Powered by Deep Web Technologies
Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

"Table HC10.10 Home Appliances Usage Indicators by U.S. Census...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by U.S. Census Regions, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Home Appliances Usage...

2

Table HC6.12 Home Electronics Usage Indicators by Number of...  

Annual Energy Outlook 2012 (EIA)

2 Home Electronics Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4...

3

Table HC6.10 Home Appliances Usage Indicators by Number of Household...  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Home Appliances Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4...

4

"Table HC12.10 Home Appliances Usage Indicators by Midwest Census...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division"...

5

"Table HC13.10 Home Appliances Usage Indicators by South Census...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division"...

6

"Table HC7.10 Home Appliances Usage Indicators by Household...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"...

7

"Table HC11.10 Home Appliances Usage Indicators by Northeast...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ," U.S. Housing Units (millions) " ,,,"Census...

8

"Table HC14.10 Home Appliances Usage Indicators by West Census...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total...

9

"Table HC9.10 Home Appliances Usage Indicators by Climate Zone...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000...

10

"Table HC8.10 Home Appliances Usage Indicators by Urban/Rural...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by UrbanRural Location, 2005" " Million U.S. Housing Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Home...

11

"Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing...

12

"Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied...

13

"Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Household Income, 2005" 5 Space Heating Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

14

"Table HC11.13 Lighting Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Northeast Census Region, 2005" 3 Lighting Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Lighting Usage Indicators",,,"Middle Atlantic","New England" "Total U.S. Housing Units",111.1,20.6,15.1,5.5 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,16.8,12.2,4.6 "1.",28.6,5,3.5,1.5 "2.",29.5,6.2,4.8,1.4 "3.",14.7,2.5,1.7,0.8 "4.",9.3,1.5,1.1,0.4 "5 or More",9.7,1.6,1.1,0.5 "Energy-Efficient Bulbs Used",31.1,5.2,3.6,1.6

15

"Table HC13.13 Lighting Usage Indicators by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by South Census Region, 2005" 3 Lighting Usage Indicators by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Lighting Usage Indicators",,,"South Atlantic","East South Central","West South Central" "Total U.S. Housing Units",111.1,40.7,21.7,6.9,12.1 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,33.8,17.5,6.1,10.3 "1.",28.6,11.2,6.5,1.5,3.2 "2.",29.5,10.5,5.4,2,3.1 "3.",14.7,5,2.1,1.2,1.7 "4.",9.3,3.4,1.5,0.8,1.2 "5 or More",9.7,3.7,1.9,0.6,1.2

16

"Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Household Income, 2005" 0 Home Appliances Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Home Appliances Usage Indicators" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,2.9,2.5,1.3,0.5,1,2.4,4.6 "2 Times A Day",24.6,6.5,7,4.3,3.2,3.6,4.8,10.3 "Once a Day",42.3,8.8,9.8,8.7,5.1,10,5,12.9

17

"Table HC9.12 Home Electronics Usage Indicators by Climate Zone, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Home Electronics Usage Indicators by Climate Zone, 2005" 2 Home Electronics Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000 HDD" ,"Housing Units (millions)" ,,"Greater than 7,000 HDD","5,500 to 7,000 HDD","4,000 to 5,499 HDD","Less than 4,000 HDD" "Home Electronics Usage Indicators" "Total",111.1,10.9,26.1,27.3,24,22.8 "Personal Computers" "Do Not Use a Personal Computer",35.5,3.2,8.3,8.9,7.7,7.5 "Use a Personal Computer",75.6,7.8,17.8,18.4,16.3,15.3 "Most-Used Personal Computer" "Type of PC" "Desk-top Model",58.6,6.2,14.3,14.2,12.1,11.9

18

"Table HC14.13 Lighting Usage Indicators by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by West Census Region, 2005" 3 Lighting Usage Indicators by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Lighting Usage Indicators",,,"Mountain","Pacific" "Total U.S. Housing Units",111.1,24.2,7.6,16.6 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,19.5,6.1,13.4 "1.",28.6,6.1,1.7,4.4 "2.",29.5,6.3,1.8,4.5 "3.",14.7,3.1,1.1,2 "4.",9.3,1.9,0.6,1.3 "5 or More",9.7,2,0.8,1.2 "Energy-Efficient Bulbs Used",31.1,8.6,2.3,6.3 "1.",14.6,3.6,1,2.6

19

Table HC15.10 Home Appliances Usage Indicators by Four Most Populated States, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Four Most Populated States, 2005 0 Home Appliances Usage Indicators by Four Most Populated States, 2005 Total.................................................................................... 111.1 7.1 7.0 8.0 12.1 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 0.6 0.5 0.8 1.4 2 Times A Day.............................................................. 24.6 1.4 1.5 2.0 3.1 Once a Day................................................................... 42.3 2.4 3.0 2.7 4.1 A Few Times Each Week.............................................. 27.2 2.1 1.7 1.7 2.5 About Once a Week...................................................... 3.9 0.3 Q 0.4 0.6 Less Than Once a Week............................................... 4.1 Q Q 0.3 0.4 No Hot Meals Cooked...................................................

20

Table HC15.7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005 7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005 Total.................................................................................. 111.1 7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment.................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................. 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment.................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it................................ 1.9 Q N Q 0.6 Type of Air-Conditioning Equipment 1, 2 Central System............................................................. 65.9 1.1 6.4 6.4 5.4 Without a Heat Pump................................................. 53.5 1.1 3.5 5.7 4.9 With a Heat Pump......................................................

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Number of Household Members, 2005 5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................ 3.6 1.0 0.8 0.5 0.5 0.7 1 to 499........................................................ 6.1 3.0 1.6 0.6 0.6 0.3 500 to 999.................................................... 27.7 11.6 8.3 3.6 2.7 1.6 1,000 to 1,499..............................................

22

Table HC6.7 Air-Conditioning Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total........................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Cooling Equipment.......................... 17.8 5.4 5.3 2.7 2.5 2.0 Have Cooling Equipment...................................... 93.3 24.6 29.6 15.7 13.4 10.0 Use Cooling Equipment....................................... 91.4 24.0 29.1 15.5 13.2 9.7 Have Equipment But Do Not Use it...................... 1.9 0.6 0.5 Q 0.2 0.4 Type of Air-Conditioning Equipment 1, 2 Central System................................................... 65.9 15.3 22.6 10.7 9.9 7.3 Without a Heat Pump....................................... 53.5 12.5 17.9 8.7 8.2 6.3 With a Heat Pump............................................ 12.3

23

Table HC6.12 Home Electronics Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

2 Home Electronics Usage Indicators by Number of Household Members, 2005 2 Home Electronics Usage Indicators by Number of Household Members, 2005 Total................................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Personal Computers Do Not Use a Personal Computer............................. 35.5 16.3 9.4 4.0 2.7 3.2 Use a Personal Computer.......................................... 75.6 13.8 25.4 14.4 13.2 8.8 Most-Used Personal Computer Type of PC Desk-top Model..................................................... 58.6 10.0 20.0 11.2 10.1 7.3 Laptop Model........................................................ 16.9 3.7 5.4 3.2 3.1 1.5 Hours Turned on Per Week Less than 2 Hours................................................. 13.6 4.0 4.7 1.7 1.8 1.4 2 to 15 Hours........................................................

24

"Table HC11.5 Space Heating Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Northeast Census Region, 2005" 5 Space Heating Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Space Heating Usage Indicators",,,"Middle Atlantic","New England" "Total U.S. Housing Units",111.1,20.6,15.1,5.5 "Do Not Have Heating Equipment",1.2,"Q","Q","Q" "Have Space Heating Equipment",109.8,20.5,15.1,5.4 "Use Space Heating Equipment",109.1,20.5,15.1,5.4 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

25

"Table HC15.5 Space Heating Usage Indicators by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Four Most Populated States, 2005" 5 Space Heating Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Space Heating Usage Indicators",,"New York","Florida","Texas","California" "Total U.S. Housing Units",111.1,7.1,7,8,12.1 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have But Do Not Use Equipment",0.8,"N","Q","N",0.5 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

26

"Table HC10.5 Space Heating Usage Indicators by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by U.S. Census Region, 2005" 5 Space Heating Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Usage Indicators",,"Northeast","Midwest","South","West" "Total U.S. Housing Units",111.1,20.6,25.6,40.7,24.2 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have But Do Not Use Equipment",0.8,"N","N","Q",0.6 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

27

"Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Urban/Rural Location, 2005" 5 Space Heating Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating Usage Indicators",,"City","Town","Suburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Do Not Have Heating Equipment",1.2,0.7,"Q",0.2,"Q" "Have Space Heating Equipment",109.8,46.3,18.9,22.5,22.1 "Use Space Heating Equipment",109.1,45.6,18.8,22.5,22.1 "Have But Do Not Use Equipment",0.8,0.7,"Q","N","N" "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

28

"Table HC12.5 Space Heating Usage Indicators by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Midwest Census Region, 2005" 5 Space Heating Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Usage Indicators",,,"East North Central","West North Central" "Total U.S. Housing Units",111.1,25.6,17.7,7.9 "Do Not Have Heating Equipment",1.2,"Q","Q","N" "Have Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Space Heating Equipment",109.1,25.6,17.7,7.9 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

29

"Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,33,8,3.4,5.9,14.4,1.2 "Do Not Have Heating Equipment",1.2,0.6,"Q","Q","Q",0.3,"Q" "Have Space Heating Equipment",109.8,32.3,8,3.3,5.8,14.1,1.1

30

"Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

31

"Table HC3.7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005" 7 Air-Conditioning Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Cooling Equipment",17.8,11.3,9.3,0.6,"Q",0.4,0.9 "Have Cooling Equipment",93.3,66.8,54.7,3.6,1.7,1.9,4.8 "Use Cooling Equipment",91.4,65.8,54,3.6,1.7,1.9,4.7

32

"Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Northeast Census Region, 2005" 0 Home Appliances Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ," U.S. Housing Units (millions) " ,,,"Census Division" ,,"Total Northeast" "Home Appliances Usage Indicators",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,1.2,1,0.2 "2 Times A Day",24.6,4,2.7,1.2 "Once a Day",42.3,7.9,5.4,2.5 "A Few Times Each Week",27.2,6,4.8,1.2 "About Once a Week",3.9,0.6,0.5,"Q" "Less Than Once a Week",4.1,0.6,0.4,"Q"

33

"Table HC8.12 Home Electronics Usage Indicators by Urban/Rural Location, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Home Electronics Usage Indicators by Urban/Rural Location, 2005" 2 Home Electronics Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Home Electronics Usage Indicators",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Personal Computers" "Do Not Use a Personal Computer",35.5,16.9,6.5,4.6,7.6 "Use a Personal Computer",75.6,30.3,12.5,18.1,14.7 "Most-Used Personal Computer" "Type of PC" "Desk-top Model",58.6,22.9,9.8,14.1,11.9 "Laptop Model",16.9,7.4,2.7,4,2.9 "Hours Turned on Per Week" "Less than 2 Hours",13.6,5.7,1.8,2.9,3.2

34

"Table HC11.12 Home Electronics Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Home Electronics Usage Indicators by Northeast Census Region, 2005" 2 Home Electronics Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Home Electronics Usage Indicators",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Personal Computers" "Do Not Use a Personal Computer",35.5,6.9,5.3,1.6 "Use a Personal Computer",75.6,13.7,9.8,3.9 "Most-Used Personal Computer" "Type of PC" "Desk-top Model",58.6,10.4,7.3,3.1 "Laptop Model",16.9,3.3,2.6,0.7 "Hours Turned on Per Week" "Less than 2 Hours",13.6,2.4,1.8,0.6

35

"Table HC11.7 Air-Conditioning Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Northeast Census Region, 2005" 7 Air-Conditioning Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Air Conditioning Usage Indicators",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Do Not Have Cooling Equipment",17.8,4,2.4,1.7 "Have Cooling Equipment",93.3,16.5,12.8,3.8 "Use Cooling Equipment",91.4,16.3,12.6,3.7 "Have Equipment But Do Not Use it",1.9,0.3,"Q","Q" "Type of Air-Conditioning Equipment1, 2" "Central System",65.9,6,5.2,0.8 "Without a Heat Pump",53.5,5.5,4.8,0.7

36

"Table HC15.7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005" 7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Air Conditioning Usage Indicators",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Do Not Have Cooling Equipment",17.8,1.8,"Q","Q",4.9 "Have Cooling Equipment",93.3,5.3,7,7.8,7.2 "Use Cooling Equipment",91.4,5.3,7,7.7,6.6 "Have Equipment But Do Not Use it",1.9,"Q","N","Q",0.6 "Type of Air-Conditioning Equipment1, 2" "Central System",65.9,1.1,6.4,6.4,5.4

37

"Table HC15.10 Home Appliances Usage Indicators by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Four Most Populated States, 2005" 0 Home Appliances Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Home Appliances Usage Indicators",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,0.6,0.5,0.8,1.4 "2 Times A Day",24.6,1.4,1.5,2,3.1 "Once a Day",42.3,2.4,3,2.7,4.1 "A Few Times Each Week",27.2,2.1,1.7,1.7,2.5 "About Once a Week",3.9,0.3,"Q",0.4,0.6 "Less Than Once a Week",4.1,"Q","Q",0.3,0.4

38

"Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Home Electronics Usage Indicators by Midwest Census Region, 2005" 2 Home Electronics Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Home Electronics Usage Indicators",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Personal Computers" "Do Not Use a Personal Computer",35.5,8.1,5.6,2.5 "Use a Personal Computer",75.6,17.5,12.1,5.4 "Most-Used Personal Computer" "Type of PC" "Desk-top Model",58.6,14.1,10,4 "Laptop Model",16.9,3.4,2.1,1.3 "Hours Turned on Per Week" "Less than 2 Hours",13.6,3.4,2.5,0.9

39

"Table HC10.7 Air-Conditioning Usage Indicators by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by U.S. Census Region, 2005" 7 Air-Conditioning Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Air Conditioning Usage Indicators",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Do Not Have Cooling Equipment",17.8,4,2.1,1.4,10.3 "Have Cooling Equipment",93.3,16.5,23.5,39.3,13.9 "Use Cooling Equipment",91.4,16.3,23.4,38.9,12.9 "Have Equipment But Do Not Use it",1.9,0.3,"Q",0.5,1 "Type of Air-Conditioning Equipment1, 2" "Central System",65.9,6,17.3,32.1,10.5 "Without a Heat Pump",53.5,5.5,16.2,23.2,8.7

40

"Table HC3.13 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" 3 Lighting Usage Indicators by Owner-Occupied Housing Unit Zone, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Lighting Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,65,54.3,3.3,1.5,1.6,4.4 "1.",28.6,17.9,14,0.9,0.6,0.7,1.7

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

"Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by South Census Region, 2005" 0 Home Appliances Usage Indicators by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Home Appliances Usage Indicators",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,3,1.6,0.3,1.1 "2 Times A Day",24.6,8.3,4.2,1.3,2.7 "Once a Day",42.3,15,8.1,2.7,4.2 "A Few Times Each Week",27.2,10.9,6,1.8,3.1 "About Once a Week",3.9,1.6,0.7,0.4,0.5

42

"Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Home Electronics Usage Indicators by West Census Region, 2005" 2 Home Electronics Usage Indicators by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Home Electronics Usage Indicators",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Personal Computers" "Do Not Use a Personal Computer",35.5,6.4,2.2,4.2 "Use a Personal Computer",75.6,17.8,5.3,12.5 "Most-Used Personal Computer" "Type of PC" "Desk-top Model",58.6,13.7,4.2,9.5 "Laptop Model",16.9,4.1,1.1,3 "Hours Turned on Per Week" "Less than 2 Hours",13.6,2.9,0.9,2 "2 to 15 Hours",29.1,6.6,2,4.6

43

"Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by West Census Region, 2005" 0 Home Appliances Usage Indicators by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Home Appliances Usage Indicators",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,2.6,0.7,1.9 "2 Times A Day",24.6,6.6,2,4.6 "Once a Day",42.3,8.8,2.9,5.8 "A Few Times Each Week",27.2,4.7,1.5,3.1 "About Once a Week",3.9,0.7,"Q",0.6 "Less Than Once a Week",4.1,0.7,0.3,0.4 "No Hot Meals Cooked",0.9,0.2,"Q","Q"

44

"Table HC13.7 Air-Conditioning Usage Indicators by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by South Census Region, 2005" 7 Air-Conditioning Usage Indicators by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Air Conditioning Usage Indicators",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Do Not Have Cooling Equipment",17.8,1.4,0.8,0.2,0.3 "Have Cooling Equipment",93.3,39.3,20.9,6.7,11.8 "Use Cooling Equipment",91.4,38.9,20.7,6.6,11.7 "Have Equipment But Do Not Use it",1.9,0.5,"Q","Q","Q" "Type of Air-Conditioning Equipment1, 2"

45

"Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" 0 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Home Appliances Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,33,8,3.4,5.9,14.4,1.2 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,3.4,1,0.4,0.6,1.2,"Q" "2 Times A Day",24.6,8.6,2.3,1,1.6,3.5,0.2

46

"Table HC10.13 Lighting Usage Indicators by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by U.S. Census Region, 2005" 3 Lighting Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Lighting Usage Indicators",,"Northeast","Midwest","South","West" "Total U.S. Housing Units",111.1,20.6,25.6,40.7,24.2 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,16.8,21.7,33.8,19.5 "1.",28.6,5,6.3,11.2,6.1 "2.",29.5,6.2,6.5,10.5,6.3 "3.",14.7,2.5,4,5,3.1 "4.",9.3,1.5,2.5,3.4,1.9 "5 or More",9.7,1.6,2.4,3.7,2 "Energy-Efficient Bulbs Used",31.1,5.2,6.7,10.6,8.6

47

"Table HC15.13 Lighting Usage Indicators by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Four Most Populated States, 2005" 3 Lighting Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Lighting Usage Indicators",,"New York","Florida","Texas","California" "Total U.S. Housing Units",111.1,7.1,7,8,12.1 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,5.5,5.5,6.7,9.5 "1.",28.6,1.8,2,2.3,2.8 "2.",29.5,2.3,1.9,2,3.4 "3.",14.7,0.7,0.8,0.9,1.4 "4.",9.3,0.4,"Q",0.8,1.1 "5 or More",9.7,0.4,0.4,0.8,0.9 "Energy-Efficient Bulbs Used",31.1,1.7,1.7,2.1,4.7

48

"Table HC8.10 Home Appliances Usage Indicators by Urban/Rural Location, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Urban/Rural Location, 2005" 0 Home Appliances Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Home Appliances Usage Indicators",,"City","Town","Suburbs","Rural" "Total",111.1,47.1,19,22.7,22.3 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,3.7,1.6,1.4,1.5 "2 Times A Day",24.6,10.8,4.1,4.3,5.5 "Once a Day",42.3,17,7.2,8.7,9.3 "A Few Times Each Week",27.2,11.4,4.7,6.4,4.8 "About Once a Week",3.9,1.7,0.6,0.9,0.8 "Less Than Once a Week",4.1,2.2,0.6,0.8,0.5 "No Hot Meals Cooked",0.9,0.4,"Q","Q","Q"

49

"Table HC10.10 Home Appliances Usage Indicators by U.S. Census Regions, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by U.S. Census Regions, 2005" 0 Home Appliances Usage Indicators by U.S. Census Regions, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Home Appliances Usage Indicators",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,1.2,1.4,3,2.6 "2 Times A Day",24.6,4,5.8,8.3,6.6 "Once a Day",42.3,7.9,10.7,15,8.8 "A Few Times Each Week",27.2,6,5.6,10.9,4.7 "About Once a Week",3.9,0.6,0.9,1.6,0.7 "Less Than Once a Week",4.1,0.6,1.1,1.7,0.7 "No Hot Meals Cooked",0.9,0.3,"Q","Q",0.2

50

"Table HC1.3 Heated Floorspace Usage Indicators, 2005" " Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Heated Floorspace Usage Indicators, 2005" 3 Heated Floorspace Usage Indicators, 2005" " Million U.S. Housing Units" ,,"Heated Floorspace (square feet)" ,"Housing Units (millions)" ,,"Fewer than 500","500 to 999","1,000 to 1,499","1,500 to 1,999","2,000 to 2,499","2,500 to 2,999","3,000 or More" "Usage Indicators" "Total",111.1,6.1,27.7,26,17.6,10,"7 7.8",11.6 "No Main Space Heating Equipment",1.2,"N","N","N","N","N","N","N" "Have Main Space Heating Equipment",109.8,6.1,27.7,26,17.6,10,"7 7.8",11.6 "Use Main Space Heating Equipment",109.1,6.1,27.7,26,17.6,10,"7 7.8",11.6

51

"Table HC1.4 Cooled Floorspace Usage Indicators, 2005" " Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Cooled Floorspace Usage Indicators, 2005" 4 Cooled Floorspace Usage Indicators, 2005" " Million U.S. Housing Units" ,,"Cooled Floorspace (square feet)" ,"Housing Units (millions)" ,,"Fewer than 500","500 to 999","1,000 to 1,499","1,500 to 1,999","2,000 to 2,499","2,500 to 2,999","3,000 or More" "Usage Indicators" "Total",111.1,49.2,15.1,15.6,11.1,7,5.2,8 "Have Cooling Equipment",93.3,31.3,15.1,15.6,11.1,7,5.2,8 "Use Cooling Equipment",91.4,30.4,14.6,15.4,11.1,6.9,5.2,7.9 "Have Equipment But Do Not Use it",1.9,1,0.5,"Q","Q","Q","Q","Q" "Do Not Have Cooling Equipment",17.8,17.8,"N","N","N","N","N","N"

52

American Society of Mammalogists Time-Tables in Home Range Usage by Gray Squirrels (Sciurus carolinensis)  

E-Print Network (OSTI)

American Society of Mammalogists Time-Tables in Home Range Usage by Gray Squirrels (Sciurus to Journal of Mammalogy. http://www.jstor.org #12;GENERAL NOTES TIME-TABLESIN HOME RANGE USAGE reportthat free-ranginggray squirrels (Sciurus carolinensis) follow time-tables in usage of their home ranges

Minnesota, University of

53

usage_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Usage Indicators Tables Usage Indicators Tables (Million U.S. Households; 60 pages, 247 kb) Contents Pages HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 5 HC6-2a. Usage Indicators by Year of Construction, Million U.S. Households, 2001 5 HC6-3a. Usage Indicators by Household Income, Million U.S. Households, 2001 5 HC6-4a. Usage Indicators by Type of Housing Unit, Million U.S. Households, 2001 5 HC6-5a. Usage Indicators by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5 HC6-6a. Usage Indicators by Type of Rented Housing Unit, Million U.S. Households, 2001 5 HC6-7a. Usage Indicators by Four Most Populated States, Million U.S. Households, 2001 5

54

TableHC10.13.xls  

Gasoline and Diesel Fuel Update (EIA)

or More... 0.3 Q Q Q Q Lighting Usage Indicators U.S. Census Region Northeast Midwest Table HC10.13 Lighting Usage...

55

International energy indicators. [Statistical tables and graphs  

SciTech Connect

International statistical tables and graphs are given for the following: (1) Iran - Crude Oil Capacity, Production and Shut-in, June 1974-April 1980; (2) Saudi Arabia - Crude Oil Capacity, Production, and Shut-in, March 1974-Apr 1980; (3) OPEC (Ex-Iran and Saudi Arabia) - Capacity, Production and Shut-in, June 1974-March 1980; (4) Non-OPEC Free World and US Production of Crude Oil, January 1973-February 1980; (5) Oil Stocks - Free World, US, Japan, and Europe (Landed, 1973-1st Quarter, 1980); (6) Petroleum Consumption by Industrial Countries, January 1973-December 1979; (7) USSR Crude Oil Production and Exports, January 1974-April 1980; and (8) Free World and US Nuclear Generation Capacity, January 1973-March 1980. Similar statistical tables and graphs included for the United States include: (1) Imports of Crude Oil and Products, January 1973-April 1980; (2) Landed Cost of Saudi Oil in Current and 1974 Dollars, April 1974-January 1980; (3) US Trade in Coal, January 1973-March 1980; (4) Summary of US Merchandise Trade, 1976-March 1980; and (5) US Energy/GNP Ratio, 1947 to 1979.

Bauer, E.K. (ed.)

1980-05-01T23:59:59.000Z

56

A study of the validity of language usage as an indicator of ethnic identification  

E-Print Network (OSTI)

A STUDY OF THE VALIDITY OF LANGUAGE USAGE AS AN INDICATOR OF ETHNIC IDENTIFICATION A Thesis by VICTORIA MORROW PATELLA Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1971 Major Subject: Sociology A STUDY OF THE VALIDITY OF LANGUAGE USAGE AS AN INDICATOR OF ETHNIC IDENTIFICATION A Thesis by VICTORIA MORRON PATELLA Approved as to style and content by; (Chairman of mi ttee) (Head...

Patella, Victoria Morrow

2012-06-07T23:59:59.000Z

57

Table A4. Residential sector key indicators and consumption  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Key indicators Households (millions) Single-family ....................................................... 82.85 83.56 91.25 95.37 99.34 103.03 106.77 0.8% Multifamily ........................................................... 25.78 26.07 29.82 32.05 34.54 37.05 39.53 1.4%

58

TableHC11.12.xls  

Annual Energy Outlook 2012 (EIA)

... 2.8 0.3 Q 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC11.12 Home Electronics Usage Indicators by Northeast Census Region,...

59

TableHC6.13.xls  

Annual Energy Outlook 2012 (EIA)

Q 5 or More... 0.3 N Q Q Q Q Lighting Usage Indicators 4 Members 5 or More Members Table HC6.13 Lighting Usage Indicators by...

60

Usage of Red supergiant spectral features as age indicators in starburst regions  

E-Print Network (OSTI)

We investigate techniques that can be used to determine ages of starburst regions containing populations beyond their early nebular phase. In particular, we study the strength of the CaII triplet (lambda 8498, 8542, 8662 Ang) and the CO index (2.31-2.40 micron band) using synthetic models as the starburst evolves. For an instantaneous burst of star formation both of these absorption features remain strongest between 7-14 Myr corresponding to the red supergiant population. The detailed evolutionary behavior of the starburst is strongly metallicity dependent. Low metallicity starburst models successfully reproduce the distribution of equivalent widths of CaII triplet with age in Large Magellanic Cloud clusters. The clusters in the red supergiant phase strongly favor the stellar evolutionary models incorporating mass-loss rates higher than the standard values. We suggest usage of diagrams involving CaII triplet equivalent width, CO index and nebular recombination lines to infer the history as well as age of starburst regions.

Y. D. Mayya

1997-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EIA Energy Efficiency-Table 5d. Economic and Physical Indicators for the  

Gasoline and Diesel Fuel Update (EIA)

Home > Households, Buildings & Industry > Energy Efficiency > Manufacturing Trend Data, 1998, 2002, and 2006 > Table 5d Home > Households, Buildings & Industry > Energy Efficiency > Manufacturing Trend Data, 1998, 2002, and 2006 > Table 5d Page Last Modified: May 2010 Table 5d. Economic and Physical Indicators for Basic Chemicals (NAICS 325), 1998, 2002, and 2006 Indicators MECS Survey Years 1998 2002 2006 Production1 (Million Short Tons) Inorganic Chemicals 179 163 170 Bulk Petrochemical 69 73 80 Organic Intermediate 73 73 64 Plastic Resins 40 48 50 Synthetic Rubber 2 2 NA Synthetic Fibers 5 5 4 Value of Shipments (Current Billion Dollars) Inorganic Chemicals 25 25 34 Bulk Petrochemicals & Intermediates 39 45 90 Plastic Resins 45 47 78 Synthetic Rubber 5 5 7 Synthetic Fibers 13 8 9 Value of Shipments2 (Billion 2000 Dollars) Inorganic Chemicals 27 25 26

62

EIA Energy Efficiency-Table 5c. Economic and Physical Indicators for the  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency > Manufacturing Trend Data, 1998, 2002, and 2006 > Table 5c Energy Efficiency > Manufacturing Trend Data, 1998, 2002, and 2006 > Table 5c Page Last Modified: May 2010 Table 5c. Economic and Physical Indicators for the Aluminum Industry (NAICS 3313), 1998, 2002, and 2006 Indicators MECS Survey Years 1998 2002 2006 Physical (Thousand Metric Tons) Primary Aluminum Production 3,713 2,707 2,284 Secondary Aluminum Production 3,440 2,930 3,560 Aluminum Imports 3,550 4,060 5,180 Aluminum Exports 1,590 1,590 2,820 Nominal Economic Indicators (Current Billion Dollars) Value of Shipments 57 48 42 Value Added 24 19 12 Real Economic Indicators (Billion 2000 Dollars) Value of Shipments 1 57 49 29 Value Added 2 23 20 8 Notes: 1. Deflated using BEA's chain-type price indices for value of shipments. 2. Deflated using BEA's chain-type price indices for value added.

63

EIA Energy Efficiency-Table 5f. Economic Indicators a for the Metalcasting  

Gasoline and Diesel Fuel Update (EIA)

f f Page Last Modified: May 2010 Table 5f. Economic Indicators 1 for the Metalcasting Industry (NAICS 3315), 1998, 2002, and 2006 MECS Survey Years Indicators 1998 2002 2006 Nominal Economic Indicator (Current Billion Dollars) Value of Shipments 29 27 33 Value Added 17 15 18 Real Economic Indicator (Billion 2000 Dollars) Value of Shipments 2 29 27 23 Value Added 3 17 16 12 Notes: 1. Physical indicators are not available. 2.Deflated using BEA's price indices for value of shipments for primary metal (NAICS 331). 3 Deflated using BEA's price indices for value added for primary metal (NAICS 331). Sources: U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufacturers, Statistics for Industry Groups and Industries, 2001, 2004 and 2006; Bureau of Economic Analysis (BEA), "Value of Shipments by

64

EIA Energy Efficiency-Table 5a. Economic and Physical Indicators for the  

Gasoline and Diesel Fuel Update (EIA)

a a Page Last Modified: May 2010 Table 5a. Economic and Physical Indicators for the Forest Products Industry, 1998, 2002, and 2006 (NAICS 321 and NAICS 322) MECS Survey Years Indicators 1998 2002 2006 Physical Wood Products (Millions of Board Feet) 47,263 47,359 NA Paper Products (Thousand Short Tons) 96,315 91,138 NA Total paper 44,761 41,540 41,810 Total paperboard 49,793 48,126 50,415 Wet Machine Board 90 47 NA Building paper 759 578 NA Insulating Board 912 846 NA Nominal Economic Indicators (Current Billion Dollars) Value of Shipments 246 243 281 Gross Output 244 239 278 Value Added 107 111 124 Real Economic Indicators (Billion 2000 Dollars) Value of Shipments 1 259 245 253 Gross Output 2 257 245 249 Value Added 3 119 112 121 Notes: 1. Deflated using BEA's chain-type price indices for value of shipments.

65

Creation of a Master Table for Checking Indication and Contraindication of Medicine from a Knowledge Base Linked with a Thesaurus  

Science Journals Connector (OSTI)

To develop a system for checking indication and contraindication of medicines in prescription order entry system, a master table consisting of the disease names corresponding to the medicines adopted in a hospita...

Shanmei Ji; Yasushi Matsumura; Shigeki Kuwata

2004-12-01T23:59:59.000Z

66

Supplemental Guide for Seasonal High Water Table Indicators in Georgia's Onsite Wastewater Manual Section C: Flatwoods Region  

E-Print Network (OSTI)

1 Supplemental Guide for Seasonal High Water Table Indicators in Georgia's Onsite Wastewater Manual) are part of the Atlantic Coast Flatwoods that run along the eastern shore of the US. They fall within

Ma, Lena

67

Usage Demographics 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

0 NERSC Usage Demographics 2010 Academic Usage Usage by Discipline DOE & Other Lab Usage Usage by Institution Type Last edited: 2012-10-30 13:51:35...

68

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

69

Usage by Job Size  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage by Job Usage by Job Size Table Usage by Job Size Table page loading animation Usage Query Interface System All Hopper Edison Carver Planck Matgen Franklin Hopper 1 Magellan Dirac Bassi Jacquard Seaborg User Account (Repo) Execution Queue All Debug Interactive Premium Regular Short Regular Long Regular Small Regular Medium Regular Big Regular Extra Big Killable Low Transfer IO Task Special System Serial Big Memory Westmere === Inactive === Magellan Serial Magellan Short Magellan Small Magellan Medium Magellan Big Magellan Long Regular 1 Regular 1 Long Regular 16 Regular 32 Regular 48 Full Config Seaborg Serial Batch 16 Batch 32 Batch 64 Submit Queue all interactive debug premium regular low DOE Office all ASCR BER BES FES HEP NP Summary for jobs that completed after Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 @ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

70

NERSC Usage Demographics 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

3 NERSC Usage Demographics 2013 2013 NERSC Usage by Institution Type (MPP Hours in Millions) 2013 NERSC Usage by Discipline (MPP Hours in Millions) 2013 DOE & Other Lab Usage at...

