National Library of Energy BETA

Sample records for usage hydrogen kerosene

  1. Characterization of population and usage of unvented kerosene space heaters. Final report, May 1988-January 1989

    SciTech Connect (OSTI)

    Barnes, J.; Holland, P.; Mihlmester, P.

    1990-01-01

    The report gives results of a study of the market penetration of unvented kerosene space heaters (UKSHs) in the residential sector. The study was aimed at gathering baseline information to help assess the magnitude and potential severity of a problem involving emissions from unvented appliances, one of a number of synergistic factors affecting indoor air quality. UKSHs can be a significant source of such emissions. UKSH usage patterns were also investigated. Annual sales of UKSHs are estimated at 825,000 units. Leading brands include convective units marketed by Toyotomi USA (kero-Sun) and Corona USA. Some units contain built-in catalytic filters for odor control. Add-on catalytic filters are available from at least one manufacturer. It is believed that 15-17 million portable UKSHs have been sold in the U.S. since the early 1970s. However, it is estimated that, in the 1986-87 heating season, there were only about 7 million units in use. About half of these units are in the South. Depending on whether UKSHs are used as primary or secondary heating sources, they may be used anywhere from 1 to 17 hours a day. Eighty percent of UKSHs are used in multi-family dwellings and mobile homes.

  2. Kerosene controversy

    SciTech Connect (OSTI)

    McClintock, M.

    1985-10-01

    Controversy over warnings about the safety of kerosene space heaters, which were felt by many to have unacceptable fire and air pollution risks, has led to improved models. New kerosene heaters have birdcage grilles to prevent burns and tipover shut-off switches to prevent fires. They are available in portable and console models. Indoor pollution tests which found significantly higher levels of carbon monoxide, nitrogen oxide, and particulates in monitored houses also found that the threshold for emission problems is 85/sup 0/F. The Consumer Product Safety Commission recommends that even the new models be operated with open doors. Unvented gas heaters introduce the same hazards, while asbestos, formaldehyde, and other substances also represent health hazards. The author provides guidelines for buying and operating a kerosene heater.

  3. Portable kerosene heater controversy

    SciTech Connect (OSTI)

    Decker, M.O.

    1982-04-01

    The National Kerosene Heater Association reports sales of slightly fewer than two million heaters in the United States between 1975 and 1979. More than one million were sold in 1980 and they project sales of eight to ten million by 1985. Kerosene heater dealers are urged to post warnings to customers specifying the grade of kerosene to be used. 1-K kerosene has a maximum sulfur content of .04% and is generally suitable for use in nonflue-connected burners. 2-K kerosene, with a sulfur content of as much as .30% should be used only in flue-connected burner applications. (JMT)

  4. Kerosene space heaters--combustion technology and kerosene characteristics

    SciTech Connect (OSTI)

    Kubayashi, k.; I Wasaki, N.

    1984-07-01

    This paper describes kerosene combustion technology. Unvented wick-type kerosene space heaters are very popular in Japan because of their economy and convenience. In recent years new vaporized kerosene burners having premixed combustion systems have been developed to solve some of the problems encountered in the older portable type. Some of the features of the new burners are instantaneous ignition, no vaporizing deposit on the burner and a wide range heating capacity. These new kerosene heaters have four major components: an air supply fan, a fuel supply assembly, a burner assembly and a control assembly. These heaters are designed to be highly reliable, have stable combustion characteristics, yield minimum carbon deposit. Finally, they are simple and inexpensive to operate.

  5. Fuel oil and kerosene sales 1995

    SciTech Connect (OSTI)

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  6. RECS Fuel Oil Usage Form_v1 (Draft).xps

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil usage for this delivery address between September 2008 and April 2010. Delivery ... Form EIA 457G OMB No. 1905-0092 Expires 13113 2009 RECS Fuel Oil and Kerosene Usage Form ...

  7. Fuel oil and kerosene sales 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-03

    This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  8. Fuel oil and kerosene sales 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  9. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  10. Fuel oil and kerosene sales 1997

    SciTech Connect (OSTI)

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  11. Fuel oil and kerosene sales 1996

    SciTech Connect (OSTI)

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  12. Fuel Oil and Kerosene Sales 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    national level are provided in summary tables. For Fuel Oil and Kerosene Sales on the Internet, access EIA's home page at http:www.eia.doe.gov. Internet Addresses: E-Mail:...

  13. Device for collecting emissions from kerosene heaters

    SciTech Connect (OSTI)

    Gilloti, N.J.

    1984-09-04

    An apparatus for both improving the heat distribution throughout a room from a portable kerosene heater and for collecting undesirable emissions resulting from the burning of the kerosene, includes a base adapted to be mounted on the top of the heater, the base supporting a vertically extending shaft on which is mounted a heat-driven fan formed of either paper or metal, and a disposable disk mounted a spaced distance above the fan on the same shaft, the disk serving as a collector for the undesirable emissions. When the device is placed on an operating kerosene heater, the rising hot air and gases from the heater cause the fan to rotate, which in turn causes emissions from the burning fuel to move upwardly in a more or less cylindrical path. As the products of combustion move upwardly, certain emissions therein such as soot, oily vapors, etc. deposit or condense onto the surface of the spinner and disposable disk.

  14. Fuel Oil and Kerosene Sales 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Oil and Kerosene Sales 2014 December 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2014 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  15. Fuel oil and kerosene sales, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

  16. Fuel oil and kerosene sales 1994

    SciTech Connect (OSTI)

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  17. Usage Demographics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demographics Usage Demographics NERSC Usage Demographics 2014 In 2014, NERSC supported about 6,000 users from universities, national laboratories and industry, working on 849...

  18. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  19. Usage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Statistics Usage Statistics Genepool Cluster Statistics Period: daily weekly monthly quarter yearly 2year Utilization By Group Jobs Pending Last edited: 2013-09-26 18:21:13...

  20. Fuel Oil and Kerosene Sales - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    ‹ See All Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2014 | Release Date: December 22, 2015 | Next Release Date: November 2016 Previous Issues Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go EIA is considering changes to the survey Form EIA-821, "Annual Fuel Oil and Kerosene Sales Report," such as deleting kerosene and adding propane. If you would like to participate in a discussion on these proposed changes

  1. NERSC Usage Demographics 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 NERSC Usage Demographics 2010 Academic Usage Usage by Discipline DOE & Other Lab Usage Usage by Institution Type Last edited: 2015-03-02 16:21:16...

  2. Kerosene vs. electric portable heaters: the question of risk

    SciTech Connect (OSTI)

    Leff, H.S.

    1984-03-01

    As home heating costs have risen, more and more people have turned to portable electric and kerosene space heaters. Kerosene heaters are cheaper to run than electric, but there are numerous health and safety issues - many of them unanswered - associated with their use. Among the issues discussed are indoor air pollution by sulfur dioxide, the life-cycle costs, the deposition of pollution on furniture, and the fire hazards.

  3. Indoor air pollution from portable kerosene-fired space heaters. [Effects of wick height and fuel consumption rate

    SciTech Connect (OSTI)

    Traynor, G.W.; Apte, M.G.; Dillworth, J.F.; Grimsrud, D.T.

