USBIA-San Carlos Project | Open Energy Information
Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes This article is a stub. You...
San Carlos Apache Tribe- 2012 Project
Broader source: Energy.gov [DOE]
Under this project, the San Carlos Apache Tribe will study the feasibility of solar energy projects within the reservation with the potential to generate a minimum of 1 megawatt (MW).
Project Reports for San Carlos Apache Tribe- 2012 Project
Office of Energy Efficiency and Renewable Energy (EERE)
Under this project, the San Carlos Apache Tribe will study the feasibility of solar energy projects within the reservation with the potential to generate a minimum of 1 megawatt (MW).
Fast Monte Carlo for radiation therapy: the PEREGRINE Project (Conference)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
| SciTech Connect Fast Monte Carlo for radiation therapy: the PEREGRINE Project Citation Details In-Document Search Title: Fast Monte Carlo for radiation therapy: the PEREGRINE Project × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy
San Carlos Apache Tribe- 2011 Project
Broader source: Energy.gov [DOE]
The core purpose of this project is to provide for the analysis and implementation of a Tribal Energy Organization that can effectively provide for coordination, leadership, and energy expertise to the rest of the tribal government in understanding and pursuing energy programs and plans.
Project Reports for San Carlos Apache Tribe- 2011 Project
Broader source: Energy.gov [DOE]
The core purpose of this project is to provide for the analysis and implementation of a Tribal Energy Organization that can effectively provide for coordination, leadership, and energy expertise to the rest of the tribal government in understanding and pursuing energy programs and plans.
San Carlos Apache Tribe Set to Break Ground on New Solar Project...
This spring, the San Carlos Apache Tribe is planning to break ground on a new tribally financed and owned 1.1-megawatt (MW) solar photovoltaic (PV) array. The PV system will ...
MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics
Pater, P; Vallieres, M; Seuntjens, J
2014-06-15
Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dose deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges
Energy Science and Technology Software Center (OSTI)
2010-10-20
The "Monte Carlo Benchmark" (MCB) is intended to model the computatiional performance of Monte Carlo algorithms on parallel architectures. It models the solution of a simple heuristic transport equation using a Monte Carlo technique. The MCB employs typical features of Monte Carlo algorithms such as particle creation, particle tracking, tallying particle information, and particle destruction. Particles are also traded among processors using MPI calls.
Energy Science and Technology Software Center (OSTI)
2006-05-09
The Monte Carlo example programs VARHATOM and DMCATOM are two small, simple FORTRAN programs that illustrate the use of the Monte Carlo Mathematical technique for calculating the ground state energy of the hydrogen atom.
Carlos Wagner | Argonne National Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Carlos Wagner Physicist, Group Leader Telephone (630) 252-3759 E-mail cwagner
DOE Science Showcase - Monte Carlo Methods | OSTI, US Dept of Energy Office
Office of Scientific and Technical Information (OSTI)
of Scientific and Technical Information Monte Carlo Methods Monte Carlo calculation methods are algorithms for solving various kinds of computational problems by using (pseudo)random numbers. Developed in the 1940s during the Manhattan Project, the Monte Carlo method signified a radical change in how scientists solved problems. Learn about the ways these methods are used in DOE's research endeavors today in "Monte Carlo Methods" by Dr. William Watson, Physicist, OSTI staff. Image
McIlhany, K.; Whitehouse, D.; Smith, D.; Eisner, A.M.; Wang, Y.X.
1994-12-31
A Monte Carlo program describing the response of the Liquid Scintillation Neutrino Detector (LSND) at the Los Alamos Meson Physics Facility (LAMPF) was written using the GEANT geometry and simulation package. Neutrino interactions were simulated in the detector through the production of Cerenkov and scintillation light in the range of 2-3 eV. Since GEANT does not normally track photons to electron-volt energies, the tracking program (TRAK) was modified to produce both Cerenkov and scintillator light, the latter being simulated using the Birks equation. The LSND Monte Carlo program was used to predict the quantity of scintillator (b-PBD) used in the mineral oil to provide a ratio of roughly 4:1 light output resulting from scintillation and Cerenkov light respectively.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Quantum Monte Carlo for the Electronic Structure of Atoms and Molecules Brian Austin Lester Group, U.C. Berkeley BES Requirements Workshop Rockville, MD February 9, 2010 Outline Applying QMC to diverse chemical systems Select systems with high interest and impact Phenol: bond dissociation energy Retinal: excitation energy Algorithmic details Parallel Strategy Wave function evaluation O-H Bond Dissociation Energy of Phenol Ph-OH Ph-O * + H * (36 valence electrons)
Marcus, Ryan C.
2012-07-25
MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.
Federal University of Sao Carlos | Open Energy Information
Sao Carlos Jump to: navigation, search Name: Federal University of Sao Carlos Place: Sao Carlos, Sao Paulo, Brazil Zip: 13565-905 Product: Federal university of Sao Carlos....
Monte Carlo simulation for the transport beamline
Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.
2013-07-26
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.
Isotropic Monte Carlo Grain Growth
Energy Science and Technology Software Center (OSTI)
2013-04-25
IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.
The Monte Carlo Independent Column Approximation Model Intercomparison
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Project (McMIP) The Monte Carlo Independent Column Approximation Model Intercomparison Project (McMIP) Barker, Howard Meteorological Service of Canada Cole, Jason Meteorological Service of Canada Raisanen, Petri Finnish Meteorological Institute Pincus, Robert NOAA-CIRES Climate Diagnostics Center Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts Li, Jiangnan Canadian Center for Climate Modelling Stephens, Graeme Colorado State University Vaillancourt, Paul
Exact Monte Carlo for molecules
Lester, W.A. Jr.; Reynolds, P.J.
1985-03-01
A brief summary of the fixed-node quantum Monte Carlo method is presented. Results obtained for binding energies, the classical barrier height for H + H2, and the singlet-triplet splitting in methylene are presented and discussed. 17 refs.
San Carlos Apache Tribe - Energy Organizational Analysis
Rapp, James; Albert, Steve
2012-04-01
The San Carlos Apache Tribe (SCAT) was awarded $164,000 in late-2011 by the U.S. Department of Energy (U.S. DOE) Tribal Energy Program's "First Steps Toward Developing Renewable Energy and Energy Efficiency on Tribal Lands" Grant Program. This grant funded: The analysis and selection of preferred form(s) of tribal energy organization (this Energy Organization Analysis, hereinafter referred to as "EOA"). Start-up staffing and other costs associated with the Phase 1 SCAT energy organization. An intern program. Staff training. Tribal outreach and workshops regarding the new organization and SCAT energy programs and projects, including two annual tribal energy summits (2011 and 2012). This report documents the analysis and selection of preferred form(s) of a tribal energy organization.
Quantum Monte Carlo Calculations in Nuclear Theory | Argonne Leadership
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Computing Facility Blue Gene/Q scaling This figure shows Blue Gene/Q scaling with respect to increasing number of nodes for calculations of the first isospin-1 state of $^{12}$C. The good multinode scaling is a result of the ADLB library. Quantum Monte Carlo Calculations in Nuclear Theory PI Name: Steven Pieper PI Email: spieper@anl.gov Institution: Argonne National Laboratory Allocation Program: ESP Year: 2015 Research Domain: Physics Tier 2 Code Development Project Numerical
Carlos Duarte Priya Gandhi Antony Kim Jared Landsman
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Carlos Duarte Priya Gandhi Antony Kim Jared Landsman Luis Santos Sara Tepfer Taoning Wang Team Negawatt Broader context Selected site Los Angeles, CA (Koreatown District) Built in 1916 & Designated a Historical Monument in 1998 3450 ft 2 Single Family Dwelling Project site CZ9 weather station CZ8 weather station Climate Climate zone 9 Climate zone 8 Climate zone 6 ● Increase urban density ● Rehab an existing building ● Maintain historical preservation status ● Zero Net Energy (ZNE)
Monte Carlo Simulations of APEX
Xu, G.
1995-10-01
Monte Carlo simulationsof the APEX apparatus, a spectrometer designed to meausre positron-electron pairs produced in heavy-ion collisions, carried out using GEANT are reported. The results of these simulations are compared with data from measurements of conversion electron, positron and part emitting sources as well as with the results of in-beam measurements of positrons and electrons. The overall description of the performance of the apparatus is excellent.
Energy Monte Carlo (EMCEE) | Open Energy Information
with a specific set of distributions. Both programs run as spreadsheet workbooks in Microsoft Excel. EMCEE and Emc2 require Crystal Ball, a commercially available Monte Carlo...
ARM - Carlos Sousa Interview (English Version)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
DeployementCarlos Sousa Interview (English Version) Azores Deployment AMF Home Graciosa Island Home Data Plots and Baseline Instruments Satellite Retrievals Experiment Planning...
APR1400 LBLOCA uncertainty quantification by Monte Carlo method and comparison with Wilks' formula
Hwang, M.; Bae, S.; Chung, B. D.
2012-07-01
An analysis of the uncertainty quantification for the PWR LBLOCA by the Monte Carlo calculation has been performed and compared with the tolerance level determined by Wilks' formula. The uncertainty range and distribution of each input parameter associated with the LBLOCA accident were determined by the PIRT results from the BEMUSE project. The Monte-Carlo method shows that the 95. percentile PCT value can be obtained reliably with a 95% confidence level using the Wilks' formula. The extra margin by the Wilks' formula over the true 95. percentile PCT by the Monte-Carlo method was rather large. Even using the 3 rd order formula, the calculated value using the Wilks' formula is nearly 100 K over the true value. It is shown that, with the ever increasing computational capability, the Monte-Carlo method is accessible for the nuclear power plant safety analysis within a realistic time frame. (authors)
Monte%20Carlo.jpg | OSTI, US Dept of Energy Office of Scientific and
Office of Scientific and Technical Information (OSTI)
Technical Information Monte%20Carlo
Monte-Carlo particle dynamics in a variable specific impulse...
Office of Scientific and Technical Information (OSTI)
Monte-Carlo particle dynamics in a variable specific impulse magnetoplasma rocket Citation Details In-Document Search Title: Monte-Carlo particle dynamics in a variable specific ...
Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator...
Office of Scientific and Technical Information (OSTI)
Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics Citation Details In-Document Search Title: Applications of FLUKA Monte Carlo Code for Nuclear and ...
Fundamentals of Monte Carlo (Technical Report) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
Fundamentals of Monte Carlo Citation Details In-Document Search Title: Fundamentals of Monte Carlo Authors: Wollaber, Allan Benton 1 + Show Author Affiliations Los Alamos ...
A hybrid Monte Carlo method for equilibrium equation of state...
Office of Scientific and Technical Information (OSTI)
MONTE CARLO SIMULATION METHODS Benchmark for perturbation theory methods NPT, NVT - single ... EXPLOSIVES; MIXTURES; MONTE CARLO METHOD; PERTURBATION THEORY; SHOCK WAVES; SIMULATION
Optimized nested Markov chain Monte Carlo sampling: theory (Conference...
Office of Scientific and Technical Information (OSTI)
Optimized nested Markov chain Monte Carlo sampling: theory Citation Details In-Document Search Title: Optimized nested Markov chain Monte Carlo sampling: theory Metropolis Monte ...
Fast Monte Carlo for radiation therapy: the PEREGRINE Project...
Office of Scientific and Technical Information (OSTI)
The purpose of the PEREGRINE program is to bring high-speed, ... Language: English Subject: 55 BIOLOGY AND MEDICINE, BASIC STUDIES; RADIOTHERAPY; PLANNING; COMPUTER CALCULATIONS; ...
Monte Carlo Ion Transport Analysis Code.
