USBIA-San Carlos Project | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) Jump to:TucsonLLCAdministration EIA|| Open EnergyCarlos
Project Reports for San Carlos Apache Tribe- 2012 Project
Broader source: Energy.gov [DOE]
Under this project, the San Carlos Apache Tribe will study the feasibility of solar energy projects within the reservation with the potential to generate a minimum of 1 megawatt (MW).
Project Reports for San Carlos Apache Tribe- 2011 Project
Office of Energy Efficiency and Renewable Energy (EERE)
The core purpose of this project is to provide for the analysis and implementation of a Tribal Energy Organization that can effectively provide for coordination, leadership, and energy expertise to the rest of the tribal government in understanding and pursuing energy programs and plans.
Using a Monte-Carlo-based approach to evaluate the uncertainty on fringe projection technique
Molimard, Jérôme
2013-01-01
A complete uncertainty analysis on a given fringe projection set-up has been performed using Monte-Carlo approach. In particular the calibration procedure is taken into account. Two applications are given: at a macroscopic scale, phase noise is predominant whilst at microscopic scale, both phase noise and calibration errors are important. Finally, uncertainty found at macroscopic scale is close to some experimental tests (~100 {\\mu}m).
Quantum Monte Carlo algorithms for electronic structure at the petascale; the endstation project.
Kim, J; Ceperley, D M; Purwanto, W; Walter, E J; Krakauer, H; Zhang, S W; Kent, P.R. C; Hennig, R G; Umrigar, C; Bajdich, M; Kolorenc, J; Mitas, L; Srinivasan, A
2008-10-01
Over the past two decades, continuum quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting of the properties of matter from fundamental principles. By solving the Schrodinger equation through a stochastic projection, it achieves the greatest accuracy and reliability of methods available for physical systems containing more than a few quantum particles. QMC enjoys scaling favorable to quantum chemical methods, with a computational effort which grows with the second or third power of system size. This accuracy and scalability has enabled scientific discovery across a broad spectrum of disciplines. The current methods perform very efficiently at the terascale. The quantum Monte Carlo Endstation project is a collaborative effort among researchers in the field to develop a new generation of algorithms, and their efficient implementations, which will take advantage of the upcoming petaflop architectures. Some aspects of these developments are discussed here. These tools will expand the accuracy, efficiency and range of QMC applicability and enable us to tackle challenges which are currently out of reach. The methods will be applied to several important problems including electronic and structural properties of water, transition metal oxides, nanosystems and ultracold atoms.
PI Last Name First Name Department School Project Title Abril Carlos
Shyu, Mei-Ling
College of Arts & Sciences Mad Cow Motorcycle Project Onyango John Architecture School of Architecture Book and Journal Publications Penabad Carie Architecture School of Architecture Off the Map: Learning: Utopia and its Discontents Ramsey Kate Hi
San Carlos Apache Tribe Set to Break Ground on New Solar Project |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData Dashboard RutlandSTEAB's PrioritiesFuel CellFlip|Data
Krylov-projected quantum Monte Carlo Method
Blunt, N. S.; Alavi, Ali; Booth, George H.
2015-07-31
of Eigenvalue Problems: A Practical Guide (SIAM, Philadelphia, 2000) [31] J. Cullum and R. Willoughby, Lanczos algorithms for large symmetric eigenvalue computations, Vol. 2 (Birkha¨user, Boston, 1985) [32] T. Iitaka and T. Ebisuzaki, Phys. Rev. E 69, 057701...
Using Stochastic Discounted Cash Flow and Real Option Monte Carlo Simulation to Analyse the Impacts in the presence of a windfall profits tax. Real options Monte Carlo simulation is used to characterise from the project. The results highlight that Monte Carlo simulation paired with the real option
Marcus, Ryan C. [Los Alamos National Laboratory
2012-07-25
MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.
Horizontal Aggregations for Building Tabular Data Sets Carlos Ordonez
Ordonez, Carlos
Horizontal Aggregations for Building Tabular Data Sets Carlos Ordonez Teradata, NCR San Diego, CA, USA ABSTRACT In a data mining project, a significant portion of time is devoted to building a data set suitable for analysis. In a re- lational database environment, building such data set usu- ally requires
San Carlos Apache Tribe - Energy Organizational Analysis
Rapp, James; Albert, Steve
2012-04-01
The San Carlos Apache Tribe (SCAT) was awarded $164,000 in late-2011 by the U.S. Department of Energy (U.S. DOE) Tribal Energy Program's "First Steps Toward Developing Renewable Energy and Energy Efficiency on Tribal Lands" Grant Program. This grant funded: ? The analysis and selection of preferred form(s) of tribal energy organization (this Energy Organization Analysis, hereinafter referred to as "EOA"). ? Start-up staffing and other costs associated with the Phase 1 SCAT energy organization. ? An intern program. ? Staff training. ? Tribal outreach and workshops regarding the new organization and SCAT energy programs and projects, including two annual tribal energy summits (2011 and 2012). This report documents the analysis and selection of preferred form(s) of a tribal energy organization.
Calculating Risk of Cost Using Monte Carlo Simulations with Fuzzy Parameters in Civil Engineering
Pownuk, Andrzej
of project, contractor's lack experience, poor labor productivity, project changes [10, 6]. The risk of costCalculating Risk of Cost Using Monte Carlo Simulations with Fuzzy Parameters in Civil Engineering@zeus.polsl.gliwice.pl, http://zeus.polsl.gliwice.pl/ pownuk August 1, 2004 Abstract. Risk is a part of almost all civil
Zimmerman, G.B.
1997-06-24
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ion and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burns nd burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
APR1400 LBLOCA uncertainty quantification by Monte Carlo method and comparison with Wilks' formula
Hwang, M.; Bae, S.; Chung, B. D. [Korea Atomic Energy Research Inst., 150 Dukjin-dong, Yuseong-gu, Daejeon (Korea, Republic of)
2012-07-01
An analysis of the uncertainty quantification for the PWR LBLOCA by the Monte Carlo calculation has been performed and compared with the tolerance level determined by Wilks' formula. The uncertainty range and distribution of each input parameter associated with the LBLOCA accident were determined by the PIRT results from the BEMUSE project. The Monte-Carlo method shows that the 95. percentile PCT value can be obtained reliably with a 95% confidence level using the Wilks' formula. The extra margin by the Wilks' formula over the true 95. percentile PCT by the Monte-Carlo method was rather large. Even using the 3 rd order formula, the calculated value using the Wilks' formula is nearly 100 K over the true value. It is shown that, with the ever increasing computational capability, the Monte-Carlo method is accessible for the nuclear power plant safety analysis within a realistic time frame. (authors)
Final Report: 06-LW-013, Nuclear Physics the Monte Carlo Way
Ormand, W E
2009-03-01
This is document reports the progress and accomplishments achieved in 2006-2007 with LDRD funding under the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. The project was a theoretical study to explore a novel approach to dealing with a persistent problem in Monte Carlo approaches to quantum many-body systems. The goal was to implement a solution to the notorious 'sign-problem', which if successful, would permit, for the first time, exact solutions to quantum many-body systems that cannot be addressed with other methods. In this document, we outline the progress and accomplishments achieved during FY2006-2007 with LDRD funding in the proposal 06-LW-013, 'Nuclear Physics the Monte Carlo Way'. This project was funded under the Lab Wide LDRD competition at Lawrence Livermore National Laboratory. The primary objective of this project was to test the feasibility of implementing a novel approach to solving the generic quantum many-body problem, which is one of the most important problems being addressed in theoretical physics today. Instead of traditional methods based matrix diagonalization, this proposal focused a Monte Carlo method. The principal difficulty with Monte Carlo methods, is the so-called 'sign problem'. The sign problem, which will discussed in some detail later, is endemic to Monte Carlo approaches to the quantum many-body problem, and is the principal reason that they have not been completely successful in the past. Here, we outline our research in the 'shifted-contour method' applied the Auxiliary Field Monte Carlo (AFMC) method.
A 9 Monte Carlo Simulations Michael Bachmann
Bachmann, Michael
generally called "thermal fluctua- tions") or "lose" energy by friction effects (dissipation). The total Reweighting methods 9 3.1 Single-histogram reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-ensemble Monte Carlo methods 12 4.1 Replica-exchange Monte Carlo method (parallel tempering
Last Name First Name Department School Project Title Abril Carlos
Shyu, Mei-Ling
Beavers Gabriel Instrumental Performance Frost School of Music Gabriel Beavers Solo Album: Five in America Boutté Tony Vocal Performance Frost School of Music The Verlaine Songs of Gabriel Fauré WITH BONNIE PARKER AND OTHER LYRIC ESSAYS Takao Naoko Keyboard Performance Frost School of Music Mirror étude
Fast Monte Carlo for radiation therapy: the PEREGRINE Project (Conference)
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street Lighting FINAL TECHNICAL REPORT Projecti FORCE|
Fast Monte Carlo for radiation therapy: the PEREGRINE Project (Conference)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtransScientific User FacilityInnovation15!NISACFastFast|
Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator...
Office of Scientific and Technical Information (OSTI)
Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics Citation Details In-Document Search Title: Applications of FLUKA Monte Carlo Code for Nuclear and...
THE FUTURE OF ENERGY Carlo Rubbia
THE FUTURE OF ENERGY Carlo Rubbia ENEA Opening remarks at the 18th IAEA Fusion Energy Conference Sorrento, Italy, 4th October 2000 #12;2 TABLE OF CONTENT 1.-- Energy is necessary. ..................................................................................... 3 2.-- Energies for the future
THE BEGINNING of the MONTE CARLO METHOD
. For a whole host of 125 #12;Monte Carlo reasons, he had become seriously inter- ested in the thermonuclear a preliminary computational model of a thermonuclear reaction for the ENIAC. He felt he could convince
Monte Carlo simulation in systems biology
Schellenberger, Jan
2010-01-01
2 The history of Monte Carlo Sampling in Systems Biology 1.1simulation tools: the systems biology workbench and biospiceCellular and Molecular Biology. ASM Press, Washington
fermions in superconductors Dr. Carlo Beenakker
Wu, Yih-Min
fermions in superconductors Topic Speaker Dr. Carlo Beenakker Instituut-Lorentz, Leiden University as fundamental building blocks, but in superconductors they can be constructed out of electron and hole
UNIVERSIDAD CARLOS III ESCUELA POLITCNICA SUPERIOR
Martín-Solís, José Ramón
UNIVERSIDAD CARLOS III ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE FISICA ESTUDIO DE MEDIOS DE, el alcance por parte de los países tercermundistas de los niveles de consumo propios de las
Multiple quadrature by Monte Carlo techniques
Voss, John Dietrich
1966-01-01
of a multiple integral ordinarily hopeless to attempt by 1 classical methods. " In this paper the Monte Carlo Method of numerical quadrature is used to integrate some functions that are extremely difficult and tedious to integrate by any other known... and the table of known values can be extended. The method developed here may also be used to evaluate the distribution at any desired values of the parameters . C HAP TER II THEORETICAL CONSIDERATIONS Hammersley has said: "Every Monte Carlo computation...
Crossing the mesoscale no-mans land via parallel kinetic Monte Carlo.
Garcia Cardona, Cristina (San Diego State University); Webb, Edmund Blackburn, III; Wagner, Gregory John; Tikare, Veena; Holm, Elizabeth Ann; Plimpton, Steven James; Thompson, Aidan Patrick; Slepoy, Alexander (U. S. Department of Energy, NNSA); Zhou, Xiao Wang; Battaile, Corbett Chandler; Chandross, Michael Evan
2009-10-01
The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.
Gray, Jeffrey J.
Project Year 2001 Project Team Faculty: Grace Brush, Geography & Environmental Engineering, Whiting School of Engineering Fellow: Dan Bain, Geography & Environmental Engineering, Whiting School. Through this project, the team proposes to develop a variety of resources: a set of general, web
Monte Carlo simulation of quantum Zeno effect in the brain
Danko Georgiev
2014-12-11
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.
Quantitative Monte Carlo-based holmium-166 SPECT reconstruction
Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de [Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Viergever, Max A. [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)] [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)
2013-11-15
Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ?17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80% (SPECT-ppMC+DSW) to 76%–103% (SPECT-fMC). Furthermore, SPECT-fMC recovered whole-body activities were most accurate (A{sup est}= 1.06 × A ? 5.90 MBq, R{sup 2}= 0.97) and SPECT-fMC tumor absorbed doses were significantly higher than with SPECT-DSW (p = 0.031) and SPECT-ppMC+DSW (p = 0.031).Conclusions: The quantitative accuracy of {sup 166}Ho SPECT is improved by Monte Carlo-based modeling of the image degrading factors. Consequently, the proposed reconstruction method enables accurate estimation of the radiation absorbed dose in clinical practice.
Quantum Mechanical Single Molecule Partition Function from Path Integral Monte Carlo Simulations
Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian
2008-01-01
calculated from path integral Monte Carlo(PIMC) and harmoniccalculated from path integral Monte Carlo (PIMC) andFunction from Path Integral Monte Carlo Simulations Shaji
Study of predominant hadronic modes of $?$-lepton using a Monte Carlo generator TAUOLA
O. Shekhovtsova
2015-08-22
TAUOLA is a Monte Carlo generator dedicated to generating tau-lepton decays and it is used in the analysis of experimental data both at B-factories and LHC. TAUOLA is a long-term project that started in the 90's and has been under development up to now. In this note we discuss the status of the predominant hadronic tau-lepton decays into two ($Br \\simeq 25.52\\%$) and three pions ($Br \\simeq 18.67\\%$).
Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis
Wilson, Paul; Evans, Thomas; Tautges, Tim
2012-12-24
This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well-suited to coupling with the unstructured meshes that are used in other physics simulations.
Monte Carlo Tools for Jet Quenching
Korinna Zapp
2011-09-07
A thorough understanding of jet quenching on the basis of multi-particle final states and jet observables requires new theoretical tools. This talk summarises the status and propects of the theoretical description of jet quenching in terms of Monte Carlo generators.
Brain dynamics promotes function Carlos Lourenco
Lisboa, Universidade Técnica de
Brain dynamics promotes function Carlos Louren¸co 1 Faculty of Sciences of the University of Lisbon, 1049-001 Lisboa - Portugal Abstract. Dynamical structure in the brain promotes biological func- tion. Computational scientists have new opportunities to receive 'algorithmic' inspiration from brain processes
Monte Carlo event reconstruction implemented with artificial neural networks
Tolley, Emma Elizabeth
2011-01-01
I implemented event reconstruction of a Monte Carlo simulation using neural networks. The OLYMPUS Collaboration is using a Monte Carlo simulation of the OLYMPUS particle detector to evaluate systematics and reconstruct ...
A MONTE CARLO SIMULATION OF WATER FLOW IN VARIABLY ...
1910-10-30
Se utiliza un m?etodo de simulaci?on Monte Carlo para estudiar el flujo de aguas ... A Monte Carlo simulation method is employed to study groundwater flow in ...
Bendele, Travis Henry
2013-02-22
A honeycomb probe was designed to measure the optical properties of biological tissues using single Monte Carlo method. The ongoing project is intended to be a multi-wavelength, real time, and in-vivo technique to detect breast cancer. Preliminary...
Smart detectors for Monte Carlo radiative transfer
Maarten Baes
2008-09-11
Many optimization techniques have been invented to reduce the noise that is inherent in Monte Carlo radiative transfer simulations. As the typical detectors used in Monte Carlo simulations do not take into account all the information contained in the impacting photon packages, there is still room to optimize this detection process and the corresponding estimate of the surface brightness distributions. We want to investigate how all the information contained in the distribution of impacting photon packages can be optimally used to decrease the noise in the surface brightness distributions and hence to increase the efficiency of Monte Carlo radiative transfer simulations. We demonstrate that the estimate of the surface brightness distribution in a Monte Carlo radiative transfer simulation is similar to the estimate of the density distribution in an SPH simulation. Based on this similarity, a recipe is constructed for smart detectors that take full advantage of the exact location of the impact of the photon packages. Several types of smart detectors, each corresponding to a different smoothing kernel, are presented. We show that smart detectors, while preserving the same effective resolution, reduce the noise in the surface brightness distributions compared to the classical detectors. The most efficient smart detector realizes a noise reduction of about 10%, which corresponds to a reduction of the required number of photon packages (i.e. a reduction of the simulation run time) of 20%. As the practical implementation of the smart detectors is straightforward and the additional computational cost is completely negligible, we recommend the use of smart detectors in Monte Carlo radiative transfer simulations.
Deterministic Simulation for Risk Management QuasiMonte Carlo beats
Papageorgiou, Anargyros
1 Deterministic Simulation for Risk Management QuasiMonte Carlo beats Monte Carlo for Value are widely used in pricing and risk management of complex financial instruments. Recently, quasiMonte Carlo and accuracy. In this paper we address the application of these deterministic methods to risk management. Our
Deterministic Simulation for Risk Management Quasi-Monte Carlo beats
Papageorgiou, Anargyros
1 Deterministic Simulation for Risk Management Quasi-Monte Carlo beats Monte Carlo for Value are widely used in pricing and risk management of complex financial instruments. Recently, quasi-Monte Carlo and accuracy. In this paper we address the application of these deterministic methods to risk management. Our
John von Neumann Institute for Computing Monte Carlo Protein Folding
Hsu, Hsiao-Ping
John von Neumann Institute for Computing Monte Carlo Protein Folding: Simulations of Met://www.fz-juelich.de/nic-series/volume20 #12;#12;Monte Carlo Protein Folding: Simulations of Met-Enkephalin with Solvent-Accessible Area difficulties in applying Monte Carlo methods to protein folding. The solvent-accessible area method, a popular
Quantum Monte Carlo Calculations of Light Nuclei
Steven C. Pieper
2004-10-27
Variational Monte Carlo and Green's function Monte Carlo are powerful tools for calculations of properties of light nuclei using realistic two-nucleon and three-nucleon potentials. Recently the GFMC method has been extended to multiple states with the same quantum numbers. The combination of the Argonne v_18 two-nucleon and Illinois-2 three-nucleon potentials gives a good prediction of many energies of nuclei up to 12C. A number of other recent results are presented: comparison of binding energies with those obtained by the no-core shell model; the incompatibility of modern nuclear Hamiltonians with a bound tetra-neutron; difficulties in computing RMS radii of very weakly bound nuclei, such as 6He; center-of-mass effects on spectroscopic factors; and the possible use of an artificial external well in calculations of neutron-rich isotopes.
Quantum Monte Carlo by message passing
Bonca, J.; Gubernatis, J.E.
1993-01-01
We summarize results of quantum Monte Carlo simulations of the degenerate single-impurity Anderson model using the impurity algorithm of Hirsch and Fye. Using methods of Bayesian statistical inference, coupled with the principle of maximum entropy, we extracted the single-particle spectral density from the imaginary-time Green's function. The variations of resulting spectral densities with model parameters agree qualitatively with the spectral densities predicted by NCA calculations. All the simulations were performed on a cluster of 16 IBM R6000/560 workstations under the control of the message-passing software PVM. We described the trivial parallelization of our quantum Monte Carlo code both for the cluster and the CM-5 computer. Other issues for effective parallelization of the impurity algorithm are also discussed.
Quantum Monte Carlo by message passing
Bonca, J.; Gubernatis, J.E.
1993-05-01
We summarize results of quantum Monte Carlo simulations of the degenerate single-impurity Anderson model using the impurity algorithm of Hirsch and Fye. Using methods of Bayesian statistical inference, coupled with the principle of maximum entropy, we extracted the single-particle spectral density from the imaginary-time Green`s function. The variations of resulting spectral densities with model parameters agree qualitatively with the spectral densities predicted by NCA calculations. All the simulations were performed on a cluster of 16 IBM R6000/560 workstations under the control of the message-passing software PVM. We described the trivial parallelization of our quantum Monte Carlo code both for the cluster and the CM-5 computer. Other issues for effective parallelization of the impurity algorithm are also discussed.
Status of Monte-Carlo Event Generators
Hoeche, Stefan; /SLAC
2011-08-11
Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.
A Monte Carlo algorithm for degenerate plasmas
Turrell, A.E. Sherlock, M.; Rose, S.J.
2013-09-15
A procedure for performing Monte Carlo calculations of plasmas with an arbitrary level of degeneracy is outlined. It has possible applications in inertial confinement fusion and astrophysics. Degenerate particles are initialised according to the Fermi–Dirac distribution function, and scattering is via a Pauli blocked binary collision approximation. The algorithm is tested against degenerate electron–ion equilibration, and the degenerate resistivity transport coefficient from unmagnetised first order transport theory. The code is applied to the cold fuel shell and alpha particle equilibration problem of inertial confinement fusion.
Marcus, Ryan C. [Los Alamos National Laboratory
2012-07-24
Overview of this presentation is (1) Exascale computing - different technologies, getting there; (2) high-performance proof-of-concept MCMini - features and results; and (3) OpenCL toolkit - Oatmeal (OpenCL Automatic Memory Allocation Library) - purpose and features. Despite driver issues, OpenCL seems like a good, hardware agnostic tool. MCMini demonstrates the possibility for GPGPU-based Monte Carlo methods - it shows great scaling for HPC application and algorithmic equivalence. Oatmeal provides a flexible framework to aid in the development of scientific OpenCL codes.
Monte Carlo errors with less errors
Ulli Wolff
2006-11-29
We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a better exploitation of expensive simulations. An effective integrated autocorrelation time is computed which is suitable to benchmark efficiencies of simulation algorithms with regard to specific observables of interest. A Matlab code is offered for download that implements the method. It can also combine independent runs (replica) allowing to judge their consistency.
Multicanonical hybrid Monte Carlo for compact QED
G. Arnold; Th. Lippert; K. Schilling
1999-09-14
We demonstrate that substantial progress can be achieved in the study of the phase structure of 4-dimensional compact QED by a joint use of hybrid Monte Carlo and multicanonical algorithms, through an efficient parallel implementation. This is borne out by the observation of considerable speedup of tunnelling between the metastable states, close to the phase transition, on the Wilson line. Our approach leads to a general parallelization scheme for the efficient stochastic sampling of systems where (a part of) the Hamiltonian involves the total action or energy in each update step.
Carlos Hernandez Faham LBNL NERSC@40
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from thecarbon captureCarbonCareers CareersCarlCarlos
Sandia Energy - Carlos MichelÃ©n
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI ProgramPhysicalNaughtonApply byCarlos MichelÃ©n
Energy Monte Carlo (EMCEE) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Incsource History View New PagesMonte Carlo (EMCEE)
Metodos de Monte Carlo Paulo Roberto de Carvalho Junior
JÂ´unior MÂ´etodos de Monte Carlo #12;Exemplo: CÂ´alculo de Paulo Roberto de Carvalho JÂ´unior MÂ´etodos de Monte Carlo #12;Exemplo: CÂ´alculo de EquaÂ¸c~ao da Circunfer^encia: x2 + y2 = r2 x2 + y2 = 1 AQ Paulo Roberto de Carvalho JÂ´unior MÂ´etodos de Monte Carlo #12;Algoritmo: CÂ´alculo de double calc
Coupled Electron-Ion Monte Carlo Calculations of Dense Metallic Hydrogen Carlo Pierleoni,1
May 2004; published 27 September 2004) We present an efficient new Monte Carlo method which couples structure and higher melting temperatures of the proton crystal than do Car-Parrinello molecular dynamics is unsatisfactory because energy differences among differ- ent crystalline phases are small requiring accurate total
Evaluation of Monte Carlo Electron-Transport Algorithms in the...
Office of Scientific and Technical Information (OSTI)
Evaluation of Monte Carlo Electron-Transport Algorithms in the Integrated Tiger Series Codes for Stochastic-Media Simulations. Citation Details In-Document Search Title: Evaluation...
Quantum Monte Carlo Calculations of Light Nuclei Using Chiral...
Office of Scientific and Technical Information (OSTI)
Details In-Document Search This content will become publicly available on November 4, 2015 Title: Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials...
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M.S.; Ricketson, L.F.; Dimits, A.M.; Caflisch, R.E.; Cohen, B.I.
2014-10-01
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ?, the computational cost of the method is O(?{sup ?2}) or O(?{sup ?2}(ln?){sup 2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(?{sup ?3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ?=10{sup ?5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Quantum Monte Carlo methods for nuclear physics
J. Carlson; S. Gandolfi; F. Pederiva; Steven C. Pieper; R. Schiavilla; K. E. Schmidt; R. B. Wiringa
2015-04-29
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Metallic lithium by quantum Monte Carlo
Sugiyama, G.; Zerah, G.; Alder, B.J.
1986-12-01
Lithium was chosen as the simplest known metal for the first application of quantum Monte Carlo methods in order to evaluate the accuracy of conventional one-electron band theories. Lithium has been extensively studied using such techniques. Band theory calculations have certain limitations in general and specifically in their application to lithium. Results depend on such factors as charge shape approximations (muffin tins), pseudopotentials (a special problem for lithium where the lack of rho core states requires a strong pseudopotential), and the form and parameters chosen for the exchange potential. The calculations are all one-electron methods in which the correlation effects are included in an ad hoc manner. This approximation may be particularly poor in the high compression regime, where the core states become delocalized. Furthermore, band theory provides only self-consistent results rather than strict limits on the energies. The quantum Monte Carlo method is a totally different technique using a many-body rather than a mean field approach which yields an upper bound on the energies. 18 refs., 4 figs., 1 tab.