71

Advanced Editor Usage Advanced Editor Usage  

E-Print Network (OSTI)

Advanced Editor Usage Advanced Editor Usage Log in and click the edit icon How to navigate of the events will seek the video to where that event starts Page 1 of 11 #12;Advanced Editor Usage How Editor Usage 3. Type in the new caption name, enter any searchable metadata and click OK (the thumbnail

Benos, Panayiotis "Takis"

72

1999 CBECS Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables 1999 CBECS Detailed Tables Building Characteristics | Consumption & Expenditures Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. A table of Relative Standard Errors (RSEs) is included as a worksheet tab in each Excel tables. Complete sets of RSE tables are also available in .pdf format. (What is an RSE?) Preliminary End-Use Consumption Estimates for 1999 | Description of 1999 Detailed Tables and Categories of Data

73

Creativity in IS usage and workgroup performance: The mediating role of ambidextrous usage  

Science Journals Connector (OSTI)

Abstract Creativity in the use of information systems (IS) is critical to the performance and long-term success of organizations. Building on an organizational ambidexterity perspective, we investigate ambidexterity in IS usage which is defined as the capacity to simultaneously achieve exploitative usage and explorative usage at a workgroup level. This paper seeks to test the relationships among creative process, usage ambidexterity, and group performance. Based on a sample of 55 workgroups, we found that exploitative usage negatively influences usage ambidexterity while explorative usage positively influences it, and that usage ambidexterity positively influences group performance. Moreover, the findings indicate that usage ambidexterity mediates the effect of exploitative and explorative usage on group performance. Overall, the study contributes to greater clarity and a better understanding of how the creative process influences group performance.

Yumei Luo; Cheng Zhang; Yunjie Xu; Hong Ling

2015-01-01T23:59:59.000Z

74

chapter 5. Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

5. Detailed Tables 5. Detailed Tables Chapter 5. Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1994 Residential Transportation Energy Consumption Survey. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle-miles traveled (VMT) or gallons consumed; (2) tables of per household statistics such as VMT per household; and (3) tables of per-vehicle statistics, such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model-year data or family-income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table.

75

POWER PLANT WATER USAGE AND LOSS STUDY - Final  

NLE Websites -- All DOE Office Websites (Extended Search)

POWER PLANT WATER USAGE AND LOSS STUDY POWER PLANT WATER USAGE AND LOSS STUDY August 2005 Revised May 2007 Prepared for: The United States Department of Energy National Energy Technology Laboratory DOE Gasification Technology Manager: Gary J. Stiegel DOE Project Manager: James R. Longanbach Project Manager: Michael D. Rutkowski Principal Investigators: Michael G. Klett Norma J. Kuehn Ronald L. Schoff Vladimir Vaysman Jay S. White Power Plant Water Usage and Loss Study i August 2005 TABLE OF CONTENTS TABLE OF CONTENTS ...................................................................................................................... I LIST OF TABLES.............................................................................................................................III

76

Table Search (or Ranking Tables)  

E-Print Network (OSTI)

;Table Search #3 #12;Outline · Goals of table search · Table search #1: Deep Web · Table search #3 search Table search #1: Deep Web · Table search #3: (setup): Fusion Tables · Table search #2: WebTables ­Version 1: modify document search ­Version 2: recover table semantics #12;Searching the Deep Web store

Halevy, Alon

77

Computer usage control  

Science Journals Connector (OSTI)

...Article Computer usage control M. M. Lehman * Department of Computing and Control, Imperial...integrated multiple-computer, multiple operating systems, pricing and usage control mechanism. The original version described in this paper, was......

M. M. Lehman

1973-01-01T23:59:59.000Z

78

Usage Statistics By Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage Statistics Usage Statistics Genepool Cluster Statistics Period: daily weekly monthly quarter yearly 2year Utilization By Group Jobs Pending Last edited: 2013-09-26 18:21:13...

79

Usage Codes Vessel name  

E-Print Network (OSTI)

Usage Codes 1 5 2 6 3 7 4 8 Vessel name Int'l radio call sign (IRCS) Generator Other: Max hoisting Sonar Power (Kw) KHz: KHz: VMS Usage Y / N GPS: Internal / external KHz: KHz: Ratio Accuracy (m Incinerator: Burned on board: Net sensors Hull mounted / towed Wired / wireless Y / N Y / N Usage Manufacturer

80

Usage Codes Additional Information  

E-Print Network (OSTI)

Usage Codes 1 5 2 6 3 7 4 8 Additional Information Winches (on deck) Electronics RPM: Max hoistingPresent? Usage Model Ratio Accuracy (m) Type: Electric / Hydraulic / Other _________________ KHz: GPS: Internal Other: Y / N Other: Y / N Y / NOther: Hydrophone Burned on board: Net sensors Usage Manufacturer High

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

APS LOM Shop Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

LOM Shop Usage User Shop Access - Policies and Procedures User Shop Orientation User Shop Authorization Certification Form User Shop Access List LOM Shop Monthly Inspection Record...

82

Interpreting Standard Usage Empirically.  

E-Print Network (OSTI)

??Writers, editors, and everyday language users look to dictionaries, style guides, usage guides, and other published works to help inform their language decisions. They want (more)

Frandsen, Jacob F.

2014-01-01T23:59:59.000Z

83

Derivative Usage and Performance Volatility  

Science Journals Connector (OSTI)

Derivative usage that reduces return volatility is frequently termed hedging, and derivative usage that increases return volatility is called speculation. ... reduce or increase their return volatility with deriv...

Weiying Jia; Yi Kang

2012-01-01T23:59:59.000Z

84

Robotics and Energy Usage  

E-Print Network (OSTI)

It is commonly assumed that the use of robots in an industrial plant will cut energy usage, because robots require no heat, light, or air conditioning in their work space. However, in analyzing industrial installations, we have found that...

Hershey, R. L.; Fenton, S. E.; Letzt, A. M.

1983-01-01T23:59:59.000Z

85

Intron Length and Codon Usage  

Science Journals Connector (OSTI)

...The correlation was shown between the length of introns and the codon usage of the coding sequences of the corresponding ... longer introns show the higher bias of codon usage. It is most pronounced in baker's...

Alexander E. Vinogradov

2001-01-01T23:59:59.000Z

86

Intranet usage, managerial satisfaction and performance impact: an empirical analysis  

Science Journals Connector (OSTI)

This article investigates the relationships between intranet usage, satisfaction as well as their impacts on performance from the managerial perspective which have received little research attention. Data was collected from 150 middle managers in the Malaysian port industry. The structural equation modelling results indicate that both usage and satisfaction significantly predict performance impact. Intranet usage significantly predicts managerial satisfaction and vice-versa; with intranet usage having more impact on satisfaction and that both are positively related. The results provide insights on how the Malaysian port industry and other organisations of a similar structure could improve their intranet adoption.

Mohd Daud Norzaidi; Siong Choy Chong; Mohamed Intan Salwani

2009-01-01T23:59:59.000Z

87

Annual Energy Outlook 2007 - Low Price Case Tables  

Gasoline and Diesel Fuel Update (EIA)

4-2030) 4-2030) Annual Energy Outlook 2007 with Projections to 2030 MS Excel Viewer Spreadsheets are provided in Excel Low Price Case Tables (2004-2030) Table Title Formats Summary Low Price Case Tables Low Price Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity Table 10. Electricity Trade Table 11. Petroleum Supply and Disposition Balance

88

Annual Energy Outlook 2007 - Low Economic Growth Case Tables  

Gasoline and Diesel Fuel Update (EIA)

Low Macroeconomic Growth Case Tables (2004-2030) Low Macroeconomic Growth Case Tables (2004-2030) Annual Energy Outlook 2007 with Projections to 2030 MS Excel Viewer Spreadsheets are provided in Excel Low Economic Growth Case Tables (2004-2030) Table Title Formats Summary Low Economic Growth Case Tables Low Economic Growth Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption Table 6. Industrial Sector Key Indicators and Consumption Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Table 8. Electricity Supply, Disposition, Prices, and Emissions Table 9. Electricity Generating Capacity

89

The economic burden of sunscreen usage  

E-Print Network (OSTI)

Economic Burden of Sunscreen Usage Ritika Johal 1 , Michaelprice per ounce. Sunscreen Usage To estimate the daily use

Johal, Ritika; Leo, Michael S; Ma, Brian; Sivamani, Raja K

2014-01-01T23:59:59.000Z

90

Description of 2003 CBECS Detailed Tables and Categories of Data  

Gasoline and Diesel Fuel Update (EIA)

floorspace heated, cooled, and lit, and energy-using equipment types (heating, cooling, water heating, lighting, and refrigeration). Tables C1-C12 and C1A-C12A contain energy usage...

91

EIA-Annual Energy Outlook 2010 - Low Economic Growth Tables  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Tables (2007- 2035) Economic Growth Tables (2007- 2035) Annual Energy Outlook 2010 Main Low Economic Growth Tables (2007- 2035) Table Title Formats Summary Low Economic Growth Case Tables PDF Gif Year-by-Year Low Economic Growth Case Tables Excel Gif Table 1. Total Energy Supply, Disposition, and Price Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions

92

EIA-Annual Energy Outlook 2010 - High Economic Growth Tables  

Gasoline and Diesel Fuel Update (EIA)

Economic Growth Tables (2007-2035) Economic Growth Tables (2007-2035) Annual Energy Outlook 2010 Main High Economic Growth Tables (2007- 2035) Table Title Formats Summary High Economic Growth Case Tables PDF Gif Year-by-Year High Economic Growth Case Tables Excel Gif Table 1. Total Energy Supply and Disposition Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions Excel Gif

93

Table 4  

Annual Energy Outlook 2012 (EIA)

7. Light Usage by Household Size, Million U.S. Households, 1993 Household Size Housing Unit and Household Characteristics Total 1 Person 2 Persons 3 Persons 4 Persons 5 Persons 6...

94

HPSS Usage Examples at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Examples Advanced Usage Examples Transferring Data from Batch Jobs Once you have set up your automatic HPSS authentication you can access HPSS within batch scripts. Read More ...

95

Memory Usage Considerations on Franklin  

NLE Websites -- All DOE Office Websites (Extended Search)

Memory Considerations Memory Considerations Memory Usage Considerations on Franklin Each Franklin compute node has 8 GB (8192 MB) of physical memory, but, not all that memory is...

96

Annual Energy Outlook 2009 - High Price Case Tables  

Gasoline and Diesel Fuel Update (EIA)

6-2030) 6-2030) Annual Energy Outlook 2009 with Projections to 2030 XLS GIF Spreadsheets are provided in Excel High Price Case Tables (2006-2030) Table Title Formats Summary High Price Case Tables PDF GIF High Price Case Tables XLS GIF Table 1. Total Energy Supply and Disposition Summary XLS GIF Table 2. Energy Consumption by Sector and Source XLS GIF Table 3. Energy Prices by Sector and Source XLS GIF Table 4. Residential Sector Key Indicators and Consumption XLS GIF Table 5. Commercial Sector Indicators and Consumption XLS GIF Table 6. Industrial Sector Key Indicators and Consumption XLS GIF Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption XLS GIF Table 8. Electricity Supply, Disposition, Prices, and Emissions XLS GIF Table 9. Electricity Generating Capacity

97

Student Mobile Device Survey Table of Contents  

E-Print Network (OSTI)

CiCS. Student Mobile Device Survey 2011 Table of Contents Section Number Subject Page 1 With little information and supporting evidence on student ownership and usage of mobile devices at the University of Sheffield, making decisions on our services and support for mobile devices has been based

Martin, Stephen John

98

START Alaska Historical Energy Usage Spreadsheet | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Historical Energy Usage Spreadsheet START Alaska Historical Energy Usage Spreadsheet Communities applying for the DOE Office of Indian Energy Strategic Technical Assistance...

99

C3Bio.org - Usage: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

(.jpg, .jpeg, .jpe, .bmp, .tif, .tiff, .png, .gif) Submit You are here: Home Usage Overview Prior 12 Months Usage: Overview Overview Maps Prior 12 Months By...

100

C3Bio.org - Usage: Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

(.jpg, .jpeg, .jpe, .bmp, .tif, .tiff, .png, .gif) Submit You are here: Home Usage Maps Users Currently Online Usage: Maps Overview Maps Users Currently Online...

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

C3Bio.org - Usage: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

(.jpg, .jpeg, .jpe, .bmp, .tif, .tiff, .png, .gif) Submit You are here: Home Usage Overview By Month Usage: Overview Overview Maps Prior 12 Months By Month By...

102

C3Bio.org - Usage: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

(.jpg, .jpeg, .jpe, .bmp, .tif, .tiff, .png, .gif) Submit You are here: Home Usage Overview By Quarter Usage: Overview Overview Maps Prior 12 Months By Month By...

103

C3Bio.org - Usage: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

(.jpg, .jpeg, .jpe, .bmp, .tif, .tiff, .png, .gif) Submit You are here: Home Usage Overview By Fiscal Year Usage: Overview Overview Maps Prior 12 Months By Month...

104

Report on Activities And Usage Statistics of  

E-Print Network (OSTI)

Report on Activities And Usage Statistics of Learning Technology Center Services and Facilities And Usage Statistics of Learning Technology Center Services and Facilities 2009-2010 The purpose

Patzek, Tadeusz W.

105

C3Bio.org - Usage: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

(.jpg, .jpeg, .jpe, .bmp, .tif, .tiff, .png, .gif) Submit You are here: Home Usage Overview By Calendar Year Usage: Overview Overview Maps Prior 12 Months By...

106

Memory Usage Considerations on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

Memory Considerations Memory Considerations Memory Usage Considerations on Edison Edison compute nodes have 64 GB of physical memory (2.67GB per core), but, not all that memory is...

107

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

108

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace by Census Region, 1992 The following 70 tables present extensive cross-tabulations of commercial buildings characteristics. These data are from the Buildings Characteristics Survey portion of the 1992 CBECS. The "Quick-Reference Guide," indicates the major topics of each table. Directions for calculating an approximate relative standard error (RSE) for each estimate in the tables are presented in Figure A1, "Use of RSE Row and Column Factor." The Glossary contains the definitions of the terms used in the tables. See the preceding "At A Glance" section for highlights of the detailed tables. Table Organization

109

EIA-Annual Energy Outlook 2010 - Low Oil PriceTables  

Gasoline and Diesel Fuel Update (EIA)

Oil Price Tables (2007-2035) Oil Price Tables (2007-2035) Annual Energy Outlook 2010 Main Low Oil Price Tables (2007- 2035) Table Title Formats Summary Low Oil Price Case Tables PDF Gif Year-by-Year Low Oil Price Case Tables Excel Gif Table 1. Total Energy Supply and Disposition Summary Excel Gif Table 2. Energy Consumption by Sector and Source Excel Gif Table 3. Energy Prices by Sector and Source Excel Gif Table 4. Residential Sector Key Indicators and Consumption Excel Gif Table 5. Commercial Sector Indicators and Consumption Excel Gif Table 6. Industrial Sector Key Indicators and Consumption Excel Gif Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption Excel Gif Table 8. Electricity Supply, Disposition, Prices, and Emissions Excel Gif Table 9. Electricity Generating Capacity

110

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

5 5 Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format Excel logo Spreadsheets are provided in excel 1 to117 - Complete set of Supplemental Tables PDF Energy Consumption by Sector (Census Division) Table 1. New England XLS PDF Table 2. Middle Atlantic XLS PDF Table 3. East North Central XLS PDF Table 4. West North Central XLS PDF Table 5. South Atlantic XLS PDF Table 6. East South Central XLS PDF Table 7. West South Central XLS PDF Table 8. Mountain XLS PDF Table 9. Pacific XLS PDF Table 10. Total United States XLS PDF Energy Prices by Sector (Census Division) Table 11. New England XLS PDF Table 12. Middle Atlantic XLS PDF Table 13. East North Central XLS PDF Table 14. West North Central XLS PDF Table 15. South Atlantic XLS PDF Table 16. East South Central

111

2011 Radioactive Materials Usage Survey for Unmonitored Point Sources  

SciTech Connect

This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

Sturgeon, Richard W. [Los Alamos National Laboratory

2012-06-27T23:59:59.000Z

112

TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II  

NLE Websites -- All DOE Office Websites (Extended Search)

i i ii TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II EXECUTIVE SUMMARY ........................................................................................................................................... 3 INTRODUCTION......................................................................................................................................................... 4 COMPLIANCE SUMMARY ....................................................................................................................................... 6 COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) .................... 6

113

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Light Usage by Total Number of Rooms, Percent of U.S. 4. Light Usage by Total Number of Rooms, Percent of U.S. Households, 1993 Total Number of Rooms Housing Unit and Household Characteristics Total 1 or 2 3 to 5 6 to 8 9 or More RSE Column Factors: 0.5 2.6 0.7 0.7 1.6 RSE Row Factor Total....................................................... 100.0 100.0 100.0 100.0 100.0 0.0 Indoor Electric Lights Total Number Lights 1 to 4 Hours None................................................. 10.0 16.8 10.5 9.4 5.8 11.52 1 ....................................................... 22.9 36.5 27.7 17.8 10.7 5.96 2 ....................................................... 28.4 29.3 31.4 25.8 21.1 5.33 3 ....................................................... 17.4 11.1 16.5 18.7 19.0 7.20 4 ....................................................... 9.5 Q 6.7 12.8 13.5 10.03 5 or More ..........................................

114

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

. Light Usage by Heated Floorspace Category, Million U.S. . Light Usage by Heated Floorspace Category, Million U.S. Households, 1993 Heated Floorspace Category (square feet) Housing Unit and Household Characteristics Total Fewer than 600 600 to 999 1,000 to 1,599 1,600 to 1,999 2,000 to 2,399 2,400 to 2,999 3,000 or More RSE Column Factors: 0.4 1.7 0.9 0.8 1.1 1.2 1.2 1.2 RSE Row Factors Total................................................. 96.6 7.5 21.8 27.8 12.4 9.6 8.2 9.3 3.62 Indoor Electric Lights Total Number Lights 1 to 4 Hours None........................................... 9.6 1.2 2.2 2.7 1.1 0.9 0.7 0.6 11.83 1 ................................................. 22.1 2.4 6.7 6.5 2.5 1.5 1.5 1.1 7.39 2 ................................................. 27.4 2.4 6.9 8.0 3.6 2.4 2.1 2.0 6.60 3 ................................................. 16.8 0.8 3.4 5.2 2.2 2.0

115

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

. Light Usage by Heated Floorspace Category, Percent of U.S. . Light Usage by Heated Floorspace Category, Percent of U.S. Households, 1993 Heated Floorspace Category (square feet) Housing Unit and Household Characteristics Total Fewer than 600 600 to 999 1,000 to 1,599 1,600 to 1,999 2,000 to 2,399 2,400 to 2,999 3,000 or More RSE Column Factors: 0.4 1.6 0.9 0.8 1.1 1.2 1.3 1.2 RSE Row Factor Total................................................. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 Indoor Electric Lights Total Number Lights 1 to 4 Hours None........................................... 10.0 16.5 10.2 9.9 9.2 9.4 9.1 6.7 11.42 1 ................................................. 22.9 31.3 30.9 23.5 19.9 15.3 17.9 11.5 6.62 2 ................................................. 28.4 32.3 31.9 28.7 28.7 24.8 26.0 21.5 5.64 3 .................................................

116

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

8. Light Usage by Household Size, Percent of U.S. Households, 1993 8. Light Usage by Household Size, Percent of U.S. Households, 1993 Household Size Housing Unit and Household Characteristics Total 1 Person 2 Persons 3 Persons 4 Persons 5 Persons 6 or More Persons RSE Column Factors: 0.5 1.0 0.8 1.0 1.0 1.4 2.0 RSE Row Factors Total.................................................. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 Indoor Electric Lights Total Number Lights 1 to 4 Hours None............................................ 10.0 13.8 9.8 8.8 7.2 7.5 8.0 11.39 1 ................................................... 22.9 32.0 23.2 20.7 15.1 15.6 15.4 6.49 2 ................................................... 28.4 32.3 30.0 26.8 24.3 23.9 20.1 5.64 3 ................................................... 17.4 12.9 17.9 18.9 20.6 18.5 20.2 6.89 4 ...................................................

117

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

3. Light Usage by Total Number of Rooms, Million U.S. Households, 3. Light Usage by Total Number of Rooms, Million U.S. Households, 1993 Total Number of Rooms (excluding bathrooms) Housing Unit and Household Characteristics Total 1 or 2 3 to 5 6 to 8 9 or More RSE Row Factors RSE Column Factors: 0.4 2.9 0.7 0.7 1.7 Total....................................................... 96.6 3.2 47.4 40.2 5.8 3.59 Indoor Electric Lights Total Number Lights 1 to 4 Hours None................................................. 9.6 0.5 5.0 3.8 0.3 11.81 1 ....................................................... 22.1 1.2 13.1 7.2 0.6 6.84 2 ....................................................... 27.4 0.9 14.9 10.4 1.2 6.27 3 ....................................................... 16.8 0.4 7.8 7.5 1.1 7.77 4 ....................................................... 9.2 Q 3.2 5.1 0.8 10.88 5 or More ..........................................

118

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

6. Light Usage by Family Income Category, Percent of U.S. 6. Light Usage by Family Income Category, Percent of U.S. Households, 1993 1993 Family Income Category Housing Unit and Household Characteristics Total Less than $5,000 $5,000 to $9,999 $10,000 to $14,999 $15,000 to $19,999 $20,000 to $24,999 $25,000 to $34,999 $35,000 to $49,999 $50,000 to $49,000 $75,000 or More RSE Column Factors: 0.4 1.8 1.2 1.1 1.1 1.2 0.9 0.8 0.9 1.1 RSE Row Factor Total............................................... 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 Indoor Electric Lights Total Number Lights 1 to 4 Hours None......................................... 10.0 18.7 14.0 12.7 10.0 10.2 9.0 7.6 8.0 6.3 12.08 1 ................................................ 22.9 35.8 33.0 29.5 28.4 22.6 24.1 16.1 13.9 14.1 6.91 2 ................................................ 28.4

119

EIA-Annual Energy Outlook 2009 -Year-by-Year Reference Case Tables  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Tables (2006-2030) Reference Case Tables (2006-2030) Annual Energy Outlook 2009 with Projections to 2030 Year-by-Year Reference Case Tables (2006-2030) Table Title Formats Summary Reference Case Tables PDF GIF Year-by-Year Reference Case Tables Year-by-Year Reference Case Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 1. Total Energy Supply and Disposition Summary XLS GIF Table 2. Energy Consumption by Sector and Source XLS GIF Table 3. Energy Prices by Sector and Source XLS GIF Table 4. Residential Sector Key Indicators and Consumption XLS GIF Table 5. Commercial Sector Indicators and Consumption XLS GIF Table 6. Industrial Sector Key Indicators and Consumption XLS GIF Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption

120

Annual Energy Outlook 2009 - Year-by-Year High Economic Growth Case Tables  

Gasoline and Diesel Fuel Update (EIA)

High Macroeconomic Growth Case Tables (2006-2030) High Macroeconomic Growth Case Tables (2006-2030) Annual Energy Outlook 2009 with Projections to 2030 XLS GIF Spreadsheets are provided in Excel Year-by-Year High Economic Growth Case Tables (2006-2030) Table Title Formats Summary High Economic Growth Case Tables PDF GIF High Economic Growth Case Tables XLS GIF Table 1. Total Energy Supply and Disposition Summary XLS GIF Table 2. Energy Consumption by Sector and Source XLS GIF Table 3. Energy Prices by Sector and Source XLS GIF Table 4. Residential Sector Key Indicators and Consumption XLS GIF Table 5. Commercial Sector Indicators and Consumption XLS GIF Table 6. Industrial Sector Key Indicators and Consumption XLS GIF Table 7. Transportation Sector Key Indicators and Delivered Energy Consumption XLS GIF Table 8. Electricity Supply, Disposition, Prices, and Emissions

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

5. Light Usage by Family Income Category, Million U.S. Households, 5. Light Usage by Family Income Category, Million U.S. Households, 1993 1993 Family Income Category Housing Unit and Household Characteristics Total Less than $5,000 $5,000 to $9,999 $10,000 to $14,999 $15,000 to $19,999 $20,000 to $24,999 $25,000 to $34,999 $35,000 to $49,999 $50,000 to $49,000 $75,000 or More RSE Column Factors: 0.4 1.9 1.2 1.1 1.2 1.2 0.9 0.8 0.9 1.2 RSE Row Factors Total............................................... 96.6 4.1 10.6 11.1 9.6 8.7 14.1 17.5 12.6 8.3 3.98 Indoor Electric Lights Total Number Lights 1 to 4 Hours None......................................... 9.6 0.8 1.5 1.4 1.0 0.9 1.3 1.3 1.0 0.5 12.52 1 ................................................ 22.1 1.5 3.5 3.3 2.7 2.0 3.4 2.8 1.8 1.2 7.83 2 ................................................ 27.4 0.9 3.1 3.3 2.9 3.2 3.8 4.9 3.3 2.0

122

Benchmarking MapReduce Implementations for Application Usage Scenarios  

E-Print Network (OSTI)

Implementations for Application Usage Scenarios Zachariareal- world application usage scenarios, including data-implementations under different usage scenarios. We link the

Fadika, Zacharia

2013-01-01T23:59:59.000Z

123

Agriculture and Life Sciences Complex Usage Guidelines  

E-Print Network (OSTI)

Agriculture and Life Sciences Complex Usage Guidelines General Policies 1. Pursuant to Texas A Sciences Complex Usage Request Form and submit a copy to the building manager, Paul Gregg (phone: 979-777-2766, email: paul.gregg@ag.tamu.edu, office: AGLS 517F). The AGLS-ALCT Usage Request Form can be found at

124

Electronic government return assessment by measuring information system usage  

Science Journals Connector (OSTI)

This study attempted to assess the impact of electronic government on back office functions. Information system usage and a multi-level framework are proposed as a measure for back office functions. The study is applied to the Kuwaiti e-government project. The study's findings indicate no significant impact on the back office. However, using the framework and information system usage measure has provided a multi-dimensional picture of the status of the e-government project. Management and research implications of the study's findings are presented.

Helaiel Almutairi

2010-01-01T23:59:59.000Z

125

1992 CBECS Detailed Tables  

Gasoline and Diesel Fuel Update (EIA)

Detailed Tables Detailed Tables To download all 1992 detailed tables: Download Acrobat Reader for viewing PDF files. Yellow Arrow Buildings Characteristics Tables (PDF format) (70 tables, 230 pages, file size 1.39 MB) Yellow Arrow Energy Consumption and Expenditures Tables (PDF format) (47 tables, 208 pages, file size 1.28 MB) Yellow Arrow Energy End-Use Tables (PDF format) (6 tables, 6 pages, file size 31.7 KB) Detailed tables for other years: Yellow Arrow 1999 CBECS Yellow Arrow 1995 CBECS Background information on detailed tables: Yellow Arrow Description of Detailed Tables and Categories of Data Yellow Arrow Statistical Significance of Data 1992 Commercial Buildings Energy Consumption Survey (CBECS) Detailed Tables Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables:

126

usage  

Science Journals Connector (OSTI)

This one-of-a-kind reference is unmatched in the breadth and scope of its coverage and serves as the primary reference for students and professionals in computer science and communications. The Dictionary feat...

2001-01-01T23:59:59.000Z

127

Factors affecting the usage of intranet: A confirmatory study  

Science Journals Connector (OSTI)

The extent of intranet implementation and use within individual organizations has significant implications for organizational performance. Previous studies on technology adoption in the workplace suggest that acceptance behavior is influenced by a variety of antecedent factors including individual differences, social influences, beliefs, attitudes, and situational influences. This study reports on an investigation of extended TAM (Technology Acceptance Model) using external factors and subjective norm influencing usage of intranet within organizations. The external factors affecting the perceived ease of use, perceived usefulness, and usage of intranet include technical support, Web experience, task equivocality, and task interdependence. The subjective norm is the mediating variable and external variables indirectly affect usage of intranet indirectly through their effects on subjective norm. Based on a survey of 333 intranet users from 10 major Korean companies, this study uses a structural equation model to test the research model. The results indicate that usage of intranet is influenced by technical support, Web experience, task equivocality, and perceived ease of use. Technical support and Web experience influences the perceived ease of use. Technical support, task equivocality, and task interdependence have positive effects on the subjective norm. Usage of intranet which is a dependent variable in this model, is influenced by technical support, Web experience task interdependence, and perceived ease of use.

Sangjae Lee; Byung Gon Kim

2009-01-01T23:59:59.000Z

128

Table 25  

Gasoline and Diesel Fuel Update (EIA)

89 89 Table 25 Created on: 1/3/2014 3:10:33 PM Table 25. Natural gas home customer-weighted heating degree days, New England Middle Atlantic East North Central West North Central South Atlantic Month/Year/Type of data CT, ME, MA, NH, RI, VT NJ, NY, PA IL, IN, MI, OH, WI IA, KS, MN, MO, ND, NE, SD DE, FL, GA, MD, DC, NC, SC, VA, WV November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0 November to November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0

129

Notices TABLE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Federal Register 7 Federal Register / Vol. 76, No. 160 / Thursday, August 18, 2011 / Notices TABLE 2-NET BURDEN CHANGE-Continued 2011-2012 2012-2013 Change % Change Burden disposition Total Applicants .................................... 23,611,500 24,705,864 +1,094,364 +4.63 Net decrease in burden. The increase in applicants is offset by the results of the Department's simplification changes. This has created an over- all decrease in burden of 8.94% or 2,881,475 hours. Total Applicant Burden ......................... 32,239,328 29,357,853 ¥2,881,475 ¥8.94 Total Annual Responses ....................... 32,239,328 46,447,024 +14,207,696 +44.07 Cost for All Applicants .......................... $159,370.20 $234,804.24 $75,434.04 +47.33 The Department is proud that efforts to simplify the FAFSA submission

130

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Mean Annual Electricity Expenditures for Lighting, by Number of 4. Mean Annual Electricity Expenditures for Lighting, by Number of Household Members by Number of Rooms, 1993 (Dollars) Number of Rooms Number of Household Members All Households One to Three Four Five Six Seven Eight or More RSE Column Factors: 0.5 1.8 1.1 0.9 0.9 1.0 1.2 RSE Row Factors All Households................................... 83 49 63 76 87 104 124 2.34 One..................................................... 55 44 51 54 69 78 87 5.33 Two..................................................... 80 56 63 77 82 96 107 3.38 Three.................................................. 92 60 73 82 95 97 131 4.75 Four.................................................... 106 64 78 93 96 124 134 4.53 Five or More....................................... 112 70 83 98 99 117 150 5.89 Notes: -- To obtain the RSE percentage for any table cell, multiply the

131

Residential Transportation Historical Data Tables for 1983-2001  

U.S. Energy Information Administration (EIA) Indexed Site

RTECS Historical Data Tables RTECS Historical Data Tables Residential Transportation Historical Data Tables Released: May 2008 Below are historical data tables from the Residential Transportation Energy Consumption Survey (RTECS) and Household Vehicles Energy Use: Latest Data & Trends report. These tables cover the trends in energy consumption for household transportation throughout the survey years. The data focus on several important indicators of demand for transportation: number and type of vehicles per household; vehicle-miles traveled per household and per vehicle; fuel consumption; fuel expenditures; and fuel economy. Excel PDF Trends in Households & Vehicles Table 1. Number of Households with Vehicles excel pdf Table 2. Percent of Households with Vehicles excel pdf

132

NEWTON: Blood Group Systems Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

Blood Group Systems Usage Blood Group Systems Usage Name: Kishori Status: student Grade: n/a Location: Outside U.S. Country: India Date: Summer 2013 Question: What is the difference between MN blood group system and ABO bloodgroup system? Although, we nowadays prefer ABO blood groups why do we use MN blood groups in the forensic department? Replies: Humans actually have multiple blood antigens on the surface of our blood cells. Wikipedia says that there are over 50 different blood group antigens. ABO and Rh are just the most dominant. Rh actually has 3 alleles called C, D and E. So one could be CCddee, for example, but clinically, when referring to Rh, only the D antigen is considered. So MN is another system that is also present. The reason it would be considered in forensics is due to population genetics considerations. Certain combinations are found in different percentages depending on what ancestry a person is a part of. Humans evolved in isolation from each other and until relatively recently, were separated due to difficult travel/migration. But even though we can move around the planet easily now, we still carry the history of our ancestry in our DNA. M and N are codominant, like the ABO system.

