec H2L 4M1 (Canada)
2014-01-15T23:59:59.000Z
Purpose: In the scope of reference dosimetry of radiotherapy beams, Monte Carlo (MC) simulations are widely used to compute ionization chamber dose response accurately. Uncertainties related to the transport algorithm can be verified performing self-consistency tests, i.e., the so-called “Fano cavity test.” The Fano cavity test is based on the Fano theorem, which states that under charged particle equilibrium conditions, the charged particle fluence is independent of the mass density of the media as long as the cross-sections are uniform. Such tests have not been performed yet for MC codes simulating proton transport. The objectives of this study are to design a new Fano cavity test for proton MC and to implement the methodology in two MC codes: Geant4 and PENELOPE extended to protons (PENH). Methods: The new Fano test is designed to evaluate the accuracy of proton transport. Virtual particles with an energy ofE{sub 0} and a mass macroscopic cross section of (?)/(?) are transported, having the ability to generate protons with kinetic energy E{sub 0} and to be restored after each interaction, thus providing proton equilibrium. To perform the test, the authors use a simplified simulation model and rigorously demonstrate that the computed cavity dose per incident fluence must equal (?E{sub 0})/(?) , as expected in classic Fano tests. The implementation of the test is performed in Geant4 and PENH. The geometry used for testing is a 10 × 10 cm{sup 2} parallel virtual field and a cavity (2 × 2 × 0.2 cm{sup 3} size) in a water phantom with dimensions large enough to ensure proton equilibrium. Results: For conservative user-defined simulation parameters (leading to small step sizes), both Geant4 and PENH pass the Fano cavity test within 0.1%. However, differences of 0.6% and 0.7% were observed for PENH and Geant4, respectively, using larger step sizes. For PENH, the difference is attributed to the random-hinge method that introduces an artificial energy straggling if step size is not small enough. Conclusions: Using conservative user-defined simulation parameters, both PENH and Geant4 pass the Fano cavity test for proton transport. Our methodology is applicable to any kind of charged particle, provided that the considered MC code is able to track the charged particle considered.
Scintillation Pulse Shape Discrimination in a Two-Phase Xenon Time Projection Chamber
J. Kwong; P. Brusov; T. Shutt; C. E. Dahl; A. I. Bolozdynya; A. Bradley
2009-08-06T23:59:59.000Z
The energy and electric field dependence of pulse shape discrimination in liquid xenon have been measured in a 10 gm two-phase xenon time projection chamber. We have demonstrated the use of the pulse shape and charge-to-light ratio simultaneously to obtain a leakage below that achievable by either discriminant alone. A Monte Carlo is used to show that the dominant fluctuation in the pulse shape quantity is statistical in nature, and project the performance of these techniques in larger detectors. Although the performance is generally weak at low energies relevant to elastic WIMP recoil searches, the pulse shape can be used in probing for higher energy inelastic WIMP recoils.
PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans...
Broader source: Energy.gov (indexed) [DOE]
addressing the following key elements of project management and control: Project Management Control System (PMCS) - Work breakdown structure - Baseline developmentupdate...
Fission matrix-based Monte Carlo criticality analysis of fuel storage pools
Farlotti, M. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ecole Polytechnique, Palaiseau, F 91128 (France); Larsen, E. W. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)
2013-07-01T23:59:59.000Z
Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simple problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)
Project Surveillance and Maintenance Plan. [UMTRA Project
Not Available
1985-09-01T23:59:59.000Z
The Project Surveillance and Maintenance Plan (PSMP) describes the procedures that will be used by the US Department of Energy (DOE), or other agency as designated by the President to verify that inactive uranium tailings disposal facilities remain in compliance with licensing requirements and US Environmental Protection Agency (EPA) standards for remedial actions. The PSMP will be used as a guide for the development of individual Site Surveillance and Maintenance Plans (part of a license application) for each of the UMTRA Project sites. The PSMP is not intended to provide minimum requirements but rather to provide guidance in the selection of surveillance measures. For example, the plan acknowledges that ground-water monitoring may or may not be required and provides the (guidance) to make this decision. The Site Surveillance and Maintenance Plans (SSMPs) will form the basis for the licensing of the long-term surveillance and maintenance of each UMTRA Project site by the NRC. Therefore, the PSMP is a key milestone in the licensing process of all UMTRA Project sites. The Project Licensing Plan (DOE, 1984a) describes the licensing process. 11 refs., 22 figs., 8 tabs.
The CHPRC Columbia River Protection Project Quality Assurance Project Plan
Fix, N. J.
2008-11-30T23:59:59.000Z
Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.
River Protection Project (RPP) Project Management Plan
SEEMAN, S.E.
2000-04-01T23:59:59.000Z
The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.
Battleground Energy Recovery Project
Daniel Bullock
2011-12-31T23:59:59.000Z
In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ï?· Create a Showcase Waste Heat Recovery Demonstration Project.
Operational Waste Volume Projection
STRODE, J.N.
2000-08-28T23:59:59.000Z
Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.
Rio Grande project partnerships
Supercinski, Danielle
2008-01-01T23:59:59.000Z
tx H2O | pg. 18 Rio Grande project partnerships W ater quality and quantity issues in the Rio Grande are nothing new for the Rio Grande Basin. However, the continued activities and projects by several universities and local, state... in several projects throughout the Rio Grande region to help better manage available water, improve water quality, and meet present and future water demands. Researchers, Extension personnel, and others are partnering to help irriga- tors and urban...
Operational Waste Volume Projection
STRODE, J.N.
1999-08-24T23:59:59.000Z
Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.
TO CONSTRUCTION AS OF 10/4/2011 Current/Approved Projects Project: Solar Energy Research Center Bldg. #:TBD. #: TBD Affected Area: R1 Road & V Road (58) Dates: 8/2011 - 9/2013 6 Small Projects: A. B50 Electrical/1/2014 N3 (58) 42 11/1/2011 2/1/2014 M-1 (35) 12 10/1/2010 11/1/2011 B81 (21) 18 10/1/2010 11/1/2011 V Road
A Proposal for a Standard Interface Between Monte Carlo Tools And One-Loop Programs
Binoth, T.; /Edinburgh U.; Boudjema, F.; /Annecy, LAPP; Dissertori, G.; Lazopoulos, A.; /Zurich, ETH; Denner, A.; /PSI, Villigen; Dittmaier, S.; /Freiburg U.; Frederix, R.; Greiner, N.; Hoeche, Stefan; /Zurich U.; Giele, W.; Skands, P.; Winter, J.; /Fermilab; Gleisberg, T.; /SLAC; Archibald, J.; Heinrich, G.; Krauss, F.; Maitre, D.; /Durham U., IPPP; Huber, M.; /Munich, Max Planck Inst.; Huston, J.; /Michigan State U.; Kauer, N.; /Royal Holloway, U. of London; Maltoni, F.; /Louvain U., CP3 /Milan Bicocca U. /INFN, Turin /Turin U. /Granada U., Theor. Phys. Astrophys. /CERN /NIKHEF, Amsterdam /Heidelberg U. /Oxford U., Theor. Phys.
2011-11-11T23:59:59.000Z
Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.
Monte Carlo implementation of a guiding-center Fokker-Planck kinetic equation
Hirvijoki, E.; Snicker, A.; Kurki-Suonio, T. [Department of Applied Physics, Aalto University, FI-00076 Aalto (Finland)] [Department of Applied Physics, Aalto University, FI-00076 Aalto (Finland); Brizard, A. [Department of Physics, Saint Michael's College, Colchester, Vermont 05439 (United States)] [Department of Physics, Saint Michael's College, Colchester, Vermont 05439 (United States)
2013-09-15T23:59:59.000Z
A Monte Carlo method for the collisional guiding-center Fokker-Planck kinetic equation is derived in the five-dimensional guiding-center phase space, where the effects of magnetic drifts due to the background magnetic field nonuniformity are included. It is shown that, in the limit of a homogeneous magnetic field, our guiding-center Monte Carlo collision operator reduces to the guiding-center Monte Carlo Coulomb operator previously derived by Xu and Rosenbluth [Phys. Fluids B 3, 627 (1991)]. Applications of the present work will focus on the collisional transport of energetic ions in complex nonuniform magnetized plasmas in the large mean-free-path (collisionless) limit, where magnetic drifts must be retained.
Data decomposition of Monte Carlo particle transport simulations via tally servers
Romano, Paul K., E-mail: paul.k.romano@gmail.com [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Siegel, Andrew R., E-mail: siegala@mcs.anl.gov [Argonne National Laboratory, Theory and Computing Sciences, 9700 S Cass Ave., Argonne, IL 60439 (United States); Forget, Benoit, E-mail: bforget@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)] [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Smith, Kord, E-mail: kord@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)] [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)
2013-11-01T23:59:59.000Z
An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithm in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations.
General purpose dynamic Monte Carlo with continuous energy for transient analysis
Sjenitzer, B. L.; Hoogenboom, J. E. [Delft Univ. of Technology, Dept. of Radiation, Radionuclide and Reactors, Mekelweg 15, 2629JB Delft (Netherlands)
2012-07-01T23:59:59.000Z
For safety assessments transient analysis is an important tool. It can predict maximum temperatures during regular reactor operation or during an accident scenario. Despite the fact that this kind of analysis is very important, the state of the art still uses rather crude methods, like diffusion theory and point-kinetics. For reference calculations it is preferable to use the Monte Carlo method. In this paper the dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli4. Also, the method is extended for use with continuous energy. The first results of Dynamic Tripoli demonstrate that this kind of calculation is indeed accurate and the results are achieved in a reasonable amount of time. With the method implemented in Tripoli it is now possible to do an exact transient calculation in arbitrary geometry. (authors)
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, William P. (Tracy, CA); Hartmann-Siantar, Christine L. (San Ramon, CA); Rathkopf, James A. (Livermore, CA)
1999-01-01T23:59:59.000Z
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.
1999-02-09T23:59:59.000Z
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.
Elliott, Steven R [Los Alamos National Laboratory
2009-01-01T23:59:59.000Z
The Majorana Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.
PROJECT MANGEMENT PLAN EXAMPLES
Broader source: Energy.gov (indexed) [DOE]
Safety Integration - Implementation of Controls Examples Example 24 5 Health & Safety This section describes the work controls associated with the 771774 Closure Project. As...
PROJECT MANGEMENT PLAN EXAMPLES
project baseline. The functional analysis will provide the basis for the development of a function driven work breakdown structure. HNF-3771, Revision 0, PFP Location...
Energy Markets and Projections
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
National Governors Association Governors' Advisors Energy Policy Institute July 24, 2014 | Washington, DC By Adam Sieminski, EIA Administrator Energy Markets and Projections NGA...
Broader source: Energy.gov [DOE]
Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.
Mascoma: Frontier Biorefinery Project
Broader source: Energy.gov [DOE]
This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.
Custom Renewable Energy Projects
Broader source: Energy.gov [DOE]
Project development assistance funding is available for a variety of purposes, including grant writing, feasibility studies, or technical assistance with design, permitting, or utility interconne...
Broader source: Energy.gov [DOE]
Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
capital asset line item projects (less than 50 million) are fully funded in one Fiscal Year (one Appropriation). NA NA Policy memorandum drafted and in review 12. Cost...
The MAJORANA collaboration
2009-10-23T23:59:59.000Z
The {\\sc Majorana} Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.
Whistling Ridge Energy Project
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
build, own and operate the wind project and their associated facilities. The Final Environmental Impact Statement (FEIS) has been issued for the proposed Whistling Ridge...
June 2015 Project Dashboard.xls
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
6242015 Office of Management Office of Acquisition and Project Management Program Contractor Project Number Project Title Original Project Budget Project Budget Monthly Overall...
Monte Carlo simulations of the HP model (the "Ising model" of protein folding)
Li, Ying Wai; Landau, David P; 10.1016/j.cpc.2010.12.049
2011-01-01T23:59:59.000Z
Using Wang-Landau sampling with suitable Monte Carlo trial moves (pull moves and bond-rebridging moves combined) we have determined the density of states and thermodynamic properties for a short sequence of the HP protein model. For free chains these proteins are known to first undergo a collapse "transition" to a globule state followed by a second "transition" into a native state. When placed in the proximity of an attractive surface, there is a competition between surface adsorption and folding that leads to an intriguing sequence of "transitions". These transitions depend upon the relative interaction strengths and are largely inaccessible to "standard" Monte Carlo methods.
FREYA-a new Monte Carlo code for improved modeling of fission chains
Hagmann, C A; Randrup, J; Vogt, R L
2012-06-12T23:59:59.000Z
A new simulation capability for modeling of individual fission events and chains and the transport of fission products in materials is presented. FREYA ( Fission Yield Event Yield Algorithm ) is a Monte Carlo code for generating fission events providing correlated kinematic information for prompt neutrons, gammas, and fragments. As a standalone code, FREYA calculates quantities such as multiplicity-energy, angular, and gamma-neutron energy sharing correlations. To study materials with multiplication, shielding effects, and detectors, we have integrated FREYA into the general purpose Monte Carlo code MCNP. This new tool will allow more accurate modeling of detector responses including correlations and the development of SNM detectors with increased sensitivity.
Matching NLO QCD with parton shower in Monte Carlo scheme - the KrkNLO method
S. Jadach; W. Placzek; S. Sapeta; A. Siodmok; M. Skrzypek
2015-05-11T23:59:59.000Z
A new method of including the complete NLO QCD corrections to hard processes in the LO parton-shower Monte Carlo (PSMC) is presented. This method, called KrkNLO, requires the use of parton distribution functions in a dedicated Monte Carlo factorization scheme, which is also discussed in this paper. In the future, it may simplify introduction of the NNLO corrections to hard processes and the NLO corrections to PSMC. Details of the method and numerical examples of its practical implementation, as well as comparisons with other calculations, such as MCFM, MC@NLO, POWHEG, for single $Z/\\gamma^*$-boson production at the LHC, are presented.