    1983-02-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutant levels. Laboratory tests were conducted on radiant and convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Laboratory-derived CO and NO/sub 2/ emission rates from unvented portable kerosense-fired space heaters are summarized and the effect of wick height and fuel consumption rate on CO and NO/sub 2/ emissions is given. Pollutant concentration profiles resulting from the use of kerosene heaters in a 27m/sup 3/ environmental chamber and a 240m/sup 3/ house are presented. When such heaters are operated for one hour in a 27m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard. Further data on parameters such as heater usage patterns and air exchange rates are needed to determine the actual pollutant exposure that kerosene heater users experience.

  4. HSI Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage HSI Usage HSI is a flexible and powerful command-line utility to access the NERSC HPSS storage systems. Like FTP, you can use it to store and retrieve files but it has a much larger set of commands for listing your files and directories, creating directories, changing file permissions, etc. The command set has a UNIX look and feel (e.g. mv, mkdir, rm, cp, cd, etc.) so that moving through your HPSS directory tree is almost identical to what you would find on a UNIX file system. HSI can be

  5. HTAR Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage HTAR Usage HTAR is a command line utility that creates and manipulates HPSS-resident tar-format archive files. It is ideal for storing groups of files in HPSS. Since the tar file is created directly in HPSS, it is generally faster and uses less local space than creating a local tar file then storing that into HPSS. Furthermore, HTAR creates an index file that (by default) is stored along with the archive in HPSS. This allows you to list the contents of an archive without retrieving it to

  6. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 1 U.S...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    21, Annual Fuel Oil and Kerosene Sales Report Page 1 U.S. DEPARTMENT OF ENERGY U.S. ENERGY ... No.: 2015.01 FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT INSTRUCTIONS 1. ...

  7. ,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or ... Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales ...

  8. Air-pollutant emissions from kerosene space heaters

    SciTech Connect (OSTI)

    Leaderer, B.P.

    1982-12-10

    Air pollutant emissions from portable convective and radiant kerosene space heaters were measured in an environmental chamber. Emission factors for nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, and oxygen depletion are presented. The data suggest that the use of such heaters in residences can result in exposures to air pollutants in excess of ambient air quality standards and in some cases in excess of occupational health standards.

  9. Deliveries of fuel oil and kerosene in 1980

    SciTech Connect (OSTI)

    Not Available

    1982-02-11

    This report contains numerical data on deliveries of distillate fuel oil, residual fuel oil, and kerosene which will be helpful to federal and state agencies, industry, and trade associations in trend analysis, policy/decision making, and forecasting. The data for 1979 and 1980 are tabulated under the following headings: all uses, residential, commercial, industrial, oil companies, electric utilities, transportation, military, and farm use. The appendix contains product and end-use descriptions. (DMC)

  10. Usage Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Summaries PDSF Group Batch Summary Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 Partial SGE62 2015 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2014 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2013 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 2012 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62 SGE62

  11. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  12. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  13. NERSC Usage Demographics 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 NERSC Usage Demographics 2011 Last edited: 2016-08-18 15:54:34

  14. NERSC Usage Demographics 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 NERSC Usage Demographics 2012 Last edited: 2016-06-29 14:26:22

  15. NERSC Usage Demographics 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 NERSC Usage Demographics 2013 Last edited: 2016-06-29 14:27:1

  16. Pollutant emissions from portable kerosene-fired space heaters

    SciTech Connect (OSTI)

    Traynor, G.W.; Allen, J.R.; Apte, M.G.; Girman, J.R.; Hollowell, C.D.

    1983-06-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutants. We conducted laboratory tests on two radiant and two convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Results show that carbon dioxide, carbon monoxide, nitric oxide, nitrogen dioxide, and formaldehyde were emitted by both types of heaters and that the radiant heaters and one of the convective heaters also emitted trace amounts of fine particles. When such heaters are operated for 1 h in a 27-m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard.

  17. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. Effects on carbon monoxide levels in mobile homes using unvented kerosene heaters for residential heating

    SciTech Connect (OSTI)

    Williams, R.; Walsh, D.; White, J.; Jackson, M.; Mumford, J.

    1992-01-01

    Carbon monoxide (CO) emission levels were continuously monitored in 8 mobile trailer homes less than 10 years old. These homes were monitored in an US EPA study on indoor air quality as affected by unvented portable kerosene heaters. Respondents were asked to operate their heaters in a normal fashion. CO, air exchange and temperature values were measured during the study in each home. Results indicate that consumers using unvented kerosene heaters may be unknowingly exposed to high CO levels without taking proper precautions.

  19. Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development

    SciTech Connect (OSTI)

    Jacobson, Arne; Bond, Tami C.; Lam, Nicholoas L.; Hultman, Nathan

    2013-04-15

    Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

  20. Advanced Usage Examples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Examples Advanced Usage Examples Transferring Data from Batch Jobs Once you have set up your automatic HPSS authentication you can access HPSS within batch scripts. Read More ...

  1. NERSC Usage Demographics 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 NERSC Usage Demographics 2014 In 2014, NERSC supported about 6,000 users from universities, national laboratories and industry, working on 849 projects with allocations of NERSC...

  2. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    SciTech Connect (OSTI)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  3. NERSC Usage and User Demographics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Demographics Users and Projects Through the Years Careers Visitor Info Web Policies Home » About » Usage and User Demographics NERSC Usage and User Demographics Usage Demographics Number of NERSC Users and Projects Through the Years Number of NERSC Users and Projects Through the Years Read More » Last edited: 2015-03-02 16:21:25

  4. How usage is charged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    usage is charged How usage is charged MPP Charging (Computational Systems) When a job runs on a NERSC MPP system, such as Hopper, charges accrue against one of the user's repository allocations. The unit of accounting for these charges is the "MPP Hour". A parallel job is charged for exclusive use of each multi-core node allocated to the job. The MPP charge for such a job is calculated as the product of: the job's elapsed wall-clock time in hours the number of nodes allocated to the

  5. NERSC Usage Demographics 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 NERSC Usage Demographics 2014 In 2014, NERSC supported about 6,000 users from universities, national laboratories and industry, working on 849 projects with allocations of NERSC resources. Our users come from across the U.S. and around the globe, with 48 states and 46 countries represented. Last edited: 2016-06-29 14:26:5

  6. 2014 EIA-821 SURVEY: LINE-BY-LINE REFERENCE GUIDE Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    Page 1 2014 EIA-821 SURVEY: LINE-BY-LINE REFERENCE GUIDE Kerosene Line No. Sold directly to consumers for: 1 Residential Use (Non-Farm): * Backup generator * Home heating and cooking * Personal lawn equipment * Exclude: Apartment buildings and Farmhouses 2 Commercial Use: * Apartment building * Bank * Casino * Church * College/School/Institution * Department/Retail store * Environmental clean-up service * Flushing fuel lines * Forestry service * Golf course * Government (federal, state, local,

  7. Studies on the stripping of cerium from the loaded tbp-kerosene solution

    SciTech Connect (OSTI)

    Rizk, S.E.; Abdel Rahman, N.; Daoud, J.A.; Aly, H.F.