133

1995 Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Households, Buildings & Industry > Commercial Buildings Energy Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey > Detailed Tables 1995 Detailed Tables Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Summary Table—All Principal Buildings Activities (HTML Format) Background information on detailed tables: Description of Detailed Tables and Categories of Data Statistical Significance of Data

134

LHCb Computing Resource usage in 2014 (I)  

E-Print Network (OSTI)

This documents summarizes the usage of computing resources by the LHCb collaboration during the period January 1st- July 31st 2014.

Bozzi, C

2014-01-01T23:59:59.000Z

135

WebUser: mining unexpected web usage  

Science Journals Connector (OSTI)

Web usage mining has been much concentrated on the discovery of relevant user behaviours from web access record data. In this paper, we present WebUser, an approach to discover unexpected usage in web access log. We present a belief-driven method for extracting unexpected web usage sequences, where the belief system consists of a temporal relation and semantics constrained sequence rules acquired with respect to prior knowledge. Our experiments show the effectiveness and usefulness of the proposed approach. Furthermore, discovered rules of unexpected web usage can be used for web content personalisation and recommendation, site structure optimisation and critical event prediction.

Dong Li; Anne Laurent; Pascal Poncelet

2011-01-01T23:59:59.000Z

136

Evolution of codon usage in bacteria.  

E-Print Network (OSTI)

??Initially, this thesis investigates patterns of intragenomic codon usage within the genome of the Delta Proteobacterium Bdellovibrio bacteriovorus. Correspondence analyses revealed the primary factor influencing (more)

Henry, Ian

2007-01-01T23:59:59.000Z

137

On the evolution of codon usage bias.  

E-Print Network (OSTI)

??The genetic code is redundant, with most amino acids coded by multiple codons. In many organisms, codon usage is biased towards particular codons. A variety (more)

Shah, Premal R

2011-01-01T23:59:59.000Z

138

Effects of environmental prompts on stair usage.  

E-Print Network (OSTI)

??The objective of this study was to evaluate whether environmental prompts placed in two-story buildings on a university campus would increase stair usage. Three buildings (more)

Andersen, Lori

2010-01-01T23:59:59.000Z

139

Usage Policies for Decentralised Information Processing.  

E-Print Network (OSTI)

??Owners impose usage restrictions on their information, which can be based e.g. on privacy laws, copyright law or social conventions. Often, information is processed in (more)

Speiser, Sebastian

2013-01-01T23:59:59.000Z

140

Memory Usage Considerations on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

Memory Considerations Memory Considerations Memory Considerations Memory Usage Considerations on Hopper Most Hopper compute nodes have 32 GB of physical memory, but, not all that memory is available to user programs. Compute Node Linux (the kernel), the Lustre file system software, and message passing library buffers all consume memory, as does loading the executable into memory. Thus the precise memory available to an application varies. Approximately 31 GB of memory can be allocated from within an MPI program using all 24 cores per node, i.e., 1.29 GB per MPI task on average. If an application uses 12 MPI tasks per node, then each MPI task could use about 2.58 GB of memory. You may see an error message such as "OOM killer terminated this process." "OOM" means Out of Memory and it means that your code has exhausted the

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Codon usage divergence of homologous vertebrate genes and codon usage clock  

Science Journals Connector (OSTI)

This paper is concerned with the divergence of synonymous codon usage and its bias in three homologous genes ... species are described in terms of synonymous codon usage divergence and the correlation is found be...

Manyuan Long; John H. Gillespie

1991-01-01T23:59:59.000Z

142

Table of contents Table of contents...................................................................................................... 1  

E-Print Network (OSTI)

Codon usage bias ........................................................................................ 44 Lab 6 RNA secondary structure, minimum folding energy and IRES........... 56 Lab 7 Protein computational tool can also enable us to see things that we wouldn't have seen before. We use

Xia, Xuhua

143

University of Florida Cell Phone Usage Log  

E-Print Network (OSTI)

University of Florida Cell Phone Usage Log Information below must be compared to the monthly statement provided by the cell phone service provider. It is required that this log be completed when of the last page of the usage log. Employee's Name:Business Device - Cell Phone Number: Printed Name

Sin, Peter

144

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. MS Excel Viewer Spreadsheets are provided in excel Errata - August 25, 2004 1 to117 - Complete set of of Supplemental Tables PDF Table 1. Energy Consumption by Source and Sector (New England) XLS PDF Table 2. Energy Consumption by Source and Sector (Middle Atlantic) XLS PDF Table 3. Energy Consumption by Source and Sector (East North Central) XLS PDF Table 4. Energy Consumption by Source and Sector (West North Central) XLS PDF Table 5. Energy Consumption by Source and Sector (South Atlantic) XLS PDF Table 6. Energy Consumption by Source and Sector (East South Central) XLS PDF Table 7. Energy Consumption by Source and Sector (West South Central) XLS PDF Table 8. Energy Consumption by Source and Sector (Mountain)

145

UC Libraries Academic e-Book Usage Survey  

E-Print Network (OSTI)

Libraries Academic e-Book Usage Survey Springer e-Book Pilotnot sure of their e-book usage. Of those reporting not usinge-journals. Variations in e-book usage in academic work are

Li, Chan; Poe, Felicia; Potter, Michele; Quigley, Brian; Wilson, Jacqueline

2011-01-01T23:59:59.000Z

146

Universality and Shannon entropy of codon usage  

Science Journals Connector (OSTI)

The distribution functions of codon usage probabilities, computed over all the available GenBank data for 40 eukaryotic biological species and five chloroplasts, are best fitted by the sum of a constant, an exponential, and a linear function in the rank of usage. For mitochondria the analysis is not conclusive. These functions are characterized by parameters that strongly depend on the total guanine and cytosine (GC) content of the coding regions of biological species. It is predicted that the codon usage is the same in all exonic genes with the same GC content. The Shannon entropy for codons, also strongly dependent on the exonic GC content, is computed.

L. Frappat; C. Minichini; A. Sciarrino; P. Sorba

2003-12-24T23:59:59.000Z

147

C3Bio.org - Resources: Workspace: Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

.tiff, .png, .gif) Submit You are here: Home Resources Tools Workspace Usage 0 questions (Ask a question) 0 review(s) (Review this) 24 users, detailed usage 0...

148

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network (OSTI)

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase (rev. 10/2005-ecb) #12;Vehicle Usage Log Instructions General instructions: The details of the use

Yang, Zong-Liang

149

Recent Trends in Car Usage in Advanced Economies - Slower Growth...  

Open Energy Info (EERE)

Trends in Car Usage in Advanced Economies - Slower Growth Ahead? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Recent Trends in Car Usage in Advanced Economies -...

150

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

December 22, 2000 (Next Release: December, 2001) Related Links Annual Energy Outlook 2001 Assumptions to the AEO2001 NEMS Conference Contacts Forecast Homepage EIA Homepage AEO Supplement Reference Case Forecast (1999-2020) (HTML) Table 1. Energy Consumption by Source and Sector (New England) Table 2. Energy Consumption by Source and Sector (Middle Atlantic) Table 3. Energy Consumption by Source and Sector (East North Central) Table 4. Energy Consumption by Source and Sector (West North Central) Table 5. Energy Consumption by Source and Sector (South Atlantic) Table 6. Energy Consumption by Source and Sector (East South Central) Table 7. Energy Consumption by Source and Sector (West South Central) Table 8. Energy Consumption by Source and Sector (Mountain)

151

General Guidance on Data Usage and Management  

NLE Websites -- All DOE Office Websites (Extended Search)

General Guidance on Data Usage and Management General Guidance on Data Usage and Management Summary Data Usage Credit Data Management and Documentation: Introduction Our philosophy Data management Record measured values Zero versus missing value Metadata Data documentation Define variables Specify units Provide citations For additional information Summary Ensure long-term preservation of, and full and open access to, high-quality data sets Give proper credit to the researchers providing the data Provide thorough, yet simple, documentation: how the data were produced, what they mean Generate ASCII data and documentation files; they ensure readibility by virtually all users Define variable names and units Point to, or provide, important publications that further document the data Data usage CDIAC fully supports the July 1991 Policy Statements on Data Management for

152

Social Influence Modeling on Smartphone Usage  

Science Journals Connector (OSTI)

This paper presents a probabilistic influence model for smartphone usage; it applies a latent group model to social influence. The probabilistic model is built on the assumption that a time series of students...

Masaji Katagiri; Minoru Etoh

2011-01-01T23:59:59.000Z

153

Parallel File Systems at HPC Centers: Usage,  

NLE Websites -- All DOE Office Websites (Extended Search)

File Systems at HPC Centers: Usage, Experiences, and Recommendations William ( Bill) E . A llcock ALCF D irector o f O pera:ons Production Systems: ALCF-2 2 Mira - B GQ s ystem -...

154

Material impacts on operational energy usage  

E-Print Network (OSTI)

Decisions regarding materials and construction of a building are made all the time in the architectural process, but thought is not always given to how those choices may affect the buildings ultimate energy usage and the ...

Love, Andrea, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

155

Electrical Usage Characterization of Semiconductor Processing Tools  

E-Print Network (OSTI)

ELECTRICAL USAGE CHARACTERIZATION OF SEMICONDUCTOR PROCESSING TOOLS Scott R. Hinson Associate Engineer Radian Electronic Systems 15705 Long Vista Drive Austin, TX 78751 Abstract This paper presents the basic concepts in performing... be completed using as much detail as possible. The most often cited reason for aUditing process tools is the large discrepancy between the facilities requirements listed on the tool nameplate and the actual measured usage. I have measured systems...

Hinson, S. R.

156

Predicting Energy Usage in a Supermarket  

E-Print Network (OSTI)

PREDICTING ENERGY USAGE IN A SUPERMARKET Derek W. Schrock and David E. Claridge Energy Systems Laboratory Mechanical Engineering Department Texas A&M University ABSTRACT Very little is known about the energy using systems in commercial..., solar radiation, lighting and other internal loads [8] and (2) a regression model, with temperature and customer count as variables, to predict the end-use energy usage in restaurants [9]. There has also been specific work accomplished studying...

Schrock, D. W.; Claridge, D. E.

1989-01-01T23:59:59.000Z

157

FY 2005 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 6 Uranium enrichment D&D fund.................................................................... 6 Non-Defense environmental services.......................................................... 6 Science.........................................................................................................

158

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

The AEO Supplementary tables were generated for the reference case of the The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2002 (AEO2002) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2002, but contain regional and other more detailed projections underlying the AEO2002 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seven tables is presented. The data for tables 10 and 20 match those published in AEO2002 Appendix tables A2 and A3, respectively. Forecasts for 2000-2002 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current

159

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Supplement Tables to the AEO2001 The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2001 (AEO2001) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2001, but contain regional and other more detailed projections underlying the AEO2001 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables is presented. The data for tables 10 and 20 match those published in AEO2001 Appendix tables A2 and A3, respectively. Forecasts for 1999 and 2000 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

160

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. The data for tables 10 and 20 match those published in AEO200 Appendix tables A2 and A3, respectively. Forecasts for 1998, and 2000 may differ slightly from values published in the Short Term Energy Outlook, Fourth Quarter 1999 or Short Term Energy Outlook, First Quarter 2000, which are the official EIA short-term forecasts and are based on more current information than the AEO.

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Use of Astronomical Literature - A Report on Usage Patterns  

E-Print Network (OSTI)

In this paper we present a number of metrics for usage of the SAO/NASA Astrophysics Data System (ADS). Since the ADS is used by the entire astronomical community, these are indicative of how the astronomical literature is used. We will show how the use of the ADS has changed both quantitatively and qualitatively. We will also show that different types of users access the system in different ways. Finally, we show how use of the ADS has evolved over the years in various regions of the world. The ADS is funded by NASA Grant NNG06GG68G.

Edwin A. Henneken; Michael J. Kurtz; Alberto Accomazzi; Carolyn S. Grant; Donna Thompson; Elizabeth Bohlen; Stephen S. Murray

2008-08-01T23:59:59.000Z

162

How Usage is Charged at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

usage usage is charged How usage is charged MPP Charging (Computational Systems) When a job runs on a NERSC MPP system, such as Hopper, charges accrue against one of the user's repository allocations. The unit of accounting for these charges is the "MPP Hour". A parallel job is charged for exclusive use of each multi-core node allocated to the job. The MPP charge for such a job is calculated as the product of: the job's elapsed wall-clock time in hours, the number of nodes allocated to the job (regardless of the number actually used), the number of cores available on each allocated node, a machine charge factor (MCF) based on typical performance of the machine relative to Hopper (MCF=1.0), and a queue charge factor (QCF). Queue priority scheduling gives users

163

Climate Indices  

NLE Websites -- All DOE Office Websites (Extended Search)

Indices Indices Climate Indices Climate indices are diagnostic tools used to describe the state of the climate system and monitor climate. They are most often represented with a time series, where each point in time corresponds to one index value. An index can be constructed to describe almost any atmospheric event; as such, they are myriad. Therefore, CDIAC provides these links to other web sites to help guide users to the most widely used climate indices, which in many cases are updated monthly. Data Set Website/Name NOAA's Climate Prediction Center, Monitoring and Data Index Page NOAA's Earth Systems Research Laboratory, Monthly Atmospheric and Ocean Time Series Page (plot, analyze, and compare time series) The Monthly Teleconnection Indices Page from NOAA's National

164

A portal for visualizing grid usage.  

SciTech Connect

We introduce a framework for measuring the use of Grid services and exposing simple summary data to an authorized set of Grid users through a JSR168-enabled portal. The sensor framework has been integrated into the Globus Toolkit and allows Grid administrators to have access to a mechanism helping with report and usage statistics. Although the original focus was the reporting of actions in relationship to GridFTP services, the usage service has been expanded to report also on the use of other Grid services.

von Laszewski, G.; DiCarlo, J.; Allcock, B.; Mathematics and Computer Science; Univ. of Chicago

2007-08-25T23:59:59.000Z

165

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

166

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables to the Annual Energy Outlook 2005 Supplemental Tables to the Annual Energy Outlook 2005 EIA Glossary Supplemental Tables to the Annual Energy Outlook 2005 Release date: February 2005 Next release date: February 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2005 (AEO2005) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2025. Most of the tables were not published in the AEO2005, but contain regional and other more detailed projections underlying the AEO2005 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2005 Appendix tables A2 and A3, respectively. Forecasts for 2003-2005 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

167

Federal Water Use Indices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Water Use Indices Federal Water Use Indices Federal Water Use Indices FEMP provides water use indices as a guide for Federal agencies. Note that each is a rough estimate of water usage at different types of sites. Your site may vary considerably. The following indices should be used only to assist in determining baseline data when no other information is available on site water usage. Conversion factors for the Federal water use indices are also available. Source: American Water Works Association 1996. Data represents gallons per unit per day. Commercial User Unit Range Typical Airport Passenger 4-5 3 Apartment house Person 100-200 100 Boarding house Person 25-50 40 Hotel Guest 40-60 50 Employee 8-13 10 Lodging house and tourist home Guest 30-50 40 Motel Guest 25-40 35

168

Social influence modeling on smartphone usage  

Science Journals Connector (OSTI)

This paper presents a probabilistic influence model for smartphone usage; it applies a latent group model to social influence. The probabilistic model is built on the assumption that a time series of students' application downloads and activations can ... Keywords: NMF, behavior prediction, latent structure analysis, matrix factorization, mobile application, recommendation, user influence

Masaji Katagiri; Minoru Etoh

2011-12-01T23:59:59.000Z

169

Jadeite: Improving API Documentation Using Usage Information  

E-Print Network (OSTI)

Jadeite: Improving API Documentation Using Usage Information Abstract Jadeite is a new Javadoc-like API documentation sys- tem that takes advantage of multiple users' aggregate experience to reduce difficulties that programmers have learning new APIs. Previous studies have shown that programmers often

Myers, Brad A.

170

Reducing the Energy Usage of Oce Applications  

E-Print Network (OSTI)

to distill multimedia content from presentations stored on remote servers, we reduce the energy neededReducing the Energy Usage of O?ce Applications Jason Flinn 1 , Eyal de Lara 2 , M. Satyanarayanan 1 University Abstract. In this paper, we demonstrate how component-based mid- dleware can reduce the energy

Flinn, Jason

171

Louisiana Block Grant Tables | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Block Grant Tables Louisiana Block Grant Tables This table details funding for state, city, and county governments in the state of Louisiana. Louisiana Block Grant Tables...

172

Mississippi Block Grant Tables | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Block Grant Tables Mississippi Block Grant Tables A table describing where state funding is being distributed Mississippi Block Grant Tables More Documents &...

173

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

174

Site Linkmap Table of Contents This is a map of the complete site and its structure.  

E-Print Network (OSTI)

Site Linkmap Table of Contents This is a map of the complete site and its structure. · SOFA 2 ___________________ site · About ___________________ about · Index ___________________ index : Welcome to SOFA 2 · Download ___________________ index · Lifecycle ___________________ lifecycle · Runtime ___________________ runtime · Usage

175

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

176

C3Bio.org - Resources: Quantum Dot Lab: Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

.png, .gif) Submit You are here: Home Resources Tools Quantum Dot Lab Usage 0 questions (Ask a question) 0 review(s) (Review this) 15 users, detailed usage 0...

177

Transportation & Work: Exploring Car Usage and Employment Outcomes  

E-Print Network (OSTI)

Transportation & Work: Exploring Car Usage and Employment Outcomes in the LSAL Data Field Area networks. This analysis addresses the role of car usage in employment outcomes such as employment status

Bertini, Robert L.

178

Attachment 2 NSTX Data Usage and Publication Agreement  

E-Print Network (OSTI)

Attachment 2 NSTX Data Usage and Publication Agreement NSTX Research is carried out by a multi agrees to adhere to the following guidelines of the NSTX data usage and results publication. 1

Princeton Plasma Physics Laboratory

179

Attachment 2 NSTX Data Usage and Publication Agreement  

E-Print Network (OSTI)

Attachment 2 NSTX Data Usage and Publication Agreement NSTX is an open, fundamental research of the NSTX data usage and results publication. 1) No Research Team member will be given direct access

Princeton Plasma Physics Laboratory

180

Green Button Helps More Consumers Click with Their Energy Usage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Button Helps More Consumers Click with Their Energy Usage Data Green Button Helps More Consumers Click with Their Energy Usage Data September 12, 2013 - 2:41pm Addthis At the White...

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ARM - Instrument Location Table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsLocation Table govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation NSA SGP TWP AMF C1 C2 EF BF CF EF IF C1 C2 C3 EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements associated with the Aerosol Observing System AOSMET Broadband Radiometer Station BRS

182

Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya  

E-Print Network (OSTI)

treated net (ITN) ownership, usage, and malaria transmissionand mortality. However, usage varies among households, andsuch variations in actual usage may seriously limit the

2011-01-01T23:59:59.000Z

183

Availability, usage and expected contribution of potential nursery habitats for the California halibut  

E-Print Network (OSTI)

locate/ecss Availability, usage and expected contribution ofas well as the distribution (usage) of juvenile ?sh withinof ju- venile ?sh (usage) within those habitats. In this

Fodrie, Fredrick Joel; Mendoza, Guillermo F.

2006-01-01T23:59:59.000Z

184

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Residential Density on Vehicle Usage and Energy ConsumptionType Choice, and Fuel Usage Total annual residentialResidential Density on Vehicle Usage and Energy Consumption

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

185

Structural proteomics of minimal organisms: conservation of protein fold usage and evolutionary implications  

E-Print Network (OSTI)

e A) Variation in fold usage between organisms, in differentB) Variation in fold usage between minimal organisms onlyConservation of protein fold usage and evolutionary

Chandonia, John-Marc; Kim, Sung-Hou

2006-01-01T23:59:59.000Z

186

Mining data on usage of electronic nicotine delivery systems (ENDS) from YouTube videos  

E-Print Network (OSTI)

Research paper Mining data on usage of electronic nicotineresource for studying ENDS usage. Longer puff duration mayof nicotine to make ENDS usage attractive. We have tested

Talbot, Prue

2013-01-01T23:59:59.000Z

187

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Residential Density on Vehicle Usage and Energy ConsumptionResidential Density on Vehicle Usage and Energy ConsumptionResidential Density on Vehicle Usage and Energy Consumption

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

188

A Decision-Based Analysis of Compressed Air Usage Patterns in Automotive Manufacturing  

E-Print Network (OSTI)

Analysis of Compressed Air Usage Patterns in Automotivefor future compressed air usage. The Cost-of-Ownership andfuture compressed air usage. Environmental Value systems (

Yuan, Chris; Zhang, Teresa; Rangarajan, Arvind; Dornfeld, David; Ziemba, Bill; Whitbeck, Rod

2006-01-01T23:59:59.000Z

189

Cognitive Structures Underlying Gendered Language Usage in Germany: Narration and Linguistic Fieldwork  

E-Print Network (OSTI)

Underlying Gendered Language Usage in Germany: Narration andUnderlying Gendered Language Usage in Germany: Narration andUnderlying Gendered Language Usage in Germany: Narration and

Kolar, Meredith

2011-01-01T23:59:59.000Z

190

The impact of residential density on vehicle usage and fuel consumption  

E-Print Network (OSTI)

residential density on vehicle usage and energy consumption.of residential density on vehicle usage and fuel consumptionresidential density on vehicle usage and fuel consumption*

Kim, Jinwon; Brownstone, David

2010-01-01T23:59:59.000Z

191

Practices, Trends, and Recommendations in Technical Appendix Usage for Selected Data-Intensive Disciplines  

E-Print Network (OSTI)

IN TECHNICAL APPENDIX USAGE FOR SELECTED DATA?INTENSIVEIN TECHNICAL APPENDIX USAGE FOR SELECTED DATA?INTENSIVEIN TECHNICAL APPENDIX USAGE FOR SELECTED DATA?INTENSIVE

2011-01-01T23:59:59.000Z

192

Nonlinear seismic ground response analysis: code usage protocols and verification against vertical array data  

E-Print Network (OSTI)

Response Analysis: Code Usage Protocols and Verificationparameter selection and code usage protocols as well aslinear modeling. Regarding code usage/parameter selection

Stewart, Jonathan P; Kwok, Annie O.L.

2008-01-01T23:59:59.000Z

193

Influences, usage, and outcomes of Internet health information searching: Multivariate results from the Pew surveys  

E-Print Network (OSTI)

INFLUENCES, USAGE, AND OUTCOMES OF INTERNET HEALTHR.E. (2006). Influences, usage, and outcomes of InternetSeeking, p-3 INFLUENCES, USAGE, AND OUTCOMES OF INTERNET

Rice, Ronald E

2006-01-01T23:59:59.000Z

194

Multi-dimensional Exploration of API Usage  

E-Print Network (OSTI)

AbstractThis paper is concerned with understanding API usage in a systematic, explorative manner for the benefit of both API developers and API users. There exist complementary, less explorative methods, e.g., based on code search, code completion, or API documentation. In contrast, our approach is highly interactive and can be seen as an extension of what IDEs readily provide today. Exploration is based on multiple dimensions: i) the hierarchically organized scopes of projects and APIs; ii) metrics of API usage (e.g., number of project classes extending API classes); iii) metadata for APIs; iv) project- versus API-centric views. We also provide the QUAATLAS corpus of Java projects which enhances the existing QUALITAS corpus to enable APIusage analysis. We implemented the exploration approach in an

Coen De Roover; Ralf Lmmel; Ekaterina Pek

195

Demand and Usage in Scotland Update Report to March 2008  

E-Print Network (OSTI)

Woodfuel Demand and Usage in Scotland Update Report to March 2008 #12;Woodfuel Use Update Woodfuel Demand and Usage in Scotland 2008 Contents: 1. The brief 2. Methodology 3. Results 3.1. Operational ­ May 2005" (unpublished report on existing and potential woodfuel usage in the commercial, industrial

196

DSK: k-mer counting with very low memory usage  

Science Journals Connector (OSTI)

......k-mer counting with very low memory usage Guillaume Rizk 1 Dominique Lavenier 2 Rayan...function of the desired memory and disk usage. In Section 3, DSK is used to count all...sequences, k-mer length k, target memory usage M (bits), target disk space D (bits......

Guillaume Rizk; Dominique Lavenier; Rayan Chikhi

2013-03-01T23:59:59.000Z

197

Usage Codes Observer code Vessel code Trip ID  

E-Print Network (OSTI)

Usage Codes 1 5 2 6 3 7 4 8 Observer code Vessel code Trip ID Permit holder name/address Permit / N MMSI No. Y / N Present? Usage Water capacity (m3): Fuel capacity: m3 / tonnes Other: Other: Kw all that apply & note types of materials for each) Capacity: Usage Incinerator: Net mensuration Y / N

198

Use and misuse of correspondence analysis in codon usage studies  

E-Print Network (OSTI)

Use and misuse of correspondence analysis in codon usage studies Guy PerrieÁre* and Jean Thioulouse; Accepted August 22, 2002 ABSTRACT Correspondence analysis has frequently been used for codon usage studies but this method is often misused. Because amino acid composition exerts constraints on codon usage, it is common

Thioulouse, Jean

199

Usage Codes Observer code Vessel code Trip ID  

E-Print Network (OSTI)

Usage Codes 1 5 2 6 3 7 4 8 Sonar Observer code Vessel code Trip ID Additional Information KHz: RPM / Other _______________Global Registry ID:MMSI No. Permit expiration (dd-mm- yy): Y / N Present? Usage contact Diver / dive equipment Usage Manufacturer Hull mounted / towed Catch Y / N Other: Y / N Y / NOther

200

Table A5. Commercial sector indicators and consumption  

Gasoline and Diesel Fuel Update (EIA)

based on: U.S. Energy Information Administration (EIA), Monthly Energy Review, DOEEIA-0035(201309) (Washington, DC, September 2013). 2011 and 2012 degree days based on...

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

FY 2009 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2009 Congressional Budget 1/30/2008 Department Of Energy (Dollars In Thousands) 9:01:45AM Page 1 of 2 FY 2007 Appropriation FY 2008 Appropriation FY 2009 Request State Table 1 1 $27,588

202

FY 2005 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Management, Budget Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number

203

FY 2010 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2010 Congressional Budget 5/4/2009 Department Of Energy (Dollars In Thousands) 2:13:22PM Page 1 of 2 FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request State Table 1 1 $46,946 $48,781 $38,844 Alabama 2 $6,569

204

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 1999 Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) Contacts bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage supplemental.gif (7420 bytes) (Errata as of 9/13/99) The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 1999 (AEO99) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1997 to 2020. Most of the tables were not published in the AEO99, but contain regional and other more detailed projections underlying the AEO99 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables are presented.

205

FY 2006 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2006 Congressional Budget 1/27/2005 Department Of Energy (Dollars In Thousands) 3:32:58PM Page 1 of 2 FY 2004 Comp/Approp FY 2005 Comp/Approp FY 2006 Request State Table

206

FY 2010 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

207

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E N N E E R R A A L L Semiannual Report toCongress DOEIG-0065 April 1 - September 30, 2013 TABLE OF CONTENTS From the Desk of the Inspector General ......

208

FY 2008 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Table State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2008 Congressional Budget 2/1/2007 Department Of Energy (Dollars In Thousands) 6:53:08AM Page 1 of 2 FY 2006 Appropriation FY 2007 Request FY 2008 Request State Table 1 1 $28,332 $30,341

209

Codon Usage and tRNA Genes in Eukaryotes: Correlation of Codon Usage Diversity with Translation Efficiency and with CG-Dinucleotide Usage as Assessed by Multivariate Analysis  

Science Journals Connector (OSTI)

The species-specific diversity of codon usage in five eukaryotes (Schizosaccharomyces pombe, Caenorhabditis elegans, Drosophila melanogaster, Xenopus laevis, and Homo sapiens) was investigated with principal com...

Shigehiko Kanaya; Yuko Yamada; Makoto Kinouchi

2001-10-01T23:59:59.000Z

210

Million U.S. Housing Units Total...............................  

Gasoline and Diesel Fuel Update (EIA)

Single-Family Units Apartments in Buildings With-- Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005 Home Appliances Usage Indicators...

211

Million U.S. Housing Units Total...............................  

Annual Energy Outlook 2012 (EIA)

Single-Family Units Apartments in Buildings With-- Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005 Home Appliances Usage Indicators...

212

FY 2011 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 State Index Page Number FY 2011 Congressional Budget 1/29/2010 Department Of Energy (Dollars In Thousands) 6:34:40AM Page 1 of 2 FY 2009 Appropriation

213

FY 2007 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

214

FY 2011 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

215

FY 2008 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

216

FY 2006 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

217

Fy 2009 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

218

FY 2013 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2011 FY 2012 FY 2013 Current Enacted Congressional Approp. Approp. * Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy........................................ 1,771,721 1,809,638 2,337,000 +527,362 +29.1% Electricity delivery and energy reliability......................................... 138,170 139,103 143,015 +3,912 +2.8% Nuclear energy................................................................................ 717,817 765,391 770,445 +5,054 +0.7% Fossil energy programs Clean coal technology.................................................................. -16,500 -- --

219

FY 2009 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2007 FY 2008 FY 2009 Current Current Congressional Op. Plan Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy.......................... -- 1,722,407 1,255,393 -467,014 -27.1% Electricity delivery and energy reliability........................... -- 138,556 134,000 -4,556 -3.3% Nuclear energy................................................................. -- 961,665 853,644 -108,021 -11.2% Legacy management........................................................ -- 33,872 -- -33,872 -100.0% Energy supply and conservation Operation and maintenance..........................................

220

Variable White Dwarf Data Tables  

SciTech Connect

Below, I give a brief explanation of the information in these tables. In all cases, I list the WD {number_sign}, either from the catalog of McCook {ampersand} Sion (1987) or determined by me from the epoch 1950 coordinates. Next, I list the most commonly used name (or alias), then I list the variable star designation if it is available. If not, I list the constellation name and a V** or?? depending on what the last designated variable star for that constellation is. I present epoch 2000 coordinates for all of the stars, which I precessed from the 1950 ones in most cases. I do not include proper motion effects; this is negligible for all except the largest proper motion DAV stars, such as L 19-2, BPM 37093, B 808, and G 29-38. Even in these cases, the error is no more than 30` in declination and 2 s in right ascension. I culled effective temperatures from the latest work (listed under each table); they are now much more homogeneous than before. I pulled the magnitude estimates from the appropriate paper, and they are mean values integrated over several cycles. The amplitude given is for the height of a typical pulse in the light curve. The periods correspond the dominant ones found in the light curve. In some cases, there is a band of power in a given period range, or the light curve is very complex, and I indicate this in the table. In the references, I generally list the paper with the most comprehensive pulsation analysis for the star in question. In some cases, there is more than one good reference, and I list them as well.

Bradley, P. A.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table of Contents Page i Table of Contents  

E-Print Network (OSTI)

Table of Contents Page i Table of Contents 4. Building HVAC Requirements ....................................................................................1 4.1.2 What's New for the 2013 Standards.............................................................................................3 4.1.4 California Appliance Standards and Equipment Certification

222

Building Energy Software Tools Directory: Energy Usage Forecasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Usage Forecasts Energy Usage Forecasts Energy Usage Forecasts Quick and easy web-based tool that provides free 14-day ahead energy usage forecasts based on the degree day forecasts for 1,200 stations in the U.S. and Canada. The user enters the daily non-weather base load and the usage per degree day weather factor; the tool applies the degree day forecast and displays the total energy usage forecast. Helpful FAQs explain the process and describe various options for the calculation of the base load and weather factor. Historical degree day reports and 14-day ahead degree day forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature, load calculation, energy simulation Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700.

223

Why E-government Usage Lags Behind: Explaining the Gap Between Potential and Actual Usage of Electronic Public Services in the Netherlands  

Science Journals Connector (OSTI)

Most of the EU-15 countries illustrate a gap between potential usage and actual usage of electronic public services. Using a model ... the case of current Dutch electronic governmental service usage. Motivational...

Alexander van Deursen; Jan van Dijk; Wolfgang Ebbers

2006-01-01T23:59:59.000Z

224

Cost Recovery Charge (CRC) Calculation Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Recovery Charge (CRC) Calculation Table Updated: October 6, 2014 FY 2016 September 2014 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

225

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

/2011 /2011 Decades of Discovery Decades of Discovery Page 2 6/1/2011 TABLE OF CONTENTS 1 INTRODUCTION ...................................................................................................................... 6 2 BASIC ENERGY SCIENCES .................................................................................................. 7 2.1 Adenosine Triphosphate: The Energy Currency of Life .............................................. 7 2.2 Making Better Catalysts .............................................................................................. 8 2.3 Understanding Chemical Reactions............................................................................ 9 2.4 New Types of Superconductors ................................................................................ 10

226

Optimization Online - On the implementation and usage of SDPT3 ...  

E-Print Network (OSTI)

Jun 16, 2010 ... On the implementation and usage of SDPT3 -- a Matlab software package for semidefinite-quadratic-linear programming, version 4.0.

Kim-Chuan Toh

2010-06-16T23:59:59.000Z

227

Impact of asset usage preferences on parallel replacement decisions.  

E-Print Network (OSTI)

??Data from a state department of transportation fleet shows that the usage of a typical asset decreases as it ages. One possible explanation for decreasing (more)

Wagner, Tristan John

2010-01-01T23:59:59.000Z

228

Improved Prediction of Runway Usage for Noise Forecast :.  

E-Print Network (OSTI)

??The research deals with improved prediction of runway usage for noise forecast. Since the accuracy of the noise forecast depends on the robustness of runway (more)

Dhanasekaran, D.

2014-01-01T23:59:59.000Z

229

Improved Usage Model for Web Application Reliability Testing .  

E-Print Network (OSTI)

??Testing the reliability of an application usually requires a good usage model that accurately captures the likely sequences of inputs that the application will receive (more)

Wan, Bo

2012-01-01T23:59:59.000Z

230

An Investigation of ink usage in offset process printing.  

E-Print Network (OSTI)

??With the trend of sustainable printing in the print industry, reducing ink usage is considered a win-win solution for printers who are seeking sustainable printing (more)

Zhou, Jiayi

2012-01-01T23:59:59.000Z

231

Geothermal: Sponsored by OSTI -- Ways to Minimize Water Usage...  

Office of Scientific and Technical Information (OSTI)

Ways to Minimize Water Usage in Engineered Geothermal Systems Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

232

Determining Dictionary and Usage Guide Agreement with Real-World Usage: A Diachronic Corpus Study of American English.  

E-Print Network (OSTI)

??Dictionaries and, to a lesser extent, usage guides provide writers, editors, and users of American English information on how to use the language appropriately. Dictionaries, (more)

Fronk, Amanda Kae

2014-01-01T23:59:59.000Z

233

Ratios of Carbon Isotopes in Microbial Lipids as an Indicator of Substrate Usage  

Science Journals Connector (OSTI)

...For this, a systematic investigation of the discrimination of...However, no systematic investigation was conducted on the degree...Pritchard P. H. Effect of remedial nitrogen applications on...For this, a systematic investigation of the discrimination of...

Wolf-Rainer Abraham; Christian Hesse; Oliver Pelz

1998-11-01T23:59:59.000Z

234

FY 2006 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2004 FY 2005 FY 2006 Comparable Comparable Request to FY 2006 vs. FY 2005 Approp Approp Congress Discretionary Summary By Appropriation Energy And Water Development Appropriation Summary: Energy Programs Energy supply Operation and maintenance................................................. 787,941 909,903 862,499 -47,404 -5.2% Construction......................................................................... 6,956 22,416 40,175 17,759 +79.2% Total, Energy supply................................................................ 794,897 932,319 902,674 -29,645 -3.2% Non-Defense site acceleration completion............................. 167,272 157,316 172,400 15,084 +9.6%

235

FY 2013 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2013 Congressional Budget

236

FY 2010 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2008 FY 2009 FY 2009 FY 2010 Current Current Current Congressional Approp. Approp. Recovery Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 1,704,112 2,178,540 16,800,000 2,318,602 +140,062 +6.4% Electricity delivery and energy reliability........................................ 136,170 137,000 4,500,000 208,008 +71,008 +51.8% Nuclear energy.............................................................................. 960,903 792,000 -- 761,274 -30,726 -3.9% Legacy management..................................................................... 33,872 -- -- --

237

FY 2012 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0066 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled

238

FY 2012 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Statistical Table by Appropriation 2Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2010 FY 2011 FY 2011 FY 2012 Current Congressional Annualized Congressional Approp. Request CR Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 2,216,392 2,355,473 2,242,500 3,200,053 +983,661 +44.4% Electricity delivery and energy reliability........................................ 168,484 185,930 171,982 237,717 +69,233 +41.1% Nuclear energy............................................................................. 774,578 824,052 786,637 754,028 -20,550 -2.7% Fossil energy programs Fossil energy research and development................................... 659,770 586,583 672,383 452,975

239

FY 2007 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2005 FY 2006 FY 2007 Current Current Congressional Approp. Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance............................................ 1,779,399 1,791,372 1,917,331 +125,959 +7.0% Construction................................................................... 22,416 21,255 6,030 -15,225 -71.6% Total, Energy supply and conservation.............................. 1,801,815 1,812,627 1,923,361 +110,734 +6.1% Fossil energy programs Clean coal technology..................................................... -160,000 -20,000 -- +20,000 +100.0% Fossil energy research and development.......................

240

FY 2012 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2012 Congressional Budget

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FY 2008 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2006 FY 2007 FY 2008 Current Congressional Congressional Approp. Request Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance........................................... 1,781,242 1,917,331 2,187,943 +270,612 +14.1% Construction.................................................................... 31,155 6,030 -- -6,030 -100.0% Total, Energy supply and conservation............................. 1,812,397 1,923,361 2,187,943 +264,582 +13.8% Fossil energy programs Clean coal technology.................................................... -20,000 -- -58,000 -58,000 N/A Fossil energy research and development......................

242

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNICATIONS REQUIREMENTS COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary.......................................................... 1 a. Overview of Smart Grid Benefits and Communications Needs................. 2 b. Summary of Recommendations .................................................................... 5 II. Federal Government Smart Grid Initiatives ................................................ 7 a. DOE Request for Information ....................................................................... 7 b. Other Federal Government Smart Grid Initiatives .................................... 9 III. Communications Requirements of Smart Grid Applications .................. 11 a. Advanced Metering Infrastructure ............................................................12

243

Furman University Justification of Business Usage of Cell Phone  

E-Print Network (OSTI)

Furman University Justification of Business Usage of Cell Phone 1 Name Justification of Business Usage of Cell Phone 2 The type of cell phone coverage must be reasonably workday? Yes_____ No_____ Other business reason that may necessitate use of cell phone, describe

244

Cognitive UWB-OFDM: Combining Ultrawideband with Opportunistic Spectrum Usage  

E-Print Network (OSTI)

wireless world, the number of radio systems increases every day, and efficient spectrum usage becomes problem, cognitive radio proposes an opportunistic spectrum usage approach [3], in which frequency bands that are not being used by their primary (licensed) users are utilized by cognitive radios. Both UWB and cognitive

Arslan, Hüseyin

245

A Genetic Algorithm Approach to Focused Software Usage Testing  

E-Print Network (OSTI)

A Genetic Algorithm Approach to Focused Software Usage Testing Robert M. Patton, Annie S. Wu Orlando, FL, U.S.A. ABSTRACT Because software system testing typically consists of only a very small the test results from a limited amount of testing based on high-level usage models. It can also be very

Wu, Annie S.

246

Improving API Usage through Automatic Detection of Redundant Code  

E-Print Network (OSTI)

Improving API Usage through Automatic Detection of Redundant Code David Kawrykow and Martin P Programming Interfaces (APIs). We have observed many cases where APIs are used in ways that are not the most effective. We developed a technique and tool support to automatically detect such patterns of API usage

Robillard, Martin

247

Detecting Inefficient API Usage David Kawrykow and Martin P. Robillard  

E-Print Network (OSTI)

Detecting Inefficient API Usage David Kawrykow and Martin P. Robillard School of Computer Science (APIs). We have observed many cases where APIs are used in ways that are not efficient. We developed a technique to automatically detect inefficient API usage in software projects. The main hypothesis underlying

Robillard, Martin

248

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Geographic Location Tables Geographic Location Tables (24 pages, 136kb) CONTENTS PAGES Table 3. Census Region, Number of Buildings and Floorspace, 1995 Table 4. Census Region and Division, Number of Buildings, 1995 Table 5. Census Region and Division, Floorspace, 1995 Table 6. Climate Zone, Number of Buildings and Floorspace, 1995 Table 7. Metropolitan Status, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

249

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

2003 Detailed Tables 2003 Detailed Tables 2003 CBECS Detailed Tables most recent available Released: September 2008 Building Characteristics | Consumption & Expenditures | End-Use Consumption In the 2003 CBECS, the survey procedures for strip shopping centers and enclosed malls ("mall buildings") were changed from those used in previous surveys, and, as a result, mall buildings are now excluded from most of the 2003 CBECS tables. Therefore, some data in the majority of the tables are not directly comparable with previous CBECS tables, all of which included mall buildings. Some numbers in the 2003 tables will be slightly lower than earlier surveys since the 2003 figures do not include mall buildings. See "Change in Data Collection Procedures for Malls" for a more detailed explanation.

250

Energy Efficiency Indicators Methodology Booklet  

E-Print Network (OSTI)

12 Table 5. US EIA Energy ConsumptionTable 5. US EIA Energy Consumption Surveys Form # EIA-846US Energy Information Administration (EIA) conducts 3 major consumption

Sathaye, Jayant

2010-01-01T23:59:59.000Z

251

Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

NT0005638 NT0005638 Cruise Report 1-19 July 2009 HYFLUX Sea Truth Cruise Northern Gulf of Mexico Submitted by: Texas A&M University - Corpus Christi 6300 Ocean Dr. Corpus Christi, TX 78412 Principal Authors: Ian R. MacDonald and Thomas Naehr Prepared for: United States Department of Energy National Energy Technology Laboratory October 30, 2009 Office of Fossil Energy HYFLUX Seatruth Cruise Report -1- Texas A&M University - Corpus Christi Table of Contents Summary ............................................................................................................................. 2 Participating Organizations ................................................................................................. 3 Major Equipment ................................................................................................................ 4

252

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption, Actual vs. Forecasts Table 5. Total Coal Consumption, Actual vs. Forecasts Table 6. Total Electricity Sales, Actual vs. Forecasts Table 7. Crude Oil Production, Actual vs. Forecasts Table 8. Natural Gas Production, Actual vs. Forecasts Table 9. Coal Production, Actual vs. Forecasts Table 10. Net Petroleum Imports, Actual vs. Forecasts Table 11. Net Natural Gas Imports, Actual vs. Forecasts Table 12. Net Coal Exports, Actual vs. Forecasts Table 13. World Oil Prices, Actual vs. Forecasts Table 14. Natural Gas Wellhead Prices, Actual vs. Forecasts Table 15. Coal Prices to Electric Utilities, Actual vs. Forecasts

253

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Download Adobe Acrobat Reader Printer friendly version on our site are provided in Adobe Acrobat Spreadsheets are provided in Excel Actual vs. Forecasts Formats Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF Table 12. World Oil Prices Excel, PDF Table 13. Natural Gas Wellhead Prices

254

Help:Tables | Open Energy Information  

Open Energy Info (EERE)

Tables Tables Jump to: navigation, search Tables may be authored in wiki pages using either XHTML table elements directly, or using wikicode formatting to define the table. XHTML table elements and their use are well described on various web pages and will not be discussed here. The benefit of wikicode is that the table is constructed of character symbols which tend to make it easier to perceive the table structure in the article editing view compared to XHTML table elements. As a general rule, it is best to avoid using a table unless you need one. Table markup often complicates page editing. Contents 1 Wiki table markup summary 2 Basics 2.1 Table headers 2.2 Caption 3 XHTML attributes 3.1 Attributes on tables 3.2 Attributes on cells 3.3 Attributes on rows 3.4 HTML colspan and rowspan

255

USAGE: a web-based approach towards the analysis of SAGE data  

Science Journals Connector (OSTI)

... Oxford University Press 2000 Original Paper USAGE: a web-based approach towards the analysis of...an application was not available we developed the USAGE package. Results: USAGE is a web-based application that comprises an integrated......

A. H. C. van Kampen; B. D. C. van Schaik; E. Pauws; E. M. C. Michiels; J. M. Ruijter; H. N. Caron; R. Versteeg; S. H. Heisterkamp; J. A. M. Leunissen; F. Baas; M. van der Mee

2000-10-01T23:59:59.000Z

256

Data and analysis on energy usage included: Taking readings on energy each minute  

E-Print Network (OSTI)

Appendix B Data and analysis on energy usage included: § Taking readings on energy each minute § 14 usage at the schools we monitored. The usage is compared to the PIER target, Title 24, and Ashrae 90

257

The long tail: a usage analysis of pre-1993 print biomedical journal literature  

E-Print Network (OSTI)

volumes, will likely require usage studies and the knowledgeThe long tail: a usage analysis of pre-1993 print biomedicalThe research analyzes usage of a major biomedical librarys

Starr, Susan S.; Williams, Jeff

2008-01-01T23:59:59.000Z

258

Rituals of Jouissance in Annie Ernauxs LUsage de la Photo  

E-Print Network (OSTI)

Art Moyen: Essai sur les usages sociaux de la photographie.Jouissance in Annie Ernaux's LUsage de la photo Desire is aof her most recent book, LUsage de la photo, [Slide 1

Van Arsdall, Lauren

2014-01-01T23:59:59.000Z

259

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

Video game console usage and national energy consumption:data, consoles with non-zero usage are actively used (forthat this estimate of active usage is far lower than our

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

260

The role of input revisited: Nativist versus usage-based models  

E-Print Network (OSTI)

215-221. Bybee, J. (2008). Usage-based grammar and secondchildren not understand? A usage-based account of multiwordlanguage acquisition from a usage-based perspective. In P.

Zyzik, Eve

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

on Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomason Vehicle Usage and Energy Consumption Thomas F. Golob

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

262

Rituals of Jouissance in Annie Ernauxs LUsage de la Photo  

E-Print Network (OSTI)

Ernaux's LUsage de la photo Desire is a central concern inrecent book, LUsage de la photo, [Slide 1] suggests much ofmade love. But LUsage de la photo is not exclusively about

Van Arsdall, Lauren

2014-01-01T23:59:59.000Z

263

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Tables Conservation Tables (16 pages, 86 kb) CONTENTS PAGES Table 41. Energy Conservation Features, Number of Buildings and Floorspace, 1995 Table 42. Building Shell Conservation Features, Number of Buildings, 1995 Table 43. Building Shell Conservation Features, Floorspace, 1995 Table 44. Reduction in Equipment Use During Off Hours, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

264

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

265

CARINA Data Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Cruise Summary Table and Data Cruise Summary Table and Data Users are requested to report any data or metadata errors in the CARINA cruise files to CDIAC. Parameter units in all CARINA data files are in CCHDO exchange format. No Cruise Namea (Alias) Areab Number of Stations Datec Ship Chief Scientist Carbon PI Oxygen Nutrients TCO2d TALK pCO2e pHf CFC Other Measurements Data Files 1 06AQ19920929g (06ANTX_6) (See map) 2 118 9/29-11/30/1992 Polarstern V. Smetacek M. Stoll, J. Rommets, H. De Baar, D. Bakker 62 114h 53 54i U C 0 Choloroa,b Fluorescence, NH4 Data Files (Metadata) 2 06AQ19930806 (06ARKIX_4) (See map) 4 64 8/6-10/5/1993 Polarstern D.K. Fütterer L. Anderson 64 63 63j, bb 0 0 0 59he 3H, 3He, 18O, 14C, 85Kr, Bak Data Files

266

Supplement Tables - Contact  

Gasoline and Diesel Fuel Update (EIA)

Supplement Tables to the AEO99 Supplement Tables to the AEO99 bullet1.gif (843 bytes) Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage furtherinfo.gif (5474 bytes) The Annual Energy Outlook 1999 (AEO99) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222). General questions may be addressed to Arthur T. Andersen (aanderse@eia.doe.gov, 202/586-1441), Director of the International, Economic, and Greenhouse Gas Division; Susan H. Holte (sholte@eia.doe.gov, 202/586-4838), Director of the Demand and Integration Division; James M. Kendell (jkendell@eia.doe.gov, 202/586-9646), Director of the Oil and Gas Division; Scott Sitzer (ssitzer@eia.doe.gov, 202/586-2308), Director of the Coal and Electric Power Division; or Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Modeling Analyst. Detailed questions about the forecasts and related model components may be addressed to the following analysts:

267

Appendix B: Summary Tables  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman U.S. Energy Information Administration | Analysis of Impacts of a Clean Energy Standard as requested by Chairman Bingaman Appendix B: Summary Tables Table B1. The BCES and alternative cases compared to the Reference case, 2025 2009 2025 Ref Ref BCES All Clean Partial Credit Revised Baseline Small Utilities Credit Cap 2.1 Credit Cap 3.0 Stnds + Cds Generation (billion kilowatthours) Coal 1,772 2,049 1,431 1,305 1,387 1,180 1,767 1,714 1,571 1,358 Petroleum 41 45 43 44 44 44 45 45 45 43 Natural Gas 931 1,002 1,341 1,342 1,269 1,486 1,164 1,193 1,243 1,314 Nuclear 799 871 859 906 942 889 878 857 843 826 Conventional Hydropower 274 306 322 319 300 321 316 298 312 322 Geothermal 15 25 28 25 31 24 27 22 23 24 Municipal Waste 18 17 17 17 17 17 17 17 17 17 Wood and Other Biomass 38 162 303 289 295 301 241 266

268

E-Print Network 3.0 - adjunctive antimetabolite usage Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

adjunctive antimetabolite usage Search Powered by Explorit Topic List Advanced Search Sample search results for: adjunctive antimetabolite usage Page: << < 1 2 3 4 5 > >> 1...

269

E-Print Network 3.0 - antimicrobial-usage statistics based Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

usage statistics based Search Powered by Explorit Topic List Advanced Search Sample search results for: antimicrobial-usage statistics based Page: << < 1 2 3 4 5 > >> 1 Stakeholder...

270

E-Print Network 3.0 - animal antimicrobial usage Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

antimicrobial usage Search Powered by Explorit Topic List Advanced Search Sample search results for: animal antimicrobial usage Page: << < 1 2 3 4 5 > >> 1 Stakeholder position...

271

Examining usage and parental regulation of mobile phones and their perceived impact on interpersonal family communication.  

E-Print Network (OSTI)

?? This research investigated perceptions of mobile phone usage with regard to interpersonal communication between family members, perceptions of mobile phone usage between family members (more)

Peetz-Ballweg, Tricia

2011-01-01T23:59:59.000Z

272

file://C:\Documents%20and%20Settings\VM3\My%20Documents\hc6-1a_  

U.S. Energy Information Administration (EIA) Indexed Site

Table HC6-1a. Usage Indicators by Climate Zone, Table HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 ________________________________________________________________________________________________________ | | | | | Climate Zone 1 | | |_________________________________________________| | | | | | | Fewer than 2,000 CDD and -- | |

273

Energy Usage Information: Lessons from the Credit Reporting Industry.  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Usage Information: Lessons from the Credit Reporting Industry. Energy Usage Information: Lessons from the Credit Reporting Industry. Speaker(s): Philip Henderson Date: October 4, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page There has been much discussion about the use of customer energy usage information to deliver value, such as with benchmarking tools that compare energy use in a building to a peer set, continuous commissioning services that diagnose faults in building systems, and tools that estimate expected savings from upgrades. A utility can use customer information to deliver these kinds of services to its customers directly, but most utilities today do not enable companies to obtain a customer's energy usage information in a systematic, automated way to deliver services to the customer, even if

274

Identifying Consumer Groups with Satisfactory Characteristics for Electric Mobility Usage  

Science Journals Connector (OSTI)

Who will use an electric car? This question will be addressed by identifying ... that are compatible with a future usage of electric cars. To answer this question a survey in...

Dominik Santner; Dirk Fornahl

2014-01-01T23:59:59.000Z

275

An Assessment of the Adequacy of Sunscreen Usage  

Science Journals Connector (OSTI)

...Radiation Protection Dosimetry Article An Assessment of the Adequacy of Sunscreen Usage G.C. Hart A.L. Wright R.G. Cameron Sunscreens are in widespread use as a form of skin protection against solar ultraviolet......

G.C. Hart; A.L. Wright; R.G. Cameron

2000-09-01T23:59:59.000Z

276

Memory Usage Inference for Object-Oriented Programs  

E-Print Network (OSTI)

We present a type-based approach to statically derive symbolic closed-form formulae that characterize the bounds of heap memory usages of programs written in object-oriented languages. Given a program with size and alias ...

Nguyen, Huu Hai

277

Usages and Implied Terms in the United States  

E-Print Network (OSTI)

The Uniform Commercial Code (UCC or Code) incorporates commercial practices course of performance, course of dealing, and usage of trade into the parties agreement, with the aim of reduc[ing] the gap between law and practice and ... insur...

Drahozal, Christopher R.

2012-09-03T23:59:59.000Z

278

Energy Conservation Through Water Usage Reduction in the Semiconductor Industry  

E-Print Network (OSTI)

ENERGY CONSERVATION THROUGH WATER USAGE REDUCTION IN THE SEMICONDUCTOR INDUSTRY Laura Mendicino Kathy McCormack Sarah Gibson Bob Patton Dana Lyon Jeff Covington Engineer Engineer ESrn Manager Engineer Engineer Engineer Motorola Austin, TX...

Mendicino, L.; McCormack, K.; Gibson, S.; Patton, B.; Lyon, D.; Covington, J.

279

Technology readiness and usage: a global-identity perspective  

Science Journals Connector (OSTI)

Extant research also suggests that consumer values and traits affect technology usage through an interaction effect with perceived ease of use, perceived usefulness and enjoyment (Dabholkar and Bagozzi 2002; Srite

Stanford A. Westjohn; Mark J. Arnold

2009-09-01T23:59:59.000Z

280

RECS Propane Usage Form_v1 (Draft).xps  

Gasoline and Diesel Fuel Update (EIA)

propane usage for this housing unit between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar...

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

RECS Electricity Usage Form_v2 (25418 - Activated, Traditional...  

U.S. Energy Information Administration (EIA) Indexed Site

electricity usage for this service address between September 2008 and April 2010. Billing Period Enter the End Date for each billing period MMDDYY Enter the Amount used in kWh...

282

Commercial Building HVAC Energy Usage in Semi-Tropical Climates  

E-Print Network (OSTI)

requirements for commercial buildings. It is then suggested that this computer program would be valuable in determining the changes one could expect in annual energy usage by varying certain building design parameters. Secondly, a small office building actually...

Worbs, H. E.

1987-01-01T23:59:59.000Z

283

Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas Emissions Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas Emissions October 7, 2013 - 11:46am Addthis YOU ARE HERE: Step 2 As Federal agencies work to identify opportunities for right-sizing the fleet and replacing inefficient vehicles with new, efficient, and/or alternatively fueled models to reduce greenhouse gas (GHG) emissions, they should flag potential mission constraints associated with vehicle usage. This may involve further data collection to understand the mission considerations associated with individual vehicles. For instance, in Figure 1, Vehicle 004 appears to be underutilized, having both a low user-to-vehicle ratio and a relatively low time in use per day. However,

284

Reduction of Utility Usage in a Glyphosate Intermediate (GI) Unit  

E-Print Network (OSTI)

Reduction of Utility Usage in a Glyphosate Intermediate (GI) Unit Michael L. Sander Manufacturing Technologist Monsanto Company Luling, Louisiana Plant ABSTRACT The Monsanto Company Luling Plant produces glyphosate intermediate (GI... the Utilities area brainstormed ideas and then implemented them across the units. While all utilities were addressed, the groups primary focus areas were natural gas, nitrogen, and compressed air. Natural gas usage was reduced 28% by optimizing...

Sander, M. L.

2006-01-01T23:59:59.000Z

285

Measuring and prioritising value of mobile phone usage  

Science Journals Connector (OSTI)

The purpose of this research is to measure and prioritise the value of mobile phone usage using employees' perspectives. The Content analysis method and the Analytic Hierarchy Process (AHP) were adopted to collect and analyse data. According ... Keywords: AHP, analytical hierarchy process, cell phones, content analysis, convenience, customer value, m-commerce, mobile commerce, mobile communications, mobile phone usage, mobile phone users, mobile phones, mobile services

Chung-Chu Liu

2010-12-01T23:59:59.000Z

286

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

287

Microsoft Word - table_87  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 6. Natural gas processed, liquids extracted, and natural gas plant liquids production, by state, 2012 Alabama 87,269 5,309 7,110 Alabama Onshore Alabama 33,921 2,614 3,132 Alabama Offshore Alabama 53,348 2,695 3,978 Alaska 2,788,997 18,339 21,470 Alaska 2,788,997 18,339 21,470 Arkansas 6,872 336 424 Arkansas 6,872 336 424 California 169,203 9,923 12,755 California Onshore California 169,203 9,923 12,755 California Offshore California NA NA NA Federal Offshore California NA NA NA

288

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 5 B. Detailed Reports 1.1 Magnets & Supports 8 1.2 Vacuum System 12 1.3 Power Supplies 14 1.4 RF System 16 1.5 Instrumentation & Controls 17 1.6 Cable Plant 18 1.7 Beam Line Front Ends 19 1.8 Facilities 19 1.9 Installation 20 2.1 Accelerator Physics 21 2 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress The progress and highlights of each major technical system are summarized below. Additional details are provided in Section B. Magnets - As of the end of this quarter (March 31, 2002), the status of magnet fabrication is as follows: Magnet Type Number Received % of Total Received Dipoles 40 100% Quadrupoles 102 100% Sextupoles 76 100%

289

Reviews, Tables, and Plots  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Review of Particle Physics 4 Review of Particle Physics Please use this CITATION: S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) (bibtex) Standalone figures are now available for these reviews. Categories: * Constants, Units, Atomic and Nuclear Properties * Standard Model and Related Topics * Particle Properties * Hypothetical Particles * Astrophysics and Cosmology * Experimental Methods and Colliders * Mathematical Tools * Kinematics, Cross-Section Formulae, and Plots * Authors, Introductory Text, History plots PostScript help file PDF help file Constants, Units, Atomic and Nuclear Properties Physical constants (Rev.) PS PDF (1 page) Astrophysical constants (Rev.) PS PDF (2 pages) International System of units (SI) PS PDF (2 pages) Periodic table of the elements (Rev.) errata PS PDF (1 page)

290

Table G3  

U.S. Energy Information Administration (EIA) Indexed Site

1905-0194 1905-0194 Expiration Date: 07/31/2013 May 28, 2010 Voluntary Reporting of Greenhouse Gases 14 Table G3. Decision Chart for a Start Year Report for a Large Emitter Intending To Register Reductions Report Characteristics Reporting Requirements Schedule I Schedule II (For Each Subentity) Schedule III Schedule IV Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 1 Sec. 2 & Add. A Sec. 3 Sec. 1 Sec. 2 Sec. 1 Sec. 2 Part A Part B Part C Part D Part E Part A Part B Part C Independent Verification? All A- or B-Rated Methods? Foreign Emissions? Entity-Wide Reductions Only? Entity Statement Aggregated Emissions by Gas (Domestic and Foreign) † Emissions Inventory by Source

291

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

through June 2001 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 4 B. Detailed Reports 1.1 Magnets & Supports 9 1.2 Vacuum System 16 1.3 Power Supplies 21 1.4 RF System 25 1.5 Instrumentation & Controls 26 1.6 Cable Plant 28 1.8 Facilities 28 2.0 Accelerator Physics 29 2.1 ES&H 31 3 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress Magnet System - The project has received three shipments of magnets from IHEP. A total of 55 dipole, quadrupole and sextupole magnets out of 218 have arrived. All main magnets will arrive by December. The additional mechanical and electrical checks of the magnets at SSRL have been successful. Only minor mechanical problems were found and corrected. The prototype

292

TABLE OF CONTENTS  

National Nuclear Security Administration (NNSA)

AC05-00OR22800 AC05-00OR22800 TABLE OF CONTENTS Contents Page # TOC - i SECTION A - SOLICITATION/OFFER AND AWARD ......................................................................... A-i SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS ........................................................ B-i B.1 SERVICES BEING ACQUIRED ....................................................................................B-2 B.2 TRANSITION COST, ESTIMATED COST, MAXIMUM AVAILABLE FEE, AND AVAILABLE FEE (Modification 295, 290, 284, 280, 270, 257, 239, 238, 219, M201, M180, M162, M153, M150, M141, M132, M103, M092, M080, M055, M051, M049, M034, M022, M003, A002) ..........................................................B-2 SECTION C - DESCRIPTION/SPECIFICATION/WORK STATEMENT DESCRIPTION OF

293

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y O O F F F F I I C C E E O O F F I I N N S S P P E E C C T T O O R R G G E E N N E E R R A A L L Semiannual Report toCongress DOE/IG-0065 April 1 - September 30, 2013 TABLE OF CONTENTS From the Desk of the Inspector General ..................................................... 2 Impacts Key Accomplishments ............................................................................................... 3 Positive Outcomes ...................................................................................................... 3 Reports Investigative Outcomes .............................................................................................. 6 Audits ......................................................................................................................... 8

294

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

October October through December 2001 2 TABLE OF CONTENTS Page A. Project Summary 1. Technical Progress 3 2. Cost Reporting 4 B. Detailed Reports 1.1 Magnets & Supports 7 1.2 Vacuum System 9 1.3 Power Supplies 13 1.4 RF System 16 1.5 Instrumentation & Controls 17 1.6 Cable Plant 18 1.9 Installation 19 2.0 Accelerator Physics 20 3 A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress In the magnet area, the production of all major components (dipoles, quadrupoles, and sextupoles) has been completed on schedule. This results from a highly successful collaboration with our colleagues at the Institute of High Energy Physics (IHEP) in Beijing. The production of corrector magnets is still in progress with completion scheduled for May 2002.

295

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Expenditures by Major Fuel c2-pdf c2.xls c2.html Table C3. Consumption and Gross Energy Intensity for Sum of Major Fuels c3.pdf c3.xls c3.html Table C4. Expenditures for...

296

2014 Headquarters Facilities Master Security Plan - Table of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Table of Contents 2014 Headquarters Facilities Master Security Plan - Table of Contents June 2014 2014 Headquarters Facilities Master Security Plan - Table of Contents The Table of...

297

FY 2014 Budget Request Summary Table | Department of Energy  

Office of Environmental Management (EM)

Summary Table FY 2014 Budget Request Summary Table Summary Table by Appropriations Summary Table by Organization More Documents & Publications FY 2014 Budget Request Statistical...

298

ARM - Instrument - s-table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentss-table govInstrumentss-table Documentation S-TABLE : Instrument Mentor Monthly Summary (IMMS) reports S-TABLE : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Stabilized Platform (S-TABLE) Instrument Categories Ocean Observations For ship-based deployments, some instruments require actively stabilized platforms to compensate for the ship's motion, especially rotations around the long axis of the ship (roll), short axis (pitch), and, for some instruments, vertical axis (yaw). ARM currently employs two types of stabilized platforms: one electrically controlled for lighter instruments that includes yaw control (dubbed RPY for Roll, Pitch, Yaw) and one

299

A Dynamic Energy Budget (DEB) model for the energy usage and reproduction of the Icelandic capelin (Mallotus villosus)  

E-Print Network (OSTI)

DEB) model for the energy usage and reproduction of theto capture the growth, energy usage, and roe production of

Einarsson, Baldvin; Birnir, Bjorn; Sigursson, Sven .

2010-01-01T23:59:59.000Z

300

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) MS Excel Viewer PDF (Acrobat Reader required Download Acrobat Reader ) Adobe Acrobat Reader Logo Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) PDF (Acrobat Reader required) Table 2. Total Energy Consumption HTML, Excel, PDF Table 3. Total Petroleum Consumption HTML, Excel, PDF Table 4. Total Natural Gas Consumption HTML, Excel, PDF Table 5. Total Coal Consumption HTML, Excel, PDF Table 6. Total Electricity Sales HTML, Excel, PDF Table 7. Crude Oil Production HTML, Excel, PDF Table 8. Natural Gas Production HTML, Excel, PDF Table 9. Coal Production HTML, Excel, PDF Table 10. Net Petroleum Imports HTML, Excel, PDF Table 11. Net Natural Gas Imports HTML, Excel, PDF Table 12. Net Coal Exports HTML, Excel, PDF Table 13. World Oil Prices HTML, Excel, PDF

302

table14.xls  

Gasoline and Diesel Fuel Update (EIA)

Table 14. Natural Gas Wellhead Prices, Actual vs. Reference Case Projections Table 14. Natural Gas Wellhead Prices, Actual vs. Reference Case Projections (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 AEO 1993 1.85 1.94 2.09 2.30 2.44 2.60 2.85 3.12 3.47 3.84 4.31 4.81 5.28

303

\\\\files.umn.edu\\DRS\\Shared\\Departmental Information\\Policies and Procedures Fitness Center Usage  

E-Print Network (OSTI)

Center Usage University Recreation and Wellness, and more specifically the Fitness program, has very

Amin, S. Massoud

304

Code Tables | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

System NMMSS Information, Reports & Forms Code Tables Code Tables U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards...

305

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

306

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines The Gas Turbine Handbook The Gas Turbine Handbook TABLE OF CONTENTS Acknowledgements Updated Author Contact Information Introduction - Rich Dennis, Turbines Technology Manager 1.1 Simple and Combined Cycles - Claire Soares 1.1-1 Introduction 1.1-2 Applications 1.1-3 Applications versatility 1.1-4 The History of the Gas Turbine 1.1-5 Gas Turbine, Major Components, Modules, and systems 1.1-6 Design development with Gas Turbines 1.1-7 Gas Turbine Performance 1.1-8 Combined Cycles 1.1-9 Notes 1.2 Integrated Coal Gasification Combined Cycle (IGCC) - Massod Ramezan and Gary Stiegel 1.2-1 Introduction 1.2-2 The Gasification Process 1.2-3 IGCC Systems 1.2-4 Gasifier Improvements 1.2-5 Gas Separation Improvements 1.2-6 Conclusions 1.2-7 Notes 1.2.1 Different Types of Gasifiers and Their Integration with Gas Turbines - Jeffrey Phillips

307

MESUR: USAGE-BASED METRICS OF SCHOLARLY IMPACT  

SciTech Connect

The evaluation of scholarly communication items is now largely a matter of expert opinion or metrics derived from citation data. Both approaches can fail to take into account the myriad of factors that shape scholarly impact. Usage data has emerged as a promising complement to existing methods o fassessment but the formal groundwork to reliably and validly apply usage-based metrics of schlolarly impact is lacking. The Andrew W. Mellon Foundation funded MESUR project constitutes a systematic effort to define, validate and cross-validate a range of usage-based metrics of schlolarly impact by creating a semantic model of the scholarly communication process. The constructed model will serve as the basis of a creating a large-scale semantic network that seamlessly relates citation, bibliographic and usage data from a variety of sources. A subsequent program that uses the established semantic network as a reference data set will determine the characteristics and semantics of a variety of usage-based metrics of schlolarly impact. This paper outlines the architecture and methodology adopted by the MESUR project and its future direction.

BOLLEN, JOHAN [Los Alamos National Laboratory; RODRIGUEZ, MARKO A. [Los Alamos National Laboratory; VAN DE SOMPEL, HERBERT [Los Alamos National Laboratory

2007-01-30T23:59:59.000Z

308

EIA - Annual Energy Outlook 2009 - chapter Tables  

Gasoline and Diesel Fuel Update (EIA)

Chapter Tables Chapter Tables Annual Energy Outlook 2009 with Projections to 2030 Chapter Tables Table 1. Estimated fuel economy for light-duty vehicles, based on proposed CAFE standards, 2010-2015 Table 2. State appliance efficiency standards and potential future actions Table 3. State renewable portfolio standards Table 4. Key analyses from "issues in Focus" in recent AEOs Table 5. Liquid fuels production in three cases, 2007 and 2030 Table 6. Assumptions used in comparing conventional and plug-in hybrid electric vehicles Table 7. Conventional vehicle and plug-in hybrid system component costs for mid-size vehicles at volume production Table 8. Technically recoverable resources of crude oil and natural gas in the Outer Continental Shelf, as of January 1, 2007

309

MECS 1991 Publications and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Publication and Tables Publication and Tables Publication and Tables Figure showing the Largest Energy Consumers in the Manufacturing Sector You have the option of downloading the entire report or selected sections of the report. Full Report - Manufacturing Consumption of Energy 1991 (file size 17.2 MB) pages:566 Selected Sections Main Text (file size 380,153 bytes) pages: 33, includes the following: Contacts Contents Executive Summary Introduction Energy Consumption in the Manufacturing Sector: An Overview Energy Consumption in the Manufacturing Sector, 1991 Manufacturing Capability To Switch Fuels Appendices Appendix A. Detailed Tables Appendix B. Survey Design, Implementation, and Estimates (file size 141,211 bytes) pages: 22. Appendix C. Quality of the Data (file size 135,511 bytes) pages: 8.

310

TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v  

E-Print Network (OSTI)

............................................... 12 Water-Source Heat Pump Performance ............................ 18 Air-Source Heat Pump OF PERFORMANCE OF WATER-SOURCE HEAT PUMP .............................. ................. 23 FIGURE 2. NODAL. MONTHLY HEAT GAIN/LOSS FACTORS ........................... 5 TABLE 2. BASE TEMPERATURES

Oak Ridge National Laboratory

311

1. Cooling water is one-third of US water usage Basic approach: (a) estimate power consumption, from which you estimate cooling water usage  

E-Print Network (OSTI)

1. Cooling water is one-third of US water usage Basic approach: (a) estimate power consumption) Water for power consumption I happen to know that total energy usage is roughly 10 kW per person energy usage by a lot. Now we assume that a power plant is 50% efficient. I assumed more than 20%, less

Nimmo, Francis

312

Definition: Reduced Oil Usage (Not Monetized) | Open Energy Information  

Open Energy Info (EERE)

Usage (Not Monetized) Usage (Not Monetized) Jump to: navigation, search Dictionary.png Reduced Oil Usage (Not Monetized) The functions that provide this benefit eliminate the need to send a line worker or crew to the switch or capacitor locations to operate them eliminate the need for truck rolls to perform diagnosis of equipment condition, and reduce truck rolls for meter reading and measurement purposes. This reduces the fuel consumed by a service vehicle or line truck. The use of plug-in electric vehicles can also lead to this benefit since the electrical energy used by plug-in electric vehicles displaces the equivalent amount of oil.[1] References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition

313

APS Guideline for Hand Tool and Portable Power Tool Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hand Tool and Portable Power Tool Usage Hand Tool and Portable Power Tool Usage Introduction CAT/XSD recognizes that the misuse and improper maintenance of hand tools and portable power tools cause a significant number of injuries to even "experienced" workers. Consequently, CAT/XSD has adopted the following policies and procedures to minimize the hazards associated with the use of such equipment at the APS. These guidelines apply to all use of hand tools and portable power tools by CAT/XSD personnel while performing maintenance or installation activities at the APS. Although CAT/XSD feels that most of the guidelines also apply to tool usage during experimental activities, CAT/XSD will not require that short-term users complete the training described below. Using Tools Safely If you have not had formal training in the use of common tools, either view

314

Ethanol Usage in Urban Public Transportation - Presentation of Results |  

Open Energy Info (EERE)

Ethanol Usage in Urban Public Transportation - Presentation of Results Ethanol Usage in Urban Public Transportation - Presentation of Results Jump to: navigation, search Tool Summary Name: Ethanol Usage in Urban Public Transportation - Presentation of Results Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: cenbio.iee.usp.br/download/publicacoes/SAE_BEST_2010.pdf This paper presents the BioEthanol for Sustainable Transport (BEST) project in Brazil, its partners, and the results from the demonstration tests performed in field, as well as the proposals of public policies that were elaborated and are being implemented. The BEST project was implemented in Sao Paulo as well as eight other cities located in Europe and Asia. How to Use This Tool

315

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

F (2001) -- Household Natural Gas Usage Form F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Natural Gas Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

316

Application of Electronic Serial Usage Statistics in a National Laboratory  

SciTech Connect

Traditional measures of library performance walk-in visitors, number of users attending presentations, classes, number of individual subscriptions processed, etc. do not reflect the increased activity and use of library products and services. The Hanford Technical Library is physically removed from the main campus of Pacific Northwest National Laboratory, and thus necessitates having a robust online presence in order to effectively reach and provide services to library users. Online usage statistics have become vital in convincing Laboratory management to invest funding the library at continuing or increasing levels of demand for library services. E-serial usage statistics in particular give the Hanford Technical Library a myriad of information on user behavior, research trends, collection development, and act as important analytical tools which support resource allocation analysis, reporting, and managerial decision-making. However, there are many problems with publisher and vendor supplied usage statistics and possible solutions are proposed.

Noonan, Christine F.; McBurney, Melissa K.

2007-08-27T23:59:59.000Z

317

Mining Software Usage with the Automatic Library Tracking Database (ALTD)  

SciTech Connect

Tracking software usage is important for HPC centers, computer vendors, code developers and funding agencies to provide more efficient and targeted software support, and to forecast needs and guide HPC software effort towards the Exascale era. However, accurately tracking software usage on HPC systems has been a challenging task. In this paper, we present a tool called Automatic Library Tracking Database (ALTD) that has been developed and put in production on several Cray systems. The ALTD infrastructure prototype automatically and transparently stores information about libraries linked into an application at compilation time and also the executables launched in a batch job. We will illustrate the usage of libraries, compilers and third party software applications on a system managed by the National Institute for Computational Sciences.

Hadri, Bilel [ORNL; Fahey, Mark R [ORNL

2013-01-01T23:59:59.000Z

318

Commercial Building Tenant Energy Usage Aggregation and Privacy  

SciTech Connect

A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

2014-10-31T23:59:59.000Z

319

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

E (2001) - Household Electricity Usage Form E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

320

Water Usage Law, Major Water Users (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Usage Law, Major Water Users (Missouri) Water Usage Law, Major Water Users (Missouri) Water Usage Law, Major Water Users (Missouri) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Missouri Program Type Environmental Regulations Provider Missouri Department of Natural Resources Any water user with the capability to withdraw or divert 100,000 gallons or more per day from any stream, river, lake, well, spring or other water source must register and file for a permit for water withdrawal and diversion from the Department of Natural Resources. Additionally, no major

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Buildings Energy Data Book: 8.5 Federal Government Water Usage  

Buildings Energy Data Book (EERE)

5 Federal Government Water Usage 5 Federal Government Water Usage March 2012 8.5.1 Federal Water Consumption Intensity and Costs (Millions of Gallons) Agency Total Source(s): 164,382.9 536,301.9 3,129,134.9 52.5 FEMP, Annual Report to Congress on Federal Government Energy Management and Conservation Programs FY 2007, Table 9, p. 26, Jan. 2010. HUD 21.8 139.1 1,432.0 15.2 RRB 5.5 19.5 346.9 15.9 SSA 125.0 617.1 9,262.0 13.5 Archives 107.9 552.9 4,062.0 26.6 State 169.0 762.2 4,476.7 37.8 EPA 168.1 1,196.0 3,723.3 45.2 Treasury 431.1 1,795.5 12,049.6 35.8 Commerce 352.1 1,571.2 13,627.9 25.8 TVA 733.0 2,248.2 27,969.8 26.2 DOT 464.1 3,002.8 25,722.1 18.0 DHS 1,522.8 12,442.9 45,556.7 33.4 Labor 1,029.0 4,816.3 20,335.8 50.6 NASA 2,036.5 5,085.8 38,896.2 52.4 HHS 1,799.7 11,814.7 31,338.4 57.4 GSA 2,651.2 18,104.9 176,414.5 15.0 USDA 2,150.9 4,876.0 57,480.9 37.4 USPS

322

EIA - Appendix A - Reference Case Projection Tables  

Gasoline and Diesel Fuel Update (EIA)

Tables (2005-2035) Tables (2005-2035) International Energy Outlook 2010 Reference Case Projections Tables (2005-2035) Formats Data Table Titles (1 to 14 complete) Reference Case Projections Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Appendix A. Reference Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table A1 World Total Primary Energy Consumption by Region Table A1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table A2 World Total Energy Consumption by Region and Fuel Table A2. World Total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

323

Microsoft Word - DOE Subject Area Indic#2C05.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subject Subject Area Indicators and Key Word List for Restricted Data and Formerly Restricted Data July 2005 Subject Area Indicators and Key Word List 1 TABLE OF CONTENTS Purpose ...................................................................................................................................... 2 Background................................................................................................................................. 3 Difference Between Restricted Data (RD) and Formerly Restricted Data (FRD) and National Security Information (NSI) ........................................................................................ 4 Access to RD and FRD ...............................................................................................................

324

Some Basic WebAssign Usage for Students  

E-Print Network (OSTI)

Some Basic WebAssign Usage for Students Department of Mathematics Purdue University Fall 2012 #12;Useful Web-Sites For student login: http://www.webassign.net/purdue/login.html use your Purdue Career Account information. (The web-site: http://www.webassign.net/ is for instructors' use, not for students

Brown, Johnny E.

325

Some Basic WebAssign Usage for Students  

E-Print Network (OSTI)

Some Basic WebAssign Usage for Students Department of Mathematics Purdue University Fall 2011 #12;Useful Web-Sites For student login: http://www.webassign.net/purdue/login.html use your Purdue Career Account information. (The web-site: http://www.webassign.net/ is for instructors' use, not for students

Cai, Zhiqiang

326

Cryptographic Link Signatures for Spectrum Usage Authentication in Cognitive Radio  

E-Print Network (OSTI)

Cryptographic Link Signatures for Spectrum Usage Authentication in Cognitive Radio Xi Tan, Kapil frequency spectrum was inefficiently utilized. To fully use these spectrums, cognitive radio networks have of cognitive radio is to enable the current fixed spectrum channels assigned by Federal Communica- tions

Du, Wenliang "Kevin"

327

Fuel bundle design for enhanced usage of plutonium fuel  

DOE Patents (OSTI)

A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

Reese, Anthony P. (San Jose, CA); Stachowski, Russell E. (Fremont, CA)

1995-01-01T23:59:59.000Z

328

Learning Policies For Battery Usage Optimization in Electric Vehicles  

E-Print Network (OSTI)

algorithmic chal- lenge. 1 Introduction Electric vehicles, partially or fully powered by batteries, are oneLearning Policies For Battery Usage Optimization in Electric Vehicles Stefano Ermon, Yexiang Xue for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery

Bejerano, Gill

329

Usage Control in Service-Oriented Architectures Alexander Pretschner1  

E-Print Network (OSTI)

to the present and the past. More recent work has extended the concept to usage control (UC for short; [4 appropriate than enforcement by direct control over the service provider's actions, and present a logical architectures. 1 Introduction The past few years have seen major technological and business trends

Massacci, Fabio

330

Access to and Usage of Offshore Liberty Ship  

E-Print Network (OSTI)

Access to and Usage of Offshore Liberty Ship Reefs in Texas ROBERT B. DITTON, ALAN R. GRAEFE to establish cover and habitat for fisheries. Offshore artificial reef con- struction began in 1935 led many other states to become interested in deploying offshore artificial reefs. The first reef

331

Security Implications of Typical Grid Computing Usage Scenarios Marty Humphrey  

E-Print Network (OSTI)

Security Implications of Typical Grid Computing Usage Scenarios Marty Humphrey Computer Science. A broader goal of these scenarios are to increase the awareness of security issues in Grid Computing. 1 easy and secure ac- cess to the Grid's diverse resources. Infrastructure software such as Legion [6

Thompson, Mary R.

332

Improving Home Automation by Discovering Regularly Occurring Device Usage Patterns  

E-Print Network (OSTI)

Improving Home Automation by Discovering Regularly Occurring Device Usage Patterns Edwin O of two prediction algorithms, thus demonstrating multiple uses for a home automation system. Finally, we Several research efforts are focused on home automation. The Intelligent Room [2] uses an array of sensors

Cook, Diane J.

333

Energy Usage Attitudes of Urban India IBM Research India  

E-Print Network (OSTI)

Energy Usage Attitudes of Urban India Mohit Jain IBM Research India mohitjain@in.ibm.com Deepika@cs.cmu.edu Amarjeet Singh IIIT Delhi, India amarjeet@iiitd.ac.in Abstract-- Though rapid increase in energy factors affecting energy consumption in urban India. However, the small numbers of participants in those

Toronto, University of

334

Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Usage and Refueling Trends to Minimize Greenhouse Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions October 7, 2013 - 11:42am Addthis YOU ARE HERE Step 2 Once a Federal agency has identified its most important mobile greenhouse gas (GHG) emission sources overall, it can work with individual sites to determine vehicle usage and refueling trends. Agencies can compare the results of this analysis to internal standards and requirements to identify GHG mitigation opportunities for assets that are underperforming or underutilized. Two examples of this type of analysis focus on: Alternative fuel consumption Vehicle utilization. Figure 1 - An image of a vertical, stacked bar chart titled 'Alternative Fuel Use in AFVs.' The frequency data axis is labeled 'Gallons of Gasoline Equivalent' with a scale of 0-1,400,000 in increments of 200,000. The stacked bar labeled 'CNG Dual Fuel Vehicles' shows CNG from 0-300,000 gallons and Gasoline from 300,000-800,000 gallons. The stacked bar labeled 'E-85 Flex Fuel Vehicles' shows E85 from 0-1,000,000 gallons and Gasoline from 1,000,000-1,250,000 gallons.

335

EIA - Supplement Tables to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

10 10 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector and Source Table 1. New England Excel Gif Table 2. Middle Atlantic Excel Gif Table 3. East North Central Excel Gif Table 4. West North Central Excel Gif Table 5. South Atlantic Excel Gif Table 6. East South Central Excel Gif Table 7. West South Central Excel Gif Table 8. Mountain Excel Gif Table 9. Pacific Excel Gif Table 10. Total United States Excel Gif Energy Prices by Sector and Source Table 11. New England Excel Gif Table 12. Middle Atlantic Excel Gif Table 13. East North Central Excel Gif Table 14. West North Central Excel Gif Table 15. South Atlantic Excel Gif Table 16. East South Central Excel Gif Table 17. West South Central Excel Gif Table 18. Mountain Excel Gif Table 19. Pacific

336

EIA - Supplement Tables to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

09 09 Regional Energy Consumption and Prices by Sector Energy Consumption by Sector and Source Table 1. New England Excel Gif Table 2. Middle Atlantic Excel Gif Table 3. East North Central Excel Gif Table 4. West North Central Excel Gif Table 5. South Atlantic Excel Gif Table 6. East South Central Excel Gif Table 7. West South Central Excel Gif Table 8. Mountain Excel Gif Table 9. Pacific Excel Gif Table 10. Total United States Excel Gif Energy Prices by Sector and Source Table 11. New England Excel Gif Table 12. Middle Atlantic Excel Gif Table 13. East North Central Excel Gif Table 14. West North Central Excel Gif Table 15. South Atlantic Excel Gif Table 16. East South Central Excel Gif Table 17. West South Central Excel Gif Table 18. Mountain Excel Gif Table 19. Pacific

337

TableHC14.5.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Have But Do Not Use Equipment... 0.8 0.6 Q 0.5 Space Heating Usage During 2005 Heated Floorspace (Square Feet) None......

338

Nature Bulletin Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Contents: Table of Contents: Here is our table of contents for the Forset Preserve District of Cook Country Nature Bulletins. To search, go to the Natuere Bulletin's Search Engine and type in your topic. You can also use your browser's "FIND" command to search the 750+ article titles here for a specific subject! Fish Smother Under Ice Coyotes in Cook County Tough Times for the Muskrats Wild Geese and Ducks Fly North Squirrels Spring Frogs Snapping Turtles A Phenomenal Spring Good People Do Not Pick Wildflowers Fire is the Enemy of Field and Forest Crows Earthworms Bees Crayfish Floods Handaxes and Knives in the Forest Preserves Ant Sanctuary Conservation Mosquitoes More About Mosquitoes Fishing in the Forest Preserve Our River Grasshoppers Chiggers Ticks Poison Ivy Fireflies

339

COST AND QUALITY TABLES 95  

Gasoline and Diesel Fuel Update (EIA)

5 Tables 5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) will no longer be pub- lished by the EIA. The tables presented in this docu- ment are intended to replace that annual publication. Questions regarding the availability of these data should be directed to: Coal and Electric Data and Renewables Division

340

MTS Table Top Load frame  

NLE Websites -- All DOE Office Websites (Extended Search)

MTS Table Top Load frame MTS Table Top Load frame The Non-destructive Evaluation group operates an MTS Table Top Load frame for ultimate strength and life cycle testing of various ceramic, ceramic-matrix (FGI), carbon, carbon fiber, cermet (CMC) and metal alloy engineering samples. The load frame is a servo-hydraulic type designed to function in a closed loop configuration under computer control. The system can perform non-cyclic, tension, compression and flexure testing and cyclic fatigue tests. The system is comprised of two parts: * The Load Frame and * The Control System. Load Frame The Load Frame (figure 1) is a cross-head assembly which includes a single moving grip, a stationary grip and LVDT position sensor. It can generate up to 25 kN (5.5 kip) of force in the sample under test and can

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Information Administration (EIA) - Supplement Tables  

Gasoline and Diesel Fuel Update (EIA)

6 6 1 to 116 Complete set of Supplemental Tables Complete set of Supplemental Tables. Need help, please contact the National Energy Information Center at 202-586-8800. Regional Energy Consumption and Prices by Sector Energy Consumption by Sector Table 1. New England Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 2. Middle Atlantic Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 3. East North Central Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 4. West North Central

342

Energy Information Administration - Energy Efficiency-table 8b.  

Gasoline and Diesel Fuel Update (EIA)

> Table 8b > Table 8b Table 8b. Expenditures for Purchased Energy per Ton of Steel, 1998, 2002, and 2006 (constant 2000 dollars 1per ton) MECS Survey Years Iron and Steel Mills (NAICS2331111) 19983 20023 20063 Total4 58.8 78.1 71.4 Electricity 16.6 24.7 18.9 Natural Gas 13.5 20.8 25.1 Coal 10.2 12.4 12.4 Residual Fuel 0.6 0.0 0.9 Coke and Breeze 16.6 18.3 12.3 Notes:1. Deflated by the chain-type price indices for iron and steel mills shipments. 2. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills.

343

Towards sustainable material usage : time-dependent evaluation of upgrading technologies for recycling  

E-Print Network (OSTI)

As consumption in the US grows, so does concern about sustainable materials usage. Increasing recycling is a key component within a broad arsenal of strategies for moving towards sustainable materials usage. There are many ...

Gaustad, Gabrielle G

2009-01-01T23:59:59.000Z

344

SciTech Connect: Water Usage for In-Situ Oil Shale Retorting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Citation Details In-Document Search Title: Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

345

Energy Department Announces $4.5 Million to Expand Usage of Alternativ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4.5 Million to Expand Usage of Alternative Fuels Energy Department Announces 4.5 Million to Expand Usage of Alternative Fuels July 16, 2014 - 11:00am Addthis In support of...

346

Jefferson Lab's Education web site hits new high-usage record...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson Lab's Education web site hits new high-usage record during 2003 SOL season April 2, 2003 Jefferson Lab's Science Education web site is hitting new highs in usage - on a...

347

Jefferson Lab's Education Web Site Hits New High-Usage Record...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab's Education Web Site Hits New High-Usage Record April 22, 2002 Jefferson Lab's Science Education web site hit a new high in usage yesterday. In a 24-hour-period nearly 125,000...

348

Usage of Modern Exponential-Smoothing Models in Network Traffic Modelling  

Science Journals Connector (OSTI)

The article summarized current state of our works regarding usage of exponential smoothing Holt-Winters based models for analysis,...

Roman Jaek; Anna Szmit; Maciej Szmit

2013-01-01T23:59:59.000Z

349

What can Captive Whales tell us About their Wild Counterparts? Identification, Usage, and Ontogeny of Contact Calls in Belugas (Delphinapterus leucas)  

E-Print Network (OSTI)

G. (2009). Contact call usage in a wild beluga population:Counterparts? Identification, Usage, and Ontogeny of Contactpredictions about the usage of these signals by wild

Vergara, Valeria; Michaud, Robert; Barrett-Lennard, Lance

2010-01-01T23:59:59.000Z

350

FRAUD POLICY Table of Contents  

E-Print Network (OSTI)

FRAUD POLICY Table of Contents Section 1 - General Statement Section 2 - Management's Responsibility for Preventing Fraud Section 3 - Consequences for Fraudulent Acts Section 4 - Procedures for Reporting Fraud Section 5 - Procedures for the Investigation of Alleged Fraud Section 6 - Protection Under

Shihadeh, Alan

351

CHP NOTEBOOK Table of Contents  

E-Print Network (OSTI)

-Specific Standard Operating Procedures (SOPs) Section 8 Employee Training Section 9 Inspections and Exposure1 CHP NOTEBOOK Table of Contents Section 1 Safety Program Key Personnel Section 2 Laboratory Protective Equipment (PPE) Assessment Section 18 Hazard Assessment Information and PPE Selection Information

Braun, Paul

352

Microsoft Word - table_04.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Table 4. Offshore gross withdrawals of natural gas by state and the Gulf of Mexico, 2009-2013 (million cubic feet) 2009 Total 259,848 327,105 586,953 1,878,928 606,403 2,485,331...

353

PARENT HANDBOOK TABLE OF CONTENTS  

E-Print Network (OSTI)

PARENT HANDBOOK 1 TABLE OF CONTENTS The Parent's Role 3 Academics 7 Academic Advising 7 Academic Services 26 Athletics, Physical Education and Recreation 28 Campus Resources and Student Services 30 to seeing you in person and connecting with you online! PARENT HANDBOOK THEPARENT'SROLE PARENT HANDBOOK 3

Adali, Tulay

354

Automatic Construction of Diagnostic Tables  

Science Journals Connector (OSTI)

......more usual, at least in microbiology.) Keys and diagnostic tables...Mechanization and Data Handling in Microbiology, Society for Applied Bacteriology...by A. Baillie and R. J. Gilbert, London: Academic Press...cultures, Canadian Journal of Microbiology, Vol. 14, pp. 271-279......

W. R. Willcox; S. P. Lapage

1972-08-01T23:59:59.000Z

355

Demographic and Psychosocial Correlates of Mobile Phone Ownership and Usage among Youth Living in the Slums of Kampala, Uganda  

E-Print Network (OSTI)

J, et al. Cell phone usage among adolescents in Uganda:Mobile Phone Ownership and Usage among Youth Living in themobile phone ownership and usage. [West J Emerg Med. 2014;

Swahn, Monica H; Braunstein, Sarah; Kasirye, Rogers

2014-01-01T23:59:59.000Z

356

Latent Class Models in action: Bridging social capital & Internet usage  

Science Journals Connector (OSTI)

Abstract This paper explores how Latent Class Models (LCM) can be applied in social research, when the basic assumptions of regression models cannot be validated. We examine the usefulness of this method with data collected from a study on the relationship between bridging social capital and the Internet. Social capital is defined here as the resources that are potentially available in ones social ties. Bridging is a dimension of social capital, usually related to weak ties (acquaintances), and a source of instrumental resources such as information. The study surveyed a stratified random sample of 417 inhabitants of Lisbon, Portugal. We used LCM to create the variable bridging social capital, but also to estimate the relationship between bridging social capital and Internet usage when we encountered convergence problems with the logistic regression analysis. We conclude by showing a positive relationship between bridging and Internet usage, and by discussing the potential of LCM for social science research.

Barbara Barbosa Neves; Jaime R.S. Fonseca

2015-01-01T23:59:59.000Z

357

Selective Usage of D-Type Cyclins by Ewings Tumors and Rhabdomyosarcomas  

Science Journals Connector (OSTI)

...Immunoglobulin Heavy Chain Variable Gene Usage and (Super)-antigen Drive in Chronic...chain variable 3-23 (IGHV3-23) gene usage in chronic lymphocytic leukemia (CLL...of CLL and reports that IGHV3-23 gene usage may have prognostic value independent of...

Jingsong Zhang; Siwen Hu; Deborah E. Schofield; Poul H. B. Sorensen; Timothy J. Triche

2004-09-01T23:59:59.000Z

358

HIV Co-receptor Usage in HIV-related Non-Hodgkin's Lymphoma  

E-Print Network (OSTI)

Access HIV Co-receptor usage in HIV-related non- hodgkinstested for HIV co- receptor usage and SDF1 3A polymorphism.CXCR4 and 8 (88.9%) with CCR5 usage, even though most of the

Reid, Erin; Morris, Sheldon R

2012-01-01T23:59:59.000Z

359

Patterns of Protein-Fold Usage in Eight Microbial Genomes: A Comprehensive Structural Census  

E-Print Network (OSTI)

Patterns of Protein-Fold Usage in Eight Microbial Genomes: A Comprehensive Structural Census Mark in terms of patterns of fold usage--whether a given fold occurs in a particular organism. Of the 340 be analyzed through trans- membrane-helix (TM) prediction. All the genomes appear to have similar usage

Gerstein, Mark

360

The Comparison of Usage and Availability Measurements for Evaluating Resource Douglas H. Johnson  

E-Print Network (OSTI)

The Comparison of Usage and Availability Measurements for Evaluating Resource Preference Douglas H~etyof Amenca THE COMPARISON OF USAGE AND AVAILABILITY MEASUREMENTS FOR EVALUATING RESOURCE PREFERENCE1(~n~~.sto\\t.t~,North Dakoto 58401 USA Ah.\\rrclct. Modern ecological research often involves the comparison of the usage

Steury, Todd D.

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Experimental evidence that migrants adjust usage at a stopover site to trade off  

E-Print Network (OSTI)

Experimental evidence that migrants adjust usage at a stopover site to trade off food and danger experimentally manipulated danger by adding obstruc- tive cover and measured sandpiper usage along this gradient. We compared sandpiper usage along a transect extending 100 m on either side of the obstruction

362

University of California, San Francisco | Public Affairs | Editorial Style Guide Terminology and Usage universityofcalifornia,sanfrancisco  

E-Print Network (OSTI)

and Usage universityofcalifornia,sanfrancisco 03 | 2007 Editorial Style Guide University Publications UCSF providing news and information for campus and community audiences. Here, you'll find some tips on usage' sake. The guide is designed to supplement basic usage as found in the Associated Press Stylebook

Derisi, Joseph

363

Comparison of Correspondence Analysis Methods for Synonymous Codon Usage in Bacteria  

E-Print Network (OSTI)

Comparison of Correspondence Analysis Methods for Synonymous Codon Usage in Bacteria Haruo SUZUKI 21 June 2008; accepted 24 September 2008) Abstract Synonymous codon usage varies both between sources of variation in synonymous codon usage among genes and provides a way to identify horizontally

Forney, Larry J.

364

Improving reviews of conceptual models by extended traceability to captured system usage  

Science Journals Connector (OSTI)

......extended traceability to captured system usage P. Haumer a * M. Jarke a c K. Pohl b...elicited by analysing concrete system-usage scenarios [Pohl, K., Weidenhaupt...understand the basis (concrete system usage) on which the conceptual models were built......

P. Haumer; M. Jarke; K. Pohl; K. Weidenhaupt

2000-09-01T23:59:59.000Z

365

Appendix E: Usage Agreement CAPS -ARPS Version 4.0 363  

E-Print Network (OSTI)

Appendix E: Usage Agreement CAPS - ARPS Version 4.0 363 Signing of this agreement is no longer NO #12;Appendix E: Usage Agreement CAPS - ARPS Version 4.0 364 2. Conditions The organization in (1 Usage On behalf of ____________________________________________

Droegemeier, Kelvin K.

366

Empirical Evidence of Large-Scale Diversity in API Usage of Object-Oriented Software  

E-Print Network (OSTI)

Empirical Evidence of Large-Scale Diversity in API Usage of Object-Oriented Software Diego Mendez. This is not an exception, our experiment provides us with empirical evidence that a large scale diversity exists in "API usage"1 . 1We use the term "API usage" to reuse the same term as close work [5]. In this case, "API

Paris-Sud XI, Université de

367

Mining Succinct and High-Coverage API Usage Patterns from Source Code  

E-Print Network (OSTI)

Mining Succinct and High-Coverage API Usage Patterns from Source Code Jue Wang�* , Yingnong Dang (API) methods. However, these usage patterns are often not well documented. To help developers to get such usage patterns, there are approaches proposed to mine client code of the API methods. However, they lack

Xie, Tao

368

ExPort: Detecting and Visualizing API Usages in Large Source Code Repositories  

E-Print Network (OSTI)

ExPort: Detecting and Visualizing API Usages in Large Source Code Repositories Evan Moritz1, Mario a technique for automatically mining and visualizing API usage examples. In contrast to previous approaches, our technique is capable of finding examples of API usage that occur across several functions

Poshyvanyk, Denys

369

Fuel bundle design for enhanced usage of plutonium fuel  

DOE Patents (OSTI)

A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

Reese, A.P.; Stachowski, R.E.

1995-08-08T23:59:59.000Z

370

An optimal filtering algorithm for table constraints  

Science Journals Connector (OSTI)

Filtering algorithms for table constraints are constraint-based, which means that the propagation queue only contains information on the constraints that must be reconsidered. This paper proposes four efficient value-based algorithms for table constraints, ...

Jean-Baptiste Mairy; Pascal Van Hentenryck; Yves Deville

2012-10-01T23:59:59.000Z

371

Table Name query? | OpenEI Community  

Open Energy Info (EERE)

Table Name query? Home > Groups > Databus Is there an API feature which returns the names of tables? Submitted by Hopcroft on 28 October, 2013 - 15:37 1 answer Points: 0 if you are...

372

International energy indicators  

SciTech Connect

Data are compiled in tables and graphs on Iran and Saudi Arabia: Crude Oil Capacity, Production, and Shut-in, June 1974 to July 1980; OPEC (Ex-Iran and Saudi Arabia): Capacity, Production, and Shut-in, June 1974 to June 1980; Non-OPEC Free World and US Production of Crude oil, January 1973 to May 1980; Oil Stocks: Free World, US, Japan, and Europe (landed), 1973 - 1st quarter 1980; Petroleum Consumption by Industrial Countries, January 1973 to February 1980; USSR Crude Oil Production, January 1974 to July 1980; Free World and US Nuclear Generation Capacity, January 1973 to June 1980; US Import of Crude Oil and Products, January 1973 to July 1980; Landed Cost of Saudi Crude in Current and 1974 Dollars, April 1974 to May 1980; US trade in Coal, January 1973 to June 1980; Summary of US Merchandise Trade, 1976 to June 1980; and Energy/GNP Ratio, 1974-1st quarter 1980. The highlight of each is summarized very briefly in the Table of Contents.

Bauer, E.K. (ed.)

1980-08-01T23:59:59.000Z

373

HPC Usage Behavior Analysis and Performance Estimation with Machine Learning Techniques  

SciTech Connect

Most researchers with little high performance computing (HPC) experience have difficulties productively using the supercomputing resources. To address this issue, we investigated usage behaviors of the world s fastest academic Kraken supercomputer, and built a knowledge-based recommendation system to improve user productivity. Six clustering techniques, along with three cluster validation measures, were implemented to investigate the underlying patterns of usage behaviors. Besides manually defining a category for very large job submissions, six behavior categories were identified, which cleanly separated the data intensive jobs and computational intensive jobs. Then, job statistics of each behavior category were used to develop a knowledge-based recommendation system that can provide users with instructions about choosing appropriate software packages, setting job parameter values, and estimating job queuing time and runtime. Experiments were conducted to evaluate the performance of the proposed recommendation system, which included 127 job submissions by users from different research fields. Great feedback indicated the usefulness of the provided information. The average runtime estimation accuracy of 64.2%, with 28.9% job termination rate, was achieved in the experiments, which almost doubled the average accuracy in the Kraken dataset.

Zhang, Hao [ORNL; You, Haihang [ORNL; Hadri, Bilel [ORNL; Fahey, Mark R [ORNL

2012-01-01T23:59:59.000Z

374

Chemistry Department Assessment Table of Contents  

E-Print Network (OSTI)

0 Chemistry Department Assessment May, 2006 Table of Contents Page Executive Summary 1 Prelude 1 Mission Statement and Learning Goals 1 Facilities 2 Staffing 3 Students: Chemistry Majors and Student Taking Service Courses Table: 1997-2005 graduates profile Table: GRE Score for Chemistry Majors, 1993

Bogaerts, Steven

375

LA REVUE DE L'EPI N 96 LES USAGES PDAGOGIQUES DU LOGICIEL LIBRE LES USAGES PDAGOGIQUES  

E-Print Network (OSTI)

professionnelle quotidienne. La question des usages de ces technologies est au centre des préoccu- pations de chacun : que pouvons-nous faire avec les Technologies de l'Information et de la Communication pour l construction d'un intranet académique par le Conseil régional de Picardie, et nous nous sommes réunis entre

Paris-Sud XI, Université de

376

A PRACTICAL ONTOLOGY FOR THE LARGE-SCALE MODELING OF SCHOLARLY ARTIFACTS AND THEIR USAGE  

SciTech Connect

The large-scale analysis of scholarly artifact usage is constrained primarily by current practices in usage data archiving, privacy issues concerned with the dissemination of usage data, and the lack of a practical ontology for modeling the usage domain. As a remedy to the third constraint, this article presents a scholarly ontology that was engineered to represent those classes for which large-scale bibliographic and usage data exists, supports usage research, and whose instantiation is scalable to the order of 50 million articles along with their associated artifacts (e.g. authors and journals) and an accompanying 1 billion usage events. The real world instantiation of the presented abstract ontology is a semantic network model of the scholarly community which lends the scholarly process to statistical analysis and computational support. They present the ontology, discuss its instantiation, and provide some example inference rules for calculating various scholarly artifact metrics.

RODRIGUEZ, MARKO A. [Los Alamos National Laboratory; BOLLEN, JOHAN [Los Alamos National Laboratory; VAN DE SOMPEL, HERBERT [Los Alamos National Laboratory

2007-01-30T23:59:59.000Z

377

Microsoft Word - table_11.doc  

U.S. Energy Information Administration (EIA) Indexed Site

25 25 Table 11 Created on: 12/12/2013 2:10:53 PM Table 11. Underground natural gas storage - storage fields other than salt caverns, 2008-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2008 Total b -- -- -- -- -- 2,900 2,976 76 2009 Total b -- -- -- -- -- 2,856 2,563 -293 2010 Total b -- -- -- -- -- 2,781 2,822 41 2011 January 4,166 2,131 6,298 -63 -2.9 27 780 753 February 4,166 1,597 5,763 -10 -0.6 51 586 535 March 4,165 1,426 5,591 -114 -7.4 117 288 172

378

Microsoft Word - table_08.doc  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 8 Created on: 12/12/2013 2:07:39 PM Table 8. Underground natural gas storage - all operators, 2008-2013 (million cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year and Month Base Gas Working Gas Total a Volume Percent Injections Withdrawals Net Withdrawals b 2008 Total c -- -- -- -- -- 3,340 3,374 34 2009 Total c -- -- -- -- -- 3,315 2,966 -349 2010 Total c -- -- -- -- -- 3,291 3,274 -17 2011 January 4,303 2,306 6,609 2 0.1 50 849 799 February 4,302 1,722 6,024 39 2.3 82 666 584 March 4,302 1,577 5,879 -75 -4.6 168 314 146 April 4,304 1,788 6,092 -223 -11.1 312 100

379

Action Codes Table | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Action Codes Table | National Nuclear Security Administration Action Codes Table | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Action Codes Table Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > NMMSS Information, Reports & Forms > Code Tables > Action Codes Table

380

Description of Energy Intensity Tables (12)  

U.S. Energy Information Administration (EIA) Indexed Site

3. Description of Energy Intensity Data Tables 3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1985, 1988, 1991, and 1994; along with the percentage changes between 1985 and the three subsequent years (1988, 1991, and 1994) tables 3 and 4 present 1988, 1991, and 1994 energy-intensity ratios that have been adjusted to the mix of products shipped from manufacturing establishments in 1985 tables 5 and 6 present unadjusted energy-intensity ratios for Offsite-Produced Energy and Total Inputs of Energy for 1988, 1991, and 1994; along with the percentage changes between 1988 and the two subsequent

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sandia National Labs: PCNSC: IBA Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Ion Beam Analysis (IBA) Periodic Table (HTML) IBA Table (HTML) | IBA Table (135KB GIF) | IBA Table (1.2MB PDF) | IBA Table (33MB TIF) | Heavy Ion Backscattering Spectrometry (HIBS) | Virtual Lab Tour (6MB) The purpose of this table is to quickly give the visitor to this site information on the sensitivity, depth of analysis and depth resolution of most of the modern ion beam analysis techniques in a single easy to use format: a periodic table. Note that you can click on each panel of this

382

Energy Information Administration (EIA) - Supplement Tables - Supplemental  

Gasoline and Diesel Fuel Update (EIA)

6 6 Supplemental Tables to the Annual Energy Outlook 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2006 (AEO2006) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2030. Most of the tables were not published in the AEO2006, but contain regional and other more detailed projections underlying the AEO2006 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2006 Appendix tables A2 and A3, respectively. Forecasts for 2004-2006 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

383

Energy Information Administration (EIA) - Supplement Tables - Supplemental  

Gasoline and Diesel Fuel Update (EIA)

7 7 Supplemental Tables to the Annual Energy Outlook 2007 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2007 (AEO2007) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005 to 2030. Most of the tables were not published in the AEO2007, but contain regional and other more detailed projections underlying the AEO2007 projections. The files containing these tables are in spreadsheet format. A total of one hundred and eighteen tables is presented. The data for tables 10 and 20 match those published in AEO2007 Appendix tables A2 and A3, respectively. Projections for 2006 and 2007 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term projections and are based on more current information than the AEO.

384

Energy-conservation indicators  

SciTech Connect

A series of Energy Conservation Indicators were developed for the Department of Energy to assist in the evaluation of current and proposed conservation strategies. As descriptive statistics that signify current conditions and trends related to efficiency of energy use, indicators provide a way of measuring, monitoring, or inferring actual responses by consumers in markets for energy services. Related sets of indicators are presented in some 30 one-page indicator summaries. Indicators are shown graphically, followed by several paragraphs that explain their derivation and highlight key findings. Indicators are classified according to broad end-use sectors: Aggregate (economy), Residential, Commercial, Industrial, and transportation. In most cases annual time series information is presented covering the period 1960 through 1981.

Belzer, D.B.

1982-06-01T23:59:59.000Z

385

Standard for Inert Cryogenic Liquid Usage in the Laboratory Page 1 of 4 Standard for Inert Cryogenic Liquid Usage in the Laboratory  

E-Print Network (OSTI)

Cryogenic Liquid Usage in the Laboratory Page 1 of 4 March 2009 Standard for Inert Cryogenic Liquid Usage in the Laboratory In University workplaces, the storage, handling and dispensing of cryogenic liquids (e.g. liquid-up. Appropriate controls must be implemented wherever cryogenics are in use. This standard outlines some general

Chan, Hue Sun

386

Acoustic plug release indicator  

SciTech Connect

The present invention comprises an acoustic plug release indicator system. The acoustic plug release indicatior system comprises a microphone, recording system and operator listening device.

Carter, E.E. Jr.

1984-09-04T23:59:59.000Z

387

Use of nanofiltration to reduce cooling tower water usage.  

SciTech Connect

Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

2010-09-01T23:59:59.000Z

388

Engagement Indicators Wittenberg University  

E-Print Network (OSTI)

Indicators Report Theme Engagement Indicator Higher-Order Learning Reflective and Integrative Learning-and-whisker charts show the variation in scores within your institution and comparison groups. Straightforward in magnitude (before rounding) are highlighted in the Overview. EIs vary more among students within

Bogaerts, Steven

389

Energy Price Indices and Discount Factors for Life-Cycle Cost...  

Office of Environmental Management (EM)

2 Energy Price Indices and Discount Factors for Life-Cycle Cost Analysis - 2012 Report provides tables of present-value factors for use in the life-cycle cost analysis of capital...

390

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in B-100 Bone-equivalent plastic Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52740 1.450 85.9 0.05268 3.7365 0.1252 3.0420 3.4528 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.435 7.435 7.443 × 10 -1 14.0 MeV 5.616 × 10 1 5.803 5.803 1.360 × 10 0 20.0 MeV 6.802 × 10 1 4.535 4.535 2.543 × 10 0 30.0 MeV 8.509 × 10 1 3.521 3.521 5.080 × 10 0 40.0 MeV 1.003 × 10 2 3.008 3.008 8.173 × 10 0 80.0 MeV 1.527 × 10 2 2.256 2.256 2.401 × 10 1 100. MeV 1.764 × 10 2 2.115 2.115 3.319 × 10 1 140. MeV 2.218 × 10 2 1.971 1.971 5.287 × 10 1 200. MeV 2.868 × 10 2 1.889 1.889 8.408 × 10 1 300. MeV 3.917 × 10 2 1.859 0.000 1.859 1.376 × 10 2 314. MeV 4.065 × 10 2 1.859 0.000 1.859 Minimum ionization 400. MeV 4.945 × 10 2 1.866 0.000 1.866 1.913 × 10 2 800. MeV 8.995 × 10 2 1.940 0.000 0.000 1.940 4.016 × 10 2 1.00 GeV 1.101 × 10 3 1.973 0.000 0.000 1.974 5.037 × 10 2 1.40

391

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium monoxide Na 2 O Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.48404 2.270 148.8 0.07501 3.6943 0.1652 2.9793 4.1892 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.330 6.330 8.793 × 10 -1 14.0 MeV 5.616 × 10 1 4.955 4.956 1.601 × 10 0 20.0 MeV 6.802 × 10 1 3.883 3.884 2.984 × 10 0 30.0 MeV 8.509 × 10 1 3.024 3.024 5.943 × 10 0 40.0 MeV 1.003 × 10 2 2.588 2.588 9.541 × 10 0 80.0 MeV 1.527 × 10 2 1.954 1.954 2.789 × 10 1 100. MeV 1.764 × 10 2 1.840 1.840 3.846 × 10 1 140. MeV 2.218 × 10 2 1.725 1.725 6.102 × 10 1 200. MeV 2.868 × 10 2 1.663 1.664 9.656 × 10 1 283. MeV 3.738 × 10 2 1.646 0.000 1.647 Minimum ionization 300. MeV 3.917 × 10 2 1.647 0.000 1.647 1.571 × 10 2 400. MeV 4.945 × 10 2 1.659 0.000 1.660 2.177 × 10 2 800. MeV 8.995 × 10 2 1.738 0.000 0.000 1.738 4.531 × 10 2 1.00 GeV 1.101 × 10 3 1.771 0.000 0.000 1.772 5.670 × 10 2 1.40 GeV 1.502

392

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Tissue-equivalent gas (Propane based) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.55027 1.826 × 10 -3 59.5 0.09802 3.5159 1.5139 3.9916 9.3529 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.132 8.132 6.782 × 10 -1 14.0 MeV 5.616 × 10 1 6.337 6.337 1.241 × 10 0 20.0 MeV 6.802 × 10 1 4.943 4.944 2.326 × 10 0 30.0 MeV 8.509 × 10 1 3.831 3.831 4.656 × 10 0 40.0 MeV 1.003 × 10 2 3.269 3.269 7.500 × 10 0 80.0 MeV 1.527 × 10 2 2.450 2.450 2.209 × 10 1 100. MeV 1.764 × 10 2 2.303 2.303 3.053 × 10 1 140. MeV 2.218 × 10 2 2.158 2.158 4.855 × 10 1 200. MeV 2.868 × 10 2 2.084 2.084 7.695 × 10 1 263. MeV 3.527 × 10 2 2.068 0.000 2.069 Minimum ionization 300. MeV 3.917 × 10 2 2.071 0.000 2.072 1.252 × 10 2 400. MeV 4.945 × 10 2 2.097 0.000 2.097 1.732 × 10 2 800. MeV 8.995 × 10 2 2.232 0.000 0.000 2.232 3.580 × 10 2 1.00 GeV 1.101 × 10 3 2.289 0.000 0.000 2.290

393

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lead oxide (PbO) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.40323 9.530 766.7 0.19645 2.7299 0.0356 3.5456 6.2162 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.046 4.046 1.411 × 10 0 14.0 MeV 5.616 × 10 1 3.207 3.207 2.532 × 10 0 20.0 MeV 6.802 × 10 1 2.542 2.542 4.656 × 10 0 30.0 MeV 8.509 × 10 1 2.003 2.003 9.146 × 10 0 40.0 MeV 1.003 × 10 2 1.727 1.727 1.455 × 10 1 80.0 MeV 1.527 × 10 2 1.327 1.327 4.176 × 10 1 100. MeV 1.764 × 10 2 1.256 1.256 5.729 × 10 1 140. MeV 2.218 × 10 2 1.188 1.189 9.017 × 10 1 200. MeV 2.868 × 10 2 1.158 1.158 1.415 × 10 2 236. MeV 3.250 × 10 2 1.155 0.000 1.155 Minimum ionization 300. MeV 3.917 × 10 2 1.161 0.000 0.000 1.161 2.279 × 10 2 400. MeV 4.945 × 10 2 1.181 0.000 0.000 1.181 3.133 × 10 2 800. MeV 8.995 × 10 2 1.266 0.001 0.000 1.267 6.398 × 10 2 1.00 GeV 1.101 × 10 3 1.299 0.001 0.000 1.301 7.955 × 10 2 1.40

394

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Liquid argon (Ar) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 18 (Ar) 39.948 (1) 1.396 188.0 0.19559 3.0000 0.2000 3.0000 5.2146 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.687 5.687 9.833 × 10 -1 14.0 MeV 5.616 × 10 1 4.461 4.461 1.786 × 10 0 20.0 MeV 6.802 × 10 1 3.502 3.502 3.321 × 10 0 30.0 MeV 8.509 × 10 1 2.731 2.731 6.598 × 10 0 40.0 MeV 1.003 × 10 2 2.340 2.340 1.058 × 10 1 80.0 MeV 1.527 × 10 2 1.771 1.771 3.084 × 10 1 100. MeV 1.764 × 10 2 1.669 1.670 4.250 × 10 1 140. MeV 2.218 × 10 2 1.570 1.570 6.732 × 10 1 200. MeV 2.868 × 10 2 1.518 1.519 1.063 × 10 2 266. MeV 3.567 × 10 2 1.508 0.000 1.508 Minimum ionization 300. MeV 3.917 × 10 2 1.509 0.000 1.510 1.725 × 10 2 400. MeV 4.945 × 10 2 1.526 0.000 0.000 1.526 2.385 × 10 2 800. MeV 8.995 × 10 2 1.610 0.000 0.000 1.610 4.934 × 10 2 1.00 GeV 1.101 × 10 3 1.644 0.000 0.000 1.645 6.163

395

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Freon-13 (CF 3 Cl) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.47966 0.950 126.6 0.07238 3.5551 0.3659 3.2337 4.7483 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.416 6.416 8.659 × 10 -1 14.0 MeV 5.616 × 10 1 5.019 5.019 1.578 × 10 0 20.0 MeV 6.802 × 10 1 3.930 3.930 2.945 × 10 0 30.0 MeV 8.509 × 10 1 3.057 3.057 5.870 × 10 0 40.0 MeV 1.003 × 10 2 2.615 2.615 9.430 × 10 0 80.0 MeV 1.527 × 10 2 1.971 1.971 2.760 × 10 1 100. MeV 1.764 × 10 2 1.857 1.857 3.809 × 10 1 140. MeV 2.218 × 10 2 1.745 1.745 6.041 × 10 1 200. MeV 2.868 × 10 2 1.685 1.685 9.551 × 10 1 283. MeV 3.738 × 10 2 1.668 0.000 1.668 Minimum ionization 300. MeV 3.917 × 10 2 1.668 0.000 1.668 1.553 × 10 2 400. MeV 4.945 × 10 2 1.681 0.000 1.681 2.151 × 10 2 800. MeV 8.995 × 10 2 1.762 0.000 0.000 1.763 4.473 × 10 2 1.00 GeV 1.101 × 10 3 1.796 0.000 0.000 1.797 5.596 × 10 2 1.40 GeV 1.502

396

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lutetium silicon oxide [Lu 2 SiO 5 ] Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42793 7.400 472.0 0.20623 3.0000 0.2732 3.0000 5.4394 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.679 4.679 1.209 × 10 0 14.0 MeV 5.616 × 10 1 3.692 3.693 2.181 × 10 0 20.0 MeV 6.802 × 10 1 2.916 2.916 4.029 × 10 0 30.0 MeV 8.509 × 10 1 2.287 2.287 7.953 × 10 0 40.0 MeV 1.003 × 10 2 1.968 1.968 1.270 × 10 1 80.0 MeV 1.527 × 10 2 1.503 1.503 3.666 × 10 1 100. MeV 1.764 × 10 2 1.421 1.422 5.038 × 10 1 140. MeV 2.218 × 10 2 1.344 1.344 7.944 × 10 1 200. MeV 2.868 × 10 2 1.308 1.308 1.248 × 10 2 242. MeV 3.316 × 10 2 1.304 1.304 Minimum ionization 300. MeV 3.917 × 10 2 1.309 0.000 0.000 1.309 2.014 × 10 2 400. MeV 4.945 × 10 2 1.329 0.000 0.000 1.329 2.773 × 10 2 800. MeV 8.995 × 10 2 1.415 0.001 0.000 1.416 5.684 × 10 2 1.00 GeV 1.101 × 10 3 1.449 0.001 0.000 1.450 7.080

397

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Boron oxide (B 2 O 3 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49839 1.812 99.6 0.11548 3.3832 0.1843 2.7379 3.6027 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.889 6.889 8.045 × 10 -1 14.0 MeV 5.616 × 10 1 5.381 5.381 1.468 × 10 0 20.0 MeV 6.802 × 10 1 4.208 4.208 2.744 × 10 0 30.0 MeV 8.509 × 10 1 3.269 3.269 5.477 × 10 0 40.0 MeV 1.003 × 10 2 2.794 2.794 8.807 × 10 0 80.0 MeV 1.527 × 10 2 2.102 2.103 2.583 × 10 1 100. MeV 1.764 × 10 2 1.975 1.975 3.567 × 10 1 140. MeV 2.218 × 10 2 1.843 1.843 5.674 × 10 1 200. MeV 2.868 × 10 2 1.768 1.768 9.010 × 10 1 300. MeV 3.917 × 10 2 1.742 0.000 1.742 1.472 × 10 2 307. MeV 3.990 × 10 2 1.742 0.000 1.742 Minimum ionization 400. MeV 4.945 × 10 2 1.750 0.000 1.750 2.045 × 10 2 800. MeV 8.995 × 10 2 1.822 0.000 0.000 1.823 4.285 × 10 2 1.00 GeV 1.101 × 10 3 1.854 0.000 0.000 1.855 5.373 × 10 2 1.40 GeV 1.502

398

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Liquid H-note density shift (H 2 ) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 1 (H) 1.00794 (7) 7.080 × 10 -2 21.8 0.32969 3.0000 0.1641 1.9641 2.6783 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 16.508 16.508 3.316 × 10 -1 14.0 MeV 5.616 × 10 1 12.812 12.812 6.097 × 10 -1 20.0 MeV 6.802 × 10 1 9.956 9.956 1.147 × 10 0 30.0 MeV 8.509 × 10 1 7.684 7.684 2.307 × 10 0 40.0 MeV 1.003 × 10 2 6.539 6.539 3.727 × 10 0 80.0 MeV 1.527 × 10 2 4.870 4.870 1.105 × 10 1 100. MeV 1.764 × 10 2 4.550 4.550 1.531 × 10 1 140. MeV 2.218 × 10 2 4.217 4.217 2.448 × 10 1 200. MeV 2.868 × 10 2 4.018 0.000 4.018 3.912 × 10 1 300. MeV 3.917 × 10 2 3.926 0.000 3.926 6.438 × 10 1 356. MeV 4.497 × 10 2 3.919 0.000 3.919 Minimum ionization 400. MeV 4.945 × 10 2 3.922 0.000 3.922 8.988 × 10 1 800. MeV 8.995 × 10 2 4.029 0.000 4.030 1.906 × 10 2 1.00 GeV 1.101 × 10 3 4.084 0.001

399

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Cortical bone (ICRP) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52130 1.850 106.4 0.06198 3.5919 0.1161 3.0919 3.6488 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.142 7.142 7.765 × 10 -1 14.0 MeV 5.616 × 10 1 5.581 5.581 1.417 × 10 0 20.0 MeV 6.802 × 10 1 4.366 4.366 2.646 × 10 0 30.0 MeV 8.509 × 10 1 3.393 3.393 5.281 × 10 0 40.0 MeV 1.003 × 10 2 2.900 2.901 8.489 × 10 0 80.0 MeV 1.527 × 10 2 2.179 2.179 2.489 × 10 1 100. MeV 1.764 × 10 2 2.044 2.044 3.440 × 10 1 140. MeV 2.218 × 10 2 1.907 1.907 5.475 × 10 1 200. MeV 2.868 × 10 2 1.830 1.830 8.700 × 10 1 300. MeV 3.917 × 10 2 1.803 0.000 1.803 1.422 × 10 2 303. MeV 3.950 × 10 2 1.803 0.000 1.803 Minimum ionization 400. MeV 4.945 × 10 2 1.812 0.000 1.812 1.976 × 10 2 800. MeV 8.995 × 10 2 1.888 0.000 0.000 1.889 4.138 × 10 2 1.00 GeV 1.101 × 10 3 1.922 0.000 0.000 1.923 5.187 × 10 2 1.40 GeV 1.502

400

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Freon-13B1 (CF 3 Br) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.45665 1.500 210.5 0.03925 3.7194 0.3522 3.7554 5.3555 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.678 5.678 9.844 × 10 -1 14.0 MeV 5.616 × 10 1 4.454 4.454 1.788 × 10 0 20.0 MeV 6.802 × 10 1 3.498 3.498 3.325 × 10 0 30.0 MeV 8.509 × 10 1 2.729 2.729 6.606 × 10 0 40.0 MeV 1.003 × 10 2 2.339 2.339 1.059 × 10 1 80.0 MeV 1.527 × 10 2 1.771 1.771 3.086 × 10 1 100. MeV 1.764 × 10 2 1.671 1.671 4.251 × 10 1 140. MeV 2.218 × 10 2 1.574 1.574 6.729 × 10 1 200. MeV 2.868 × 10 2 1.524 1.524 1.062 × 10 2 266. MeV 3.567 × 10 2 1.513 0.000 1.513 Minimum ionization 300. MeV 3.917 × 10 2 1.515 0.000 1.515 1.721 × 10 2 400. MeV 4.945 × 10 2 1.531 0.000 0.000 1.532 2.378 × 10 2 800. MeV 8.995 × 10 2 1.616 0.000 0.000 1.616 4.919 × 10 2 1.00 GeV 1.101 × 10 3 1.650 0.001 0.000 1.651 6.142 × 10 2 1.40 GeV

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium carbonate (Na 2 CO 3 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49062 2.532 125.0 0.08715 3.5638 0.1287 2.8591 3.7178 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.575 6.575 8.449 × 10 -1 14.0 MeV 5.616 × 10 1 5.142 5.142 1.540 × 10 0 20.0 MeV 6.802 × 10 1 4.026 4.026 2.874 × 10 0 30.0 MeV 8.509 × 10 1 3.131 3.131 5.729 × 10 0 40.0 MeV 1.003 × 10 2 2.679 2.679 9.204 × 10 0 80.0 MeV 1.527 × 10 2 2.017 2.017 2.695 × 10 1 100. MeV 1.764 × 10 2 1.895 1.895 3.721 × 10 1 140. MeV 2.218 × 10 2 1.771 1.772 5.914 × 10 1 200. MeV 2.868 × 10 2 1.703 1.703 9.381 × 10 1 298. MeV 3.894 × 10 2 1.681 0.000 1.681 Minimum ionization 300. MeV 3.917 × 10 2 1.681 0.000 1.681 1.531 × 10 2 400. MeV 4.945 × 10 2 1.690 0.000 1.691 2.125 × 10 2 800. MeV 8.995 × 10 2 1.764 0.000 0.000 1.764 4.440 × 10 2 1.00 GeV 1.101 × 10 3 1.796 0.000 0.000 1.797 5.563 × 10 2 1.40

402

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Tungsten hexafluoride (WF 6 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42976 2.400 354.4 0.03658 3.5134 0.3020 4.2602 5.9881 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.928 4.928 1.143 × 10 0 14.0 MeV 5.616 × 10 1 3.880 3.880 2.067 × 10 0 20.0 MeV 6.802 × 10 1 3.057 3.057 3.828 × 10 0 30.0 MeV 8.509 × 10 1 2.393 2.393 7.574 × 10 0 40.0 MeV 1.003 × 10 2 2.056 2.056 1.211 × 10 1 80.0 MeV 1.527 × 10 2 1.565 1.565 3.509 × 10 1 100. MeV 1.764 × 10 2 1.479 1.479 4.827 × 10 1 140. MeV 2.218 × 10 2 1.396 1.396 7.623 × 10 1 200. MeV 2.868 × 10 2 1.353 1.353 1.200 × 10 2 253. MeV 3.431 × 10 2 1.346 0.000 1.346 Minimum ionization 300. MeV 3.917 × 10 2 1.349 0.000 0.000 1.349 1.942 × 10 2 400. MeV 4.945 × 10 2 1.367 0.000 0.000 1.367 2.679 × 10 2 800. MeV 8.995 × 10 2 1.451 0.001 0.000 1.452 5.516 × 10 2 1.00 GeV 1.101 × 10 3 1.485 0.001 0.000 1.486 6.877

403

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Standard rock Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.50000 2.650 136.4 0.08301 3.4120 0.0492 3.0549 3.7738 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.619 6.619 8.400 × 10 -1 14.0 MeV 5.616 × 10 1 5.180 5.180 1.530 × 10 0 20.0 MeV 6.802 × 10 1 4.057 4.057 2.854 × 10 0 30.0 MeV 8.509 × 10 1 3.157 3.157 5.687 × 10 0 40.0 MeV 1.003 × 10 2 2.701 2.702 9.133 × 10 0 80.0 MeV 1.527 × 10 2 2.028 2.029 2.675 × 10 1 100. MeV 1.764 × 10 2 1.904 1.904 3.695 × 10 1 140. MeV 2.218 × 10 2 1.779 1.779 5.878 × 10 1 200. MeV 2.868 × 10 2 1.710 1.710 9.331 × 10 1 297. MeV 3.884 × 10 2 1.688 0.000 1.688 Minimum ionization 300. MeV 3.917 × 10 2 1.688 0.000 1.688 1.523 × 10 2 400. MeV 4.945 × 10 2 1.698 0.000 1.698 2.114 × 10 2 800. MeV 8.995 × 10 2 1.774 0.000 0.000 1.775 4.418 × 10 2 1.00 GeV 1.101 × 10 3 1.808 0.000 0.000 1.808 5.534 × 10 2 1.40 GeV 1.502 × 10

404

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Ceric sulfate dosimeter solution Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.55279 1.030 76.7 0.07666 3.5607 0.2363 2.8769 3.5212 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.909 7.909 6.989 × 10 -1 14.0 MeV 5.616 × 10 1 6.170 6.170 1.278 × 10 0 20.0 MeV 6.802 × 10 1 4.819 4.819 2.391 × 10 0 30.0 MeV 8.509 × 10 1 3.739 3.739 4.779 × 10 0 40.0 MeV 1.003 × 10 2 3.193 3.193 7.693 × 10 0 80.0 MeV 1.527 × 10 2 2.398 2.398 2.261 × 10 1 100. MeV 1.764 × 10 2 2.255 2.255 3.123 × 10 1 140. MeV 2.218 × 10 2 2.102 2.102 4.968 × 10 1 200. MeV 2.868 × 10 2 2.013 2.014 7.896 × 10 1 300. MeV 3.917 × 10 2 1.980 0.000 1.980 1.292 × 10 2 317. MeV 4.096 × 10 2 1.979 0.000 1.979 Minimum ionization 400. MeV 4.945 × 10 2 1.986 0.000 1.986 1.797 × 10 2 800. MeV 8.995 × 10 2 2.062 0.000 0.000 2.062 3.774 × 10 2 1.00 GeV 1.101 × 10 3 2.096 0.000 0.000 2.097 4.735 × 10

405

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Silicon Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 14 (Si) 28.0855 (3) 2.329 173.0 0.14921 3.2546 0.2015 2.8716 4.4355 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.363 6.363 8.779 × 10 -1 14.0 MeV 5.616 × 10 1 4.987 4.987 1.595 × 10 0 20.0 MeV 6.802 × 10 1 3.912 3.912 2.969 × 10 0 30.0 MeV 8.509 × 10 1 3.047 3.047 5.905 × 10 0 40.0 MeV 1.003 × 10 2 2.608 2.608 9.476 × 10 0 80.0 MeV 1.527 × 10 2 1.965 1.965 2.770 × 10 1 100. MeV 1.764 × 10 2 1.849 1.849 3.822 × 10 1 140. MeV 2.218 × 10 2 1.737 1.737 6.064 × 10 1 200. MeV 2.868 × 10 2 1.678 1.678 9.590 × 10 1 273. MeV 3.633 × 10 2 1.664 0.000 1.664 Minimum ionization 300. MeV 3.917 × 10 2 1.665 0.000 1.666 1.559 × 10 2 400. MeV 4.945 × 10 2 1.681 0.000 1.681 2.157 × 10 2 800. MeV 8.995 × 10 2 1.767 0.000 0.000 1.768 4.475 × 10 2 1.00 GeV 1.101 × 10 3 1.803 0.000 0.000 1.804 5.595 × 10 2 1.40 GeV

406

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polyethylene terephthalate (Mylar) (C 10 H 8 O 4 ) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.52037 1.400 78.7 0.12679 3.3076 0.1562 2.6507 3.3262 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.420 7.420 7.451 × 10 -1 14.0 MeV 5.616 × 10 1 5.789 5.789 1.362 × 10 0 20.0 MeV 6.802 × 10 1 4.522 4.522 2.548 × 10 0 30.0 MeV 8.509 × 10 1 3.509 3.509 5.093 × 10 0 40.0 MeV 1.003 × 10 2 2.997 2.997 8.197 × 10 0 80.0 MeV 1.527 × 10 2 2.250 2.250 2.409 × 10 1 100. MeV 1.764 × 10 2 2.108 2.108 3.329 × 10 1 140. MeV 2.218 × 10 2 1.963 1.964 5.305 × 10 1 200. MeV 2.868 × 10 2 1.880 1.880 8.440 × 10 1 300. MeV 3.917 × 10 2 1.849 0.000 1.849 1.382 × 10 2 317. MeV 4.096 × 10 2 1.848 0.000 1.849 Minimum ionization 400. MeV 4.945 × 10 2 1.855 0.000 1.855 1.922 × 10 2 800. MeV 8.995 × 10 2 1.926 0.000 0.000 1.926 4.039 × 10 2 1.00 GeV 1.101 × 10 3 1.958 0.000 0.000 1.959

407

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Dichlorodiethyl ether C 4 Cl 2 H 8 O Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.51744 1.220 103.3 0.06799 3.5250 0.1773 3.1586 4.0135 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.117 7.117 7.789 × 10 -1 14.0 MeV 5.616 × 10 1 5.561 5.561 1.421 × 10 0 20.0 MeV 6.802 × 10 1 4.349 4.349 2.655 × 10 0 30.0 MeV 8.509 × 10 1 3.380 3.380 5.300 × 10 0 40.0 MeV 1.003 × 10 2 2.889 2.889 8.521 × 10 0 80.0 MeV 1.527 × 10 2 2.174 2.174 2.499 × 10 1 100. MeV 1.764 × 10 2 2.042 2.042 3.450 × 10 1 140. MeV 2.218 × 10 2 1.907 1.907 5.486 × 10 1 200. MeV 2.868 × 10 2 1.832 1.832 8.708 × 10 1 298. MeV 3.894 × 10 2 1.807 0.000 1.807 Minimum ionization 300. MeV 3.917 × 10 2 1.807 0.000 1.807 1.422 × 10 2 400. MeV 4.945 × 10 2 1.817 0.000 1.817 1.974 × 10 2 800. MeV 8.995 × 10 2 1.895 0.000 0.000 1.896 4.129 × 10 2 1.00 GeV 1.101 × 10 3 1.930 0.000 0.000 1.931 5.174 × 10

408

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lead Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 82 (Pb) 207.2 (1) 11.350 823.0 0.09359 3.1608 0.3776 3.8073 6.2018 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 3.823 3.823 1.524 × 10 0 14.0 MeV 5.616 × 10 1 3.054 3.054 2.705 × 10 0 20.0 MeV 6.802 × 10 1 2.436 2.436 4.927 × 10 0 30.0 MeV 8.509 × 10 1 1.928 1.928 9.600 × 10 0 40.0 MeV 1.003 × 10 2 1.666 1.666 1.521 × 10 1 80.0 MeV 1.527 × 10 2 1.283 1.283 4.338 × 10 1 100. MeV 1.764 × 10 2 1.215 1.215 5.943 × 10 1 140. MeV 2.218 × 10 2 1.151 1.152 9.339 × 10 1 200. MeV 2.868 × 10 2 1.124 1.124 1.463 × 10 2 226. MeV 3.145 × 10 2 1.122 0.000 1.123 Minimum ionization 300. MeV 3.917 × 10 2 1.130 0.000 0.000 1.131 2.352 × 10 2 400. MeV 4.945 × 10 2 1.151 0.000 0.000 1.152 3.228 × 10 2 800. MeV 8.995 × 10 2 1.237 0.001 0.000 1.238 6.572 × 10 2 1.00 GeV 1.101 × 10 3 1.270 0.001 0.000 1.272 8.165 × 10 2 1.40

409

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium iodide (NaI) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.42697 3.667 452.0 0.12516 3.0398 0.1203 3.5920 6.0572 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.703 4.703 1.202 × 10 0 14.0 MeV 5.616 × 10 1 3.710 3.710 2.169 × 10 0 20.0 MeV 6.802 × 10 1 2.928 2.928 4.009 × 10 0 30.0 MeV 8.509 × 10 1 2.297 2.297 7.917 × 10 0 40.0 MeV 1.003 × 10 2 1.975 1.975 1.264 × 10 1 80.0 MeV 1.527 × 10 2 1.509 1.509 3.652 × 10 1 100. MeV 1.764 × 10 2 1.427 1.427 5.019 × 10 1 140. MeV 2.218 × 10 2 1.347 1.348 7.916 × 10 1 200. MeV 2.868 × 10 2 1.310 1.310 1.245 × 10 2 243. MeV 3.325 × 10 2 1.305 1.305 Minimum ionization 300. MeV 3.917 × 10 2 1.310 0.000 0.000 1.310 2.010 × 10 2 400. MeV 4.945 × 10 2 1.329 0.000 0.000 1.330 2.768 × 10 2 800. MeV 8.995 × 10 2 1.417 0.001 0.000 1.418 5.677 × 10 2 1.00 GeV 1.101 × 10 3 1.452 0.001 0.000 1.453 7.070 × 10 2 1.40 GeV

410

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polyvinyl alcohol (C 2 H3-O-H) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.54480 1.300 69.7 0.11178 3.3893 0.1401 2.6315 3.1115 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.891 7.891 6.999 × 10 -1 14.0 MeV 5.616 × 10 1 6.153 6.153 1.280 × 10 0 20.0 MeV 6.802 × 10 1 4.804 4.804 2.396 × 10 0 30.0 MeV 8.509 × 10 1 3.726 3.726 4.793 × 10 0 40.0 MeV 1.003 × 10 2 3.181 3.181 7.717 × 10 0 80.0 MeV 1.527 × 10 2 2.383 2.384 2.270 × 10 1 100. MeV 1.764 × 10 2 2.231 2.232 3.140 × 10 1 140. MeV 2.218 × 10 2 2.076 2.076 5.007 × 10 1 200. MeV 2.868 × 10 2 1.986 1.986 7.974 × 10 1 300. MeV 3.917 × 10 2 1.950 0.000 1.950 1.307 × 10 2 324. MeV 4.161 × 10 2 1.949 0.000 1.949 Minimum ionization 400. MeV 4.945 × 10 2 1.955 0.000 1.955 1.820 × 10 2 800. MeV 8.995 × 10 2 2.026 0.000 0.000 2.026 3.830 × 10 2 1.00 GeV 1.101 × 10 3 2.059 0.000 0.000 2.059 4.809 × 10 2 1.40

411

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Cesium Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 55 (Cs)132.9054519 (2) 1.873 488.0 0.18233 2.8866 0.5473 3.5914 6.9135 0.14 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.464 4.464 1.277 × 10 0 14.0 MeV 5.616 × 10 1 3.532 3.532 2.294 × 10 0 20.0 MeV 6.802 × 10 1 2.794 2.794 4.224 × 10 0 30.0 MeV 8.509 × 10 1 2.195 2.195 8.315 × 10 0 40.0 MeV 1.003 × 10 2 1.890 1.890 1.325 × 10 1 80.0 MeV 1.527 × 10 2 1.444 1.444 3.820 × 10 1 100. MeV 1.764 × 10 2 1.366 1.366 5.248 × 10 1 140. MeV 2.218 × 10 2 1.291 1.291 8.274 × 10 1 200. MeV 2.868 × 10 2 1.257 1.257 1.300 × 10 2 236. MeV 3.250 × 10 2 1.254 1.254 Minimum ionization 300. MeV 3.917 × 10 2 1.261 0.000 0.000 1.261 2.096 × 10 2 400. MeV 4.945 × 10 2 1.284 0.000 0.000 1.285 2.882 × 10 2 800. MeV 8.995 × 10 2 1.378 0.001 0.000 1.380 5.881 × 10 2 1.00 GeV 1.101 × 10 3 1.415 0.001 0.000 1.417 7.311 × 10 2

412

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Propane (C 3 H 8 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.58962 1.868 × 10 -3 47.1 0.09916 3.5920 1.4339 3.8011 8.7939 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.969 8.969 6.137 × 10 -1 14.0 MeV 5.616 × 10 1 6.982 6.982 1.125 × 10 0 20.0 MeV 6.802 × 10 1 5.441 5.441 2.109 × 10 0 30.0 MeV 8.509 × 10 1 4.212 4.213 4.228 × 10 0 40.0 MeV 1.003 × 10 2 3.592 3.592 6.815 × 10 0 80.0 MeV 1.527 × 10 2 2.688 2.688 2.010 × 10 1 100. MeV 1.764 × 10 2 2.525 2.526 2.780 × 10 1 140. MeV 2.218 × 10 2 2.365 2.365 4.424 × 10 1 200. MeV 2.868 × 10 2 2.281 2.281 7.018 × 10 1 267. MeV 3.577 × 10 2 2.262 0.000 2.263 Minimum ionization 300. MeV 3.917 × 10 2 2.265 0.000 2.265 1.143 × 10 2 400. MeV 4.945 × 10 2 2.291 0.000 2.291 1.582 × 10 2 800. MeV 8.995 × 10 2 2.434 0.000 0.000 2.435 3.275 × 10 2 1.00 GeV 1.101 × 10 3 2.495 0.000 0.000 2.496 4.086 × 10 2 1.40 GeV 1.502

413

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polystyrene ([C 6 H 5 CHCH 2 ] n ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.53768 1.060 68.7 0.16454 3.2224 0.1647 2.5031 3.2999 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.803 7.803 7.077 × 10 -1 14.0 MeV 5.616 × 10 1 6.084 6.084 1.294 × 10 0 20.0 MeV 6.802 × 10 1 4.749 4.749 2.424 × 10 0 30.0 MeV 8.509 × 10 1 3.683 3.683 4.848 × 10 0 40.0 MeV 1.003 × 10 2 3.144 3.144 7.806 × 10 0 80.0 MeV 1.527 × 10 2 2.359 2.359 2.296 × 10 1 100. MeV 1.764 × 10 2 2.210 2.211 3.174 × 10 1 140. MeV 2.218 × 10 2 2.058 2.058 5.059 × 10 1 200. MeV 2.868 × 10 2 1.970 1.971 8.049 × 10 1 300. MeV 3.917 × 10 2 1.937 0.000 1.937 1.318 × 10 2 318. MeV 4.105 × 10 2 1.936 0.000 1.936 Minimum ionization 400. MeV 4.945 × 10 2 1.942 0.000 1.943 1.834 × 10 2 800. MeV 8.995 × 10 2 2.015 0.000 0.000 2.015 3.856 × 10 2 1.00 GeV 1.101 × 10 3 2.048 0.000 0.000 2.049 4.841 × 10 2 1.40

414

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Air (dry, 1 atm) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49919 1.205 × 10 -3 85.7 0.10914 3.3994 1.7418 4.2759 10.5961 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.039 7.039 7.862 × 10 -1 14.0 MeV 5.616 × 10 1 5.494 5.495 1.436 × 10 0 20.0 MeV 6.802 × 10 1 4.294 4.294 2.686 × 10 0 30.0 MeV 8.509 × 10 1 3.333 3.333 5.366 × 10 0 40.0 MeV 1.003 × 10 2 2.847 2.847 8.633 × 10 0 80.0 MeV 1.527 × 10 2 2.140 2.140 2.535 × 10 1 100. MeV 1.764 × 10 2 2.013 2.014 3.501 × 10 1 140. MeV 2.218 × 10 2 1.889 1.889 5.562 × 10 1 200. MeV 2.868 × 10 2 1.827 1.827 8.803 × 10 1 257. MeV 3.471 × 10 2 1.815 0.000 1.816 Minimum ionization 300. MeV 3.917 × 10 2 1.819 0.000 1.819 1.430 × 10 2 400. MeV 4.945 × 10 2 1.844 0.000 1.844 1.977 × 10 2 800. MeV 8.995 × 10 2 1.968 0.000 0.000 1.968 4.074 × 10 2 1.00 GeV 1.101 × 10 3 2.020 0.000 0.000 2.021 5.077 × 10 2 1.40 GeV 1.502

415

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Lead tungstate (PbWO 4 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.41315 8.300 600.7 0.22758 3.0000 0.4068 3.0023 5.8528 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 4.333 4.333 1.311 × 10 0 14.0 MeV 5.616 × 10 1 3.426 3.426 2.360 × 10 0 20.0 MeV 6.802 × 10 1 2.710 2.711 4.350 × 10 0 30.0 MeV 8.509 × 10 1 2.131 2.131 8.566 × 10 0 40.0 MeV 1.003 × 10 2 1.835 1.835 1.365 × 10 1 80.0 MeV 1.527 × 10 2 1.406 1.406 3.931 × 10 1 100. MeV 1.764 × 10 2 1.331 1.331 5.397 × 10 1 140. MeV 2.218 × 10 2 1.261 1.261 8.498 × 10 1 200. MeV 2.868 × 10 2 1.231 1.231 1.333 × 10 2 227. MeV 3.154 × 10 2 1.229 1.230 Minimum ionization 300. MeV 3.917 × 10 2 1.237 0.000 0.000 1.238 2.145 × 10 2 400. MeV 4.945 × 10 2 1.260 0.000 0.000 1.260 2.946 × 10 2 800. MeV 8.995 × 10 2 1.349 0.001 0.000 1.350 6.007 × 10 2 1.00 GeV 1.101 × 10 3 1.383 0.001 0.000 1.385 7.469 × 10 2 1.40

416

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Carbon (compact) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 6 (C) [12.0107 (8)] 2.265 78.0 0.26142 2.8697 -0.0178 2.3415 2.8680 0.12 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.116 7.116 7.772 × 10 -1 14.0 MeV 5.616 × 10 1 5.549 5.549 1.420 × 10 0 20.0 MeV 6.802 × 10 1 4.331 4.331 2.658 × 10 0 30.0 MeV 8.509 × 10 1 3.355 3.355 5.318 × 10 0 40.0 MeV 1.003 × 10 2 2.861 2.861 8.567 × 10 0 80.0 MeV 1.527 × 10 2 2.126 2.127 2.531 × 10 1 100. MeV 1.764 × 10 2 1.991 1.992 3.505 × 10 1 140. MeV 2.218 × 10 2 1.854 1.854 5.597 × 10 1 200. MeV 2.868 × 10 2 1.775 1.775 8.917 × 10 1 300. MeV 3.917 × 10 2 1.745 0.000 1.745 1.462 × 10 2 317. MeV 4.096 × 10 2 1.745 0.000 1.745 Minimum ionization 400. MeV 4.945 × 10 2 1.751 0.000 1.751 2.034 × 10 2 800. MeV 8.995 × 10 2 1.819 0.000 0.000 1.820 4.275 × 10 2 1.00 GeV 1.101 × 10 3 1.850 0.000 0.000 1.851 5.365 × 10

417

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Methanol (CH 3 OH) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.56176 0.791 67.6 0.08970 3.5477 0.2529 2.7639 3.5160 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.169 8.169 6.759 × 10 -1 14.0 MeV 5.616 × 10 1 6.369 6.369 1.236 × 10 0 20.0 MeV 6.802 × 10 1 4.972 4.972 2.315 × 10 0 30.0 MeV 8.509 × 10 1 3.855 3.855 4.631 × 10 0 40.0 MeV 1.003 × 10 2 3.291 3.291 7.457 × 10 0 80.0 MeV 1.527 × 10 2 2.469 2.469 2.194 × 10 1 100. MeV 1.764 × 10 2 2.321 2.322 3.032 × 10 1 140. MeV 2.218 × 10 2 2.166 2.166 4.823 × 10 1 200. MeV 2.868 × 10 2 2.074 2.074 7.664 × 10 1 300. MeV 3.917 × 10 2 2.039 0.000 2.039 1.254 × 10 2 318. MeV 4.105 × 10 2 2.038 0.000 2.039 Minimum ionization 400. MeV 4.945 × 10 2 2.045 0.000 2.045 1.744 × 10 2 800. MeV 8.995 × 10 2 2.121 0.000 0.000 2.122 3.665 × 10 2 1.00 GeV 1.101 × 10 3 2.156 0.000 0.000 2.157 4.600 × 10 2 1.40 GeV 1.502 ×

418

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Carbon (amorphous) Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 6 (C) 12.0107 (8) 2.000 78.0 0.20240 3.0036 -0.0351 2.4860 2.9925 0.10 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.117 7.117 7.771 × 10 -1 14.0 MeV 5.616 × 10 1 5.550 5.551 1.420 × 10 0 20.0 MeV 6.802 × 10 1 4.332 4.332 2.658 × 10 0 30.0 MeV 8.509 × 10 1 3.357 3.357 5.317 × 10 0 40.0 MeV 1.003 × 10 2 2.862 2.862 8.564 × 10 0 80.0 MeV 1.527 × 10 2 2.129 2.129 2.529 × 10 1 100. MeV 1.764 × 10 2 1.994 1.994 3.502 × 10 1 140. MeV 2.218 × 10 2 1.857 1.857 5.591 × 10 1 200. MeV 2.868 × 10 2 1.778 1.779 8.905 × 10 1 300. MeV 3.917 × 10 2 1.749 0.000 1.749 1.459 × 10 2 313. MeV 4.055 × 10 2 1.749 0.000 1.749 Minimum ionization 400. MeV 4.945 × 10 2 1.755 0.000 1.756 2.030 × 10 2 800. MeV 8.995 × 10 2 1.824 0.000 0.000 1.825 4.266 × 10 2 1.00 GeV 1.101 × 10 3 1.855 0.000 0.000 1.856 5.353 × 10

419

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Mix D wax Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.56479 0.990 60.9 0.07490 3.6823 0.1371 2.7145 3.0780 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 8.322 8.322 6.628 × 10 -1 14.0 MeV 5.616 × 10 1 6.485 6.486 1.213 × 10 0 20.0 MeV 6.802 × 10 1 5.060 5.060 2.273 × 10 0 30.0 MeV 8.509 × 10 1 3.922 3.922 4.549 × 10 0 40.0 MeV 1.003 × 10 2 3.347 3.347 7.327 × 10 0 80.0 MeV 1.527 × 10 2 2.505 2.506 2.158 × 10 1 100. MeV 1.764 × 10 2 2.346 2.346 2.985 × 10 1 140. MeV 2.218 × 10 2 2.182 2.182 4.761 × 10 1 200. MeV 2.868 × 10 2 2.087 2.087 7.584 × 10 1 300. MeV 3.917 × 10 2 2.049 0.000 2.049 1.243 × 10 2 328. MeV 4.201 × 10 2 2.048 0.000 2.048 Minimum ionization 400. MeV 4.945 × 10 2 2.053 0.000 2.053 1.731 × 10 2 800. MeV 8.995 × 10 2 2.125 0.000 0.000 2.125 3.647 × 10 2 1.00 GeV 1.101 × 10 3 2.158 0.000 0.000 2.159 4.581 × 10 2 1.40 GeV 1.502 × 10 3 2.213

420

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Sodium nitrate NaNO 3 Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49415 2.261 114.6 0.09391 3.5097 0.1534 2.8221 3.6502 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.702 6.702 8.281 × 10 -1 14.0 MeV 5.616 × 10 1 5.239 5.239 1.510 × 10 0 20.0 MeV 6.802 × 10 1 4.100 4.100 2.820 × 10 0 30.0 MeV 8.509 × 10 1 3.187 3.187 5.624 × 10 0 40.0 MeV 1.003 × 10 2 2.726 2.726 9.039 × 10 0 80.0 MeV 1.527 × 10 2 2.053 2.053 2.648 × 10 1 100. MeV 1.764 × 10 2 1.927 1.927 3.656 × 10 1 140. MeV 2.218 × 10 2 1.800 1.800 5.814 × 10 1 200. MeV 2.868 × 10 2 1.729 1.729 9.228 × 10 1 298. MeV 3.894 × 10 2 1.705 0.000 1.705 Minimum ionization 300. MeV 3.917 × 10 2 1.705 0.000 1.705 1.507 × 10 2 400. MeV 4.945 × 10 2 1.714 0.000 1.714 2.092 × 10 2 800. MeV 8.995 × 10 2 1.787 0.000 0.000 1.787 4.377 × 10 2 1.00 GeV 1.101 × 10 3 1.819 0.000 0.000 1.819 5.486 × 10 2 1.40 GeV 1.502

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Freon-12B2 (CF 2 Br 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.44901 1.800 284.9 0.05144 3.5565 0.3406 3.7956 5.7976 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 5.330 5.330 1.053 × 10 0 14.0 MeV 5.616 × 10 1 4.190 4.190 1.908 × 10 0 20.0 MeV 6.802 × 10 1 3.297 3.297 3.540 × 10 0 30.0 MeV 8.509 × 10 1 2.577 2.577 7.017 × 10 0 40.0 MeV 1.003 × 10 2 2.212 2.212 1.123 × 10 1 80.0 MeV 1.527 × 10 2 1.680 1.680 3.263 × 10 1 100. MeV 1.764 × 10 2 1.586 1.586 4.491 × 10 1 140. MeV 2.218 × 10 2 1.496 1.496 7.099 × 10 1 200. MeV 2.868 × 10 2 1.452 1.452 1.118 × 10 2 252. MeV 3.421 × 10 2 1.445 0.000 1.445 Minimum ionization 300. MeV 3.917 × 10 2 1.448 0.000 1.449 1.809 × 10 2 400. MeV 4.945 × 10 2 1.467 0.000 0.000 1.468 2.496 × 10 2 800. MeV 8.995 × 10 2 1.556 0.000 0.000 1.557 5.139 × 10 2 1.00 GeV 1.101 × 10 3 1.592 0.001 0.000 1.593 6.409 × 10 2 1.40 GeV

422

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Eye lens (ICRP) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.54977 1.100 73.3 0.09690 3.4550 0.2070 2.7446 3.3720 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.912 7.912 6.984 × 10 -1 14.0 MeV 5.616 × 10 1 6.171 6.171 1.277 × 10 0 20.0 MeV 6.802 × 10 1 4.819 4.819 2.390 × 10 0 30.0 MeV 8.509 × 10 1 3.738 3.738 4.779 × 10 0 40.0 MeV 1.003 × 10 2 3.192 3.192 7.693 × 10 0 80.0 MeV 1.527 × 10 2 2.396 2.396 2.262 × 10 1 100. MeV 1.764 × 10 2 2.251 2.251 3.125 × 10 1 140. MeV 2.218 × 10 2 2.095 2.096 4.976 × 10 1 200. MeV 2.868 × 10 2 2.006 2.006 7.914 × 10 1 300. MeV 3.917 × 10 2 1.971 0.000 1.971 1.296 × 10 2 318. MeV 4.105 × 10 2 1.971 0.000 1.971 Minimum ionization 400. MeV 4.945 × 10 2 1.977 0.000 1.977 1.803 × 10 2 800. MeV 8.995 × 10 2 2.051 0.000 0.000 2.051 3.790 × 10 2 1.00 GeV 1.101 × 10 3 2.085 0.000 0.000 2.085 4.756 × 10 2 1.40 GeV 1.502 × 10

423

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Compact bone (ICRU) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.53010 1.850 91.9 0.05822 3.6419 0.0944 3.0201 3.3390 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.406 7.406 7.477 × 10 -1 14.0 MeV 5.616 × 10 1 5.783 5.783 1.365 × 10 0 20.0 MeV 6.802 × 10 1 4.521 4.521 2.552 × 10 0 30.0 MeV 8.509 × 10 1 3.511 3.511 5.097 × 10 0 40.0 MeV 1.003 × 10 2 3.000 3.000 8.199 × 10 0 80.0 MeV 1.527 × 10 2 2.247 2.247 2.408 × 10 1 100. MeV 1.764 × 10 2 2.106 2.106 3.330 × 10 1 140. MeV 2.218 × 10 2 1.962 1.962 5.307 × 10 1 200. MeV 2.868 × 10 2 1.880 1.880 8.444 × 10 1 300. MeV 3.917 × 10 2 1.849 0.000 1.850 1.382 × 10 2 314. MeV 4.065 × 10 2 1.849 0.000 1.849 Minimum ionization 400. MeV 4.945 × 10 2 1.856 0.000 1.857 1.922 × 10 2 800. MeV 8.995 × 10 2 1.930 0.000 0.000 1.930 4.036 × 10 2 1.00 GeV 1.101 × 10 3 1.963 0.000 0.000 1.964 5.063 × 10 2 1.40 GeV 1.502

424

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Polyimide film (C 22 H 10 N 2 O 5 ) n Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.51264 1.420 79.6 0.15972 3.1921 0.1509 2.5631 3.3497 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.299 7.299 7.576 × 10 -1 14.0 MeV 5.616 × 10 1 5.695 5.695 1.385 × 10 0 20.0 MeV 6.802 × 10 1 4.449 4.449 2.590 × 10 0 30.0 MeV 8.509 × 10 1 3.453 3.453 5.177 × 10 0 40.0 MeV 1.003 × 10 2 2.949 2.949 8.332 × 10 0 80.0 MeV 1.527 × 10 2 2.214 2.214 2.448 × 10 1 100. MeV 1.764 × 10 2 2.074 2.074 3.384 × 10 1 140. MeV 2.218 × 10 2 1.932 1.932 5.392 × 10 1 200. MeV 2.868 × 10 2 1.851 1.851 8.577 × 10 1 300. MeV 3.917 × 10 2 1.820 0.000 1.820 1.404 × 10 2 314. MeV 4.065 × 10 2 1.820 0.000 1.820 Minimum ionization 400. MeV 4.945 × 10 2 1.826 0.000 1.827 1.953 × 10 2 800. MeV 8.995 × 10 2 1.897 0.000 0.000 1.898 4.102 × 10 2 1.00 GeV 1.101 × 10 3 1.929 0.000 0.000 1.930 5.147 × 10 2 1.40

425

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Silicon dioxide (fused quartz) (SiO 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49930 2.200 139.2 0.08408 3.5064 0.1500 3.0140 4.0560 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 6.591 6.591 8.438 × 10 -1 14.0 MeV 5.616 × 10 1 5.158 5.158 1.537 × 10 0 20.0 MeV 6.802 × 10 1 4.041 4.041 2.866 × 10 0 30.0 MeV 8.509 × 10 1 3.145 3.145 5.710 × 10 0 40.0 MeV 1.003 × 10 2 2.691 2.691 9.170 × 10 0 80.0 MeV 1.527 × 10 2 2.030 2.030 2.682 × 10 1 100. MeV 1.764 × 10 2 1.908 1.908 3.701 × 10 1 140. MeV 2.218 × 10 2 1.786 1.786 5.878 × 10 1 200. MeV 2.868 × 10 2 1.719 1.719 9.315 × 10 1 288. MeV 3.788 × 10 2 1.699 0.000 1.699 Minimum ionization 300. MeV 3.917 × 10 2 1.699 0.000 1.699 1.518 × 10 2 400. MeV 4.945 × 10 2 1.711 0.000 1.711 2.105 × 10 2 800. MeV 8.995 × 10 2 1.789 0.000 0.000 1.790 4.391 × 10 2 1.00 GeV 1.101 × 10 3 1.823 0.000 0.000 1.824 5.497

426

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Radon Z A [g/mol] ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 86 (Rn) [222.01758 (2)]9.066 × 10 -3 794.0 0.20798 2.7409 1.5368 4.9889 13.2839 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 3.782 3.782 1.535 × 10 0 14.0 MeV 5.616 × 10 1 3.018 3.018 2.730 × 10 0 20.0 MeV 6.802 × 10 1 2.405 2.405 4.980 × 10 0 30.0 MeV 8.509 × 10 1 1.902 1.902 9.715 × 10 0 40.0 MeV 1.003 × 10 2 1.644 1.644 1.540 × 10 1 80.0 MeV 1.527 × 10 2 1.267 1.267 4.394 × 10 1 100. MeV 1.764 × 10 2 1.201 1.201 6.019 × 10 1 140. MeV 2.218 × 10 2 1.140 1.140 9.452 × 10 1 200. MeV 2.868 × 10 2 1.116 1.117 1.479 × 10 2 216. MeV 3.039 × 10 2 1.116 1.116 Minimum ionization 300. MeV 3.917 × 10 2 1.127 0.000 0.000 1.128 2.372 × 10 2 400. MeV 4.945 × 10 2 1.154 0.000 0.000 1.154 3.249 × 10 2 800. MeV 8.995 × 10 2 1.258 0.001 0.000 1.260 6.559 × 10 2 1.00 GeV 1.101 × 10 3 1.300 0.001 0.000 1.302 8.119

427

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Muons Muons in Solid carbon dioxide (dry ice; CO 2 ) Z/A ρ [g/cm 3 ] I [eV] a k = m s x 0 x 1 C δ 0 0.49989 1.563 85.0 0.43387 3.0000 0.2000 2.0000 3.4513 0.00 T p Ionization Brems Pair prod Photonucl Total CSDA range [MeV/c] [MeV cm 2 /g] [g/cm 2 ] 10.0 MeV 4.704 × 10 1 7.057 7.057 7.841 × 10 -1 14.0 MeV 5.616 × 10 1 5.508 5.508 1.432 × 10 0 20.0 MeV 6.802 × 10 1 4.304 4.304 2.679 × 10 0 30.0 MeV 8.509 × 10 1 3.341 3.341 5.353 × 10 0 40.0 MeV 1.003 × 10 2 2.854 2.854 8.612 × 10 0 80.0 MeV 1.527 × 10 2 2.145 2.145 2.529 × 10 1 100. MeV 1.764 × 10 2 2.017 2.017 3.493 × 10 1 140. MeV 2.218 × 10 2 1.886 1.886 5.554 × 10 1 200. MeV 2.868 × 10 2 1.812 1.812 8.811 × 10 1 300. MeV 3.917 × 10 2 1.787 0.000 1.787 1.438 × 10 2 303. MeV 3.950 × 10 2 1.787 0.000 1.787 Minimum ionization 400. MeV 4.945 × 10 2 1.795 0.000 1.795 1.997 × 10 2 800. MeV 8.995 × 10 2 1.866 0.000 0.000 1.866 4.182 × 10 2 1.00 GeV 1.101 × 10 3 1.896 0.000 0.000 1.897 5.245 × 10

428

The table of isotopes-8th edition and beyond  

SciTech Connect

A new edition of the Table of Isotopes has been published this year by John Wiley and Sons, Inc. This edition is the eighth in a series started by Glenn T. Seaborg in 1940. The two-volume, 3168-page, cloth-bound edition is twice the size of the previous edition published in 1978. It contains nuclear structure and decay data, based mainly on the Evaluated Nuclear Structure Data File (ENSDF), for >3100 isotopes and isomers. Approximately 24000 references are cited, and the appendices have been updated and extended. The book is packaged with an interactive CD-ROM that contains the Table of Isotopes in Adobe Acrobat Portable Document Format for convenient viewing on personal computer (PC) and UNIX workstations. The CD-ROM version contains a chart of the nuclides graphical index and separate indices organized for radioisotope users and nuclear structure physicists. More than 100000 hypertext links are provided to move the user quickly through related information free from the limitations of page size. Complete references with keyword abstracts are provided. The CD-ROM also contains the Table of Super-deformed Nuclear Bands and Fission Isomers; Tables of Atoms, Atomic Nuclei, and Subatomic Particles by Ivan P. Selinov; the ENSDF and nuclear structure reference (NSR) databases; the ENSDF manual by Jagdish K. Tuli; and Abode Acrobat Reader software.

Firestone, R.B. [Lawrence Berkeley Laboratory, CA (United States)

1996-12-31T23:59:59.000Z

429

The usage of the Asymptotic Giant Branch Star Features As Age Indicators in Post-Starburst Galaxies  

E-Print Network (OSTI)

We investigate techniques that can be used to determine ages of recently star forming regions during the phase dominated in the near-IR by the asymptotic giant branch stars (10^8-10^9 yrs). In particular, we present selected near-IR spectroscopic features that identify the contribution of O-rich and C-rich AGB variable stars to the integrated spectra of post-starbursts. The observational strategy based on those features is presented. We discuss the robustness of our selected features in constraining the ages of the post-starburst population depending on its physical environment and on underlying evolved populations. The interplay between the integrated features of populations and the stellar parameters is discussed.

M. Mouhcine; A. Lancon

1999-06-08T23:59:59.000Z

430

Woodfuel Usage Update 1 I Wood fuel use in Scotland 2010 I Hudson Consulting I October 2010  

E-Print Network (OSTI)

Woodfuel Usage Update 1 I Wood fuel use in Scotland 2010 I Hudson Consulting I October 2010 Woodfuel Demand and Usage in Scotland Report 2010 #12;Woodfuel Usage Update 2 I Wood fuel use in Scotland 2010 I Hudson Consulting I October 2010 Woodfuel Demand and Usage in Scotland Report 2010 www

431

Woodfuel Usage Update 1 I Wood fuel use in Scotland 2012 I Hudson Consulting I November 2012  

E-Print Network (OSTI)

Woodfuel Usage Update 1 I Wood fuel use in Scotland 2012 I Hudson Consulting I November 2012 Woodfuel Demand and Usage in Scotland Report 2012 #12;Woodfuel Usage Update 2 I Wood fuel use in Scotland 2012 I Hudson Consulting I November 2012 Woodfuel Demand and Usage in Scotland Report 2012 www

432

Woodfuel Usage Update 1 I Wood fuel use in Scotland 2011 I Hudson Consulting I September 2011  

E-Print Network (OSTI)

Woodfuel Usage Update 1 I Wood fuel use in Scotland 2011 I Hudson Consulting I September 2011 Woodfuel Demand and Usage in Scotland Report 2011 #12;Woodfuel Usage Update 2 I Wood fuel use in Scotland 2011 I Hudson Consulting I September 2011 Woodfuel Demand and Usage in Scotland Report 2011 www

433

The methods of steam coals usage for coke production  

SciTech Connect

Nowadays, high volatile bituminous coals are broadly used for metallurgical coke production in Russia. The share of such coals in the coking blend is variable from 20 to 40% by weight. There are some large coal deposits in Kuznetskii basin which have coals with low caking tendency. The low caking properties of such coals limit of its application in the coking process. At the same time the usage of low caking coals for coke production would allow flexibility of the feedstock for coke production. Preliminary tests, carried out in COAL-C's lab has shown some differences in coal properties with dependence on the size distribution. That is why the separation of the well-caking fraction from petrographically heterogeneous coals and its further usage in coking process may be promising. Another way for low caking coals application in the coke industry is briquettes production from such coals. This method has been known for a very long time. It may be divided into two possible directions. First is a direct coking of briquettes from the low caking coals. Another way is by adding briquettes to coal blends in defined proportion and combined coking. The possibility of application of coal beneficiation methods mentioned above was investigated in present work.

Korobetskii, I.A.; Ismagilov, M.S.; Nazimov, S.A.; Sladkova, I.L.; Shudrikov, E.S.

1998-07-01T23:59:59.000Z

434

Government works with technology to boost gas output/usage  

SciTech Connect

Specially treated ethane gas from fields of the Moomba area in the Cooper basin of South Australia now flows freely through 870 mi of interstate gas pipeline to an end-user in Sydney, New South Wales. This unprecedented usage of ethane is the result of a long-term cooperative agreement. The producer sought to provide the end-user with ethane gas for usage as a petrochemical feedstock to manufacture ethylene and plastic goods. The end-user had strict specifications for a low-CO{sub 2}, very dry ethane product with a small percentage of methane. In order to meet these, the producer committed millions of dollars to construct a high-technology, state-of-the-art ethane treatment facility in the Moomba area, and lay an extensive pipeline. Santos also contracted with the amines supplier to provide a high-performance, deep CO{sub 2} removal solvent with good corrosion prevention characteristics. The paper discusses the Moomba field overflow, gas treatment, government cooperation, and project completion.

Nicoll, H. [Dow Chemical Co., Houston, TX (United States). GAS/SPEC Technology Group

1996-10-01T23:59:59.000Z

435

International energy indicators  

SciTech Connect

Data are presented in graphs and tables on the following: Iran: crude oil capacity, production, and shut-in, monthly, June 1974 to May 1980; Saudi Arabia: crude oil capacity, production, and shut-in, monthly, March 1974 to May 1980; OPEC (Ex-Iran and Saudi Arabia): capacity, production and shut-in, monthly, June 1974 to April 1980; non-OPEC Free World and US production of crude oil, monthly, January 1973 to March 1980; oil stocks: Free World, US, Japan, and Europe (landed), 1973 to first quarter 1980; petroleum consumption by industrial countries, monthly, January 1973 to December 1979; USSR crude oil production, monthly, January 1974 to May 1980; Free World and US nuclear generation capacity, monthly, January 1973 to April 1980; world crude oil production by area, annually, 1947 to 1979; estimated proved world reserves of crude oil, annually, January 1, 1948 to 1980; world marketed production of natural gas, annually, 1950 to 1979; estimated proved world reserves of natural gas, annually, January 1, 1967 to 1980; US trade in natural gas, 1955 to 1979; US imports of crude oil and products, monthly, January 1973 to May 1980; landed cast of Saudi crude oil in current and 1974 dollars, monthly, April 1974 to March 1980; US trade in coal, monthly, January 1973 to April 1980; summary of US merchandise trade, 1976 to April 1980 and Energy/GNP ratio, annually, 1947 to 1949 and, quarterly, first 1973 to first 1980.

Not Available

1980-06-01T23:59:59.000Z

436

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2008 (Million Cubic Feet) Colorado ......................... 0 2 0 6,256 6,258 Delaware ........................ 0 2 0 0 2 Georgia........................... 0 * 0 0 * Hawaii............................. 2,554 5 0 0 2,559 Illinois.............................. 0 15 0 0 15 Indiana............................ 0 30 0 0 30 Iowa ................................ 0 24 3 0 27 Kentucky......................... 0 15 0 0 15 Maryland ......................... 0 181 0 0 181 Massachusetts................ 0 13 0 0 13 Minnesota ....................... 0 46 0 0 46 Missouri .......................... * 6 0 0 6 Nebraska ........................ 0 28 0 0 28 New Hampshire .............. 0 44 0 0 44 New Jersey ..................... 0 0 0 489 489 New York ........................

437

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2009 (Million Cubic Feet) Colorado ......................... 0 3 0 7,525 7,527 Connecticut..................... 0 * 0 0 * Delaware ........................ 0 2 0 0 2 Georgia........................... 0 0 52 * 52 Hawaii............................. 2,438 9 0 0 2,447 Illinois.............................. 0 20 0 0 20 Indiana............................ 0 * 0 0 * Iowa ................................ 0 3 0 0 3 Kentucky......................... 0 18 0 0 18 Maryland ......................... 0 170 0 0 170 Massachusetts................ 0 10 0 0 10 Minnesota ....................... 0 47 0 0 47 Missouri .......................... * 10 0 0 10 Nebraska ........................ 0 18 0 0 18 New Jersey ..................... 0 0 0 454 454 New York ........................

438

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2010 (Million Cubic Feet) Colorado ......................... 0 4 0 5,144 5,148 Delaware ........................ 0 1 0 0 1 Georgia........................... 0 0 732 0 732 Hawaii............................. 2,465 6 0 0 2,472 Illinois.............................. 0 17 0 0 17 Indiana............................ 0 1 0 0 1 Iowa ................................ 0 2 0 0 2 Kentucky......................... 0 5 0 0 5 Louisiana ........................ 0 0 249 0 249 Maryland ......................... 0 115 0 0 115 Massachusetts................ 0 * 0 0 * Minnesota ....................... 0 12 0 0 12 Missouri .......................... * 18 0 0 18 Nebraska ........................ 0 12 0 0 12 New Jersey ..................... 0 0 0 457 457 New York ........................

439

Microsoft Word - table_08.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 8. Supplemental Gas Supplies by State, 2007 (Million Cubic Feet) Colorado ......................... 0 3 0 6,866 6,869 Delaware ........................ 0 5 0 0 5 Georgia........................... 0 2 0 0 2 Hawaii............................. 2,679 4 0 0 2,683 Illinois.............................. 0 11 0 0 11 Indiana............................ 0 81 0 554 635 Iowa ................................ 0 2 38 0 40 Kentucky......................... 0 124 0 0 124 Maryland ......................... 0 245 0 0 245 Massachusetts................ 0 15 0 0 15 Minnesota ....................... 0 54 0 0 54 Missouri .......................... 7 60 0 0 66 Nebraska ........................ 0 33 0 0 33 New Hampshire .............. 0 9 0 0 9 New Jersey ..................... 0 0 0 379 379 New York ........................

440

Table-top job analysis  

SciTech Connect

The purpose of this Handbook is to establish general training program guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at Department of Energy (DOE) nuclear facilities. TTJA is not the only method of job analysis; however, when conducted properly TTJA can be cost effective, efficient, and self-validating, and represents an effective method of defining job requirements. The table-top job analysis is suggested in the DOE Training Accreditation Program manuals as an acceptable alternative to traditional methods of analyzing job requirements. DOE 5480-20A strongly endorses and recommends it as the preferred method for analyzing jobs for positions addressed by the Order.

Not Available

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Plant indicators in Iraq  

Science Journals Connector (OSTI)

Native plants of Iraq have shown considerable variation in their ability...Seidlitzia rosmarinus andHalocnemum strobilaceum indicate very high soil sodium contents, and others high magnesium and sulphate contents...

T. A. Al-Ani; I. M. Habib; A. I. Abdulaziz; N. A. Ouda

1971-08-01T23:59:59.000Z

442

Environmental Regulatory Update Table, October 1991  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-11-01T23:59:59.000Z

443

Environmental Regulatory Update Table, August 1991  

SciTech Connect

This Environmental Regulatory Update Table (August 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M., Hawkins, G.T.; Salk, M.S.

1991-09-01T23:59:59.000Z

444

Environmental Regulatory Update Table, September 1991  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-10-01T23:59:59.000Z

445

Environmental Regulatory Update Table, November 1991  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-12-01T23:59:59.000Z

446

Environmental regulatory update table, July 1991  

SciTech Connect

This Environmental Regulatory Update Table (July 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-08-01T23:59:59.000Z

447

Environmental Regulatory Update Table, November 1990  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Hawkins, G.T.; Houlberg, L.M.; Noghrei-Nikbakht, P.A.; Salk, M.S.

1990-12-01T23:59:59.000Z

448

A ranking and exploration service based on large-scale usage data  

SciTech Connect

This poster presents the architecture and user interface of a prototype service that was designed to allow end-users to explore the s tructure of science and perform assessments of scholarly impact on the basis of large-scale usage data. The underlying usage data set was constructed by the NIESUR project which collected 1 billion usage events from a wide range of publishers, aggregators and institutional consortia.

Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert L [Los Alamos National Laboratory; Balakireva, Lyudmila L [Los Alamos National Laboratory; Chute, Ryan M [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

449

Microsoft Word - table_09.doc  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 9 Created on: 12/12/2013 2:08:24 PM Table 9. Underground natural gas storage - by season, 2011-2013 (volumes in billion cubic feet) Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Year, Season, and Month Base Gas Working Gas Total Volume Percent Injections Withdrawals Net Withdrawals a 2011 Refill Season April 4,304 1,788 6,092 -223 -11.1 312 100 -212 May 4,304 2,187 6,491 -233 -9.6 458 58 -399 June 4,302 2,530 6,831 -210 -7.7 421 80 -340 July 4,300 2,775 7,075 -190 -6.4 359 116 -244 August 4,300 3,019 7,319 -134 -4.2 370 126 -244 September 4,301 3,416 7,717 -92 -2.6 454 55

450

All Price Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

1) 1) June 2013 State Energy Price and Expenditure Estimates 1970 Through 2011 2011 Price and Expenditure Summary Tables Table E1. Primary Energy, Electricity, and Total Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 3.09 5.66 26.37 22.77 25.54 27.12 13.18 19.42 25.90 0.61 3.01 8.75 2.56 27.08 19.85 Alaska 3.64 6.70 29.33 23.12 29.76 31.60 20.07 34.62 26.61 - 14.42 20.85 6.36 47.13 25.17 Arizona 1.99 7.07 27.73 22.84 31.95 26.97 17.00 17.23 26.71 0.75 6.31 10.79 2.16 28.46 25.23 Arkansas 1.93 6.94 26.37 22.45 26.66 27.35 17.35 33.22

451

Microsoft Word - table_13.doc  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration | Natural Gas Monthly 31 Table 13 Created on: 12/12/2013 2:28:44 PM Table 13. Activities of underground natural gas storage operators, by state, September 2013 (volumes in million cubic feet) State Field Count Total Storage Capacity Working Gas Storage Capacity Natural Gas in Underground Storage at End of Period Change in Working Gas from Same Period Previous Year Storage Activity Base Gas Working Gas Total Volume Percent Injections Withdrawals Alabama 2 35,400 27,350 8,050 21,262 29,312 2,852 15.5 1,743 450 Alaska a 5 83,592 67,915 14,197 20,455 34,652 NA NA 1,981 30 Arkansas 2 21,853 12,178 9,648 3,372 13,020 -1,050 -23.7 204 0 California 14 599,711 374,296

452

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Coal Natural Gas c Petroleum Nuclear Electric Power Hydro- electric Power d Biomass e Other f Net Interstate Flow of Electricity/Losses g Residential Commercial Industrial b Transportation Alabama 2,159.7 853.9 404.0 638.5 329.9 106.5 185.0 0.1 -358.2 393.7 270.2 1,001.1 494.7 Alaska 779.1 14.1 411.8 334.8 0.0 15.0 3.3 0.1 0.0 56.4 63.4 393.4 266.0 Arizona 1,436.6 425.4 354.9 562.8 293.1 69.9 8.7 3.6 -281.7 368.5 326.0 231.2 511.0 Arkansas 1,135.9 270.2 228.9 388.3 161.1 36.5 76.0 0.6 -25.7 218.3 154.7 473.9 288.9 California 8,364.6 68.9 2,474.2 3,787.8 315.6 342.2

453

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Consumption Estimates 1960 Through 2009 2009 Consumption Summary Tables Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,906.8 631.0 473.9 583.9 1,688.8 415.4 272.9 -470.3 0.0 383.2 266.0 788.5 469.2 Alaska 630.4 14.5 344.0 255.7 614.1 0.0 16.3 0.0 (s) 53.4 61.0 325.4 190.6 Arizona 1,454.3 413.3 376.7 520.8 1,310.8 320.7 103.5 -279.9 -0.8 400.8 352.1 207.8 493.6 Arkansas 1,054.8 264.1 248.1 343.1 855.3 158.7 126.5 -85.7 0.0 226.3 167.0 372.5

454

Microsoft Word - table_01.doc  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 1 Table 1. Summary of natural gas supply and disposition in the United States, 2008-2013 (billion cubic feet) Year and Month Gross Withdrawals Marketed Production NGPL Production a Dry Gas Production b Supplemental Gaseous Fuels c Net Imports Net Storage Withdrawals d Balancing Item e Consumption f 2008 Total 25,636 21,112 953 20,159 61 3,021 34 2 23,277 2009 Total 26,057 21,648 1,024 20,624 65 2,679 -355 -103 22,910 2010 Total 26,816 22,382 1,066 21,316 65 2,604 -13 115 24,087 2011 January 2,299 1,953 92 1,861 5 236 811 R -24 R 2,889 February 2,104 1,729 82 1,647 4 186 594 R 20 R 2,452 March 2,411 2,002 95 1,908 5 171 151 R -4 R 2,230 April 2,350 1,961 93 1,868 5 R 152 -216 R 17 R 1,825 May 2,411 2,031

455

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural gas production, transmission, and consumption, by state, 2012 (million cubic feet) U.S. Energy Information Administration | Natural Gas Annual 4 Table 2 Alabama 215,710 7,110 -162,223 617,883 0 -2,478 0 666,738 Alaska 351,259 21,470 22,663 0 -9,342 0 0 343,110 Arizona 117 0 -13,236 389,036 -43,838 0 0 332,079 Arkansas 1,146,168 424 -18,281 -831,755 0 -103 0 295,811 California 246,822 12,755 104,820 2,222,355 -109,787 48,071 0 2,403,385 Colorado 1,709,376 81,943 -107,940 -1,077,968 0 2,570 4,412 443,367 Connecticut 0 0 4,191 225,228 0 260 0 229,159 Delaware 0 0 21,035 80,692 0 51 * 101,676 District of Columbia 0 0 497 28,075 0 0 0 28,572 Florida 18,681 0 15,168 1,294,620 0 0 0 1,328,469

456

TableHC2.12.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Detached Attached 2 to 4 Units Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

457

TABLE54.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," and EIA-813, Monthly Crude Oil Report." Table 54. Movements of Crude Oil and Petroleum Products by Pipeline...

458

TABLE19.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

Table 19. PAD District IV-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

459

TABLE15.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

Table 15. PAD District III-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

460

TABLE53.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

Table 53. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between July 2004 Crude Oil ... 0 383 0...

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

TABLE11.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

(Thousand Barrels) Table 11. PAD District II-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum January-July 2004 Products, Crude Oil...

462

2011 Annual Report Table of Contents  

E-Print Network (OSTI)

) ...................12 Smart Grid Cyber Security.....................................................13 ICT Supply ChainComputer Security Division 2011 Annual Report #12;Table of Contents Welcome ................................................................. 1 Division Organization .................................................2 The Computer Security

463

Summary Statistics Table 1. Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Cost Report." Figure Energy Information Administration Petroleum Marketing Annual 1996 3 Table 2. U.S. Refiner Prices of Petroleum Products to End Users (Cents per Gallon...

464

GIS DEVELOPMENT GUIDE Table of Contents  

E-Print Network (OSTI)

GIS DEVELOPMENT GUIDE Volume II Table of Contents SURVEY OF AVAILABLE DATA Introduction ...................................................................................13 EVALUATING GIS HARDWARE AND SOFTWARE Introduction ...................................................................................14 Sources of Information About GIS......................................................14 GIS

Ghelli, Giorgio

465

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

466

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

467

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

468

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

469

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

470

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

471

Statistical Model Development for Estimating Bicycle Rack Usage at Auburn University.  

E-Print Network (OSTI)

??The objective of this research was to develop and evaluate statistical models to estimate bicycle rack usage for a university campus environment. An analysis was (more)

Wilson, Christopher

2011-01-01T23:59:59.000Z

472

On the Usage of Multiflow Transponders under Anycast and Unicast Traffic in Elastic Optical Networks  

Science Journals Connector (OSTI)

The impact of anycast and unicast traffic on transponder usage in both symmetric and asymmetric lightpath provisioning scenarios in Elastic Optical Networks is studied. Acceptable...

Walkowiak, Krzysztof; Klinkowski, Miroslaw

473

Black-Box Test Case Generation from TFM Module Interface Specications and Usage Statistics.  

E-Print Network (OSTI)

??In this thesis, we propose a black-box testing method that derives important test cases by including usage statistics, and enables a product manager to make (more)

Iwata, Katsuya

2012-01-01T23:59:59.000Z

474

A model for representing the motivational and cultural factors that influence mobile phone usage variety.  

E-Print Network (OSTI)

??Mobile phone usage involves the mobile phone, the telecommunications system, mobile phone users, and the adoption and use of the system. Mobile communications is a (more)

Van Biljon, Judith Arnoldine

2006-01-01T23:59:59.000Z

475

Distribution of personality, individual characteristics and internet usage in Swedish older adults.  

E-Print Network (OSTI)

??Objectives: This paper investigated factors associated with internet usage in the Swedish older adults ranging in age from 60 to 96. Personality traits and individual (more)

Berner, Jessica; Rennemark, Mikael; Jogrus, Claes

2012-01-01T23:59:59.000Z

476

Network effects, economic efficiency, and usage-based pricing for internet access.  

E-Print Network (OSTI)

??This paper attempts to shed some light on the issue of net neutrality by examining the extent to which Internet usage is efficiently allocated under (more)

Cooper, Matthew L.

2011-01-01T23:59:59.000Z

477

Visualisation techniques and its uses in representation of web usage patterns: a survey  

Science Journals Connector (OSTI)

Web usage mining, the analysis of user navigation paths through websites, is a common technique for evaluating site designs or adaptive websites. Web usage mining results in usage patterns which can help website designers, analysts and business executives in proactive decision making. Different visualisation techniques are used to represent mined patterns so that it can be easily understood by the executives. It is found that the visualisation can significantly increase the quality and usefulness of web log mining results. In this paper, we tried to find out how many different visualisation techniques are utilised for web usage mining.

Ratnesh Kumar Jain

2014-01-01T23:59:59.000Z

478

API for current energy usage data per consumer | OpenEI Community  

Open Energy Info (EERE)

for current energy usage data per consumer Home > Groups > Developer Hello, I'm a web application developer working on an app to determine an individuals environmental impact,...

479

Department of Energy Federal Acquisition Regulation Clause Usage Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type of Contract: FP SUP Fixed-Price Supply CR SUP Cost-Reimbursement Supply FP SVC Fixed-Price Service CR SVC Cost Reimbursement Service FP CON Fixed-Price Construction CR CON Cost Reimbursement Construction T&M LH Time & Material, Labor Hours FP A-E Fixed Price Architect-Engineer CR A-E Cost Reimbursement Architect-Engineer Comm. Items Commercial Items M&O Management & Operating Other Fac. Mgmt. Other Facility Management SAP Simplified Acquisition Procedures Clause Usage R Required A Required When Applicable NA Not Applicable Provision or Clause (Click on clause number to see its text and prescription FP Sup. CR Sup. FP Serv. Cost Serv. FP Cons. Cost Cons. T&M. L.H. FP A- E Cost A-E Com. Items. M&O Other

480

Effective usage of credit records promotes cooperation on weighted networks  

Science Journals Connector (OSTI)

The cooperative behaviors of players on weighted networks are investigated by incorporation of trust mechanisms into a well-accepted game model, i.e., the networked prisoners dilemma game, afterwards some weight-updating schemes are designed according to the credit records. Despite the differences in network topologies and strategy updating protocols, a simple yet significant principle surfaces that, to promote the emergence of cooperation over abundant weighted networks, only the latest credit record of partners is required to be taken into consideration, whereas incorporating more previous records may even deteriorate the cooperation performance. To support such an appealing principle, we have investigated more deeply into the role of credit records so as to give a detailed explanation underlying it. The virtue of this work lies in providing insights into the effective usage of the currently available credit records.

Chao Zhai; Hai-Tao Zhang; Yang Zhao; Michael Z. Q. Chen; Zhi-Hai Rong; Bing-Hong Wang

2010-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "usage indicators table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The usage of open educational resources in MAOR repository  

Science Journals Connector (OSTI)

In this paper, an innovative view of open online learning materials repositories will be presented through the example of MAOR, Israel's national repository that is linked to MERLOT. Web-usage mining techniques are utilised to explore three aspects: (a) distribution level of learning object (LO) that was contributed; (b) tools available to the community and its contribution to object quality; (c) transfer from public to personal workspaces. The use of MAOR repository has become substantial and continues to rise every year to both local and global audience. MAOR members contributed more than 3,300 LO and may access to approximately 30,000 in MERLOT. Furthermore, as part of the learning community they share knowledge by adding comments regarding the object and their experiences and benefit from additional information contributed by users in MERLOT. In addition, the potential of the personal workspaces was identified even though it is a new feature in MAOR.

Eli Shmueli; Anat Cohen

2012-01-01T23:59:59.000Z

482

General Indicators: Change from  

E-Print Network (OSTI)

Completed in 1 business day 81% -1% 100% - 78% 100% 80% Quality Inspections Completed 95% - - - - Utilities: See Definitions Document for descriptions of performance measures and specific color code target values. Trend status color indicators ­ identifies changes from the prior month: Steam/Chilled Water

Webb, Peter

483

Indicators: Performance Statistics  

E-Print Network (OSTI)

-82 100 10 7 8 0 10 Completed in 1 business day 74% -14% 100% 60% 71% 63% 100% 100% Quality of performance measures and specific color code target values. Trend status color indicators ­ identifies changes Breakdown All Zones Combined Zone Breakdown Steam/Chilled Water Electric 17% 20% 0 100% 100% 1 Improvement

Webb, Peter

484

Indicators: Performance Statistics  

E-Print Network (OSTI)

% Quality Inspections Completed 66% +12% 95% 86% 95% 52% 81% 51% 76% Utilities: Performance Statistics of performance measures and specific color code target values. Trend status color indicators ­ identifies changes from the prior month: Key: - 54% Electric - 0% All Zones Combined Zone Breakdown Steam/Chilled Water 0

Webb, Peter

485

General Indicators: Change from  

E-Print Network (OSTI)

100 4 11 2 75 Completed in 1 business day 92% -5% 100% 100% 100% 100% 91% Quality Inspections measures and specific color code target values. Trend status color indicators ­ identifies changes from the prior month: 100% 50% 70% - All Districts Combined 0 Electric 0 District Breakdown Steam/Chilled Water

Webb, Peter

486

General Indicators: Change from  

E-Print Network (OSTI)

100 0 5 3 84 Completed in 1 business day 97% +16% 100% - 100% 100% 96% Quality Inspections Completed-FLS 86% -7% 70% Key: See Definitions Document for descriptions of performance measures and specific color code target values. Trend status color indicators ­ identifies changes from the prior month: Steam

Webb, Peter

487

Indicators: Performance Statistics  

E-Print Network (OSTI)

% 75% 100% 80% 100% 93% Quality Inspections Completed 54% +2% 95% 40% 34% 57% 88% 60% 54% Utilities for descriptions of performance measures and specific color code target values. Trend status color indicators ­ identifies changes from the prior month: Key: 0% 43% Electric 0% 11% All Zones Combined Zone Breakdown Steam

Webb, Peter

488

Indicators: Performance Statistics  

E-Print Network (OSTI)

's): Quantity 117 -97 100 13 14 9 4 77 Completed in 1 business day 88% -8% 100% 77% 43% 78% 100% 99% Quality measures and specific color code target values. Trend status color indicators ­ identifies changes from the prior month: Steam 100% 58% 0 - Electric 26% 0 UNIVERSITY SERVICES ­ FACILITIES MANAGEMENT MONTHLY

Webb, Peter

489

Indicators: Change from  

E-Print Network (OSTI)

% 69% 100% 98% Quality Inspections Completed 52% +21% 95% 25% 100% 82% 0% Utilities: Performance for descriptions of performance measures and specific color code target values. Trend status color indicators OPERATIONS SCORECARD All Districts Combined District Breakdown Steam/Chilled Water February 2008 All

Webb, Peter

490

General Indicators: Change from  

E-Print Network (OSTI)

100 8 14 5 119 Completed in 1 business day 97% +17% 100% 88% 93% 100% 98% Quality Inspections measures and specific color code target values. Trend status color indicators ­ identifies changes from the prior month: All Districts Combined 0 Electric 2 District Breakdown Steam/Chilled Water - 55% 39

Webb, Peter

491

General Indicators: Change from  

E-Print Network (OSTI)

's): Quantity 10 No Change 100 1 1 3 5 Completed in 1 business day 70% -10% 100% 100% 0% 100% 60% Quality measures and specific color code target values. Trend status color indicators ­ identifies changes from the prior month: Steam/Chilled Water Electric 84% 84% 4 3 - - Met Target Requires ReviewMissed Target

Webb, Peter

492

Indicators: Change from  

E-Print Network (OSTI)

% Quality Inspections Completed 99% No Change 95% 100% 100% 99% 100% Utilities: Performance Statistics of performance measures and specific color code target values. Trend status color indicators ­ identifies changes SCORECARD All Districts Combined District Breakdown Steam/Chilled Water June 2008 All Districts Combined All

Webb, Peter

493

Indicators: Change from  

E-Print Network (OSTI)

's): Quantity 207 -39 100 16 24 5 5 157 Completed in 1 business day 84% -9% 100% 88% 100% 80% 100% 81% Quality measures and specific color code target values. Trend status color indicators ­ identifies changes from the prior month: Key: 50% 52% Electric - 26% All Zones Combined Zone Breakdown Steam/Chilled Water 3 0 All

Webb, Peter

494

Indicators: Change from  

E-Print Network (OSTI)

% Quality Inspections Completed 99% +3% 95% 100% 98% 99% 100% Utilities: Performance Statistics Current of performance measures and specific color code target values. Trend status color indicators ­ identifies changes Combined District Breakdown Steam/Chilled Water May 2008 All Districts Combined All Districts Combined

Webb, Peter

495

Indicators: Change from  

E-Print Network (OSTI)

% 100% 88% Quality Inspections Completed 26% -17% 95% 43% 72% 0% 61% 10% 63% Utilities: Performance for descriptions of performance measures and specific color code target values. Trend status color indicators which may understate actual compliance results. All Zones Combined Zone Breakdown Steam/Chilled Water 0

Webb, Peter

496

Triboluminescent indicator system  

DOE Patents (OSTI)

There is provided a light emitting device comprising a plurality of triboluminescent particles dispersed throughout a low density, frangible body and activated by rapidly crushing the body in order to transfer mechanical energy to some portion of the particles. The light emitted by these mechanically excited particles is collected and directed into a light conduit and transmitted to a detector/indicator means.

Goods, Steven H. (Livermore, CA); Dentinger, Paul M. (Sunol, CA); Whinnery, Jr., Leroy L. (Danville, CA)

2003-06-24T23:59:59.000Z

497

Exhibit C Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Exhibit C Schedules and Lists Exhibit C Schedules and Lists Dated 5-20-13 Subcontract No. 241314 Page 1 of 5 EXHIBIT "C" SCHEDULES AND LISTS TABLE OF CONTENTS Form Title A Schedule of Quantities and Prices B Milestone and Payment Schedule C Lower-Tier Subcontractor and Vendor List Exhibit C Schedules and Lists Dated 5-20-13 Subcontract No. 241314 Page 2 of 5 EXHIBIT "C" FORM A SCHEDULE OF QUANTITIES AND PRICES NOTE: This Exhibit "C" Form A is part of the model subcontract for Trinity and is provided to Offerors for informational purposes only. It is not intended that this form be returned with the Offeror's proposal. 1.0 WORK TO BE PERFORMED Work shall be performed strictly in accordance with requirements of the Subcontract

498

Microsoft Word - table_07.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 7. Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State, 2005 Alabama .................................. 255,157 9,748 13,759 37,048 Alaska...................................... 3,089,229 23,700 27,956 105,449 Arkansas.................................. 16,756 177 231 786 California ................................. 226,230 11,101 13,748 45,926 Colorado .................................. 730,948 25,603 34,782 95,881 Florida...................................... 3,584 359 495 1,400 Illinois....................................... 280 37 46 129 Kansas..................................... 476,656 22,165 31,521 85,737 Kentucky.................................. 38,792 1,411 1,716 5,725 Louisiana ................................. 2,527,636 73,035 103,381

499

Microsoft Word - table_05.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 5. Number of Producing Gas Wells by State and the Gulf of Mexico, December 31, 2006-2010 Alabama .......................................................... 6,227 6,591 6,860 6,913 7,026 Alaska.............................................................. 231 239 261 261 269 Arizona ............................................................ 7 7 6 6 5 Arkansas.......................................................... 3,814 4,773 5,592 6,314 7,397 California ......................................................... 1,451 1,540 1,645 1,643 1,580 Colorado .......................................................... 20,568 22,949 25,716 27,021 28,813 Gulf of Mexico.................................................. 2,419 2,552 1,527 1,984 1,852 Illinois...............................................................

500

Microsoft Word - table_06.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 6. Wellhead Value and Marketed Production of Natural Gas, 2004-2008, and by State, 2008 2004 Total ............................ 15,223,749 -- 5.46 19,517,491 106,521,974 2005 Total ............................ 15,425,867 -- 7.33 18,927,095 138,750,746 2006 Total ............................ 15,981,421 -- 6.39 19,409,674 124,074,399 2007 Total ............................ R 16,335,710 -- R 6.25 R 20,196,346 R 126,164,553 2008 Total ............................ 18,424,440 -- 7.96 21,239,516 169,038,089 Alabama ............................... 246,747 2,382,188 9.65 257,884 2,489,704 Alaska................................... 337,359 2,493,128 7.39 398,442 2,944,546 Arizona ................................. 503 3,568 7.09 523 3,710 Arkansas...............................