A Look at general cavity theory through a code incorporating Monte Carlo techniques
Weyland, Mark Duffy
1989-01-01T23:59:59.000Z
A LOOK AT GENERAL CAVITY THEORY THROUGH A CODE INCORPORATING MONTE CARLO TECHNIQUES A Thesis by MARK DUFFY WEYLAND Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1989 Major Subject: Health Physics A LOOK AT GENERAL CAVITY THEORY THROUGH A CODE INCORPORATING MONTE CARLO TECHNIQUES A Thesis by MARK DUFFY WEYLAND Approved as to style and content by: I hn W. Po ton air of Committee...
River Protection Project (RPP) Project Management Plan
NAVARRO, J.E.
2001-03-07T23:59:59.000Z
The Office of River Protection (ORP) Project Management Plan (PMP) for the River Protection Project (RPP) describes the process for developing and operating a Waste Treatment Complex (WTC) to clean up Hanford Site tank waste. The Plan describes the scope of the project, the institutional setting within which the project must be completed, and the management processes and structure planned for implementation. The Plan is written from the perspective of the ORP as the taxpayers' representative. The Hanford Site, in southeastern Washington State, has one of the largest concentrations of radioactive waste in the world, as a result of producing plutonium for national defense for more than 40 years. Approximately 53 million gallons of waste stored in 177 aging underground tanks represent major environmental, social, and political challenges for the U.S. Department of Energy (DOE). These challenges require numerous interfaces with state and federal environmental officials, Tribal Nations, stakeholders, Congress, and the US Department of Energy-Headquarters (DOE-HQ). The cleanup of the Site's tank waste is a national issue with the potential for environmental and economic impacts to the region and the nation.
Monte Carlo Simulations of Macho Parallaxes From a Satellite
Thomas Boutreux; Andrew Gould
1995-07-25T23:59:59.000Z
Three ongoing microlensing experiments have found more candidate events than expected from the known stars. These experiments measure only one parameter of the massive compact halo objects (machos), the magnification time scale of the events. More information is required to understand the nature of the machos. A satellite experiment has been proposed to measure their projected transverse speed $\\tilde{v} = v/(1-z)$, where $v$ is the macho transverse speed and $z$ its distance divided by the distance of the source. Measurement of $\\tilde{v}$ would determine whether the machos were in the Galactic disk, Galactic halo, or in the Large Magellanic Cloud (LMC). We simulate events observed toward the LMC by the Earth and by a satellite in an Earth like heliocentric orbit. To leading order, such an experiment determines $\\tilde{v}$ up to a two fold degeneracy. More precise measurements break the degeneracy. We show that with photometric precisions of 3\\% to 4\\% and approximately 1 observation per day, $\\tilde{v}$ can be measured with a maximum error of 20\\% for 70\\% to 90\\% of events similar to the ones reported by the EROS and MACHO collaborations. The projected transverse velocity is known with the same maximum error for 60\\% to 75\\% of these events. This 20\\% maximum error is not a 1 $\\sigma$ error but is mostly due to degeneracy between two possible solutions, each one being localized to much better than 20\\%. These results are obtained with an Earth-satellite separation of 1 AU, and are improved by a larger separation.
Gilbert, Jack
2014-09-15T23:59:59.000Z
The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.
Wythe, Kathy
2007-01-01T23:59:59.000Z
of TMDL projects for water bodies where swimming or wading may be unsafe or harvesting of oysters is limited or prohibited due to high concentrations of bacteria. ? Atascosa River: A TMDL Project for Bacteria ? Buffalo andWhite Oak Bayous: A TMDL...
GATEWAY Demonstration Outdoor Projects
Broader source: Energy.gov [DOE]
DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data collected, projected energy savings, economic analyses, and user feedback. Report briefs summarize key findings in a quick-scan format. Both the reports and briefs are available as Adobe Acrobat PDFs.
Poole, John; CERN. Geneva. SPS and LHC Division
2001-01-01T23:59:59.000Z
The LEP Dismantling Project has been in its operational phase since late in the year 2000. This report briefly reviews the development of the project and the current status. The report has been prepared for presentation to the Radiation Protection Committee in May 2001 and consequently it has a bias towards Radiation Protection activities.
Anderson, James B.
Direct Monte Carlo simulation of chemical reaction systems: Internal energy transfer and an energy a direct Monte Carlo simulation of an energy-dependent t&molecular reaction system of the type A+ B simulation of a unimo- lecular reaction with an energy-dependent rate constant k3 and with explicit treatment
Wu, Zhigang
Quantum Monte Carlo calculations of the energy-level alignment at hybrid interfaces: Role of many; published 29 May 2009 An approach is presented for obtaining a highly accurate description of the energy-level alignment at hybrid interfaces, using quantum Monte Carlo calculations to include many-body effects
Sailhac, Pascal
Inversion of surface nuclear magnetic resonance data by an adapted Monte Carlo method applied, France Abstract Inversion of surface nuclear magnetic resonance (SNMR) provides important information Science B.V. All rights reserved. Keywords: Inversion; Surface nuclear magnetic resonance; Monte Carlo 1
Mezei, Mihaly
An improved acceptance criterion for local move Monte Carlo method in which trial steps change only sevenEfficient Monte Carlo sampling for long molecular chains using local moves, tested on a solvated, New York University, New York, New York 10029 Received 20 February 2002; accepted 27 November 2002
Chung, Kiwhan
1996-01-01T23:59:59.000Z
While the use of Monte Carlo method has been prevalent in nuclear engineering, it has yet to fully blossom in the study of solute transport in porous media. By using an etched-glass micromodel, an attempt is made to apply Monte Carlo method...
North American LNG Project Sourcebook
NONE
2007-06-15T23:59:59.000Z
The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.
A Scalable Parallel Monte Carlo Method for Free Energy Simulations of Molecular Systems
Chan, Derek Y C
A Scalable Parallel Monte Carlo Method for Free Energy Simulations of Molecular Systems MALEK O for problems where the energy dominates the entropy. An example is parallel tempering, in which simulations the free energy of the system as a direct output of the simulation. Traditional Metropolis MC samples phase
Introduction to Markov Chain Monte Carlo Simulations and their Statistical Analysis
Bernd A. Berg
2004-10-19T23:59:59.000Z
This article is a tutorial on Markov chain Monte Carlo simulations and their statistical analysis. The theoretical concepts are illustrated through many numerical assignments from the author's book on the subject. Computer code (in Fortran) is available for all subjects covered and can be downloaded from the web.
Frequency Enhancements for Visualizing 3D Seismic Data Cheng-Kai Chen Carlos Correa
California at Davis, University of
of an interactive interpretation seismic system, ge- ological study and prediction can be made on the seismic dataFrequency Enhancements for Visualizing 3D Seismic Data Cheng-Kai Chen Carlos Correa Department a suite of enhancement tech- niques for visualizing seismic data. These techniques provide a better
Evolution styles: using architectural knowledge as an evolution driver Carlos E. Cuesta1
Perry, Dewayne E.
Evolution styles: using architectural knowledge as an evolution driver Carlos E. Cuesta1 , Elena+D, 02006, Albacete, Spain ABSTRACT Software evolution is an increasingly challenging and compelling concern software evolution is carried out, software architecture emerges as one of the cornerstones that should
Monte Carlo study of a luminosity detector for the International Linear Collider
H. Abramowicz; R. Ingbir; S. Kananov; A. Levy
2005-08-11T23:59:59.000Z
This paper presents the status of Monte Carlo simulation of one of the luminosity detectors considered for the future e+e- International Linear Collider (ILC). The detector consists of a tungsten/silicon sandwich calorimeter with pad readout. The study was performed for Bhabha scattering events assuming a zero crossing angle for the beams.
Reconstruction for proton computed tomography by tracing proton trajectories: A Monte Carlo study
Reconstruction for proton computed tomography by tracing proton trajectories: A Monte Carlo study 11 January 2006; published 22 February 2006 Proton computed tomography pCT has been explored computed tomography pCT has several potential ad- vantages in medical applications. Its favorable dose
Collective enhancement of nuclear state densities by the shell model Monte Carlo approach
C. Özen; Y. Alhassid; H. Nakada
2015-01-22T23:59:59.000Z
The shell model Monte Carlo (SMMC) approach allows for the microscopic calculation of statistical and collective properties of heavy nuclei using the framework of the configuration-interaction shell model in very large model spaces. We present recent applications of the SMMC method to the calculation of state densities and their collective enhancement factors in rare-earth nuclei.
23BJoo Carlos Amaro Ferreira 24BMobi-System: Towards an Information System to
da Silva, Alberto Rodrigues
Sustainable Mobility with Electric Vehicle Integration 26BODecember 2013 #12;ii João Carlos Amaro Ferreira 27BMobi-System: Towards an Information System to Support Sustainable Mobility with Electric Vehicle x Mobi-System: Towards an Information System to Support Sustainable Mobility with Electric Vehicle
MonteCarloType Techniques for Processing Interval Uncertainty, and Their Geophysical and
Ward, Karen
MonteCarloType Techniques for Processing Interval Uncertainty, and Their Geophysical contact email vladik@cs.utep.edu Abstract To determine the geophysical structure of a region, we measure are independently normally distributed. Problem: the resulting accuracies are not in line with geophysical intuition
Monte-Carlo-Type Techniques for Processing Interval Uncertainty, and Their Geophysical and
Ward, Karen
Monte-Carlo-Type Techniques for Processing Interval Uncertainty, and Their Geophysical contact email vladik@cs.utep.edu Abstract To determine the geophysical structure of a region, we measure are independently normally distributed. Problem: the resulting accuracies are not in line with geophysical intuition
First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo
Anderson, James B.
First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo Arne Lu, Pennsylvania 16802 Received 20 May 1996; accepted 24 July 1996 Accurate ground state energies comparable FN-DQMC method. The residual energy, the nodal error due to the error in the nodal structure
A Combined Density Functional and Monte Carlo Study of Polycarbonate R. O. Jones and P. Ballone[*
A Combined Density Functional and Monte Carlo Study of Polycarbonate R. O. Jones and P. Ballone and reactivity for organic systems closely related to bisphenol-A-polycarbonate(BPA- PC). The results provide a detailed description of polymers, using bisphenol A polycarbonate (BPA- PC) as an example
Dr. Carlos Gntner: Patent & Liaison Manager LifeSciences, MBM ScienceBridge GmbH
Gollisch, Tim
Dr. Carlos Güntner: Patent & Liaison Manager LifeSciences, MBM ScienceBridge GmbH "From idea to patent - commercializing inventions successfully" Monday, 15 April 2013, 16:00 - 17:30h Ernst is the status of Master and Ph.D. Students? - Publication vs. Patent? How to manage both? - Strategy
Multivariate Population Balances via Moment and Monte Carlo Simulation Methods: An Important Sol application of current/future importance, a multivariate description is required, for which the existing, hopefully, motivate a broader attack on important multivariate population balance problems, including those
Alfè, Dario
Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations to study the structural properties of magnesium hydride MgH2 , including the pressure. INTRODUCTION The energetics of metal hydrides has recently become an issue of large scientific
Thermodynamics and quark susceptibilities: a Monte-Carlo approach to the PNJL model
Weise, Wolfram
Thermodynamics and quark susceptibilities: a Monte-Carlo approach to the PNJL model M on the thermodynamics of the model, both in the case of pure gauge theory and including two quark flavors. In the two- flavor case, we calculate the second-order Taylor expansion coefficients of the thermodynamic grand
is a unique good. It cannot be stored with- out substantial infrastructure, such as pumped storage facilitiesKirchhoff vs. Competitive Electricity Markets: A Few Examples Carlos E. Murillo-%nchez Ray D. Zimmerman School of Electrical and Computer Cornell University Ithaca, New York Robert J. Thomas Engineering
Explicit estimation of higher order modes in fission source distribution of Monte-Carlo calculation
Yamamoto, A.; Sakata, K.; Endo, T. [Nagoya University, Department of Materials, Physics and Energy Engineering, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan)
2013-07-01T23:59:59.000Z
Magnitude of higher order modes in fission source distribution of a multi-group Monte-Carlo calculation is estimated using the orthogonal property of forward and adjoint fission source distributions. Calculation capability of the forward and adjoint fission source distributions for fundamental and higher order modes are implemented in the AEGIS code, which is a two-dimensional transport code based on the method of characteristics. With the calculation results of the AEGIS code, magnitudes of the first to fifth higher order modes in fission source distribution obtained by the multi-group Monte-Carlo code GMVP are estimated. There are two contributions in the present study - (1) establishment of a surrogate model, which represents convergence of fission source distribution taking into account the inherent statistical 'noise' of higher order modes of Monte-Carlo calculations and (2) independent confirmation of the estimated dominance ratio in a Monte-Carlo calculation. The surrogate model would contribute to studies of the inter-cycle correlation and estimation of sufficient number of inactive/active cycles. (authors)
Open and Closed World Reasoning in the Semantic Web Carlos Viegas Damasio
Analyti, Anastasia
Open and Closed World Reasoning in the Semantic Web Carlos Viegas Dam´asio AI Centre, CENTRIA, Univ as default negation or "nega- tion as failure"). The proposed mech- anisms are defined by very simple mod concept of negation-as-failure. The classification if a predicate is completely represented or not is up
ACM BUNDLES ON A GENERAL QUINTIC THREEFOLD. LUCA CHIANTINI, CARLO MADONNA
Chiantini, Luca
ACM BUNDLES ON A GENERAL QUINTIC THREEFOLD. LUCA CHIANTINI, CARLO X as above. We say that E is an arithmetically Cohen-Macaulay (ACM) bundle if hi(E(nH)) = 0 for i the invariants (up to twist) of indecomposable rank 2 ACM bundles on hypersurfaces of P4 and other threefolds
Dose distribution close to metal implants in Gamma Knife Radiosurgery: A Monte Carlo study
Yu, K.N.
Detachable Coil GDC system was used to localize and obliterate the aneurysm.5 Soft platinum coils were8 II. METHODOLOGY The Monte Carlo system employed is the PRESTA Pa- rameter Reduced Electron be predicted correctly by the present treatment planning system, GammaPlan,1 be- cause the calculations
Superhydrophobic Friction Reduction Microtextured Surfaces Tae Jin KIM, Carlos H. HIDROVO
Hidrovo, Carlos H.