    2008-07-01

    The reductive stripping of Ce(IV) from the loaded organic phase (30% TBP in kerosene) was investigated, using two stripping agents, EDTA and H{sub 2}O{sub 2}, in nitric acid. The results are compared to determine the optimum conditions for the reduction of Ce(IV) in the organic phase to Ce(III) in the aqueous phase. For each of the two stripping agents, the effect of different parameters affecting the reduction process was investigated: stripping-agent concentration, nitric acid concentration, phase ratio, shaking time, and temperature. The results are compared and discussed in terms of the conditions required for maximum reductive stripping of Ce(IV). (authors)

  8. Table 5.15 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons)

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons) Year Distillate Fuel Oil Residential Commercial Industrial Oil Company Farm Electric Power 1 Railroad Vessel Bunkering On-Highway Diesel Military Off-Highway Diesel Other Total 1984 8,215,722 5,538,184 2,555,898 848,083 3,201,600 648,665 2,944,694 1,763,782 16,797,423 700,788 1,756,077 700,864 45,671,779 1985 7,728,057 4,463,226 2,440,661 684,227 3,102,106 523,010 2,786,479 1,698,985 17,279,650 661,644 1,522,041 168,625 43,058,711 1986

  9. usage_household2001.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Contact: Stephanie J. Battles, Survey Manager (stephanie.battles@eia.doe.gov) World Wide Web: http:www.eia.doe.govemeuconsumption Table HC6-1a. Usage Indicators by Climate ...

  10. A two-step chemical scheme for kerosene-air premixed flames

    SciTech Connect (OSTI)

    Franzelli, B.; Riber, E.; Sanjose, M.; Poinsot, T.

    2010-07-15

    A reduced two-step scheme (called 2S-KERO-BFER) for kerosene-air premixed flames is presented in the context of Large Eddy Simulation of reacting turbulent flows in industrial applications. The chemical mechanism is composed of two reactions corresponding to the fuel oxidation into CO and H{sub 2}O, and the CO - CO{sub 2} equilibrium. To ensure the validity of the scheme for rich combustion, the pre-exponential constants of the two reactions are tabulated versus the local equivalence ratio. The fuel and oxidizer exponents are chosen to guarantee the correct dependence of laminar flame speed with pressure. Due to a lack of experimental results, the detailed mechanism of Dagaut composed of 209 species and 1673 reactions, and the skeletal mechanism of Luche composed of 91 species and 991 reactions have been used to validate the reduced scheme. Computations of one-dimensional laminar flames have been performed with the 2S{sub K}ERO{sub B}FER scheme using the CANTERA and COSILAB softwares for a wide range of pressure ([1; 12] atm), fresh gas temperature ([300; 700] K), and equivalence ratio ([0.6; 2.0]). Results show that the flame speed is correctly predicted for the whole range of parameters, showing a maximum for stoichiometric flames, a decrease for rich combustion and a satisfactory pressure dependence. The burnt gas temperature and the dilution by Exhaust Gas Recirculation are also well reproduced. Moreover, the results for ignition delay time are in good agreement with the experiments. (author)

  11. CBECS 2012: Energy Usage Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary CBECS 2012 - Release date: March 18, 2016 Despite a 14% increase in total buildings and a 22% increase in total floorspace since 2003, energy use in the estimated 5.6 million U.S. commercial buildings was up just 7% during the same period, according to new analysis from the 2012 Commercial Buildings Energy Consumption Survey (CBECS). Slower growth in commercial building energy demand since 2003 is explained in part by

  12. Opportunistic Resource Usage in CMS

    SciTech Connect (OSTI)

    Kreuzer, Peter; Hufnagel, Dirk; Dykstra, D.; Gutsche, O.; Tadel, M.; Sfiligoi, I.; Letts, J.; Wuerthwein, F.; McCrea, A.; Bockelman, B.; Fajardo, E.; Linares, L.; Wagner, R.; Konstantinov, P.; Blumenfeld, B.; Bradley, D.

    2014-01-01

    CMS is using a tiered setup of dedicated computing resources provided by sites distributed over the world and organized in WLCG. These sites pledge resources to CMS and are preparing them especially for CMS to run the experiment's applications. But there are more resources available opportunistically both on the GRID and in local university and research clusters which can be used for CMS applications. We will present CMS' strategy to use opportunistic resources and prepare them dynamically to run CMS applications. CMS is able to run its applications on resources that can be reached through the GRID, through EC2 compliant cloud interfaces. Even resources that can be used through ssh login nodes can be harnessed. All of these usage modes are integrated transparently into the GlideIn WMS submission infrastructure, which is the basis of CMS' opportunistic resource usage strategy. Technologies like Parrot to mount the software distribution via CVMFS and xrootd for access to data and simulation samples via the WAN are used and will be described. We will summarize the experience with opportunistic resource usage and give an outlook for the restart of LHC data taking in 2015.

  13. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  14. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  15. Recent Trends in Car Usage in Advanced Economies - Slower Growth...

    Open Energy Info (EERE)

    Trends in Car Usage in Advanced Economies - Slower Growth Ahead? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Recent Trends in Car Usage in Advanced Economies -...

  16. Level: National Data; Row: NAICS Codes; Column: Usage within...

    Gasoline and Diesel Fuel Update (EIA)

    Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ... Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ...

  17. Documentation of INL's In Situ Oil Shale Retorting Water Usage...

    Office of Scientific and Technical Information (OSTI)

    Oil Shale Retorting Water Usage System Dynamics Model Citation Details In-Document Search Title: Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics ...

  18. Hydrogen Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency » Vehicles » Hydrogen & Fuel Cells Hydrogen & Fuel Cells Watch this video to find out how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. Learn more about hydrogen and fuel cell technology basics. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial

  19. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations

  20. Hydrogen sensor (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Hydrogen sensor Title: Hydrogen sensor A hydrogen sensor for detectingquantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites ...

  1. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  2. Hydrogen Analysis

    Broader source: Energy.gov [DOE]

    Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  3. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  4. Hydrogen Scenarios

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OnLocation, Inc., Energy Systems Consulting 1 Hydrogen Scenarios Presentation to the Hydrogen Delivery Analysis Meeting by Frances Wood OnLocation, Inc. Energy Systems Consulting May 9, 2007 OnLocation, Inc., Energy Systems Consulting 2 Outline * Brief summary of NEMS-H2 model * Representation of Hydrogen Delivery * Hydrogen Demand Sensitivities * Integration and Energy System Impacts - A Carbon Policy Scenario Example OnLocation, Inc., Energy Systems Consulting 3 NEMS-H2 Overview OnLocation,

  5. Hydrogen Storage

    SciTech Connect (OSTI)

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well as the technical challenges and research goals for storing hydrogen on board a vehicle.