Quantum Monte Carlo methods for nuclear physics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore »interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less
Quantum Monte Carlo methods for nuclear physics
Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.
2014-10-19
Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.
Gray, Jeffrey J.
& Sciences Project Title Visualize Physical Principles with Virtual Lab Modules Audience Undergraduate provide easy access to digital information, but don't provide experience with right- hand screws, electric of the last generation of physics students. The result is that today's students don't have an intuitive
Gray, Jeffrey J.
. Pedagogical Issue One of the challenges in teaching the Introduction to Computer Music course is the lack flow and practices. These resources will provide an online space through which students will be able piece of this project will be an animated studio walkthrough requiring user interaction and providing
CERN-TH.6275/91 Monte Carlo Event Generation
Sjöstrand, Torbjörn
CERN-TH.6275/91 Monte Carlo Event Generation for LHC T. Sj¨ostrand CERN -- Geneva Abstract The necessity of event generators for LHC physics studies is illustrated, and the Monte Carlo approach is outlined. A survey is presented of existing event generators, followed by a more detailed study
RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS
RADIATIVE HEAT TRANSFER WITH QUASI-MONTE CARLO METHODS A. Kersch1 W. Moroko2 A. Schuster1 1Siemens of Quasi-Monte Carlo to this problem. 1.1 Radiative Heat Transfer Reactors In the manufacturing of the problems which can be solved by such a simulation is high accuracy modeling of the radiative heat transfer
RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda
RADIATIVE HEAT TRANSFER WITH QUASIMONTE CARLO METHODS \\Lambda A. Kersch 1 W. Morokoff 2 A accuracy modeling of the radiative heat transfer from the heater to the wafer. Figure 1 shows the draft Carlo simulation is often used to solve radiative transfer problems where complex physical phenomena
The Imprints of IMBHs on the Structure of Globular Clusters: Monte-Carlo Simulations
Stefan Umbreit; John M. Fregeau; Frederic A. Rasio
2008-03-06
We present the first results of a series of Monte-Carlo simulations investigating the imprint of a central black hole on the core structure of a globular cluster. We investigate the three-dimensional and the projected density profile of the inner regions of idealized as well as more realistic globular cluster models, taking into account a stellar mass spectrum, stellar evolution and allowing for a larger, more realistic, number of stars than was previously possible with direct N-body methods. We compare our results to other N-body simulations published previously in the literature.
Nuclear Level Density of ${}^{161}$Dy in the Shell Model Monte Carlo Method
Cem Özen; Yoram Alhassid; Hitoshi Nakada
2012-06-27
We extend the shell-model Monte Carlo applications to the rare-earth region to include the odd-even nucleus ${}^{161}$Dy. The projection on an odd number of particles leads to a sign problem at low temperatures making it impractical to extract the ground-state energy in direct calculations. We use level counting data at low energies and neutron resonance data to extract the shell model ground-state energy to good precision. We then calculate the level density of ${}^{161}$Dy and find it in very good agreement with the level density extracted from experimental data.
Exploring theory space with Monte Carlo reweighting
Gainer, James S. [Univ. of Florida, Gainesville, FL (United States); Lykken, Joseph [Fermi National Accelerator Laboratory, Batavia, IL (United States); Matchev, Konstantin T. [Univ. of Florida, Gainesville, FL (United States); Mrenna, Stephen [Fermi National Accelerator Laboratory, Batavia, IL (United States); Park, Myeonghun [The Univ. of Tokyo, Kashiwa (Japan)
2014-10-01
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. In particular, we suggest procedures that allow more efficient collaboration between theorists and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.
Exploring theory space with Monte Carlo reweighting
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun
2014-10-13
Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. In particular, we suggest procedures that allow more efficient collaboration between theoristsmore »and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less
Monte Carlo Methods for Uncertainty Quantification Mathematical Institute, University of Oxford
Giles, Mike
Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford ERCOFTAC course on Mathematical Methods and Tools in Uncertainty Management and Quantification: Introduction and Monte Carlo basics some model applications random number generation Monte Carlo estimation
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-03-28
Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Kinetic Monte Carlo simulations of nanocrystalline film deposition
Ruan, Shiyun
A full diffusion kinetic Monte Carlo algorithm is used to model nanocrystalline film deposition, and study the mechanisms of grain nucleation and microstructure formation in such films. The major finding of this work is ...
Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons...
Office of Scientific and Technical Information (OSTI)
Technical Report: Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons and Gamma Rays: Application to Thermal Neutron-Induced Fission Reactions on U-235 and Pu-239...
VWA-0021- In the Matter of Carlos M. Castillo
Broader source: Energy.gov [DOE]
This Decision involves a complaint filed by Carlos M. Castillo (Castillo or “the complainant”) under the Department of Energy (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708....
A Monte Carlo tool for multi-node reliability evaluation
Thalasila, Chander Pravin
1993-01-01
-Area Reliability Program(NARP) is based on the random sampling of generator and transmission line status for each hour. Monte Carlo Approach for Estimating Contingency Statistics along with the Evaluation Subroutine(MACS-ES) advances the generation...
Shift: A Massively Parallel Monte Carlo Radiation Transport Package
Pandya, Tara M [ORNL; Johnson, Seth R [ORNL; Davidson, Gregory G [ORNL; Evans, Thomas M [ORNL; Hamilton, Steven P [ORNL
2015-01-01
This paper discusses the massively-parallel Monte Carlo radiation transport package, Shift, de- veloped at Oak Ridge National Laboratory. It reviews the capabilities, implementation, and parallel performance of this code package. Scaling results demonstrate very good strong and weak scaling behavior of the implemented algorithms. Benchmark results from various reactor problems show that Shift results compare well to other contemporary Monte Carlo codes and experimental results.
Obituary: Alvaro San Félix (Carlos Benavides) (1931-1999)
Gutié rrez, Alfonso
2001-04-01
38 LATIN AMERICAN THEATRE REVIEW Alvaro San Félix (Carlos Benavides) (1931-1999) A las personas que compartimos con él varios años de permanencia aquí en su amada Santafe de Bogotá, nos queda muy difícil expresar cómo era este hombre que...38 LATIN AMERICAN THEATRE REVIEW Alvaro San Félix (Carlos Benavides) (1931-1999) A las personas que compartimos con él varios años de permanencia aquí en su amada Santafe de Bogotá, nos queda muy difícil expresar cómo era este hombre que...
Physics and Algorithm Enhancements for a Validated MCNP/X Monte Carlo Simulation Tool, Phase VII
McKinney, Gregg W [Los Alamos National Laboratory
2012-07-17
Currently the US lacks an end-to-end (i.e., source-to-detector) radiation transport simulation code with predictive capability for the broad range of DHS nuclear material detection applications. For example, gaps in the physics, along with inadequate analysis algorithms, make it difficult for Monte Carlo simulations to provide a comprehensive evaluation, design, and optimization of proposed interrogation systems. With the development and implementation of several key physics and algorithm enhancements, along with needed improvements in evaluated data and benchmark measurements, the MCNP/X Monte Carlo codes will provide designers, operators, and systems analysts with a validated tool for developing state-of-the-art active and passive detection systems. This project is currently in its seventh year (Phase VII). This presentation will review thirty enhancements that have been implemented in MCNPX over the last 3 years and were included in the 2011 release of version 2.7.0. These improvements include 12 physics enhancements, 4 source enhancements, 8 tally enhancements, and 6 other enhancements. Examples and results will be provided for each of these features. The presentation will also discuss the eight enhancements that will be migrated into MCNP6 over the upcoming year.
Cosmological parameters from CMB and other data: a Monte-Carlo approach
Antony Lewis; Sarah Bridle
2002-10-14
We present a fast Markov Chain Monte-Carlo exploration of cosmological parameter space. We perform a joint analysis of results from recent CMB experiments and provide parameter constraints, including sigma_8, from the CMB independent of other data. We next combine data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae Ia and big-bang nucleosynthesis. The Monte Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and 9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include constraints on the neutrino mass (m_nu < 0.3eV), equation of state of the dark energy, and the tensor amplitude, as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of appendices we describe the many uses of importance sampling, including computing results from new data and accuracy correction of results generated from an approximate method. We also discuss the different ways of converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and consistency, and describe the use of analytic marginalization over normalization parameters.
National Nuclear Security Administration (NNSA)
3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport
Broader source: Energy.gov [DOE]
DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...
Broader source: Energy.gov [DOE]
Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
projects that involve UCSD faculty members and graduate students from the structural engineering (SE), mechanical and aerospace engineering (MAE), electrical and computer...
Schenato, Luca
RESEARCH PROJECTS FP7 February 13 #12; FP7 COOPERATION #12; INTERNATIONAL RESEARCH PROJECTS FP7 COOPERATION ENERGY PROJECT ACRONYM: EFONET PROJECT TITLE: Energy foresight network PROJECT
Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials
J. E. Lynn; J. Carlson; E. Epelbaum; S. Gandolfi; A. Gezerlis; A. Schwenk
2014-11-09
We present the first Green's function Monte Carlo calculations of light nuclei with nuclear interactions derived from chiral effective field theory up to next-to-next-to-leading order. Up to this order, the interactions can be constructed in a local form and are therefore amenable to quantum Monte Carlo calculations. We demonstrate a systematic improvement with each order for the binding energies of $A=3$ and $A=4$ systems. We also carry out the first few-body tests to study perturbative expansions of chiral potentials at different orders, finding that higher-order corrections are more perturbative for softer interactions. Our results confirm the necessity of a three-body force for correct reproduction of experimental binding energies and radii, and pave the way for studying few- and many-nucleon systems using quantum Monte Carlo methods with chiral interactions.
Monte Carlo: in the beginning and some great expectations
Metropolis, N.
1985-01-01
The central theme will be on the historical setting and origins of the Monte Carlo Method. The scene was post-war Los Alamos Scientific Laboratory. There was an inevitability about the Monte Carlo Event: the ENIAC had recently enjoyed its meteoric rise (on a classified Los Alamos problem); Stan Ulam had returned to Los Alamos; John von Neumann was a frequent visitor. Techniques, algorithms, and applications developed rapidly at Los Alamos. Soon, the fascination of the Method reached wider horizons. The first paper was submitted for publication in the spring of 1949. In the summer of 1949, the first open conference was held at the University of California at Los Angeles. Of some interst perhaps is an account of Fermi's earlier, independent application in neutron moderation studies while at the University of Rome. The quantum leap expected with the advent of massively parallel processors will provide stimuli for very ambitious applications of the Monte Carlo Method in disciplines ranging from field theories to cosmology, including more realistic models in the neurosciences. A structure of multi-instruction sets for parallel processing is ideally suited for the Monte Carlo approach. One may even hope for a modest hardening of the soft sciences.
Collaborative Broker for Distributed Energy Resources Joo Carlos Ferreira1
da Silva, Alberto Rodrigues
Collaborative Broker for Distributed Energy Resources João Carlos Ferreira1 , Alberto Rodrigues da the design of a system to handle Distributed Energy Resources (DER), which is a new reality due Resources, Data Mining, Energy Broker, Collaborative Approach, Electric Vehicles, Energy Market, Smart Grids
Kinetic Monte Carlo approach to modeling dislocation mobility
Cai, Wei
surface diffusion and growth processes [3], in which the energy barriers for the atomic mechanisms the evolution of a physical system through numerical sampling of (Markovian) sto- chastic processes. While the traditional Monte Carlo (MC) method is applied to sample systems in or close to the thermal equilibrium, k
Fusion11 Conference Summary Carlos A. Bertulani,a
Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University
talks by experts in the field. I will com- ment on a few of the physics topics discussed during in which -particle heating dominates all other forms a e-mail: carlos bertulani@tamu-commerce.edu of plasma heating. ITER's principal goal is to design, con- struct and operate a tokamak experiment at a scale which
ENVIRONMENTAL MODELING: 1 APPLICATIONS: MONTE CARLO SENSITIVITY SIMULATIONS
Dimov, Ivan
SIMULATIONS TO THE PROBLEM OF AIR POLLUTION TRANSPORT 3 1.1 The Danish Eulerian Model #12;Chapter 1 APPLICATIONS: MONTE CARLO SENSITIVITY SIMULATIONS TO THE PROBLEM OF AIR POLLUTION of pollutants in a real-live scenario of air-pollution transport over Europe. First, the developed technique
Path Integral Monte-Carlo Calculations for Relativistic Oscillator
Alexandr Ivanov; Oleg Pavlovsky
2014-11-11
The problem of Relativistic Oscillator has been studied in the framework of Path Integral Monte-Carlo(PIMC) approach. Ultra-relativistic and non-relativistic limits have been discussed. We show that PIMC method can be effectively used for investigation of relativistic systems.
Monte Carlo Simulations of Thermal Conductivity in Nanoporous Si Membranes
1 Monte Carlo Simulations of Thermal Conductivity in Nanoporous Si Membranes Stefanie Wolf1 transport in Si nanomeshes. Phonons are treated semiclassically as particles of specific energy and velocity, ii) the roughness amplitude of the pore surfaces on the thermal conductivity of the nanomeshes. We
A Monte Carlo Approach for Football Play Generation Kennard Laviers
Sukthankar, Gita Reese
A Monte Carlo Approach for Football Play Generation Kennard Laviers School of EECS U. of Central, adversarial games and demonstrate its utility at gen- erating American football plays for Rush Football 2008. In football, like in many other multi-agent games, the actions of all of the agents are not equally crucial
Evolutionary Monte Carlo for protein folding simulations Faming Lianga)
Liang, Faming
Evolutionary Monte Carlo for protein folding simulations Faming Lianga) Department of Statistics to simulations of protein folding on simple lattice models, and to finding the ground state of a protein. In all structures in protein folding. The numerical results show that it is drastically superior to other methods
Universidad Carlos III de Madrid Departamento de Matem aticas
Moro, Esteban
Madrid. Abril de 1999 #12; #12; Universidad Carlos III de Madrid Departamento de Matem#19;aticas Tesis suelen aparecer los amigos y compa~neros, que son esa parte de la tesis que no depende de uno mismo. En#19;asticas . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objetivos de la tesis
Particle Physics Phenomenology 1. Introduction and Monte Carlo techniques
Sjöstrand, Torbjörn
Particle Physics Phenomenology 1. Introduction and Monte Carlo techniques Torbj¨orn Sj: Introduction and MC techniques slide 2/81 #12;Course objectives Improve understanding of how physics at the LHC¨ostrand Department of Astronomy and Theoretical Physics Lund University S¨olvegatan 14A, SE-223 62 Lund, Sweden Lund
Monte Carlo sampling from the quantum state space. II
Yi-Lin Seah; Jiangwei Shang; Hui Khoon Ng; David John Nott; Berthold-Georg Englert
2015-04-27
High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the Markov-chain Monte Carlo method known as Hamiltonian Monte Carlo, or hybrid Monte Carlo, can be adapted to this context. It is applicable when an efficient parameterization of the state space is available. The resulting random walk is entirely inside the physical parameter space, and the Hamiltonian dynamics enable us to take big steps, thereby avoiding strong correlations between successive sample points while enjoying a high acceptance rate. We use examples of single and double qubit measurements for illustration.
Thermal Properties of Supercritical Carbon Dioxide by Monte Carlo Simulations
Lisal, Martin
and speed of sound for carbon dioxide (CO2) in the supercritical region, using the fluctuation method based properties of CO2 at supercritical conditions. The molecular simulation results are compared to an analytical on Monte Carlo simu- lations in the isothermalisobaric ensemble. We model CO2 as a quadrupolar two
Monte Carlo Methods for Uncertainty Quantification Mathematical Institute, University of Oxford
Giles, Mike
Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford ERCOFTAC course on Mathematical Methods and Tools in Uncertainty Management and Quantification Lecture 1: Introduction and Monte Carlo basics some model applications random number generation Monte
Types of random numbers and Monte Carlo Methods Pseudorandom number generation
Mascagni, Michael
Types of random numbers and Monte Carlo Methods Pseudorandom number generation Quasirandom number generation Conclusions WE246: Random Number Generation A Practitioner's Overview Prof. Michael Mascagni #12;Types of random numbers and Monte Carlo Methods Pseudorandom number generation Quasirandom number
Romano, Paul K. (Paul Kollath)
2013-01-01
Monte Carlo particle transport methods are being considered as a viable option for high-fidelity simulation of nuclear reactors. While Monte Carlo methods offer several potential advantages over deterministic methods, there ...
Direct Monte Carlo simulation of chemical reaction systems: Dissociation and recombination
Anderson, James B.
Direct Monte Carlo simulation of chemical reaction systems: Dissociation and recombination Shannon Carlo simulations of a chemical reaction system with bimolecular and termolecular dissociation8 to be well suited for treating chemical reaction systems with nonequilibrium distributions, coupled gas
Monte Carlo Methods for Uncertainty Quantification Mathematical Institute, University of Oxford
Giles, Mike
Carlo Mike Giles (Oxford) Monte Carlo methods May 3031, 2013 2 / 33 SDEs in Finance In computational finance, stochastic differential equations are used to model the behaviour of stocks interest rates exchange rates weather electricity/gas demand crude oil prices . . . Mike Giles (Oxford) Monte Carlo
Hybrid Probabilistic Roadmap and Monte Carlo Methods for Biomolecule Conformational Changes
Han, Li
1 Hybrid Probabilistic Roadmap and Monte Carlo Methods for Biomolecule Conformational Changes Li Han 1 Keywords: Conformation space, conformational changes, Monte Carlo, probabilistic roadmaps. 1. In this work, we have developed a hybrid Probabilistic Roadmap and Monte Carlo planner for biomolecule
Danon, Yaron
-Core Pressured Water Rector Model Advisor: Prof. X. George Xu (JEC 5003; Tel: 518-276-4014; Email: xug2@rpi in the design and analysis of nuclear reactor systems. One of the most desirable modeling and simulation a full-core PWR reactor model for parallel MCNP calculations on the CCNI system 4. Code optimization
PROJECT MANGEMENT PLAN EXAMPLES
Broader source: Energy.gov (indexed) [DOE]
accelerates the project schedule and significantly reduces the project total life cycle cost. Current Baseline (FY99 MYWP) Revised Project Baseline Project Scope: ...
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hogan, Robin
2008-01-15
Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hogan, Robin
Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProjectITER Project
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference)Project Tour Project Tour See NMSSUP from
Spent Nuclear Fuel project, project management plan
Fuquay, B.J.
1995-10-25
The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project
Molecular physics and chemistry applications of quantum Monte Carlo
Reynolds, P.J.; Barnett, R.N.; Hammond, B.L.; Lester, W.A. Jr.
1985-09-01
We discuss recent work with the diffusion quantum Monte Carlo (QMC) method in its application to molecular systems. The formal correspondence of the imaginary time Schroedinger equation to a diffusion equation allows one to calculate quantum mechanical expectation values as Monte Carlo averages over an ensemble of random walks. We report work on atomic and molecular total energies, as well as properties including electron affinities, binding energies, reaction barriers, and moments of the electronic charge distribution. A brief discussion is given on how standard QMC must be modified for calculating properties. Calculated energies and properties are presented for a number of molecular systems, including He, F, F , H2, N, and N2. Recent progress in extending the basic QMC approach to the calculation of ''analytic'' (as opposed to finite-difference) derivatives of the energy is presented, together with an H2 potential-energy curve obtained using analytic derivatives. 39 refs., 1 fig., 2 tabs.
Integrated Cost and Schedule using Monte Carlo Simulation of a CPM Model - 12419
Hulett, David T.; Nosbisch, Michael R.
2012-07-01
This discussion of the recommended practice (RP) 57R-09 of AACE International defines the integrated analysis of schedule and cost risk to estimate the appropriate level of cost and schedule contingency reserve on projects. The main contribution of this RP is to include the impact of schedule risk on cost risk and hence on the need for cost contingency reserves. Additional benefits include the prioritizing of the risks to cost, some of which are risks to schedule, so that risk mitigation may be conducted in a cost-effective way, scatter diagrams of time-cost pairs for developing joint targets of time and cost, and probabilistic cash flow which shows cash flow at different levels of certainty. Integrating cost and schedule risk into one analysis based on the project schedule loaded with costed resources from the cost estimate provides both: (1) more accurate cost estimates than if the schedule risk were ignored or incorporated only partially, and (2) illustrates the importance of schedule risk to cost risk when the durations of activities using labor-type (time-dependent) resources are risky. Many activities such as detailed engineering, construction or software development are mainly conducted by people who need to be paid even if their work takes longer than scheduled. Level-of-effort resources, such as the project management team, are extreme examples of time-dependent resources, since if the project duration exceeds its planned duration the cost of these resources will increase over their budgeted amount. The integrated cost-schedule risk analysis is based on: - A high quality CPM schedule with logic tight enough so that it will provide the correct dates and critical paths during simulation automatically without manual intervention. - A contingency-free estimate of project costs that is loaded on the activities of the schedule. - Resolves inconsistencies between cost estimate and schedule that often creep into those documents as project execution proceeds. - Good-quality risk data that are usually collected in risk interviews of the project team, management and others knowledgeable in the risk of the project. The risks from the risk register are used as the basis of the risk data in the risk driver method. The risk driver method is based in the fundamental principle that identifiable risks drive overall cost and schedule risk. - A Monte Carlo simulation software program that can simulate schedule risk, burn WM2012 rate risk and time-independent resource risk. The results include the standard histograms and cumulative distributions of possible cost and time results for the project. However, by simulating both cost and time simultaneously we can collect the cost-time pairs of results and hence show the scatter diagram ('football chart') that indicates the joint probability of finishing on time and on budget. Also, we can derive the probabilistic cash flow for comparison with the time-phased project budget. Finally the risks to schedule completion and to cost can be prioritized, say at the P-80 level of confidence, to help focus the risk mitigation efforts. If the cost and schedule estimates including contingency reserves are not acceptable to the project stakeholders the project team should conduct risk mitigation workshops and studies, deciding which risk mitigation actions to take, and re-run the Monte Carlo simulation to determine the possible improvement to the project's objectives. Finally, it is recommended that the contingency reserves of cost and of time, calculated at a level that represents an acceptable degree of certainty and uncertainty for the project stakeholders, be added as a resource-loaded activity to the project schedule for strategic planning purposes. The risk analysis described in this paper is correct only for the current plan, represented by the schedule. The project contingency reserve of time and cost that are the main results of this analysis apply if that plan is to be followed. Of course project managers have the option of re-planning and re-scheduling in the face of new facts, in part by m
Calculations of pair production by Monte Carlo methods
Bottcher, C.; Strayer, M.R.
1991-01-01
We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs.
The hybrid Monte Carlo Algorithm and the chiral transition
Gupta, R.
1987-01-01
In this talk the author describes tests of the Hybrid Monte Carlo Algorithm for QCD done in collaboration with Greg Kilcup and Stephen Sharpe. We find that the acceptance in the glubal Metropolis step for Staggered fermions can be tuned and kept large without having to make the step-size prohibitively small. We present results for the finite temperature transition on 4/sup 4/ and 4 x 6/sup 3/ lattices using this algorithm.
Testing trivializing maps in the Hybrid Monte Carlo algorithm
Georg P. Engel; Stefan Schaefer
2011-02-09
We test a recent proposal to use approximate trivializing maps in a field theory to speed up Hybrid Monte Carlo simulations. Simulating the CP^{N-1} model, we find a small improvement with the leading order transformation, which is however compensated by the additional computational overhead. The scaling of the algorithm towards the continuum is not changed. In particular, the effect of the topological modes on the autocorrelation times is studied.
Confesión y autoridad religiosa en el teatro de Carlos Solórzano
Reed, Timothy P.
2002-10-01
FALL 2002 93 Confesión y autoridad religiosa en el teatro de Carlos Solórzano Timothy P. Reed En The History of Sexuality Michel Foucault ataca la teoría freudiana sobre la represión del discurso sexual por parte de las autoridades sociales..., proponiendo que, en lugar de reprimirlo, las instituciones lo promueven y establecen su poder mediante la abierta discusión de la sexualidad porque así se puede conocer y controlar el comportamiento humano. Foucault relaciona este tema con la Iglesia...
Solar Feasibility Study May 2013 - San Carlos Apache Tribe
Rapp, Jim; Duncan, Ken; Albert, Steve
2013-05-01
The San Carlos Apache Tribe (Tribe) in the interests of strengthening tribal sovereignty, becoming more energy self-sufficient, and providing improved services and economic opportunities to tribal members and San Carlos Apache Reservation (Reservation) residents and businesses, has explored a variety of options for renewable energy development. The development of renewable energy technologies and generation is consistent with the Tribe’s 2011 Strategic Plan. This Study assessed the possibilities for both commercial-scale and community-scale solar development within the southwestern portions of the Reservation around the communities of San Carlos, Peridot, and Cutter, and in the southeastern Reservation around the community of Bylas. Based on the lack of any commercial-scale electric power transmission between the Reservation and the regional transmission grid, Phase 2 of this Study greatly expanded consideration of community-scale options. Three smaller sites (Point of Pines, Dudleyville/Winkleman, and Seneca Lake) were also evaluated for community-scale solar potential. Three building complexes were identified within the Reservation where the development of site-specific facility-scale solar power would be the most beneficial and cost-effective: Apache Gold Casino/Resort, Tribal College/Skill Center, and the Dudleyville (Winkleman) Casino.