Superhydrophobic Friction Reduction Microtextured Surfaces Tae Jin KIM, Carlos H. HIDROVO University of Texas at Austin, Austin, Texas, USA ABSTRACT Superhydrophobic surfaces are surfaces with fluid contact angles larger than 150º. Superhydrophobicity can be achieved by chemically modifying the surface
Bayes and Big Data: The Consensus Monte Carlo Algorithm Steven L. Scott1
Cortes, Corinna
Bayes and Big Data: The Consensus Monte Carlo Algorithm Steven L. Scott1 , Alexander W. Blocker1 of Business October 31, 2013 Abstract A useful definition of "big data" is data that is too big to comfortably by splitting data across multiple machines. Communication between large numbers of machines is expensive
Hale, Barbara N.
CALCULATION OF SCALED NUCLEATION RATES FOR WATER USING MONTE CARLO GENERATED CLUSTER FREE ENERGYMattio All Rights Reserved #12;iii ABSTRACT Helmholtz free energy differences, -dFn , are calculated inconsistent with the experimental properties of water. Summation of the scaled TIP4P free energy differences
Monte Carlo simulation of electron transport in degenerate and inhomogeneous semiconductors
Monte Carlo simulation of electron transport in degenerate and inhomogeneous semiconductors Mona concentrations up to 1020 cm-3 . De- generate semiconductors are important for thermoelectric and thermionic transport in degenerate semiconductor-based structures. If the electron wavelength is smaller than
Blind identification of MISO-FIR channels Carlos Est^ev~ao R. Fernandes
Boyer, Edmond
Blind identification of MISO-FIR channels Carlos Est^ev~ao R. Fernandes , Pierre Comon , G, vol.90 Abstract In this paper, we address the problem of determining the order of MISO channels to false alarm. Afterwards, we introduce the concept of MISO channel nested detectors based on a deflation
K-effective of the world: and other concerns for Monte Carlo Eigenvalue calculations
Brown, Forrest B [Los Alamos National Laboratory
2010-01-01T23:59:59.000Z
Monte Carlo methods have been used to compute k{sub eff} and the fundamental model eigenfunction of critical systems since the 1950s. Despite the sophistication of today's Monte Carlo codes for representing realistic geometry and physics interactions, correct results can be obtained in criticality problems only if users pay attention to source convergence in the Monte Carlo iterations and to running a sufficient number of neutron histories to adequately sample all significant regions of the problem. Recommended best practices for criticality calculations are reviewed and applied to several practical problems for nuclear reactors and criticality safety, including the 'K-effective of the World' problem. Numerical results illustrate the concerns about convergence and bias. The general conclusion is that with today's high-performance computers, improved understanding of the theory, new tools for diagnosing convergence (e.g., Shannon entropy of the fission distribution), and clear practical guidance for performing calculations, practitioners will have a greater degree of confidence than ever of obtaining correct results for Monte Carlo criticality calculations.
Monte Carlo Simulation of Alzheimer's Disease in the United States: 2010-2060
Feres, Renato
Monte Carlo Simulation of Alzheimer's Disease in the United States: 2010-2060 Michael Blech concerns facing the United States over the next 50 years. This progressive disease is currently the sixth on the United States population, and second, the simulation models both prevalence and mortality. Both
Sequential Monte Carlo in Model Comparison: Example in Cellular Dynamics in Systems Biology
Richardson, David
: American Statistical Association (2009): 1274-1287. Abstract Sequential Monte Carlo analysis of time series. Mukherjee L. You M. West -- Published in: JSM Proceedings/Bayesian Statistical Science. Alexandria, VA statistical model assessment is really just beginning in this new field. Single cell time series data
A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling
Holzwarth, Natalie
it to models exhibiting first-order or second-order phase transitions. © 2004 American Association of PhysicsA new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling D. P. Landau for doing simulations in classical statistical physics in a different way. Instead of sampling
arXiv:physics/000104722Jan2000 Path Integral Monte Carlo Calculation of the Deuterium Hugoniot
Militzer, Burkhard
arXiv:physics/000104722Jan2000 Path Integral Monte Carlo Calculation of the Deuterium Hugoniot B University of Illinois at Urbana-Champaign, Urbana, IL 61801 (January 21, 2000) Restricted path integral of the path integral. Further, we compare the results obtained with a free particle nodal restriction
Calculating Risk of Cost Using Monte Carlo Simulations with Fuzzy Parameters in Civil Engineering
Pownuk, Andrzej
Calculating Risk of Cost Using Monte Carlo Simulations with Fuzzy Parameters in Civil Engineering MICHAL BE¸TKOWSKI Department of Civil Engineering, Silesian University of Technology,Gliwice, Poland, mb@zeus.polsl.gliwice.pl ANDRZEJ POWNUK Department of Civil Engineering, Silesian University of Technology,Gliwice, Poland, pownuk
CURRICULUM VITAE-CARLOS FERNANDEZ-PELLO Department of Mechanical Engineering
Mofrad, Mohammad R. K.
://www.me.berkeley.edu/faculty/fernandez-pello SUMMARY TEACHING/RESEARCH Mechanical/Aeronautical Engineer specializing in combustion, heat and massCURRICULUM VITAE-CARLOS FERNANDEZ-PELLO Department of Mechanical Engineering University BACKGROUND Ph.D. M.S. Dr. Eng. Aero. Eng. Engineering Science, University of California, San Diego
Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy
Subramanian, Venkat
Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy to study the performance of cathode materials in lithium-ion batteries. The methodology takes into account. Published September 26, 2008. Lithium-ion batteries are state-of-the-art power sources1 for por- table
Monte Carlo Tree Search for Simulated Car Racing Jacob Fischer1
Togelius, Julian
(TORCS) is a popular platform for experimenting with different AI methods in car racing. A va- rietyMonte Carlo Tree Search for Simulated Car Racing Jacob Fischer1 , Nikolaj Falsted1 , Mathias be modified to achieve this. In this paper, we investi- gate the application of MCTS to simulated car racing
Study of CANDU Thorium-based Fuel Cycles by Deterministic and Monte Carlo Methods
Paris-Sud XI, Université de
Study of CANDU Thorium-based Fuel Cycles by Deterministic and Monte Carlo Methods A. Nuttin1 , P, there is a renewal of interest in self-sustainable thorium fuel cycles applied to various concepts such as Molten here, with a shorter term view, to re-evaluate the economic competitiveness of once-through thorium
Fast and Light Boosting for Adaptive Mining of Data Fang Chu and Carlo Zaniolo
Zaniolo, Carlo
Fast and Light Boosting for Adaptive Mining of Data Streams Fang Chu and Carlo Zaniolo University queries on data streams requires algorithms that (i) are fast, (ii) make light demands on memory resources, and (iii) are easily to adapt to concept drift. We propose a novel boosting ensemble method that achieves
The polarized emissivity of a wind-roughened sea surface: A Monte Carlo model
Theiler, James
The polarized emissivity of a wind-roughened sea surface: A Monte Carlo model Bradley G. Henderson-infrared emissivity of a wind-roughened sea surface. The model includes the effects of both shadowing and the reflected component of surface emission. By using Stokes vectors to quantify the radiation along a given ray
Quantum Monte Carlo study of a disordered 2D Josephson junction array
Stroud, David
Quantum Monte Carlo study of a disordered 2D Josephson junction array W.A. Al-Saidi *, D. Stroud not be established even * Corresponding author. E-mail addresses: al-saidi.1@osu.edu (W.A. Al-Saidi), stroud
Sequential Monte Carlo for Simultaneous Passive Device-Free Tracking and Sensor Localization Using
Rabbat, Michael
Sequential Monte Carlo for Simultaneous Passive Device-Free Tracking and Sensor Localization Using Men Beijing Univ. Posts & Telecom. Beijing, China menad@bupt.edu.cn ABSTRACT This paper presents and evaluates a method for simulta- neously tracking a target while localizing the sensor nodes of a passive
Obituary: Requiem a la escena latinoamericana Carlos Giménez (1945-93)
Gutié rrez, Alfonso
1993-04-01T23:59:59.000Z
, Eslováquia, Greenwich Village de New York o el teatro San Martín o Colón de Buenos Aires o El Palomar o Nacional de Santafé de Bogotá o el Rajatabla de Caracas, se quedarán vacíos. Así era Carlos Giménez. Su escenografía está en el 211-259-IIIF Jardín del...
A Methodological Comparison of Monte Carlo Simulation and Epoch-Era Analysis for
de Weck, Olivier L.
techniques, morphological analysis, scenario planning · Semi-quantitative methods (can be used to initialize%) Probabilistic risk assessment (PRA), Fault Tree Analysis (FTA), Hazards Analysis (HA), Failure modes and effectsA Methodological Comparison of Monte Carlo Simulation and Epoch-Era Analysis for Tradespace
Mining Data Bases and Data Streams Carlo Zaniolo and Hetal Thakkar
Zaniolo, Carlo
Chapter 5 Mining Data Bases and Data Streams Carlo Zaniolo and Hetal Thakkar Computer Science mining represents an emerging technology area of great importance to homeland security. Data mining and applications of data mining and the information systems recently developed for supporting the mining process
Ryan, Dominic
Monte Carlo simulations of transverse spin freezing in the three-dimensional frustrated Heisenberg of the spins freeze leading to a noncollinear spin structure dominated by ferromagnetic correlations. The phase as the transverse degrees of freedom order.' Theoretical support for a transverse spin freezing tran- sition
Investigation of Brazil Current rings in the confluence region Carlos A. D. Lentini,1
Investigation of Brazil Current rings in the confluence region Carlos A. D. Lentini,1 Gustavo J Atlantic. These fields were used to monitor the formation and characteristics of the Brazil Current warm-core anticyclonic rings shed by the first meander trough after poleward excursions of the Brazil Current (BC
Monte Carlo Methods for Uncertainty Quantification Mathematical Institute, University of Oxford
Giles, Mike
exchange rates weather electricity/gas demand crude oil prices . . . Mike Giles (Oxford) Monte Carlo finance, stochastic differential equations are used to model the behaviour of stocks interest rates in Finance Examples: Geometric Brownian motion (Black-Scholes model for stock prices) dS = r S dt + S dW Cox
A Monte Carlo Method Used for the Identification of the Muscle Spindle
Rigas, Alexandros
the behavior of the muscle spindle by using a logistic regression model. The system receives input from. Key words: Exact logistic regression, likelihood function, Monte Carlo technique, muscle spin- dle. 21 is part of the skeletal muscles and is responsible for the initiation of move- ment and the maintenance
Ilan, Boaz
Monte-Carlo simulations of photon transport to predict the performance of LSCs based on "type-II" CdSe. In addition, when the LSC has CdSe-CdTe nanorods that are aligned perpendicular to the top surface, the escape.1063/1.3619809] I. INTRODUCTION Photovoltaic (PV) solar cells have become much more efficient over the past few
Solar models and solar neutrino oscillations John N Bahcall and Carlos Pea-Garay
Bahcall, John
Solar models and solar neutrino oscillations John N Bahcall and Carlos Peña-Garay Institute and experimental, of solar neutrino fluxes and of the masses and mixing angles that characterize solar neutrino oscillations. We also summarize the principal reasons for performing new solar neutrino experiments and what we
Solar models and solar neutrino oscillations John N Bahcall and Carlos PeaGaray
Bahcall, John
Solar models and solar neutrino oscillations John N Bahcall and Carlos PeñaGaray Institute and experimental, of solar neutrino fluxes and of the masses and mixing angles that characterize solar neutrino oscillations. We also summarize the principal reasons for performing new solar neutrino experiments and what we
Usefulness of the reversible jump Markov chain Monte Carlo model in regional flood frequency
Ribatet, Mathieu
Usefulness of the reversible jump Markov chain Monte Carlo model in regional flood frequency; revised 3 May 2007; accepted 17 May 2007; published 3 August 2007. [1] Regional flood frequency analysis and the index flood approach. Results show that the proposed estimator is absolutely suited to regional
Inferring Better Contracts Yi Wei Carlo A. Furia Nikolay Kazmin Bertrand Meyer
Meyer, Bertrand
but conservative contracts, and are mostly successful with small programs. Dynamic approaches scale betterInferring Better Contracts Yi Wei Carlo A. Furia Nikolay Kazmin Bertrand Meyer Chair of Software available to en- hance program reliability: equipping programs with exten- sive contracts. The results
Instabilities in Molecular Dynamics Integrators used in Hybrid Monte Carlo Simulations
B. Joo; UKQCD Collaboration
2001-10-11T23:59:59.000Z
We discuss an instability in the leapfrog integration algorithm, widely used in current Hybrid Monte Carlo (HMC) simulations of lattice QCD. We demonstrate the instability in the simple harmonic oscillator (SHO) system where it is manifest. We demonstrate the instability in HMC simulations of lattic QCD with dynamical Wilson-Clover fermions and discuss implications for future simulations of lattice QCD.
Use of single scatter electron monte carlo transport for medical radiation sciences
Svatos, Michelle M. (Oakland, CA)
2001-01-01T23:59:59.000Z
The single scatter Monte Carlo code CREEP models precise microscopic interactions of electrons with matter to enhance physical understanding of radiation sciences. It is designed to simulate electrons in any medium, including materials important for biological studies. It simulates each interaction individually by sampling from a library which contains accurate information over a broad range of energies.
Excelencia Internacional La Universidad Rey Juan Carlos,como complemento a las carreras oficiales
Rey Juan Carlos, Universidad
correspondan a claras demandas sociales o del merca- do de trabajo;completar y actualizar la formación a distancia, desarrollándose uno de los principales objetivos de la Universidad Rey Juan Carlos,como es- ses del mundo del trabajo y que podrán plantearse tanto a instancias de insti- tuciones públicas como
Monte Carlo Adaptive Technique for Sensitivity Analysis of a Large-scale Air Pollution Model
Dimov, Ivan
Monte Carlo Adaptive Technique for Sensitivity Analysis of a Large-scale Air Pollution Model Ivan of input parameters contribution into output variability of a large- scale air pollution model]. This model simulates the transport of air pollutants and has been developed by Dr. Z. Zlatev and his
Autologistic Regression Analysis of Spatial-Temporal Binary Data via Monte Carlo
Aukema, Brian
Autologistic Regression Analysis of Spatial-Temporal Binary Data via Monte Carlo Maximum Likelihood regression analysis of binary data that are measured on a spatial lattice and repeatedly over discrete time points. We propose a spatial- temporal autologistic regression model and draw statistical inference via
von Andrian, Ulrich H.
1999 94: 4233-4246 Andrian, Lan Bo Chen, Jose-Carlos Gutierrez-Ramos, Ann-Marie Pendergast Chen, Jose-Carlos Gutierrez-Ramos, Ann-Marie Pendergast, and James D. Griffin The chemokine stromal
LIMB demonstration project extension
Not Available
1990-09-21T23:59:59.000Z
The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.
NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT
Terry W. Battiest
2008-06-11T23:59:59.000Z
The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.
Hydropower major rehabilitation projects
Norlin, J.A. [Army Corps of Engineers, Portland, OR (United States)
1995-12-31T23:59:59.000Z
The Corps of Engineers has developed an active Major Rehabilitation Program to handle large, long duration restoration projects. These projects are funded by specific appropriations and subsequently are required to have detailed rehabilitation plans to justify the work. The emphasis of the Major Rehabilitation Program is correcting reliability problems. Papers that were presented at Waterpower `93 discussed the basic concepts that are required in preparing a Major Rehabilitation Evaluation Report. This paper will cover the current status of each of the current major rehabilitation projects that the Corps of Engineers has in progress.
Kellogg and Russ Forest projects. 2002 Project sand highlights
Kellogg and Russ Forest projects. 2002 Project sand highlights MacCready Reserve a new property of insects Galeerucella calmariensis,and G.pusilla to control purple loosestrife on May 13. #12;New Project
Renewable energy projects approved
Broader source: Energy.gov [DOE]
Two renewable energy projects representing a $100 million-plus investment by Las Vegas-based Nevada Power Co.—a cost likely to be covered over time by the utility's customers—were approved Wednesday by state regulators.
Broader source: Energy.gov [DOE]
The following are U.S. Department of Energy (DOE) approved project facilitators who are required under the DOE indefinite-delivery, indefinite-quantity contract to develop federal energy savings performance contracts.
Financing energy efficiency projects
Hansen, S.J.; Weisman, J.C. [Hansen Associates (United States)
1999-07-01T23:59:59.000Z
Getting an energy project financed should be a shared effort between the ESCO and the customer, but the perspectives are different. It is the ESCO`s responsibility to put together a bankable project. The ESCO typically arranges the financing. Its reputation and history often add surety, which offers financiers added confidence. The customer usually incurs the debt and needs to know the financing options available. This article first addresses what constitutes a bankable project from the ESCO perspective. Then, the types of financing available to owners are explored. ESCOs, who have been in this business for a few years, remember knocking on the financial doors until their knuckles were bloody. Today, the financiers knock on the ESCO doors...if, and it`s a big IF, ESCOs can put together bankable projects.
Broader source: Energy.gov [DOE]
The folks at St. Bernard Project are helping survivors of Hurricane Katrina get back into their homes -- and are using new technologies to reduce energy and save money for the returning residents.
Navajo Electrification Demonstraiton Project
Larry Ahasteen, Project Manager
2006-07-17T23:59:59.000Z
This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.
1 Simulation Server for Project 25: Inter-RF Subsystem Interface (ISSI) September 30, 2011 Simulation Server v1.0.0 #12;2 1. Executive Overview..................................................................................................................... 5 3.1. Starting the Server
Broader source: Energy.gov [DOE]
Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.
Quality Assurance Project Plan
Holland, R. C.
1998-06-01T23:59:59.000Z
This Quality Assurance Project Plan documents the quality assurance activities for the Wastewater/Stormwater/Groundwater and Environmental Surveillance Programs. This QAPP was prepared in accordance with DOE guidance on compliance with 10CFR830.120.
Broader source: Energy.gov [DOE]
Below is a list of projects that were selected to receive technical assistance through the DOE Office of Indian Energy’s Strategic Technical Assistance Response Team (START) Program.
Healthcare Project Performance Benchmarks
Broader source: Energy.gov [DOE]
Reports five major performance metrics that can be used to benchmark proposed energy service company projects within the healthcare industry, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy
Clary, A. T.
2007-01-01T23:59:59.000Z
methodical process to identify primarily behavioral or procedural opportunities to improve energy efficiency. A key component of this process was to put control plans in place to maintain any gains that were achieved. The project resulting in finding...
Portsmouth Paducah Project Office
Broader source: Energy.gov [DOE]
The U.S. Department of Energy (DOE) established the Portsmouth/Paducah Project Office (PPPO) on October 1, 2003, to provide focused leadership to the Environmental Management missions at the...
Y-12 Steam Plant Project Received National Recognition for Project...
National Nuclear Security Administration (NNSA)
Steam Plant Project Received National Recognition for Project Management Excellence | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...
NNSA project receives DOE Secretary's Award for Project Management...
National Nuclear Security Administration (NNSA)
utilizing a highly disciplined, cost-effective and integrated approach to execute capital asset projects. NNSA Nuclear Materials Safeguards and Security Upgrade Project (NMSSUP)...
Baes, Maarten
2008-01-01T23:59:59.000Z
that is inherent in Monte Carlo radiative transfer simulations. As the typical detectors used in Monte Carlo negligible, we recommend the use of smart detectors in Monte Carlo radiative transfer simulations. Key wordsMon. Not. R. Astron. Soc. 391, 617623 (2008) doi:10.1111/j.1365-2966.2008.13941.x Smart detectors
Porter, J.
2006-01-01T23:59:59.000Z
which maximize the yield of saleable products. Distillation towers consume most of the energy required for aromatics separation. BEP reconfigured the existing towers in the product recovery section to a new fractionation scheme. The new... and toluene sidestream from the primary benzene recovery tower. The result was a 30% reduction in energy in the benzene/toluene fractionation area. The project also debottlenecked the toluene disproportionation unit by 20%. The project was completed...
Doug Cathro
2010-09-30T23:59:59.000Z
The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.
Mytko, Christine
2014-03-31T23:59:59.000Z
A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.
Mytko, Christine
2014-09-15T23:59:59.000Z
A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.
BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)
BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project (Beacon) Sponsor: Beacon Solar, LLC (Beacon Solar), a Delaware limited liability company and wholly owned and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County
GREEN JOBS PROJECT Daniel Kammen
Kammen, Daniel M.
GREEN JOBS PROJECT Memo Daniel Kammen Meng Cai Karim El Alami December 2nd , 2014 #12;Contents.............................................................................................................................................3 1 Base of the Green jobs project per state ........................................................................................3 1.1 The Green jobs project from 2009
START Projects | Department of Energy
START Projects START Projects The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of...
Renewable Energy & Energy Efficiency Projects: Loan Guarantee...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Plenary III: Project Finance and...
Smart, Simon Daniel
2014-02-04T23:59:59.000Z
The use of spin-pure and non-orthogonal Hilbert spaces in Full Configuration Interaction Quantum Monte–Carlo Simon Smart Trinity College This dissertation is submitted for the degree of Doctor of Philosophy at the University of Cambridge, December... 2013 For my mother Diana Jean Smart 1956-2013 The use of spin-pure and non-orthogonal Hilbert spaces in Full Configuration Interaction Quantum Monte–Carlo Simon Smart Abstract Full Configuration Interaction Quantum Monte–Carlo (FCIQMC) al- lows...
1 October, 2012 PROJECT COMMISSIONING FOR SMALL PROJECTS
Kamat, Vineet R.
1 October, 2012 PROJECT COMMISSIONING FOR SMALL PROJECTS This procedure defines the process for performing construction-phase commissioning (Cx) on small projects, typically projects consisting of a single system with a few pieces of equipment. When the process is performed by an external commissioning firm
UWA Renewable Energy Vehicle Project Available Projects: 2nd
1 UWA Renewable Energy Vehicle Project Available Projects: 2nd Semester 2005 Time commitment values are an approximation only. Most projects can be scaled to either a 6-point unit or a Final Year Project. Manufacturing and Assembly manager (1 or more students)- Large time commitment To Suit: Engineer (Any type, pref
July 2015 Project Dashboard.xls
Date: 07232015 Program Contractor Project Number Project Title Original Project Budget Project Budget Monthly Overall Assessment Cost Performance Schedule Performance 1 EM...
Perspectives on Project Finance | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Perspectives on Project Finance Perspectives on Project Finance Plenary III: Project Finance and Investment Perspectives on Project Finance John May, Managing Partner, Stern...
Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.
1996-06-01T23:59:59.000Z
Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells.
Gordon, K.W.; Scott, K.P.
2000-11-01T23:59:59.000Z
Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.
Andrea Zen; Emanuele Coccia; Ye Luo; Sandro Sorella; Leonardo Guidoni
2014-06-17T23:59:59.000Z
Diradical molecules are essential species involved in many organic and inorganic chemical reactions. The computational study of their electronic structure is often challenging, because a reliable description of the correlation, and in particular of the static one, requires multi-reference techniques. The Jastrow correlated Antisymmetrized Geminal Power (JAGP) is a compact and efficient wave function ansatz, based on the valence-bond representation, which can be used within Quantum Monte Carlo (QMC) approaches. The AGP part can be rewritten in terms of molecular orbitals, obtaining a multi-determinant expansion with zero-seniority number. In the present work we demonstrate the capability of the JAGP ansatz to correctly describe the electronic structure of two diradical prototypes: the orthogonally twisted ethylene, C2H4, and the methylene, CH2, representing respectively a homosymmetric and heterosymmetric system. On the other hand, we show that the simple ansatz of a Jastrow correlated Single Determinant (JSD) wave function is unable to provide an accurate description of the electronic structure in these diradical molecules, both at variational level and, more remarkably, in the fixed-nodes projection schemes showing that a poor description of the static correlation yields an inaccurate nodal surface. The suitability of JAGP to correctly describe diradicals with a computational cost comparable with that of a JSD calculation, in combination with a favorable scalability of QMC algorithms with the system size, opens new perspectives in the ab initio study of large diradical systems, like the transition states in cycloaddition reactions and the thermal isomerization of biological chromophores.
MCViNE -- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, Jiao Y Y; Granroth, Garrett E; Abernathy, Douglas L; Lumsden, Mark D; Winn, Barry; Aczel, Adam A; Aivazis, Michael; Fultz, Brent
2015-01-01T23:59:59.000Z
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is a versatile Monte Carlo (MC) neutron ray-tracing program that provides researchers with tools for performing computer modeling and simulations that mirror real neutron scattering experiments. By adopting modern software engineering practices such as using composite and visitor design patterns for representing and accessing neutron scatterers, and using recursive algorithms for multiple scattering, MCViNE is flexible enough to handle sophisticated neutron scattering problems including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can take advantage of simulation components in linear-chain-based MC ray tracing packages widely used in instrument design and optimization, as well as NumPy-based components that make prototypes useful and easy to develop. These developments have enabled us to carry out detailed simulations of neutron scatteri...
The energy injection and losses in the Monte Carlo simulations of a diffusive shock
Wang, Xin
2011-01-01T23:59:59.000Z
Although diffusive shock acceleration (DSA) could be simulated by some well-established models, the assumption of the injection rate from the thermal particles to the superthermal population is still a contentious problem. But in the self-consistent Monte Carlo simulations, because of the prescribed scattering law instead of the assumption of the injected function, hence particle injection rate is intrinsically defined by the prescribed scattering law. We expect to examine the correlation of the energy injection with the prescribed multiple scattering angular distributions. According to the Rankine-Hugoniot conditions, the energy injection and the losses in the simulation system can directly decide the shock energy spectrum slope. By the simulations performed with multiple scattering law in the dynamical Monte Carlo model, the energy injection and energy loss functions are obtained. As results, the case applying anisotropic scattering law produce a small energy injection and large energy losses leading to a s...
Miura, Shinichi [Institute for Molecular Science, 38 Myodaiji, Okazaki 444-8585 (Japan)
2007-03-21T23:59:59.000Z
In this paper, we present a path integral hybrid Monte Carlo (PIHMC) method for rotating molecules in quantum fluids. This is an extension of our PIHMC for correlated Bose fluids [S. Miura and J. Tanaka, J. Chem. Phys. 120, 2160 (2004)] to handle the molecular rotation quantum mechanically. A novel technique referred to be an effective potential of quantum rotation is introduced to incorporate the rotational degree of freedom in the path integral molecular dynamics or hybrid Monte Carlo algorithm. For a permutation move to satisfy Bose statistics, we devise a multilevel Metropolis method combined with a configurational-bias technique for efficiently sampling the permutation and the associated atomic coordinates. Then, we have applied the PIHMC to a helium-4 cluster doped with a carbonyl sulfide molecule. The effects of the quantum rotation on the solvation structure and energetics were examined. Translational and rotational fluctuations of the dopant in the superfluid cluster were also analyzed.
Rubery, M. S.; Horsfield, C. J. [Plasma Physics Department, AWE plc, Reading RG7 4PR (United Kingdom)] [Plasma Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Herrmann, H.; Kim, Y.; Mack, J. M.; Young, C.; Evans, S.; Sedillo, T.; McEvoy, A.; Caldwell, S. E. [Plasma Physics Department, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Plasma Physics Department, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Grafil, E.; Stoeffl, W. [Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Milnes, J. S. [Photek Limited UK, 26 Castleham Road, St. Leonards-on-sea TN38 9NS (United Kingdom)] [Photek Limited UK, 26 Castleham Road, St. Leonards-on-sea TN38 9NS (United Kingdom)
2013-07-15T23:59:59.000Z
The gas Cherenkov detectors at NIF and Omega measure several ICF burn characteristics by detecting multi-MeV nuclear ? emissions from the implosion. Of primary interest are ? bang-time (GBT) and burn width defined as the time between initial laser-plasma interaction and peak in the fusion reaction history and the FWHM of the reaction history respectively. To accurately calculate such parameters the collaboration relies on Monte Carlo codes, such as GEANT4 and ACCEPT, for diagnostic properties that cannot be measured directly. This paper describes a series of experiments performed at the High Intensity ? Source (HI?S) facility at Duke University to validate the geometries and material data used in the Monte Carlo simulations. Results published here show that model-driven parameters such as intensity and temporal response can be used with less than 50% uncertainty for all diagnostics and facilities.
Hard-sphere melting and crystallization with event-chain Monte Carlo
Isobe, Masaharu
2015-01-01T23:59:59.000Z
We simulate crystallization and melting with local Monte Carlo (LMC), event-chain Monte Carlo (ECMC), and with event-driven molecular dynamics (EDMD) in systems with up to one million three-dimensional hard spheres. We illustrate that our implementations of the three algorithms rigorously coincide in their equilibrium properties. We then study nucleation in the NVE ensemble from the fcc crystal into the homogeneous liquid phase and from the liquid into the homogeneous crystal. ECMC and EDMD both approach equilibrium orders of magnitude faster than LMC. ECMC is also notably faster than EDMD, especially for the equilibration into a crystal from a disordered initial condition at high density. ECMC can be trivially implemented for hard-sphere and for soft-sphere potentials, and we suggest possible applications of this algorithm for studying jamming and the physics of glasses, as well as disordered systems.
Rasch, Kevin M.; Hu, Shuming; Mitas, Lubos [Center for High Performance Simulation and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)] [Center for High Performance Simulation and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)
2014-01-28T23:59:59.000Z
We elucidate the origin of large differences (two-fold or more) in the fixed-node errors between the first- vs second-row systems for single-configuration trial wave functions in quantum Monte Carlo calculations. This significant difference in the valence fixed-node biases is studied across a set of atoms, molecules, and also Si, C solid crystals. We show that the key features which affect the fixed-node errors are the differences in electron density and the degree of node nonlinearity. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems, provide new perspectives on the origins of the fixed-node biases in calculations of molecular and condensed systems, and carry implications for pseudopotential constructions for heavy elements.
M. A. Novotny; Shannon M. Wheeler
2002-11-02T23:59:59.000Z
We present the Monte Carlo with Absorbing Markov Chains (MCAMC) method for extremely long kinetic Monte Carlo simulations. The MCAMC algorithm does not modify the system dynamics. It is extremely useful for models with discrete state spaces when low-temperature simulations are desired. To illustrate the strengths and limitations of this algorithm we introduce a simple model involving random walkers on an energy landscape. This simple model has some of the characteristics of protein folding and could also be experimentally realizable in domain motion in nanoscale magnets. We find that even the simplest MCAMC algorithm can speed up calculations by many orders of magnitude. More complicated MCAMC simulations can gain further increases in speed by orders of magnitude.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.
2015-08-01T23:59:59.000Z
We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage.more »Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.« less
Calculating alpha Eigenvalues in a Continuous-Energy Infinite Medium with Monte Carlo
Betzler, Benjamin R. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory
2012-09-04T23:59:59.000Z
The {alpha} eigenvalue has implications for time-dependent problems where the system is sub- or supercritical. We present methods and results from calculating the {alpha}-eigenvalue spectrum for a continuous-energy infinite medium with a simplified Monte Carlo transport code. We formulate the {alpha}-eigenvalue problem, detail the Monte Carlo code physics, and provide verification and results. We have a method for calculating the {alpha}-eigenvalue spectrum in a continuous-energy infinite-medium. The continuous-time Markov process described by the transition rate matrix provides a way of obtaining the {alpha}-eigenvalue spectrum and kinetic modes. These are useful for the approximation of the time dependence of the system.
Golden, M.
2013-01-01T23:59:59.000Z
Environmental Defense Fund’s Investor Confidence Project Delivering Investment Quality Energy Efficiency to Market ESL-KT-13-12-38 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Investor Confidence Project... Actionable Data ESL-KT-13-12-38 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Near-Term: Not Enough Deal-Flow • High Transaction Costs • Lack of Viable Origination Channels • Highly Variable Performance • Complex...
Robert F. Boehm
2004-06-06T23:59:59.000Z
(Original wording, now somewhat outdated.) The Nevada Solar Dish Project is designed to deploy at least 1 MW of dish-based, field validation power generation systems in a mini-power plant near Las Vegas, Nevada, as a transitional precursor to the full commercialization of the technology. This will occur over a period of about three years, from 2001 through 2004. The statement of work defines activities that the University of Nevada Las Vegas (UNLV) will provide by establishing a test site for two dish/Stirling systems on the UNLV campus and providing operation, test and training, and education in support of the project.
Not Available
1994-07-01T23:59:59.000Z
The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.
CONNECTICUT BIOFUELS TECHNOLOGY PROJECT
BARTONE, ERIK
2010-09-28T23:59:59.000Z
DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.
3. PROJECT GOVERNANCE 1. Introduction
3. PROJECT GOVERNANCE 1. Introduction In October 2010, the CEI UPF-Icària project, led by Pompeu Fabra University (UPF), was named an International Campus of Excellence (CEI). The project defined a set I. CEI UPF-Icària governance model Source: CEI UPF-Icària project The specific purpose of each unit
Project Management Plan Chinese Food
Igusa, Kiyoshi
impact of this project? · Data management: How do we collect, preserve and sort all of the files? Which special equipment, facilities needed or wanted? According to http://project-management-knowledge.com/ weProject Management Plan Chinese Food According to NSF, the basic elements of a project management
Combined Heat and Power Projects
Broader source: Energy.gov [DOE]
DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.
Enhanced Geothermal Systems Demonstration Projects
Geothermal Technologies Office
2013-08-06T23:59:59.000Z
Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.
Innovation Program Student Initiated Project
Bertini, Robert L.
Innovation Program Student Initiated Project Proposal Guidelines Eligibility The team must include of the problem the innovation is meant to solve A clear description of the work to be done for the project Milestones for the project, as well as a projected 'end product' Background with enough detail
Pérez-Andújar, Angélica [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Zhang, Rui; Newhauser, Wayne [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)
2013-12-15T23:59:59.000Z
Purpose: Stray neutron radiation is of concern after radiation therapy, especially in children, because of the high risk it might carry for secondary cancers. Several previous studies predicted the stray neutron exposure from proton therapy, mostly using Monte Carlo simulations. Promising attempts to develop analytical models have also been reported, but these were limited to only a few proton beam energies. The purpose of this study was to develop an analytical model to predict leakage neutron equivalent dose from passively scattered proton beams in the 100-250-MeV interval.Methods: To develop and validate the analytical model, the authors used values of equivalent dose per therapeutic absorbed dose (H/D) predicted with Monte Carlo simulations. The authors also characterized the behavior of the mean neutron radiation-weighting factor, w{sub R}, as a function of depth in a water phantom and distance from the beam central axis.Results: The simulated and analytical predictions agreed well. On average, the percentage difference between the analytical model and the Monte Carlo simulations was 10% for the energies and positions studied. The authors found that w{sub R} was highest at the shallowest depth and decreased with depth until around 10 cm, where it started to increase slowly with depth. This was consistent among all energies.Conclusion: Simple analytical methods are promising alternatives to complex and slow Monte Carlo simulations to predict H/D values. The authors' results also provide improved understanding of the behavior of w{sub R} which strongly depends on depth, but is nearly independent of lateral distance from the beam central axis.
Perfetti, Christopher M [ORNL] [ORNL; Martin, William R [University of Michigan] [University of Michigan; Rearden, Bradley T [ORNL] [ORNL; Williams, Mark L [ORNL] [ORNL
2012-01-01T23:59:59.000Z
Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the SHIFT Monte Carlo code within the Scale code package. The methods were used for several simple test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.
2015-06-30T23:59:59.000Z
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore »geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
Monte Carlo Studies of the CALICE AHCAL Tiles Gaps and Non-uniformities
Felix Sefkow; Angela Lucaci-Timoce
2010-06-18T23:59:59.000Z
The CALICE analog HCAL is a highly granular calorimeter, proposed for the International Linear Collider. It is based on scintillator tiles, read out by silicon photomultipliers (SiPMs). The effects of gaps between the calorimeter tiles, as well as the non-uniform response of the tiles, in view of the impact on the energy resolution, are studied in Monte Carlo events. It is shown that these type of effects do not have a significant influence on the measurement of hadron showers.
History and invention in the structure of Terra nostra by Carlos Fuentes
Valdez, Irma O
1991-01-01T23:59:59.000Z
MODERNA. . . . . . V I. CONCLUSION . OBRAS CITADAS . . OBRAS CONSULTADAS. . . . . . . . . 5 4 . . . . . . . 64 . . . . . 68 . . . . . . 74 CAP ITULO I INTRODUCCION Carlos Fuentes, renombrado y valioso escritor mexicano, ha venido escribiendo..., de padres mexicanos. Su padre fue diplomatico, lo cual le brindo la oportunidad de viajar continuamente fuera del pais, y aprendio ademas del espanol otros idiomas corno el ingles y el frances. Estudio leyes y despues estudio diplomacia. Pero...
Application of diffusion Monte Carlo to materials dominated by van der Waals interactions
Benali, Anouar [Argonne National Laboratory (ANL); Shulenburger, Luke [Sandia National Laboratory (SNL); Romero, Nichols [Argonne National Laboratory (ANL); Kim, Jeongnim [ORNL; Von Lilienfeld, Anatole [University of Basel
2014-01-01T23:59:59.000Z
Van der Waals forces are notoriously difficult to account for from first principles. We perform extensive calculation to assess the usefulness and validity of diffusion quantum Monte Carlo when applied to van der Waals forces. We present results for noble gas solids and clusters - archetypical van der Waals dominated assemblies, as well as a relevant pi-pi stacking supramolecular complex: DNA + intercalating anti-cancer drug Ellipticine.
Equation of state of strongly coupled quark--gluon plasma -- Path integral Monte Carlo results
V. S. Filinov; M. Bonitz; Y. B. Ivanov; V. V. Skokov; P. R. Levashov; V. E. Fortov
2009-05-04T23:59:59.000Z
A strongly coupled plasma of quark and gluon quasiparticles at temperatures from $ 1.1 T_c$ to $3 T_c$ is studied by path integral Monte Carlo simulations. This method extends previous classical nonrelativistic simulations based on a color Coulomb interaction to the quantum regime. We present the equation of state and find good agreement with lattice results. Further, pair distribution functions and color correlation functions are computed indicating strong correlations and liquid-like behavior.
Maximum likelihood parameter estimation in time series models using sequential Monte Carlo
Yildirim, Sinan
2013-06-11T23:59:59.000Z
, respectively. This approach is useful to handle the case where the columns of Y are generated sequentially in time, such as in audio signal processing. Usually very large number of columns in Y leads to the necessity of online algorithms to learn the model... .6 (dashed lines). For illustrative purposes, every 1000th estimate is shown . . . . . . . . . . . . . . . . . . . . . . . 130 6.1 Histograms of Monte Carlo estimates of gradients of log p?,?,?? (Y ?,?,?) w.r.t. the parameters of the ?-stable distribution...
Wang, Huihui; Meng, Lin; Liu, Dagang; Liu, Laqun [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)] [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2013-12-15T23:59:59.000Z
A particle-in-cell/Monte Carlo code is developed to rescale the microwave breakdown theory which is put forward by Vyskrebentsev and Raizer. The results of simulations show that there is a distinct error in this theory when the high energy tail of electron energy distribution function increases. A rescaling factor is proposed to modify this theory, and the change rule of the rescaling factor is presented.
Imaginary time correlations and the phaseless auxiliary field quantum Monte Carlo
Motta, M.; Galli, D. E.; Vitali, E. [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)] [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Moroni, S. [IOM-CNR DEMOCRITOS National Simulation Center and SISSA, via Bonomea 265, 34136 Trieste (Italy)] [IOM-CNR DEMOCRITOS National Simulation Center and SISSA, via Bonomea 265, 34136 Trieste (Italy)
2014-01-14T23:59:59.000Z
The phaseless Auxiliary Field Quantum Monte Carlo (AFQMC) method provides a well established approximation scheme for accurate calculations of ground state energies of many-fermions systems. Here we address the possibility of calculating imaginary time correlation functions with the phaseless AFQMC. We give a detailed description of the technique and test the quality of the results for static properties and imaginary time correlation functions against exact values for small systems.
The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units
Hall, Clifford [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States) [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); Ji, Weixiao [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States)] [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); Blaisten-Barojas, Estela, E-mail: blaisten@gmu.edu [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States) [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States)
2014-02-01T23:59:59.000Z
We present a CPU–GPU system for runtime acceleration of large molecular simulations using GPU computation and memory swaps. The memory architecture of the GPU can be used both as container for simulation data stored on the graphics card and as floating-point code target, providing an effective means for the manipulation of atomistic or molecular data on the GPU. To fully take advantage of this mechanism, efficient GPU realizations of algorithms used to perform atomistic and molecular simulations are essential. Our system implements a versatile molecular engine, including inter-molecule interactions and orientational variables for performing the Metropolis Monte Carlo (MMC) algorithm, which is one type of Markov chain Monte Carlo. By combining memory objects with floating-point code fragments we have implemented an MMC parallel engine that entirely avoids the communication time of molecular data at runtime. Our runtime acceleration system is a forerunner of a new class of CPU–GPU algorithms exploiting memory concepts combined with threading for avoiding bus bandwidth and communication. The testbed molecular system used here is a condensed phase system of oligopyrrole chains. A benchmark shows a size scaling speedup of 60 for systems with 210,000 pyrrole monomers. Our implementation can easily be combined with MPI to connect in parallel several CPU–GPU duets. -- Highlights: •We parallelize the Metropolis Monte Carlo (MMC) algorithm on one CPU—GPU duet. •The Adaptive Tempering Monte Carlo employs MMC and profits from this CPU—GPU implementation. •Our benchmark shows a size scaling-up speedup of 62 for systems with 225,000 particles. •The testbed involves a polymeric system of oligopyrroles in the condensed phase. •The CPU—GPU parallelization includes dipole—dipole and Mie—Jones classic potentials.
An analysis of 4-quark energies in SU(2) lattice Monte Carlo
Sadataka Furui; Bilal Masud
1998-09-12T23:59:59.000Z
Energies of four-quark systems with the tetrahedral geometry measured by the static quenched SU(2) lattice Monte Carlo method are analyzed by parametrizing the gluon overlap factor in the form exp(-[bs EA+{\\sqrt bs}FP]) where A and P are the area and the perimeter defined mainly by the positions of the four quarks, bs is the string constant in the 2-quark potentials and E, F are constants.
Monte Carlo Study of Patchy Nanostructures Self-Assembled from a Single Multiblock Chain
Jakub Krajniak; Michal Banaszak
2014-10-15T23:59:59.000Z
We present a lattice Monte Carlo simulation for a multiblock copolymer chain of length N=240 and microarchitecture $(10-10)_{12}$.The simulation was performed using the Monte Carlo method with the Metropolis algorithm. We measured average energy, heat capacity, the mean squared radius of gyration, and the histogram of cluster count distribution. Those quantities were investigated as a function of temperature and incompatibility between segments, quantified by parameter {\\omega}. We determined the temperature of the coil-globule transition and constructed the phase diagram exhibiting a variety of patchy nanostructures. The presented results yield a qualitative agreement with those of the off-lattice Monte Carlo method reported earlier, with a significant exception for small incompatibilities,{\\omega}, and low temperatures, where 3-cluster patchy nanostructures are observed in contrast to the 2-cluster structures observed for the off-lattice $(10-10)_{12}$ chain. We attribute this difference to a considerable stiffness of lattice chains in comparison to that of the off-lattice chains.
Dornheim, Tobias; Groth, Simon; Filinov, Alexey; Bonitz, Michael
2015-01-01T23:59:59.000Z
The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for $N=33$ electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, $r_s = \\overline{r}/a_B \\gtrsim 1$. This data has been complemented by Configuration path integral Monte Carlo (CPIMC) simulations for $r_s \\leq 1$ that substantially deviate from RPIMC towards smaller $r_s$ and low temperature. In this work, we present results from an independent third method---the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim \\textit{et al.}, NJP \\textbf{17}, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to...
Alhassan, Erwin; Duan, Junfeng; Gustavsson, Cecilia; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri; Österlund, Michael
2013-01-01T23:59:59.000Z
Analyses are carried out to assess the impact of nuclear data uncertainties on keff for the European Lead Cooled Training Reactor (ELECTRA) using the Total Monte Carlo method. A large number of Pu-239 random ENDF-formated libraries generated using the TALYS based system were processed into ACE format with NJOY99.336 code and used as input into the Serpent Monte Carlo neutron transport code to obtain distribution in keff. The keff distribution obtained was compared with the latest major nuclear data libraries - JEFF-3.1.2, ENDF/B-VII.1 and JENDL-4.0. A method is proposed for the selection of benchmarks for specific applications using the Total Monte Carlo approach. Finally, an accept/reject criterion was investigated based on chi square values obtained using the Pu-239 Jezebel criticality benchmark. It was observed that nuclear data uncertainties in keff were reduced considerably from 748 to 443 pcm by applying a more rigid acceptance criteria for accepting random files.
Erwin Alhassan; Henrik Sjöstrand; Junfeng Duan; Cecilia Gustavsson; Arjan Koning; Stephan Pomp; Dimitri Rochman; Michael Österlund
2013-04-04T23:59:59.000Z
Analyses are carried out to assess the impact of nuclear data uncertainties on keff for the European Lead Cooled Training Reactor (ELECTRA) using the Total Monte Carlo method. A large number of Pu-239 random ENDF-formated libraries generated using the TALYS based system were processed into ACE format with NJOY99.336 code and used as input into the Serpent Monte Carlo neutron transport code to obtain distribution in keff. The keff distribution obtained was compared with the latest major nuclear data libraries - JEFF-3.1.2, ENDF/B-VII.1 and JENDL-4.0. A method is proposed for the selection of benchmarks for specific applications using the Total Monte Carlo approach. Finally, an accept/reject criterion was investigated based on chi square values obtained using the Pu-239 Jezebel criticality benchmark. It was observed that nuclear data uncertainties in keff were reduced considerably from 748 to 443 pcm by applying a more rigid acceptance criteria for accepting random files.
Nonequilibrium candidate Monte Carlo: A new tool for efficient equilibrium simulation
Nilmeier, Jerome P.; Crooks, Gavin E.; Minh, David D. L.; Chodera, John D.
2011-11-08T23:59:59.000Z
Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. While generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.
Kurebayashi, Shinya, 1976-
2004-01-01T23:59:59.000Z
Measurements from three classes of direct-drive implosions at the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] were combined with Monte-Carlo simulations to investigate models for determining ...
Stanley, H. Eugene
Liquid-Liquid Phase Transition in Confined Water: A Monte Carlo Study Martin Meyer and H. Eugene Stanley* Center for Polymer Studies and Department of Physics, Boston UniVersity, Boston, Massachusetts
Majumdar, Amit
there is interest to simulate enormously large Monte Carlo particle transport problems for neutron and photon.e., the end of a time step. Besides absorption, the photons may undergo Thompson scattering. The overall
Erickson, Lori
1995-01-01T23:59:59.000Z
Monte Carlo modeling techniques using mean information fields (MIF), developed by Torsten Hagerstrand in the 1950s, were integrated with a geographic information system (GIS) to simulate lost person behavior in wilderness areas. Big Bend Ranch State...
Tutt, Teresa Elizabeth
2009-05-15T23:59:59.000Z
Monte Carlo method is an invaluable tool in the field of radiation protection, used to calculate shielding effectiveness, as well as dose for medical applications. With few exceptions, most of the objects currently simulated have been homogeneous...
A Monte-Carlo Method without Grid to Compute the Exchange Coefficient in the Double Porosity Model
Boyer, Edmond
Classification: 76S05 (65C05 76M35) Published in Monte Carlo Methods Appl.. 8:2, 129147, 2002 Archives, links Methods and Applications 8, 2 (2002) 129-147" #12;F. Campillo and A. Lejay / A Monte Carlo Method witouth consists in transforming (1) into a system: m Pm t = a-Pm - (Pm - Pf), m = Meas(m) Meas() f Pf t = a
A Positive-Weight Next-to-Leading-Order Monte Carlo for e+e- Annihilation to Hadrons
Oluseyi Latunde-Dada; Stefan Gieseke; Bryan Webber
2007-02-20T23:59:59.000Z
We apply the positive-weight Monte Carlo method of Nason for simulating QCD processes accurate to Next-To-Leading Order to the case of e+e- annihilation to hadrons. The method entails the generation of the hardest gluon emission first and then subsequently adding a `truncated' shower before the emission. We have interfaced our result to the Herwig++ shower Monte Carlo program and obtained better results than those obtained with Herwig++ at leading order with a matrix element correction.
Project Summary Partnership Inspiration
Everest, Graham R
%. This earned Adnams the CRed Business Standard (a systematic framework for reducing carbon based energy costs Businesses are hunting for solutions to reduce their carbon footprint and energy spend. This project follows as 6 tonnes of CO2 per employee. The Carbon Trust estimates that UK businesses waste 30% energy through
Lorenz, M. G.
2007-01-01T23:59:59.000Z
The Baytown Cogeneration Project installed a GE 7FA gas turbine generator that produces 160 MW of electricity and 560-klB/hr of superheated 1500-psig steam. All of the steam and electricity are consumed by the ExxonMobil Refinery & Chemical Plant...
Hubsch, Tristan [Howard University
2013-06-20T23:59:59.000Z
In the last years of this eighteen-year grant project, the research efforts have focused mostly on the study of off-shell representations of supersymmetry, both on the worldline and on the world- sheet, i.e., both in supersymmetric quantum mechanics and in supersymmetric field theory in 1+1-dimensional spacetime.
Michelson, David G.
and heavy mineral concentrates. Basic and advanced mineral characterization of various PIMS minerals has, the next phase of this project has started and MDRU are looking for industry partners. Exploring Lithocaps with industry partners for 2014 and beyond. We are looking for Expressions of Interest from potential partners
Information Technology Project Guide
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2008-09-12T23:59:59.000Z
This Guide provides Department of Energy recommended guidelines to ensure that the acquisition of information technology capital assets is performed in compliance with DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE N 251.105.
Lorenz, M. G.
2007-01-01T23:59:59.000Z
The Baytown Cogeneration Project installed a GE 7FA gas turbine generator that produces 160 MW of electricity and 560-klB/hr of superheated 1500-psig steam. All of the steam and electricity are consumed by the ExxonMobil Refinery & Chemical Plant...
Accounting Projects Company Description
Dahl, David B.
Accounting Projects Company Description: CPA firm performing accounting services, bookkeeping for multiple years, starting with the 2008 calendar year, using QuickBooks accounting software. Bank and credit card statements will be used for multiple checking, savings, and credit card accounts to capture data
MINERAL FACILITIES MAPPING PROJECT
Gilbes, Fernando
MINERAL FACILITIES MAPPING PROJECT Yadira Soto-Viruet Supervisor: David Menzie, Yolanda Fong-Sam Minerals Information Team (MIT) USGS Summer Internship 2009 U.S. Department of the Interior U.S. Geological Minerals Information Team (MIT): Annually reports on the minerals facilities of more than 180 countries
Scientific Motivation Project Overview
van Dyk, David
and Tracking of Solar Features David Stenning1 Vinay Kashyap2 Thomas Lee3 David van Dyk4 C. Alex Young5 1 Flight Center Stenning, David Automatic Classifying and Tracking of Solar Features #12;Scientific Classifying and Tracking of Solar Features #12;Scientific Motivation Project Overview Methodology Results
Background & Projects Publications
Home Background & Projects Calendar Publications Staff Directory Links Search MAES Home | Field Stations | Station Home | Publications | FruitNet Weekly Report Northern Michigan FruitNet 2006 Weekly vineyards. Side hedging and/or topping shoots will be needed to get light and air to the fruiting zone
Rank Project Name Directorate,
,000 0.5 400 lbs industrial waste, eliminates potential for oil contaminated run-off 3 RetrofitRank Project Name Directorate, Dept/Div and POC Cost Savings Payback (Years) Waste Reduction 1 Minimization of Silver Waste from Silver-Staining Electrophoretic Mini-Gels Life Sciences, Biology (B
COFIN project Concentration Fluctuations
COFIN project Concentration Fluctuations in Gas Releases by Industrial Accidents Final Summary of random concentration fluctuations in hazardous gas releases and the method was to derive empirical. In each measurement cycle the Lidar emits a short laser light pulse and detects the light Lidar reflected
Environmental of Forestry Projects
Environmental Impact Assessment of Forestry Projects #12;EnvironmentalImpactAssessment 2 Flow chart Details of the Environmental Statement publicised for comment FC considers ES and any comments received FC the issues of concern that need to be covered in the Environmental Statement (ES). The Environmental
Project Title: Residential wind turbine design Project Description: This project aims to
Muradoglu, Metin
that wind is expected to come. Therefore it may be a good idea to consider a vertical-axis wind turbine of the conventional wind turbines use horizontal- axis configuration (see Fig. 1) and is aligned with the directionPROJECT 1: Project Title: Residential wind turbine design Project Description: This project aims
Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools
Haberl, J.; Kim, H.; Mukhopadhyay, J.; Cervantes, J.C.; Do, S.; Kim, K.; Cyndi Lewis, C.; Yazdani, B.; Yarborough, J.
2011-01-01T23:59:59.000Z
. 1 Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools Jeff Haberl, Hyojin Kim, Jaya Mukhopadhyay, Juan-Carlos Baltazar...-Cevantes, Sung Lok Do, Kee Han Kim, Cyndi Lewis, Bahman Yazdani – Energy Systems Laboratory James Yarborough, U.S.E.P.A. ESL-TR-11-11-01 Energy Systems Laboratory p. 2 Why care about energy efficiency-renewable energy in schools? • Lower energy costs...
Not Available
1992-03-01T23:59:59.000Z
The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.
Radiation doses in cone-beam breast computed tomography: A Monte Carlo simulation study
Yi Ying; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Shen Youtao; Liu Xinming; Ge Shuaiping; You Zhicheng; Wang Tianpeng; Shaw, Chris C. [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)
2011-02-15T23:59:59.000Z
Purpose: In this article, we describe a method to estimate the spatial dose variation, average dose and mean glandular dose (MGD) for a real breast using Monte Carlo simulation based on cone beam breast computed tomography (CBBCT) images. We present and discuss the dose estimation results for 19 mastectomy breast specimens, 4 homogeneous breast models, 6 ellipsoidal phantoms, and 6 cylindrical phantoms. Methods: To validate the Monte Carlo method for dose estimation in CBBCT, we compared the Monte Carlo dose estimates with the thermoluminescent dosimeter measurements at various radial positions in two polycarbonate cylinders (11- and 15-cm in diameter). Cone-beam computed tomography (CBCT) images of 19 mastectomy breast specimens, obtained with a bench-top experimental scanner, were segmented and used to construct 19 structured breast models. Monte Carlo simulation of CBBCT with these models was performed and used to estimate the point doses, average doses, and mean glandular doses for unit open air exposure at the iso-center. Mass based glandularity values were computed and used to investigate their effects on the average doses as well as the mean glandular doses. Average doses for 4 homogeneous breast models were estimated and compared to those of the corresponding structured breast models to investigate the effect of tissue structures. Average doses for ellipsoidal and cylindrical digital phantoms of identical diameter and height were also estimated for various glandularity values and compared with those for the structured breast models. Results: The absorbed dose maps for structured breast models show that doses in the glandular tissue were higher than those in the nearby adipose tissue. Estimated average doses for the homogeneous breast models were almost identical to those for the structured breast models (p=1). Normalized average doses estimated for the ellipsoidal phantoms were similar to those for the structured breast models (root mean square (rms) percentage difference=1.7%; p=0.01), whereas those for the cylindrical phantoms were significantly lower (rms percentage difference=7.7%; p<0.01). Normalized MGDs were found to decrease with increasing glandularity. Conclusions: Our results indicate that it is sufficient to use homogeneous breast models derived from CBCT generated structured breast models to estimate the average dose. This investigation also shows that ellipsoidal digital phantoms of similar dimensions (diameter and height) and glandularity to actual breasts may be used to represent a real breast to estimate the average breast dose with Monte Carlo simulation. We have also successfully demonstrated the use of structured breast models to estimate the true MGDs and shown that the normalized MGDs decreased with the glandularity as previously reported by other researchers for CBBCT or mammography.
Paul Glowaski: Garden Director, Homeless Garden Project
Reti, Irene H.
2010-01-01T23:59:59.000Z
Regional History Project, University Library, 2003) http://History Project, University Library, UCSC, 1996. ) http://
California Hydrogen Infrastructure Project
Edward C. Heydorn
2013-03-12T23:59:59.000Z
Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a Ã?Â?Ã?Â¢Ã?Â?Ã?Â?Ã?Â?Ã?Â?real-worldÃ?Â?Ã?Â¢Ã?Â?Ã?Â?Ã?Â?Ã?Â retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nationÃ?Â?Ã?Â¢Ã?Â?Ã?Â?Ã?Â?Ã?Â?s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air ProductsÃ?Â?Ã?Â¢Ã?Â?Ã?Â?Ã?Â?Ã?Â? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station userÃ?Â?Ã?Â¢Ã?Â?Ã?Â?Ã?Â?Ã?Â?s fueling experience.
LEED-NC Version 3 Project Checklist Project Name
Slatton, Clint
LEED-NC Version 3 Project Checklist Project Name: Last updated : Yes ? No 24 2 Sustainable Sites 26 Credit 1.5 Innovation in Design: Provide Specific Title 1 UF green cleaning 1 Credit 2 LEED® Accredited
Evaluation of Technology Risk in Project Cogeneration Project Returns
Thoennes, C. M.
1985-01-01T23:59:59.000Z
The economic returns of a cogeneration project are a direct function of the project margin, that is, the difference between revenues and expenses. Revenues and expenses, of course, are made up of both variable and fixed components. The revenues...
PROJECT SELF-EVALUATION METHODOLOGY: THE HEALTHREATS PROJECT CASE STUDY
Bohanec, Marko
PROJECT SELF-EVALUATION METHODOLOGY: THE HEALTHREATS PROJECT CASE STUDY Martin Znidarsic1 , Marko, Slovenia e-mail: martin.znidarsic@ijs.si Tel: +386 1 477 3366; fax: +386 1 477 3315 ABSTRACT The paper
None
1997-12-31T23:59:59.000Z
The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.
The Multimedia Project Quarked!
Bean, Alice
2011-01-01T23:59:59.000Z
Can exposure to fundamental ideas about the nature of matter help motivate children in math and science and support the development of their understanding of these ideas later? Physicists, designers, and museum educators at the University of Kansas created the Quarked!(tm) Adventures in the subatomic Universe project to provide an opportunity for youth to explore the subatomic world in a fun and user friendly way. The project components include a website (located at http://www.quarked.org) and hands-on education programs. These are described and assessment results are presented. Questions addressed include the following. Can you engage elementary and middle school aged children with concepts related to particle physics? Can young children make sense of something they can't directly see? Do teachers think the material is relevant to their students?
Debt collection project report
Not Available
1980-05-01T23:59:59.000Z
In October 1979 the Office of Management and Budget initiated a review of debt collection within the Federal Government. A DOE Debt Collection Project Team was established, and seven activites were selected for review. These were Albuquerque Operations Office; Bonneville Power Administration; Chicago Operations and Regional Office; Naval Petroleum Reserves, California; Oak Ridge Operations Office; Washington Financial Services Division; and Western Area Power Administration. The team visited each of these activities to collect data on the size, age, and types of receivables managed and procedures for billing, aging, and handling overdue accounts. Various deficiencies were found to exist at several of the DOE entities that are not consistent with good management practices in the performance of their debt collection functions. Also, the Debt Collection Project Team identified a wide variation in the procedures followed by DOE activities in the management of accounts receivable, and a wide variation in the effectiveness of the debt management functions. 1 figure, 17 tables. (RWR)
Nucla CFB Demonstration Project
Not Available
1990-12-01T23:59:59.000Z
This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)
Forecasting potential project risks through leading indicators to project outcome
Choi, Ji Won
2007-09-17T23:59:59.000Z
for the degree of MASTER OF SCIENCE May 2007 Major Subject: Civil Engineering FORECASTING POTENTIAL PROJECT RISKS THROUGH LEADING INDICATORS TO PROJECT OUTCOME A Thesis by JI WON CHOI... Guikema Head of Department, David Rosowsky May 2007 Major Subject: Civil Engineering iii ABSTRACT Forecasting Potential Project Risks through Leading Indicators to Project Outcome. (May 2007) Ji Won Choi, B.S., Han-Yang University...
Broader source: Energy.gov [DOE]
Since the inception of the U.S. Department of Energy's (DOE) energy savings performance contracts (ESPCs) in 1998, 325 DOE ESPC projects have been awarded. More than $3.41 billion has been invested in Federal energy efficiency and renewable energy improvements. These improvements have resulted in more than 398 trillion Btu life cycle energy savings and more than $8.53 billion of cumulative energy cost savings for the Federal Government.
Advanced Biomass Gasification Projects
Not Available
1997-08-01T23:59:59.000Z
DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.
Cogeneration Project Analysis Update
Robinson, A. M.; Garcia, L. N.
diverse factors, such as, but no limited to: Fuel Considerations, Heat System Analysis, Electric Power Considerations, Key Technical Project Considerations, and Economic Analysis. INTRODUCTION The cogeneration systems being developed for industrial... power marched upward at a higher rate than fuel, capital equipment cost, and the prime interest rate. Typical Cogeneration System One system has been chosen as typical. This is one of the cogeneration systems which have proliferated over the past...
Robotics research projects report
Hsia, T.C. (ed.)
1983-06-01T23:59:59.000Z
The research results of the Robotics Research Laboratory are summarized. Areas of research include robotic control, a stand-alone vision system for industrial robots, and sensors other than vision that would be useful for image ranging, including ultrasonic and infra-red devices. One particular project involves RHINO, a 6-axis robotic arm that can be manipulated by serial transmission of ASCII command strings to its interfaced controller. (LEW)
Not Available
1988-01-01T23:59:59.000Z
The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs.
Bogucz, E A
2010-12-13T23:59:59.000Z
This project pursued innovations to improve energy efficiency and indoor environmental quality (IEQ) in commercial and residential buildings. For commercial buildings, the project developed a testbed for “intelligent nested environmental systems technologies (iNEST),” which monitor and control energy flows and IEQ across a cascade of spaces from individuals’ desktops to office suites to floors to whole buildings. An iNEST testbed was constructed at Syracuse University and was used to assess the use of devices such as personal badges and CO2 sensors to study how reduced energy use and improved IEQ could be achieved. For residential buildings, resources were targeted in support of DoE’s Builders Challenge Program and to recruit Syracuse, NY builders. Three homes in Syracuse’s Near Westside neighborhood were also registered under the program by Syracuse University team, with an additional home registered by one of the builders. Findings from the work at the iNEST testbed facility, and results from other related projects were disseminated through Syracuse Center of Excellence in Environmental and Energy Systems (SyracuseCoE) 2008 Annual Symposium, the 9th International Healthy Buildings 2009 Conference & Exhibition, and through SyracuseCoE’s website and eNewsletters to inform the broader community of researchers, designers and builders. These public communication activities helped enhance the understanding of high performance buildings and facilitate further market acceptance.
Hambrick, J.
2012-01-01T23:59:59.000Z
Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.
The Human Genome Diversity Project
Cavalli-Sforza, L. [Stanford Univ., CA (United States)
1994-12-31T23:59:59.000Z
The Human Genome Diversity Project (HGD Project) is an international anthropology project that seeks to study the genetic richness of the entire human species. This kind of genetic information can add a unique thread to the tapestry knowledge of humanity. Culture, environment, history, and other factors are often more important, but humanity`s genetic heritage, when analyzed with recent technology, brings another type of evidence for understanding species` past and present. The Project will deepen the understanding of this genetic richness and show both humanity`s diversity and its deep and underlying unity. The HGD Project is still largely in its planning stages, seeking the best ways to reach its goals. The continuing discussions of the Project, throughout the world, should improve the plans for the Project and their implementation. The Project is as global as humanity itself; its implementation will require the kinds of partnerships among different nations and cultures that make the involvement of UNESCO and other international organizations particularly appropriate. The author will briefly discuss the Project`s history, describe the Project, set out the core principles of the Project, and demonstrate how the Project will help combat the scourge of racism.
The Boeing Company Project Fuel Tank Design Project Recap
Demirel, Melik C.
which consist of a 15o double angle displacement, 10 to 12 oscillations per minute oscillation frequencyThe Boeing Company Project Fuel Tank Design Project Recap The Boeing Company came to the Pennsylvania State University with a project for the mitigation of fuel slosh by utilizing different baffle
LATEST PROJECTS & Preview a few of our latest research projects
California at Davis, University of
, disseminate informa- tion, and facilitate programs that reduce cooling system electrical demand and energy applied research through Western Cooling Challenge Demonstrations and many other ongoing projects. Our feaLATEST PROJECTS & UPDATES Preview a few of our latest research projects & updates pg. 10 OUTREACH
Guest Project: Personal Information Title of the Project
! ! Guest Project: Personal Information ! ! Title of the Project: ! ! Project Coordinator: ! Name? ! 1. 2. 3... #12;! Rules and Acceptance: ! The primary purpose of the ICTP SciFabLab is to support, models, and codes developed within the ICTP Scientific FabLab as open source / open hardware
Past START Projects | Department of Energy
Office of Environmental Management (EM)
Solar 2013 San Carlos Apache Tribe Arizona solar.gif Facility-Scale Solar PV System 2013 Southern Ute Indian Tribe Colorado solar.gif Community-Scale Solar PV System...
Texas Stream Team Special Projects
Texas Stream Team Special Projects · TMDL and Watershed Protection Plan Projects · Steering Transparency tube E. coli · Web site resources · Materials Maps, Watershed Models Orange County Adams training sessions · Quality control · NPS education sessions · Volunteers of the month · Orange county
Risk Management In Major Projects
Baker, Scott William
The integration of risk management in major projects within the construction and oil and gas industries has never been more significant especially as these projects are becoming larger and more complex. The increased ...
Geothermal Outreach and Project Financing
Elizabeth Battocletti
2006-04-06T23:59:59.000Z
The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.
Trotter's product formula for projections
Shvydkoy, Roman
-semigroup etB is replaced by the simplest of degenerate semigroups, i.e. a projection P L P denotes a bounded projection. Now, in (1) we replace the C0-semigroup etB by the continuous
ESPC Project Developer's Resource Guide
in the charts, and are identified alongside additional detail in Section 4. 4 *Items in blue are project deliverables. 5 *Items in blue are project deliverables. 6 *Items in blue...
Uncompahgre Mesas Forest Restoration Project
March 2010 Uncompahgre Mesas Forest Restoration Project Collaboration Case Study #12;Uncompahgre Mesas Forest Restoration Project 1 1 Colorado Forest Restoration Institute Collaboration Case Study at Colorado State University, to conduct case studies of two collaborative forest health efforts
Executing major projects through Contractors
McKenna, Nicholas A. (Nicholas Alan)
2005-01-01T23:59:59.000Z
Project based organizational structures are utilized in many industries. The firms engaged in these significant endeavors, project sponsor and contractor alike, risk both capital and reputation in the market-place with ...
Financing Energy Projects in Dow
Dingwall, D. C.
1984-01-01T23:59:59.000Z
in size, and authorized and financed as a part of Dow's regular capital program. Capital projects relating to the more efficient generation of energy generally refer to DOW'S large Gulf Coast combined cycle cogeneration projects, most of which came...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Relocation and Substation Projects Albany-Eugene Rebuild Project Albeni Falls-Sand Creek Alvey-Fairview No.1, 230 kV Rebuild Bandon-Rouge Rebuild Chehalis-Centralia Rebuild...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Relocation and Substation Projects Albany-Eugene Rebuild Project Albeni Falls-Sand Creek Alvey-Fairview No.1, 230 kV Rebuild Bandon-Rouge Rebuild Chehalis-Centralia Rebuild...
Environmental Management (EM) Cleanup Projects
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2008-09-24T23:59:59.000Z
The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and provides guidance on environmental management cleanup projects. Canceled by DOE N 251.105.
ADVANCE! Leadership Experience Project Guidelines
Hone, James
ADVANCE! Leadership Experience Project Guidelines Fieldwork Practicum Description: The fieldwork component of the ADVANCE! leadership program offers students the opportunity to integrate theory exposure to that industry. Together, they design a leadership project in which the student takes an active
Smart Grid Demonstration Project
Miller, Craig; Carroll, Paul; Bell, Abigail
2014-08-31T23:59:59.000Z
The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: 1. Demonstration of smart grid technology 2. Advancement of standards to enable the interoperability of components 3. Improvement of grid cyber security We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and posted for universal access at www.nreca.coop/smartgrid. This research is available for widespread distribution to both cooperative members and non-members. These reports are listed in Table 1.2. Interoperability: The deliverable in this area was the advancement of the MultiSpeak™ interoperability standard from version 4.0 to version 5.0, and improvement in the MultiSpeak™ documentation to include more than 100 use cases. This deliverable substantially expanded the scope and usability of MultiSpeak, ™ the most widely deployed utility interoperability standard, now in use by more than 900 utilities. MultiSpeak™ documentation can be accessed only at www.multispeak.org. Cyber Security: NRECA’s starting point was to develop cyber security tools that incorporated succinct guidance on best practices. The deliverables were: cyber security extensions to MultiSpeak,™ which allow more security message exchanges; a Guide to Developing a Cyber Security and Risk Mitigation Plan; a Cyber Security Risk Mitigation Checklist; a Cyber Security Plan Template that co-ops can use to create their own cyber security plans; and Security Questions for Smart Grid Vendors.
TSSWCB Bacteria-Related Projects
Wythe, Kathy
2007-01-01T23:59:59.000Z
of the projects are listed below. ? Peach CreekWater Quality Improvement Project ? Monitoring and Educational Programs Focused on Bacteria and Nutrient Runoff on Dairy Operations in the LeonWatershed ? Development of the Plum CreekWPP ? Impact of Proper... Star Healthy Streams * ? Environmental Management of Grazing Lands * *TWRI-managed projects More information on the initiative is available at www.tsswcb.state.tx.us/managementprogram/ initiatives/bacteria. Bacteria Projects Across the State...
Charged-Particle Thermonuclear Reaction Rates: I. Monte Carlo Method and Statistical Distributions
Richard Longland; Christian Iliadis; Art Champagne; Joe Newton; Claudio Ugalde; Alain Coc; Ryan Fitzgerald
2010-04-23T23:59:59.000Z
A method based on Monte Carlo techniques is presented for evaluating thermonuclear reaction rates. We begin by reviewing commonly applied procedures and point out that reaction rates that have been reported up to now in the literature have no rigorous statistical meaning. Subsequently, we associate each nuclear physics quantity entering in the calculation of reaction rates with a specific probability density function, including Gaussian, lognormal and chi-squared distributions. Based on these probability density functions the total reaction rate is randomly sampled many times until the required statistical precision is achieved. This procedure results in a median (Monte Carlo) rate which agrees under certain conditions with the commonly reported recommended "classical" rate. In addition, we present at each temperature a low rate and a high rate, corresponding to the 0.16 and 0.84 quantiles of the cumulative reaction rate distribution. These quantities are in general different from the statistically meaningless "minimum" (or "lower limit") and "maximum" (or "upper limit") reaction rates which are commonly reported. Furthermore, we approximate the output reaction rate probability density function by a lognormal distribution and present, at each temperature, the lognormal parameters miu and sigma. The values of these quantities will be crucial for future Monte Carlo nucleosynthesis studies. Our new reaction rates, appropriate for bare nuclei in the laboratory, are tabulated in the second paper of this series (Paper II). The nuclear physics input used to derive our reaction rates is presented in the third paper of this series (Paper III). In the fourth paper of this series (Paper IV) we compare our new reaction rates to previous results.
Doebling, S.W.; Farrar, C.R. [Los Alamos National Lab., NM (United States); Cornwell, P.J. [Rose Hulman Inst. of Tech., Terre Haute, IN (United States)
1998-02-01T23:59:59.000Z
This paper presents a comparison of two techniques used to estimate the statistical confidence intervals on modal parameters identified from measured vibration data. The first technique is Monte Carlo simulation, which involves the repeated simulation of random data sets based on the statistics of the measured data and an assumed distribution of the variability in the measured data. A standard modal identification procedure is repeatedly applied to the randomly perturbed data sets to form a statistical distribution on the identified modal parameters. The second technique is the Bootstrap approach, where individual Frequency Response Function (FRF) measurements are randomly selected with replacement to form an ensemble average. This procedure, in effect, randomly weights the various FRF measurements. These weighted averages of the FRFs are then put through the modal identification procedure. The modal parameters identified from each randomly weighted data set are then used to define a statistical distribution for these parameters. The basic difference in the two techniques is that the Monte Carlo technique requires the assumption on the form of the distribution of the variability in the measured data, while the bootstrap technique does not. Also, the Monte Carlo technique can only estimate random errors, while the bootstrap statistics represent both random and bias (systematic) variability such as that arising from changing environmental conditions. However, the bootstrap technique requires that every frequency response function be saved for each average during the data acquisition process. Neither method can account for bias introduced during the estimation of the FRFs. This study has been motivated by a program to develop vibration-based damage identification procedures.
Mills, Kevin
Mgr.: Mills/Swinson PAD No.: Smart Spaces Moving Through Smart Spaces "city-wide appliances" "in-building1 DARPA Office: ITO PE/Project: Pgm No.: Pgm Mgr.: Mills/Swinson PAD No.: Smart Spaces Personal Information Projection Â· Develop techniques for projecting personal information from cyberspace into smart
Addendum to Fake Projective Planes
Yeung, Sai-Kee
ingenious group theoretic computations that the twenty eight classes of fake projective planes altogether- damental group of eight of the one hundred fake projective planes do not admit an embedding into SU(2, 1. In [1] we proved that if the fundamental group of a fake projective plane is an arithmetic subgroup
Shyy, Wei
Proposal Management PI & Project Team PAF Changes Step-By-Step Procedures Last updated: 4/1/2013 1 of 10 http://eresearch.umich.edu PAF Changes This procedure details how the PI & Project Team can: Make. Page 9 Important Information Before a PAF is routed for approval, the PI & Project Team can make
Indian River Hydroelectric Project Grant
Rebecca Garrett
2005-04-29T23:59:59.000Z
This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.
Monte-Carlo Simulation of Exclusive Channels in e+e- Annihilation at Low Energy
D. Anipko; S. Eidelman; A. Pak
2003-12-25T23:59:59.000Z
Software package for Monte-Carlo simulation of e+e- exclusive annihilation channels written in the C++ language for Linux/Solaris platforms has been developed. It incorporates matrix elements for several mechanisms of multipion production in a model of consequent two and three-body resonance decays. Possible charge states of intermediate and final particles are accounted automatically under the assumption of isospin conservation. Interference effects can be taken into acccount. Package structure allows adding new matrix elements written in a gauge-invariant form.
A Hybrid (Monte-Carlo/Deterministic) Approach for Multi-Dimensional Radiation Transport
Guillaume Bal; Anthony Davis; Ian Langmore
2011-05-07T23:59:59.000Z
A novel hybrid Monte Carlo transport scheme is demonstrated in a scene with solar illumination, scattering and absorbing 2D atmosphere, a textured reflecting mountain, and a small detector located in the sky (mounted on a satellite or a airplane). It uses a deterministic approximation of an adjoint transport solution to reduce variance, computed quickly by ignoring atmospheric interactions. This allows significant variance and computational cost reductions when the atmospheric scattering and absorption coefficient are small. When combined with an atmospheric photon-redirection scheme, significant variance reduction (equivalently acceleration) is achieved in the presence of atmospheric interactions.
A Hybrid (Monte-Carlo/Deterministic) Approach for Multi-Dimensional Radiation Transport
Bal, Guillaume; Langmore, Ian
2011-01-01T23:59:59.000Z
A novel hybrid Monte Carlo transport scheme is demonstrated in a scene with solar illumination, scattering and absorbing 2D atmosphere, a textured reflecting mountain, and a small detector located in the sky (mounted on a satellite or a airplane). It uses a deterministic approximation of an adjoint transport solution to reduce variance, computed quickly by ignoring atmospheric interactions. This allows significant variance and computational cost reductions when the atmospheric scattering and absorption coefficient are small. When combined with an atmospheric photon-redirection scheme, significant variance reduction (equivalently acceleration) is achieved in the presence of atmospheric interactions.
Kinetic lattice Monte Carlo simulations of interdiffusion in strained silicon germanium alloys
Chen, Renyu; Dunham, Scott T.
2010-03-03T23:59:59.000Z
Point-defect-mediated diffusion processes are investigated in strained SiGe alloys using kinetic lattice Monte Carlo *KLMC* simulation technique. The KLMC simulator incorporates an augmented lattice domain and includes defect structures, atomistic hopping mechanisms, and the stress dependence of transition rates obtained from density functional theory calculation results. Vacancy-mediated interdiffusion in strained SiGe alloys is analyzed, and the stress effect caused by the induced strain of germanium is quantified separately from that due to germanium-vacancy binding. The results indicate that both effects have substantial impact on interdiffusion. © 2010 American Vacuum Society.
Thermonuclear reaction rate of $^{18}$Ne($?$,$p$)$^{21}$Na from Monte-Carlo calculations
P. Mohr; R. Longland; C. Iliadis
2014-12-14T23:59:59.000Z
The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction impacts the break-out from the hot CNO-cycles to the $rp$-process in type I X-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte-Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.
Thermonuclear reaction rate of $^{18}$Ne($\\alpha$,$p$)$^{21}$Na from Monte-Carlo calculations
Mohr, P; Iliadis, C
2014-01-01T23:59:59.000Z
The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction impacts the break-out from the hot CNO-cycles to the $rp$-process in type I X-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte-Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.
A Monte Carlo study of the distribution of parameter estimators in a dual exponential decay model
Garcia, Raul
1969-01-01T23:59:59.000Z
of an estimate of the reliability of the parameter estimates calculated. In 1965, Bell and Garcia [2] developed a computer program which permits a solution of the parameters without the time-consuming effort of manual calcu- lations. The same year, Rossing [3...A MONTE CARLO STUDY OF THE DISTRIBUTION OF PARAMETER ESTIMATORS IN A DUAL EXPONENTIAL DECAY MODEL A Thesis by SAUL GARCIA Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree...
Monte Carlo calculations of the physical properties of RDX, {beta}-HMX, and TATB
Sewell, T.D.
1997-09-01T23:59:59.000Z
Atomistic Monte Carlo simulations in the NpT ensemble are used to calculate the physical properties of crystalline RDX, {beta}-HMX, and TATB. Among the issues being considered are the effects of various treatments of the intermolecular potential, inclusion of intramolecular flexibility, and simulation size dependence of the results. Calculations of the density, lattice energy, and lattice parameters are made over a wide range of pressures; thereby allowing for predictions of the bulk and linear coefficients of isothermal expansion of the crystals. Comparison with experiment is made where possible.
S. Frixione; E. Laenen; P. Motylinski; B. R. Webber
2007-02-20T23:59:59.000Z
We explain how angular correlations in leptonic decays of vector bosons and top quarks can be included in Monte Carlo parton showers, in particular those matched to NLO QCD computations. We consider the production of $n$ pairs of leptons, originating from the decays of $n$ electroweak vector bosons or of $n$ top quarks, in the narrow-width approximation. In the latter case, the information on the $n$ $b$ quarks emerging from the decays is also retained. We give results of implementing this procedure in MC@NLO
Perera, Meewanage Dilina N [ORNL; Li, Ying Wai [ORNL; Eisenbach, Markus [ORNL; Vogel, Thomas [Los Alamos National Laboratory (LANL); Landau, David P [University of Georgia, Athens, GA
2015-01-01T23:59:59.000Z
We describe the study of thermodynamics of materials using replica-exchange Wang Landau (REWL) sampling, a generic framework for massively parallel implementations of the Wang Landau Monte Carlo method. To evaluate the performance and scalability of the method, we investigate the magnetic phase transition in body-centered cubic (bcc) iron using the classical Heisenberg model parameterized with first principles calculations. We demonstrate that our framework leads to a significant speedup without compromising the accuracy and precision and facilitates the study of much larger systems than is possible with its serial counterpart.
Monte Carlo Generators for Studies of the 3D Structure of the Nucleon
Avagyan, Harut A. [JLAB
2015-01-01T23:59:59.000Z
Extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.
Monte-Carlo study of the phase transition in the AA-stacked bilayer graphene
A. A. Nikolaev; M. V. Ulybyshev
2014-12-04T23:59:59.000Z
Tight-binding model of the AA-stacked bilayer graphene with screened electron-electron interactions has been studied using the Hybrid Monte Carlo simulations on the original double-layer hexagonal lattice. Instantaneous screened Coulomb potential is taken into account using Hubbard-Stratonovich transformation. G-type antiferromagnetic ordering has been studied and the phase transition with spontaneous generation of the mass gap has been observed. Dependence of the antiferromagnetic condensate on the on-site electron-electron interaction is examined.
Temperature-extrapolation method for Implicit Monte Carlo - Radiation hydrodynamics calculations
McClarren, R. G. [Department of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77802 (United States); Urbatsch, T. J. [XTD-5: Air Force Systems, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 77845 (United States)
2013-07-01T23:59:59.000Z
We present a method for implementing temperature extrapolation in Implicit Monte Carlo solutions to radiation hydrodynamics problems. The method is based on a BDF-2 type integration to estimate a change in material temperature over a time step. We present results for radiation only problems in an infinite medium and for a 2-D Cartesian hohlraum problem. Additionally, radiation hydrodynamics simulations are presented for an RZ hohlraum problem and a related 3D problem. Our results indicate that improvements in noise and general behavior are possible. We present considerations for future investigations and implementations. (authors)
Alan M. Watson; William J. Henney
2001-08-30T23:59:59.000Z
We describe an efficient Monte Carlo algorithm for a restricted class of scattering problems in radiation transfer. This class includes many astrophysically interesting problems, including the scattering of ultraviolet and visible light by grains. The algorithm correctly accounts for multiply-scattered light. We describe the algorithm, present a number of important optimizations, and explicity show how the algorithm can be used to estimate quantities such as the emergent and mean intensity. We present two test cases, examine the importance of the optimizations, and show that this algorithm can be usefully applied to optically-thin problems, a regime sometimes considered limited to explicit single-scattering plus attenuation approximations.
Four-Quark Binding Energies from SU(2) Lattice Monte Carlo
A. M. Green; C. Michael; M. E. Sainio
1994-04-11T23:59:59.000Z
Energies of four-quark systems have been extracted in a static quenched SU(2) lattice Monte Carlo calculation for six different geometries, both planar and non-planar, with $\\beta=2.4$ and lattice size $16^3\\times 32$. In all cases, it is found that the binding energy is greatly enhanced when the four quarks can be partitioned in two ways with comparable energies. Also it is shown that the energies of the four-quark states cannot be understood simply in terms of two-quark potentials.
A new approach to hot particle dosimetry using a Monte Carlo transport code
Busche, Donna Marie
1989-01-01T23:59:59.000Z
Ci-hrs. This value assumes a threshold dose of 2000 rads to an area of 0. 1 cm&, at a depth of 100 ltm (NCRP 1988). The purpose of this research was evaluate the current methods used in industry to assess the doses from hot particles. A Monte Carlo electron... radioactivity being released from the site. Frisking, portal monitors, and step off pads are important HP areas and should involve overview and supervision. IDENTMCATION To properly assess the dose from these hot particles, the source strength, type...
Not Available
1988-12-01T23:59:59.000Z
Unocal Corporation has given the Indonesian Government notice of intent to proceed with a geothermal project to provide steam for a 110 megawatt electrical generating plant. The company has drilled 11 wells, and has confirmed reserves for more than 230 megawatts of generating capacity. Indonesia's state electric company, PLN, will build the power plant. Ansaldo, an Italian company, will supply equipment and manage the construction. With the notice of intent to proceed, Unocal Geothermal of Indonesia, Ltd. will begin drilling additional wells and build the field facilities necessary to provide steam to the power plant.