  6. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  7. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30

    at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J

  8. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  9. NREL Transportation Project to Reduce Fuel Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Project to Reduce Fuel Usage For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Barba Golden, Colo., Mar. 23, 2001 - The Jefferson County Seniors Resource Center (SRC) Paratransit Service has become an important part of Eulalia Gaillard's life since her stroke in 1996. She calls on SRC to drive her to cardiologist, neurologist and chiropractor appointments each week. "It's wonderful," Gaillard says. "I'd give this program 150 plus in regards

  10. Data Center Metering and Power Usage Effectiveness | Department...

    Office of Environmental Management (EM)

    Data Center Metering and Power Usage Effectiveness Data Center Metering and Power Usage Effectiveness July 28, 2016 2:00PM to 3:00PM EDT Webinar will cover material from the Data ...

  11. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen can be produced using diverse, domestic resources. Fossil fuels, such as natural gas and coal, can be converted to produce hydrogen, and the use of carbon capture, utilization, and storage can reduce the carbon footprint of these processes. Hydrogen can also be produced from low carbon and renewable resources, including biomass grown from non-food crops and splitting water using electricity from wind, solar, geothermal, nuclear, and hydroelectric. This diversity of potential

  12. Guideline For Retrieving Customer Usage Data From Utilities

    Broader source: Energy.gov [DOE]

    This webinar, held on Dec. 16, 2010, provides information for utilities interested in retrieving data on customer usage.

  13. Hydrogen Liquefaction

    Broader source: Energy.gov (indexed) [DOE]

    Equilibrium Liquid Hydrogen is 0.2% Ortho, 99.8% Para 3 Liquid Supply North America ... Forecourt: attributes & challenges (NFPA-55) Energy & Capital: LH2 will ...

  14. Total Sales of Kerosene

    Gasoline and Diesel Fuel Update (EIA)

    Maine 25,158 24,281 17,396 7,394 7,643 12,136 1984-2014 Massachusetts 5,332 6,300 2,866 1,291 1,364 2,799 1984-2014 New Hampshire 8,353 7,435 5,472 1,977 2,524 3,831 1984-2014 ...

  15. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search TODO: Add description Related Links List of Companies in Hydrogen Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from...

  16. On-Board Hydrogen Gas Production System For Stirling Engines (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Patent: On-Board Hydrogen Gas Production System For Stirling Engines Citation Details In-Document Search Title: On-Board Hydrogen Gas Production System For Stirling Engines A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated

  17. Hydrogen Bibliography

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  18. An assessment of worldwide supercomputer usage

    SciTech Connect (OSTI)

    Wasserman, H.J.; Simmons, M.L.; Hayes, A.H.

    1995-01-01

    This report provides a comparative study of advanced supercomputing usage in Japan and the United States as of Spring 1994. It is based on the findings of a group of US scientists whose careers have centered on programming, evaluating, and designing high-performance supercomputers for over ten years. The report is a follow-on to an assessment of supercomputing technology in Europe and Japan that was published in 1993. Whereas the previous study focused on supercomputer manufacturing capabilities, the primary focus of the current work was to compare where and how supercomputers are used. Research for this report was conducted through both literature studies and field research in Japan.

  19. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    Cadwallader, Lee Charles; Herring, James Stephen

    1999-10-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  20. Safety Issues with Hydrogen as a Vehicle Fuel

    SciTech Connect (OSTI)

    L. C. Cadwallader; J. S. Herring

    1999-09-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  1. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  2. Renewable Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen NREL Hydrogen Technologies and Systems Center Dr. Robert J. Remick November 16, 2009 NREL/PR-560-47433 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. U.S. Dependence on Imported Oil National Renewable Energy Laboratory Innovation for Our Energy Future 2 Energy Solutions are Challenging We need a balanced portfolio of options- including clean, domestic energy

  3. Parallel File Systems at HPC Centers: Usage,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Systems at HPC Centers: Usage, Experiences, and Recommendations William ( Bill) E . A llcock ALCF D irector o f O pera:ons Production Systems: ALCF-2 2 Mira - B G/Q s ystem - 49,152 nodes / 786,432 cores - 786 TB of memory - Peak fl op r ate: 1 0 P F - Linpack fl op r ate: 8 .1 P F Vesta --- B G/Q s ystem - 2,048 nodes / 3 2,768 c ores - 32 TB of memory - Peak fl op r ate: 4 19 T F Cetus --- B G/Q s ystem - 1,024 n odes / 1 6,384 c ores - 16 TB of memory - Peak fl op r ate: 2 09 T F Tukey -

  4. Using Wireless Technology to Reduce Facility Energy Usage | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Using Wireless Technology to Reduce Facility Energy Usage Using Wireless Technology to Reduce Facility Energy Usage This presentation details the U.S. Department of Energy's TEAM initiative's wireless technologies and their applications. Using Wireless Technology to Reduce Facility Energy Usage (December 4, 2009) (2.57 MB) More Documents & Publications New and Emerging Technologies Figure 1: Chamber experiment to study impact of air movement on thermal comfort using personally

  5. Documentation of INL's In Situ Oil Shale Retorting Water Usage...

    Office of Scientific and Technical Information (OSTI)

    Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Citation Details In-Document Search Title: Documentation of INL's In Situ Oil Shale Retorting ...

  6. RECS Electricity Usage Form_v2 (25418 - Activated, Traditional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electricity usage for this service address between September 2008 and April 2010. Billing ... Electricity was: BBoth Sold and Delivered SSold Only DDelivered Only (select one) B S D ...

  7. Ethanol Usage in Urban Public Transportation - Presentation of...

    Open Energy Info (EERE)

    - Presentation of Results Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ethanol Usage in Urban Public Transportation - Presentation of Results AgencyCompany...

  8. Level: National Data; Row: NAICS Codes; Column: Usage within...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within ... Estimate less than 0.5. WWithheld to avoid disclosing data for individual establishments. ...

  9. Storing Hydrogen

    SciTech Connect (OSTI)

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  10. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  11. On-Board Hydrogen Gas Production System For Stirling Engines

    DOE Patents [OSTI]

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  12. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  13. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials...

  14. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  15. Hydrogen Technology Validation

    SciTech Connect (OSTI)

    2008-11-01

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  16. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  17. Hydrogen scavengers

    DOE Patents [OSTI]

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  18. Hydrogen Sensor Testing, Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    Factsheet describing the hydrogen sensor testing laboratory at the National Renewable Energy Laboratory.

  19. Jefferson Lab's Education Web Site Hits New High-Usage Record...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Site Hits New High-Usage Record Jefferson Lab's Education Web Site Hits New High-Usage Record April 22, 2002 Jefferson Lab's Science Education web site hit a new high in usage ...

  20. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  1. Documentation of INL's In Situ Oil Shale Retorting Water Usage...

    Office of Scientific and Technical Information (OSTI)

    Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Earl D Mattson; Larry Hull 02 PETROLEUM water water A system dynamic model was construction to...

  2. Hydrogen detector

    DOE Patents [OSTI]

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  3. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Environmental Management (EM)

    1007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen threshold cost is defined as the ...

  4. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of ...

  5. Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems...

    Open Energy Info (EERE)

    Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name: Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place:...

  6. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  7. CTP Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    CTP Hydrogen Jump to: navigation, search Name: CTP Hydrogen Place: Westborough, Massachusetts Zip: 1581 Sector: Hydro, Hydrogen Product: CTP Hydrogen is an early stage company...