Lemon Project Spring Symposium
Fashing, Norman
Lemon Project: A Journey of Reconciliation." The BOV defined Lemon "as a long- term research project
Economics of Plant Energy Savings Projects in a Changing Market
White, D. C.
2011-01-01
; and external in terms of demand, material and labor costs, financing costs and energy prices. Of these, prices are typically the largest risk factor and are the subject of this paper. To perform an analysis it is necessary to quantify the risk... of the investment. In this paper, appropriate techniques to evaluate such investments are presented along with case studies illustrating the approach. Keywords Energy Saving Project Investment Analysis; Risk; Uncertainty; Monte Carlo Analysis Introduction...
2015-04-02
The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - . . -Pathways)PROJECT SUMMARY 1 TITLE
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs |ReferencePowerHaier: OrderProject
FZ2MC: A Tool for Monte Carlo Transport Code Geometry Manipulation
Hackel, B M; Nielsen Jr., D E; Procassini, R J
2009-02-25
The process of creating and validating combinatorial geometry representations of complex systems for use in Monte Carlo transport simulations can be both time consuming and error prone. To simplify this process, a tool has been developed which employs extensions of the Form-Z commercial solid modeling tool. The resultant FZ2MC (Form-Z to Monte Carlo) tool permits users to create, modify and validate Monte Carlo geometry and material composition input data. Plugin modules that export this data to an input file, as well as parse data from existing input files, have been developed for several Monte Carlo codes. The FZ2MC tool is envisioned as a 'universal' tool for the manipulation of Monte Carlo geometry and material data. To this end, collaboration on the development of plug-in modules for additional Monte Carlo codes is desired.
Properties of reactive oxygen species by quantum Monte Carlo
Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo
2014-07-07
The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} ? N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in ActinideRailCurrent ResearchInnovationCustom-Projects
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefineEnergy NationalDepartmentProjectNE I&C
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProject Gnome Double Beta Decay
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference) | SciTechProjectITERFebruaryStorage
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act Recovery ActARM OverviewAbout GEDOE Projects
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015Tray and|Projects Pages default
Global neutrino parameter estimation using Markov Chain Monte Carlo
Steen Hannestad
2007-10-10
We present a Markov Chain Monte Carlo global analysis of neutrino parameters using both cosmological and experimental data. Results are presented for the combination of all presently available data from oscillation experiments, cosmology, and neutrinoless double beta decay. In addition we explicitly study the interplay between cosmological, tritium decay and neutrinoless double beta decay data in determining the neutrino mass parameters. We furthermore discuss how the inference of non-neutrino cosmological parameters can benefit from future neutrino mass experiments such as the KATRIN tritium decay experiment or neutrinoless double beta decay experiments.
Monte Carlo tests of Orbital-Free Density Functional Theory
D. I. Palade
2014-12-12
The relationship between the exact kinetic energy density in a quantum system in the frame of Density Functional Theory and the semiclassical functional expression for the same quantity is investigated. The analysis is performed with Monte Carlo simulations of the Kohn-Sham potentials. We find that the semiclassical form represents the statistical expectation value of the quantum nature. Based on the numerical results, we propose an empirical correction to the existing functional and an associated method to improve the Orbital-Free results.
Quantum Monte Carlo Simulation of Overpressurized Liquid {sup 4}He
Vranjes, L.; Boronat, J.; Casulleras, J.; Cazorla, C.
2005-09-30
A diffusion Monte Carlo simulation of superfluid {sup 4}He at zero temperature and pressures up to 275 bar is presented. Increasing the pressure beyond freezing ({approx}25 bar), the liquid enters the overpressurized phase in a metastable state. In this regime, we report results of the equation of state and the pressure dependence of the static structure factor, the condensate fraction, and the excited-state energy corresponding to the roton. Along this large pressure range, both the condensate fraction and the roton energy decrease but do not become zero. The roton energies obtained are compared with recent experimental data in the overpressurized regime.
Markov Chain Monte Carlo Method without Detailed Balance
Hidemaro Suwa; Synge Todo
2010-10-13
We present a specific algorithm that generally satisfies the balance condition without imposing the detailed balance in the Markov chain Monte Carlo. In our algorithm, the average rejection rate is minimized, and even reduced to zero in many relevant cases. The absence of the detailed balance also introduces a net stochastic flow in a configuration space, which further boosts up the convergence. We demonstrate that the autocorrelation time of the Potts model becomes more than 6 times shorter than that by the conventional Metropolis algorithm. Based on the same concept, a bounce-free worm algorithm for generic quantum spin models is formulated as well.
Validation of Phonon Physics in the CDMS Detector Monte Carlo
McCarthy, K.A.; Leman, S.W.; Anderson, A.J.; /MIT; Brandt, D.; /SLAC; Brink, P.L.; Cabrera, B.; Cherry, M.; /Stanford U.; Do Couto E Silva, E.; /SLAC; Cushman, P.; /Minnesota U.; Doughty, T.; /UC, Berkeley; Figueroa-Feliciano, E.; /MIT; Kim, P.; /SLAC; Mirabolfathi, N.; /UC, Berkeley; Novak, L.; /Stanford U.; Partridge, R.; /SLAC; Pyle, M.; /Stanford U.; Reisetter, A.; /Minnesota U. /St. Olaf Coll.; Resch, R.; /SLAC; Sadoulet, B.; Serfass, B.; Sundqvist, K.M.; /UC, Berkeley /Stanford U.
2012-06-06
The SuperCDMS collaboration is a dark matter search effort aimed at detecting the scattering of WIMP dark matter from nuclei in cryogenic germanium targets. The CDMS Detector Monte Carlo (CDMS-DMC) is a simulation tool aimed at achieving a deeper understanding of the performance of the SuperCDMS detectors and aiding the dark matter search analysis. We present results from validation of the phonon physics described in the CDMS-DMC and outline work towards utilizing it in future WIMP search analyses.
Monte Carlo Tools for charged Higgs boson production
K. Kovarik
2014-12-18
In this short review we discuss two implementations of the charged Higgs boson production process in association with a top quark in Monte Carlo event generators at next-to-leading order in QCD. We introduce the MC@NLO and the POWHEG method of matching next-to-leading order matrix elements with parton showers and compare both methods analyzing the charged Higgs boson production process in association with a top quark. We shortly discuss the case of a light charged Higgs boson where the associated charged Higgs production interferes with the charged Higgs production via t tbar-production and subsequent decay of the top quark.
Multicanonical Hybrid Monte Carlo: Boosting Simulations of Compact QED
G. Arnold; Th. Lippert; K. Schilling
1998-09-21
We demonstrate that substantial progress can be achieved in the study of the phase structure of 4-dimensional compact QED by a joint use of hybrid Monte Carlo and multicanonical algorithms, through an efficient parallel implementation. This is borne out by the observation of considerable speedup of tunnelling between the metastable states, close to the phase transition, on the Wilson line. We estimate that the creation of adequate samples (with order 100 flip-flops) becomes a matter of half a year's runtime at 2 Gflops sustained performance for lattices of size up to 24^4.
A Look at general cavity theory through a code incorporating Monte Carlo techniques
Weyland, Mark Duffy
1989-01-01
material, the wall, being exponentially attenuated into the dosimeter, or the cavity. This assumption was investigated in this research using the Monte Carlo techniques in a modern computer code EGS4, Appropriate geometries were defined in the code and a... and relate the measured dose to that within the material, Monte Carlo techniques have been used to simulate the irradiation of various materials. The computer code EGS4 uses Monte Carlo techniques to simulate the randomness of radiation interactions...
Moffitt, John Russell
1972-01-01
for finite atmospheres with phase functions ranging from isotropic to the extremely anisotropic nimbo- stratus model. The main advantages of the Monte Carlo method were illustrated. One such advantage is that parameters, such as the single scattering... as an isotropic one. Another is that a single "computer run" can produce radiance values for a large number of ground albedos for any reasonable number of detectors placed at any desired depth in the atmosphere. 2. The Monte Carlo Method Monte Carlo, in all...
Quantum Monte Carlo calculations of spectroscopic overlaps in $A \\leq 7$ nuclei
I. Brida; Steven C. Pieper; R. B. Wiringa
2011-06-15
We present Green's function Monte Carlo calculations of spectroscopic overlaps for $A \\leq 7$ nuclei. The realistic Argonne v18 two-nucleon and Illinois-7 three-nucleon interactions are used to generate the nuclear states. The overlap matrix elements are extrapolated from mixed estimates between variational Monte Carlo and Green's function Monte Carlo wave functions. The overlap functions are used to obtain spectroscopic factors and asymptotic normalization coefficients, and they can serve as an input for low-energy reaction calculations.
PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples
is responsible for supporting the FDH and RL project offices with adequate day-to-day planning and review technical management, coordination, control, and reporting of project...
Four-quark energies in SU(2) lattice Monte Carlo using a tetrahedral geometry
A. M. Green; J. Lukkarinen; P. Pennanen; C. Michael; S. Furui
1994-12-05
This contribution -- a continuation of earlier work -- reports on recent developments in the calculation and understanding of 4-quark energies generated using lattice Monte Carlo techniques.
FABI WORK IN NATIVE PINE FORESTS IN GUATEMALA Project title: Understanding pest and pathogen on common pine species in Guatemala, particularly those under testing as hybrid partners with Pinus patula, the University of San Carlos and the private forestry sector in Guatemala to discuss the project and avenues
Monte Carlo model for electron degradation in methane
Bhardwaj, Anil
2015-01-01
We present a Monte Carlo model for degradation of 1-10,000 eV electrons in an atmosphere of methane. The electron impact cross sections for CH4 are compiled and analytical representations of these cross sections are used as input to the model.model.Yield spectra, which provides information about the number of inelastic events that have taken place in each energy bin, is used to calculate the yield (or population) of various inelastic processes. The numerical yield spectra, obtained from the Monte Carlo simulations, is represented analytically, thus generating the Analytical Yield Spectra (AYS). AYS is employed to obtain the mean energy per ion pair and efficiencies of various inelastic processes.Mean energy per ion pair for neutral CH4 is found to be 26 (27.8) eV at 10 (0.1) keV. Efficiency calculation showed that ionization is the dominant process at energies >50 eV, for which more than 50% of the incident electron energy is used. Above 25 eV, dissociation has an efficiency of 27%. Below 10 eV, vibrational e...
Chemical accuracy from quantum Monte Carlo for the Benzene Dimer
Azadi, Sam
2015-01-01
We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der Waals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the CCSD(T)/CBS limit is -2.65(2) kcal/mol [E. Miliordos et al, J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, compar...
Quantum Monte Carlo calculations of $A=9,10$ nuclei
Steven C. Pieper; K. Varga; R. B. Wiringa
2002-06-24
We report on quantum Monte Carlo calculations of the ground and low-lying excited states of $A=9,10$ nuclei using realistic Hamiltonians containing the Argonne $v_{18}$ two-nucleon potential alone or with one of several three-nucleon potentials, including Urbana IX and three of the new Illinois models. The calculations begin with correlated many-body wave functions that have an $\\alpha$-like core and multiple p-shell nucleons, $LS$-coupled to the appropriate $(J^{\\pi};T)$ quantum numbers for the state of interest. After optimization, these variational trial functions are used as input to a Green's function Monte Carlo calculation of the energy, using a constrained path algorithm. We find that the Hamiltonians that include Illinois three-nucleon potentials reproduce ten states in $^9$Li, $^9$Be, $^{10}$Be, and $^{10}$B with an rms deviation as little as 900 keV. In particular, we obtain the correct 3$^+$ ground state for $^{10}$B, whereas the Argonne $v_{18}$ alone or with Urbana IX predicts a 1$^+$ ground state. In addition, we calculate isovector and isotensor energy differences, electromagnetic moments, and one- and two-body density distributions.
PROJECT MANAGEMENT Professional Organizations
Acton, Scott
PROJECT MANAGEMENT Professional Organizations: Association of Collegiate Computing Services) Project Management Institute (PMI) Events & Training: UVA Local Support Partners (LSP) program training Project Management Institute webinars Project Management Institute events Scrum Alliance events Learning
Project Management Lessons Learned
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2008-08-05
The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.
PROJECT MANAGEMENT Professional Organizations
Acton, Scott
PROJECT MANAGEMENT Professional Organizations: Project Management Institute International Association of Project and Program Management (IAPPM) Events & Training: UVa Center for Leadership Excellence classes SkillSoft classes PMO Symposium through PMI Project Management Institute (PMI) webinars American
Perspectives on Project Finance
Broader source: Energy.gov [DOE]
Plenary III: Project Finance and Investment Perspectives on Project Finance John May, Managing Partner, Stern Brothers & Co.
Broader source: Energy.gov [DOE]
This webinar covered introduction and barriers to individual renewable projects, resources for community and group buy projects, and permitting guidelines.
A Referential Integrity Browser for Distributed Databases Carlos Ordonez1
Ordonez, Carlos
- Campos were sponsored by the UNAM project Macro- proyecto de Tecnolog´ia para la Univ. de la Informaci´on
Computer Vision Project Topics Project Reports
Zhu, Zhigang
(contour projection?). step5: choose a tolerance value(3 or 5 pixels) to evaluate the image with eachComputer Vision Project Topics CSc I6716 Spring2011 #12;Project Reports 1. Introduction (problem up with Nikolaos Markou? Â· Key Components Â The project is to find a target image from bunch
Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2
is used as a foundation for all development, land use, and transportation activities at UBC. LBS Project Services is a fee-for-service provider of development, design, and project management servicesProject Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2
Source localization using recursively applied and projected (RAP) MUSIC
Mosher, J.C.; Leahy, R.M.
1998-03-01
A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles, the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.
Virgilli, E; Rosati, P; Bonnini, E; Buffagni, E; Ferrari, C; Stephen, J B; Caroli, E; Auricchio, N; Basili, A; Silvestri, S
2015-01-01
We report on results of observation of the focusing effect from the planes (220) of Gallium Arsenide (GaAs) crystals. We have compared the experimental results with the simulations of the focusing capability of GaAs tiles through a developed Monte Carlo. The GaAs tiles were bent using a lapping process developed at the cnr/imem - Parma (Italy) in the framework of the laue project, funded by ASI, dedicated to build a broad band Laue lens prototype for astrophysical applications in the hard X-/soft gamma-ray energy range (80-600 keV). We present and discuss the results obtained from their characterization, mainly in terms of focusing capability. Bent crystals will significantly increase the signal to noise ratio of a telescope based on a Laue lens, consequently leading to an unprecedented enhancement of sensitivity with respect to the present non focusing instrumentation.
Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data
Zourari, K.; Peppa, V.; Papagiannis, P.; Ballester, Facundo; Siebert, Frank-André
2014-04-15
Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 20–1090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (20–1090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [“Diagnostic x-ray shielding design based on an empirical model of photon attenuation,” Health Phys. 44, 507–517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [“Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities,” Med. Phys. 34, 1398–1404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions: The data of this work allow for the accurate calculation of structural shielding thickness, taking into account the spectral variation with shield thickness, and broad beam conditions, in a realistic geometry. The simplicity of calculations also obviates the need for the use of crude transmission data estimates such as the half and tenth value layer indices. Although this study was primarily designed for brachytherapy, results might also be useful for radiology and nuclear medicine facility design, provided broad beam conditions apply.
Population Monte Carlo algorithms Yukito Iba The Institute of Statistical Mathematics
Iba, Yukito
279 ¤ Population Monte Carlo algorithms Yukito Iba The Institute of Statistical Mathematics iba algorithm Summary We give a cross-disciplinary survey on "population" Monte Carlo algorithms. In these algorithms, a set of "walkers" or "particles" is used as a representation of a high-dimensional vector
A Statement on Higher Education Policy in Kevin B. Korb, Carlo Kopp and Lloyd Allison
Allison, Lloyd
A Statement on Higher Education Policy in Australia Kevin B. Korb, Carlo Kopp and Lloyd Allison,carlo,lloydg@cs.monash.edu.au Summary Policy on higher education in Australia has become highly political since the massive expansion of the changes which have been imposed upon the higher education sector during the Dawkins period and thereafter
MONTE CARLO SIMULATION METHOD By Ronald R. Charpentier and Timothy R. Klett
Laughlin, Robert B.
EMCEE and Emc2 are Monte-Carlo simulation programs for assessing undiscovered conventional oil and gasChapter MC MONTE CARLO SIMULATION METHOD By Ronald R. Charpentier and Timothy R. Klett in U in the toolbar to return. U.S. GEOLOGICAL SURVEY WORLD PETROLEUM ASSESSMENT 2000-- DESCRIPTION AND RESULTS U
Path Integral Monte Carlo Calculation of the Deuterium Hugoniot B. Militzer and D. M. Ceperley
Militzer, Burkhard
Path Integral Monte Carlo Calculation of the Deuterium Hugoniot B. Militzer and D. M. Ceperley-Champaign, Urbana, IL 61801 (January 21, 2000) Restricted path integral Monte Carlo simulations have been used#11;ects and the dependence on the time step of the path integral. Further, we compare the results
Author's personal copy Monte Carlo methods for design and analysis of radiation detectors
Shultis, J. Kenneth
Author's personal copy Monte Carlo methods for design and analysis of radiation detectors William L Radiation detectors Inverse problems Detector design a b s t r a c t An overview of Monte Carlo as a practical method for designing and analyzing radiation detectors is provided. The emphasis is on detectors
Improved quantum Monte Carlo calculation of the ground-state energy of the hydrogen molecule
Anderson, James B.
Improved quantum Monte Carlo calculation of the ground-state energy of the hydrogen molecule Bin Carlo calculation of the nonrelativistic ground-state energy of the hydrogen molecule, without the use calculations of the energy of the hydrogen molecule and increasingly accurate experimental measurements
Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions
Anderson, James B.
Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions Shannon D and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal
Communication: Monte Carlo calculation of the exchange energy Roi Baer and Daniel Neuhauser
Baer, Roi
Communication: Monte Carlo calculation of the exchange energy Roi Baer and Daniel Neuhauser subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions #12;THE JOURNAL OF CHEMICAL PHYSICS 137, 051103 (2012) Communication: Monte Carlo calculation of the exchange energy Roi Baer1
Monte Carlo Methods for Uncertainty Quantification Mathematical Institute, University of Oxford
Giles, Mike
Carlo Mike Giles (Oxford) Monte Carlo methods May 3031, 2013 2 / 33 #12;SDEs in Finance In computational finance, stochastic differential equations are used to model the behaviour of stocks interest rates exchange rates weather electricity/gas demand crude oil prices . . . Mike Giles (Oxford) Monte
A policy-oriented language for expressing security specifications Carlos Ribeiro and Paulo Ferreira
Ferreira, Paulo
A policy-oriented language for expressing security specifications by Carlos Ribeiro and Paulo Fax: +351 213145843 email: Carlos.Ribeiro@inesc.pt Abstract Organizations' authorization policies the organization. Having a single global security policy specification would promote both security clarity
Schulze, Tim
An Energy Localization Principle and its Application to Fast Kinetic Monte Carlo Simulation of Michigan, Ann Arbor, MI 48109-1109 Abstract Simulation of heteroepitaxial growth using kinetic Monte Carlo (KMC) is often based on rates determined by differences in elastic energy between two configurations
Kinetic Monte Carlo simulations of the response of carbon nanotubes to electron irradiation
Krasheninnikov, Arkady V.
Kinetic Monte Carlo simulations of the response of carbon nanotubes to electron irradiation J of Technology, Finland (Dated: January 12, 2007) Irradiation is increasingly used nowadays to tailor of nanotubes to irradiation is still lacking, we have implemented the kinetic Monte Carlo method with Bortz
A New Monte Carlo Simulation Method for Tolerance Analysis of Kinematically Constrained Assemblies
A New Monte Carlo Simulation Method for Tolerance Analysis of Kinematically Constrained Assemblies Abstract A generalized Monte Carlo simulation method is presented for tolerance analysis of mechanical assemblies with small kinematic adjustments. This is a new tool for assembly tolerance analysis based
Hybrid Probabilistic RoadMap -Monte Carlo Motion Planning for Closed Chain Systems with
Han, Li
Hybrid Probabilistic RoadMap - Monte Carlo Motion Planning for Closed Chain Systems with Spherical@clarku.edu Abstract-- In this paper we propose a hybrid Probabilistic RoadMap - Monte Carlo (PRM-MC) motion planner and connect a large number of robot configurations in order to build a roadmap that reflects the properties
Continuous Contour Monte Carlo for Marginal Density Estimation With an Application to a
Liang, Faming
; Gelman and Meng 1998), reverse logistic regression (Geyer 1994), marginal likelihood (Chib 1995; Chib; Reversible jump Markov chain Monte Carlo; Stochastic approximation; Wang-Landau algorithm. 1. INTRODUCTION;Continuous Contour Monte Carlo 609 variety of approaches including reversible jump MCMC (Green 1995; Green
Monte Carlo simulation based study of a proposed multileaf collimator for a telecobalt machine
Sahani, G.; Dash Sharma, P. K.; Hussain, S. A.; Dutt Sharma, Sunil; Sharma, D. N.
2013-02-15
Purpose: The objective of the present work was to propose a design of a secondary multileaf collimator (MLC) for a telecobalt machine and optimize its design features through Monte Carlo simulation. Methods: The proposed MLC design consists of 72 leaves (36 leaf pairs) with additional jaws perpendicular to leaf motion having the capability of shaping a maximum square field size of 35 Multiplication-Sign 35 cm{sup 2}. The projected widths at isocenter of each of the central 34 leaf pairs and 2 peripheral leaf pairs are 10 and 5 mm, respectively. The ends of the leaves and the x-jaws were optimized to obtain acceptable values of dosimetric and leakage parameters. Monte Carlo N-Particle code was used for generating beam profiles and depth dose curves and estimating the leakage radiation through the MLC. A water phantom of dimension 50 Multiplication-Sign 50 Multiplication-Sign 40 cm{sup 3} with an array of voxels (4 Multiplication-Sign 0.3 Multiplication-Sign 0.6 cm{sup 3}= 0.72 cm{sup 3}) was used for the study of dosimetric and leakage characteristics of the MLC. Output files generated for beam profiles were exported to the PTW radiation field analyzer software through locally developed software for analysis of beam profiles in order to evaluate radiation field width, beam flatness, symmetry, and beam penumbra. Results: The optimized version of the MLC can define radiation fields of up to 35 Multiplication-Sign 35 cm{sup 2} within the prescribed tolerance values of 2 mm. The flatness and symmetry were found to be well within the acceptable tolerance value of 3%. The penumbra for a 10 Multiplication-Sign 10 cm{sup 2} field size is 10.7 mm which is less than the generally acceptable value of 12 mm for a telecobalt machine. The maximum and average radiation leakage through the MLC were found to be 0.74% and 0.41% which are well below the International Electrotechnical Commission recommended tolerance values of 2% and 0.75%, respectively. The maximum leakage through the leaf ends in closed condition was observed to be 8.6% which is less than the values reported for other MLCs designed for medical linear accelerators. Conclusions: It is concluded that dosimetric parameters and the leakage radiation of the optimized secondary MLC design are well below their recommended tolerance values. The optimized design of the proposed MLC can be integrated into a telecobalt machine by replacing the existing adjustable secondary collimator for conformal radiotherapy treatment of cancer patients.
Monte Carlo Simulation of Dense Polymer Melts Using Event Chain Algorithms
Tobias Alexander Kampmann; Horst-Holger Boltz; Jan Kierfeld
2015-07-23
We propose an efficient Monte Carlo algorithm for the off-lattice simulation of dense hard sphere polymer melts using cluster moves, called event chains, which allow for a rejection-free treatment of the excluded volume. Event chains also allow for an efficient preparation of initial configurations in polymer melts. We parallelize the event chain Monte Carlo algorithm to further increase simulation speeds and suggest additional local topology-changing moves ("swap" moves) to accelerate equilibration. By comparison with other Monte Carlo and molecular dynamics simulations, we verify that the event chain algorithm reproduces the correct equilibrium behavior of polymer chains in the melt. By comparing intrapolymer diffusion time scales, we show that event chain Monte Carlo algorithms can achieve simulation speeds comparable to optimized molecular dynamics simulations. The event chain Monte Carlo algorithm exhibits Rouse dynamics on short time scales. In the absence of swap moves, we find reptation dynamics on intermediate time scales for long chains.
Monte Carlo Simulation Tool Installation and Operation Guide
Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.
2013-09-02
This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.
Improved version of the PHOBOS Glauber Monte Carlo
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Loizides, C.; Nagle, J.; Steinberg, P.