Energy Science and Technology Software Center (OSTI)
2009-04-15
Version: 00 TRIPOS is a versatile Monte Carlo ion transport analysis code. It has been applied to the treatment of both surface and bulk radiation effects. The media considered is composed of multilayer polyatomic materials.
Improved Monte Carlo Renormalization Group Method
DOE R&D Accomplishments [OSTI]
Gupta, R.; Wilson, K. G.; Umrigar, C.
1985-01-01
An extensive program to analyze critical systems using an Improved Monte Carlo Renormalization Group Method (IMCRG) being undertaken at LANL and Cornell is described. Here we first briefly review the method and then list some of the topics being investigated.
An Advanced Neutronic Analysis Toolkit with Inline Monte Carlo capability for BHTR Analysis
William R. Martin; John C. Lee
2009-12-30
Monte Carlo capability has been combined with a production LWR lattice physics code to allow analysis of high temperature gas reactor configurations, accounting for the double heterogeneity due to the TRISO fuel. The Monte Carlo code MCNP5 has been used in conjunction with CPM3, which was the testbench lattice physics code for this project. MCNP5 is used to perform two calculations for the geometry of interest, one with homogenized fuel compacts and the other with heterogeneous fuel compacts, where the TRISO fuel kernels are resolved by MCNP5.
Crossing the mesoscale no-mans land via parallel kinetic Monte Carlo.
Garcia Cardona, Cristina (San Diego State University); Webb, Edmund Blackburn, III; Wagner, Gregory John; Tikare, Veena; Holm, Elizabeth Ann; Plimpton, Steven James; Thompson, Aidan Patrick; Slepoy, Alexander (U. S. Department of Energy, NNSA); Zhou, Xiao Wang; Battaile, Corbett Chandler; Chandross, Michael Evan
2009-10-01
The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.
Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis
Wilson, Paul; Evans, Thomas; Tautges, Tim
2012-12-24
This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well
Quantum Monte Carlo by message passing
Bonca, J.; Gubernatis, J.E.
1993-01-01
We summarize results of quantum Monte Carlo simulations of the degenerate single-impurity Anderson model using the impurity algorithm of Hirsch and Fye. Using methods of Bayesian statistical inference, coupled with the principle of maximum entropy, we extracted the single-particle spectral density from the imaginary-time Green's function. The variations of resulting spectral densities with model parameters agree qualitatively with the spectral densities predicted by NCA calculations. All the simulations were performed on a cluster of 16 IBM R6000/560 workstations under the control of the message-passing software PVM. We described the trivial parallelization of our quantum Monte Carlo code both for the cluster and the CM-5 computer. Other issues for effective parallelization of the impurity algorithm are also discussed.
Quantum Monte Carlo by message passing
Bonca, J.; Gubernatis, J.E.
1993-05-01
We summarize results of quantum Monte Carlo simulations of the degenerate single-impurity Anderson model using the impurity algorithm of Hirsch and Fye. Using methods of Bayesian statistical inference, coupled with the principle of maximum entropy, we extracted the single-particle spectral density from the imaginary-time Green`s function. The variations of resulting spectral densities with model parameters agree qualitatively with the spectral densities predicted by NCA calculations. All the simulations were performed on a cluster of 16 IBM R6000/560 workstations under the control of the message-passing software PVM. We described the trivial parallelization of our quantum Monte Carlo code both for the cluster and the CM-5 computer. Other issues for effective parallelization of the impurity algorithm are also discussed.
Carlo Rovelli Aix-Marseille University
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
possible quantum gravity observation: cosmic rays from Planck stars, or black-to-white hole decay Carlo Rovelli Aix-Marseille University June 22, 2016 4:00 p.m. - Wilson Hall, One West The possibility of observing quantum gravitational phenomena, viewed as remote until not long ago, is increasingly considered to be plausible. Here I focus of a potentially observable phenomenon: black holes are classically stable, but can decay via a quantum gravitational tunneling akin to standard nuclear decay.
Status of Monte-Carlo Event Generators
Hoeche, Stefan; /SLAC
2011-08-11
Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.
A Monte Carlo algorithm for degenerate plasmas
Turrell, A.E. Sherlock, M.; Rose, S.J.
2013-09-15
A procedure for performing Monte Carlo calculations of plasmas with an arbitrary level of degeneracy is outlined. It has possible applications in inertial confinement fusion and astrophysics. Degenerate particles are initialised according to the FermiDirac distribution function, and scattering is via a Pauli blocked binary collision approximation. The algorithm is tested against degenerate electronion equilibration, and the degenerate resistivity transport coefficient from unmagnetised first order transport theory. The code is applied to the cold fuel shell and alpha particle equilibration problem of inertial confinement fusion.
Carlos Hernandez Faham LBNL NERSC@40
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Hernandez Faham LBNL NERSC@40 Feb 5, 2014 The Large Underground Xenon (LUX) experiment and NERSC NERSC@40 Feb 5, 2014 Carlos Faham 2 Then and now... The Malloc machine, 1933 Edison, 2014 Solved 10 simultaneous differential equations Can do that, too When researchers talk about neutron stars, dark matter and gravitational lenses, they all start the same way: "Zwicky noticed this problem in the 1930s. Back then, nobody listened . . ." Stephen Maurer "Who the devil are you?" *
Quantitative Monte Carlo-based holmium-166 SPECT reconstruction
Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de; Viergever, Max A.
2013-11-15
Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80
Quantum Monte Carlo methods for nuclear physics
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
THE MCNPX MONTE CARLO RADIATION TRANSPORT CODE
WATERS, LAURIE S.; MCKINNEY, GREGG W.; DURKEE, JOE W.; FENSIN, MICHAEL L.; JAMES, MICHAEL R.; JOHNS, RUSSELL C.; PELOWITZ, DENISE B.
2007-01-10
MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4B, and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics; particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development.
Quantum Monte Carlo methods for nuclear physics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.
2015-09-09
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Quantum Monte Carlo methods for nuclear physics
Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.
2015-09-09
Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Four decades of implicit Monte Carlo
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wollaber, Allan B.
2016-04-25
In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M.S.; Ricketson, L.F.; Dimits, A.M.; Caflisch, R.E.; Cohen, B.I.
2014-10-01
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε{sup −2}) or O(ε{sup −2}(lnε){sup 2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε{sup −3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10{sup −5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Quantum Monte Carlo methods for nuclear physics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
San Carlos, California: Energy Resources | Open Energy Information
Energy Companies in San Carlos, California Cleeves Engines, Inc. LiveFuels Inc Tesla Motors Tesla Motors Inc References US Census Bureau Incorporated place and minor...
Cluster expansion modeling and Monte Carlo simulation of alnico...
Office of Scientific and Technical Information (OSTI)
Accepted Manuscript: Cluster expansion modeling and Monte Carlo simulation of alnico 5-7 permanent magnets This content will become publicly available on March 5, 2016 Prev Next...
Evaluation of Monte Carlo Electron-Transport Algorithms in the...
Office of Scientific and Technical Information (OSTI)
Series Codes for Stochastic-Media Simulations. Citation Details In-Document Search Title: Evaluation of Monte Carlo Electron-Transport Algorithms in the Integrated Tiger Series ...
Molecular Monte Carlo Simulations Using Graphics Processing Units...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors....
HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid Architectures
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
fidelity simulation of a diverse range of kinetic systems. Available for thumbnail of Feynman Center (505) 665-9090 Email HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid...
Optimal sampling efficiency in Monte Carlo sampling with an approximat...
Office of Scientific and Technical Information (OSTI)
Journal Article: Optimal sampling efficiency in Monte Carlo sampling with an approximate potential Citation Details In-Document Search Title: Optimal sampling efficiency in Monte ...
San Carlos Apache Tribe 2008 - 2011 Energy Program Review and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
2008 - 2011 Energy Program Review & 2011 - 2012 ENERGY ORGANIZATION ANALYSIS Burden ... * 11,700 resident Tribal members. * Communities - San Carlos, Bylas, Peridot. * Cutter ...
Quantum Monte Carlo Calculations of Light Nuclei Using Chiral...
Office of Scientific and Technical Information (OSTI)
Title: Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials Authors: Lynn, J. E. ; Carlson, J. ; Epelbaum, E. ; Gandolfi, S. ; Gezerlis, A. ; Schwenk, A. ...
Dupuis, Paul
2014-03-14
This proposal is concerned with applications of Monte Carlo to problems in physics and chemistry where rare events degrade the performance of standard Monte Carlo. One class of problems is concerned with computation of various aspects of the equilibrium behavior of some Markov process via time averages. The problem to be overcome is that rare events interfere with the efficient sampling of all relevant parts of phase space. A second class concerns sampling transitions between two or more stable attractors. Here, rare events do not interfere with the sampling of all relevant parts of phase space, but make Monte Carlo inefficient because of the very large number of samples required to obtain variance comparable to the quantity estimated. The project uses large deviation methods for the mathematical analyses of various Monte Carlo techniques, and in particular for algorithmic analysis and design. This is done in the context of relevant application areas, mainly from chemistry and biology.
Reduced Variance for Material Sources in Implicit Monte Carlo
Urbatsch, Todd J.
2012-06-25
Implicit Monte Carlo (IMC), a time-implicit method due to Fleck and Cummings, is used for simulating supernovae and inertial confinement fusion (ICF) systems where x-rays tightly and nonlinearly interact with hot material. The IMC algorithm represents absorption and emission within a timestep as an effective scatter. Similarly, the IMC time-implicitness splits off a portion of a material source directly into the radiation field. We have found that some of our variance reduction and particle management schemes will allow large variances in the presence of small, but important, material sources, as in the case of ICF hot electron preheat sources. We propose a modification of our implementation of the IMC method in the Jayenne IMC Project. Instead of battling the sampling issues associated with a small source, we bypass the IMC implicitness altogether and simply deterministically update the material state with the material source if the temperature of the spatial cell is below a user-specified cutoff. We describe the modified method and present results on a test problem that show the elimination of variance for small sources.
Exploring theory space with Monte Carlo reweighting
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists andmore » experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less
Exploring theory space with Monte Carlo reweighting
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.
Exploring theory space with Monte Carlo reweighting
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. In particular, we suggest procedures that allow more efficient collaboration between theoristsmoreand experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.less
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
DOE Projects MicroBooNE Project Web Pages The Project Pages hold information and links for the collaboration and its Project Managers, and also hold links to project Director's and ...
Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions...
Office of Scientific and Technical Information (OSTI)
Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions With Material At Finite Temperature Citation Details In-Document Search Title: Monte Carlo Implementation Of ...
Recent advances and future prospects for Monte Carlo
Brown, Forrest B
2010-01-01
The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codes such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.
VWA-0021- In the Matter of Carlos M. Castillo
Broader source: Energy.gov [DOE]
This Decision involves a complaint filed by Carlos M. Castillo (Castillo or “the complainant”) under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708....
San Carlos Apache Tribe Energy Organization Analysis & Solar...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
... 1.4MW community-scale solar power @ Apache Gold CasinoResort. * Install solar @ new Bylas ... Energy Summit December 10-11, 2012 Apache Gold CasinoResort San Carlos, Arizona Gail ...
Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons...
Office of Scientific and Technical Information (OSTI)
Technical Report: Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons and Gamma Rays: Application to Thermal Neutron-Induced Fission Reactions on U-235 and Pu-239 ...
Generalizing the self-healing diffusion Monte Carlo approach...
Office of Scientific and Technical Information (OSTI)
Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: A path for the optimization of low-energy many-body bases Citation Details In-Document Search ...
Efficient Monte Carlo Simulations of Gas Molecules Inside Porous...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials Previous Next List J. Kim and B. Smit, J. Chem. Theory Comput. 8 (7), 2336 (2012) DOI: 10.1021ct3003699 ...
Monte Carlo Hybrid Applied to Binary Stochastic Mixtures
Energy Science and Technology Software Center (OSTI)
2008-08-11
The purpose of this set of codes isto use an inexpensive, approximate deterministic flux distribution to generate weight windows, wihich will then be used to bound particle weights for the Monte Carlo code run. The process is not automated; the user must run the deterministic code and use the output file as a command-line argument for the Monte Carlo code. Two sets of text input files are included as test problems/templates.
Multiscale MonteCarlo equilibration: Pure Yang-Mills theory
Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; Detmold, William; Pochinsky, Andrew V.
2015-12-29
In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
LaboratoryNational Security Education Center Menu NSEC Educational Programs Los Alamos Dynamics Summer School Science of Signatures Advanced Studies Institute Judicial Science School SHM Data Sets and Software Research Projects Current Projects Past Projects Publications NSEC » Engineering Institute » Research Projects » Joint Los Alamos National Laboratory/UCSD research projects Past Research Projects Previous collaborations between Los Alamos National Laboratory and the University of
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Current Research Projects Joint Los Alamos National LaboratoryUCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Project Accounts Project Accounts A redirector page has been set up without anywhere to redirect to. Last edited: 2016-04-29 11:34:50
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Project Gnome Double Beta Decay Dark Matter Biology Repository Science Renewable Energy The first underground physics experiment near Carlsbad was Project Gnome, December 10, 1961 ...
Tsvetkov, Pavel V.; Ames II, David E.; Alajo, Ayodeji B.; Pritchard, Megan L.
2006-07-01
Partitioning and transmutation of minor actinides are expected to have a positive impact on the future of nuclear technology. Their deployment would lead to incineration of hazardous nuclides and could potentially provide additional fuel supply. The U.S. DOE NERI Project assesses the possibility, advantages and limitations of involving minor actinides as a fuel component. The analysis takes into consideration and compares capabilities of actinide-fueled VHTRs with pebble-bed and prismatic cores to approach a reactor lifetime long operation without intermediate refueling. A hybrid Monte Carlo-deterministic methodology has been adopted for coupled neutronics-thermal hydraulics design studies of VHTRs. Within the computational scheme, the key technical issues are being addressed and resolved by implementing efficient automated modeling procedures and sequences, combining Monte Carlo and deterministic approaches, developing and applying realistic 3D coupled neutronics-thermal-hydraulics models with multi-heterogeneity treatments, developing and performing experimental/computational benchmarks for model verification and validation, analyzing uncertainty effects and error propagation. This paper introduces the suggested modeling approach, discusses benchmark results and the preliminary analysis of actinide-fueled VHTRs. The presented up-to-date results are in agreement with the available experimental data. Studies of VHTRs with minor actinides suggest promising performance. (authors)
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28
Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Project Information Slider award map The REE Program funds projects focused on developing economically feasible and environmentally benign technologies for recovering REEs from coal and/or coal by-products. Project Information The listed projects represent the current REE program portfolio. Agreement Number Project Title Performer Name FWP-RIC REE FY2016-2020 Rare Earth Elements (REE) from Coal and Coal By-Products National Energy Technology Laboratory FE0027167 High Yield and Economical
Bayesian Monte Carlo Method for Nuclear Data Evaluation
Koning, A.J.
2015-01-15
A Bayesian Monte Carlo method is outlined which allows a systematic evaluation of nuclear reactions using TALYS. The result will be either an EXFOR-weighted covariance matrix or a collection of random files, each accompanied by an experiment based weight.
Monte Carlo event generators for hadron-hadron collisions
Knowles, I.G.; Protopopescu, S.D.
1993-06-01
A brief review of Monte Carlo event generators for simulating hadron-hadron collisions is presented. Particular emphasis is placed on comparisons of the approaches used to describe physics elements and identifying their relative merits and weaknesses. This review summarizes a more detailed report.
Monte-Carlo simulation of noise in hard X-ray Transmission Crystal...
Office of Scientific and Technical Information (OSTI)
Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: ... Title: Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Grand Coulee Transmission Line Replacement Project Hooper Springs McNary-John Day Montana-to-Washington Transmission System Upgrade Project - M2W Olympia-Grand Coulee No. 1...
Broader source: Energy.gov [DOE]
Benefits of the Guidelines for Home Energy Professionals project including reducing energy upgrade costs for consumers, employers, and program administrators.
Broader source: Energy.gov [DOE]
This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.
Calculations of pair production by Monte Carlo methods
Bottcher, C.; Strayer, M.R.
1991-01-01
We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs.
Monte Carlo calculations for r-process nucleosynthesis
Mumpower, Matthew Ryan
2015-11-12
A Monte Carlo framework is developed for exploring the impact of nuclear model uncertainties on the formation of the heavy elements. Mass measurements tightly constrain the macroscopic sector of FRDM2012. For r-process nucleosynthesis, it is necessary to understand the microscopic physics of the nuclear model employed. A combined approach of measurements and a deeper understanding of the microphysics is thus warranted to elucidate the site of the r-process.
Solar Feasibility Study May 2013 - San Carlos Apache Tribe
Rapp, Jim; Duncan, Ken; Albert, Steve
2013-05-01
The San Carlos Apache Tribe (Tribe) in the interests of strengthening tribal sovereignty, becoming more energy self-sufficient, and providing improved services and economic opportunities to tribal members and San Carlos Apache Reservation (Reservation) residents and businesses, has explored a variety of options for renewable energy development. The development of renewable energy technologies and generation is consistent with the Tribe’s 2011 Strategic Plan. This Study assessed the possibilities for both commercial-scale and community-scale solar development within the southwestern portions of the Reservation around the communities of San Carlos, Peridot, and Cutter, and in the southeastern Reservation around the community of Bylas. Based on the lack of any commercial-scale electric power transmission between the Reservation and the regional transmission grid, Phase 2 of this Study greatly expanded consideration of community-scale options. Three smaller sites (Point of Pines, Dudleyville/Winkleman, and Seneca Lake) were also evaluated for community-scale solar potential. Three building complexes were identified within the Reservation where the development of site-specific facility-scale solar power would be the most beneficial and cost-effective: Apache Gold Casino/Resort, Tribal College/Skill Center, and the Dudleyville (Winkleman) Casino.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Project Tour Project Tour See NMSSUP from the ground NMSSUP Phase II Construction Project Tour Transportation Transportation to the tour will be provided from Hilton Santa Fe Buffalo Thunder to Los Alamos National Laboratory, Technical Area 55. After the tour, transportation will be provided back to Hilton Santa Fe Buffalo Thunder. What to wear Wear comfortable pants and leather shoes (flat, comfortable, closed-toe; no tennis shoes or high heels). Schedule There will be a one-hour, no-host lunch
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
structure whose behavior is fundamentally nonlinear. Thus, the students assigned to this project will develop control techniques that will allow an electrodynamic shake table to...
National Nuclear Security Administration (NNSA)
%2A en Project Management and Systems Support http:nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Energy Management Small Industrial Lighting Compressed Air ESUE Motors Federal Agriculture Custom Projects No two industrial customers are alike; each has its own unique...
Broader source: Energy.gov [DOE]
DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...
National Nuclear Security Administration (NNSA)
3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport
Office of Energy Efficiency and Renewable Energy (EERE)
Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San ...
Integrated Cost and Schedule using Monte Carlo Simulation of a CPM Model - 12419
Hulett, David T.; Nosbisch, Michael R.
2012-07-01
. - Good-quality risk data that are usually collected in risk interviews of the project team, management and others knowledgeable in the risk of the project. The risks from the risk register are used as the basis of the risk data in the risk driver method. The risk driver method is based in the fundamental principle that identifiable risks drive overall cost and schedule risk. - A Monte Carlo simulation software program that can simulate schedule risk, burn WM2012 rate risk and time-independent resource risk. The results include the standard histograms and cumulative distributions of possible cost and time results for the project. However, by simulating both cost and time simultaneously we can collect the cost-time pairs of results and hence show the scatter diagram ('football chart') that indicates the joint probability of finishing on time and on budget. Also, we can derive the probabilistic cash flow for comparison with the time-phased project budget. Finally the risks to schedule completion and to cost can be prioritized, say at the P-80 level of confidence, to help focus the risk mitigation efforts. If the cost and schedule estimates including contingency reserves are not acceptable to the project stakeholders the project team should conduct risk mitigation workshops and studies, deciding which risk mitigation actions to take, and re-run the Monte Carlo simulation to determine the possible improvement to the project's objectives. Finally, it is recommended that the contingency reserves of cost and of time, calculated at a level that represents an acceptable degree of certainty and uncertainty for the project stakeholders, be added as a resource-loaded activity to the project schedule for strategic planning purposes. The risk analysis described in this paper is correct only for the current plan, represented by the schedule. The project contingency reserve of time and cost that are the main results of this analysis apply if that plan is to be followed. Of course project
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
projects Awarded projects 2016 Allocation Awards This page lists the allocation awards for NERSC for the 2016 allocation year (Jan 12, 2016 through Jan 09, 2017). Read More » Previous Year Awards Last edited: 2016-04-29 11:35:1
Properties of reactive oxygen species by quantum Monte Carlo
Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo
2014-07-07
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} ? N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.
Coupled Monte Carlo neutronics and thermal hydraulics for power reactors
Bernnat, W.; Buck, M.; Mattes, M.; Zwermann, W.; Pasichnyk, I.; Velkov, K.
2012-07-01
The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code or memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)
Optimization of Gutzwiller wave functions in quantum Monte Carlo
Koch, E.; Gunnarsson, O.; Martin, R.M.
1999-06-01
Gutzwiller functions are popular variational wave functions for correlated electrons in Hubbard models. Following the variational principle, we are interested in the Gutzwiller parameters that minimize, e.g., the expectation value of the energy. Rewriting the expectation value as a rational function in the Gutzwiller parameters, we find a very efficient way for performing that minimization. The method can be used to optimize general Gutzwiller-type wave functions both in variational and in fixed-node diffusion Monte Carlo. {copyright} {ital 1999} {ital The American Physical Society}
Quantum Monte Carlo Simulation of Overpressurized Liquid {sup 4}He
Vranjes, L.; Boronat, J.; Casulleras, J.; Cazorla, C.
2005-09-30
A diffusion Monte Carlo simulation of superfluid {sup 4}He at zero temperature and pressures up to 275 bar is presented. Increasing the pressure beyond freezing ({approx}25 bar), the liquid enters the overpressurized phase in a metastable state. In this regime, we report results of the equation of state and the pressure dependence of the static structure factor, the condensate fraction, and the excited-state energy corresponding to the roton. Along this large pressure range, both the condensate fraction and the roton energy decrease but do not become zero. The roton energies obtained are compared with recent experimental data in the overpressurized regime.
Communication: Water on hexagonal boron nitride from diffusion Monte Carlo
Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos; Alf, Dario; Lilienfeld, O. Anatole von
2015-05-14
Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of ?84 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.
Cluster Monte Carlo simulations of the nematic-isotropic transition
Priezjev, N. V.; Pelcovits, Robert A.
2001-06-01
We report the results of simulations of the three-dimensional Lebwohl-Lasher model of the nematic-isotropic transition using a single cluster Monte Carlo algorithm. The algorithm, first introduced by Kunz and Zumbach to study two-dimensional nematics, is a modification of the Wolff algorithm for spin systems, and greatly reduces critical slowing down. We calculate the free energy in the neighborhood of the transition for systems up to linear size 70. We find a double well structure with a barrier that grows with increasing system size. We thus obtain an upper estimate of the value of the transition temperature in the thermodynamic limit.
A Post-Monte-Carlo Sensitivity Analysis Code
Energy Science and Technology Software Center (OSTI)
2000-04-04
SATOOL (Sensitivity Analysis TOOL) is a code for sensitivity analysis, following an uncertainity analysis with Monte Carlo simulations. Sensitivity analysis identifies those input variables, whose variance contributes dominatly to the variance in the output. This analysis can be used to reduce the variance in the output variables by redefining the "sensitive" variables with greater precision, i.e. with lower variance. The code identifies a group of sensitive variables, ranks them in the order of importance andmore » also quantifies the relative importance among the sensitive variables.« less
Element Agglomeration Algebraic Multilevel Monte-Carlo Library
Energy Science and Technology Software Center (OSTI)
2015-02-19
ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizationsmore » of subsurface flow problems.« less
Application of Monte Carlo Methods in Molecular Targeted Radionuclide Therapy
Hartmann Siantar, C; Descalle, M-A; DeNardo, G L; Nigg, D W
2002-02-19
Targeted radionuclide therapy promises to expand the role of radiation beyond the treatment of localized tumors. This novel form of therapy targets metastatic cancers by combining radioactive isotopes with tumor-seeking molecules such as monoclonal antibodies and custom-designed synthetic agents. Ultimately, like conventional radiotherapy, the effectiveness of targeted radionuclide therapy is limited by the maximum dose that can be given to a critical, normal tissue, such as bone marrow, kidneys, and lungs. Because radionuclide therapy relies on biological delivery of radiation, its optimization and characterization are necessarily different than for conventional radiation therapy. We have initiated the development of a new, Monte Carlo transport-based treatment planning system for molecular targeted radiation therapy as part of the MINERVA treatment planning system. This system calculates patient-specific radiation dose estimates using a set of computed tomography scans to describe the 3D patient anatomy, combined with 2D (planar image) and 3D (SPECT, or single photon emission computed tomography) to describe the time-dependent radiation source. The accuracy of such a dose calculation is limited primarily by the accuracy of the initial radiation source distribution, overlaid on the patient's anatomy. This presentation provides an overview of MINERVA functionality for molecular targeted radiation therapy, and describes early validation and implementation results of Monte Carlo simulations.
Monte Carlo Fundamentals E B. BROWN and T M. S N
Office of Scientific and Technical Information (OSTI)
or reflect those of the United States Government or any ... Monte Carlo approach: Generate a sequence of states, (pol ... partide from birth to death During the particle ...
OSTIblog Articles in the Monte Carlo Topic | OSTI, US Dept of Energy Office
Office of Scientific and Technical Information (OSTI)
of Scientific and Technical Information Monte Carlo Topic The Unbelievable Accuracy of the Monte Carlo Method by Kathy Chambers 18 Jan, 2013 in Science Communications 4680 Monte%20Carlo.jpg The Unbelievable Accuracy of the Monte Carlo Method Read more about 4680 The year was 1945, the year I was born. That in itself is of great significance to me. However, it was a momentous year in history. World War II came to its merciful end and the development of the first electronic computer - the
Monte Carlo Bayesian search for the plausible source of the Telescope...
Office of Scientific and Technical Information (OSTI)
Title: Monte Carlo Bayesian search for the plausible source of the Telescope Array hotspot Authors: He, Hao-Ning ; Kusenko, Alexander ; Nagataki, Shigehiro ; Zhang, Bin-Bin ; Yang, ...
Broader source: Energy.gov [DOE]
Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE materials, as well as efficient material integration and production process.
Office of Scientific and Technical Information (OSTI)
William Apel and Frank Roberto at) the Biotechnology Department at the INEEL. Each part of this project is funded under a different contract with the Science Division of the US ...
Broader source: Energy.gov [DOE]
EGS projects span research, development, and demonstration. Unlike traditional hydrothermal systems, EGS capture heat from areas that traditional geothermal energy cannot—where fluid and/or...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Research Projects » Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email UCSD Faculty and Graduate
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Research Projects Joint Los Alamos National Laboratory/UCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email "Since 2003, LANL has funded numerous collaborative
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Hybrid Deterministic/Monte Carlo Solutions to the Neutron Transport k-Eigenvalue Problem with a Comparison to Pure Monte Carlo Solutions Jeffrey A. Willert Los Alamos National Laboratory September 16, 2013 Joint work with: Dana Knoll (LANL), Ryosuke Park (LANL), and C. T. Kelley (NCSU) Jeffrey A. Willert Hybrid k-Eigenvalue Methods September 16, 2013 1 / 25 CASL-U-2013-0309-000 1 Introduction 2 Nonlinear Diffusion Acceleration for k-Eigenvalue Problems 3 Hybrid Methods 4 Classic Monte Carlo
Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data
Zourari, K.; Peppa, V.; Papagiannis, P.; Ballester, Facundo; Siebert, Frank-Andr
2014-04-15
Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 201090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (201090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [Diagnostic x-ray shielding design based on an empirical model of photon attenuation, Health Phys. 44, 507517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities, Med. Phys. 34, 13981404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions: The data of
Broader source: Energy.gov [DOE]
DOE Project Scorecards DOE project scorecards summarize capital asset project performance compared to the current approved baseline.
Broader source: Energy.gov [DOE]
DOE Project Scorecards DOEproject scorecards summarize capital asset project performance compared to the current approved baseline.
A study of Monte Carlo radiative transfer through fractal clouds
Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P.
1996-04-01
An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.
Fuel temperature reactivity coefficient calculation by Monte Carlo perturbation techniques
Shim, H. J.; Kim, C. H.
2013-07-01
We present an efficient method to estimate the fuel temperature reactivity coefficient (FTC) by the Monte Carlo adjoint-weighted correlated sampling method. In this method, a fuel temperature change is regarded as variations of the microscopic cross sections and the temperature in the free gas model which is adopted to correct the asymptotic double differential scattering kernel. The effectiveness of the new method is examined through the continuous energy MC neutronics calculations for PWR pin cell problems. The isotope-wise and reaction-type-wise contributions to the FTCs are investigated for two free gas models - the constant scattering cross section model and the exact model. It is shown that the proposed method can efficiently predict the reactivity change due to the fuel temperature variation. (authors)
Monte Carlo prompt dose calculations for the National Ingition Facility
Latkowski, J.F.; Phillips, T.W.
1997-01-01
During peak operation, the National Ignition Facility (NIF) will conduct as many as 600 experiments per year and attain deuterium- tritium fusion yields as high as 1200 MJ/yr. The radiation effective dose equivalent (EDE) to workers is limited to an average of 03 mSv/yr (30 mrem/yr) in occupied areas of the facility. Laboratory personnel determined located outside the facility will receive EDEs <= 0.5 mSv/yr (<= 50 mrem/yr). The total annual occupational EDE for the facility will be maintained at <= 0.1 person-Sv/yr (<= 10 person- rem/yr). To ensure that prompt EDEs meet these limits, three- dimensional Monte Carlo calculations have been completed.
Quantum Monte Carlo simulation of spin-polarized H
Markic, L. Vranjes; Boronat, J.; Casulleras, J.
2007-02-01
The ground-state properties of spin polarized hydrogen H{down_arrow} are obtained by means of diffusion Monte Carlo calculations. Using the most accurate to date ab initio H{down_arrow}-H{down_arrow} interatomic potential we have studied its gas phase, from the very dilute regime until densities above its freezing point. At very small densities, the equation of state of the gas is very well described in terms of the gas parameter {rho}a{sup 3}, with a the s-wave scattering length. The solid phase has also been studied up to high pressures. The gas-solid phase transition occurs at a pressure of 173 bar, a much higher value than suggested by previous approximate descriptions.
Peelle's pertinent puzzle using the Monte Carlo technique
Kawano, Toshihiko; Talou, Patrick; Burr, Thomas; Pan, Feng
2009-01-01
We try to understand the long-standing problem of the Peelle's Pertinent Puzzle (PPP) using the Monte Carlo technique. We allow the probability density functions to be any kind of form to assume the impact of distribution, and obtain the least-squares solution directly from numerical simulations. We found that the standard least squares method gives the correct answer if a weighting function is properly provided. Results from numerical simulations show that the correct answer of PPP is 1.1 {+-} 0.25 if the common error is multiplicative. The thought-provoking answer of 0.88 is also correct, if the common error is additive, and if the error is proportional to the measured values. The least squares method correctly gives us the most probable case, where the additive component has a negative value. Finally, the standard method fails for PPP due to a distorted (non Gaussian) joint distribution.
Optimization of Monte Carlo transport simulations in stochastic media
Liang, C.; Ji, W.
2012-07-01
This paper presents an accurate and efficient approach to optimize radiation transport simulations in a stochastic medium of high heterogeneity, like the Very High Temperature Gas-cooled Reactor (VHTR) configurations packed with TRISO fuel particles. Based on a fast nearest neighbor search algorithm, a modified fast Random Sequential Addition (RSA) method is first developed to speed up the generation of the stochastic media systems packed with both mono-sized and poly-sized spheres. A fast neutron tracking method is then developed to optimize the next sphere boundary search in the radiation transport procedure. In order to investigate their accuracy and efficiency, the developed sphere packing and neutron tracking methods are implemented into an in-house continuous energy Monte Carlo code to solve an eigenvalue problem in VHTR unit cells. Comparison with the MCNP benchmark calculations for the same problem indicates that the new methods show considerably higher computational efficiency. (authors)
Improved version of the PHOBOS Glauber Monte Carlo
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Loizides, C.; Nagle, J.; Steinberg, P.
2015-09-01
“Glauber” models are used to calculate geometric quantities in the initial state of heavy ion collisions, such as impact parameter, number of participating nucleons and initial eccentricity. Experimental heavy-ion collaborations, in particular at RHIC and LHC, use Glauber Model calculations for various geometric observables for determination of the collision centrality. In this document, we describe the assumptions inherent to the approach, and provide an updated implementation (v2) of the Monte Carlo based Glauber Model calculation, which originally was used by the PHOBOS collaboration. The main improvement w.r.t. the earlier version (v1) (Alver et al. 2008) is the inclusion of Tritium,more » Helium-3, and Uranium, as well as the treatment of deformed nuclei and Glauber–Gribov fluctuations of the proton in p +A collisions. A users’ guide (updated to reflect changes in v2) is provided for running various calculations.« less
Monte-Carlo Continuous Energy Burnup Code System.
Energy Science and Technology Software Center (OSTI)
2007-08-31
Version 00 MCB is a Monte Carlo Continuous Energy Burnup Code for a general-purpose use to calculate a nuclide density time evolution with burnup or decay. It includes eigenvalue calculations of critical and subcritical systems as well as neutron transport calculations in fixed source mode or k-code mode to obtain reaction rates and energy deposition that are necessary for burnup calculations. The MCB-1C patch file and data packages as distributed by the NEADB are verymore » well organized and are being made available through RSICC as received. The RSICC package includes the MCB-1C patch and MCB data libraries. Installation of MCB requires MCNP4C source code and utility programs, which are not included in this MCB distribution. They were provided with the now obsolete CCC-700/MCNP-4C package.« less
Optimized nested Markov chain Monte Carlo sampling: theory
Coe, Joshua D; Shaw, M Sam; Sewell, Thomas D
2009-01-01
Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples of the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.
Monte Carlo Simulation Tool Installation and Operation Guide
Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.
2013-09-02
This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hogan, Robin
Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.
Hogan, Robin
2008-01-15
Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.
MONTE-CARLO BURNUP CALCULATION UNCERTAINTY QUANTIFICATION AND PROPAGATION DETERMINATION
Nichols, T.; Sternat, M.; Charlton, W.
2011-05-08
MONTEBURNS is a Monte-Carlo depletion routine utilizing MCNP and ORIGEN 2.2. Uncertainties exist in the MCNP transport calculation, but this information is not passed to the depletion calculation in ORIGEN or saved. To quantify this transport uncertainty and determine how it propagates between burnup steps, a statistical analysis of a multiple repeated depletion runs is performed. The reactor model chosen is the Oak Ridge Research Reactor (ORR) in a single assembly, infinite lattice configuration. This model was burned for a 25.5 day cycle broken down into three steps. The output isotopics as well as effective multiplication factor (k-effective) were tabulated and histograms were created at each burnup step using the Scott Method to determine the bin width. It was expected that the gram quantities and k-effective histograms would produce normally distributed results since they were produced from a Monte-Carlo routine, but some of results do not. The standard deviation at each burnup step was consistent between fission product isotopes as expected, while the uranium isotopes created some unique results. The variation in the quantity of uranium was small enough that, from the reaction rate MCNP tally, round off error occurred producing a set of repeated results with slight variation. Statistical analyses were performed using the {chi}{sup 2} test against a normal distribution for several isotopes and the k-effective results. While the isotopes failed to reject the null hypothesis of being normally distributed, the {chi}{sup 2} statistic grew through the steps in the k-effective test. The null hypothesis was rejected in the later steps. These results suggest, for a high accuracy solution, MCNP cell material quantities less than 100 grams and greater kcode parameters are needed to minimize uncertainty propagation and minimize round off effects.
Modeling granular phosphor screens by Monte Carlo methods
Liaparinos, Panagiotis F.; Kandarakis, Ioannis S.; Cavouras, Dionisis A.; Delis, Harry B.; Panayiotakis, George S.
2006-12-15
The intrinsic phosphor properties are of significant importance for the performance of phosphor screens used in medical imaging systems. In previous analytical-theoretical and Monte Carlo studies on granular phosphor materials, values of optical properties, and light interaction cross sections were found by fitting to experimental data. These values were then employed for the assessment of phosphor screen imaging performance. However, it was found that, depending on the experimental technique and fitting methodology, the optical parameters of a specific phosphor material varied within a wide range of values, i.e., variations of light scattering with respect to light absorption coefficients were often observed for the same phosphor material. In this study, x-ray and light transport within granular phosphor materials was studied by developing a computational model using Monte Carlo methods. The model was based on the intrinsic physical characteristics of the phosphor. Input values required to feed the model can be easily obtained from tabulated data. The complex refractive index was introduced and microscopic probabilities for light interactions were produced, using Mie scattering theory. Model validation was carried out by comparing model results on x-ray and light parameters (x-ray absorption, statistical fluctuations in the x-ray to light conversion process, number of emitted light photons, output light spatial distribution) with previous published experimental data on Gd{sub 2}O{sub 2}S:Tb phosphor material (Kodak Min-R screen). Results showed the dependence of the modulation transfer function (MTF) on phosphor grain size and material packing density. It was predicted that granular Gd{sub 2}O{sub 2}S:Tb screens of high packing density and small grain size may exhibit considerably better resolution and light emission properties than the conventional Gd{sub 2}O{sub 2}S:Tb screens, under similar conditions (x-ray incident energy, screen thickness)
Driscoll, Mary C.
2012-07-12
The Project Narrative describes how the funds from the DOE grant were used to purchase equipment for the biology, chemistry, physics and mathematics departments. The Narrative also describes how the equipment is being used. There is also a list of the positive outcomes as a result of having the equipment that was purchased with the DOE grant.
SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans
Enright, S; Asprinio, A; Lu, L
2014-06-01
Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup } EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup } radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. All phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.
Monte Carlo simulation based study of a proposed multileaf collimator for a telecobalt machine
Sahani, G.; Dash Sharma, P. K.; Hussain, S. A.; Dutt Sharma, Sunil; Sharma, D. N.
2013-02-15
Purpose: The objective of the present work was to propose a design of a secondary multileaf collimator (MLC) for a telecobalt machine and optimize its design features through Monte Carlo simulation. Methods: The proposed MLC design consists of 72 leaves (36 leaf pairs) with additional jaws perpendicular to leaf motion having the capability of shaping a maximum square field size of 35 Multiplication-Sign 35 cm{sup 2}. The projected widths at isocenter of each of the central 34 leaf pairs and 2 peripheral leaf pairs are 10 and 5 mm, respectively. The ends of the leaves and the x-jaws were optimized to obtain acceptable values of dosimetric and leakage parameters. Monte Carlo N-Particle code was used for generating beam profiles and depth dose curves and estimating the leakage radiation through the MLC. A water phantom of dimension 50 Multiplication-Sign 50 Multiplication-Sign 40 cm{sup 3} with an array of voxels (4 Multiplication-Sign 0.3 Multiplication-Sign 0.6 cm{sup 3}= 0.72 cm{sup 3}) was used for the study of dosimetric and leakage characteristics of the MLC. Output files generated for beam profiles were exported to the PTW radiation field analyzer software through locally developed software for analysis of beam profiles in order to evaluate radiation field width, beam flatness, symmetry, and beam penumbra. Results: The optimized version of the MLC can define radiation fields of up to 35 Multiplication-Sign 35 cm{sup 2} within the prescribed tolerance values of 2 mm. The flatness and symmetry were found to be well within the acceptable tolerance value of 3%. The penumbra for a 10 Multiplication-Sign 10 cm{sup 2} field size is 10.7 mm which is less than the generally acceptable value of 12 mm for a telecobalt machine. The maximum and average radiation leakage through the MLC were found to be 0.74% and 0.41% which are well below the International Electrotechnical Commission recommended tolerance values of 2% and 0.75%, respectively. The maximum leakage through the
Spent Nuclear Fuel project, project management plan
Fuquay, B.J.
1995-10-25
The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project
2015-04-02
The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
PROJECT SUMMARY 1 TITLE Advancing Synchrophasor Applications and Training through Academic-Industry Collaborations 2 PRINCIPLE INVESTIGATORS University of Wyoming: Dongliang Duan (PI), John Pierre, Suresh Muknahallipatna (co-PIs) Colorado State University: Liuqing Yang, Louis L. Scharf (co-PIs) Montana Tech of the University of Montana: Daniel Trudnowski, Matthew Donnelly (co-PIs) 3 CONTACT INFORMATION Dongliang Duan Dept. 3295, 1000 E. University Ave. Laramie, WY 82070 Tel: (307)766-6541; Fax:
Quantum Monte Carlo for electronic structure: Recent developments and applications
Rodriquez, M. M.S.
1995-04-01
Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function`s nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C{sub 2}H and C{sub 2}H{sub 2}. The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included.
Quantum Monte Carlo Calculations Applied to Magnetic Molecules
Larry Engelhardt
2006-08-09
We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these
Complete Monte Carlo Simulation of Neutron Scattering Experiments
Drosg, M.
2011-12-13
In the far past, it was not possible to accurately correct for the finite geometry and the finite sample size of a neutron scattering set-up. The limited calculation power of the ancient computers as well as the lack of powerful Monte Carlo codes and the limitation in the data base available then prevented a complete simulation of the actual experiment. Using e.g. the Monte Carlo neutron transport code MCNPX [1], neutron scattering experiments can be simulated almost completely with a high degree of precision using a modern PC, which has a computing power that is ten thousand times that of a super computer of the early 1970s. Thus, (better) corrections can also be obtained easily for previous published data provided that these experiments are sufficiently well documented. Better knowledge of reference data (e.g. atomic mass, relativistic correction, and monitor cross sections) further contributes to data improvement. Elastic neutron scattering experiments from liquid samples of the helium isotopes performed around 1970 at LANL happen to be very well documented. Considering that the cryogenic targets are expensive and complicated, it is certainly worthwhile to improve these data by correcting them using this comparatively straightforward method. As two thirds of all differential scattering cross section data of {sup 3}He(n,n){sup 3}He are connected to the LANL data, it became necessary to correct the dependent data measured in Karlsruhe, Germany, as well. A thorough simulation of both the LANL experiments and the Karlsruhe experiment is presented, starting from the neutron production, followed by the interaction in the air, the interaction with the cryostat structure, and finally the scattering medium itself. In addition, scattering from the hydrogen reference sample was simulated. For the LANL data, the multiple scattering corrections are smaller by a factor of five at least, making this work relevant. Even more important are the corrections to the Karlsruhe data
PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples
Office of Environmental Management (EM)
Organization Examples Example 8 4.0 PROJECT ORGANIZATION Chapter 4.0 describes the principle project organizations, including their responsibilities and relationships. Other organizations, that have an interest in the project, also are described. 4.1 Principal Project Organizations and Responsibilities The management organization for the 324/327 Buildings Stabilization/Deactivation Project represents a partnership between four principal project organizations responsible for the project. The four
MHK Projects/Manchac Point Project | Open Energy Information
el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...
MHK Projects/Claiborne Island Project | Open Energy Information
el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...
MHK Projects/Point Pleasant Project | Open Energy Information
el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...
MHK Projects/College Point Project | Open Energy Information
bel":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St James, LA Project StateProvince Louisiana Project Country United States Project Resource...
Perfetti, Christopher M; Rearden, Bradley T
2014-01-01
This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.
Cohesion Energetics of Carbon Allotropes: Quantum Monte Carlo Study
Shin, Hyeondeok; Kang, Sinabro; Koo, Jahyun; Lee, Hoonkyung; Kim, Jeongnim; Kwon, Yongkyung
2014-01-01
We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp3-bonded diamond, sp2-bonded graphene, sp-sp2 hybridized graphynes, and sp-bonded carbyne. The comput- ed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values de- termined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases system- atically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of -graphyne, the most energetically- stable graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experi- mental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally we conclude that the cohesive energy of a newly-proposed two-dimensional carbon network can be accurately estimated with the carbon-carbon bond energies determined from the cohesive energies of graphene and three different graphynes.
Status of the MORSE multigroup Monte Carlo radiation transport code
Emmett, M.B.
1993-06-01
There are two versions of the MORSE multigroup Monte Carlo radiation transport computer code system at Oak Ridge National Laboratory. MORSE-CGA is the most well-known and has undergone extensive use for many years. MORSE-SGC was originally developed in about 1980 in order to restructure the cross-section handling and thereby save storage. However, with the advent of new computer systems having much larger storage capacity, that aspect of SGC has become unnecessary. Both versions use data from multigroup cross-section libraries, although in somewhat different formats. MORSE-SGC is the version of MORSE that is part of the SCALE system, but it can also be run stand-alone. Both CGA and SGC use the Multiple Array System (MARS) geometry package. In the last six months the main focus of the work on these two versions has been on making them operational on workstations, in particular, the IBM RISC 6000 family. A new version of SCALE for workstations is being released to the Radiation Shielding Information Center (RSIC). MORSE-CGA, Version 2.0, is also being released to RSIC. Both SGC and CGA have undergone other revisions recently. This paper reports on the current status of the MORSE code system.
Pseudopotentials for quantum Monte Carlo studies of transition metal oxides
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.
2016-02-22
Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less
High order Chin actions in path integral Monte Carlo
Sakkos, K.; Casulleras, J.; Boronat, J.
2009-05-28
High order actions proposed by Chin have been used for the first time in path integral Monte Carlo simulations. Contrary to the Takahashi-Imada action, which is accurate to the fourth order only for the trace, the Chin action is fully fourth order, with the additional advantage that the leading fourth-order error coefficients are finely tunable. By optimizing two free parameters entering in the new action, we show that the time step error dependence achieved is best fitted with a sixth order law. The computational effort per bead is increased but the total number of beads is greatly reduced and the efficiency improvement with respect to the primitive approximation is approximately a factor of 10. The Chin action is tested in a one-dimensional harmonic oscillator, a H{sub 2} drop, and bulk liquid {sup 4}He. In all cases a sixth-order law is obtained with values of the number of beads that compare well with the pair action approximation in the stringent test of superfluid {sup 4}He.
Random Number Generation for Petascale Quantum Monte Carlo
Ashok Srinivasan
2010-03-16
The quality of random number generators can affect the results of Monte Carlo computations, especially when a large number of random numbers are consumed. Furthermore, correlations present between different random number streams in a parallel computation can further affect the results. The SPRNG software, which the author had developed earlier, has pseudo-random number generators (PRNGs) capable of producing large numbers of streams with large periods. However, they had been empirically tested on only thousand streams earlier. In the work summarized here, we tested the SPRNG generators with over a hundred thousand streams, involving over 10^14 random numbers per test, on some tests. We also tested the popular Mersenne Twister. We believe that these are the largest tests of PRNGs, both in terms of the numbers of streams tested and the number of random numbers tested. We observed defects in some of these generators, including the Mersenne Twister, while a few generators appeared to perform well. We also corrected an error in the implementation of one of the SPRNG generators.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less
Monte Carlo analysis of localization errors in magnetoencephalography
Medvick, P.A.; Lewis, P.S.; Aine, C.; Flynn, E.R.
1989-01-01
In magnetoencephalography (MEG), the magnetic fields created by electrical activity in the brain are measured on the surface of the skull. To determine the location of the activity, the measured field is fit to an assumed source generator model, such as a current dipole, by minimizing chi-square. For current dipoles and other nonlinear source models, the fit is performed by an iterative least squares procedure such as the Levenberg-Marquardt algorithm. Once the fit has been computed, analysis of the resulting value of chi-square can determine whether the assumed source model is adequate to account for the measurements. If the source model is adequate, then the effect of measurement error on the fitted model parameters must be analyzed. Although these kinds of simulation studies can provide a rough idea of the effect that measurement error can be expected to have on source localization, they cannot provide detailed enough information to determine the effects that the errors in a particular measurement situation will produce. In this work, we introduce and describe the use of Monte Carlo-based techniques to analyze model fitting errors for real data. Given the details of the measurement setup and a statistical description of the measurement errors, these techniques determine the effects the errors have on the fitted model parameters. The effects can then be summarized in various ways such as parameter variances/covariances or multidimensional confidence regions. 8 refs., 3 figs.
Ensemble bayesian model averaging using markov chain Monte Carlo sampling
Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P
2008-01-01
Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.
Monte Carlo Simulations of Cosmic Rays Hadronic Interactions
Aguayo Navarrete, Estanislao; Orrell, John L.; Kouzes, Richard T.
2011-04-01
This document describes the construction and results of the MaCoR software tool, developed to model the hadronic interactions of cosmic rays with different geometries of materials. The ubiquity of cosmic radiation in the environment results in the activation of stable isotopes, referred to as cosmogenic activities. The objective is to use this application in conjunction with a model of the MAJORANA DEMONSTRATOR components, from extraction to deployment, to evaluate cosmogenic activation of such components before and after deployment. The cosmic ray showers include several types of particles with a wide range of energy (MeV to GeV). It is infeasible to compute an exact result with a deterministic algorithm for this problem; Monte Carlo simulations are a more suitable approach to model cosmic ray hadronic interactions. In order to validate the results generated by the application, a test comparing experimental muon flux measurements and those predicted by the application is presented. The experimental and simulated results have a deviation of 3%.
Improving computational efficiency of Monte Carlo simulations with variance reduction
Turner, A.
2013-07-01
CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise to extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)
MARKOV CHAIN MONTE CARLO POSTERIOR SAMPLING WITH THE HAMILTONIAN METHOD
K. HANSON
2001-02-01
The Markov Chain Monte Carlo technique provides a means for drawing random samples from a target probability density function (pdf). MCMC allows one to assess the uncertainties in a Bayesian analysis described by a numerically calculated posterior distribution. This paper describes the Hamiltonian MCMC technique in which a momentum variable is introduced for each parameter of the target pdf. In analogy to a physical system, a Hamiltonian H is defined as a kinetic energy involving the momenta plus a potential energy {var_phi}, where {var_phi} is minus the logarithm of the target pdf. Hamiltonian dynamics allows one to move along trajectories of constant H, taking large jumps in the parameter space with relatively few evaluations of {var_phi} and its gradient. The Hamiltonian algorithm alternates between picking a new momentum vector and following such trajectories. The efficiency of the Hamiltonian method for multidimensional isotropic Gaussian pdfs is shown to remain constant at around 7% for up to several hundred dimensions. The Hamiltonian method handles correlations among the variables much better than the standard Metropolis algorithm. A new test, based on the gradient of {var_phi}, is proposed to measure the convergence of the MCMC sequence.
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.
LCOE Uncertainty Analysis for Hydropower using Monte Carlo Simulations
Chalise, Dol Raj; O'Connor, Patrick W; DeNeale, Scott T; Uria Martinez, Rocio; Kao, Shih-Chieh
2015-01-01
Levelized Cost of Energy (LCOE) is an important metric to evaluate the cost and performance of electricity production generation alternatives, and combined with other measures, can be used to assess the economics of future hydropower development. Multiple assumptions on input parameters are required to calculate the LCOE, which each contain some level of uncertainty, in turn affecting the accuracy of LCOE results. This paper explores these uncertainties, their sources, and ultimately the level of variability they introduce at the screening level of project evaluation for non-powered dams (NPDs) across the U.S. Owing to site-specific differences in site design, the LCOE for hydropower varies significantly from project to project unlike technologies with more standardized configurations such as wind and gas. Therefore, to assess the impact of LCOE input uncertainty on the economics of U.S. hydropower resources, these uncertainties must be modeled across the population of potential opportunities. To demonstrate the impact of uncertainty, resource data from a recent nationwide non-powered dam (NPD) resource assessment (Hadjerioua et al., 2012) and screening-level predictive cost equations (O Connor et al., 2015) are used to quantify and evaluate uncertainties in project capital and operations & maintenance costs, and generation potential at broad scale. LCOE dependence on financial assumptions is also evaluated on a sensitivity basis to explore ownership/investment implications on project economics for the U.S. hydropower fleet. The results indicate that the LCOE for U.S. NPDs varies substantially. The LCOE estimates for the potential NPD projects of capacity greater than 1 MW range from 40 to 182 $/MWh, with average of 106 $/MWh. 4,000 MW could be developed through projects with individual LCOE values below 100 $/MWh. The results also indicate that typically 90 % of LCOE uncertainty can be attributed to uncertainties in capital costs and energy production; however
Loyal, Rebecca E.
2015-07-14
The objective of the Portunus Project is to create large, automated offshore ports that will the pace and scale of international trade. Additionally, these ports would increase the number of U.S. domestic trade vessels needed, as the imported goods would need to be transported from these offshore platforms to land-based ports such as Boston, Los Angeles, and Newark. Currently, domestic trade in the United States can only be conducted by vessels that abide by the Merchant Marine Act of 1920 – also referred to as the Jones Act. The Jones Act stipulates that vessels involved in domestic trade must be U.S. owned, U.S. built, and manned by a crew made up of U.S. citizens. The Portunus Project would increase the number of Jones Act vessels needed, which raises an interesting economic concern. Are Jones Act ships more expensive to operate than foreign vessels? Would it be more economically efficient to modify the Jones Act and allow vessels manned by foreign crews to engage in U.S. domestic trade? While opposition to altering the Jones Act is strong, it is important to consider the possibility that ship-owners who employ foreign crews will lobby for the chance to enter a growing domestic trade market. Their success would mean potential job loss for thousands of Americans currently employed in maritime trade.
On-the-fly nuclear data processing methods for Monte Carlo simulations of fast spectrum systems
Walsh, Jon
2015-08-31
The presentation summarizes work performed over summer 2015 related to Monte Carlo simulations. A flexible probability table interpolation scheme has been implemented and tested with results comparing favorably to the continuous phase-space on-the-fly approach.
On-the-Fly Doppler Broadening for Monte Carlo Codes (Journal...
Office of Scientific and Technical Information (OSTI)
Title: On-the-Fly Doppler Broadening for Monte Carlo Codes Authors: Yesilyurt, G. ; Martin, W. ; Brown, F. 1 ; Univ. of Michigan) 2 ; Los Alamos National Laboratory) 2 + Show ...
SU-E-T-323: The FLUKA Monte Carlo Code in Ion Beam Therapy
Rinaldi, I
2014-06-01
Purpose: Monte Carlo (MC) codes are increasingly used in the ion beam therapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code demands accurate and reliable physical models for the transport and the interaction of all components of the mixed radiation field. This contribution will address an overview of the recent developments in the FLUKA code oriented to its application in ion beam therapy. Methods: FLUKA is a general purpose MC code which allows the calculations of particle transport and interactions with matter, covering an extended range of applications. The user can manage the code through a graphic interface (FLAIR) developed using the Python programming language. Results: This contribution will present recent refinements in the description of the ionization processes and comparisons between FLUKA results and experimental data of ion beam therapy facilities. Moreover, several validations of the largely improved FLUKA nuclear models for imaging application to treatment monitoring will be shown. The complex calculation of prompt gamma ray emission compares favorably with experimental data and can be considered adequate for the intended applications. New features in the modeling of proton induced nuclear interactions also provide reliable cross section predictions for the production of radionuclides. Of great interest for the community are the developments introduced in FLAIR. The most recent efforts concern the capability of importing computed-tomography images in order to build automatically patient geometries and the implementation of different types of existing positron-emission-tomography scanner devices for imaging applications. Conclusion: The FLUA code has been already chosen as reference MC code in many ion beam therapy centers, and is being continuously improved in order to match the needs of ion beam therapy applications. Parts of this work have been supported by the European
Capital Project Prioritization
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Capital-Project-Prioritization Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...
PROJECT MANAGEMENT PLANS Project Management Plans
Office of Environmental Management (EM)
MANAGEMENT PLANS Project Management Plans Overview Project Management Plan Suggested Outline Subjects Crosswalk between the Suggested PMP Outline Subjects and a Listing ...
Preparing for Project Implementation Financing Project Implementation
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Financing Project Implementation Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference Agenda Seminar Series ...
Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; Detmold, William; Pochinsky, Andrew V.
2015-12-29
In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.
Utility of Monte Carlo Modelling for Holdup Measurements.
Belian, Anthony P.; Russo, P. A.; Weier, Dennis R. ,
2005-01-01
Non-destructive assay (NDA) measurements performed to locate and quantify holdup in the Oak Ridge K25 enrichment cascade used neutron totals counting and low-resolution gamma-ray spectroscopy. This facility housed the gaseous diffusion process for enrichment of uranium, in the form of UF{sub 6} gas, from {approx} 20% to 93%. Inventory of {sup 235}U inventory in K-25 is all holdup. These buildings have been slated for decontaminatino and decommissioning. The NDA measurements establish the inventory quantities and will be used to assure criticality safety and meet criteria for waste analysis and transportation. The tendency to err on the side of conservatism for the sake of criticality safety in specifying total NDA uncertainty argues, in the interests of safety and costs, for obtaining the best possible value of uncertainty at the conservative confidence level for each item of process equipment. Variable deposit distribution is a complex systematic effect (i.e., determined by multiple independent variables) on the portable NDA results for very large and bulk converters that contributes greatly to total uncertainty for holdup in converters measured by gamma or neutron NDA methods. Because the magnitudes of complex systematic effects are difficult to estimate, computational tools are important for evaluating those that are large. Motivated by very large discrepancies between gamma and neutron measurements of high-mass converters with gamma results tending to dominate, the Monte Carlo code MCNP has been used to determine the systematic effects of deposit distribution on gamma and neutron results for {sup 235}U holdup mass in converters. This paper details the numerical methodology used to evaluate large systematic effects unique to each measurement type, validates the methodology by comparison with measurements, and discusses how modeling tools can supplement the calibration of instruments used for holdup measurements by providing realistic values at well
MONTE CARLO SIMULATION OF METASTABLE OXYGEN PHOTOCHEMISTRY IN COMETARY ATMOSPHERES
Bisikalo, D. V.; Shematovich, V. I. [Institute of Astronomy of the Russian Academy of Sciences, Moscow (Russian Federation); Grard, J.-C.; Hubert, B. [Laboratory for Planetary and Atmospheric Physics (LPAP), University of Lige, Lige (Belgium); Jehin, E.; Decock, A. [Origines Cosmologiques et Astrophysiques (ORCA), University of Lige (Belgium); Hutsemkers, D. [Extragalactic Astrophysics and Space Observations (EASO), University of Lige (Belgium); Manfroid, J., E-mail: B.Hubert@ulg.ac.be [High Energy Astrophysics Group (GAPHE), University of Lige (Belgium)
2015-01-01
Cometary atmospheres are produced by the outgassing of material, mainly H{sub 2}O, CO, and CO{sub 2} from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical processes lead to the production of other species generally absent from the nucleus, such as OH. Although all comets are different, they all have a highly rarefied atmosphere, which is an ideal environment for nonthermal photochemical processes to take place and influence the detailed state of the atmosphere. We develop a Monte Carlo model of the coma photochemistry. We compute the energy distribution functions (EDF) of the metastable O({sup 1}D) and O({sup 1}S) species and obtain the red (630nm) and green (557.7nm) spectral line shapes of the full coma, consistent with the computed EDFs and the expansion velocity. We show that both species have a severely non-Maxwellian EDF, that results in broad spectral lines and the suprathermal broadening dominates due to the expansion motion. We apply our model to the atmosphere of comet C/1996 B2 (Hyakutake) and 103P/Hartley 2. The computed width of the green line, expressed in terms of speed, is lower than that of the red line. This result is comparable to previous theoretical analyses, but in disagreement with observations. We explain that the spectral line shape does not only depend on the exothermicity of the photochemical production mechanisms, but also on thermalization, due to elastic collisions, reducing the width of the emission line coming from the O({sup 1}D) level, which has a longer lifetime.
Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters
Owen, R.K.
1990-12-01
Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.
Quantum Monte Carlo methods and lithium cluster properties
Owen, R.K.
1990-12-01
Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) [0.1981], 0.1895(9) [0.1874(4)], 0.1530(34) [0.1599(73)], 0.1664(37) [0.1724(110)], 0.1613(43) [0.1675(110)] Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) [0.0203(12)], 0.0188(10) [0.0220(21)], 0.0247(8) [0.0310(12)], 0.0253(8) [0.0351(8)] Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.
2013-09-16
The purpose of the Project Grandmaster Application is to allow individuals to opt-in and give the application access to data sources about their activities on social media sites. The application will cross-reference these data sources to build up a picture of each individual activities they discuss, either at present or in the past, and place this picture in reference to groups of all participants. The goal is to allow an individual to place themselves in the collective and to understand how their behavior patterns fit with the group and potentially find changes to make, such as activities they weren?t already aware of or different groups of interest they might want to follow.
Energy Science and Technology Software Center (OSTI)
2013-09-16
The purpose of the Project Grandmaster Application is to allow individuals to opt-in and give the application access to data sources about their activities on social media sites. The application will cross-reference these data sources to build up a picture of each individual activities they discuss, either at present or in the past, and place this picture in reference to groups of all participants. The goal is to allow an individual to place themselves inmore » the collective and to understand how their behavior patterns fit with the group and potentially find changes to make, such as activities they werent already aware of or different groups of interest they might want to follow.« less
PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code
Iandola, F N; O'Brien, M J; Procassini, R J
2010-11-29
Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.
Storage & Transmission Projects | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & ...
Source localization using recursively applied and projected (RAP) MUSIC
Mosher, J.C.; Leahy, R.M.
1998-03-01
A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles, the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.
Project Management Lessons Learned
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2008-08-05
The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.
Western Interconnection Synchrophasor Project
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Demonstration Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Synchrophasor measurements are a...
Demonstration project Smart Charging (Smart Grid Project) | Open...
Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...
2016 DOE Project Management Workshop - "Enhancing Project Management...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
6 DOE Project Management Workshop - "Enhancing Project Management" 2016 DOE Project Management Workshop - "Enhancing Project Management" 20160407-doe-project-management-workshop-AD...
MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy...
eLabel":"","visitedicon":"" Project Profile Project Start Date 112006 Project City Port Townsend, WA Project StateProvince Washington Project Country United States...
Multiparticle Monte Carlo Code System for Shielding and Criticality Use.
Energy Science and Technology Software Center (OSTI)
2015-06-01
Version 00 COG is a modern, full-featured Monte Carlo radiation transport code that provides accurate answers to complex shielding, criticality, and activation problems.COG was written to be state-of-the-art and free of physics approximations and compromises found in earlier codes. COG is fully 3-D, uses point-wise cross sections and exact angular scattering, and allows a full range of biasing options to speed up solutions for deep penetration problems. Additionally, a criticality option is available for computingmore » Keff for assemblies of fissile materials. ENDL or ENDFB cross section libraries may be used. COG home page: http://cog.llnl.gov. Cross section libraries are included in the package. COG can use either the LLNL ENDL-90 cross section set or the ENDFB/VI set. Analytic surfaces are used to describe geometric boundaries. Parts (volumes) are described by a method of Constructive Solid Geometry. Surface types include surfaces of up to fourth order, and pseudo-surfaces such as boxes, finite cylinders, and figures of revolution. Repeated assemblies need be defined only once. Parts are visualized in cross-section and perspective picture views. A lattice feature simplifies the specification of regular arrays of parts. Parallel processing under MPI is supported for multi-CPU systems. Source and random-walk biasing techniques may be selected to improve solution statistics. These include source angular biasing, importance weighting, particle splitting and Russian roulette, pathlength stretching, point detectors, scattered direction biasing, and forced collisions. Criticality For a fissioning system, COG will compute Keff by transporting batches of neutrons through the system. Activation COG can compute gamma-ray doses due to neutron-activated materials, starting with just a neutron source. Coupled Problems COG can solve coupled problems involving neutrons, photons, and electrons. COG 11.1 is an updated version of COG11.1 BETA 2 (RSICC C00777MNYCP02
TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma
Sisniega, A; Zbijewski, W; Stayman, J; Yorkston, J; Aygun, N; Koliatsos, V; Siewerdsen, J
2014-06-15
Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced for additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain
Geothermal Energy Projects | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy ...
Solar Manufacturing Projects | Department of Energy
Office of Environmental Management (EM)
Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
3: Project Refinement 2 1 Potential 3 Refinement 4 Implementation 5 Operations & Maintenance 2 Options 3 Refinement 1/28/2016 2 3 FUNDING AND FINANCING OPTIONS Project Ownership Financing structure is highly dependent on size of the project and the capital available for a given project: * Tribe owns the project (cash purchase or debt) * Tribe hosts the project and buys the electricity (power purchase agreement) * Tribe partners with private sector and co-owns the project (uncertainties about
Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry
Bostani, Maryam McMillan, Kyle; Cagnon, Chris H.; McNitt-Gray, Michael F.; Mueller, Jonathon W.; Cody, Dianna D.; DeMarco, John J.
2015-02-15
Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.
Fission matrix-based Monte Carlo criticality analysis of fuel storage pools
Farlotti, M.; Larsen, E. W.
2013-07-01
Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simple problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)
Garcia, Marie-Paule Villoing, Daphnée; Ferrer, Ludovic; Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila; Bardiès, Manuel
2015-12-15
Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry
Choi, Myunghee; Chan, Vincent S.
2014-02-28
This final report describes the work performed under U.S. Department of Energy Cooperative Agreement DE-FC02-08ER54954 for the period April 1, 2011 through March 31, 2013. The goal of this project was to perform iterated finite-orbit Monte Carlo simulations with full-wall fields for modeling tokamak ICRF wave heating experiments. In year 1, the finite-orbit Monte-Carlo code ORBIT-RF and its iteration algorithms with the full-wave code AORSA were improved to enable systematical study of the factors responsible for the discrepancy in the simulated and the measured fast-ion FIDA signals in the DIII-D and NSTX ICRF fast-wave (FW) experiments. In year 2, ORBIT-RF was coupled to the TORIC full-wave code for a comparative study of ORBIT-RF/TORIC and ORBIT-RF/AORSA results in FW experiments.
Project Reports for Chickasaw Nation- 2010 Project
Broader source: Energy.gov [DOE]
Under this project, the Chickasaw Nation, Division of Commerce (CNDC) will upgrade old, inefficient lighting systems throughout CNDC to new, energy saving systems. Learn more about this project or...
Project Reports for Haida Corporation- 2010 Project
Broader source: Energy.gov [DOE]
The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.
Step 4: Project Implementation
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Process Step 4: Project Implementation Presentation Agenda * Step 4: Project Implementation - Pre-construction - Contract execution - Interconnection - Project construction - Commissioning * Project Example 2 1/28/2016 2 1 Potential 3 Refinement 5 Operations & Maintenance 2 Options 4 Implementation 4 Implementation 3 Potential Options Refinement Implementation Operations & Maintenance Step 4: Implementation 4 Purpose: Contract and begin physical construction of project Tasks: * Finalize
Statistical Exploration of Electronic Structure of Molecules from Quantum Monte-Carlo Simulations
Prabhat, Mr; Zubarev, Dmitry; Lester, Jr., William A.
2010-12-22
In this report, we present results from analysis of Quantum Monte Carlo (QMC) simulation data with the goal of determining internal structure of a 3N-dimensional phase space of an N-electron molecule. We are interested in mining the simulation data for patterns that might be indicative of the bond rearrangement as molecules change electronic states. We examined simulation output that tracks the positions of two coupled electrons in the singlet and triplet states of an H2 molecule. The electrons trace out a trajectory, which was analyzed with a number of statistical techniques. This project was intended to address the following scientific questions: (1) Do high-dimensional phase spaces characterizing electronic structure of molecules tend to cluster in any natural way? Do we see a change in clustering patterns as we explore different electronic states of the same molecule? (2) Since it is hard to understand the high-dimensional space of trajectories, can we project these trajectories to a lower dimensional subspace to gain a better understanding of patterns? (3) Do trajectories inherently lie in a lower-dimensional manifold? Can we recover that manifold? After extensive statistical analysis, we are now in a better position to respond to these questions. (1) We definitely see clustering patterns, and differences between the H2 and H2tri datasets. These are revealed by the pamk method in a fairly reliable manner and can potentially be used to distinguish bonded and non-bonded systems and get insight into the nature of bonding. (2) Projecting to a lower dimensional subspace ({approx}4-5) using PCA or Kernel PCA reveals interesting patterns in the distribution of scalar values, which can be related to the existing descriptors of electronic structure of molecules. Also, these results can be immediately used to develop robust tools for analysis of noisy data obtained during QMC simulations (3) All dimensionality reduction and estimation techniques that we tried seem to
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.
1999-02-09
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.
1999-01-01
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.
A Proposal for a Standard Interface Between Monte Carlo Tools And One-Loop Programs
Binoth, T.; Boudjema, F.; Dissertori, G.; Lazopoulos, A.; Denner, A.; Dittmaier, S.; Frederix, R.; Greiner, N.; Hoeche, Stefan; Giele, W.; Skands, P.; Winter, J.; Gleisberg, T.; Archibald, J.; Heinrich, G.; Krauss, F.; Maitre, D.; Huber, M.; Huston, J.; Kauer, N.; Maltoni, F.; /Louvain U., CP3 /Milan Bicocca U. /INFN, Turin /Turin U. /Granada U., Theor. Phys. Astrophys. /CERN /NIKHEF, Amsterdam /Heidelberg U. /Oxford U., Theor. Phys.
2011-11-11
Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.
I T E L I N E S S Carlos Saenz Makes the Ultimate Sacrifice
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Carlos Saenz Makes the Ultimate Sacrifice 1 Agencies Collaborate to Tackle Fire Season 2 NTS Groups Garner P2 Best-in-Class Awards 3 NTS Security Contract Awarded to WSI 4 Offsites .... "Go Long-Term!" 5 E-mentors Meet and Greet E-Mentees 5 Occupational Medicine Focuses on Heat Stroke 6 Milestones 7 Calendar 8 In This Issue A publication for all members of the NNSA/NSO family Issue 117 June 2006 S adly, on May 5, 2006, Wackenhut Services, Inc. - Nevada (WSI-NV) was informed that Carlos
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
with each project directory. This user must have a NIM role of PI, PI Proxy, or Project Manager. Access control for project directories is based on Unix groups. The...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
EERE WebDigital Project Charter |Project Name|| |Project Lead|| |Supporting EERE Office... How do you plan to address Section 508 requirements? Do you need a separate Web statistics ...
PROJECT MANGEMENT PLAN EXAMPLES
Office of Environmental Management (EM)
Baselines - Performance Baseline Examples Example 34 6.0 PROJECT BASELINE This section presents a summary of the PFP Stabilization and Deactivation Project baseline, which was prepared by an inter- contractor team to support an accelerated planning case for the project. The project schedules and associated cost profiles presented in this section are compared to the currently approved project baseline, as contained in the Facility Stabilization Project Fiscal Year 1999 Multi-Year Work Plan (MYWP)
Projects | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Projects Projects The U.S. Department of Energy supports a variety of energy-related projects on tribal lands. Through these projects, tribes have built the institutional capacity to manage their energy needs, assessed the feasibility of energy efficiency and renewable energy installation, and demonstrated the viability of installing renewable energy systems on tribal lands. View a map of projects Get information on project funding history Learn about Tribal Energy Deployment Program staff
Perspectives on Project Finance
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Project Finance July 29 2014 Project Company (Borrower) Off-take Agreements Feedstock Agreements O&M Agreement EPC Contract (construct) Technology License Agreements Sponsor's Equity Project Level Equity Investors Senior Project Debt Providers Equity Investors Typical Project Finance Structure 2 SOUND PROJECT ECONOMICS Leads to Adequate Debt Service Coverage And Acceptable Equity Returns Market Risk Assessment Competitive positioning. Supply / demand forecasts. Competing suppliers.
Buckman Direct Diversion Project
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Buckman Direct Diversion Project Buckman Direct Diversion Project This project takes surface water from the Rio Grande, and then treats and distributes these waters to the city and county of Santa Fe through their drinking water distribution systems. August 1, 2013 Water flumes at Buckman Direct Diversion Project Water flumes at Buckman Direct Diversion Project The City of Santa Fe and Santa Fe County completed the construction of the Buckman Direct Diversion (BDD) Project in December 2010. The
Broader source: Energy.gov [DOE]
The Office funds 154 research and development projects leveraging nearly $500 million in total combined investment. Each project represents a growing technology sector in conventional hydrothermal,...
Falls Creek Hydroelectric Project
Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett
2007-06-12
This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.
Project Finance and Investments
Broader source: Energy.gov [DOE]
Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Organization area to allow the movement and radio-graphing of component for evaluation to determine the proper Project Execution Plan for dismantlement. Evaluation Project...
Office of Scientific and Technical Information (OSTI)
Other Places Columbia University University of California, Berkeley The Dayton Project, 1943-1945 The Dayton Project, 1945 and Beyond Bomb Casing and Drop Test Sites Trinity Test ...
Step 4: Project Implementation
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
... expected * Technology O&M Assumed low, mitigable or allocatable Sources: Adapted from Holland & Hart, RE Project Development & Finance & Infocast, Advanced RE Project Finance & ...
Transmission Commercial Project Integration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...
Broader source: Energy.gov [DOE]
To provide information on the DHS Flat Stanley Project. The goal of the project is to help kids learn about the importance of cybersecurity.
U.S. Department of Energy funded multiple electrification projects through the American ... The U.S. Department of Energy funded multiple electrification projects through the ...
Broader source: Energy.gov (indexed) [DOE]
Third Quarter Overall Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY ...
Broader source: Energy.gov (indexed) [DOE]
Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011 Pre- & ...
Broader source: Energy.gov (indexed) [DOE]
and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & ...
2016 Technology Innovation Projects
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...
Broader source: Energy.gov (indexed) [DOE]
Second Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. ...
Broader source: Energy.gov (indexed) [DOE]
3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Fourth Quarter Overall Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY ...
Broader source: Energy.gov (indexed) [DOE]
Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Final FY ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 ...
Broader source: Energy.gov (indexed) [DOE]
Second Quarter Overall Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
8 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2008 Target FY 2008 Actual ...
Office of Scientific and Technical Information (OSTI)
Scroll down to view thumbnails of each map. Leslie Groves looks at a map of Japan. Manhattan Project: General Manhattan Project Facilities Places map "Signature Facilities of the ...
Office of Scientific and Technical Information (OSTI)
... Center for Oak Ridge Oral History, including stories about the Manhattan Project The Manhattan Project: A New and Secret World of Human Experimentation Top Related Information: ...
MHK Projects/Twelve Mile Point Project | Open Energy Information
Province Louisiana Project Country United States Project Resource Click here Current Tidal Coordinates 29.9177, -89.9307 Project Phase Phase 1 Project Installed Capacity...
MHK Projects/Clarence Strait Tidal Energy Project | Open Energy...
Project Country Australia Project Resource Click here Current Tidal Project Nearest Body of Water Clarence Strait Coordinates -12.083533792616, 131.04972839355 Project...
Y-12 Steam Plant Project Received National Recognition for Project...
National Nuclear Security Administration (NNSA)
Steam Plant Project Received National Recognition for Project Management Excellence March 23, 2011 Y-12 steam plant project receives national recognition for project management ...
Alcouffe, R.E.
1985-01-01
A difficult class of problems for the discrete-ordinates neutral particle transport method is to accurately compute the flux due to a spatially localized source. Because the transport equation is solved for discrete directions, the so-called ray effect causes the flux at space points far from the source to be inaccurate. Thus, in general, discrete ordinates would not be the method of choice to solve such problems. It is better suited for calculating problems with significant scattering. The Monte Carlo method is suited to localized source problems, particularly if the amount of collisional interactions in minimal. However, if there are many scattering collisions and the flux at all space points is desired, then the Monte Carlo method becomes expensive. To take advantage of the attributes of both approaches, we have devised a first collision source method to combine the Monte Carlo and discrete-ordinates solutions. That is, particles are tracked from the source to their first scattering collision and tallied to produce a source for the discrete-ordinates calculation. A scattered flux is then computed by discrete ordinates, and the total flux is the sum of the Monte Carlo and discrete ordinates calculated fluxes. In this paper, we present calculational results using the MCNP and TWODANT codes for selected two-dimensional problems that show the effectiveness of this method.
Use of single scatter electron monte carlo transport for medical radiation sciences
Svatos, Michelle M.
2001-01-01
The single scatter Monte Carlo code CREEP models precise microscopic interactions of electrons with matter to enhance physical understanding of radiation sciences. It is designed to simulate electrons in any medium, including materials important for biological studies. It simulates each interaction individually by sampling from a library which contains accurate information over a broad range of energies.
3D Direct Simulation Monte Carlo Code Which Solves for Geometrics
Energy Science and Technology Software Center (OSTI)
1998-01-13
Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.
MUSiC - An Automated Scan for Deviations between Data and Monte Carlo Simulation
Meyer, Arnd
2010-02-10
A model independent analysis approach is presented, systematically scanning the data for deviations from the standard model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of event generators. The approach is sensitive to a variety of models of new physics, including those not yet thought of.
K-effective of the world: and other concerns for Monte Carlo Eigenvalue calculations
Brown, Forrest B
2010-01-01
Monte Carlo methods have been used to compute k{sub eff} and the fundamental model eigenfunction of critical systems since the 1950s. Despite the sophistication of today's Monte Carlo codes for representing realistic geometry and physics interactions, correct results can be obtained in criticality problems only if users pay attention to source convergence in the Monte Carlo iterations and to running a sufficient number of neutron histories to adequately sample all significant regions of the problem. Recommended best practices for criticality calculations are reviewed and applied to several practical problems for nuclear reactors and criticality safety, including the 'K-effective of the World' problem. Numerical results illustrate the concerns about convergence and bias. The general conclusion is that with today's high-performance computers, improved understanding of the theory, new tools for diagnosing convergence (e.g., Shannon entropy of the fission distribution), and clear practical guidance for performing calculations, practitioners will have a greater degree of confidence than ever of obtaining correct results for Monte Carlo criticality calculations.
Self-evolving atomistic kinetic Monte Carlo simulations of defects in materials
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Xu, Haixuan; Beland, Laurent K.; Stoller, Roger E.; Osetskiy, Yury N.
2015-01-29
The recent development of on-the-fly atomistic kinetic Monte Carlo methods has led to an increased amount attention on the methods and their corresponding capabilities and applications. In this review, the framework and current status of Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC) are discussed. SEAKMC particularly focuses on defect interaction and evolution with atomistic details without assuming potential defect migration/interaction mechanisms and energies. The strength and limitation of using an active volume, the key concept introduced in SEAKMC, are discussed. Potential criteria for characterizing an active volume are discussed and the influence of active volume size on saddle point energies ismore » illustrated. A procedure starting with a small active volume followed by larger active volumes was found to possess higher efficiency. Applications of SEAKMC, ranging from point defect diffusion, to complex interstitial cluster evolution, to helium interaction with tungsten surfaces, are summarized. A comparison of SEAKMC with molecular dynamics and conventional object kinetic Monte Carlo is demonstrated. Overall, SEAKMC is found to be complimentary to conventional molecular dynamics, especially when the harmonic approximation of transition state theory is accurate. However it is capable of reaching longer time scales than molecular dynamics and it can be used to systematically increase the accuracy of other methods such as object kinetic Monte Carlo. Furthermore, the challenges and potential development directions are also outlined.« less
Green's function Monte Carlo calculation for the ground state of helium trimers
Cabral, F.; Kalos, M.H.
1981-02-01
The ground state energy of weakly bound boson trimers interacting via Lennard-Jones (12,6) pair potentials is calculated using a Monte Carlo Green's Function Method. Threshold coupling constants for self binding are obtained by extrapolation to zero binding.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade Level: ...
Broader source: Energy.gov [DOE]
Desert Peak EGS Project presentation at the April 2013 peer review meeting held in Denver, Colorado.
Energy Science and Technology Software Center (OSTI)
2014-06-01
eProject Builder enables Energy Services Companies (ESCOs) and their contracting agencies to: 1. upload and track project-level Information 2. generate basic project reports required by local, state, and/or federal agencies 3. benchmark new Energy Savings Performance Contract (ESPC) projects against historical data
Broader source: Energy.gov [DOE]
Jack Surash, Deputy Assistant Secretary for Acquisition and Project Management, Environmental Management March 22, 2016