  8. NREL: Learning - Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

  9. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Diverse Domestic Resources Hydrogen from Diverse Domestic Resources Distributed Generation Transportation HIGH EFFICIENCY HIGH EFFICIENCY & RELIABILITY & RELIABILITY ZERONEAR...

  10. 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources

    SciTech Connect (OSTI)

    Sturgeon, Richard W.

    2012-06-27

    This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are

  11. Hydrogen Safety Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information. Project ID: scs07weiner PNNL-SA-65397 2 IEA HIA Task 19 Working Group Hydrogen Safety Training Props Hydrogen Safety Panel Incident...

  12. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search Hydrogen Companies Loading map... "format":"googlemaps3","type":"SATELLITE","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":1000,"o...

  13. Commercial Building Tenant Energy Usage Aggregation and Privacy

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

    2014-10-31

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

  14. Mining Software Usage with the Automatic Library Tracking Database (ALTD)

    SciTech Connect (OSTI)

    Hadri, Bilel; Fahey, Mark R

    2013-01-01

    Tracking software usage is important for HPC centers, computer vendors, code developers and funding agencies to provide more efficient and targeted software support, and to forecast needs and guide HPC software effort towards the Exascale era. However, accurately tracking software usage on HPC systems has been a challenging task. In this paper, we present a tool called Automatic Library Tracking Database (ALTD) that has been developed and put in production on several Cray systems. The ALTD infrastructure prototype automatically and transparently stores information about libraries linked into an application at compilation time and also the executables launched in a batch job. We will illustrate the usage of libraries, compilers and third party software applications on a system managed by the National Institute for Computational Sciences.

  15. 1997 RECS data on consumer usage of appliances

    SciTech Connect (OSTI)

    Latta, R.B.

    1998-07-01

    The 1997 Residential Energy Consumption Survey (RECS) conducted by the Energy Information Administration contained questions on how households use various appliances. This includes the following appliance usage (1) personnel computers, (2) cooking appliances, (3) conventional ovens, (4) microwave ovens, (5) clothes washers, and (6) clothes dryer. Many of these items were first collected in the 1997 RECS. In this paper, appliance usage by household demographic characteristics (household income, age of householder, and number of household members) are examined with an emphasis on results for data items that were first collected in the 1997 RECS.

  16. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  17. Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

  18. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  19. Hydrogen Generator Appliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J slide presentation: hydrogen Generator appliance Gus Block, Nuvera Fuel Cells

  20. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  1. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  2. Hydrogen Pipeline Discussion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and

  3. Fuel bundle design for enhanced usage of plutonium fuel

    DOE Patents [OSTI]

    Reese, Anthony P.; Stachowski, Russell E.

    1995-01-01

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

  4. Kerosene Sales for Commercial Use

    Gasoline and Diesel Fuel Update (EIA)

    Maine 2,173 2,078 1,578 941 856 1,519 1984-2014 Massachusetts 726 1,957 259 63 94 551 1984-2014 New Hampshire 581 543 446 139 201 348 1984-2014 Rhode Island 16 21 32 4 6 20 ...

  5. Kerosene Sales for Industrial Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Connecticut 6,133 5,297 5,408 1,507 1,119 3,175 1984-2014 Maine 116 79 37 22 17 22 1984-2014 Massachusetts 426 119 22 8 11 42 1984-2014 New Hampshire 4 27 86 5 70 230 1984-2014 ...

  6. Kerosene Sales for Farm Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Connecticut 1 2 2 0 0 0 1984-2014 Maine 118 66 45 91 67 51 1984-2014 Massachusetts 8 9 0 1 0 0 1984-2014 New Hampshire 9 10 8 3 0 0 1984-2014 Rhode Island 0 0 0 0 0 0 1984-2014 ...

  7. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  8. Kerosene Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    05,136 215,587 137,232 57,316 61,188 101,852 1984-2014 East Coast (PADD 1) 159,414 172,303 107,007 47,028 50,267 83,749 1984-2014 New England (PADD 1A) 44,681 41,961 29,375 12,315...

  9. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held ... More Documents & Publications Hydrogen Permeability and Integrity of Hydrogen Delivery ...

  10. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE ...

  11. Hydrogen Power Inc formerly Hydrogen Power International and...

    Open Energy Info (EERE)

    Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name: Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.)...

  12. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  13. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  14. Hydrogen Materials Advanced Research Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  15. Hydrogen Generation for Refineries

    Broader source: Energy.gov (indexed) [DOE]

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MEETING May 5-6, 2014 DE-FG02-08ER85135 Hydrogen ... or otherwise restricted information 2 Hydrogen from Heavy, Renewable and Waste Oils - ...

  16. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  17. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  18. Hydrogen Safety Knowledge Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Partners Best Practices - LANL, SNL, NREL, NASA, Hydrogen Safety Panel, and IEA HIA Tasks 19 and 22 Incident Reporting - NASA and Hydrogen Safety Panel 3 Objectives H2...

  19. Hydrogen Storage Basics

    Broader source: Energy.gov [DOE]

    Developing safe, reliable, compact, and cost-effective hydrogen storage technologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be...

  20. Hydrogen Program Overview

    SciTech Connect (OSTI)

    2008-11-01

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  1. Hydrogen Fuel Quality (Presentation)

    SciTech Connect (OSTI)

    Ohi, J.

    2007-05-17

    Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

  2. Hydrogen Storage- Basics

    Broader source: Energy.gov [DOE]

    Storing enough hydrogen on-board a vehicle to achieve a driving range of greater than 300 miles is a significant challenge. On a weight basis, hydrogen has nearly three times the energy content of...

  3. Hydrogen & Fuel Cells

    Broader source: Energy.gov [DOE]

    Hydrogen is an energy carrier that can be produced from clean, diverse and abundant domestic energy resources. Fuel cells use the energy from hydrogen in a highly efficient way -- with only water and heat as byproducts.

  4. Hydrogen Delivery Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... nines" purity, i.e., 99.9999%, unlike standard "pipeline grade" hydrogen purity of 99.95%. ... National Fire Protection Association (NFPA) 2: Hydrogen Technologies Code and local codes. ...

  5. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline hpwgw_permeability_integrity_feng.pdf (1.41 MB) More Documents & Publications Hydrogen permeability and Integrity of hydrogen

  6. Residential Lighting Usage Estimate Tool, v1.0

    Broader source: Energy.gov [DOE]

    By improving our understanding of residential lighting-energy usage and quantifying it across many different parameters, the new study will be of use to anyone doing energy estimates – such as utilities, market and investment analysts, and government agencies. It will also help manufacturers design products that not only better serve consumers' needs, but that maximize the energy savings that technologies like SSL make possible.

  7. Fuel bundle design for enhanced usage of plutonium fuel

    DOE Patents [OSTI]

    Reese, A.P.; Stachowski, R.E.

    1995-08-08

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

  8. Hydrogen Threshold Cost Calculation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing

  9. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  10. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development.