2015-09-01
“Glauber” models are used to calculate geometric quantities in the initial state of heavy ion collisions, such as impact parameter, number of participating nucleons and initial eccentricity. Experimental heavy-ion collaborations, in particular at RHIC and LHC, use Glauber Model calculations for various geometric observables for determination of the collision centrality. In this document, we describe the assumptions inherent to the approach, and provide an updated implementation (v2) of the Monte Carlo based Glauber Model calculation, which originally was used by the PHOBOS collaboration. The main improvement w.r.t. the earlier version (v1) (Alver et al. 2008) is the inclusion of Tritium,more »Helium-3, and Uranium, as well as the treatment of deformed nuclei and Glauber–Gribov fluctuations of the proton in p +A collisions. A users’ guide (updated to reflect changes in v2) is provided for running various calculations.« less
The Quantum Energy Density: Improved Efficiency for Quantum Monte Carlo
Krogel, Jaron T; Kim, Jeongnim; Ceperley, David M
2013-01-01
We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, defined in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon "gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy differences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more efficiently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.
Strain in the mesoscale kinetic Monte Carlo model for sintering
Bjørk, R; Tikare, V; Olevsky, E; Pryds, N
2014-01-01
Shrinkage strains measured from microstructural simulations using the mesoscale kinetic Monte Carlo (kMC) model for solid state sintering are discussed. This model represents the microstructure using digitized discrete sites that are either grain or pore sites. The algorithm used to simulate densification by vacancy annihilation removes an isolated pore site at a grain boundary and collapses a column of sites extending from the vacancy to the surface of sintering compact, through the center of mass of the nearest grain. Using this algorithm, the existing published kMC models are shown to produce anisotropic strains for homogeneous powder compacts with aspect ratios different from unity. It is shown that the line direction biases shrinkage strains in proportion the compact dimension aspect ratios. A new algorithm that corrects this bias in strains is proposed; the direction for collapsing the column is determined by choosing a random sample face and subsequently a random point on that face as the end point for...
Quantum Monte Carlo Calculations of $A\\leq6$ Nuclei
B. S. Pudliner; V. R. Pandharipande; J. Carlson; R. B. Wiringa
1995-02-13
The energies of $^{3}H$, $^{3}He$, and $^{4}He$ ground states, the ${\\frac{3}{2}}^{-}$ and ${\\frac{1}{2}}^{-}$ scattering states of $^{5}He$, the ground states of $^{6}He$, $^{6}Li$, and $^{6}Be$ and the $3^{+}$ and $0^{+}$ excited states of $^{6}Li$ have been accurately calculated with the Green's function Monte Carlo method using realistic models of two- and three-nucleon interactions. The splitting of the $A=3$ isospin $T=\\frac{1}{2}$ and $A=6$ isospin $T=1$, $J^{\\pi} = 0^{+}$ multiplets is also studied. The observed energies and radii are generally well reproduced, however, some definite differences between theory and experiment can be identified.
Quantum Monte Carlo simulation of spin-polarized H
Markic, L. Vranjes; Boronat, J.; Casulleras, J.
2007-02-01
The ground-state properties of spin polarized hydrogen H{down_arrow} are obtained by means of diffusion Monte Carlo calculations. Using the most accurate to date ab initio H{down_arrow}-H{down_arrow} interatomic potential we have studied its gas phase, from the very dilute regime until densities above its freezing point. At very small densities, the equation of state of the gas is very well described in terms of the gas parameter {rho}a{sup 3}, with a the s-wave scattering length. The solid phase has also been studied up to high pressures. The gas-solid phase transition occurs at a pressure of 173 bar, a much higher value than suggested by previous approximate descriptions.
Improving multivariate Horner schemes with Monte Carlo tree search
J. Kuipers; J. A. M. Vermaseren; A. Plaat; H. J. van den Herik
2012-07-30
Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.
Lifting -- A Nonreversible Markov Chain Monte Carlo Algorithm
Vucelja, Marija
2015-01-01
Markov Chain Monte Carlo algorithms are invaluable numerical tools for exploring stationary properties of physical systems -- in particular when direct sampling is not feasible. They are widely used in many areas of physics and other sciences. Most common implementations are done with reversible Markov chains -- Markov chains that obey detailed balance. Reversible Markov chains are sufficient in order for the physical system to relax to equilibrium, but it is not necessary. Here we review several works that use "lifted" or nonreversible Markov chains, which violate detailed balance, yet still converge to the correct stationary distribution (they obey the global balance condition). In certain cases, the acceleration is a square root improvement at most, to the conventional reversible Markov chains. We introduce the problem in a way that makes it accessible to non-specialists. We illustrate the method on several representative examples (sampling on a ring, sampling on a torus, an Ising model on a complete graph...
SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans
Enright, S; Asprinio, A; Lu, L
2014-06-01
Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. All phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.
Khamsi, Mohamed Amine
Fixed Point and Selection Theorems in Hyperconvex Spaces M. A. Khamsi, W. A. Kirk, and Carlos their thanks to the sponsors for generous support and hospitality. 1 #12;2 M. A. KHAMSI, W. A. KIRK, AND CARLOS
Koh, Wonshill
2013-02-22
The light propagation in highly scattering turbid media composed of the particles with different size distribution is studied using a Monte Carlo simulation model implemented in Standard C. Monte Carlo method has been widely utilized to study...
Automatic Generation of a JET 3D Neutronics Model from CAD Geometry Data for Monte Carlo Calculations
RÃ©my, Didier
Projective ML Didier Remy INRIA-Rocquencourt Apr 10, 1992 Abstract We propose a projective lambda calculus as the ba- sis for operations on records. Projections operate on elevations, that is, records projective ML from this calculus by adding the ML Let typing rule to the simply typed projective calculus. We
Straub, John E.
Statistical-Temperature Monte Carlo and Molecular Dynamics Algorithms Jaegil Kim,* John E. Straub. A novel molecular dynamics algorithm (STMD) applicable to complex systems and a Monte Carlo algorithmRevLett.97.050601 PACS numbers: 05.10.ÿa, 02.70.Rr, 87.18.Bb The Wang-Landau (WL) Monte Carlo (MC) algorithm
Project Reports for Haida Corporation- 2010 Project
Office of Energy Efficiency and Renewable Energy (EERE)
The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.
Project Selection - Record Keeping
Howard, Jeff W.
2005-05-10
4-H members have many project areas to choose from, depending on where they live. Members should consult with their parents and 4-H leaders when choosing a project. This publication outlines project considerations.
Complete Monte Carlo Simulation of Neutron Scattering Experiments
Drosg, M.
2011-12-13
In the far past, it was not possible to accurately correct for the finite geometry and the finite sample size of a neutron scattering set-up. The limited calculation power of the ancient computers as well as the lack of powerful Monte Carlo codes and the limitation in the data base available then prevented a complete simulation of the actual experiment. Using e.g. the Monte Carlo neutron transport code MCNPX [1], neutron scattering experiments can be simulated almost completely with a high degree of precision using a modern PC, which has a computing power that is ten thousand times that of a super computer of the early 1970s. Thus, (better) corrections can also be obtained easily for previous published data provided that these experiments are sufficiently well documented. Better knowledge of reference data (e.g. atomic mass, relativistic correction, and monitor cross sections) further contributes to data improvement. Elastic neutron scattering experiments from liquid samples of the helium isotopes performed around 1970 at LANL happen to be very well documented. Considering that the cryogenic targets are expensive and complicated, it is certainly worthwhile to improve these data by correcting them using this comparatively straightforward method. As two thirds of all differential scattering cross section data of {sup 3}He(n,n){sup 3}He are connected to the LANL data, it became necessary to correct the dependent data measured in Karlsruhe, Germany, as well. A thorough simulation of both the LANL experiments and the Karlsruhe experiment is presented, starting from the neutron production, followed by the interaction in the air, the interaction with the cryostat structure, and finally the scattering medium itself. In addition, scattering from the hydrogen reference sample was simulated. For the LANL data, the multiple scattering corrections are smaller by a factor of five at least, making this work relevant. Even more important are the corrections to the Karlsruhe data due to the inclusion of the missing outgoing self-attenuation that amounts to up to 15%.
A study of the contrast of a submerged disc using Monte Carlo techniques
Hagan, Donald Frank
1980-01-01
in the simulation of lioht interactions within the Earth's ocean system. Using the Monte Carlo computer program the contrast of a Secchi disc and its ocean background was calculated. A Secchi disc 1s a horizontal disc in the ocean that is v1ewed from the surface... of samples which requires more computation time. Before the advent of high speed computers, the Monte Carlo Method was generally useless because of the massive amount of computation it required. The Monte Carlo Method is fairly simple in application...
Auxiliary Field Diffusion Monte Carlo calculation of nuclei with A<40 with tensor interactions
S. Gandolfi; F. Pederiva; S. Fantoni; K. E. Schmidt
2007-04-13
We calculate the ground-state energy of 4He, 8He, 16O, and 40Ca using the auxiliary field diffusion Monte Carlo method in the fixed phase approximation and the Argonne v6' interaction which includes a tensor force. Comparison of our light nuclei results to those of Green's function Monte Carlo calculations shows the accuracy of our method for both open and closed shell nuclei. We also apply it to 16O and 40Ca to show that quantum Monte Carlo methods are now applicable to larger nuclei.
Perfetti, Christopher M [ORNL; Rearden, Bradley T [ORNL
2014-01-01
This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.
Clean Coal Projects (Virginia)
Broader source: Energy.gov [DOE]
This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.
2016 Technology Innovation Projects
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...
Office of Environmental Management (EM)
Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011...
Office of Environmental Management (EM)
and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- &...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- &...
Broader source: Energy.gov (indexed) [DOE]
Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- &...
and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP...
Broader source: Energy.gov (indexed) [DOE]
and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Final FY 2012 Pre- & Post-CAP Final...
Broader source: Energy.gov (indexed) [DOE]
2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....
Office of Environmental Management (EM)
1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....
Office of Environmental Management (EM)
3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....
Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Forecast...
Project 1640 Palomar Procedures
Project 1640 Palomar Procedures Version 0.1 7/7/08 2:11:08 PM #12;2 Project 1640 Design..................................................................................................................... 1 Palomar Procedures
Project Finance and Investments
Broader source: Energy.gov [DOE]
Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture
Falls Creek Hydroelectric Project
Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett
2007-06-12
This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.
Monte Carlo simulation of the terrestrial hydrogen exosphere
Hodges, R.R. Jr. [Univ. of Texas, Dallas, TX (United States)
1994-12-01
Methods for Monte Carlo simulation of planetary exospheres have evolved from early work on the lunar atmosphere, where the regolith surface provides a well defined exobase. A major limitation of the successor simulations of the exospheres of Earth and Venus is the use of an exobase surface as an artifice to separate the collisional processes of the thermosphere from a collisionles exosphere. In this paper a new generalized approach to exosphere simulation is described, wherein the exobase is replaced by a barometric depletion of the major constitents of the thermosphere. Exospheric atoms in the thermosphere-exosphere transition region, and in the outer exosphere as well, travel in ballistic trajectories that are interrupted by collisons with the background gas, and by charge exchange interactions with ionospheric particles. The modified simulator has been applied to the terrestrial hydrogen exosphere problem, using velocity dependent differential cross sections to provide statistically correct collisional scattering in H-O and H-H(+) interactions. Global models are presented for both solstice and equinox over the effective solar cycle range of the F{sub 10.7} index (80 to 230). Simulation results show significant differences with previous terrestrial exosphere models, as well as with the H distributions of the MSIS-86 thermosphere model.
Nuclear Force from Monte Carlo Simulations of Lattice Quantum Chromodynamics
S. Aoki; T. Hatsuda; N. Ishii
2008-10-24
The nuclear force acting between protons and neutrons is studied in the Monte Carlo simulations of the fundamental theory of the strong interaction, the quantum chromodynamics defined on the hypercubic space-time lattice. After a brief summary of the empirical nucleon-nucleon (NN) potentials which can fit the NN scattering experiments in high precision, we outline the basic formulation to derive the potential between the extended objects such as the nucleons composed of quarks. The equal-time Bethe-Salpeter amplitude is a key ingredient for defining the NN potential on the lattice. We show the results of the numerical simulations on a $32^4$ lattice with the lattice spacing $a \\simeq 0.137 $fm (lattice volume (4.4 fm)$^4$) in the quenched approximation. The calculation was carried out using the massively parallel computer Blue Gene/L at KEK. We found that the calculated NN potential at low energy has basic features expected from the empirical NN potentials; attraction at long and medium distances and the repulsive core at short distance. Various future directions along this line of research are also summarized.
Performance of three-photon PET imaging: Monte Carlo simulations
Kacperski, K; Kacperski, Krzysztof; Spyrou, Nicholas M.
2005-01-01
We have recently introduced the idea of making use of three-photon positron annihilations in positron emission tomography. In this paper the basic characteristics of the three-gamma imaging in PET are studied by means of Monte Carlo simulations and analytical computations. Two typical configurations of human and small animal scanners are considered. Three-photon imaging requires high energy resolution detectors. Parameters currently attainable by CdZnTe semiconductor detectors, the technology of choice for the future development of radiation imaging, are assumed. Spatial resolution is calculated as a function of detector energy resolution and size, position in the field of view, scanner size, and the energies of the three gamma annihilation photons. Possible ways to improve the spatial resolution obtained for nominal parameters: 1.5 cm and 3.2 mm FWHM for human and small animal scanners, respectively, are indicated. Counting rates of true and random three-photon events for typical human and small animal scann...
Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry
2015-07-07
Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore »as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less
High order Chin actions in path integral Monte Carlo
Sakkos, K.; Casulleras, J.; Boronat, J.
2009-05-28
High order actions proposed by Chin have been used for the first time in path integral Monte Carlo simulations. Contrary to the Takahashi-Imada action, which is accurate to the fourth order only for the trace, the Chin action is fully fourth order, with the additional advantage that the leading fourth-order error coefficients are finely tunable. By optimizing two free parameters entering in the new action, we show that the time step error dependence achieved is best fitted with a sixth order law. The computational effort per bead is increased but the total number of beads is greatly reduced and the efficiency improvement with respect to the primitive approximation is approximately a factor of 10. The Chin action is tested in a one-dimensional harmonic oscillator, a H{sub 2} drop, and bulk liquid {sup 4}He. In all cases a sixth-order law is obtained with values of the number of beads that compare well with the pair action approximation in the stringent test of superfluid {sup 4}He.
Monte Carlo sampling from the quantum state space. I
Jiangwei Shang; Yi-Lin Seah; Hui Khoon Ng; David John Nott; Berthold-Georg Englert
2015-04-27
High-quality random samples of quantum states are needed for a variety of tasks in quantum information and quantum computation. Searching the high-dimensional quantum state space for a global maximum of an objective function with many local maxima or evaluating an integral over a region in the quantum state space are but two exemplary applications of many. These tasks can only be performed reliably and efficiently with Monte Carlo methods, which involve good samplings of the parameter space in accordance with the relevant target distribution. We show how the standard strategies of rejection sampling, importance sampling, and Markov-chain sampling can be adapted to this context, where the samples must obey the constraints imposed by the positivity of the statistical operator. For a comparison of these sampling methods, we generate sample points in the probability space for two-qubit states probed with a tomographically incomplete measurement, and then use the sample for the calculation of the size and credibility of the recently-introduced optimal error regions [see New J. Phys. 15 (2013) 123026]. Another illustration is the computation of the fractional volume of separable two-qubit states.
Ensemble bayesian model averaging using markov chain Monte Carlo sampling
Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P
2008-01-01
Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.
Monte Carlo Simulations of Lattice Models for Single Polymer Systems
Hsiao-Ping Hsu
2015-03-03
Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length $N \\sim {\\cal O}(10^4)$. Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between $2$ and $\\sqrt{10}$, we investigate the conformations of polymer chains described by self-avoiding walks (SAWs) on the simple cubic lattice, and by random walks (RWs) and non-reversible random walks (NRRWs) in the absence of excluded volume (EV) interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.
A review of Monte Carlo simulations of polymers with PERM
Hsiao-Ping Hsu; Peter Grassberger
2011-07-06
In this review, we describe applications of the pruned-enriched Rosenbluth method (PERM), a sequential Monte Carlo algorithm with resampling, to various problems in polymer physics. PERM produces samples according to any given prescribed weight distribution, by growing configurations step by step with controlled bias, and correcting "bad" configurations by "population control". The latter is implemented, in contrast to other population based algorithms like e.g. genetic algorithms, by depth-first recursion which avoids storing all members of the population at the same time in computer memory. The problems we discuss all concern single polymers (with one exception), but under various conditions: Homopolymers in good solvents and at the $\\Theta$ point, semi-stiff polymers, polymers in confining geometries, stretched polymers undergoing a forced globule-linear transition, star polymers, bottle brushes, lattice animals as a model for randomly branched polymers, DNA melting, and finally -- as the only system at low temperatures, lattice heteropolymers as simple models for protein folding. PERM is for some of these problems the method of choice, but it can also fail. We discuss how to recognize when a result is reliable, and we discuss also some types of bias that can be crucial in guiding the growth into the right directions.
MARKOV CHAIN MONTE CARLO FOR AUTOMATED TRACKING OF GENEALOGY IN MICROSCOPY VIDEOS
MARKOV CHAIN MONTE CARLO FOR AUTOMATED TRACKING OF GENEALOGY IN MICROSCOPY VIDEOS KATHLEEN CHAMPION of the nuclei in the images and their genealogies. Evan Tice '09 has already developed some code that aims
Parallel Markov Chain Monte Carlo Methods for Large Scale Statistical Inverse Problems
Wang, Kainan
2014-04-18
but also the uncertainty of these estimations. Markov chain Monte Carlo (MCMC) is a useful technique to sample the posterior distribution and information can be extracted from the sampled ensemble. However, MCMC is very expensive to compute, especially...
Exponentially-convergent Monte Carlo for the One-dimensional Transport Equation
Peterson, Jacob Ross
2014-04-23
singular problems. Computational results are presented demonstrating the efficacy of the new approach. We tested our ECMC algorithm against standard Monte Carlo and found the ECMC method to be generally much more efficient. For a manufacture solution...
Improvements and applications of the Uniform Fission Site method in Monte Carlo
Hunter, Jessica Lynn
2014-01-01
Monte Carlo methods for reactor analysis have been in development with the eventual goal of full-core analysis. To attain results with reasonable uncertainties, large computational resources are needed. Variance reduction ...
Walsh, Jonathan A. (Jonathan Alan)
2014-01-01
This thesis presents the development and analysis of computational methods for efficiently accessing and utilizing nuclear data in Monte Carlo neutron transport code simulations. Using the OpenMC code, profiling studies ...
Fighting cheaters: How and how much to invest Juan Carlos Nu~no 1
Primicerio, Mario
Fighting cheaters: How and how much to invest Juan Carlos Nu~no 1 , Miguel A. Herrero 2 and Mario wealth and deplete resources which are always limited and often scarce. To fight cheaters, a society can
Pasciak, Alexander Samuel
2007-04-25
Advancements in parallel and cluster computing have made many complex Monte Carlo simulations possible in the past several years. Unfortunately, cluster computers are large, expensive, and still not fast enough to make the ...
Wang, Li-Fang, Ph. D. Massachusetts Institute of Technology
2007-01-01
In this thesis research, a coherent scattering model for microwave remote sensing of vegetation canopy is developed on the basis of Monte Carlo simulations. An accurate model of vegetation structure is essential for the ...
Matrix Elements with Vetoes in the CASCADE Monte Carlo Event Generator
Michal Deak; Francesco Hautmann; Hannes Jung; Krzysztof Kutak
2012-06-08
We illustrate a study based on a veto technique to match parton showers and matrix elements in the Cascade Monte Carlo event generator, and present a numerical application to gluon matrix elements for jet production.
Ruolo dell’intellettuale e 'guerra di posizione:' da Gramsci a Carlo Giuliani, ragazzo
Sassi, Mauro
2011-01-01
13. Jonathan Neale, You are G8, we are 6 billion: the truth229. 14. Carlo Lucarelli, G8: cronaca di una battaglia (di imporre la cancellazione del G8, ma dopo il rifiuto delle
Shifting Preferences and Time-Varying Parameters in Demand Analysis: A Monte Carlo Study
Kanyama, Isaac Kalonda
2011-05-31
Using Monte Carlo experiments, I address two issues in demand analysis. The first relates to the performance of local flexible functional forms in recovering the time-varying elasticities of a true model, and in correctly identifying goods...
Universidad Rey Juan Carlos Escuela Superior de Ciencias Experimentales y Tecnologia
Pantrigo Fernández, Juan José
Universidad Rey Juan Carlos Escuela Superior de Ciencias Experimentales y Tecnolog´ia Departamento), que es el ´area de estudio de sistemas que permiten al usuario transmitir informaci´on a un ordenador
Monte Carlo and thermal hydraulic coupling using low-order nonlinear diffusion acceleration
Herman, Bryan R. (Bryan Robert)
2014-01-01
Monte Carlo (MC) methods for reactor analysis are most often employed as a benchmark tool for other transport and diffusion methods. In this work, we identify and resolve a few of the issues associated with using MC as a ...
Show me the way to Monte Carlo: density-based trajectory Steven Strachan1
Murray-Smith, Roderick
with a combination of Global Positioning System data, a music player, inertial sen- sing, magnetic bearing data, magnetic bearing data and Monte Carlo samp- ling and modulates a listener's music in order to guide them
Xu, Sheng, S.M. Massachusetts Institute of Technology
2013-01-01
In order to use Monte Carlo methods for reactor simulations beyond benchmark activities, the traditional way of preparing and using nuclear cross sections needs to be changed, since large datasets of cross sections at many ...
Protein folding and phylogenetic tree reconstruction using stochastic approximation Monte Carlo
Cheon, Sooyoung
2007-09-17
Recently, the stochastic approximation Monte Carlo algorithm has been proposed by Liang et al. (2005) as a general-purpose stochastic optimization and simulation algorithm. An annealing version of this algorithm was developed for real small protein...
Northum, Jeremy Dell
2011-08-08
The purpose of this study was to determine how well the Monte Carlo transport code FLUKA can simulate a tissue-equivalent proportional counter (TEPC) and produce the expected delta ray events when exposed to high energy ...
Quadratic Diffusion Monte-Carlo Algorithms for Solving Atomic Many-Body Problems
Chin, Siu A.
1990-01-01
The diffusion Monte Carlo algorithm with and without importance sampling is analyzed in terms of the algorithm's underlying transfer matrix. The crucial role played by the Langevin algorithm in the importance-sampling ...
Fourth-order diffusion Monte Carlo algorithms for solving quantum many-body problems
Forbert, HA; Chin, Siu A.
2001-01-01
By decomposing the important sampled imaginary time Schrodinger evolution operator to fourth order with positive coefficients, we derived a number of distinct fourth-order diffusion Monte Carlo algorithms. These sophisticated ...
Radiative transfer in the earth's atmosphere-ocean system using Monte Carlo techniques
Bradley, Paul Andrew
1987-01-01
TRANSFER PROBLEM MONTE CARLO METHOD Assumptions of the Model Photon Pathlength Emulation Techniques Sampling Scattering Functions: Angles and Probabilities Emulation of an Interface Computing the Radiance by Statistical Estimation Determination... radiance values in both the atmosphere and the ocean from the scattering functions and other input data, with a Monte Carlo computer code. The polarization ot the radiation was taken into account by Kattawar et al. s in their computation...
Carlos D. Ramirez-Reyes University of Wisconsin-Madison
Turner, Monica G.
Position: Forestry Technician Collaborating in environmental impact assessments, local ecotourism projects Freyssinel 2003- 2008 BSc. Biology National Autonomous University of Mexico (UNAM); Faculty of Sciences Final Research Topic: Land cover change in coffee growing areas in southern Mexico. Advisor: Gustavo Cruz
PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code
Iandola, F N; O'Brien, M J; Procassini, R J
2010-11-29
Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.
Quantum Monte Carlo methods and lithium cluster properties
Owen, R.K.
1990-12-01
Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) [0.1981], 0.1895(9) [0.1874(4)], 0.1530(34) [0.1599(73)], 0.1664(37) [0.1724(110)], 0.1613(43) [0.1675(110)] Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) [0.0203(12)], 0.0188(10) [0.0220(21)], 0.0247(8) [0.0310(12)], 0.0253(8) [0.0351(8)] Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.
Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters
Owen, R.K.
1990-12-01
Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.
MONTE CARLO SIMULATION OF METASTABLE OXYGEN PHOTOCHEMISTRY IN COMETARY ATMOSPHERES
Bisikalo, D. V.; Shematovich, V. I. [Institute of Astronomy of the Russian Academy of Sciences, Moscow (Russian Federation); Gérard, J.-C.; Hubert, B. [Laboratory for Planetary and Atmospheric Physics (LPAP), University of Liège, Liège (Belgium); Jehin, E.; Decock, A. [Origines Cosmologiques et Astrophysiques (ORCA), University of Liège (Belgium); Hutsemékers, D. [Extragalactic Astrophysics and Space Observations (EASO), University of Liège (Belgium); Manfroid, J., E-mail: B.Hubert@ulg.ac.be [High Energy Astrophysics Group (GAPHE), University of Liège (Belgium)
2015-01-01
Cometary atmospheres are produced by the outgassing of material, mainly H{sub 2}O, CO, and CO{sub 2} from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical processes lead to the production of other species generally absent from the nucleus, such as OH. Although all comets are different, they all have a highly rarefied atmosphere, which is an ideal environment for nonthermal photochemical processes to take place and influence the detailed state of the atmosphere. We develop a Monte Carlo model of the coma photochemistry. We compute the energy distribution functions (EDF) of the metastable O({sup 1}D) and O({sup 1}S) species and obtain the red (630 nm) and green (557.7 nm) spectral line shapes of the full coma, consistent with the computed EDFs and the expansion velocity. We show that both species have a severely non-Maxwellian EDF, that results in broad spectral lines and the suprathermal broadening dominates due to the expansion motion. We apply our model to the atmosphere of comet C/1996 B2 (Hyakutake) and 103P/Hartley 2. The computed width of the green line, expressed in terms of speed, is lower than that of the red line. This result is comparable to previous theoretical analyses, but in disagreement with observations. We explain that the spectral line shape does not only depend on the exothermicity of the photochemical production mechanisms, but also on thermalization, due to elastic collisions, reducing the width of the emission line coming from the O({sup 1}D) level, which has a longer lifetime.
Livingston Campus Geothermal Project The Project
Delgado, Mauricio
Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes
Choi, Myunghee; Chan, Vincent S.
2014-02-28
This final report describes the work performed under U.S. Department of Energy Cooperative Agreement DE-FC02-08ER54954 for the period April 1, 2011 through March 31, 2013. The goal of this project was to perform iterated finite-orbit Monte Carlo simulations with full-wall fields for modeling tokamak ICRF wave heating experiments. In year 1, the finite-orbit Monte-Carlo code ORBIT-RF and its iteration algorithms with the full-wave code AORSA were improved to enable systematical study of the factors responsible for the discrepancy in the simulated and the measured fast-ion FIDA signals in the DIII-D and NSTX ICRF fast-wave (FW) experiments. In year 2, ORBIT-RF was coupled to the TORIC full-wave code for a comparative study of ORBIT-RF/TORIC and ORBIT-RF/AORSA results in FW experiments.
Energy Efficiency/ Renewable Energy (EE/RE) Projects in Texas Public Schools
Haberl, J.; Kim, H.; Mukhopadhyay, J.; Baltazar, J. C.; Do, S.; Kim, K.; Lewis, C.; Yazdani, B.; Yarborough, J.
2011-01-01
. 1 Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools Jeff Haberl, Hyojin Kim, Jaya Mukhopadhyay, Juan-Carlos Baltazar...-Cevantes, Sung Lok Do, Kee Han Kim, Cyndi Lewis, Bahman Yazdani – Energy Systems Laboratory James Yarborough, U.S.E.P.A. Energy Systems Laboratory p. 2 Why care about energy efficiency-renewable energy in schools? • Lower energy costs • May help...
San Carlos, California: Energy Resources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources Jump to:Ohio:ProjectAugustine County,Facility
Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title......
Dahlberg, Teresa A.
Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title of the project?) Excellent Very Good Good Fair Unsatisfactory COMMENTS: #12;Judge Evaluation Scoring Form for REU) #12;Judge Evaluation Scoring Form for Poster Presentation PROJECT.#.: ...Title.. PARTICIPANTS: DATE
Broader source: Energy.gov [DOE]
The project execution plan (PEP) is the governing document that establishes the means to execute, monitor, and control projects. The plan serves as the main communication vehicle to ensure that...
Haida Corporation- 2010 Project
Office of Energy Efficiency and Renewable Energy (EERE)
The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.
Iskuulpa Watershed ProjectIskuulpa Watershed Project BPA Project # 199506001BPA Project # 199506001
Basin Fish and Wildlife Mitigation ProjectMitigation Project Established by the CTUIR in 1995Established by the CTUIR in 1995 Provides dual benefit to fish and wildlifeProvides dual benefit to fish and wildlife while
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Network Project RTU Network Project Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies...
Broader source: Energy.gov (indexed) [DOE]
100% Post-CAP This is based on a 3-year rolling average (FY10). TPC is Total Project Cost. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup...
Howard, Jeff W.
2005-05-10
Project group meetings must be planned well in advance. Members should be involved in completing some type of work before the next meeting. This helps the leader plan the next project meeting and makes efficient use of time.
Howard, Jeff W.
2005-05-10
As a 4-H volunteer, you will find that projects are useful tools for teaching a wide variety of skills to young people. This publication will help you plan and evaluate 4-H learning projects.
on a 3-year rolling average (FY09 to FY11). TPC is Total Project Cost. 2a. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: (Pre-...
Rabbit Project Reference Manual
Wootton, Chad
2000-05-04
This publication explains how to raise rabbits for a 4-H rabbit project. It discusses project options; breeds; equipment; breeding and kindling; sanitation; diseases, parasites and illnesses; processing; marketing; and grooming and showing. Although...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
within 12 months of the original CD- 34 duration. 90% 91% FY10-FY12 Seventy completions to date. Schedule Compliance, Projects greater than 5 years Duration: Projects will...
Infrastructure Projects | Jefferson Lab
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
conditions for many, as well as a change to the layout of the laboratory due to ancillary projects. The project has received approval to make early purchases in the...
Information Technology Project Management
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2012-12-03
The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Battocletti, Liz
The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey
Broader source: Energy.gov [DOE]
View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Battocletti, Liz
2013-07-09
The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey
Ferdinand Project Middleware List
://java.dzone.com/articles/case-study-how-lastfm-uses] - hornetq-vm: VM for testing of clustered scenarios [http://sourceforge.net/projects/hornetq-vm/] EvaluationFerdinand Project Middleware List Jaroslav Keznikl2 , Michal Malohlava1 , LukÃ¡s Marek1 , Petr Tma1 phone +420-266053831 #12;FERDINAND PROJECT MIDDLEWARE LIST PURPOSE The purpose of this report
TEAM PROJECT: WORKING PROTOTYPE
.) Value: the report is worth 10% of the Team Project grade. #12;Next steps: You will evaluateTEAM PROJECT: WORKING PROTOTYPE Due: Week of April 5-8 at time to be scheduled with GTA Format that will be polished into the final project for which you will create a final report and give a final presentation
Project Description 1 Introduction
VanDeGrift, Tammy
Project Description 1 Introduction This project will investigate "commonsense computing": what, and 3. Apply our findings to changes in classroom pedagogy in ways that can be rigorously evalu- ated. 1 0736572 #12;In the exploratory part of this project, which we are proposing here, we will concentrate
Kansas Advanced Semiconductor Project
Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.
2007-09-21
KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.
PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans...
qualitativelysubjectively assess the project risk. The approach is modeled after project risk assessment processes outlined in standard project management texts and training...
Statistical Exploration of Electronic Structure of Molecules from Quantum Monte-Carlo Simulations
Prabhat, Mr; Zubarev, Dmitry; Lester, Jr., William A.
2010-12-22
In this report, we present results from analysis of Quantum Monte Carlo (QMC) simulation data with the goal of determining internal structure of a 3N-dimensional phase space of an N-electron molecule. We are interested in mining the simulation data for patterns that might be indicative of the bond rearrangement as molecules change electronic states. We examined simulation output that tracks the positions of two coupled electrons in the singlet and triplet states of an H2 molecule. The electrons trace out a trajectory, which was analyzed with a number of statistical techniques. This project was intended to address the following scientific questions: (1) Do high-dimensional phase spaces characterizing electronic structure of molecules tend to cluster in any natural way? Do we see a change in clustering patterns as we explore different electronic states of the same molecule? (2) Since it is hard to understand the high-dimensional space of trajectories, can we project these trajectories to a lower dimensional subspace to gain a better understanding of patterns? (3) Do trajectories inherently lie in a lower-dimensional manifold? Can we recover that manifold? After extensive statistical analysis, we are now in a better position to respond to these questions. (1) We definitely see clustering patterns, and differences between the H2 and H2tri datasets. These are revealed by the pamk method in a fairly reliable manner and can potentially be used to distinguish bonded and non-bonded systems and get insight into the nature of bonding. (2) Projecting to a lower dimensional subspace ({approx}4-5) using PCA or Kernel PCA reveals interesting patterns in the distribution of scalar values, which can be related to the existing descriptors of electronic structure of molecules. Also, these results can be immediately used to develop robust tools for analysis of noisy data obtained during QMC simulations (3) All dimensionality reduction and estimation techniques that we tried seem to indicate that one needs 4 or 5 components to account for most of the variance in the data, hence this 5D dataset does not necessarily lie on a well-defined, low dimensional manifold. In terms of specific clustering techniques, K-means was generally useful in exploring the dataset. The partition around medoids (pam) technique produced the most definitive results for our data showing distinctive patterns for both a sample of the complete data and time-series. The gap statistic with tibshirani criteria did not provide any distinction across the 2 dataset. The gap statistic w/DandF criteria, Model based clustering and hierarchical modeling simply failed to run on our datasets. Thankfully, the vanilla PCA technique was successful in handling our entire dataset. PCA revealed some interesting patterns for the scalar value distribution. Kernel PCA techniques (vanilladot, RBF, Polynomial) and MDS failed to run on the entire dataset, or even a significant fraction of the dataset, and we resorted to creating an explicit feature map followed by conventional PCA. Clustering using K-means and PAM in the new basis set seems to produce promising results. Understanding the new basis set in the scientific context of the problem is challenging, and we are currently working to further examine and interpret the results.
Fission matrix-based Monte Carlo criticality analysis of fuel storage pools
Farlotti, M.; Larsen, E. W.
2013-07-01
Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simple problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)
van Dorp, Johan René
Journal of Engineering Valuation and Cost Analysis, Vol. 2, pp. 285-301 1 Risk Analysis for Large Carlo simulation of activity networks has generated interest as a method for cost/schedule risk analysis risk analysis is now widely available as extensions to many popular project management
The ALPS project: open source software for strongly correlated systems
F. Alet; P. Dayal; A. Grzesik; A. Honecker; M. Koerner; A. Laeuchli; S. R. Manmana; I. P. McCulloch; F. Michel; R. M. Noack; G. Schmid; U. Schollwoeck; F. Stoeckli; S. Todo; S. Trebst; M. Troyer; P. Werner; S. Wessel; for the ALPS collaboration
2004-10-15
We present the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). The software is available from our web server at http://alps.comp-phys.org.
Scintillation Pulse Shape Discrimination in a Two-Phase Xenon Time Projection Chamber
J. Kwong; P. Brusov; T. Shutt; C. E. Dahl; A. I. Bolozdynya; A. Bradley
2009-08-06
The energy and electric field dependence of pulse shape discrimination in liquid xenon have been measured in a 10 gm two-phase xenon time projection chamber. We have demonstrated the use of the pulse shape and charge-to-light ratio simultaneously to obtain a leakage below that achievable by either discriminant alone. A Monte Carlo is used to show that the dominant fluctuation in the pulse shape quantity is statistical in nature, and project the performance of these techniques in larger detectors. Although the performance is generally weak at low energies relevant to elastic WIMP recoil searches, the pulse shape can be used in probing for higher energy inelastic WIMP recoils.
Monte Carlo implementation of a guiding-center Fokker-Planck kinetic equation
Hirvijoki, E.; Snicker, A.; Kurki-Suonio, T. [Department of Applied Physics, Aalto University, FI-00076 Aalto (Finland)] [Department of Applied Physics, Aalto University, FI-00076 Aalto (Finland); Brizard, A. [Department of Physics, Saint Michael's College, Colchester, Vermont 05439 (United States)] [Department of Physics, Saint Michael's College, Colchester, Vermont 05439 (United States)
2013-09-15
A Monte Carlo method for the collisional guiding-center Fokker-Planck kinetic equation is derived in the five-dimensional guiding-center phase space, where the effects of magnetic drifts due to the background magnetic field nonuniformity are included. It is shown that, in the limit of a homogeneous magnetic field, our guiding-center Monte Carlo collision operator reduces to the guiding-center Monte Carlo Coulomb operator previously derived by Xu and Rosenbluth [Phys. Fluids B 3, 627 (1991)]. Applications of the present work will focus on the collisional transport of energetic ions in complex nonuniform magnetized plasmas in the large mean-free-path (collisionless) limit, where magnetic drifts must be retained.
A Proposal for a Standard Interface Between Monte Carlo Tools And One-Loop Programs
Binoth, T.; Boudjema, F.; Dissertori, G.; Lazopoulos, A.; Denner, A.; Dittmaier, S.; Frederix, R.; Greiner, N.; Hoeche, Stefan; Giele, W.; Skands, P.; Winter, J.; Gleisberg, T.; Archibald, J.; Heinrich, G.; Krauss, F.; Maitre, D.; Huber, M.; Huston, J.; Kauer, N.; Maltoni, F.; /Louvain U., CP3 /Milan Bicocca U. /INFN, Turin /Turin U. /Granada U., Theor. Phys. Astrophys. /CERN /NIKHEF, Amsterdam /Heidelberg U. /Oxford U., Theor. Phys.
2011-11-11
Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, William P. (Tracy, CA); Hartmann-Siantar, Christine L. (San Ramon, CA); Rathkopf, James A. (Livermore, CA)
1999-01-01
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.
1999-02-09
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.
BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)
BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County;BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Licensing: The Beacon project would have a nominal
National Compact Stellarator Experiment Project Closeout Report PROJECT CLOSEOUT REPORT
Princeton Plasma Physics Laboratory
Approved by Jeffrey Makiel DOE Federal Project Director for the National Compact Stellarator Experiment II.....................................................................................1 3. PROJECT HISTORY
PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans...
Broader source: Energy.gov (indexed) [DOE]
addressing the following key elements of project management and control: Project Management Control System (PMCS) - Work breakdown structure - Baseline developmentupdate...
Monte Carlo techniques of simulation applied to a single item inventory system
Aldred, William Murray
1965-01-01
of MASTER OF SCIENCE August 1965 Major SubJect: Computer Science MONTE CARLO TECHNIQUES OF SIMULATION APPLIED TO A SINGLE ITEM INVENTORY SYSTEM A Thesis By WILLIAM MURRAY ALDRED, JR. Approved as to style and content by: (Chairman of Committee (Head... as it operates. Now that the basic principles and requirements of a simulati. on study have been outlined, it seems appropriate to discuss one of the better methods of reducing the data to a form suitable for simulation by a computer. Monte Carlo Technique...
Monte Carlo simulations of the HP model (the "Ising model" of protein folding)
Li, Ying Wai; Landau, David P; 10.1016/j.cpc.2010.12.049
2011-01-01
Using Wang-Landau sampling with suitable Monte Carlo trial moves (pull moves and bond-rebridging moves combined) we have determined the density of states and thermodynamic properties for a short sequence of the HP protein model. For free chains these proteins are known to first undergo a collapse "transition" to a globule state followed by a second "transition" into a native state. When placed in the proximity of an attractive surface, there is a competition between surface adsorption and folding that leads to an intriguing sequence of "transitions". These transitions depend upon the relative interaction strengths and are largely inaccessible to "standard" Monte Carlo methods.
Spin-orbit induced backflow in neutron matter with auxiliary field diffusion Monte Carlo
L. Brualla; S. Fantoni; A. Sarsa; K. E Schmidt; S. A. Vitiello
2003-04-14
The energy per particle of zero-temperature neutron matter is investigated, with particular emphasis on the role of the $\\vec L\\cdot\\vec S$ interaction. An analysis of the importance of explicit spin--orbit correlations in the description of the system is carried out by the auxiliary field diffusion Monte Carlo method. The improved nodal structure of the guiding function, constructed by explicitly considering these correlations, lowers the energy. The proposed spin--backflow orbitals can conveniently be used also in Green's Function Monte Carlo calculations of light nuclei.
Monte Carlo Simulations of Macho Parallaxes From a Satellite
Thomas Boutreux; Andrew Gould
1995-07-25
Three ongoing microlensing experiments have found more candidate events than expected from the known stars. These experiments measure only one parameter of the massive compact halo objects (machos), the magnification time scale of the events. More information is required to understand the nature of the machos. A satellite experiment has been proposed to measure their projected transverse speed $\\tilde{v} = v/(1-z)$, where $v$ is the macho transverse speed and $z$ its distance divided by the distance of the source. Measurement of $\\tilde{v}$ would determine whether the machos were in the Galactic disk, Galactic halo, or in the Large Magellanic Cloud (LMC). We simulate events observed toward the LMC by the Earth and by a satellite in an Earth like heliocentric orbit. To leading order, such an experiment determines $\\tilde{v}$ up to a two fold degeneracy. More precise measurements break the degeneracy. We show that with photometric precisions of 3\\% to 4\\% and approximately 1 observation per day, $\\tilde{v}$ can be measured with a maximum error of 20\\% for 70\\% to 90\\% of events similar to the ones reported by the EROS and MACHO collaborations. The projected transverse velocity is known with the same maximum error for 60\\% to 75\\% of these events. This 20\\% maximum error is not a 1 $\\sigma$ error but is mostly due to degeneracy between two possible solutions, each one being localized to much better than 20\\%. These results are obtained with an Earth-satellite separation of 1 AU, and are improved by a larger separation.
Project Surveillance and Maintenance Plan. [UMTRA Project
Not Available
1985-09-01
The Project Surveillance and Maintenance Plan (PSMP) describes the procedures that will be used by the US Department of Energy (DOE), or other agency as designated by the President to verify that inactive uranium tailings disposal facilities remain in compliance with licensing requirements and US Environmental Protection Agency (EPA) standards for remedial actions. The PSMP will be used as a guide for the development of individual Site Surveillance and Maintenance Plans (part of a license application) for each of the UMTRA Project sites. The PSMP is not intended to provide minimum requirements but rather to provide guidance in the selection of surveillance measures. For example, the plan acknowledges that ground-water monitoring may or may not be required and provides the (guidance) to make this decision. The Site Surveillance and Maintenance Plans (SSMPs) will form the basis for the licensing of the long-term surveillance and maintenance of each UMTRA Project site by the NRC. Therefore, the PSMP is a key milestone in the licensing process of all UMTRA Project sites. The Project Licensing Plan (DOE, 1984a) describes the licensing process. 11 refs., 22 figs., 8 tabs.
The CHPRC Columbia River Protection Project Quality Assurance Project Plan
Fix, N. J.
2008-11-30
Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.
Chung, Kiwhan
1996-01-01
While the use of Monte Carlo method has been prevalent in nuclear engineering, it has yet to fully blossom in the study of solute transport in porous media. By using an etched-glass micromodel, an attempt is made to apply Monte Carlo method...
Sailhac, Pascal
Inversion of surface nuclear magnetic resonance data by an adapted Monte Carlo method applied, France Abstract Inversion of surface nuclear magnetic resonance (SNMR) provides important information Science B.V. All rights reserved. Keywords: Inversion; Surface nuclear magnetic resonance; Monte Carlo 1
Anderson, James B.
Direct Monte Carlo simulation of chemical reaction systems: Internal energy transfer and an energy a direct Monte Carlo simulation of an energy-dependent t&molecular reaction system of the type A+ B simulation of a unimo- lecular reaction with an energy-dependent rate constant k3 and with explicit treatment
Mezei, Mihaly
An improved acceptance criterion for local move Monte Carlo method in which trial steps change only sevenEfficient Monte Carlo sampling for long molecular chains using local moves, tested on a solvated, New York University, New York, New York 10029 Received 20 February 2002; accepted 27 November 2002
Pistole, C.O.
1995-11-01
One of the most difficult hurdles facing small project developers is obtaining financing. Many major banks and institutional investors are unwilling to become involved in projects valued at less than $25 million. To gain the interest of small project investors, developers will want to present a well-considered plan and an attractive rate of return. Waste-to-energy projects are one type that can offer diversified revenue sources that assure maximum profitability. The Ripe Touch Greenhouse project, a $14.5 million waste tire-to-energy facility in Colorado, provides a case study of how combining the strengths of the project partners can help gain community and regulatory acceptance and maximize profit opportunities.
Battleground Energy Recovery Project
Daniel Bullock
2011-12-31
In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ï?· Create a Showcase Waste Heat Recovery Demonstration Project.
Operational Waste Volume Projection
STRODE, J.N.
2000-08-28
Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.
Microwave solidification project overview
Sprenger, G.
1993-01-01
The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.
Operational Waste Volume Projection
STRODE, J.N.
1999-08-24
Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.
Mascoma: Frontier Biorefinery Project
Broader source: Energy.gov [DOE]
This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.
Office of Environmental Management (EM)
acquisition process and will be utilized during all phases of a project life cycle. The IPT is a team of professionals representing diverse disciplines with the specific...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ideas. Borovsky, Joe Mentor Joe Borovsky General Interests Magnetospheric physics, solar-wind physics, solar-windmagnetosphere coupling Suggested Project Topics Theory and...
Broader source: Energy.gov [DOE]
With this award, the Penobscot Indian Nation will advance the preconstruction activities required to secure funding for the proposed 227-megawatt (MW) Alder Stream wind project.
Wythe, Kathy
2007-01-01
stream_source_info Bacteria TMDL projects.pdf.txt stream_content_type text/plain stream_size 2550 Content-Encoding ISO-8859-1 stream_name Bacteria TMDL projects.pdf.txt Content-Type text/plain; charset=ISO-8859-1 tx H2O... of the projects are listed below. ? Peach CreekWater Quality Improvement Project ? Monitoring and Educational Programs Focused on Bacteria and Nutrient Runoff on Dairy Operations in the LeonWatershed ? Development of the Plum CreekWPP ? Impact of Proper...
Whistling Ridge Energy Project
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
build, own and operate the wind project and their associated facilities. The Final Environmental Impact Statement (FEIS) has been issued for the proposed Whistling Ridge...
The MAJORANA collaboration
2009-10-23
The {\\sc Majorana} Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.
Elliott, Steven R [Los Alamos National Laboratory
2009-01-01
The Majorana Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
loop and its six associated substations. An upgrade of the INL loop, designed by Power Systems personnel, was completed in 1997. This project consists of transmission line...
Usefulness of the reversible jump Markov chain Monte Carlo model in regional flood frequency
Ribatet, Mathieu
Usefulness of the reversible jump Markov chain Monte Carlo model in regional flood frequency; revised 3 May 2007; accepted 17 May 2007; published 3 August 2007. [1] Regional flood frequency analysis and the index flood approach. Results show that the proposed estimator is absolutely suited to regional
Inferring Better Contracts Yi Wei Carlo A. Furia Nikolay Kazmin Bertrand Meyer
Meyer, Bertrand
but conservative contracts, and are mostly successful with small programs. Dynamic approaches scale betterInferring Better Contracts Yi Wei Carlo A. Furia Nikolay Kazmin Bertrand Meyer Chair of Software available to en- hance program reliability: equipping programs with exten- sive contracts. The results
Introduction to Markov Chain Monte Carlo Simulations and their Statistical Analysis
Bernd A. Berg
2004-10-19
This article is a tutorial on Markov chain Monte Carlo simulations and their statistical analysis. The theoretical concepts are illustrated through many numerical assignments from the author's book on the subject. Computer code (in Fortran) is available for all subjects covered and can be downloaded from the web.
Use of single scatter electron monte carlo transport for medical radiation sciences
Svatos, Michelle M. (Oakland, CA)
2001-01-01
The single scatter Monte Carlo code CREEP models precise microscopic interactions of electrons with matter to enhance physical understanding of radiation sciences. It is designed to simulate electrons in any medium, including materials important for biological studies. It simulates each interaction individually by sampling from a library which contains accurate information over a broad range of energies.
Assessing fire risk using Monte Carlo simulations of fire spread Yohay Carmel a,
Assessing fire risk using Monte Carlo simulations of fire spread Yohay Carmel a, *, Shlomit Paz b of Haifa, Haifa, Israel 1. Introduction Fires are a major source of forest destruction in the Mediterranean., 2000). Mediterranean fires are largely determined by climatic conditions; long, dry summers with high
Autologistic Regression Analysis of Spatial-Temporal Binary Data via Monte Carlo
Aukema, Brian
Autologistic Regression Analysis of Spatial-Temporal Binary Data via Monte Carlo Maximum Likelihood regression analysis of binary data that are measured on a spatial lattice and repeatedly over discrete time points. We propose a spatial- temporal autologistic regression model and draw statistical inference via
Quantum Monte Carlo study of a disordered 2D Josephson junction array
Stroud, David
Quantum Monte Carlo study of a disordered 2D Josephson junction array W.A. Al-Saidi *, D. Stroud not be established even * Corresponding author. E-mail addresses: al-saidi.1@osu.edu (W.A. Al-Saidi), stroud
Obituary: Requiem a la escena latinoamericana Carlos Giménez (1945-93)
Gutié rrez, Alfonso
1993-04-01
, Eslováquia, Greenwich Village de New York o el teatro San Martín o Colón de Buenos Aires o El Palomar o Nacional de Santafé de Bogotá o el Rajatabla de Caracas, se quedarán vacíos. Así era Carlos Giménez. Su escenografía está en el 211-259-IIIF Jardín del...
Improving Remote Voting Security with Rui Joaquim, Carlos Ribeiro, and Paulo Ferreira
Ferreira, Paulo
ISEL - Technical University of Lisbon - INESC-ID rjoaquim@cc.isel.ipl.pt, carlos of new vulnerabilities reported is too high to be ignored, 8064 in 2006 and 5568 in the first three of an attack technique against home routers can be found in [4]. Reports on recent pharming attacks against
Monte-Carlo simulations of polymer crystallization in dilute solution C.-M. Chena)
Chen, Chi-Ming
carbon atoms, and we also investigate chain folding of very long polymers. For monodisperse flexibleMonte-Carlo simulations of polymer crystallization in dilute solution C.-M. Chena) and Paul G Received 7 July 1997; accepted 8 December 1997 Polymer crystallization in dilute solution is studied
Monte Carlo Tree Search for Simulated Car Racing Jacob Fischer1
Togelius, Julian
Monte Carlo Tree Search for Simulated Car Racing Jacob Fischer1 , Nikolaj Falsted1 , Mathias be modified to achieve this. In this paper, we investi- gate the application of MCTS to simulated car racing algorithm. Similarly, simulated car racing presents interesting challenges to artificial intelligence (AI
Nonlinear resonant tunneling in systems coupled to quantum reservoirs Carlo Presilla
Presilla, Carlo
-dependent transport of interacting electrons in biased resonant-tunneling heterostructures. The resulting model and recognized as a consequence of the mutual interaction of the electrons trapped in the resonance.2,3 We showNonlinear resonant tunneling in systems coupled to quantum reservoirs Carlo Presilla Dipartimento
Xenon diffusion studies with prompt gamma activation analysis Carlos A. Rios Perez Justin D. Lowrey
Deinert, Mark
at thermal and sub-thermal neutron energies, prompt gamma activation analysis is a suitable techniqueXenon diffusion studies with prompt gamma activation analysis Carlos A. Rios Perez · Justin D System. This work details the development of prompt gamma activation analysis for measuring the diffusion
Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy
Subramanian, Venkat
Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy to study the performance of cathode materials in lithium-ion batteries. The methodology takes into account. Published September 26, 2008. Lithium-ion batteries are state-of-the-art power sources1 for por- table
Alcouffe, R.E.
1985-01-01
A difficult class of problems for the discrete-ordinates neutral particle transport method is to accurately compute the flux due to a spatially localized source. Because the transport equation is solved for discrete directions, the so-called ray effect causes the flux at space points far from the source to be inaccurate. Thus, in general, discrete ordinates would not be the method of choice to solve such problems. It is better suited for calculating problems with significant scattering. The Monte Carlo method is suited to localized source problems, particularly if the amount of collisional interactions in minimal. However, if there are many scattering collisions and the flux at all space points is desired, then the Monte Carlo method becomes expensive. To take advantage of the attributes of both approaches, we have devised a first collision source method to combine the Monte Carlo and discrete-ordinates solutions. That is, particles are tracked from the source to their first scattering collision and tallied to produce a source for the discrete-ordinates calculation. A scattered flux is then computed by discrete ordinates, and the total flux is the sum of the Monte Carlo and discrete ordinates calculated fluxes. In this paper, we present calculational results using the MCNP and TWODANT codes for selected two-dimensional problems that show the effectiveness of this method.
Apennines subduction-related subsidence of Venice (Italy) Eugenio Carminati and Carlo Doglioni
Apennines subduction-related subsidence of Venice (Italy) Eugenio Carminati and Carlo Doglioni, indicating a long term subsidence rate of about 0.71.0 mm/yr. Therefore a significant part of the natural component of the town subsidence is related to the north-eastward retreat of the Adriatic subduction
Monte Carlo Adaptive Technique for Sensitivity Analysis of a Large-scale Air Pollution Model
Dimov, Ivan
Monte Carlo Adaptive Technique for Sensitivity Analysis of a Large-scale Air Pollution Model Ivan of input parameters contribution into output variability of a large- scale air pollution model]. This model simulates the transport of air pollutants and has been developed by Dr. Z. Zlatev and his
Monte Carlo simulation of liquid bridge rupture: Application to lung physiology Adriano M. Alencar,1
Alencar, Adriano Mesquita
Monte Carlo simulation of liquid bridge rupture: Application to lung physiology Adriano M. Alencar of certain lung diseases, the surface properties and the amount of fluids coating the airways changes of similar bridges that exist in diseased lungs. DOI: 10.1103/PhysRevE.74.026311 PACS number s : 47.90 a, 04
arXiv:physics/000104722Jan2000 Path Integral Monte Carlo Calculation of the Deuterium Hugoniot
Militzer, Burkhard
arXiv:physics/000104722Jan2000 Path Integral Monte Carlo Calculation of the Deuterium Hugoniot B University of Illinois at Urbana-Champaign, Urbana, IL 61801 (January 21, 2000) Restricted path integral of the path integral. Further, we compare the results obtained with a free particle nodal restriction
10,000 STANDARD SOLAR MODELS: A MONTE CARLO SIMULATION John N. Bahcall1
Bahcall, John
if a given prediction from solar models agrees or disagrees with a measured value. We proceed by constructing quanti- ties to describe the statistical significance of comparisons between solar model predictions systematic attempt to use Monte Carlo simula- tions to determine the uncertainties in solar model predictions
10,000 STANDARD SOLAR MODELS: A MONTE CARLO SIMULATION John N. Bahcall 1
Bahcall, John
if a given prediction from solar models agrees or disagrees with a measured value. We proceed by constructing quanti ties to describe the statistical significance of comparisons between solar model predictions systematic attempt to use Monte Carlo simula tions to determine the uncertainties in solar model predictions
Monte Carlo Methods for Equilibrium and Nonequilibrium Problems in Interfacial Electrochemistry
Gregory Brown; Per Arne Rikvold; S. J. Mitchell; M. A. Novotny
1998-05-11
We present a tutorial discussion of Monte Carlo methods for equilibrium and nonequilibrium problems in interfacial electrochemistry. The discussion is illustrated with results from simulations of three specific systems: bromine adsorption on silver (100), underpotential deposition of copper on gold (111), and electrodeposition of urea on platinum (100).
Evolution styles: using architectural knowledge as an evolution driver Carlos E. Cuesta1
Perry, Dewayne E.
Evolution styles: using architectural knowledge as an evolution driver Carlos E. Cuesta1 , Elena+D, 02006, Albacete, Spain ABSTRACT Software evolution is an increasingly challenging and compelling concern software evolution is carried out, software architecture emerges as one of the cornerstones that should
Frequency Enhancements for Visualizing 3D Seismic Data Cheng-Kai Chen Carlos Correa
California at Davis, University of
of an interactive interpretation seismic system, ge- ological study and prediction can be made on the seismic dataFrequency Enhancements for Visualizing 3D Seismic Data Cheng-Kai Chen Carlos Correa Department a suite of enhancement tech- niques for visualizing seismic data. These techniques provide a better
Ryan, Dominic
Monte Carlo simulations of transverse spin freezing in the three-dimensional frustrated Heisenberg of the spins freeze leading to a noncollinear spin structure dominated by ferromagnetic correlations. The phase as the transverse degrees of freedom order.' Theoretical support for a transverse spin freezing tran- sition
A Monte Carlo Method Used for the Identification of the Muscle Spindle
Rigas, Alexandros
the behavior of the muscle spindle by using a logistic regression model. The system receives input from. Key words: Exact logistic regression, likelihood function, Monte Carlo technique, muscle spin- dle. 21 is part of the skeletal muscles and is responsible for the initiation of move- ment and the maintenance
MUSiC - An Automated Scan for Deviations between Data and Monte Carlo Simulation
Meyer, Arnd
2010-02-10
A model independent analysis approach is presented, systematically scanning the data for deviations from the standard model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of event generators. The approach is sensitive to a variety of models of new physics, including those not yet thought of.
Monte Carlo Characterization of a Pulsed Laser-Wakefield Driven Monochromatic
Umstadter, Donald
Monte Carlo Characterization of a Pulsed Laser-Wakefield Driven Monochromatic X-Ray Source S. D facility at the University of Nebraska- Lincoln (UNL) is a 100-TW, 30-fs pulsed Ti:sapphire laser system. Diocles is routinely used to accelerate electron beams by means of laser-wakefield acceleration, which
Mining Data Bases and Data Streams Carlo Zaniolo and Hetal Thakkar
Zaniolo, Carlo
Chapter 5 Mining Data Bases and Data Streams Carlo Zaniolo and Hetal Thakkar Computer Science mining represents an emerging technology area of great importance to homeland security. Data mining and applications of data mining and the information systems recently developed for supporting the mining process
Dr. Carlos Gntner: Patent & Liaison Manager LifeSciences, MBM ScienceBridge GmbH
Gollisch, Tim
Dr. Carlos Güntner: Patent & Liaison Manager LifeSciences, MBM ScienceBridge GmbH "From idea to patent - commercializing inventions successfully" Monday, 15 April 2013, 16:00 - 17:30h Ernst is the status of Master and Ph.D. Students? - Publication vs. Patent? How to manage both? - Strategy
Investigation of Brazil Current rings in the confluence region Carlos A. D. Lentini,1
Investigation of Brazil Current rings in the confluence region Carlos A. D. Lentini,1 Gustavo J Atlantic. These fields were used to monitor the formation and characteristics of the Brazil Current warm-core anticyclonic rings shed by the first meander trough after poleward excursions of the Brazil Current (BC
Menut, Laurent
the a priori uncertainties in anthropogenic NOx and volatile organic compounds (VOC) emissions: (1) The a posteriori probability density function (pdf) for NOx emissions is not modified in its averageBayesian Monte Carlo analysis applied to regional-scale inverse emission modeling for reactive
A quantum Monte Carlo calculation of the ground state energy of the hydrogen molecule
Anderson, James B.
A quantum Monte Carlo calculation of the ground state energy of the hydrogen molecule Carol A report here calculations of the ground state energy for the relatively simple system of the hydrogen-1264 (Received 20 August 1990; accepted 6 November 1990) We have calculated the ground state energy
Thermodynamics and quark susceptibilities: a Monte-Carlo approach to the PNJL model
Weise, Wolfram
Thermodynamics and quark susceptibilities: a Monte-Carlo approach to the PNJL model M on the thermodynamics of the model, both in the case of pure gauge theory and including two quark flavors. In the two- flavor case, we calculate the second-order Taylor expansion coefficients of the thermodynamic grand
Fast and Light Boosting for Adaptive Mining of Data Fang Chu and Carlo Zaniolo
Zaniolo, Carlo
Fast and Light Boosting for Adaptive Mining of Data Streams Fang Chu and Carlo Zaniolo University queries on data streams requires algorithms that (i) are fast, (ii) make light demands on memory resources, and (iii) are easily to adapt to concept drift. We propose a novel boosting ensemble method that achieves
Nmero Nome Teste 4 Prticas 34996 CARLOS MANUEL ALVES BRANDO 1 7 2
Florentino, Carlos
ALEXANDRE DE ALMEIDA ABRANTES COSTA 0 48104 RUBEN TIAGO DA SILVA ALVES 1 5 3 48112 SAMUEL EUGÉNIO POMPEIA EDUARDO DOS SANTOS VELOSO BRAGA 1 3 3 50813 PAULO ROCHA CORREIA 1 3 2 50814 PEDRO BUENO DE MATOS DA COSTANúmero Nome Teste 4 Práticas 2 0 34996 CARLOS MANUEL ALVES BRANDÃO 1 7 2 39453
Bayes and Big Data: The Consensus Monte Carlo Algorithm Steven L. Scott1
Cortes, Corinna
Bayes and Big Data: The Consensus Monte Carlo Algorithm Steven L. Scott1 , Alexander W. Blocker1 of Business October 31, 2013 Abstract A useful definition of "big data" is data that is too big to comfortably by splitting data across multiple machines. Communication between large numbers of machines is expensive
The polarized emissivity of a wind-roughened sea surface: A Monte Carlo model
Theiler, James
The polarized emissivity of a wind-roughened sea surface: A Monte Carlo model Bradley G. Henderson-infrared emissivity of a wind-roughened sea surface. The model includes the effects of both shadowing and the reflected component of surface emission. By using Stokes vectors to quantify the radiation along a given ray
ACM BUNDLES ON A GENERAL QUINTIC THREEFOLD. LUCA CHIANTINI, CARLO MADONNA
Chiantini, Luca
ACM BUNDLES ON A GENERAL QUINTIC THREEFOLD. LUCA CHIANTINI, CARLO X as above. We say that E is an arithmetically Cohen-Macaulay (ACM) bundle if hi(E(nH)) = 0 for i the invariants (up to twist) of indecomposable rank 2 ACM bundles on hypersurfaces of P4 and other threefolds
Auxiliary Field Diffusion Monte Carlo calculation of ground state properties of neutron drops
Francesco Pederiva; A. Sarsa; K. E. Schmidt; S. Fantoni
2004-03-23
The Auxiliary Field Diffusion Monte Carlo method has been applied to simulate droplets of 7 and 8 neutrons. Results for realistic nucleon-nucleon interactions, which include tensor, spin--orbit and three--body forces, plus a standard one--body confining potential, have been compared with analogous calculations obtained with Green's Function Monte Carlo methods. We have studied the dependence of the binding energy, the one--body density and the spin--orbit splittings of $^7n$ on the depth of the confining potential. The results obtained show an overall agreement between the two quantum Monte Carlo methods, although there persist differences in the evaluation of spin--orbit forces, as previously indicated by bulk neutron matter calculations. Energy density functional models, largely used in astrophysical applications, seem to provide results significantly different from those of quantum simulations. Given its scaling behavior in the number of nucleons, the Auxiliary Field Diffusion Monte Carlo method seems to be one of the best candidate to perform {\\sl ab initio} calculations on neutron rich nuclei.
Alfè, Dario
Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations to study the structural properties of magnesium hydride MgH2 , including the pressure. INTRODUCTION The energetics of metal hydrides has recently become an issue of large scientific
Solar models and solar neutrino oscillations John N Bahcall and Carlos Pea-Garay
Bahcall, John
Solar models and solar neutrino oscillations John N Bahcall and Carlos Peña-Garay Institute and experimental, of solar neutrino fluxes and of the masses and mixing angles that characterize solar neutrino oscillations. We also summarize the principal reasons for performing new solar neutrino experiments and what we
Solar models and solar neutrino oscillations John N Bahcall and Carlos PeaGaray
Bahcall, John
Solar models and solar neutrino oscillations John N Bahcall and Carlos PeñaGaray Institute and experimental, of solar neutrino fluxes and of the masses and mixing angles that characterize solar neutrino oscillations. We also summarize the principal reasons for performing new solar neutrino experiments and what we
First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo
Anderson, James B.
First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo Arne Lu, Pennsylvania 16802 Received 20 May 1996; accepted 24 July 1996 Accurate ground state energies comparable FN-DQMC method. The residual energy, the nodal error due to the error in the nodal structure
THEORETICAL STUDY OF MULTILAYER LUMINESCENT SOLAR CONCENTRATORS USING A MONTE CARLO APPROACH
cost is subject to highly volatile market. Solar concentrators usually make use of mobile mirrors ableTHEORETICAL STUDY OF MULTILAYER LUMINESCENT SOLAR CONCENTRATORS USING A MONTE CARLO APPROACH a theoretical study of luminescent solar concentrators (LSCs) based on a ray-tracing technique with a Monte
Monte Carlo Methods for Uncertainty Quantification Mathematical Institute, University of Oxford
Giles, Mike
/ 24 #12;SDEs in Finance In computational finance, stochastic differential equations are used to model the behaviour of stocks interest rates exchange rates weather electricity/gas demand crude oil prices . . . Mike Giles (Oxford) Monte Carlo methods 2 3 / 24 #12;SDEs in Finance Stochastic differential equations
Monte Carlo Methods for Uncertainty Quantification Mathematical Institute, University of Oxford
Giles, Mike
in Finance In computational finance, stochastic differential equations are used to model the behaviour of stocks interest rates exchange rates weather electricity/gas demand crude oil prices . . . Mike Giles (Oxford) Monte Carlo methods 2 3 / 24 SDEs in Finance Stochastic differential equations are just ordinary
Multivariate Population Balances via Moment and Monte Carlo Simulation Methods: An Important Sol application of current/future importance, a multivariate description is required, for which the existing, hopefully, motivate a broader attack on important multivariate population balance problems, including those
Rotating and static sources for gamma knife radiosurgery systems: Monte Carlo studies
Yu, Peter K.N.
Rotating and static sources for gamma knife radiosurgery systems: Monte Carlo studies J. Y. C of the 201 static sources Leksell gamma knife, LGK . The rotating sources of RGSs simulate an infinite number by the surrounding normal brain tissues, which is a resultant of 201 static 60 Co sources. Each individual beam
Disorder-induced dynamics in a pair of coupled heterogeneous phase oscillator Carlo R. Laing
Laing, Carlo R.
Disorder-induced dynamics in a pair of coupled heterogeneous phase oscillator networks Carlo R investigate the new dynamics induced by this "frozen" dis- order. We find that for sufficiently high disorder, the differential equations governing the dynam- ics of the macroscopic order parameters of the network show chaotic
QUEEG: A Monte Carlo Event Generator for Quasielastic Scattering on Deuterium
Gilfoyle, Jerry
QUEEG: A Monte Carlo Event Generator for Quasielastic Scattering on Deuterium G.P. Gilfoyle1 , J. Examples of the use of the event generator are shown. The source and Makefiles are available in the CLAS12 an event generator for quasielastic scattering off nucleons in deuterium. This work was motivated
Monte Carlo Simulation of Alzheimer's Disease in the United States: 2010-2060
Feres, Renato
Monte Carlo Simulation of Alzheimer's Disease in the United States: 2010-2060 Michael Blech concerns facing the United States over the next 50 years. This progressive disease is currently the sixth on the United States population, and second, the simulation models both prevalence and mortality. Both
Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous
Pasko, Victor
Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous in transient luminous events (TLEs) termed sprites, which occur in the altitude range 4090 km in the Earth modeling results indicate that the $10 Ek fields are able to accelerate a fraction of low-energy (several e
Monte Carlo study of a luminosity detector for the International Linear Collider
H. Abramowicz; R. Ingbir; S. Kananov; A. Levy
2005-08-11
This paper presents the status of Monte Carlo simulation of one of the luminosity detectors considered for the future e+e- International Linear Collider (ILC). The detector consists of a tungsten/silicon sandwich calorimeter with pad readout. The study was performed for Bhabha scattering events assuming a zero crossing angle for the beams.
Kirchhoff vs. Competitive Electricity Markets: A Few Examples Carlos E. Murillo-%nchez Ray D. Zimmerman School of Electrical and Computer Cornell University Ithaca, New York Robert J. Thomas Engineering AMract-Electric power is often regarded as a homoge- neous commodity due to the ubiquity
A Scalable Parallel Monte Carlo Method for Free Energy Simulations of Molecular Systems
Chan, Derek Y C
A Scalable Parallel Monte Carlo Method for Free Energy Simulations of Molecular Systems MALEK O for problems where the energy dominates the entropy. An example is parallel tempering, in which simulations the free energy of the system as a direct output of the simulation. Traditional Metropolis MC samples phase
Ab-initio Kinetic Monte Carlo Model of Ionic Conduction in Bulk Yttria-stabilized Zirconia
Cai, Wei
Ab-initio Kinetic Monte Carlo Model of Ionic Conduction in Bulk Yttria-stabilized Zirconia Eunseok in bulk single crystal Yttria-stabilized Zirconia. An interacting energy barrier model is developed dynamics to simulate the vacancy diffusion in Yttria-stabilized Zirconia (YSZ). They concluded
Hale, Barbara N.
CALCULATION OF SCALED NUCLEATION RATES FOR WATER USING MONTE CARLO GENERATED CLUSTER FREE ENERGYMattio All Rights Reserved #12;iii ABSTRACT Helmholtz free energy differences, -dFn , are calculated inconsistent with the experimental properties of water. Summation of the scaled TIP4P free energy differences
Local and chain dynamics in miscible polymer blends: A Monte Carlo simulation study
Luettmer-Strathmann, Jutta
44325-4001 Received 7 November 2005; accepted 1 March 2006; published online 5 May 2006 Local chain of the chains. These are combined with a local mobility determined from the acceptance rate and the effectiveLocal and chain dynamics in miscible polymer blends: A Monte Carlo simulation study Jutta Luettmer
Green's function Monte Carlo calculation for the ground state of helium trimers
Cabral, F.; Kalos, M.H.
1981-02-01
The ground state energy of weakly bound boson trimers interacting via Lennard-Jones (12,6) pair potentials is calculated using a Monte Carlo Green's Function Method. Threshold coupling constants for self binding are obtained by extrapolation to zero binding.
Instabilities in Molecular Dynamics Integrators used in Hybrid Monte Carlo Simulations
B. Joo; UKQCD Collaboration
2001-10-11
We discuss an instability in the leapfrog integration algorithm, widely used in current Hybrid Monte Carlo (HMC) simulations of lattice QCD. We demonstrate the instability in the simple harmonic oscillator (SHO) system where it is manifest. We demonstrate the instability in HMC simulations of lattic QCD with dynamical Wilson-Clover fermions and discuss implications for future simulations of lattice QCD.
von Andrian, Ulrich H.
1999 94: 4233-4246 Andrian, Lan Bo Chen, Jose-Carlos Gutierrez-Ramos, Ann-Marie Pendergast Chen, Jose-Carlos Gutierrez-Ramos, Ann-Marie Pendergast, and James D. Griffin The chemokine stromal
Project Reports for Kootznoowoo Incorporated- 2010 Project
Office of Energy Efficiency and Renewable Energy (EERE)
Thayer Lake Hydropower Development (TLHD) consists of a 1 MW+ run of the river hydropower project located in the Tongass Forest in the Admiralty Island National Monument Park that will provide the energy to the City of Angoon and Angoon Community Association (traditional tribe as recognized by Indian Reorganization Act).
The effects of mapping CT images to Monte Carlo materials on GEANT4 proton simulation accuracy
Barnes, Samuel; McAuley, Grant; Slater, James; Wroe, Andrew
2013-04-15
Purpose: Monte Carlo simulations of radiation therapy require conversion from Hounsfield units (HU) in CT images to an exact tissue composition and density. The number of discrete densities (or density bins) used in this mapping affects the simulation accuracy, execution time, and memory usage in GEANT4 and other Monte Carlo code. The relationship between the number of density bins and CT noise was examined in general for all simulations that use HU conversion to density. Additionally, the effect of this on simulation accuracy was examined for proton radiation. Methods: Relative uncertainty from CT noise was compared with uncertainty from density binning to determine an upper limit on the number of density bins required in the presence of CT noise. Error propagation analysis was also performed on continuously slowing down approximation range calculations to determine the proton range uncertainty caused by density binning. These results were verified with Monte Carlo simulations. Results: In the presence of even modest CT noise (5 HU or 0.5%) 450 density bins were found to only cause a 5% increase in the density uncertainty (i.e., 95% of density uncertainty from CT noise, 5% from binning). Larger numbers of density bins are not required as CT noise will prevent increased density accuracy; this applies across all types of Monte Carlo simulations. Examining uncertainty in proton range, only 127 density bins are required for a proton range error of <0.1 mm in most tissue and <0.5 mm in low density tissue (e.g., lung). Conclusions: By considering CT noise and actual range uncertainty, the number of required density bins can be restricted to a very modest 127 depending on the application. Reducing the number of density bins provides large memory and execution time savings in GEANT4 and other Monte Carlo packages.
Yager, T.D.; Zewert, T.E.; Hood, L.E. )
1994-04-01
The Human Genome Project (HGP) is a coordinated worldwide effort to precisely map the human genome and the genomes of selected model organisms. The first explicit proposal for this project dates from 1985 although its foundations (both conceptual and technological) can be traced back many years in genetics, molecular biology, and biotechnology. The HGP has matured rapidly and is producing results of great significance.
Gilbert, Jack
2014-08-25
The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.
Poole, John; CERN. Geneva. SPS and LHC Division
2001-01-01
The LEP Dismantling Project has been in its operational phase since late in the year 2000. This report briefly reviews the development of the project and the current status. The report has been prepared for presentation to the Radiation Protection Committee in May 2001 and consequently it has a bias towards Radiation Protection activities.
Project organizations and schedules
Briggs, R.J.
1990-07-01
The Superconducting Super Collider Laboratory (SSCL) faces the challenge of simultaneously carrying out a large-scale construction project with demanding cost, schedule, and performance goals; and creating a scientific laboratory capable of exploiting this unique scientific instrument. This paper describes the status of the laboratory organization developed to achieve these goals, and the major near-term schedule objectives of the project.
TEAM PROJECT: USER TESTING Due: Wed April 21 (section 2) Thu April 22 (section 1) Now that you have: usability inspection, Neilsen's heuristic evaluation, pluralistic walk through, or GOMS analysis (without part of your project. You might consider a joint session with another team! Format: 3-4 page report
Not Available
1981-03-01
The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)
Gilbert, Jack
2014-09-15
The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.
Baes, Maarten
2008-01-01
that is inherent in Monte Carlo radiative transfer simulations. As the typical detectors used in Monte Carlo negligible, we recommend the use of smart detectors in Monte Carlo radiative transfer simulations. Key wordsMon. Not. R. Astron. Soc. 391, 617623 (2008) doi:10.1111/j.1365-2966.2008.13941.x Smart detectors
North American LNG Project Sourcebook
2007-06-15
The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.
Energy Efficiency Project Development
IUEP
2004-03-01
The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.
Hydropower major rehabilitation projects
Norlin, J.A. [Army Corps of Engineers, Portland, OR (United States)
1995-12-31
The Corps of Engineers has developed an active Major Rehabilitation Program to handle large, long duration restoration projects. These projects are funded by specific appropriations and subsequently are required to have detailed rehabilitation plans to justify the work. The emphasis of the Major Rehabilitation Program is correcting reliability problems. Papers that were presented at Waterpower `93 discussed the basic concepts that are required in preparing a Major Rehabilitation Evaluation Report. This paper will cover the current status of each of the current major rehabilitation projects that the Corps of Engineers has in progress.
LIMB demonstration project extension
Not Available
1990-09-21
The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.
NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT
Terry W. Battiest
2008-06-11
The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.
IR-NLI : AN EXPERT NATURAL LANGUAGE INTERFACE TO ONLINE DATA BASES Giovanni Guida , Carlo Tasso (*)
Polytechnic Artificial Intelligence Project, Milano, Italy. '~ ~iso with : CISM, International Center
NNSA project receives DOE Secretary's Award for Project Management...
National Nuclear Security Administration (NNSA)
project receives DOE Secretary's Award for Project Management Improvement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...
Office of Environmental Management (EM)
(Post- RCACAP) 80% Cleanup 86% Cleanup 67% Pre-CAP 88% Post-CAP This is based on a 3-year rolling average (FY09 to FY11, Note: zero cleanup projects completed in FY09). TPC is...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of developing systems that can lead to break-out high-efficiency, cost-effective solar energy-to-fuel technologies. The projects are closely tied together through two mechanisms:...
Broader source: Energy.gov [DOE]
The project will build on the potential for renewable energy development on the Hualapai Reservation that was identified during the Phase l renewable energy resource assessment conducted by the Hualapai Tribe since 2005.
Solar Forecast Improvement Project
Office of Energy Efficiency and Renewable Energy (EERE)
For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...
Broader source: Energy.gov [DOE]
The EV Project partnered with city, regional and state governments, utilities, and other organizations in 18 cities to deploy about 12,500 public and residential charging stations. It also...
Broader source: Energy.gov [DOE]
Following through with the Winnebago Tribe's commitment to reduce energy usage and consumption, the Winnebago Tribe Solar Project will focus on renewable energy production and energy cost savings consistent with protecting our natural environment.
Broader source: Energy.gov [DOE]
Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.
Clary, A. T.
2007-01-01
methodical process to identify primarily behavioral or procedural opportunities to improve energy efficiency. A key component of this process was to put control plans in place to maintain any gains that were achieved. The project resulting in finding...
Portsmouth Paducah Project Office
Broader source: Energy.gov [DOE]
The U.S. Department of Energy (DOE) established the Portsmouth/Paducah Project Office (PPPO) on October 1, 2003, to provide focused leadership to the Environmental Management missions at the...
76% This is a 3-year rolling average Data includes FY06 to FY08. (3748) 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM...
Office of Energy Efficiency and Renewable Energy (EERE)
The following are U.S. Department of Energy (DOE) approved project facilitators who are required under the DOE indefinite-delivery, indefinite-quantity contract to develop federal energy savings performance contracts.
PROJECTION PURSUIT Jiayang Sun
Sun, Jiayang
PROJECTION PURSUIT Jiayang Sun Many data sets are high dimensional. It has been a common practice Friedman [7], Hall [11], Morton [21], Sun [23, 24], Cook et al. [2], Li and Cheng [19] and Roosen
Broader source: Energy.gov [DOE]
The folks at St. Bernard Project are helping survivors of Hurricane Katrina get back into their homes -- and are using new technologies to reduce energy and save money for the returning residents.
None, None
2009-01-18
The project financial section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.
Navajo Electrification Demonstraiton Project
Larry Ahasteen, Project Manager
2006-07-17
This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.
Leib, Thomas; Cole, Dan
2015-06-30
In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO_{2}) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO_{2} generated in a large industrial gasification process and sequester the CO_{2} into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials, construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO_{2} from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO_{2} through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO_{2} through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO_{2} per year as an integral component of commercial operations.
Jeff Beckley
2015-10-29
Term Pricing Project. Your job is to reprice Purdue Life's 20 Year Term. You are to write a one page memo or report summarizing your work. The report should ...
Brooks, Rodney A.
We are building a mobile robot which will roam around the AI lab observing and later perhaps doing. Our approach to building the robot and its controlling software differs from that used in many other projects in a number ...
Innovative Self- Generating Projects
Kelly, L.
2013-01-01
? All rights reserved. Case Studies on Canadian Customer Generation Projects Innovative Self-Generation Projects Liam Kelly, M.A.Sc, CMVP Energy Engineer Willis Energy Services A CLEAResult company ESL-IE-13-05-06 Proceedings of the Thrity...-05-06 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 ? 2013 CLEAResult ? All rights reserved. Overcoming Challenges ? Look for innovative opportunities ? Leverage available incentives ? Quantify other...
Mytko, Christine
2014-03-31
A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.
Mytko, Christine
2014-09-15
A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.
Doug Cathro
2010-09-30
The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.
Projects | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Develops Student-Stakeholders ProjectBaseload
Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title......
Dahlberg, Teresa A.
Judge Evaluation Scoring Form for Project Technical Report PROJECT .#.: ..Project Title...... #12 of the project?) Excellent Very Good Good Fair Unsatisfactory COMMENTS: #12;Judge Evaluation Scoring Form for REU and click! PROJECT TITLE REU Site: Computing Research for Undergraduates: Visualization, Virtual
Project Title: Earthquake Documentary Interviews
Hickman, Mark
Project Title: Earthquake Documentary Interviews Bachelor of Arts Internship Company: Chris Thomson Academic Adviser: Mary Wiles Project Reference Number: S112/CEISMIC/29/NP - Earthquake collected on the earthquake, its survivors and their stories. This project is unique
Hansen, T.
2007-01-15
The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.
Miura, Shinichi [Institute for Molecular Science, 38 Myodaiji, Okazaki 444-8585 (Japan)
2007-03-21
In this paper, we present a path integral hybrid Monte Carlo (PIHMC) method for rotating molecules in quantum fluids. This is an extension of our PIHMC for correlated Bose fluids [S. Miura and J. Tanaka, J. Chem. Phys. 120, 2160 (2004)] to handle the molecular rotation quantum mechanically. A novel technique referred to be an effective potential of quantum rotation is introduced to incorporate the rotational degree of freedom in the path integral molecular dynamics or hybrid Monte Carlo algorithm. For a permutation move to satisfy Bose statistics, we devise a multilevel Metropolis method combined with a configurational-bias technique for efficiently sampling the permutation and the associated atomic coordinates. Then, we have applied the PIHMC to a helium-4 cluster doped with a carbonyl sulfide molecule. The effects of the quantum rotation on the solvation structure and energetics were examined. Translational and rotational fluctuations of the dopant in the superfluid cluster were also analyzed.
Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions
Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.
2014-12-15
Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.
Calculating alpha Eigenvalues in a Continuous-Energy Infinite Medium with Monte Carlo
Betzler, Benjamin R. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory
2012-09-04
The {alpha} eigenvalue has implications for time-dependent problems where the system is sub- or supercritical. We present methods and results from calculating the {alpha}-eigenvalue spectrum for a continuous-energy infinite medium with a simplified Monte Carlo transport code. We formulate the {alpha}-eigenvalue problem, detail the Monte Carlo code physics, and provide verification and results. We have a method for calculating the {alpha}-eigenvalue spectrum in a continuous-energy infinite-medium. The continuous-time Markov process described by the transition rate matrix provides a way of obtaining the {alpha}-eigenvalue spectrum and kinetic modes. These are useful for the approximation of the time dependence of the system.
Rasch, Kevin M.; Hu, Shuming; Mitas, Lubos [Center for High Performance Simulation and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)] [Center for High Performance Simulation and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)
2014-01-28
We elucidate the origin of large differences (two-fold or more) in the fixed-node errors between the first- vs second-row systems for single-configuration trial wave functions in quantum Monte Carlo calculations. This significant difference in the valence fixed-node biases is studied across a set of atoms, molecules, and also Si, C solid crystals. We show that the key features which affect the fixed-node errors are the differences in electron density and the degree of node nonlinearity. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems, provide new perspectives on the origins of the fixed-node biases in calculations of molecular and condensed systems, and carry implications for pseudopotential constructions for heavy elements.
Quantum Monte Carlo calculations of excited states in A = 6--8 nuclei
Steven C. Pieper; R. B. Wiringa; J. Carlson
2004-10-13
A variational Monte Carlo method is used to generate sets of orthogonal trial functions, Psi_T(J^pi,T), for given quantum numbers in various light p-shell nuclei. These Psi_T are then used as input to Green's function Monte Carlo calculations of first, second, and higher excited (J^pi,T) states. Realistic two- and three-nucleon interactions are used. We find that if the physical excited state is reasonably narrow, the GFMC energy converges to a stable result. With the combined Argonne v_18 two-nucleon and Illinois-2 three-nucleon interactions, the results for many second and higher states in A = 6--8 nuclei are close to the experimental values.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.
2015-08-01
We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage.more »Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.« less
MCViNE -- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, Jiao Y Y; Granroth, Garrett E; Abernathy, Douglas L; Lumsden, Mark D; Winn, Barry; Aczel, Adam A; Aivazis, Michael; Fultz, Brent
2015-01-01
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is a versatile Monte Carlo (MC) neutron ray-tracing program that provides researchers with tools for performing computer modeling and simulations that mirror real neutron scattering experiments. By adopting modern software engineering practices such as using composite and visitor design patterns for representing and accessing neutron scatterers, and using recursive algorithms for multiple scattering, MCViNE is flexible enough to handle sophisticated neutron scattering problems including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can take advantage of simulation components in linear-chain-based MC ray tracing packages widely used in instrument design and optimization, as well as NumPy-based components that make prototypes useful and easy to develop. These developments have enabled us to carry out detailed simulations of neutron scatteri...
Monte Carlo simulation to investigate the formation of molecular hydrogen and its deuterated forms
Sahu, DIpen; Majumdar, Liton; Chakrabarti, Sandip K
2015-01-01
$H_2$ is the most abundant interstellar species. Its deuterated forms ($HD$ and $D_2$) are also significantly abundant. Huge abundances of these molecules could be explained by considering the chemistry occurring on the interstellar dust. Because of its simplicity, Rate equation method is widely used to study the formation of grain-surface species. However, since recombination efficiency of formation of any surface species are heavily dependent on various physical and chemical parameters, Monte Carlo method would be best method suited to take care of randomness of the processes. We perform Monte Carlo simulation to study the formation of $H_2$, $HD$ and $D_2$ on interstellar ices. Adsorption energies of surface species are the key inputs for the formation of any species on interstellar dusts but binding energies of deuterated species are yet to known with certainty. A zero point energy correction exists between hydrogenated and deuterated species which should be considered while modeling the chemistry on the ...
Rubery, M. S.; Horsfield, C. J. [Plasma Physics Department, AWE plc, Reading RG7 4PR (United Kingdom)] [Plasma Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Herrmann, H.; Kim, Y.; Mack, J. M.; Young, C.; Evans, S.; Sedillo, T.; McEvoy, A.; Caldwell, S. E. [Plasma Physics Department, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Plasma Physics Department, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Grafil, E.; Stoeffl, W. [Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Milnes, J. S. [Photek Limited UK, 26 Castleham Road, St. Leonards-on-sea TN38 9NS (United Kingdom)] [Photek Limited UK, 26 Castleham Road, St. Leonards-on-sea TN38 9NS (United Kingdom)
2013-07-15
The gas Cherenkov detectors at NIF and Omega measure several ICF burn characteristics by detecting multi-MeV nuclear ? emissions from the implosion. Of primary interest are ? bang-time (GBT) and burn width defined as the time between initial laser-plasma interaction and peak in the fusion reaction history and the FWHM of the reaction history respectively. To accurately calculate such parameters the collaboration relies on Monte Carlo codes, such as GEANT4 and ACCEPT, for diagnostic properties that cannot be measured directly. This paper describes a series of experiments performed at the High Intensity ? Source (HI?S) facility at Duke University to validate the geometries and material data used in the Monte Carlo simulations. Results published here show that model-driven parameters such as intensity and temporal response can be used with less than 50% uncertainty for all diagnostics and facilities.
A Monte Carlo study of double logarithms in the small x region
Chachamis, G
2015-01-01
We investigate the effect of the resummation of collinear double logarithms in the BFKL gluon Green function using the Monte Carlo event generator BFKLex. The resummed collinear terms in transverse momentum space were calculated in Ref. [1] and correspond to the addition to the NLO BFKL kernel of a Bessel function of the first kind whose argument contains the strong coupling and a double logarithm of the ratio of the squared transverse momenta of the reggeized gluons. We discuss how these additional terms improve the collinear convergence of the whole approach and reduce the asymptotic growth with energy of cross sections. Taking advantage of the Monte Carlo implementation, we show how the new results reduce the diffusion of the gluon ladder into infrared and ultraviolet transverse momentum scales, while strongly affecting final state configurations by reducing the mini-jet multiplicity.
Geysers Project Geothermal Project | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <Silver Peak Area (DOEEnergyProject
The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units
Hall, Clifford [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States) [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); Ji, Weixiao [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States)] [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); Blaisten-Barojas, Estela, E-mail: blaisten@gmu.edu [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States) [Computational Materials Science Center, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States); School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Dr., Fairfax, VA 22030 (United States)
2014-02-01
We present a CPU–GPU system for runtime acceleration of large molecular simulations using GPU computation and memory swaps. The memory architecture of the GPU can be used both as container for simulation data stored on the graphics card and as floating-point code target, providing an effective means for the manipulation of atomistic or molecular data on the GPU. To fully take advantage of this mechanism, efficient GPU realizations of algorithms used to perform atomistic and molecular simulations are essential. Our system implements a versatile molecular engine, including inter-molecule interactions and orientational variables for performing the Metropolis Monte Carlo (MMC) algorithm, which is one type of Markov chain Monte Carlo. By combining memory objects with floating-point code fragments we have implemented an MMC parallel engine that entirely avoids the communication time of molecular data at runtime. Our runtime acceleration system is a forerunner of a new class of CPU–GPU algorithms exploiting memory concepts combined with threading for avoiding bus bandwidth and communication. The testbed molecular system used here is a condensed phase system of oligopyrrole chains. A benchmark shows a size scaling speedup of 60 for systems with 210,000 pyrrole monomers. Our implementation can easily be combined with MPI to connect in parallel several CPU–GPU duets. -- Highlights: •We parallelize the Metropolis Monte Carlo (MMC) algorithm on one CPU—GPU duet. •The Adaptive Tempering Monte Carlo employs MMC and profits from this CPU—GPU implementation. •Our benchmark shows a size scaling-up speedup of 62 for systems with 225,000 particles. •The testbed involves a polymeric system of oligopyrroles in the condensed phase. •The CPU—GPU parallelization includes dipole—dipole and Mie—Jones classic potentials.
Fully Differential Monte-Carlo Generator Dedicated to TMDs and Bessel-Weighted Asymmetries
Aghasyan, Mher M.; Avakian, Harut A.
2013-10-01
We present studies of double longitudinal spin asymmetries in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator, which includes quark intrinsic transverse momentum within the generalized parton model based on the fully differential cross section for the process. Additionally, we apply Bessel-weighting to the simulated events to extract transverse momentum dependent parton distribution functions and also discuss possible uncertainties due to kinematic correlation effects.
Equation of state of strongly coupled quark--gluon plasma -- Path integral Monte Carlo results
V. S. Filinov; M. Bonitz; Y. B. Ivanov; V. V. Skokov; P. R. Levashov; V. E. Fortov
2009-05-04
A strongly coupled plasma of quark and gluon quasiparticles at temperatures from $ 1.1 T_c$ to $3 T_c$ is studied by path integral Monte Carlo simulations. This method extends previous classical nonrelativistic simulations based on a color Coulomb interaction to the quantum regime. We present the equation of state and find good agreement with lattice results. Further, pair distribution functions and color correlation functions are computed indicating strong correlations and liquid-like behavior.
Wang, Huihui; Meng, Lin; Liu, Dagang; Liu, Laqun [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)] [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2013-12-15
A particle-in-cell/Monte Carlo code is developed to rescale the microwave breakdown theory which is put forward by Vyskrebentsev and Raizer. The results of simulations show that there is a distinct error in this theory when the high energy tail of electron energy distribution function increases. A rescaling factor is proposed to modify this theory, and the change rule of the rescaling factor is presented.
An analysis of 4-quark energies in SU(2) lattice Monte Carlo
Sadataka Furui; Bilal Masud
1998-09-12
Energies of four-quark systems with the tetrahedral geometry measured by the static quenched SU(2) lattice Monte Carlo method are analyzed by parametrizing the gluon overlap factor in the form exp(-[bs EA+{\\sqrt bs}FP]) where A and P are the area and the perimeter defined mainly by the positions of the four quarks, bs is the string constant in the 2-quark potentials and E, F are constants.
Hybrid Monte Carlo with Wilson Dirac operator on the Fermi GPU
Abhijit Chakrabarty; Pushan Majumdar
2012-07-10
In this article we present our implementation of a Hybrid Monte Carlo algorithm for Lattice Gauge Theory using two degenerate flavours of Wilson-Dirac fermions on a Fermi GPU. We find that using registers instead of global memory speeds up the code by almost an order of magnitude. To map the array variables to scalars, so that the compiler puts them in the registers, we use code generators. Our final program is more than 10 times faster than a generic single CPU.
Maximum likelihood parameter estimation in time series models using sequential Monte Carlo
Yildirim, Sinan
2013-06-11
, respectively. This approach is useful to handle the case where the columns of Y are generated sequentially in time, such as in audio signal processing. Usually very large number of columns in Y leads to the necessity of online algorithms to learn the model... .6 (dashed lines). For illustrative purposes, every 1000th estimate is shown . . . . . . . . . . . . . . . . . . . . . . . 130 6.1 Histograms of Monte Carlo estimates of gradients of log p?,?,?? (Y ?,?,?) w.r.t. the parameters of the ?-stable distribution...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore »geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
NuWro Monte Carlo generator of neutrino interactions - first electron scattering results
Jakub Zmuda; Krzysztof M. Graczyk; Cezary Juszczak; Jan T. Sobczyk
2015-11-05
NuWro Monte Carlo generator of events is presented. It is a numerical environment containing all necessary ingredients to simulate interactions of neutrinos with nucleons and nuclei in realistic experimental situation in wide neutrino energy range. It can be used both for data analysis as well as studies of nuclear effects in neutrino interactions. The first results and functionalities of eWro - module of NuWro dedicated to electron nucleus scattering - are also presented.
Pérez-Andújar, Angélica [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Zhang, Rui; Newhauser, Wayne [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)
2013-12-15
Purpose: Stray neutron radiation is of concern after radiation therapy, especially in children, because of the high risk it might carry for secondary cancers. Several previous studies predicted the stray neutron exposure from proton therapy, mostly using Monte Carlo simulations. Promising attempts to develop analytical models have also been reported, but these were limited to only a few proton beam energies. The purpose of this study was to develop an analytical model to predict leakage neutron equivalent dose from passively scattered proton beams in the 100-250-MeV interval.Methods: To develop and validate the analytical model, the authors used values of equivalent dose per therapeutic absorbed dose (H/D) predicted with Monte Carlo simulations. The authors also characterized the behavior of the mean neutron radiation-weighting factor, w{sub R}, as a function of depth in a water phantom and distance from the beam central axis.Results: The simulated and analytical predictions agreed well. On average, the percentage difference between the analytical model and the Monte Carlo simulations was 10% for the energies and positions studied. The authors found that w{sub R} was highest at the shallowest depth and decreased with depth until around 10 cm, where it started to increase slowly with depth. This was consistent among all energies.Conclusion: Simple analytical methods are promising alternatives to complex and slow Monte Carlo simulations to predict H/D values. The authors' results also provide improved understanding of the behavior of w{sub R} which strongly depends on depth, but is nearly independent of lateral distance from the beam central axis.
Perfetti, Christopher M [ORNL] [ORNL; Martin, William R [University of Michigan] [University of Michigan; Rearden, Bradley T [ORNL] [ORNL; Williams, Mark L [ORNL] [ORNL
2012-01-01
Three methods for calculating continuous-energy eigenvalue sensitivity coefficients were developed and implemented into the SHIFT Monte Carlo code within the Scale code package. The methods were used for several simple test problems and were evaluated in terms of speed, accuracy, efficiency, and memory requirements. A promising new method for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was developed and produced accurate sensitivity coefficients with figures of merit that were several orders of magnitude larger than those from existing methods.
Project Analysis Standard Operating Procedure
Office of Environmental Management (EM)
Standard Operating Procedure (EPASOP) Issued by Office of Acquisition and Project Management MA-63 March 12, 2014 DEPARTMENT OF ENERGY Office of Acquisition and Project...
Dornheim, Tobias; Groth, Simon; Filinov, Alexey; Bonitz, Michael
2015-01-01
The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for $N=33$ electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, $r_s = \\overline{r}/a_B \\gtrsim 1$. This data has been complemented by Configuration path integral Monte Carlo (CPIMC) simulations for $r_s \\leq 1$ that substantially deviate from RPIMC towards smaller $r_s$ and low temperature. In this work, we present results from an independent third method---the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim \\textit{et al.}, NJP \\textbf{17}, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to...
Hart, S. W. D.; Maldonado, G. Ivan; Celik, Cihangir; Leal, Luiz C
2014-01-01
For many Monte Carlo codes cross sections are generally only created at a set of predetermined temperatures. This causes an increase in error as one moves further and further away from these temperatures in the Monte Carlo model. This paper discusses recent progress in the Scale Monte Carlo module KENO to create problem dependent, Doppler broadened, cross sections. Currently only broadening the 1D cross sections and probability tables is addressed. The approach uses a finite difference method to calculate the temperature dependent cross-sections for the 1D data, and a simple linear-logarithmic interpolation in the square root of temperature for the probability tables. Work is also ongoing to address broadening theS (alpha , beta) tables. With the current approach the temperature dependent cross sections are Doppler broadened before transport starts, and, for all but a few isotopes, the impact on cross section loading is negligible. Results can be compared with those obtained by using multigroup libraries, as KENO currently does interpolation on the multigroup cross sections to determine temperature dependent cross-sections. Current results compare favorably with these expected results.
Nonequilibrium candidate Monte Carlo: A new tool for efficient equilibrium simulation
Nilmeier, Jerome P.; Crooks, Gavin E.; Minh, David D. L.; Chodera, John D.
2011-11-08
Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. While generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.
Alhassan, Erwin; Duan, Junfeng; Gustavsson, Cecilia; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri; Österlund, Michael
2013-01-01
Analyses are carried out to assess the impact of nuclear data uncertainties on keff for the European Lead Cooled Training Reactor (ELECTRA) using the Total Monte Carlo method. A large number of Pu-239 random ENDF-formated libraries generated using the TALYS based system were processed into ACE format with NJOY99.336 code and used as input into the Serpent Monte Carlo neutron transport code to obtain distribution in keff. The keff distribution obtained was compared with the latest major nuclear data libraries - JEFF-3.1.2, ENDF/B-VII.1 and JENDL-4.0. A method is proposed for the selection of benchmarks for specific applications using the Total Monte Carlo approach. Finally, an accept/reject criterion was investigated based on chi square values obtained using the Pu-239 Jezebel criticality benchmark. It was observed that nuclear data uncertainties in keff were reduced considerably from 748 to 443 pcm by applying a more rigid acceptance criteria for accepting random files.
Erwin Alhassan; Henrik Sjöstrand; Junfeng Duan; Cecilia Gustavsson; Arjan Koning; Stephan Pomp; Dimitri Rochman; Michael Österlund
2013-04-04
Analyses are carried out to assess the impact of nuclear data uncertainties on keff for the European Lead Cooled Training Reactor (ELECTRA) using the Total Monte Carlo method. A large number of Pu-239 random ENDF-formated libraries generated using the TALYS based system were processed into ACE format with NJOY99.336 code and used as input into the Serpent Monte Carlo neutron transport code to obtain distribution in keff. The keff distribution obtained was compared with the latest major nuclear data libraries - JEFF-3.1.2, ENDF/B-VII.1 and JENDL-4.0. A method is proposed for the selection of benchmarks for specific applications using the Total Monte Carlo approach. Finally, an accept/reject criterion was investigated based on chi square values obtained using the Pu-239 Jezebel criticality benchmark. It was observed that nuclear data uncertainties in keff were reduced considerably from 748 to 443 pcm by applying a more rigid acceptance criteria for accepting random files.
Majumdar, Amit
there is interest to simulate enormously large Monte Carlo particle transport problems for neutron and photon.e., the end of a time step. Besides absorption, the photons may undergo Thompson scattering. The overall
Xu, Zao
We present a numerical study of the near-surface underwater solar light statistics using the state-of-the-art Monte Carlo radiative transfer (RT) simulations in the coupled atmosphere-ocean system. Advanced variance-reduction ...
Kurebayashi, Shinya, 1976-
2004-01-01
Measurements from three classes of direct-drive implosions at the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] were combined with Monte-Carlo simulations to investigate models for determining ...
Tutt, Teresa Elizabeth
2009-05-15
Monte Carlo method is an invaluable tool in the field of radiation protection, used to calculate shielding effectiveness, as well as dose for medical applications. With few exceptions, most of the objects currently simulated ...
Erickson, Lori
1995-01-01
Monte Carlo modeling techniques using mean information fields (MIF), developed by Torsten Hagerstrand in the 1950s, were integrated with a geographic information system (GIS) to simulate lost person behavior in wilderness areas. Big Bend Ranch State...
Jefferson Lab Project Control System Manual
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Project Control System Manual Technical Engineering Development Facility (TEDF) Utilities Infrastructure Modernization (UIM) Office of Project Management Project Control...
A Positive-Weight Next-to-Leading-Order Monte Carlo for e+e- Annihilation to Hadrons
Oluseyi Latunde-Dada; Stefan Gieseke; Bryan Webber
2007-02-20
We apply the positive-weight Monte Carlo method of Nason for simulating QCD processes accurate to Next-To-Leading Order to the case of e+e- annihilation to hadrons. The method entails the generation of the hardest gluon emission first and then subsequently adding a `truncated' shower before the emission. We have interfaced our result to the Herwig++ shower Monte Carlo program and obtained better results than those obtained with Herwig++ at leading order with a matrix element correction.
A Monte-Carlo Method without Grid to Compute the Exchange Coefficient in the Double Porosity Model
Boyer, Edmond
Classification: 76S05 (65C05 76M35) Published in Monte Carlo Methods Appl.. 8:2, 129147, 2002 Archives, links Methods and Applications 8, 2 (2002) 129-147" #12;F. Campillo and A. Lejay / A Monte Carlo Method witouth consists in transforming (1) into a system: m Pm t = a-Pm - (Pm - Pf), m = Meas(m) Meas() f Pf t = a
July 2015 Project Dashboard.xls
Broader source: Energy.gov (indexed) [DOE]
Date: 07232015 Program Contractor Project Number Project Title Original Project Budget Project Budget Monthly Overall Assessment Cost Performance Schedule Performance 1 EM...
September 2015 Project Dashboard | Department of Energy
September 2015 Project Dashboard September 2015 Project Dashboard Post CD-2 Active Projects (as of September 29, 2015) September 2015 Project Dashboard More Documents &...
Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.
1996-06-01
Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells.
Gordon, K.W.; Scott, K.P.
2000-11-01
Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.
Radiation Embrittlement Archive Project
Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T; Phillips, Rick; Erickson, Marjorie A; Kirk, Mark T; Stevens, Gary L
2013-01-01
The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.
Radiation doses in cone-beam breast computed tomography: A Monte Carlo simulation study
Yi Ying; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Shen Youtao; Liu Xinming; Ge Shuaiping; You Zhicheng; Wang Tianpeng; Shaw, Chris C.
2011-02-15
Purpose: In this article, we describe a method to estimate the spatial dose variation, average dose and mean glandular dose (MGD) for a real breast using Monte Carlo simulation based on cone beam breast computed tomography (CBBCT) images. We present and discuss the dose estimation results for 19 mastectomy breast specimens, 4 homogeneous breast models, 6 ellipsoidal phantoms, and 6 cylindrical phantoms. Methods: To validate the Monte Carlo method for dose estimation in CBBCT, we compared the Monte Carlo dose estimates with the thermoluminescent dosimeter measurements at various radial positions in two polycarbonate cylinders (11- and 15-cm in diameter). Cone-beam computed tomography (CBCT) images of 19 mastectomy breast specimens, obtained with a bench-top experimental scanner, were segmented and used to construct 19 structured breast models. Monte Carlo simulation of CBBCT with these models was performed and used to estimate the point doses, average doses, and mean glandular doses for unit open air exposure at the iso-center. Mass based glandularity values were computed and used to investigate their effects on the average doses as well as the mean glandular doses. Average doses for 4 homogeneous breast models were estimated and compared to those of the corresponding structured breast models to investigate the effect of tissue structures. Average doses for ellipsoidal and cylindrical digital phantoms of identical diameter and height were also estimated for various glandularity values and compared with those for the structured breast models. Results: The absorbed dose maps for structured breast models show that doses in the glandular tissue were higher than those in the nearby adipose tissue. Estimated average doses for the homogeneous breast models were almost identical to those for the structured breast models (p=1). Normalized average doses estimated for the ellipsoidal phantoms were similar to those for the structured breast models (root mean square (rms) percentage difference=1.7%; p=0.01), whereas those for the cylindrical phantoms were significantly lower (rms percentage difference=7.7%; p<0.01). Normalized MGDs were found to decrease with increasing glandularity. Conclusions: Our results indicate that it is sufficient to use homogeneous breast models derived from CBCT generated structured breast models to estimate the average dose. This investigation also shows that ellipsoidal digital phantoms of similar dimensions (diameter and height) and glandularity to actual breasts may be used to represent a real breast to estimate the average breast dose with Monte Carlo simulation. We have also successfully demonstrated the use of structured breast models to estimate the true MGDs and shown that the normalized MGDs decreased with the glandularity as previously reported by other researchers for CBBCT or mammography.
Project Plan Remote Target Fabrication Refurbishment Project
Bell, Gary L; Taylor, Robin D
2009-08-01
In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work was received in July 2009 under the Remote Target Fabrication Refurbishment Task of the Enhanced Utilization of Isotope Facilities project (Project Identification Code 2005230) funded by the American Recovery and Reinvestment Act of 2009. The goal of this project is to recover the capability to produce 4-5 curium targets for the irradiation period starting with HFIR cycle 427, currently scheduled to begin 2/17/10. Assuming success, the equipment would then be used to fabricate 6-7 additional targets to hold for the next irradiation campaign specified by the program. Specific objectives are the return to functionality of the Cubicle 3 Pellet Fabrication Line; Cubicle 2 Target Assembly equipment; and Cubicle 1 Target Inspection and Final Assembly system.
AIDP -Apple Interface Design Project
Tollmar, Konrad
AIDP - Apple Interface Design Project AIDP - Apple Interface Design Project m 92-95 m Joy Mountford m Design Centre, Advanced Technology Group m Apple's Industrial Design Group "Encourage ProjectThe Project m Bridge the gulf between the physical and virtual worlds - Apple m Design a new way
Combined Heat and Power Projects
Broader source: Energy.gov [DOE]
DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.
Innovation Program Student Initiated Project
Bertini, Robert L.
Innovation Program Student Initiated Project Proposal Guidelines Eligibility The team must include of the problem the innovation is meant to solve A clear description of the work to be done for the project Milestones for the project, as well as a projected 'end product' Background with enough detail
Degree project in Communication Systems
Maguire Jr., Gerald Q.
and evaluate web-based application which could utilize sensor data. In this project, we focused on two aspectsDegree project in Communication Systems Second level, 30.0 HEC Stockholm, Sweden Y E T I A N A Web This thesis describes the project "A new Web Server for sensors". The project has created a demonstration web
Enhanced Geothermal Systems Demonstration Projects
Geothermal Technologies Office
2013-08-06
Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.
Project Management Plan Chinese Food
Igusa, Kiyoshi
impact of this project? · Data management: How do we collect, preserve and sort all of the files? Which special equipment, facilities needed or wanted? According to http://project-management-knowledge.com/ weProject Management Plan Chinese Food According to NSF, the basic elements of a project management
Cogeneration Project Analysis Update
Robinson, A. M.; Garcia, L. N.
1987-01-01
-1 ------------ COGENERATION PROJECT ANALYSIS UPDATE by Arthur M. Robinson & Luis N. Garcia ROBINSON & GARCIA Energy Consultants P. O. Box 1203, Destrehan, LA 70047 ABSTRACT Not long ago, to evaluate the feasibility of a cogeneration project, a simple economic analysis... pressure steam produced from the turbine exhaust. And fed to an extraction condensing steam turbine, coupled to a second generator. A depiction with typical values is shown in Figure 2. ~) ~ EL.eCTRICJTY FRCM (iE/.)eRATORS BoiLE.R GAS / Fl/EL R...
CONNECTICUT BIOFUELS TECHNOLOGY PROJECT
BARTONE, ERIK
2010-09-28
DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.
Golden, M.
2013-01-01
Environmental Defense Fund’s Investor Confidence Project Delivering Investment Quality Energy Efficiency to Market ESL-KT-13-12-38 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Investor Confidence Project... Actionable Data ESL-KT-13-12-38 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Near-Term: Not Enough Deal-Flow • High Transaction Costs • Lack of Viable Origination Channels • Highly Variable Performance • Complex...
Miller, Kari
2007-01-01
Dr. John Sij, an agronomist at The Texas A&M University System Agricultural Research and Extension Center at Vernon. Story by Kari Miller SHOWCASING A PROJECT Groups work to solve stream?s impairment... present and most of them were landowners in that watershed,? he said. ?That was one of the Showcasing a Project tx H2O | pg. 9 best-attended meetings of landowners we?ve probably had in the state.? The team is bringing in Dr. George Di Giovanni...
Projects | The Ames Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference)Project Tour Project Tour
Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools
Haberl, J.; Kim, H.; Mukhopadhyay, J.; Cervantes, J.C.; Do, S.; Kim, K.; Cyndi Lewis, C.; Yazdani, B.; Yarborough, J.
2011-01-01
. 1 Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System Energy Efficiency / Renewable Energy (EE/RE) Projects in Texas Public Schools Jeff Haberl, Hyojin Kim, Jaya Mukhopadhyay, Juan-Carlos Baltazar...-Cevantes, Sung Lok Do, Kee Han Kim, Cyndi Lewis, Bahman Yazdani – Energy Systems Laboratory James Yarborough, U.S.E.P.A. ESL-TR-11-11-01 Energy Systems Laboratory p. 2 Why care about energy efficiency-renewable energy in schools? • Lower energy costs...
Background & Projects Publications
Home Background & Projects Calendar Publications Staff Directory Links Search MAES Home | Field Stations | Station Home | Publications | FruitNet Weekly Report Northern Michigan FruitNet 2006 Weekly vineyards. Side hedging and/or topping shoots will be needed to get light and air to the fruiting zone
Rank Project Name Directorate,
,000 0.5 400 lbs industrial waste, eliminates potential for oil contaminated run-off 3 RetrofitRank Project Name Directorate, Dept/Div and POC Cost Savings Payback (Years) Waste Reduction 1 Minimization of Silver Waste from Silver-Staining Electrophoretic Mini-Gels Life Sciences, Biology (B
Project Summary Partnership Inspiration
Everest, Graham R
Businesses are hunting for solutions to reduce their carbon footprint and energy spend. This project follows as they help overcome the challenges of auditing and reducing the organisational carbon footprint. A television strategy underpinning their carbon footprint understanding and slashing carbon emissions by 10
Hubsch, Tristan
2013-06-20
In the last years of this eighteen-year grant project, the research efforts have focused mostly on the study of off-shell representations of supersymmetry, both on the worldline and on the world- sheet, i.e., both in supersymmetric quantum mechanics and in supersymmetric field theory in 1+1-dimensional spacetime.
Kootznoowoo Incorporated- 2010 Project
Broader source: Energy.gov [DOE]
Thayer Lake Hydropower Development (TLHD) consists of a 1 MW+ run of the river hydropower project located in the Tongass Forest in the Admiralty Island National Monument Park that will provide the energy to the City of Angoon and Angoon Community Association (traditional tribe as recognized by Indian Reorganization Act).
Broader source: Energy.gov [DOE]
Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.
Heermann, Dieter W.
of individual people in far less time today than at the conclusion of the Human Genome Project in 2003 (Collins of Whole Human Genome Sequencing" Position Paper Cornerstones for an ethiCally and legally informed Pra 60 61 63 65 67 69 70 71 73 88 96 100 #12;4 5Ethical and Legal Aspects of Whole Human Genome
Information Technology Project Guide
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2008-09-12
This Guide provides Department of Energy recommended guidelines to ensure that the acquisition of information technology capital assets is performed in compliance with DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE N 251.105.
Environmental of Forestry Projects
Environmental Impact Assessment of Forestry Projects #12;EnvironmentalImpactAssessment 2 Flow chart Details of the Environmental Statement publicised for comment FC considers ES and any comments received FC the issues of concern that need to be covered in the Environmental Statement (ES). The Environmental
PROJECT PROPOSAL FPGA PAINT Design of Embedded Systems, Advanced Course Faculty to develop a paint program on Digilent Nexys2 FPGA board. We expect it to be a platform of painting on a plain space or painting an existing picture outline with color. There would be options for changing
Lorenz, M. G.
2007-01-01
The Baytown Cogeneration Project installed a GE 7FA gas turbine generator that produces 160 MW of electricity and 560-klB/hr of superheated 1500-psig steam. All of the steam and electricity are consumed by the ExxonMobil Refinery & Chemical Plant...
Accounting Projects Company Description
Dahl, David B.
and international tax work for individuals, closely held companies, family offices and clients expecting a liquidityAccounting Projects Company Description: CPA firm performing accounting services, bookkeeping. Company Description: a full service CPA firm headquartered in the San Francisco Bay Area. Nationally
Project Title: Residential wind turbine design Project Description: This project aims to
Muradoglu, Metin
that wind is expected to come. Therefore it may be a good idea to consider a vertical-axis wind turbine of the conventional wind turbines use horizontal- axis configuration (see Fig. 1) and is aligned with the directionPROJECT 1: Project Title: Residential wind turbine design Project Description: This project aims
Reducing Poverty Risk in Developing Countries Project No. Project Title Project Leader
Krivobokova, Tatyana
1 Reducing Poverty Risk in Developing Countries Project No. Project Title Project Leader 1 Dynamic). At the same time, there will be substantial collaboration between the projects to develop this common research in developing countries Lay 5 Informal risk sharing networks as an strategy to reduce poverty risk Ibanez
Not Available
1992-03-01
The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.
California Hydrogen Infrastructure Project
Edward C. Heydorn
2013-03-12
Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a Ã?Â?Ã?Â¢Ã?Â?Ã?Â?Ã?Â?Ã?Â?real-worldÃ?Â?Ã?Â¢Ã?Â?Ã?Â?Ã?Â?Ã?Â retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nationÃ?Â?Ã?Â¢Ã?Â?Ã?Â?Ã?Â?Ã?Â?s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air ProductsÃ?Â?Ã?Â¢Ã?Â?Ã?Â?Ã?Â?Ã?Â? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station userÃ?Â?Ã?Â¢Ã?Â?Ã?Â?Ã?Â?Ã?Â?s fueling experience.
Doebling, S.W.; Farrar, C.R. [Los Alamos National Lab., NM (United States); Cornwell, P.J. [Rose Hulman Inst. of Tech., Terre Haute, IN (United States)
1998-02-01
This paper presents a comparison of two techniques used to estimate the statistical confidence intervals on modal parameters identified from measured vibration data. The first technique is Monte Carlo simulation, which involves the repeated simulation of random data sets based on the statistics of the measured data and an assumed distribution of the variability in the measured data. A standard modal identification procedure is repeatedly applied to the randomly perturbed data sets to form a statistical distribution on the identified modal parameters. The second technique is the Bootstrap approach, where individual Frequency Response Function (FRF) measurements are randomly selected with replacement to form an ensemble average. This procedure, in effect, randomly weights the various FRF measurements. These weighted averages of the FRFs are then put through the modal identification procedure. The modal parameters identified from each randomly weighted data set are then used to define a statistical distribution for these parameters. The basic difference in the two techniques is that the Monte Carlo technique requires the assumption on the form of the distribution of the variability in the measured data, while the bootstrap technique does not. Also, the Monte Carlo technique can only estimate random errors, while the bootstrap statistics represent both random and bias (systematic) variability such as that arising from changing environmental conditions. However, the bootstrap technique requires that every frequency response function be saved for each average during the data acquisition process. Neither method can account for bias introduced during the estimation of the FRFs. This study has been motivated by a program to develop vibration-based damage identification procedures.
Charged-Particle Thermonuclear Reaction Rates: I. Monte Carlo Method and Statistical Distributions
Richard Longland; Christian Iliadis; Art Champagne; Joe Newton; Claudio Ugalde; Alain Coc; Ryan Fitzgerald
2010-04-23
A method based on Monte Carlo techniques is presented for evaluating thermonuclear reaction rates. We begin by reviewing commonly applied procedures and point out that reaction rates that have been reported up to now in the literature have no rigorous statistical meaning. Subsequently, we associate each nuclear physics quantity entering in the calculation of reaction rates with a specific probability density function, including Gaussian, lognormal and chi-squared distributions. Based on these probability density functions the total reaction rate is randomly sampled many times until the required statistical precision is achieved. This procedure results in a median (Monte Carlo) rate which agrees under certain conditions with the commonly reported recommended "classical" rate. In addition, we present at each temperature a low rate and a high rate, corresponding to the 0.16 and 0.84 quantiles of the cumulative reaction rate distribution. These quantities are in general different from the statistically meaningless "minimum" (or "lower limit") and "maximum" (or "upper limit") reaction rates which are commonly reported. Furthermore, we approximate the output reaction rate probability density function by a lognormal distribution and present, at each temperature, the lognormal parameters miu and sigma. The values of these quantities will be crucial for future Monte Carlo nucleosynthesis studies. Our new reaction rates, appropriate for bare nuclei in the laboratory, are tabulated in the second paper of this series (Paper II). The nuclear physics input used to derive our reaction rates is presented in the third paper of this series (Paper III). In the fourth paper of this series (Paper IV) we compare our new reaction rates to previous results.
Transport in open spin chains: A Monte Carlo wave-function approach
Mathias Michel; Ortwin Hess; Hannu Wichterich; Jochen Gemmer
2008-03-07
We investigate energy transport in several two-level atom or spin-1/2 models by a direct coupling to heat baths of different temperatures. The analysis is carried out on the basis of a recently derived quantum master equation which describes the nonequilibrium properties of internally weakly coupled systems appropriately. For the computation of the stationary state of the dynamical equations, we employ a Monte Carlo wave-function approach. The analysis directly indicates normal diffusive or ballistic transport in finite models and hints toward an extrapolation of the transport behavior of infinite models.
S. Frixione; E. Laenen; P. Motylinski; B. R. Webber
2007-02-20
We explain how angular correlations in leptonic decays of vector bosons and top quarks can be included in Monte Carlo parton showers, in particular those matched to NLO QCD computations. We consider the production of $n$ pairs of leptons, originating from the decays of $n$ electroweak vector bosons or of $n$ top quarks, in the narrow-width approximation. In the latter case, the information on the $n$ $b$ quarks emerging from the decays is also retained. We give results of implementing this procedure in MC@NLO
Monte Carlo Generators for Studies of the 3D Structure of the Nucleon
Avagyan, Harut A. [JLAB
2015-01-01
Extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.
Monte Carlo simulations of channeling spectra recorded for samples containing complex defects
Jagielski, Jacek; Turos, Prof. Andrzej; Nowicki, Lech; Jozwik, P.; Shutthanandan, Vaithiyalingam; Zhang, Yanwen; Sathish, N.; Thome, Lionel; Stonert, A.; Jozwik-Biala, Iwona
2012-01-01
The aim of the present paper is to describe the current status of the development of McChasy, a Monte Carlo simulation code, to make it suitable for the analysis of dislocations and dislocation loops in crystals. Such factors like the shape of the bent channel and geometrical distortions of the crystalline structure in the vicinity of dislocation has been discussed. The results obtained demonstrate that the new procedure applied to the spectra recorded on crystals containing dislocation yields damage profiles which are independent of the energy of the analyzing beam.
Monte Carlo simulations of channeling spectra recorded for samples containing complex defects
Jagielski, Jacek K.; Turos, Andrzej W.; Nowicki, L.; Jozwik, Przemyslaw A.; Shutthanandan, V.; Zhang, Yanwen; Sathish, N.; Thome, Lionel; Stonert, A.; Jozwik Biala, Iwona
2012-02-15
The main aim of the present paper is to describe the current status of the development of McChasy, a Monte Carlo simulation code, to make it suitable for the analysis of dislocations and dislocation loops in crystals. Such factors like the shape of the bent channel and geometrical distortions of the crystalline structure in the vicinity of dislocation has been discussed. Several examples of the analysis performed at different energies of analyzing ions are presented. The results obtained demonstrate that the new procedure applied to the spectra recorded on crystals containing dislocation yields damage profiles which are independent of the energy of the analyzing beam.
Four-Quark Binding Energies from SU(2) Lattice Monte Carlo
A. M. Green; C. Michael; M. E. Sainio
1994-04-11
Energies of four-quark systems have been extracted in a static quenched SU(2) lattice Monte Carlo calculation for six different geometries, both planar and non-planar, with $\\beta=2.4$ and lattice size $16^3\\times 32$. In all cases, it is found that the binding energy is greatly enhanced when the four quarks can be partitioned in two ways with comparable energies. Also it is shown that the energies of the four-quark states cannot be understood simply in terms of two-quark potentials.
Study of DCX reaction on medium nuclei with Monte-Carlo Shell Model
Wu, H. C.; Gibbs, W. R.
2010-08-04
In this work a method is introduced to calculate the DCX reaction in the framework of Monte-Carlo Shell Model (MCSM). To facilitate the use of Zero-temperature formalism of MCSM, the Double-Isobaric-Analog State (DIAS) is derived from the ground state by using isospin shifting operator. The validity of this method is tested by comparing the MCSM results to those of the SU(3) symmetry case. Application of this method to DCX on {sup 56}Fe and {sup 93}Nb is discussed.
Monte-Carlo study of the phase transition in the AA-stacked bilayer graphene
A. A. Nikolaev; M. V. Ulybyshev
2014-12-04
Tight-binding model of the AA-stacked bilayer graphene with screened electron-electron interactions has been studied using the Hybrid Monte Carlo simulations on the original double-layer hexagonal lattice. Instantaneous screened Coulomb potential is taken into account using Hubbard-Stratonovich transformation. G-type antiferromagnetic ordering has been studied and the phase transition with spontaneous generation of the mass gap has been observed. Dependence of the antiferromagnetic condensate on the on-site electron-electron interaction is examined.
Monte Carlo generators for studies of the 3D structure of the nucleon
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Avakian, Harut; D'Alesio, U.; Murgia, F.
2015-01-23
In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.
A Hybrid (Monte-Carlo/Deterministic) Approach for Multi-Dimensional Radiation Transport
Guillaume Bal; Anthony Davis; Ian Langmore
2011-05-07
A novel hybrid Monte Carlo transport scheme is demonstrated in a scene with solar illumination, scattering and absorbing 2D atmosphere, a textured reflecting mountain, and a small detector located in the sky (mounted on a satellite or a airplane). It uses a deterministic approximation of an adjoint transport solution to reduce variance, computed quickly by ignoring atmospheric interactions. This allows significant variance and computational cost reductions when the atmospheric scattering and absorption coefficient are small. When combined with an atmospheric photon-redirection scheme, significant variance reduction (equivalently acceleration) is achieved in the presence of atmospheric interactions.
A Hybrid (Monte-Carlo/Deterministic) Approach for Multi-Dimensional Radiation Transport
Bal, Guillaume; Langmore, Ian
2011-01-01
A novel hybrid Monte Carlo transport scheme is demonstrated in a scene with solar illumination, scattering and absorbing 2D atmosphere, a textured reflecting mountain, and a small detector located in the sky (mounted on a satellite or a airplane). It uses a deterministic approximation of an adjoint transport solution to reduce variance, computed quickly by ignoring atmospheric interactions. This allows significant variance and computational cost reductions when the atmospheric scattering and absorption coefficient are small. When combined with an atmospheric photon-redirection scheme, significant variance reduction (equivalently acceleration) is achieved in the presence of atmospheric interactions.
Quantized vortices in {sup 4}He droplets: A quantum Monte Carlo study
Sola, E.; Casulleras, J.; Boronat, J.
2007-08-01
We present a diffusion Monte Carlo study of a vortex line excitation attached to the center of a {sup 4}He droplet at zero temperature. The vortex energy is estimated for droplets of increasing number of atoms, from N=70 up to 300, showing a monotonous increase with N. The evolution of the core radius and its associated energy, the core energy, is also studied as a function of N. The core radius is {approx}1 A in the center and increases when approaching the droplet surface; the core energy per unit volume stabilizes at a value 2.8 K{sigma}{sup -3} ({sigma}=2.556 A) for N{>=}200.
Quantum Monte Carlo simulation of a two-dimensional Bose gas
Pilati, S.; Boronat, J.; Casulleras, J.; Giorgini, S.
2005-02-01
The equation of state of a homogeneous two-dimensional Bose gas is calculated using quantum Monte Carlo methods. The low-density universal behavior is investigated using different interatomic model potentials, both finite ranged and strictly repulsive and zero ranged, supporting a bound state. The condensate fraction and the pair distribution function are calculated as a function of the gas parameter, ranging from the dilute to the strongly correlated regime. In the case of the zero-range pseudopotential we discuss the stability of the gaslike state for large values of the two-dimensional scattering length, and we calculate the critical density where the system becomes unstable against cluster formation.