  11. Hydrogen Compatible Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Compatible Materials Workshop November 3 rd , 2010 Research, Engineering, and Applications Center for Hydrogen Sandia National Laboratory, Livermore, CA Introduction: On November 3 rd , 2010, Sandia National Labs hosted a workshop focused on hydrogen compatible materials and components. The goals of the workshop were two-fold, 1) to identify gaps in hydrogen compatible materials R&D, and 2) to develop international R&D pathways that address the identified R&D gaps. This

  12. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Citation Details In-Document Search Title: Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model ...

  13. Residential Lighting Usage Estimate Tool, v1.0, Windows version...

    Energy Savers [EERE]

    Windows version Residential Lighting Usage Estimate Tool, v1.0, Windows version Windows version of the Residential Lighting Usage Estimate Tool, v1.0. Spreadsheet More Documents &...

  14. Residential Lighting Usage Estimate Tool, v1.0, MacOS version...

    Energy Savers [EERE]

    MacOS version Residential Lighting Usage Estimate Tool, v1.0, MacOS version MacOS version of the Residential Lighting Usage Estimate Tool, v1.0. Spreadsheet More Documents &...

  15. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Citation Details In-Document Search Title: Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics ...

  16. Jefferson Lab's Education web site hits new high-usage record...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    web site hits new high-usage record during 2003 SOL season Jefferson Lab's Education web site hits new high-usage record during 2003 SOL season April 2, 2003 Jefferson Lab's ...

  17. Red Storm usage model :Version 1.12.

    SciTech Connect (OSTI)

    Jefferson, Karen L.; Sturtevant, Judith E.

    2005-12-01

    Red Storm is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Sandia National Laboratories (SNL). The Red Storm Usage Model (RSUM) documents the capabilities and the environment provided for the FY05 Tri-Lab Level II Limited Availability Red Storm User Environment Milestone and the FY05 SNL Level II Limited Availability Red Storm Platform Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and SNL. Additionally, the Red Storm Usage Model maps the provided capabilities to the Tri-Lab ASC Computing Environment (ACE) requirements. The ACE requirements reflect the high performance computing requirements for the ASC community and have been updated in FY05 to reflect the community's needs. For each section of the RSUM, Appendix I maps the ACE requirements to the Limited Availability User Environment capabilities and includes a description of ACE requirements met and those requirements that are not met in that particular section. The Red Storm Usage Model, along with the ACE mappings, has been issued and vetted throughout the Tri-Lab community.

  18. Purification of Hydrogen

    DOE Patents [OSTI]

    Newton, A S

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  19. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  20. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  1. Flash hydrogenation of coal

    DOE Patents [OSTI]

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  2. Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Technical ...

  3. Hydrogen Strategic Focus for Hawaii

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen storage is a significant challenge for the development and viability of hydrogen-powered vehicles. On-board hydrogen storage in the range of approximately 5-13 kg is required to enable a driving range of greater than 300 miles for the full platform of light-duty automotive vehicles using fuel cell power plants. Hydrogen Storage Technologies Current on-board hydrogen storage approaches involve compressed hydrogen gas tanks, liquid hydrogen tanks, cryogenic compressed hydrogen, metal

  4. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  5. Hydrogen Storage Materials Database Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES ... 12132011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database ...

  6. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery » Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous

  7. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  8. Renewable Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Renewable Hydrogen Welcoming presentations at the Delivering Renewable Hydrogen Workshop: A Focus on Near-Term Applications, Nov. 16, 2009, Palm Springs, CA renewable_hydrogen_workshop_nov16_remick.pdf (1.11 MB) More Documents & Publications National Hydrogen Learning Demonstration Status CoolCab Truck Thermal Load Reduction Hydrogen Transmission and Distribution Workshop

  9. Hydrogen Material Compatibility for Hydrogen ICE | Department...

    Broader source: Energy.gov (indexed) [DOE]

    pm04smith.pdf (1.52 MB) More Documents & Publications Hydrogen Materials Compatibility for the H-ICE Engine Friction Reduction Through Surface Finish and Coatings Vehicle ...

  10. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  11. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  12. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  13. A PRACTICAL ONTOLOGY FOR THE LARGE-SCALE MODELING OF SCHOLARLY ARTIFACTS AND THEIR USAGE

    SciTech Connect (OSTI)

    RODRIGUEZ, MARKO A.; BOLLEN, JOHAN; VAN DE SOMPEL, HERBERT

    2007-01-30

    The large-scale analysis of scholarly artifact usage is constrained primarily by current practices in usage data archiving, privacy issues concerned with the dissemination of usage data, and the lack of a practical ontology for modeling the usage domain. As a remedy to the third constraint, this article presents a scholarly ontology that was engineered to represent those classes for which large-scale bibliographic and usage data exists, supports usage research, and whose instantiation is scalable to the order of 50 million articles along with their associated artifacts (e.g. authors and journals) and an accompanying 1 billion usage events. The real world instantiation of the presented abstract ontology is a semantic network model of the scholarly community which lends the scholarly process to statistical analysis and computational support. They present the ontology, discuss its instantiation, and provide some example inference rules for calculating various scholarly artifact metrics.

  14. DC Fast Charger Usage in the Pacific Northwest

    SciTech Connect (OSTI)

    Salisbury, Shawn; Smart, John

    2015-02-01

    This document will describe the use of a number of Direct Current Fast Charging Stations throughout Washington and Oregon as a part of of the West Coast Electric Highway. It will detail the usage frequency and location of the charging stations INL has data from. It will also include aggregated data from hundreds of privately owned vehicles that were enrolled in the EV Project regarding driving distance when using one of the West Coast Electric Highway fast chargers. This document is a white paper that will be published on the INL AVTA website.

  15. Department of Energy Federal Acquisition Regulation Clause Usage Guide

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached for your information is a corrected Department of Energy Federal Acquisition Regulation Clause Usage Guide. This corrected clause matrix is also being posted to the Stripes library. The earlier edition incorrectly designated 52.223-4 Recovered Material Certification and 52.223-9 Estimate of Percentage of Recovered Material Content for EPA-Designated Items, as Not Applicable under management and operating contracts and other facility management contracts. They are actually required clauses as 52.223-17 requires the use of such products in service and construction contracts. They are also being designated as required under the service and construction contract columns.

  16. Issues in International Energy Consumption Analysis: Electricity Usage in

    U.S. Energy Information Administration (EIA) Indexed Site

    India's Housing Sector - Energy Information Administration Canadian Energy Demand Electricity Usage in India's Housing Sector SERIES: Issues in International Energy Consumption Analysis Canadian Energy Demand Release date: June 2, 2015 The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site

  17. Use of nanofiltration to reduce cooling tower water usage.

    SciTech Connect (OSTI)

    Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

    2010-09-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  18. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  19. Dispersion of Hydrogen Clouds

    SciTech Connect (OSTI)

    Michael R. Swain; Eric S. Grilliot; Matthew N. Swain

    2000-06-30

    The following is the presentation of a simplification of the Hydrogen Risk Assessment Method previously developed at the University of Miami. It has been found that for simple enclosures, hydrogen leaks can be simulated with helium leaks to predict the concentrations of hydrogen gas produced. The highest concentrations of hydrogen occur near the ceiling after the initial transients disappear. For the geometries tested, hydrogen concentrations equal helium concentrations for the conditions of greatest concern (near the ceiling after transients disappear). The data supporting this conclusion is presented along with a comparison of hydrogen, LPG, and gasoline leakage from a vehicle parked in a single car garage. A short video was made from the vehicle fuel leakage data.

  20. Hydrogenation of carbonaceous materials

    DOE Patents [OSTI]

    Friedman, Joseph; Oberg, Carl L.; Russell, Larry H.

    1980-01-01

    A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

  1. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  2. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  3. HYDROGEN ISOTOPE TARGETS

    DOE Patents [OSTI]

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  4. National Hydrogen Energy Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop Washington, DC April 2-3, 2002 United States Department of Energy November 2002 PRODUCTION * DELIVERY * STORAGE * CONVERSION * APPLICATIONS * PUBLIC EDUCATION AND OUTREACH PRODUCTION * DELIVERY * STORAGE * CONVERSION * APPLICATIONS * PUBLIC EDUCATION AND OUTREACH vii As we act on President Bush's National

  5. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  6. Hawaii Renewable Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Program State & Regional Initiatives Webinar 14 October 2009 Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute Chenoa Farnsworth Partner Kolohala Holdings, LLP Overview * Hawaii's Energy Situation * Mitch Ewan * Hawaii Power Park Project * Mitch Ewan * The Renewables-to-Hydrogen Fund * Chenoa Farnsworth Hawaii - Most Petroleum Dependent State Petroleum dependence for electricity - top six states Highest Electricity Prices in U.S. Hawaii and US

  7. Hydrogen.PDF | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen.PDF Hydrogen.PDF Hydrogen.PDF 871916.pdf (1.66 MB) More Documents & Publications Hydrogen Release Behavior Safetygram Gaseous Hydrogen Hydrogen Fuel Cell Engines and Related Technologies Course Manual

  8. Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na

    2014-11-17

    In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level of aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.

  9. Government works with technology to boost gas output/usage

    SciTech Connect (OSTI)

    Nicoll, H.

    1996-10-01

    Specially treated ethane gas from fields of the Moomba area in the Cooper basin of South Australia now flows freely through 870 mi of interstate gas pipeline to an end-user in Sydney, New South Wales. This unprecedented usage of ethane is the result of a long-term cooperative agreement. The producer sought to provide the end-user with ethane gas for usage as a petrochemical feedstock to manufacture ethylene and plastic goods. The end-user had strict specifications for a low-CO{sub 2}, very dry ethane product with a small percentage of methane. In order to meet these, the producer committed millions of dollars to construct a high-technology, state-of-the-art ethane treatment facility in the Moomba area, and lay an extensive pipeline. Santos also contracted with the amines supplier to provide a high-performance, deep CO{sub 2} removal solvent with good corrosion prevention characteristics. The paper discusses the Moomba field overflow, gas treatment, government cooperation, and project completion.

  10. Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources » Hydrogen Hydrogen July 19, 2016 How to Fill Up Your Fuel Cell Electric Vehicle 5 Things to Know When Filling Up Your Fuel Cell Electric Vehicle Filling up your fuel cell electric vehicle is just as easy as filling up a gasoline powered car. The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) offers five tips to follow when filling up at a hydrogen fuel station for the first time. July 11, 2016 D.C. Showcases Cutting-Edge Hydrogen Fueling Station Demo The

  11. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  12. Detroit Commuter Hydrogen Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  13. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  14. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  15. Hydrogen Delivery and Fueling

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of how hydrogen is delivered from the point of production to where it is used.

  16. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  17. Hydrogen Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen does not exist freely in nature: it is only produced from other sources of energy, so it is often referred to as an energy carrier, that is, an efficient way to store and transport energy. A photo of a Ford hydrogen-powered internal combustion engine (H2ICE) bus at NREL's National Wind Technology Center (NWTC). A

  18. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO); Deb, Satyen K. (Boulder, CO)

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  19. President's Hydrogen Fuel Initiative

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

  20. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  1. Florida Hydrogen Initiative

    Office of Energy Efficiency and Renewable Energy (EERE)

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  2. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, Joseph C.; Brehm, William F.

    1982-01-01

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  3. HYDROGEN TO THE HIGHWAYS

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  4. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  5. Hydrogen Safety Sensors

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  6. Hydrogen Generator Appliance

    Broader source: Energy.gov [DOE]

    Presentation by Gus Block, Nuvera Fuel Cells, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois.

  7. President's Hydrogen Fuel Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... modular design Improved MEA fabrication 1990 1995 Technology Validation Strategy ... codes for hydrogen applications (i.e., NFPA 5000) by the National Fire Protection ...

  8. Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters...

    Office of Environmental Management (EM)

    Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop The Hydrogen, Hydrocarbons, ...

  9. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  10. Massachusetts Hydrogen Coalition | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Coalition Jump to: navigation, search Logo: Massachusetts Hydrogen Coalition Name: Massachusetts Hydrogen Coalition Address: 100 Cummings Center Place: Beverly,...

  11. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    SciTech Connect (OSTI)

    Adam, Patrick; Leachman, Jacob

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  12. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  13. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T.; Li, Yingwel; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  14. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  15. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  16. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  17. Green Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company Jump to: navigation, search Logo: Green Hydrogen Company Name: Green Hydrogen Company Abbreviation: GH2 Address: Green Hydrogen Company, Head Office, 9...

  18. Safe Hydrogen LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen LLC Jump to: navigation, search Name: Safe Hydrogen LLC Place: Lexington, Massachusetts Sector: Hydro, Hydrogen Product: Focused on hydrogen storage, through a 'slurry' of...

  19. Hydrogen Car Co | Open Energy Information

    Open Energy Info (EERE)

    Car Co Jump to: navigation, search Name: Hydrogen Car Co Place: Los Angeles, California Zip: 90036 Sector: Hydro, Hydrogen Product: The Hydrogen Car Company produces hydrogen...

  20. The Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: The Hydrogen Company Abbreviation: HydroGen Address: The Hydrogen Company, HydroGen Engineering and Consulting, Head Office, 9...

  1. Leak Detection and H2 Sensor Development for Hydrogen Applications

    SciTech Connect (OSTI)

    Brosha, Eric L.

    2012-07-10

    The objectives of this report are: (1) Develop a low cost, low power, durable, and reliable hydrogen safety sensor for a wide range of vehicle and infrastructure applications; (2) Continually advance test prototypes guided by materials selection, sensor design, electrochemical R&D investigation, fabrication, and rigorous life testing; (3) Disseminate packaged sensor prototypes and control systems to DOE Laboratories and commercial parties interested in testing and fielding advanced prototypes for cross-validation; (4) Evaluate manufacturing approaches for commercialization; and (5) Engage an industrial partner and execute technology transfer. Recent developments in the search for sustainable and renewable energy coupled with the advancements in fuel cell powered vehicles (FCVs) have augmented the demand for hydrogen safety sensors. There are several sensor technologies that have been developed to detect hydrogen, including deployed systems to detect leaks in manned space systems and hydrogen safety sensors for laboratory and industrial usage. Among the several sensing methods electrochemical devices that utilize high temperature-based ceramic electrolytes are largely unaffected by changes in humidity and are more resilient to electrode or electrolyte poisoning. The desired sensing technique should meet a detection threshold of 1% (10,000 ppm) H{sub 2} and response time of {approx_equal}1 min, which is a target for infrastructure and vehicular uses. Further, a review of electrochemical hydrogen sensors by Korotcenkov et.al and the report by Glass et.al suggest the need for inexpensive, low power, and compact sensors with long-term stability, minimal cross-sensitivity, and fast response. This view has been largely validated and supported by the fuel cell and hydrogen infrastructure industries by the NREL/DOE Hydrogen Sensor Workshop held on June 8, 2011. Many of the issues preventing widespread adoption of best-available hydrogen sensing technologies available today

  2. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  3. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines. hpwgw_code_hayden.pdf (105.33 KB) More Documents & Publications Hydrogen Transmission and Distribution Workshop American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components

  4. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  5. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transportation | Department of Energy Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_ramsden.pdf (1.5 MB) More Documents & Publications Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis

  6. The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy | Department of Energy The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy The Hydrogen Laboratory and The Brazilian Reference Center for Hydrogen Energy Presentation given by Newton Pimenta and Cristiano Pinto of the State University of Campinas at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_12_ohi.pdf (621.46 KB) More Documents & Publications Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop

  7. Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

  8. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  9. Hydrogen evolution reaction catalyst

    DOE Patents [OSTI]

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  10. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  11. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Broader source: Energy.gov (indexed) [DOE]

    Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to ...

  12. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 32525.pdf More Documents & Publications Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California Hydrogen Delivery ...

  13. NMR Studies of Molecular Hydrogen in Hydrogenated Amorphous Silicon

    SciTech Connect (OSTI)

    Su, T.; Chen, S.; Taylor, P. C.; Crandall, R. S.; Mahan, A. H.

    2000-01-01

    Using NMR, the concentrations of molecular hydrogen have been measured directly in hydrogenated amorphous silicon made by the hot wire chemical vapor deposition (HWCVD) technique.

  14. Why Hydrogen? Hydrogen from Diverse Domestic Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of FreedomCAR & Fuels PartnershipDOE Delivery Program President's Hydrogen Fuel Initiative Hydrogen Posture Plan: An Integrated Research, Development and...

  15. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60-42773 February 2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy...

  16. NREL: Hydrogen and Fuel Cells Research - NREL Hydrogen Expert...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Hydrogen Expert Sees Promise in New Discovery Photoelectrochemical pioneer John ... January 8, 2014 Producing hydrogen directly from the sun -- and in a way that is ...

  17. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  18. Usage based indicators to assess the impact of scholarly works: architecture and method

    DOE Patents [OSTI]

    Bollen, Johan; Van De Sompel, Herbert

    2012-03-13

    Although recording of usage data is common in scholarly information services, its exploitation for the creation of value-added services remains limited due to concerns regarding, among others, user privacy, data validity, and the lack of accepted standards for the representation, sharing and aggregation of usage data. A technical, standards-based architecture for sharing usage information is presented. In this architecture, OpenURL-compliant linking servers aggregate usage information of a specific user community as it navigates the distributed information environment that it has access to. This usage information is made OAI-PMH harvestable so that usage information exposed by many linking servers can be aggregated to facilitate the creation of value-added services with a reach beyond that of a single community or a single information service.

  19. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  20. Security Implications of Typical Grid Computing Usage Scenarios

    SciTech Connect (OSTI)

    Humphrey, Marty; Thompson, Mary R.

    2001-06-05

    A Computational Grid is a collection of heterogeneous computers and resources spread across multiple administrative domains with the intent of providing users uniform access to these resources. There are many ways to access the resources of a Computational Grid, each with unique security requirements and implications for both the resource user and the resource provider. A comprehensive set of Grid usage scenarios are presented and analyzed with regard to security requirements such as authentication, authorization, integrity, and confidentiality. The main value of these scenarios and the associated security discussions are to provide a library of situations against which an application designer can match, thereby facilitating security-aware application use and development from the initial stages of the application design and invocation. A broader goal of these scenarios are to increase the awareness of security issues in Grid Computing.

  1. Los Alamos National Laboratory Steam Plant Project Usage Data | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Usage Data 2 10_SMSI_SteamPlant_ThermalBasis of Analysis-Q1(011514) 2.10_SMSI_ApproxEst$Reconcile-Bechtel2009-SMSI-2013 2.10_SMSI_PipingAnnualR&R-Est_Rev122313 2.10_SMSI_Steam_CombinedEcon_011714_100%(Rev1) 2.10_SMSI_Steam_DistSystemOnlyEcon_011714_100% 2.10_SMSI_Steam_Option1-SteamCapitalEst(No-LANL$'s)_011714_100% 2.10_SMSI-Steam_Option2-HW-CapitalEst(No-LANL$'s)_011714_100% 131209XU50_XURP-LANL-Data_w-CostAlloc_CHP_121213 DOE Complex Experience

  2. Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  3. Renewable Hydrogen: The Environmental Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen: The Environmental Perspective Tyson Eckerle Energy Independence Now Delivering Renewable Hydrogen Workshop November 16 th , 2009. Energy Independence Now Why are we here? California Hydrogen Highway SB 1505 co-authors (w/ UCS) Hydrogen Advocates A consistent pro-hydrogen voice Renewable Hydrogen Environmental Perspective SB 1505 Opportunity Government role Harnessing the environmental community The Environmental Community Who are we talking about? NGOs, academics, customers, concerned

  4. Powertech: Hydrogen Expertise Storage Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertech: Hydrogen Expertise Storage Needs Angela Das, P.Eng. March 2013 Powertech Hydrogen Expertise - Testing World's leading test agency for high pressure hydrogen components * Operate the equivalent of 4 hydrogen fueling stations for hydrogen gas cycle testing of OEM 700 bar fuel systems Test all carbon fiber tank designs worldwide * Also use various Type 3 and Type 4 designs for test facilities Powertech Hydrogen Expertise - Stations 700 bar Retail Stations 700 bar Retail Stations (Shell

  5. Hydrogen Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Hydrogen Resources Hydrogen can be produced from diverse, domestic resources. Currently, most hydrogen is produced from fossil fuels, specifically natural gas. Electricity-from the grid or from renewable sources such as wind, solar, geothermal, or biomass-is also currently used to produce hydrogen. In the longer term, solar energy and biomass can be used more directly to generate hydrogen. Natural Gas and Other Fossil Fuels Fossil fuels can be reformed to release the hydrogen from

  6. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  7. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  8. Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Hydrogen Energy Place: Surrey, England, United Kingdom Zip: KT13 0NY Sector: Carbon, Hydro, Hydrogen Product: Surrey-based BP subsidiary...

  9. Hydrogen Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ventures Jump to: navigation, search Logo: Hydrogen Ventures Name: Hydrogen Ventures Address: 1219 N. Studabaker Road Place: Long Beach, California Zip: 90811 Region: Southern CA...

  10. New Materials for Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry ...