Sample records for usa world waste

  1. Waste Management World November/December 2005

    E-Print Network [OSTI]

    Columbia University

    of wastes at waste-to-energy plants each year, generating an amount of energy that can supply electricity, 2005 Where is waste-to-energy, and where is it going? A WTE plant in Mallorca, Spain. European plants used in Europe ­ approximately 50% of the 243 million tonnes of municipal solid waste (MSW) generated

  2. WIPP Waste Characterization: Implementing Regulatory Requirements in the Real World

    SciTech Connect (OSTI)

    Cooper Wayman, J.D.; Goldstein, J.D.

    1999-02-22T23:59:59.000Z

    It is imperative to ensure compliance of the Waste Isolation Pilot Project (WIPP) with applicable statutory and regulatory requirements. In particular, compliance with the waste characterization requirements of the Resource Conservation and Recovery Act (RCRA) and its implementing regulation found at 40 CFR Parts 262,264 and 265 for hazardous and mixed wastes, as well as those of the Atomic Energy Act of 1954, as amended, the Reorganization Plan No. 3 of 1970, the Nuclear Waste Policy Act of 1982, as amended, and the WIPP Land Withdrawal Act, as amended, and their implementing regulations found at 40 CFR Parts 191 and 194 for non-mixed radioactive wastes, are often difficult to ensure at the operational level. For example, where a regulation may limit a waste to a certain concentration, this concentration may be difficult to measure. For example, does the definition of transuranic waste (TRU) as 100 nCi/grain of alpha-emitting transuranic isotopes per gram of waste mean that the radioassay of a waste must show a reading of 100 plus the sampling and measurement error for the waste to be a TRU waste? Although the use of acceptable knowledge to characterize waste is authorized by statute, regulation and DOE Orders, its implementation is similarly beset with difficulty. When is a document or documents sufficient to constitute acceptable knowledge? What standard can be used to determine if knowledge is acceptable for waste characterization purposes? The inherent conflict between waste characterization regulatory requirements and their implementation in the real world, and the resolution of this conflict, will be discussed.

  3. World Waste Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin:WorldWorld EnergyDiego, California

  4. Solar World USA not SolarWorld AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:Voltaic Malaysia Sdn Bhd JumpSolar World

  5. Geological problems in radioactive waste isolation - A world wide review

    SciTech Connect (OSTI)

    Witherspoon, P.A. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01T23:59:59.000Z

    The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

  6. Waste Isolation Pilot Plant Attracts World Interest | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads|of Energy Washington SuccessWhenWaste Isolation

  7. Mercury Methylation in Mine Wastes Collected from Abandoned Mercury Mines in the USA

    SciTech Connect (OSTI)

    Gray, John E. (U.S. Geological Survey); Hines, Mark E. (Massachusetts, Univ Of); Biester, Harald (Heidelberg College); Lasorsa, Brenda K. (BATTELLE (PACIFIC NW LAB))

    2003-05-01T23:59:59.000Z

    Mercury mines contain highly elevated Hg contents, but more problematic environmentally are elemental Hg and soluble Hg salts produced during ore retorting that remain in wastes at mine sites. Under certain conditions, these inorganic Hg compounds convert to bioavailable, highly toxic organic Hg forms. Speciation and transformation of Hg was studied in wastes collected from abandoned Hg mines at McDermitt, NV, and Terlingua, TX, which are moderate size on an international scale and produced about 10,000 and 5,000 t of elemental Hg, respectively. In waste samples, we measured total Hg and methyl-Hg contents, identified various Hg compounds using Hg-thermo-desorption pyrolysis, and determined rates of Hg methylation and methyl-Hg demethylation using isotopic-tracer methods. Pyrolysis analysis of mine wastes showed variable amounts of cinnabar, metacinnabar, Hg salts, elemental Hg, and elemental Hg sorbed onto particulates such as clay and Fe-oxides. Mine wastes with the highest methyl-Hg contents correspond to those with elemental Hg and particulate-sorbed elemental Hg, and also produced the highest laboratory-estimated potential Hg methylation rates, as much as 4.8%/day. Samples containing dominantly cinnabar showed little or no Hg methylation. Mine wastes with high methyl-Hg contents generally showed low methyl-Hg demethylation, suggesting that Hg methylation was dominant. Both mines are located in semiarid climates, and during this study, streambeds below the mines were dry. Total Hg contents in stream sediment collected below the mines show significant dilution, and methyl-Hg contents were typically below the limit of determination. Methylation of Hg downstream from Hg mines is probably lower in arid climates due to lack of mine-water runoff and lower microbial activity. The correspondence of mine wastes containing elemental Hg and high methyl-Hg contents suggests that Hg0 oxidizes to Hg2+, which is subsequently bioavailable for microbial Hg methylation.

  8. Wasted opportunities : inequality and fragmentation in the 2010 South Africa World Cup

    E-Print Network [OSTI]

    Wood, Astrid

    2008-01-01T23:59:59.000Z

    (cont.) This thesis will examine the possibilities for cities to use the 2010 World Cup to hasten city development. The first chapter will detail the 2010 World Cup plan and the local stakeholders as well as the lessons ...

  9. An assessment of biofuel use and burning of agricultural waste in the developing world Rosemarie Yevich

    E-Print Network [OSTI]

    Jacob, Daniel J.

    and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use.9Pg C (as CO2) from burning of biofuels and field residues together is small, but non-negligible when

  10. An assessment of biofuel use and burning of agricultural waste in the developing world

    E-Print Network [OSTI]

    Jacob, Daniel J.

    in Asia, and 21% and 13% in Africa and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41 and industry. The emission of 0.9 Pg C (as CO2) from burning of biofuels and field residues together is small

  11. WTERT (Greece and U.S.) PARTICIPATION IN ISWA-APESB 2009 WORLD CONGRESS:"Turning Waste into

    E-Print Network [OSTI]

    Management 3. Waste To Energy 4. Waste&Climate Change 5. IberoAmerican Symposium Regarding Waste to Energy in compost for agricultural use. The Composting Plant has the capacity to treat about 60.000 tons/

  12. GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM

    SciTech Connect (OSTI)

    Dewberry, R.; Sigg, R.; Salaymeh, S.

    2009-03-23T23:59:59.000Z

    The Savannah River Site (SRS) Burial Ground had a container labeled as Box 33 for which they had no reliable solid waste stream designation. The container consisted of an outer box of dimensions 48-inch x 46-inch x 66-inch and an inner box that contained high density and high radiation dose material. From the outer box Radiation Control measured an extremity dose rate of 22 mrem/h. With the lid removed from the outer box, the maximum dose rate measured from the inner box was 100 mrem/h extremity and 80 mrem/h whole body. From the outer box the material was sufficiently high in density that the Solid Waste Management operators were unable to obtain a Co-60 radiograph of the contents. Solid Waste Management requested that the Analytical Development Section of Savannah River National Laboratory perform a {gamma}-ray assay of the item to evaluate the radioactive content and possibly to designate a solid waste stream. This paper contains the results of three models used to analyze the measured {gamma}-ray data acquired in an unusual configuration.

  13. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  14. About Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides

    E-Print Network [OSTI]

    Fisher, Kathleen

    New Jersey, Total Lubricants USA provides advanced quality industrial lubrication productsAbout Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides. A subsidiary of Total, S.A., the world's fourth largest oil company, Total Lubricants USA still fosters its

  15. Proceedings of the 17th Annual North American Waste-to-Energy Conference May 18-20, 2009, Chantilly, Virginia, USA

    E-Print Network [OSTI]

    Columbia University

    out on gasification of various feedstocks from biomass[5, 6] and coal[4, 7-12]. Recently, according WASTE (MSW) GASIFICATION UNDER VARIOUS PRESSURES AND CO2 CONCENTRATION ATMOSPHERES Eilhann Kwon, Kelly J, New York, NY 10027 ABSTRACT The Municipal Solid Waste (MSW) gasification process is a promising

  16. Building a World of Difference

    Broader source: Energy.gov [DOE]

    Waste?to?Energy Roadmapping Workshop Building a World of Difference Presentation by Patricia Scanlan, Director of Residuals Treatment Technologies, Black & Veatch

  17. Dilmaya's World

    E-Print Network [OSTI]

    Alan, Macfarlane

    2014-08-27T23:59:59.000Z

    burning on a funeral pyre. I had never lived for more than a day or in a world without toilets or toilet papers, where there was no central heating and no window glass to keep out the cold Himalayan winds. * * * Short of finding the very... not to film something because she felt that it was intrusive or time-wasting, though there must have been occasions when she thought both of these things. She did not show off in front of others, boast or use the filming to elevate her status. Nor did she...

  18. Bioreduction and immobilization of uranium in situ: a case study at a USA Department of Energy radioactive waste site, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Wu, Weimin [Stanford University; Carley, Jack M [ORNL; Watson, David B [ORNL; Gu, Baohua [ORNL; Brooks, Scott C [ORNL; Kelly, Shelly D [Argonne National Laboratory (ANL); Kemner, Kenneth M [Argonne National Laboratory (ANL); Van Nostrand, Joy [University of Oklahoma, Norman; Wu, Liyou [University of Oklahoma, Norman; Zhou, Jizhong [University of Oklahoma, Norman; Luo, Jian [Georgia Institute of Technology; Cardenas, Erick [Michigan State University, East Lansing; Fields, Matthew Wayne [Miami University, Oxford, OH; Marsh, Terence [Michigan State University, East Lansing; Tiedje, James [Michigan State University, East Lansing; Green, Stefan [Florida State University; Kostka, Joel [Florida State University; Kitanidis, Peter K. [Stanford University; Jardine, Philip [University of Tennessee, Knoxville (UTK); Criddle, Craig [Stanford University

    2011-01-01T23:59:59.000Z

    Bioremediation of uranium contaminated groundwater was tested by delivery of ethanol as an electron donor source to stimulate indigenous microbial bioactivity for reduction and immobilization of uranium in situ, followed by tests of stability of uranium sequestration in the bioreduced area via delivery of dissolved oxygen or nitrate at the US Department of energy's Integrated Field Research Challenge site located at Oak Ridge, Tennessee, USA. After long term treatment that spanned years, uranium in groundwater was reduced from 40-60 mg {center_dot} L{sup -1} to <0.03 mg {center_dot} L{sup -1}, below the USA EPA standard for drinking water. The bioreduced uranium was stable under anaerobic or anoxic conditions, but addition of DO and nitrate to the bioreduced zone caused U remobilization. The change in the microbial community and functional microorganisms related to uranium reduction and oxidation were characterized. The delivery of ethanol as electron donor stimulated the activities of indigenous microorganisms for reduction of U(VI) to U(IV). Results indicated that the immobilized U could be partially remobilized by D0 and nitrate via microbial activity. An anoxic environmental condition without nitrate is essential to maintain the stability of bioreduced uranium.

  19. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14T23:59:59.000Z

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  20. WORLD CONFERENCE AND GENEALOGICAL SEMINAR

    E-Print Network [OSTI]

    Olsen Jr., Dan R.

    WORLD CONFERENCE ON RECORDS AND GENEALOGICAL SEMINAR Salt Lake City, Utah, U.S.A. 5-8 August 1969 Research In Yugoslavia By Joze Zontar COPYRIGHT© 1969 THE GENEALOGICAL SOCIETY OF THE CHURCH OF JESUS CHRIST OF LATTER·DAY SAINTS, INC. AREA 0 -13 WORLD CONFERENCE ON RECORDS AND GENEALOGICAL SEMINAR Salt

  1. Transforming trash: reuse as a waste management and climate change mitigation strategy

    E-Print Network [OSTI]

    Vergara, Sintana Eugenia

    2011-01-01T23:59:59.000Z

    P. 2001. Integrated Solid Waste Management: A Life CyclePeter. 2001. Integrated Solid Waste Management: A Life Cycleeconomics of municipal solid waste. ” World Bank Research

  2. ISSN 0734242X Waste Management & Research

    E-Print Network [OSTI]

    Columbia University

    stabilization wedge Brian Bahor, Michael Van Brunt Covanta Energy Corporation, Fairfield, New Jersey, USA Jeff consumption and methane emissions from landfills. Keywords: Climate stabilization wedge, waste to energy Stovall Williams E&P, Fort Worth, Texas, USA Katherine Blue Trinity Consultants, Atlanta, Georgia, USA

  3. The Waste Isolation Pilot Plant Deep Geological Repository: A Domestic and Global Blueprint for Safe Disposal of High-Level Radioactive Waste - 12081

    SciTech Connect (OSTI)

    Eriksson, Leif G. [Nuclear Waste Dispositions, Winter Park, Florida 32789 (United States); Dials, George E. [B and W Conversion Services, LLC, Lexington, Kentucky 40513 (United States)

    2012-07-01T23:59:59.000Z

    At the end of 2011, the world's first used/spent nuclear fuel and other long-lived high-level radioactive waste (HLW) repository is projected to open in 2020, followed by two more in 2025. The related pre-opening periods will be at least 40 years, as it also would be if USA's candidate HLW-repository is resurrected by 2013. If abandoned, a new HLW-repository site would be needed. On 26 March 1999, USA began disposing long-lived radioactive waste in a deep geological repository in salt at the Waste Isolation Pilot Plant (WIPP) site. The related pre-opening period was less than 30 years. WIPP has since been re-certified twice. It thus stands to reason the WIPP repository is the global proof of principle for safe deep geological disposal of long-lived radioactive waste. It also stands to reason that the lessons learned since 1971 at the WIPP site provide a unique, continually-updated, blueprint for how the pre-opening period for a new HLW repository could be shortened both in the USA and abroad. (authors)

  4. Cofiring of coal and waste - an international perspective

    SciTech Connect (OSTI)

    Morrison, G.F. [IEA Coal Research, London (United Kingdom)

    1996-12-31T23:59:59.000Z

    In recent years, cofiring of waste and coal was thought to offer an environmentally sound, economic approach to both waste remediation and energy production. As the quantity of waste being produced around the world increases so does the severity of the regulations controlling its disposal particularly in landfill sites. Space for landfilling is diminishing especially in the densely populated smaller countries. This together with landfill CO{sub 2} and methane emissions and potential groundwater pollution is leading to policy statements and legislation to increase the reuse and recycling of wastes. In many countries landfilling will soon not be considered as an option. In the USA the number of active landfills decreased from more than 6000 in 1986 to just below 4500 in 1993. The number of operating landfills will soon drop to below 4000. In Europe the pressure on landfill space is even greater. Tyre disposal in landfill is widely recognised as an environmental problem; the tyres are a fire hazard and serve as a breeding ground for insects. In the USA, most states have legislation governing tyre handling and disposal and 15 have banned them from landfills. By 1998 all scrap tyres must be recycled or otherwise disposed of by non-landfill methods.

  5. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  6. The Innovations, Technology and Waste Management Approaches to Safely Package and Transport the World's First Radioactive Fusion Research Reactor for Burial

    SciTech Connect (OSTI)

    Keith Rule; Erik Perry; Jim Chrzanowski; Mike Viola; Ron Strykowsky

    2003-09-15T23:59:59.000Z

    Original estimates stated that the amount of radioactive waste that will be generated during the dismantling of the Tokamak Fusion Test Reactor will approach two million kilograms with an associated volume of 2,500 cubic meters. The materials were activated by 14 MeV neutrons and were highly contaminated with tritium, which present unique challenges to maintain integrity during packaging and transportation. In addition, the majority of this material is stainless steel and copper structural metal that were specifically designed and manufactured for this one-of-a-kind fusion research reactor. This provided further complexity in planning and managing the waste. We will discuss the engineering concepts, innovative practices, and technologies that were utilized to size reduce, stabilize, and package the many unique and complex components of this reactor. This waste was packaged and shipped in many different configurations and methods according to the transportation regulations and disposal facility requirements. For this particular project, we were able to utilize two separate disposal facilities for burial. This paper will conclude with a complete summary of the actual results of the waste management costs, volumes, and best practices that were developed from this groundbreaking and successful project.

  7. Verification of the Accountability Method as a Means to Classify Radioactive Wastes Processed Using THOR Fluidized Bed Steam Reforming at the Studsvik Processing Facility in Erwin, Tennessee, USA - 13087

    SciTech Connect (OSTI)

    Olander, Jonathan [Studsvik Processing Facility Erwin, 151 T.C. Runnion Rd., Erwin, TN 37650 (United States)] [Studsvik Processing Facility Erwin, 151 T.C. Runnion Rd., Erwin, TN 37650 (United States); Myers, Corey [Studsvik, Inc., 5605 Glenridge Drive, Suite 705, Atlanta, GA 30342 (United States)] [Studsvik, Inc., 5605 Glenridge Drive, Suite 705, Atlanta, GA 30342 (United States)

    2013-07-01T23:59:59.000Z

    Studsviks' Processing Facility Erwin (SPFE) has been treating Low-Level Radioactive Waste using its patented THOR process for over 13 years. Studsvik has been mixing and processing wastes of the same waste classification but different chemical and isotopic characteristics for the full extent of this period as a general matter of operations. Studsvik utilizes the accountability method to track the movement of radionuclides from acceptance of waste, through processing, and finally in the classification of waste for disposal. Recently the NRC has proposed to revise the 1995 Branch Technical Position on Concentration Averaging and Encapsulation (1995 BTP on CA) with additional clarification (draft BTP on CA). The draft BTP on CA has paved the way for large scale blending of higher activity and lower activity waste to produce a single waste for the purpose of classification. With the onset of blending in the waste treatment industry, there is concern from the public and state regulators as to the robustness of the accountability method and the ability of processors to prevent the inclusion of hot spots in waste. To address these concerns and verify the accountability method as applied by the SPFE, as well as the SPFE's ability to control waste package classification, testing of actual waste packages was performed. Testing consisted of a comprehensive dose rate survey of a container of processed waste. Separately, the waste package was modeled chemically and radiologically. Comparing the observed and theoretical data demonstrated that actual dose rates were lower than, but consistent with, modeled dose rates. Moreover, the distribution of radioactivity confirms that the SPFE can produce a radiologically homogeneous waste form. The results of the study demonstrate: 1) the accountability method as applied by the SPFE is valid and produces expected results; 2) the SPFE can produce a radiologically homogeneous waste; and 3) the SPFE can effectively control the waste package classification. (authors)

  8. Radioactive Waste Radioactive Waste

    E-Print Network [OSTI]

    Slatton, Clint

    form · Separate liquid from solid · Radionuclide · Separate all but H3/C14 #12;#12;Radioactive Waste;Radioactive Waste H3/C14 solids Type B (non-incinerable) metal glass hazardous materials #12;#12;Radioactive#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to

  9. Improving the world through engineering OPPORTUNITY?

    E-Print Network [OSTI]

    Columbia University

    themes of Energy, Environment, Education and Transport and its vision of `Improving the world through-melted. However, for many other types of waste, recovering its value to provide electricity, heat and/or transport

  10. Environmental Toxicology and Chemistry, Vol. 25, No. 2, pp. 458469, 2006 Printed in the USA

    E-Print Network [OSTI]

    Strauss, Richard E.

    the Anaconda Smelter Superfund Site, Anaconda, Montana, USA, to determine their exposure to five metal inhabiting sites contaminated by mine or smelter waste. Spe- cies with ubiquitous distributions and abundant

  11. THE ECONOMIST The waste industry

    E-Print Network [OSTI]

    of ten feet. Humanity has always produced waste in vast quantities; but more people, more consumption as with toxic chemicals, governments need to persuade people that they should be responsible for the muck into electricity or fuel or fertiliser. Environmentalists dream of a world in which almost nothing is wasted. #12

  12. Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 1 Characterizing Structural Controls of Geothermal Reservoirs in the Great Basin, USA, and Western Turkey: Developing 89557, USA 2 Great Basin Center for Geothermal Energy, University of Nevada, Reno, NV 89557, USA 3 BRGM

  13. aluminium dross waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material such as plutonium. There is not a single permanent repository for high-level nuclear waste anywhere on Earth, and the most advanced project, Yucca Mountain in the USA,...

  14. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    SciTech Connect (OSTI)

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-06-20T23:59:59.000Z

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  15. Data Mining in the Real World: Experiences, Challenges, and Recommendations

    E-Print Network [OSTI]

    Weiss, Gary

    Data Mining in the Real World: Experiences, Challenges, and Recommendations Gary M. Weiss Department of Computer and Information Science, Fordham University, Bronx, NY, USA Abstract - Data mining- ceptance. However, applying data mining methods to complex real-world tasks is far from straightforward

  16. World nuclear outlook 1995

    SciTech Connect (OSTI)

    NONE

    1995-09-29T23:59:59.000Z

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  17. World nuclear outlook 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  18. At Work in The World

    E-Print Network [OSTI]

    Blanc, Paul D. MD; Dolan, Brian PhD

    2012-01-01T23:59:59.000Z

    Susanna Rankin Bohme, Attleboro, USA Tuberculosis Germs atEnvironmen- tal Health, Attleboro, MA, USA Introduction As

  19. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

  20. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619 (9:1) OR Biohazard symbol (if untreated) and identity of liquid waste Biohazard symbol Address

  1. An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools

    E-Print Network [OSTI]

    Jeavons, Peter

    , it is still necessary to store this waste in cool- ing ponds for 20 to 60 years to remove the heatAn Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools Sarfraz Nawaz1 , Muzammil spread with grow- ing world population. However, the radioactive waste generated in these power plants

  2. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  3. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  4. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes...

  5. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

  6. Gasification world database 2007. Current industry status

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

  7. ETH ZURICH 2012 Eating tomorrow rethinking the world food

    E-Print Network [OSTI]

    Miyashita, Yasushi

    countries Food security in emerging markets Organic and Fair-trade Value chains Quantis Suite IntroductionIARU GSP ETH ZURICH 2012 Eating tomorrow ­rethinking the world food system Akiko Segawa ETH: Eating tomorrow ­rethinking the world food system 1st week: lectures at Emmental 2nd and 3rd week: Food waste case

  8. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place: San Bruno,...

  9. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

  10. IsisWorld: An Open Source Commonsense Simulator for AI Researchers Dustin Smith and Bo Morgan

    E-Print Network [OSTI]

    IsisWorld: An Open Source Commonsense Simulator for AI Researchers Dustin Smith and Bo Morgan {dustin,neptune}@media.mit.edu MIT Media Lab 20 Ames St Cambridge, MA 02139 USA Abstract A metareasoning

  11. Debugging in a Distributed World: Observation and Control Ashis Tarafdar \\Lambda

    E-Print Network [OSTI]

    Garg, Vijay

    Debugging in a Distributed World: Observation and Control Ashis Tarafdar \\Lambda Department 78712­1084, USA garg@ece.utexas.edu Abstract Debugging distributed programs is considerably more difficult than debugging sequential programs. We address issues in debugging distributed programs

  12. Building Commissioning in the USA 

    E-Print Network [OSTI]

    Castro, N.; Friedman, H.

    2006-01-01T23:59:59.000Z

    Building Commissioning in the USA Natascha Castro, Annex 47- US Team Leader National Institute of Standards and Technology Hannah Friedman, Cost-Benefit Subtask Leader Portland Energy Conservation, Inc. Asian Pacific Conference on Building...

  13. Debugging in a Distributed World: Observation and Control Ashis Tarafdar

    E-Print Network [OSTI]

    Garg, Vijay

    Debugging in a Distributed World: Observation and Control Ashis Tarafdar Department of Computer-1084, USA garg@ece.utexas.edu Abstract Debugging distributed programs is considerably more difficult than debugging sequential programs. We address issues in debugging distributed programs and provide a general

  14. International waste management fact book

    SciTech Connect (OSTI)

    Amaya, J.P.; LaMarche, M.N.; Upton, J.F.

    1997-10-01T23:59:59.000Z

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  15. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27T23:59:59.000Z

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  16. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  17. Open Defecation and the Human Waste Crisis in India

    E-Print Network [OSTI]

    Mozaffar, Parveen

    2014-05-31T23:59:59.000Z

    This thesis analyzes the human waste crisis in India. The lack of sanitation facilities as well as open defecation seriously impacts India's ability to achieve its sanitation goals by 2015. More importantly, if the World Health Organization...

  18. Electronic Waste Management in India: A Stakeholder’s Perspective

    E-Print Network [OSTI]

    Borthakur, Anwesha; Sinha, Kunal

    2013-01-01T23:59:59.000Z

    to electronic waste (WEEE) recycling. Circuit World, 33(2),Gidarakos, E. (2009). Small WEEE: determining recyclablesCherrett, T.J. (2011). How are WEEE doing? A global review

  19. Waste Disposal (Illinois)

    Broader source: Energy.gov [DOE]

    This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

  20. Passage of chronic wasting disease prion into transgenic mice expressing Rocky Mountain elk

    E-Print Network [OSTI]

    Passage of chronic wasting disease prion into transgenic mice expressing Rocky Mountain elk (Cervus in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA 2 Case Western Reserve Accepted 1 August 2006 Chronic wasting disease (CWD) of elk (Cervus elaphus nelsoni) and mule deer

  1. From New Zealand to Mongolia: Co-Designing and Deploying a Digital Library for the World's Children**

    E-Print Network [OSTI]

    Golbeck, Jennifer

    From New Zealand to Mongolia: Co-Designing and Deploying a Digital Library for the World's Children of Maryland (USA), co-designing has taken place with partners in New Zealand, Honduras, Germany, Mongolia

  2. Hot Dry Rock Geothermal Energy Development in the USA David Duchane and Donald Brown

    E-Print Network [OSTI]

    1 Hot Dry Rock Geothermal Energy Development in the USA by David Duchane and Donald Brown Los of the world's store of geothermal energy. The real potential for growth in the use of geothermal energy lies-engineered geothermal reservoir in hot, crystalline rock by the application of hydraulic fracturing techniques

  3. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  4. Dow's Energy/WRAP Contest- A 12-Yr Energy and Waste Reduction Success Story

    E-Print Network [OSTI]

    Nelson, K. E.

    DOW'S ENERGY/WRAP CONTEST A 12-YR ENERGY AND WASTE REDUCTION SUCCESS STORY Kenneth E. Nelson, Manager, Energy Conservation, Dow U.S.A. ABSTRACT Keeping employees interested in saving energy and reducing waste is a constant challenge. Ideally... conservation program in 1981. It took the form of an annual Contest. In 1983, the Contest scope was expanded to included yield improvement, and in 1987, Dow's WRAP (Waste Reduction Always Pays) program was added. The Contest has been enormously successful...

  5. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  6. Hisense USA: Order (2010-CE-1211)

    Broader source: Energy.gov [DOE]

    DOE issued an Order after entering into a Compromise Agreement with Hisense USA Corp. after finding Hisense USA had failed to certify that certain models of residential refrigerators, refrigerator-freezers, and freezers comply with the applicable energy conservation standards.

  7. Euro Chef USA: Order (2014-CE-23004)

    Broader source: Energy.gov [DOE]

    DOE ordered Euro Chef USA Inc. to pay a $8,000 civil penalty after finding Euro Chef USA had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  8. WASTE TO WATTS Waste is a Resource!

    E-Print Network [OSTI]

    Columbia University

    to Climate protection in light of the· Waste Framework Directive. The "energy package", e.g. the RenewablesWASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From

  9. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01T23:59:59.000Z

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  10. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect (OSTI)

    Siemer, D.D. [Idaho National Laboratory, 12N 3167E, Idaho Falls, ID 83402 (United States)

    2013-07-01T23:59:59.000Z

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  11. http://wmr.sagepub.com/ Waste Management & Research

    E-Print Network [OSTI]

    . A gigantic effort over the last 30 years has led to prospering recycling numbers (composting includedWaste Manag Res Costas A Velis and Paul H Brunner Recycling and resource efficiency: it is time.sagepub.com Imagine a world where everything we use is eventually recycled. Sooner or later, this means also a world

  12. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  13. World Views From fragmentation

    E-Print Network [OSTI]

    .......................................................11 2. The Seven Components of a World View...................................................... 20 3. The Unity of the Seven Sub........................................... 25 5. The Purpose of the group `Worldviews

  14. Building Commissioning in the USA

    E-Print Network [OSTI]

    Castro, N.; Friedman, H.

    2006-01-01T23:59:59.000Z

    Building Commissioning in the USA Natascha Castro, Annex 47- US Team Leader National Institute of Standards and Technology Hannah Friedman, Cost-Benefit Subtask Leader Portland Energy Conservation, Inc. Asian Pacific Conference on Building... Program (PIER)? Utility programs and non-profit organizations ? Energy Efficiency Mandates ? California, New York, Vermont, Minnesota, City of Portland Oregon ? Building Energy Codes include Cx ? California, State of Washington, Massachusetts US Team...

  15. Waste Description Pounds Reduced,

    E-Print Network [OSTI]

    -labeled oligonucleotides Waste minimization 3,144 Radiological waste (396 ft3 ); Mixed waste (35 gallons); Hazardous Waste of radioactivity, thus avoiding radiological waste generation. This process won a 2008 DOE P2 Star Award environmentally friendly manor. BNL pays shipping fees to the recycling facility. Building demolition recycling

  16. 5 World Oil Trends WORLD OIL TRENDS

    E-Print Network [OSTI]

    for gasoline, diesel and other petroleum products. This chapter provides an overview of world oil trends agreements on export routes have limited development. Petroleum production in the United States, including half of petroleum supplies to the United States. OPEC petroleum production also increased in 1994

  17. What in the World are Possible Worlds?

    E-Print Network [OSTI]

    Dondero, Mark

    2010-01-16T23:59:59.000Z

    talk of possible worlds? In this thesis, I will attempt to outline the most significant and well-recognized view in this debate: that of David Lewis. Through my discussion of him, I will find occasion to discuss some alternative views that have arisen...

  18. WORLD EXCLUSIVE Ugly scenes greeted workers yesterday as they ar-

    E-Print Network [OSTI]

    Rambaut, Andrew

    .50 it was licensed for use only in recovering drug addicts who chose the treatment. Since then, Cerebetter has wasted that clinics can now inject addicts under their care with- out needing their consent. Some commentators think- rived at the HQ of Cerebetter, the pharmaceutical company behind the world's first anti-addiction im

  19. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    1999-12-01T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  20. Radioactive Waste Management (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

  1. Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrate Salt Bearing Waste

  2. Solid Waste (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

  3. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06T23:59:59.000Z

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  4. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  5. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  6. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

  7. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  8. Copyright 2009 by ASME Proceedings of the 17th Annual North American Waste-to-Energy Conference

    E-Print Network [OSTI]

    Columbia University

    Copyright © 2009 by ASME Proceedings of the 17th Annual North American Waste-to-Energy Conference of each technology has the potential 1 Proceedings of the 17th Annual North American Waste-to-Energy Conference NAWTEC17 May 18-20, 2009, Chantilly, Virginia, USA NAWTEC17-2356 #12;Copyright © 2009 by ASME

  9. Solid Waste and Infectious Waste Regulations (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste.

  10. Radioactive and chemotoxic wastes: Only radioactive wastes?

    SciTech Connect (OSTI)

    Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

    1993-12-31T23:59:59.000Z

    Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

  11. Vestas USA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter Logging Jump to: navigation,Vestas USA Place:

  12. Radioactive waste management in the former USSR

    SciTech Connect (OSTI)

    Bradley, D.J.

    1992-06-01T23:59:59.000Z

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  13. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  14. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  15. World Cup Blues

    E-Print Network [OSTI]

    Hacker, Randi

    2010-08-18T23:59:59.000Z

    Broadcast Transcript: World Cup. 1966. North Korea stuns soccer fans by becoming the first Asian team ever to advance to the quarterfinals where they go up 3-0 against Portugal before finally being defeated at the hands--or ...

  16. Around the World byprivatejet

    E-Print Network [OSTI]

    Liu, Taosheng

    AngkorWat, Cambodia Petra or Wadi Rum, Jordan engeti Plain or rongoro Crater, Tanzania The Great Barrier cities of the ancient world at Petra, or explore the lunar-like landscape of Wadi Rum. Cambodia india

  17. Waste Isolation Pilot Plant Attracts World Interest | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-IndiaVALUE STUDY4,Department of Energy (WIPP)Isolation

  18. Gaining a World View

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    to good use. ?What is not used for towns or cities is used for agriculture,? he said. ?Everything is recycled because they do not have any land for landfills.? ?I was amazed at how much effort is put forth to avoid wasting materials,? Birkenfeld said. ?I...

  19. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  20. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    records. The initial training of Hazardous Waste Management and Waste Minimization is done in a classHazardous Waste Management Training Persons (including faculty, staff and students) working before handling hazardous waste. Departments are re- quired to keep records of training for as long

  1. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    2000-01-06T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

  2. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01T23:59:59.000Z

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  3. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  4. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  5. Radium bearing waste disposal

    SciTech Connect (OSTI)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Schofield, W.D. [Foster Wheeler Environmental Corp. (United States)

    1995-07-01T23:59:59.000Z

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach.

  6. 1Mohammed Atiquzzaman, University of Oklahoma, USA.

    E-Print Network [OSTI]

    Atiquzzaman, Mohammed

    1Mohammed Atiquzzaman, University of Oklahoma, USA. Presentation at Tohoku University, Japan Aug 6 of Computer Science University of Oklahoma. Email: atiq@ieee.org Web: www.cs.ou.edu/~atiq Tohoku University, Sendai, Japan. Aug 6, 2002. #12;2Mohammed Atiquzzaman, University of Oklahoma, USA. Presentation

  7. 1Mohammed Atiquzzaman, University of Oklahoma, USA.

    E-Print Network [OSTI]

    Atiquzzaman, Mohammed

    1Mohammed Atiquzzaman, University of Oklahoma, USA. Presentation at Tohoku University, Japan Aug 6 of Computer Science University of Oklahoma. Email: atiq@ieee.org Web: www.cs.ou.edu/~atiq Presentation at Tohoku University, Sendai, Japan. Aug 6, 2002. #12;2Mohammed Atiquzzaman, University of Oklahoma, USA

  8. Hazardous Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    "Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may:  cause or significantly...

  9. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  10. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Revision 6 Waste Management Quality Assurance Plan Waste6 WM QA Plan Waste Management Quality Assurance Plan LBNL/4 Management Quality Assurance

  11. waste | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlternativesSupplements to Coal - Feedstock Flexibility Waste Streams Gasification can be applied to a variety of waste streams, of which municipal solid waste (MSW) and...

  12. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings...

    Office of Environmental Management (EM)

    H2USA Workshop: Hydrogen Fueling Station Component Listings Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings April 21, 2015 - 1:04pm Addthis H2USA will host an...

  13. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

  14. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  15. area nevada usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Position Description Internship Program Goal: Bell Nursery USA, LLC - is a wholesale grower of quality bedding plants, pot. Intern Project: 12;Bell Nursery USA, LLC The...

  16. USA Science and Engineering Festival: Inspiring and Educating...

    Energy Savers [EERE]

    USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow USA Science and Engineering Festival: Inspiring and Educating the Clean Energy...

  17. MOU signed between CIAE and Jefferson National Lab, USA. (China...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesmou-signed-between-ciae-and-jefferson-national-lab-usa-china-nuclear-industry-news-ge... MOU signed between CIAE and Jefferson National Lab, USA....

  18. alexandria virginia usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now at University of Wisconsin, USA. Permanent address: Northeastern University, Department of Physics, Boston, 02115 MA, USA. Now at NIKHEF P.O.B. 41882 Dutz, Hartmut 8...

  19. Solid Waste Management Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

  20. Evaluation of Seafood Processing Wastes in Prepared Feeds for Red Drum (Sciaenops ocellatus)

    E-Print Network [OSTI]

    Pernu, Benjamin Mark

    2012-07-16T23:59:59.000Z

    High feed costs and increasing demand for fishmeal have intensified the search for alternative protein sources which are needed to allow world aquaculture to continue expanding. A severely underused marine resource is processing wastes of various...

  1. Policy Research Working Paper 4844, World Bank, Washington DC, April 2009 Weakly Relative Poverty

    E-Print Network [OSTI]

    Krivobokova, Tatyana

    Policy Research Working Paper 4844, World Bank, Washington DC, April 2009 Weakly Relative Poverty, 20433, USA Abstract: Prevailing measures of relative poverty are unchanged when all incomes grow that relax these assumptions. On calibrating our measures to national poverty lines and survey data, we find

  2. Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore

    E-Print Network [OSTI]

    Columbia University

    ;20031970 The Solid Waste Challenge Waste Explosion 1,200 t/d1,200 t/d 6,900 t/d6,900 t/d #12;Waste ManagementWaste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management · In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected

  3. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    SciTech Connect (OSTI)

    Robert S. Anderson

    2005-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when the changes were made. As regulations and permits change, and as the proliferation of personal computers flourish, procedures and data files begin to be stored in electronic databases. With many different organizations, contractors, and unique procedures, several dozen databases are used to track and maintain aspects of waste management. As one can see, the logistics of collecting and certifying data from all organizations to provide comprehensive information would not only take weeks to perform, but usually presents a variety of answers that require an immediate unified resolution. A lot of personnel time is spent scrubbing the data in order to determine the correct information. The issue of disparate data is a concern in itself, and is coupled with the costs associated with maintaining several separate databases. In order to gain waste management efficiencies across an entire facility or site, several waste management databases located among several organizations would need to be consolidated. The IWTS is a system to do just that, namely store and track containerized waste information for an entire site. The IWTS has proven itself at the INL since 1995 as an efficient, successful, time saving management tool to help meet the needs of both operations and management for hazardous and radiological containerized waste. Other sites have also benefited from IWTS as it has been deployed at West Valley Nuclear Services Company DOE site as well as Ontario Power Ge

  4. Hazardous Waste Management (Arkansas)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

  5. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  6. Hazardous Waste Management (Oklahoma)

    Broader source: Energy.gov [DOE]

    This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

  7. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31T23:59:59.000Z

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  8. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19T23:59:59.000Z

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  9. Final Report Waste Incineration

    E-Print Network [OSTI]

    solid waste, the composition and com- bustion of it. A main focus is on the European emission from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical with municipal solid waste incineration (MSWI) and the problems that occur in connection to this. The emphasis

  10. Rethinking the Waste Hierarchy

    E-Print Network [OSTI]

    principles of EU waste policies. The environmental damage caused by waste depends on which type of manage, Environmental Assessment Institute For further information please contact: Environmental Assessment Institute.imv.dk #12;Environmental Assessment Institute Rethinking the Waste Hierarchy March 2005 Recommendations

  11. A Short History of Waste Management at the Hanford Site

    SciTech Connect (OSTI)

    Gephart, Roy E.

    2010-03-31T23:59:59.000Z

    "The world’s first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford’s last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford’s only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book “Hanford: A Conversation about Nuclear Waste and Cleanup.”(1) "

  12. Radioactive waste management in the former USSR. Volume 3

    SciTech Connect (OSTI)

    Bradley, D.J.

    1992-06-01T23:59:59.000Z

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  13. On achieving the state's household recycling target: A case study of Northern New Jersey, USA

    SciTech Connect (OSTI)

    Otegbeye, M.; Abdel-Malek, L. [Department of Industrial and Management Systems Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Hsieh, H.N. [Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Meegoda, J.N. [Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States)], E-mail: meegoda@njit.edu

    2009-02-15T23:59:59.000Z

    In recent times, the State of New Jersey (USA) has been making attempts at promoting recycling as an environmentally friendly means of attaining self-sufficiency at waste disposal, and the state has put in place a 50% recycling target for its municipal solid waste stream. While the environmental benefits of recycling are obvious, a recycling program must be cost effective to ensure its long-term sustainability. In this paper, a linear programming model is developed to examine the current state of recycling in selected counties in Northern New Jersey and assess the needs to achieve the state's recycling goal in these areas. The optimum quantities of waste to be sent to the different waste facilities, which include landfills, incinerators, transfer stations, recycling and composting plants, are determined by the model. The study shows that for these counties, the gap between the current waste practices where the recycling rate stands at 32% and the state's goal can be bridged by more efficient utilization of existing facilities and reasonable investment in expanding those for recycling activities.

  14. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    on GREET 1.7 for agricultural waste are estimated to be theof existing agricultural and silvicultural wastes assuming

  15. USA oilgas production cost : recent changes

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1991-01-01T23:59:59.000Z

    During 1984-1989, oil development investment cost in the USA fell, but only because of lower activity. The whole cost curve shifted unfavorably (leftward). In contrast, natural gas cost substantially decreased, the curve ...

  16. USA Manufacturing: Proposed Penalty (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  17. Hisense USA: Proposed Penalty (2010-CE-1211)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Hisense USA Corp. failed to certify a variety of residential refrigerators, refrigerator-freezers, and freezers as compliant with the applicable energy conservation standards.

  18. Bell Nursery USA, LLC Internship Position Description

    E-Print Network [OSTI]

    Bell Nursery USA, LLC Internship Position Description Internship Program Goal as a grower. Grower/Internship position : It is our goal at Bell to provide a rewarding and educational experience to the student/intern. The internship position

  19. Third World Ballistic missiles

    SciTech Connect (OSTI)

    Nolan, J.E.; Wheelon, A.D.

    1990-08-01T23:59:59.000Z

    Ballistic missiles and other means of long-range destruction, traditionally limited to a handful of industrialized nations, are fast becoming a fixture in many regional conflicts. The Third World military buildup is perhaps even more worrisome than its First World prototype, for it is far more likely to find expression in war. There are several reasons why this should be so. In the past decade the number of countries in the missile club has more than doubled, to 18. Many of the new members have been at war or are embroiled in disputes. Unlike the major powers, these countries have not had time enough to perfect systems of command and control over their new strategic forces. They have had little time to learn to manage the complexities of military brinksmanship. Finally, because many regional conflicts overlap, an escalation in the arms race tends to convey itself from one area of tension to another. For many years the big industrialized countries ignored the proliferation of ballistic missiles and sought political advantage by arming their clients. In doing so, they presumed that the bipolar alignment of power would restrain regional conflicts. The preoccupation with East-West issues overshadowed problems in the Third World. Smaller industrialized powers sold missiles to generate revenues to support their own military industries. Meanwhile the developing countries eagerly acquired missiles for the same reasons that had motivated their predecessors: to deter attack, intimidate enemies, build a technological base and win prestige.

  20. Landfills a thing of the past in Germany where advanced waste management By Evridiki Bersi -Kathimerini

    E-Print Network [OSTI]

    Columbia University

    Landfills a thing of the past in Germany where advanced waste management rules By Evridiki Bersi but that day has already come in Germany. On June 1, 2005, Germany imposed a ban on traditional garbage dumps, replacing them with one of the most advanced waste-management systems in the world. In the 1970s, Germany

  1. Waste Gasification by Thermal Plasma: A Review Frdric Fabry*, Christophe Rehmet, Vandad Rohani, Laurent Fulcheri

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , Rue Claude Daunesse, CS 10207, 06904 Sophia-Antipolis, France *Corresponding Author Telephone: +33 (0-to-energy and can be easily adapted to the treatment of various wastes (municipal solid wastes, heavy oil, used car management. In parallel, the energy consumption continuously grow in the world due to the increasing

  2. Glass Science tutorial lecture No. 5: Historical review of USDOE tank waste management

    SciTech Connect (OSTI)

    McDaniel, E.W.

    1995-02-01T23:59:59.000Z

    This is a two day course whose objective is to present an unbiased historical overview of the DOE tank waste activities. World events which impacted the US nuclear program (or vise versa) will be presented. Liquid, mostly tank waste, and sludge are the primary concerns of this course.

  3. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31T23:59:59.000Z

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.

  4. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

  5. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03T23:59:59.000Z

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  6. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13T23:59:59.000Z

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  7. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31T23:59:59.000Z

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  8. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15T23:59:59.000Z

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  9. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF)...

  10. ,2009,)3(1,Report and Opinionnet.sciencepub.www://http,com.gmail@sciencepub Studies on Municipal Solid Waste Management in Mysore City-A case study

    E-Print Network [OSTI]

    Columbia University

    Solid Waste Management in Mysore City- A case study Yadav Ishwar Chandra and N.Linthoingambi Devi_ishwar@yahoo.com, Phone no: +919873453116 Abstract: Solid waste management is a worldwide phenomenon. It is a big challenge all over the world for human beings. The problem of municipal solid waste management (MSWM

  11. WORLD PRODUCTION AND TRADE IN

    E-Print Network [OSTI]

    WORLD PRODUCTION AND TRADE IN FISH MEAL AND OIL UNITED STATES DEPARTMENT OF THE INTERIOR · FISH THIS REPORT IS A GENERAL ACCOUNT OF THE WORLD ' S PRO- DUCTION AND TRADE IN FISH MEAL AND OIL. IN 1959- DICATE WHAT IS INCLUDED BESIDES FISHMEAL AND FISH BODY OIL. #12;WORLD PRODUCTION AND TRADE IN FISH MEAL

  12. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    NONE

    1995-04-26T23:59:59.000Z

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  13. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

  14. Transuranic (TRU) Waste | Department of Energy

    Office of Environmental Management (EM)

    Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

  15. New Waste Calcining Facility (NWCF) Waste Streams

    SciTech Connect (OSTI)

    K. E. Archibald

    1999-08-01T23:59:59.000Z

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

  16. Waste IncIneratIon and Waste PreventIon

    E-Print Network [OSTI]

    and heat. In 2005/2006, German waste incineration plants provided some 6 terawatt hours (TWh-/Abfallgesetz) continues to hold: Waste prevention has priority over recovery and disposal. Nevertheless, the use of waste for en- ergy recovery is an indispensable element of sus- tainable waste management. Waste incineration

  17. Energy from Waste UK Joint Statement on Energy from Waste

    E-Print Network [OSTI]

    Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

  18. www.d-waste.com info@d-waste.com

    E-Print Network [OSTI]

    marketplace, about 47 grams of waste is produced-- with worldwide municipal solid waste generation totaling, the International Solid Waste Association, GIZ/SWEEP-Net, the Waste to Energy Research Council (WTERT) and the Solid management data available". According to David Newman, president of the International Solid Waste Association

  19. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill

    E-Print Network [OSTI]

    Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum American Society of Civil Engineers. CE Database subject headings: Solid wastes; Leaching; Aluminum

  20. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS GENERATED AT DEPAUL UNIVERSITY.4 Hazardous Waste Defined p.5 Chemical Waste Procedure for Generating Departments p.6 o A of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G

  1. World Biofuels Study

    SciTech Connect (OSTI)

    Alfstad,T.

    2008-10-01T23:59:59.000Z

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over the next two decades, provided policymakers stay the course with their policy goals. This project relied on a scenario-based analysis to study global biofuel markets. Scenarios were designed to evaluate the impact of different policy proposals and market conditions. World biofuel supply for selected scenarios is shown in Figure 1. The reference case total biofuel production increases from 12 billion gallons of ethanol equivalent in 2005 to 54 billion gallons in 2020 and 83 billion gallons in 2030. The scenarios analyzed show volumes ranging from 46 to 64 billion gallons in 2020, and from about 72 to about 100 billion gallons in 2030. The highest production worldwide occurs in the scenario with high feedstock availability combined with high oil prices and more rapid improvements in cellulosic biofuel conversion technologies. The lowest global production is found in the scenario with low feedstock availability, low oil prices and slower technology progress.

  2. ASCE World Water and Environmental Resources Congress Salt Lake City, Utah USA

    E-Print Network [OSTI]

    Pitt, Robert E.

    inlet devices, and recommend important features to optimize their performance. Case studies are also............................................................................................................................................................2 Bellevue Catchbasin Monitoring Study............................................................................................................................................................ 14 #12;2 Abstract This presentation summarizes the results from past and recent studies of catchbasin

  3. THERMAL ANALYSIS OF WASTE GLASS MELTER FEEDS

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR; POKORNY R; PIERCE DA

    2011-10-21T23:59:59.000Z

    Melter feeds for high-level nuclear waste (HLW) typically contain a large number of constituents that evolve gas on heating, Multiple gas-evolving reactions are both successive and simultaneous, and include the release of chemically bonded water, reactions of nitrates with organics, and reactions of molten salts with solid silica. Consequently, when a sample of a HLW feed is subjected to thermogravimetric analysis (TGA), the rate of change of the sample mass reveals multiple overlapping peaks. In this study, a melter feed, formulated for a simulated high-alumina HLW to be vitrified in the Waste Treatment and Immobilization Plant, currently under construction at the Hanford Site in Washington State, USA, was subjected to TGA. In addition, a modified melter feed was prepared as an all-nitrate version of the baseline feed to test the effect of sucrose addition on the gas-evolving reactions. Activation energies for major reactions were determined using the Kissinger method. The ultimate aim of TGA studies is to obtain a kinetic model of the gas-evolving reactions for use in mathematical modeling of the cold cap as an element of the overall model of the waste-glass melter. In this study, we focused on computing the kinetic parameters of individual reactions without identifying their actual chemistry, The rough provisional model presented is based on the first-order kinetics.

  4. Guidelines for mixed waste minimization

    SciTech Connect (OSTI)

    Owens, C.

    1992-02-01T23:59:59.000Z

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  5. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01T23:59:59.000Z

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  6. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    1999-08-24T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  7. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    2000-08-28T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  8. Operational waste volume projection

    SciTech Connect (OSTI)

    Koreski, G.M.

    1996-09-20T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

  9. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01T23:59:59.000Z

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  10. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06T23:59:59.000Z

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  11. Solid Waste Management (Connecticut)

    Broader source: Energy.gov [DOE]

    Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental...

  12. Solid Waste Policies (Iowa)

    Broader source: Energy.gov [DOE]

    This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are...

  13. Solid Waste Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

  14. Norcal Waste Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2002-12-01T23:59:59.000Z

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  15. Hazardous Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

  16. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  17. Solid Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that...

  18. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  19. H2USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power Project Groundof|than Ever | DepartmentofH2USA H2USA

  20. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26T23:59:59.000Z

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  1. Waste Isolation Pilot Plant (WIPP) Waste Isolation Pilot Plant...

    National Nuclear Security Administration (NNSA)

    licensed to safely and permanently dispose of transuranic radioactive waste, or TRU waste, left over from the production of nuclear weapons. After more than 20 years of...

  2. Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides for planning for the processing and disposal of municipal waste; requires counties to submit plans for municipal waste management systems within their boundaries; authorizes...

  3. Solid Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

  4. Virginia Waste Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

  5. Hazardous Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

  6. Solid Waste Disposal Act (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

  7. Georgia Waste Control Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Waste Control Law makes it unlawful to dump waste in any lakes, streams or surfaces waters of the State or on any private property without consent of the property owner. Waste is very broadly...

  8. Radioactive waste management strategy in the Republic of Croatia

    SciTech Connect (OSTI)

    Subasic, D.; Saler, A.; Skanata, D. [Javno poduzece za zbrinjavanje radioaktivnog otpada, Zagreb (Croatia)

    1993-12-31T23:59:59.000Z

    Environmental preservation and human health protection have been proclaimed by the Croatian Government as priority actions. Hence, all organized actions toward this aim are expected to be supported by the State. Radioactive waste management plays a significant role in controlling materials that could harm the environment. Strategy in handling radioactive wastes is a prerequisite for well-organized radwaste management. It should be applied to all radioactive wastes that have already been produced in various industries, medical institutions, and scientific laboratories. Additionally, radioactive wastes that are being generated in the Krsko NPP must not be neglected, as well as possible future nuclear program needs in Croatia. For all considered actions, world-wide experiences and safety requirements should be strictly respected.

  9. Alternative approaches for better municipal solid waste management in Mumbai, India

    SciTech Connect (OSTI)

    Rathi, Sarika [International Research Institute for Climate Prediction, Earth Institute, Columbia University, 61 Rt. 9W, Monell, Palisades, NY 10964 (United States)]. E-mail: sarika@iri.columbia.edu

    2006-07-01T23:59:59.000Z

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads and in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.

  10. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A. (ed.)

    1991-01-01T23:59:59.000Z

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  11. Solid Waste Paul Woodson, East Central University

    E-Print Network [OSTI]

    of groundwater contamination, air pollution, and odor. Solid wastes may be displeasing to the public either, industrial and medical wastes, food wastes, mineral waste, and nonhazardous wastes. In addition/reservoirs, special wastes, such as medical wastes, low level radioactive wastes, construction/demolition debris

  12. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  13. Solid Waste Management (South Dakota)

    Broader source: Energy.gov [DOE]

    This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling...

  14. RADIOACTIVE WASTE DISPOSAL IN GRANITE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

  15. Solid Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that...

  16. Animal Waste Technology Fund (Maryland)

    Broader source: Energy.gov [DOE]

    A bill passed in 2012 transferred responsibility for animal waste management technology projects to the Maryland Department of Agriculture. The Department will maintain the Animal Waste Technology...

  17. Solid Waste Rules (New Hampshire)

    Broader source: Energy.gov [DOE]

    The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

  18. Nebraska Hazardous Waste Regulations (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

  19. Solid Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

  20. IEEE Energy2030 Atlanta, Georgia, USA

    E-Print Network [OSTI]

    Ratnasamy, Sylvia

    an innovative electric power architecture, rooted in lessons learned from the Internet and microgrids, whichIEEE Energy2030 Atlanta, Georgia, USA 17-18 November 2008 An Architecture for Local Energy-disruptive incremental adoption. Such a system, which we term a "LoCal" grid, is controlled by intelligent power switches

  1. Black Shales Adina Paytan, Stanford University, USA

    E-Print Network [OSTI]

    Paytan, Adina

    Tales of Black Shales Adina Paytan, Stanford University, USA Several times during the middle of the Cretaceous period, between 125 and 80 million years ago, organic-carbon-rich black shales were deposited over large areas of the ocean floor. These black shales provide valuable information about past climates

  2. Ocean Thermal Energy Conversion Mostly about USA

    E-Print Network [OSTI]

    Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega Structures (Plantships) · Bottom-Mounted Structures · Model Basin Tests/ At-Sea Tests · 210 kW OC-OTEC) #12;#12;Claude's Off Rio de Janeiro (1933) · Floating Ice Plant: 2.2 MW OC- OTEC to produce 2000

  3. Ocean Thermal Energy Conversion Mostly about USA

    E-Print Network [OSTI]

    Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega · Floating Structures (Plantships) · Bottom-Mounted Structures · Model Basin Tests/ At-Sea Tests · 210 kW OC-OTEC: Georges Claude (Open Cycle OTEC) · 1928 Ougree Experiment, France: Factory Water Outflow (33 °C) & Meuse

  4. Waste classification sampling plan

    SciTech Connect (OSTI)

    Landsman, S.D.

    1998-05-27T23:59:59.000Z

    The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998.

  5. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

    1987-01-01T23:59:59.000Z

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  6. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01T23:59:59.000Z

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  7. Heterogeneous waste processing

    DOE Patents [OSTI]

    Vanderberg, Laura A. (Los Alamos, NM); Sauer, Nancy N. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Foreman, Trudi M. (Los Alamos, NM); Hanners, John L. (Los Alamos, NM)

    2000-01-01T23:59:59.000Z

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  8. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  9. In Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), Saint Paul, Minnesota, USA, May 2013.

    E-Print Network [OSTI]

    Stone, Peter

    (AAMAS 2013), Saint Paul, Minnesota, USA, May 2013. A Learning Agent for Heat­Pump Thermostat Control around the world. With the e#orts of moving to sustainable energy consump­ tion, heat­pump based HVAC by electricity rather than by gas or oil. One drawback of heat­pump systems is that their e#ciency sharply

  10. In Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), Saint Paul, Minnesota, USA, May 2013.

    E-Print Network [OSTI]

    Stone, Peter

    (AAMAS 2013), Saint Paul, Minnesota, USA, May 2013. A Learning Agent for Heat-Pump Thermostat Control around the world. With the efforts of moving to sustainable energy consump- tion, heat-pump based HVAC by electricity rather than by gas or oil. One drawback of heat-pump systems is that their efficiency sharply

  11. alto ca usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Technology, Pasadena, CA 91109, USA; amainzer@jpl.nasa.gov 2 Infrared Processing, Tucson, AZ 85719, USA 4 Department of Physics and Astronomy, UCLA, P.O. Box 91547, Los...

  12. austin tx usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    78712, USA b Bureau of Economic Geology, Jackson School of Geology, The University of Texas at Austin, Austin, TX 78713, USA c Department of Mathematics Minkoff, Susan E. 50...

  13. Smeg USA: Order (2011-CE-14/1909)

    Broader source: Energy.gov [DOE]

    DOE ordered Smeg USA, Inc. to pay a $6,000 civil penalty after finding Smeg USA had failed to certify that certain models of dishwashers and refrigerators comply with the applicable energy conservation standards.

  14. DuraLamp USA: Order (2010-CE-0912)

    Broader source: Energy.gov [DOE]

    DOE ordered DuraLamp USA, Inc. to pay a $2,500 civil penalty after finding DuraLamp USA had failed to certify that model PAR 30, an incandescent reflector lamp, complies with the applicable energy conservation standards.

  15. Scientific Solutions to Nuclear Waste Environmental Challenges

    SciTech Connect (OSTI)

    Johnson, Bradley R.

    2014-01-30T23:59:59.000Z

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They were then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the amount of time it takes for one-half of the material to undergo radioactive decay.) In general, the ideal material would need to be durable for approximately 10 half-lives to allow the activity to decay to negligible levels. However, the potential health effects of each radionuclide vary depending on what type of radiation is emitted, the energy of that emission, and the susceptibility for the human body to accumulate and concentrate that particular element. Consequently, actual standards tend to be based on limiting the dose (energy deposited per unit mass) that is introduced into the environment. The Environmental Protection Agency (EPA) has the responsibility to establish standards for nuclear waste disposal to protect the health and safety of the public. For example, the Energy Policy Act of 1992 directed the EPA to establish radiation protection standards for the Yucca Mountain geologic repository for nuclear wastes. The standards for Yucca Mountain were promulgated in 2008, and limit the dose to 15 millirem per year for the first 10,000 years, and 100 milirem per year between 10,000 years and 1 million years (40 CFR Part 197; http://www.epa.gov/radiation/yucca/2008factsheet.html). So, the challenge is two-fold: (1) develop a material (a waste form) that is capable of immobilizing the waste over geologic time scales, and (2) develop a process to convert the radioactive sludge in the tanks into this durable waste form material. Glass: Hard, durable, inert, and with infinite chemical versatility Molten glass is a powerful solvent liquid, which can be designed to dissolve almost anything. When solidified, it can be one of the most chemically inert substances known to man. Nature's most famous analogue to glass is obsidian, a vitreous product of volcanic activity; formations over 17 million years old have been found. Archaeologists have found man-made glass specimens that are five thousand years old.

  16. SECOND WORLD WAR THE UNIVERSITY

    E-Print Network [OSTI]

    Handy, Todd C.

    RECORD OF SERVICE SECOND WORLD WAR THE UNIVERSITY OF BRITISH COLUMBIA VANCOUVER #12;IN MEMORIAM #12$,T'r 113a,. #12;#12;RECORD OF SERVICE IN THE SECOND WORLD WAR THEUNIVERSITY OF BRITISHCOLUMBIA A Supplement to the University of British Columbia War Memorial Manuscript Record. Vancouver, Canada, 1955. #12;Printed

  17. Physics World Archive Topological insulators

    E-Print Network [OSTI]

    Johannesson, Henrik

    Physics World Archive Topological insulators Charles Kane, Joel Moore From Physics World February, how- ever, now uncovered a new electronic phase called a topological insulator. Putting the name; this "spin current" is a milestone in the realization of practical "spintronics". Topological insulators have

  18. Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information

    E-Print Network [OSTI]

    ) and the definition of HLW from the Nuclear Waste Policy Act of 1982, as amended (NWPA). The WIPP Land Withdrawal Act by the disposal regulations; or #12;Hanford Tank Waste Information Enclosure 1 2 (C) waste that the Nuclear 10, Code of Federal Regulations. The Nuclear Waste Policy Act of 1982 (42 U.S.C. 10101

  19. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    SciTech Connect (OSTI)

    Jantzen, C.

    2010-03-18T23:59:59.000Z

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  20. Waste to Energy Time Activities

    E-Print Network [OSTI]

    SEMINAR Waste to Energy Time Activities 9:30-9:40 Brief introduction of participants 9:40-10:10 Presentation of Dr. Kalogirou, "Waste to Energy: An Integral Part of Worldwide Sustainable Waste Management" 10. Sofia Bethanis, "Production of synthetic aggregates for use in structural concrete from waste to energy

  1. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  2. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

    1989-01-01T23:59:59.000Z

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  3. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23T23:59:59.000Z

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  4. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  5. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  6. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    or hydrochloric acid vapor should be mentioned upfront so the HRSG designer can take proper precauations while designing the unit.Material selection is also impacted by the presence of corrosive gases.If partial pressure of hydrogen is high in the gas stream...SPECIFYING WASTE HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants...

  7. version:13may14a The USA & the Global Oil System

    E-Print Network [OSTI]

    O'Donnell, Tom

    ....................................................................................... 4 1.5 Fracking: USA oil & gas revolution

  8. Certification Plan, low-level waste Hazardous Waste Handling Facility

    SciTech Connect (OSTI)

    Albert, R.

    1992-06-30T23:59:59.000Z

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

  9. Hanford Site Secondary Waste Roadmap

    SciTech Connect (OSTI)

    Westsik, Joseph H.

    2009-01-29T23:59:59.000Z

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and performance requirements, waste composition, preliminary waste form screening, waste form development, process design and support, and validation. The regulatory and performance requirements activity will provide the secondary waste-form performance requirements. The waste-composition activity will provide workable ranges of secondary waste compositions and formulations for simulants and surrogates. Preliminary waste form screening will identify candidate waste forms for immobilizing the secondary wastes. The waste form development activity will mature the waste forms, leading to a selected waste form(s) with a defensible understanding of the long-term release rate and input into the critical decision process for a secondary waste treatment process/facility. The process and design support activity will provide a reliable process flowsheet and input to support a robust facility design. The validation effort will confirm that the selected waste form meets regulatory requirements. The final outcome of the implementation of the secondary waste roadmap is the compliant, effective, timely, and cost-effective disposal of the secondary wastes. The work necessary to address the programmatic, regulatory, and technical risks and uncertainties identified through the Secondary Waste Roadmap Workshop are assembled into several program needs elements. Programmatic/Regulatory needs include: • Select and deploy Hanford tank waste supplemental treatment technology • Provide treatment capability for secondary waste streams from tank waste treatment • Develop consensus on secondary waste form acceptance. Technology needs include: • Define secondary waste composition ranges and uncertainties • Identify and develop waste forms for secondary waste immobilization and disposal • Develop test methods to characterize secondary waste form performance. Details for each of these program elements are provided.

  10. World nuclear capacity and fuel cycle requirements, November 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-30T23:59:59.000Z

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

  11. Review of composting and anaerobic digestion of municipal solid waste and a methodological proposal for a mid-size city

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Review of composting and anaerobic digestion of municipal solid waste and a methodological proposal-Milwaukee, Milwaukee, WI, USA ABSTRACT: Composting industry is a progressive and innovative industry that has been and processes on composting and anaerobic digestion are compiled, showing the versatility and multivariable

  12. Preparation of BaPbO3 functional ceramics from leaded waste Bin Li, Shen-Gen Zhang*, Kun Zhang,

    E-Print Network [OSTI]

    Volinsky, Alex A.

    -mail: thlibin@sina.com K. Zhang Beijing Nonferrous Metals and Rare Earth Research Institute, Beijing 100012 should be made to process secondary sources, such as waste rare earth pro- ducts [1], tailings [2, USA 123 Rare Met. (2014) 33(5):598­603 RARE METALS DOI 10.1007/s12598-014-0369-1 www

  13. ICPP radioactive liquid and calcine waste technologies evaluation. Interim report

    SciTech Connect (OSTI)

    Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

    1994-06-01T23:59:59.000Z

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

  14. Hazardous Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

  15. Solid Waste Management (Kansas)

    Broader source: Energy.gov [DOE]

    This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

  16. Waste and Recycling

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  17. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    labeled chemicals Waste Minimization/ Volume Reduction 0 Solid Radioactive Waste $2,168 $3,795 $2,168 VialWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2003 WASTE TYPE DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste

  18. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  19. Hanford Site annual dangerous waste report. Volume 1, Part 1, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  20. Threats to the world's water

    SciTech Connect (OSTI)

    la Riviere, J.W.M.

    1989-09-01T23:59:59.000Z

    Water is in short supply in many regions; almost everywhere increasing amounts of organic waste and industrial pollutants threaten its quality. Only international cooperation in the integrated management of water resources can ameliorate the situation. Agriculture is usually the main drain on the water supply. Problems associated with overirrigation, increased population, and organic and industrial wastes are described. The paper explains the global water cycle; illustrates the uneven distribution of water among the oceans, ground water, ice caps, glaciers, lakes, and soil moisture; and gives data on the global water consumption from 1950 to 1980. Recommendations for water management are given.

  1. Citrus Waste Biomass Program

    SciTech Connect (OSTI)

    Karel Grohman; Scott Stevenson

    2007-01-30T23:59:59.000Z

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  2. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  3. Entrepreneurial ecosystems around the world

    E-Print Network [OSTI]

    Kumar, Anand R

    2013-01-01T23:59:59.000Z

    Entrepreneurship is a vehicle of growth and job creation. America has understood it and benefitted most from following this philosophy. Governments around the world need to build and grow their entrepreneurial ecosystems ...

  4. Figure 4. World Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4. World Oil Prices" " (2007 dollars per barrel)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030...

  5. The world price of coal

    E-Print Network [OSTI]

    Ellerman, A. Denny

    1994-01-01T23:59:59.000Z

    A significant increase in the seaborne trade for coal over the past twenty years has unified formerly separate coal markets into a world market in which prices move in tandem. Due to its large domestic market, the United ...

  6. World Air Transport Sustainability Analysis

    E-Print Network [OSTI]

    Statement · Develop a quantitative model to assess the carbon footprint of world aviation, including #12;15 Alternative Fuels ­ Data Required · For each major pathway, we require life-cycle CO2 footprint

  7. At Work in The World

    E-Print Network [OSTI]

    Blanc, Paul D. MD; Dolan, Brian PhD

    2012-01-01T23:59:59.000Z

    history of one particular smelter, I also suggest that muchdeveloping world. Few lead smelters were less seen by theAlice Hamilton visited smelters in Arizona and Missouri, she

  8. WORLD ROBOTICS 2009 EXECUTIVE SUMMARY of

    E-Print Network [OSTI]

    De Luca, Alessandro

    WORLD ROBOTICS 2009 IX EXECUTIVE SUMMARY of 1. World Robotics 2009 Industrial Robots 2. World Robotics 2009 Service Robots 1. World Robotics 2009 Industrial Robots 2008 World Robot Market ­ Already affected by the economical downturn In 2008, the worldwide sales of industrial robots stagnated at about

  9. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  10. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01T23:59:59.000Z

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  11. Solid Waste Management Program (South Dakota)

    Broader source: Energy.gov [DOE]

    South Dakota's Solid Waste Management Program offers loans and grants for solid waste disposal, recycling, and waste tire projects. Funds are available for private or public projects, and...

  12. Rapid world modeling: Fitting range data to geometric primitives

    SciTech Connect (OSTI)

    Feddema, J.; Little, C.

    1996-12-31T23:59:59.000Z

    For the past seven years, Sandia National Laboratories has been active in the development of robotic systems to help remediate DOE`s waste sites and decommissioned facilities. Some of these facilities have high levels of radioactivity which prevent manual clean-up. Tele-operated and autonomous robotic systems have been envisioned as the only suitable means of removing the radioactive elements. World modeling is defined as the process of creating a numerical geometric model of a real world environment or workspace. This model is often used in robotics to plan robot motions which perform a task while avoiding obstacles. In many applications where the world model does not exist ahead of time, structured lighting, laser range finders, and even acoustical sensors have been used to create three dimensional maps of the environment. These maps consist of thousands of range points which are difficult to handle and interpret. This paper presents a least squares technique for fitting range data to planar and quadric surfaces, including cylinders and ellipsoids. Once fit to these primitive surfaces, the amount of data associated with a surface is greatly reduced up to three orders of magnitude, thus allowing for more rapid handling and analysis of world data.

  13. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    SciTech Connect (OSTI)

    Randklev, E.H.

    1993-06-01T23:59:59.000Z

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  14. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17T23:59:59.000Z

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  15. World nuclear fuel cycle requirements 1985

    SciTech Connect (OSTI)

    Moden, R.; O'Brien, B.; Sanders, L.; Steinberg, H.

    1985-12-05T23:59:59.000Z

    Projections of uranium requirements (both yellowcake and enrichment services) and spent fuel discharges are presented, corresponding to the nuclear power plant capacity projections presented in ''Commercial Nuclear Power 1984: Prospects for the United States and the World'' (DOE/EIA-0438(85)) and the ''Annual Energy Outlook 1984:'' (DOE/EIA-0383(84)). Domestic projections are provided through the year 2020, with foreign projections through 2000. The domestic projections through 1995 are consistent with the integrated energy forecasts in the ''Annual Energy Outlook 1984.'' Projections of capacity beyond 1995 are not part of an integrated energy foreccast; the methodology for their development is explained in ''Commercial Nuclear Power 1984.'' A range of estimates is provided in order to capture the uncertainty inherent in such forward projections. The methodology and assumptions are also stated. A glossary is provided. Two appendixes present additional material. This report is of particular interest to analysts involved in long-term planning for the disposition of radioactive waste generated from the nuclear fuel cycle. 14 figs., 18 tabs.

  16. World nuclear fuel cycle requirements 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-26T23:59:59.000Z

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

  17. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  18. Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill

    SciTech Connect (OSTI)

    Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

    2002-02-26T23:59:59.000Z

    Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

  19. Waste reduction for electroless nickel-plating solutions at U. S. Army depots. Final report, Oct 91-Apr 92

    SciTech Connect (OSTI)

    Davis, J.S.

    1992-06-10T23:59:59.000Z

    Waste minimization is one of the most pressing environmental issues currently facing U.S. Army depots. The U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) conducts research and development to support Army depots in implementing technologies to reduce waste generation. The Joint Depot Environmental Panel (JDEP) identified electroless nickel (EN) plating, which is currently used at Corpus Christi Army Depot (CCAD), Red River Army Depot (RRAD), and Sacramento Army Depot (SAAD) as a target for waste minimization research. This report presents the results of an evaluation conducted by USA regarding minimizing waste from EN-plating operations. The objective of this evaluation was to formulate recommendations for depots regarding implementation of waste minimization technologies. This evaluation was performed through site visits, a literature search, and discussions with vendors of EN processes and decontamination technologies.

  20. PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    SciTech Connect (OSTI)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-23T23:59:59.000Z

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We plan to treat these wastes as transuranic waste (TRU) for disposal at the Waste Isolation Pilot Plant (WIPP), which will reduce the WTP system processing time by three years. We are also developing and testing bulk vitrification as a technology to supplement the WTP LAW vitrification facility for immobilizing the massive volume of LAW. We will conduct a full-scale demonstration of the Demonstration Bulk Vitrification System by immobilizing up to 1,100 m{sup 3} (300,000 gallons) of tank S-109 low-curie soluble waste from which Cs-137 had previously been removed. This past year has been marked by both progress and new challenges. The focus of our tank farm work has been retrieving waste from the old single-shell tanks (SSTs). We have completed waste retrieval from three SSTs and are conducting retrieval operations on an additional three SSTs. While most waste retrievals have gone about as expected, we have faced challenges with some recalcitrant tank heel wastes that required enhanced approaches. Those enhanced approaches ranged from oxalic acid additions to deploying a remote high-pressure water lance. As with all large, long-term projects that employ first of a kind technologies, we continue to be challenged to control costs and maintain schedule. However, it is most important to work safely and to provide facilities that will do the job they are intended to do.

  1. World petroleum resources and reserves

    SciTech Connect (OSTI)

    Riva, J.P. Jr.

    1983-01-01T23:59:59.000Z

    Up to 1965 the world produced and consumed only 10% of the oil available on this planet; between 1965 and 2040 we will use up 80% of the remaining reserves, leaving only 10% of the resource for the years to follow. Clearly, the epoch of petroleum is a transitory one. Nevertheless, petroleum is at present the most important component of the energy base supporting the industrialized world. This book describes and analyzes the geological basis for the current world petroleum situation. Mr. Riva exaplains the formation and accumulation of conventional and unconventional oil and gas, methods used by geologists in search for petroleum and petroleum-containing basins, and techniques for petroleum production. He then discusses the uneven distribution of the world's oil, focusing on the Arabian-Iranian basin, which contains half of the world's known recoverable reserves, and examines the petroleum prospects in several distinctly different areas of the world. The United States is presented as an example of an area in general decline already exhaustively explored. In contrast, the case study of the Soviet petroleum industry and a geological assessment of Soviet production prospects show a region at the peak of its oil production, with its decline about to begin. He chooses Indonesia as the focus for a typical Southeast Asian petroleum history and develops a profile of Mexico's petroleum situation as an example of an area with increasing production potential. Mr. Riva concludes with an assessment of the prospects for future world petroleum discoveries and a geologically based estimate of the earth's total original stock of recoverable petroleum.

  2. Waste segregation procedures and benefits

    SciTech Connect (OSTI)

    Fish, J.D.; Massey, C.D.; Ward, S.J.

    1990-01-01T23:59:59.000Z

    Segregation is a critical first step in handling hazardous and radioactive materials to minimize the generation of regulated wastes. In addition, segregation can significantly reduce the complexity and the total cost of managing waste. Procedures at Sandia National Laboratories, Albuquerque require that wastes be segregated, first, by waste type (acids, solvents, low level radioactive, mixed, classified, etc.). Higher level segregation requirements, currently under development, are aimed at enhancing the possibilities for recovery, recycle and reapplication; reducing waste volumes; reducing waste disposal costs, and facilitating packaging storage, shipping and disposal. 2 tabs.

  3. The dilemma of siting a high-level nuclear waste repository

    SciTech Connect (OSTI)

    Easterline, D.; Kunreuther, H.

    1995-12-31T23:59:59.000Z

    This books presents a siting process that the authors believe will prove successful within the adversarial world that characterizes most attempts to build waste-disposal facilities. They come to the following conclusions: a volunatary siting process stands the best chance of breaking the `not-in-my-backyard` problem; and without public acknowledgement that a facility is needed, any proposal to build a high-level nuclear waste storage facility will meet with opposition.

  4. Absolute Energy USA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation, search40Georgia:SL JumpAREGAbout(USA)

  5. Norvento USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History ViewTexas: EnergyWind PowerUSA LLC Jump

  6. CleanFUEL USA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean Economy Network JumpCleanCleanFUEL USA

  7. Energy Pro USA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to:EconCompaniesMainEnergy Pro USA Place:

  8. AREA USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers'sAIRMaster+APFED-GoodAPIsAREA USA

  9. ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES

    E-Print Network [OSTI]

    Gerdes, J. Christian

    ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES PLASTICS, METALS & GLASS pleaseemptyandflatten COMPOSTABLES kitchenandyardwasteonly LANDFILL ONLY ifallelsefails All Plastic Containers Metal Material All Food Paper Plates & Napkins *including pizza & donut boxes Compostable & Biodegradable

  10. Energy Secretary Moniz Dedicates World's Largest Concentrating...

    Office of Environmental Management (EM)

    Dedicates World's Largest Concentrating Solar Power Project Energy Secretary Moniz Dedicates World's Largest Concentrating Solar Power Project February 13, 2014 - 5:00am Addthis...

  11. Berkeley Lab Compact Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Particle Accelerator Sets World Record Berkeley Lab Particle Accelerator Sets World Record Simulations at NERSC Help Validate Experimental Laser-Plasma Design December...

  12. Waste generator services implementation plan

    SciTech Connect (OSTI)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01T23:59:59.000Z

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  13. RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE

    E-Print Network [OSTI]

    Harman, Neal.A.

    RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University recycling and waste management facilities in Swansea university To ensure that Waste Management Objectives

  14. Page 1 of 2 UNIVERSAL WASTE

    E-Print Network [OSTI]

    Jia, Songtao

    (laboratories should follow hazardous waste procedures) or thorough central battery recycling receptaclesPage 1 of 2 UNIVERSAL WASTE and OTHER ENVIRONMENTALLY DELETERIOUS PRODUCTS Batteries All Universal Waste Batteries generated in laboratories must be collected through the hazardous waste program

  15. FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN

    E-Print Network [OSTI]

    Columbia University

    ;Canadian Energy-From-Waste Coalition (CEFWC) 1 There is considerable merit to the ideas outlined commitment to foster a green and sustainable economy. The Canadian Energy-From-Waste Coalition (CEFWC sign that the system is failing. #12;Canadian Energy-From-Waste Coalition (CEFWC) 2 Like you, the CEFWC

  16. L/O/G/OL/O/G/O Waste Waste

    E-Print Network [OSTI]

    Laksanacharoen, Sathaporn

    L/O/G/OL/O/G/O #12;· Waste Waste · Value () · · Flow #12;Genchi GenbutsuGenchi Genbutsu of waste) Zero Inventory #12;Just in Time in HealthcareJust in Time in Healthcare Takt time (pitch), one Electronic Call 3. #12;Poka-Yoke ?Poka-Yoke ? · Poka-Yoke yokeru = to avoid poka = inadvertent errors 1

  17. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect (OSTI)

    Witherspoon, P.A. [ed.

    1996-09-01T23:59:59.000Z

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  18. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  19. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  20. Waste Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Cleanup Waste Management Waste Management July 15, 2014 Energy Expos Students work in groups to create hands-on exhibits about the energy sources that power the nation, ways to...

  1. High-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  2. Low-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

  3. Copenhagen Waste Management and Incineration

    E-Print Network [OSTI]

    ownership of treatment facilities · Incineration plants · Land fill · Disposal of hazardous waste · Source waste prevention · Focus areas · Changes in behaviour among consumers and producers · City schemes almost fully developed · Collection of hazardous substances, paper, cardboard, gardening and bulky

  4. Waste Management Assistance Act (Iowa)

    Broader source: Energy.gov [DOE]

    This section promotes the proper and safe storage, treatment, and disposal of solid, hazardous, and low-level radioactive wastes in Iowa, and calls on Iowans to assume responsibility for waste...

  5. Solid Waste Management Program (Missouri)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

  6. Delaware Solid Waste Authority (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

  7. Solid Waste Facilities Regulations (Massachusetts)

    Broader source: Energy.gov [DOE]

    This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management practices and to mitigate adverse effects, such as...

  8. Hazardous Waste Management (North Dakota)

    Broader source: Energy.gov [DOE]

    The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

  9. Montana Hazardous Waste Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

  10. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  11. Management of Solid Waste (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

  12. World Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project JumpWisconsin:WorldWorld Energy Jump to:

  13. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    SciTech Connect (OSTI)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13T23:59:59.000Z

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  14. Panagiota Daskalopoulos - Columbia University, U.S.A. Worn ...

    E-Print Network [OSTI]

    Panagiota Daskalopoulos - Columbia University, U.S.A.. Worn Stones with Flat Sides - All Time Regularity of the Interface. We study the all time regularity of the

  15. Euro Chef USA: Proposed Penalty (2014-CE-23004)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Euro Chef USA Inc. failed to certify cooking products as compliant with the applicable energy conservation standards.

  16. anaerobic digestion usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mathematical Journal Volume 21(2011), Number 1, 27 Institute for Cyber Security San Antonio, Texas 78249, USA shylmath@hotmail.com Communicated by the Editors 70 FUTURE...

  17. air station usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the USA Biology and Medicine Websites Summary: Parasitoids Air pollutants Heavy metals Metalloids INTRODUCTION Insect parasitoids (insects living parasitoids in...

  18. augusta maine usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wetland in Augusta, Georgia, U.S.A. Geosciences Websites Summary: constructed treatment wetland in Augusta, Georgia were used to quantify the size, distribution,...

  19. arbor michigan usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    linguistic Lewis, Richard 2 Proceedings of the Seventh International Symposium on Cavitation (CAV2009) August 16-20, 2009, Ann Arbor, Michigan, USA Engineering Websites Summary:...

  20. Chemotherapy waste may be a hazardous chemical waste or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type.

    E-Print Network [OSTI]

    George, Steven C.

    Chemotherapy waste may be a hazardous chemical waste or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type. Hazardous Chemical Chemotherapy Waste: A number of chemotherapy drugs are regulated as a hazardous chemical waste. These include

  1. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  2. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards.

  3. Heat Recovery From Solid Waste

    E-Print Network [OSTI]

    Underwood, O. W.

    1981-01-01T23:59:59.000Z

    areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

  4. RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING

    E-Print Network [OSTI]

    Howitt, Ivan

    RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

  5. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    - Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

  6. Solvent extraction and recovery of the transuranic elements from waste solutions using the TRUEX process

    SciTech Connect (OSTI)

    Horwitz, E.P.; Schulz, W.W.

    1985-01-01T23:59:59.000Z

    High-level liquid waste is produced during the processing of irradiated nuclear fuel by the PUREX process. In some cases the treatment of metallurgical scrap to recover the plutonium values also generates a nitric acid waste solution. Both waste solutions contain sufficient concentrations of transuranic elements (mostly /sup 241/Am) to require handling and disposal as a TRU waste. This paper describes a recently developed solvent extraction/recovery process called TRUEX (transuranium extraction) which is designed to reduce the TRU concentration in nitric waste solutions to <100 nCi/g of disposed form (1,2). (In the USA, non-TRU waste is defined as <100 nCi of TRU/g of disposed form.) The process utilizes PUREX process solvent (TBP in a normal paraffinic hydrocarbon or carbon tetrachloride) modified by a small concentration of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (abbrev. CMPO). The presence of CMPO enables the modified PUREX process solvent to extract trivalent actinides as well as tetra- and hexavalent actinides. A major feature of the TRUEX process is that is is applicable to waste solutions containing a wide range of nitric acid, salt, and fission product concentrations and at the same time is very compatible with existing liquid-liquid extraction technology as usually practiced in a fuel reprocessing plant. To date the process has been tested on two different types of synthetic waste solutions. The first solution is a typical high-level nitric acid waste and the second a typical waste solution generated in metallurgical scrap processing. Results are discussed. 4 refs., 1 fig., 4 tabs.

  7. WORLD ROBOTICS 2010 EXECUTIVE SUMMARY of

    E-Print Network [OSTI]

    De Luca, Alessandro

    WORLD ROBOTICS 2010 VII EXECUTIVE SUMMARY of 1. World Robotics 2010 Industrial Robots 2. World Robotics 2010 Service Robots 1. World Robotics 2010 Industrial Robots Sales slump in 2009 In 2009, the worldwide economic and financial crisis caused a significant slump in the sales of industrial robots

  8. WORLD ROBOTICS 2011 EXECUTIVE SUMMARY of

    E-Print Network [OSTI]

    De Luca, Alessandro

    WORLD ROBOTICS 2011 VII EXECUTIVE SUMMARY of 1. World Robotics 2011 Industrial Robots 2. World Robotics 2011 Service Robots 1. World Robotics 2011 Industrial Robots 2010: Strong comeback of the robotics and financial crisis caused a significant slump in the sales of industrial robots. Compared to 2008, considered

  9. World-Systems as Dynamic Networks

    E-Print Network [OSTI]

    White, Douglas R.

    World-Systems as Dynamic Networks Christopher Chase-Dunn Institute for Research on World-Systems on comparative world-systems for the workshop on `analyzing complex macrosystems as dynamic networks" at the Santa Fe Institute, April 29- 30, 2004. (8341 words) v. 4-22-04 1 #12;The comparative world-systems

  10. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  11. SOFTWAREENGINEERING The World Wide Web

    E-Print Network [OSTI]

    Whitehead, James

    SOFTWAREENGINEERING The World Wide Web Distributed Authoring and Versioning working group on the Web. WEBDAV: IETF Standard for Collaborative Authoring on the Web E. JAMES WHITEHEAD, JR. University remains to be done. What if instead you could simply edit Web documents (or any Web resource) in place

  12. 3D World Building System

    SciTech Connect (OSTI)

    None

    2013-10-30T23:59:59.000Z

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  13. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26T23:59:59.000Z

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  14. Tore Bruland Building World Event

    E-Print Network [OSTI]

    Tore Bruland Building World Event Representations From Linguistic Representations Thesis of Computer and Information Science c Tore Bruland ISBN 978-82-471-2 (printed version) ISBN 978-82-471-4292-9 (electronic version) ISSN 1503-8181 Doctoral thesis at NTNU, 2013:97 #12;For Kari Marie Bruland (1937

  15. WORLD ROBOTICS 2007 EXECUTIVE SUMMARY

    E-Print Network [OSTI]

    De Luca, Alessandro

    ,200 units, down 11% on 2005 World total stock of operational industrial robots: · 951,000 units,3% greater was down by 11% in 2006, at 112,203 newly supplied industrial robots. Nevertheless, developments were quite industry increased substantially. Figure 1 Estimated yearly shipments of industrial robots 0 10,000 20

  16. World Oil: Market or Mayhem?

    E-Print Network [OSTI]

    Smith, James L.

    2008-01-01T23:59:59.000Z

    The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

  17. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  18. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  19. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15T23:59:59.000Z

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

  20. TRU waste characterization chamber gloveboxes.

    SciTech Connect (OSTI)

    Duncan, D. S.

    1998-07-02T23:59:59.000Z

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.

  1. The world`s first commercial iron carbide plant

    SciTech Connect (OSTI)

    Prichard, L.C.; Schad, D.

    1995-12-01T23:59:59.000Z

    The paper traces the development of Nucor`s investigation of clean iron unit processes, namely, direct reduction, and the decision to build and operate the world`s first commercial iron carbide plant. They first investigated coal based processes since the US has abundant coal reserves, but found a variety of reasons for dropping the coal-based processes from further consideration. A natural gas based process was selected, but the failure to find economically priced gas supplies stopped the development of a US based venture. It was later found that Trinidad had economically priced and abundant supplies of natural gas, and the system of government, the use of English language, and geographic location were also ideal. The cost estimates required modification of the design, but the plant was begun in April, 1993. Start-up problems with the plant are also discussed. Production should commence shortly.

  2. WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop

    E-Print Network [OSTI]

    ; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

  3. Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction,...

  4. Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world's primary energy consumption and

    E-Print Network [OSTI]

    Toohey, Darin W.

    Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world. Furthermore, biomass often accounts for more than 90% of the total rural energy supplies in developing countries. The traditional stoves in developing countries waste a lot of biomass, mainly because

  5. Your World Magazine - Microbes: Parts and Potential

    SciTech Connect (OSTI)

    Biotechnology Institute

    2005-04-01T23:59:59.000Z

    Microorganisms are tiny, but together, they make up more than 60 percent of the earth's living matter. Often people think only of bacteria when they talk about microbes, but viruses, fungi, protozoa, and microalgae are also microbes. Scientists estimate that there are 2 to 3 billion species of microorganisms. By learning what genes microbes contain and how they are arranged, what they do, and how they are expressed, researchers get a better grasp on how microbes have evolved, new possibilities for diagnosing and treating diseases, and ideas for ways to clean up the environment and produce energy. You can be a part of this exciting work in many ways. Figuring out the genes in microbes, or microbial genomics, is a field that gets a lot of help from computer science and mathematics. You could go into bioinformatics, which uses computers to collect and sort information about living matter. Or you could try computational modeling and help develop simple models of what an organism would look like and how it would function. Researchers want to understand microbes genetics well enough to build useful ones. As we move toward that possibility, we need to think about how that ability can be used wisely or poorly. Enjoy learning about microbial genomics in this issue of Your World, and think about what part you'd like to take in exploring this vital field. Some current uses of microbes are: (1) Saccharomyces cerevisiae (baker's yeast) - produces the CO{sub 2} that makes bread rise and is also used to make beer; (2) Streptomyces - soil bacteria that make streptomycin, an antibiotic, used to treat infections; (3) Pseudomonas putida - one of many microbes used to clean wastes from sewage at water treatment plants; (4) Escherichia coli - one of many kinds of microbes that live in your gut and help digest your food; and (5) Bacillus thuringiensis - a common soil bacterium that acts as a natural pest-killer in gardens and on crops.

  6. Waste minimization handbook, Volume 1

    SciTech Connect (OSTI)

    Boing, L.E.; Coffey, M.J.

    1995-12-01T23:59:59.000Z

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  7. Childhood Agricultural Injury Prevention in the U.S.A.

    E-Print Network [OSTI]

    #12;Childhood Agricultural Injury Prevention in the U.S.A. Presentation for the Swedish University of Agricultural Sciences Barbara Lee, PhD National Farm Medicine Center National Children's Center for Rural and Agricultural Health and Safety Marshfield, WI USA October 2011 #12;#12;#12;Outline · Background · Child Ag

  8. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18T23:59:59.000Z

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  9. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

    1997-01-01T23:59:59.000Z

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  10. International low level waste disposal practices and facilities

    SciTech Connect (OSTI)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19T23:59:59.000Z

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34 countries actively planning reactors, as of September 2010: 14 indicate a strong intention to precede w

  11. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A.

    1984-06-01T23:59:59.000Z

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  12. Medical and Biohazardous Waste Generator's Guide (Revision 2)

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Waste Supplies 8. Solid Medical Waste Disposal ProceduresMedical/Biohazardous Waste Pickup Containers Solid Medical/Security Notice 8. Solid Medical Waste Disposal Procedures

  13. Waste Management in Dsseldorf Combination of separate collection,

    E-Print Network [OSTI]

    Columbia University

    Waste Management in Düsseldorf Combination of separate collection, recycling and waste-to-energy Biowaste Garden waste Light packaging Paper Glass Wood from bulky waste Bulky waste Rest / mixed waste Bio- Garden- Paper Glass Light Metals Wood Bulky Rest waste waste Card- Pack. waste board Saved CO2

  14. Hydraulic waste energy recovery

    SciTech Connect (OSTI)

    Lederer, C.C.; Thomas, A.H.; McGuire, J.L. (Detroit Buildings and Safety Engineering Dept., MI (USA))

    1990-12-01T23:59:59.000Z

    Water distribution systems are typically a municipality's largest consumer of energy and greatest expense. The water distribution network has varying pressure requirements due to the age of the pipeline and topographical differences. Certain circumstances require installation of pressure reducing devices in the pipeline to lower the water pressure in the system. The consequence of this action is that the hydraulic energy supplied by the high lift or booster pumps is wasted in the process of reducing the pressure. A possible solution to capture the waste hydraulic energy is to install an in-line electricity generating turbine. Energy recovery using in-line turbine systems is an emerging technology. Due to the lack of technical and other relevant information on in-line turbine system installations, questions of constructability and legal issues over the power service contract have yet to be answered. This study seeks to resolve these questions and document the findings so that other communities may utilize this information. 10 figs.

  15. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

    1995-11-07T23:59:59.000Z

    A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

  16. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, Rich (Cranbury, NJ); Ciebiera, Lloyd (Titusville, NJ); Tulipano, Francis J. (Teaneck, NJ); Vinson, Sylvester (Ewing, NJ); Walters, R. Thomas (Lawrenceville, NJ)

    1995-01-01T23:59:59.000Z

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  17. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28T23:59:59.000Z

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  18. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

    1993-01-01T23:59:59.000Z

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  19. Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions

    E-Print Network [OSTI]

    Columbia University

    for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard methane (CH4 )annually to the world's total CH4 emission of ~550 Tg/yr. Recycling and thermal treatment destined for landfills and to mitigating CH4 emission. Waste generation is estimated to more than double

  20. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    SciTech Connect (OSTI)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01T23:59:59.000Z

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up to 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.

  1. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

    1987-01-01T23:59:59.000Z

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  2. Accelerating Materials Discovery With World's Largest Database...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cheaper or more efficient could lead to a breakthrough energy technology to convert waste heat to electricity. "We had our experimental collaborators successfully synthesize the...

  3. Waste products in highway construction. Final report

    SciTech Connect (OSTI)

    Han, C.

    1993-04-01T23:59:59.000Z

    The report presents waste materials and products for highway construction. The general legislation, local liability, and research projects related to waste materials are outlined. The waste materials and products presented include waste paving materials, industrial ash materials, taconite tailing materials, waste tire rubber materials and products, building rubble materials, incinerator ash products and materials, waste glass materials, waste shingle materials and products, waste plastics products, and slag materials. For each waste category, the legislation and restrictions, material properties, construction and application, field performance, and recycling at the end of service life if available are discussed.

  4. Municipal Waste Planning, Recycling and Waste Reduction Act ...

    Open Energy Info (EERE)

    Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies BiomassBiogas, Coal with CCS,...

  5. Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type.

    E-Print Network [OSTI]

    George, Steven C.

    Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Hazardous Chemical Pharmaceutical Waste: A number of common pharmaceuticals are regulated as hazardous or more of the EPA characteristics of a hazardous chemical waste are also regulated as a hazardous

  6. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    Minimization/ Volume Reduction 0 Solid Radioactive Waste $2,168 $0 $2,168 Vial Crusher for glass vialsWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2004 WASTE TYPE DESCRIPTION DETAILS * Automotive Waste Substitution 510 Hazardous Waste $1,020 $1,000 $1,000 Aqueous Solvent

  7. Waste Toolkit A-Z Light bulbs

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Light bulbs Can I recycle light bulbs? It depends what type of bulbs you have of in the normal University waste bins (landfill waste). Energy saving bulbs and fluorescent tubes are classified light bulbs? Standard filament bulbs Put in the waste bin (landfill waste) as these are not classified

  8. Interface control document between the Tank Waste Remediation System and the Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Duncan, D.R.

    1995-04-01T23:59:59.000Z

    This document discusses the interface between the Tank Waste Remediation System (TWRS) and the Solid Waste Division (SWD).

  9. Next Generation Lunch: Revealing the World’s First 3D Printed Car (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version for the Next Generation Lunch: Revealing the World’s First 3D Printed Car Video.

  10. Gras Dowr joins world`s FPSO fleet

    SciTech Connect (OSTI)

    NONE

    1997-05-05T23:59:59.000Z

    The Gras Dowr, a floating production, storage, and offloading vessel (FPSD) for Amerada Hess Ltd.`s North Sea Durward and Dauntless fields, is one of the latest additions to the world`s growing FPSO fleet. The Gras Dowr, anchored in about 90 m of water, lies between the Durward (U.K. Block 21/16) and Dauntless (U.K. Block 21/11) fields, about 3.5 km from the subsea wellhead locations. The Gras Dowr`s main functions, according to Bluewater Offshore Production Systems Ltd., are to: receive fluids from well risers; process incoming fluids to separate the fluid into crude, water, and gas; store dry crude oil and maintain the required temperature; treat effluent to allow for water discharge to the sea; compress gas for gas lift as a future option; provide chemical injection skid for process chemical injection; use a part of the produced gas for fuel gas, and flare excess gas; inject treated seawater into the injection wells; house power generation for process and offloading operation and utilities; offload to a tandem moored shuttle tanker including receiving liquid fuel from the same tanker; provide accommodations for operating and maintenance crews; allow helicopters landings and takeoffs; allow handling and storage of goods transported by supply vessels; moor a shuttle tanker; and control the subsea wells.

  11. Infusing Real World Experiences into ENGINEERING

    E-Print Network [OSTI]

    Napier, Terrence

    Infusing Real World Experiences into ENGINEERING EDUCATION #12;This project is a collaboration with the authors and NAE. #12;Infusing Real World Experiences into Engineering Education 2012 #12;2 Preface The aim

  12. Multiple Scales in Small-World Networks

    E-Print Network [OSTI]

    Kasturirangan, Rajesh

    1999-08-11T23:59:59.000Z

    Small-world architectures may be implicated in a range of phenomena from networks of neurons in the cerebral cortex to social networks and propogation of viruses. Small-world networks are interpolations of regular and ...

  13. Online Games, Virtual Worlds, and Social Networks

    E-Print Network [OSTI]

    Hemmers, Oliver

    JOUR 447: Online Games, Virtual Worlds, and Social Networks Virtual Island Making #12;One element in the look and design of the virtual islands. JOUR 447: Online Games, Virtual Worlds, and Social Networks

  14. A. World Summit on Sustainable Development : A First Critical Assessment, here p. 1-3 B. Lecture at the University of Bonn, BIMUN/Bonn International Model United Nations,

    E-Print Network [OSTI]

    Franz, Sven Oliver

    A. World Summit on Sustainable Development : A First Critical Assessment, here p. 1-3 B. Lecture / NACHLESE World Summit on Sustainable Development: A First Critical Assessment By Prof. Dr. Uwe Holtz on Sustainable Development (WSSD) in Johannesburg was a failure, an opportunity wasted, the triumph of "hard" neo

  15. Your World Magazine - Biofuels: Energy for Your Future

    SciTech Connect (OSTI)

    Biotechnology Institute

    2006-10-01T23:59:59.000Z

    Policymakers have been talking for years about measures to cut back how much petroleum we use. Interest has spiked recently, with government and private companies coming together to push forward scientific research and development of alternative fuel products such as ethanol. Biotechnology is helping make alternative energy sources easier - and more affordable - to produce. Most of the world's energy needs are met with oil and natural gas, which come from fossil fuel. No one knows how long the supply can last. Biobased fuels come from natural sources that can be replaced quickly. Along with corn, there are many other grains, grasses, trees, and even agricultural wastes being investigated for their usefulness and environmental friendliness as alternative fuel sources. Careers in this emerging new field emphasize chemistry and engineering. Look into it for a potential career - it's definitely a job full of energy.

  16. Vitrification of high sulfate wastes

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D.

    1994-09-01T23:59:59.000Z

    The US Department of Energy (DOE) through the Mixed Waste Integrated Program (MWIP) is investigating the application of vitrification technology to mixed wastes within the DOE system This work involves identifying waste streams, laboratory testing to identify glass formulations and characterize the vitrified product, and demonstration testing with the actual waste in a pilot-scale system. Part of this program is investigating process limits for various waste components, specifically those components that typically create problems for the application of vitrification, such as sulfate, chloride, and phosphate. This work describes results from vitrification testing for a high-sulfate waste, the 183-H Solar Evaporation Basin waste at Hanford. A low melting phosphate glass formulation has been developed for a waste stream high in sodium and sulfate. At melt temperatures in the range of 1,000 C to 1,200 C, sulfate in the waste is decomposed to gaseous oxides and driven off during melting, while the remainder of the oxides stay in the melt. Decomposition of the sulfates eliminates the processing problems typically encountered in vitrification of sulfate-containing wastes, resulting in separation of the sulfate from the remainder of the waste and allowing the sulfate to be collected in the off-gas system and treated as a secondary waste stream. Both the vitreous product and intentionally devitrified samples are durable when compared to reference glasses by TCLP and DI water leach tests. Simple, short tests to evaluate the compatibility of the glasses with potential melter materials found minimal corrosion with most materials.

  17. Waste Toolkit A-Z Food waste (recycling on-site)

    E-Print Network [OSTI]

    Melham, Tom

    into compost in 14 days, when mixed with wood chippings (from your grounds/gardens). The waste is heated usingWaste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling food waste on-site is a new concept as the University typically has its waste collected and taken away

  18. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

    2002-01-01T23:59:59.000Z

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  19. Progress Update: TRU Waste Shipping

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    A progress update at the Savannah River Site. A continued effort on shipping TRU waste to WIPP in Carlsbad, New Mexico.

  20. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1997-01-01T23:59:59.000Z

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  1. Solid Waste Management Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

  2. Performance Assessment for Transuranic Waste

    National Nuclear Security Administration (NNSA)

    Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High- Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses...

  3. Hazardous Waste Facilities Siting (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

  4. Hazardous Waste Transporter Permits (Connecticut)

    Broader source: Energy.gov [DOE]

    Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide information about obtaining permits and other permit...

  5. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-09-15T23:59:59.000Z

    This Notice reminds all DOE employees of their duty to report allegations of fraud, waste, and abuse to the Office of Inspector General. No cancellation.

  6. Nuclear waste incineration technology status

    SciTech Connect (OSTI)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15T23:59:59.000Z

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  7. World frontiers beckon oil finders

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This paper discusses the international aspects of the petroleum industry. Most who work in the industry agree that the possibilities for huge are found largely in international regions. Something that is helping fuel that possibility is the way countries are increasingly opening their doors to US oil industry involvement. Listed in this paper is a partial list of the reported projects now underway around the world involving US companies. It is not intended to be comprehensive, but rather an indication of how work continues despite a general lull atmosphere for the oil industry. These include Albania, Bulgaria, Congo, Czechoslovakia, Dominican Republic, Ethiopia, Ireland, Malta, Madagascar, Mongolia, Mozambique, Nigeria, Panama, Paraquay, and Senegal.

  8. Sunergy World | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation,SunElectra JumpSundance Power LLCSunergy World

  9. Wind World | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia JumpMaps.jpgWind World

  10. Visions for a sustainable world: A conference on science, technology and social responsibility. Conference report

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This report summarizes the organization, activities, and outcomes of Student Pugwash USA`s 1992 International Conference, Visions for a Sustainable World: A Conference on Science, Technology and Social Responsibility. The conference was held June 14--20, 1992 at Emory University, and brought together 94 students and over 65 experts from industry, academe, and government. The conference addressed issues ranging from global environmental cooperation to the social impacts of the Human Genome Project to minority concerns in the sciences. It provided a valuable forum for talented students and professionals to engage in critical dialogue on many interdisciplinary issues at the juncture of science, technology and society. The conference challenged students -- the world`s future scientists, engineers, and political leaders -- to think broadly about global problems and to devise policy options that are viable and innovative. The success of the conference in stimulating interest, understanding, and enthusiasm about interdisciplinary global issues is clearly evident from both the participants` feedback and their continued involvement in Student Pugwash USA programs. Six working groups met each morning. The working group themes included: environmental challenges for developing countries; energy options: their social and environmental impact; health care in developing countries; changing dynamics of peace and global security; educating for the socially responsible use of technology; ethics and the use of genetic information. The conference was specifically designed to include mechanisms for ensuring its long-term impact. Participants were encouraged to focus on their individual role in helping resolve global issues. This was achieved through each participant`s development of a Personal Plan of Action, a plan which mapped out activities the student could undertake after the conference to continue the dialogue and work towards the resolution of global and local problems.

  11. "Extreme Project Management" One World Trade

    E-Print Network [OSTI]

    Guiltinan, Mark

    "Extreme Project Management" One World Trade Center A special presentation with a discussion of managing multiple large projects at the World Trade Center site with multiple adjacencies, complicated 1984), PE, PMP, is the Program Director for One World Trade Center. Lynda Tollner, is a Program

  12. Neal Lane: Science in a Flat World

    SciTech Connect (OSTI)

    Neal Lane

    2006-09-12T23:59:59.000Z

    Lane discusses the changes that have taken place in the world since World War II that have made it "flatter," referring to Thomas L. Friedman's book, The World is Flat. Friedman's main premise is that inexpensive telecommunications is bringing about unhampered international competition, the demise of economic stability, and a trend toward outsourcing services, such as computer programming, engineering and science research.

  13. Neal Lane: Science in a Flat World

    ScienceCinema (OSTI)

    Neal Lane

    2010-09-01T23:59:59.000Z

    Lane discusses the changes that have taken place in the world since World War II that have made it "flatter," referring to Thomas L. Friedman's book, The World is Flat. Friedman's main premise is that inexpensive telecommunications is bringing about unhampered international competition, the demise of economic stability, and a trend toward outsourcing services, such as computer programming, engineering and science research.

  14. ThousandWorlds Collected Issue 1

    E-Print Network [OSTI]

    Multiple Contributors

    1986-01-01T23:59:59.000Z

    NDtfbRLDS COLLECTED Covers: Carol Walske Dedication Welcome to ThousandWorlds Background to ThousandWorlds cartoon It's A Man's World That Share of Glory/The Father The Gem of Harrrow (filk) That Share of Glory/The Uncles The Gdnvue Saga, Downport version...

  15. Greening academia: Developing sustainable waste management at Higher Education Institutions

    SciTech Connect (OSTI)

    Zhang, N. [School of Civil Engineering and the Environment, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom); Williams, I.D., E-mail: idw@soton.ac.uk [School of Civil Engineering and the Environment, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom); Kemp, S. [School of Civil Engineering and the Environment, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom); Smith, N.F. [Estates and Facilities Management, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom)

    2011-07-15T23:59:59.000Z

    Higher Education Institutions (HEIs) are often the size of small municipalities. Worldwide, the higher education (HE) sector has expanded phenomenally; for example, since the 1960s, the United Kingdom (UK) HE system has expanded sixfold to >2.4 million students. As a consequence, the overall production of waste at HEIs throughout the world is very large and presents significant challenges as the associated legislative, economic and environmental pressures can be difficult to control and manage. This paper critically reviews why sustainable waste management has become a key issue for the worldwide HE sector to address and describes some of the benefits, barriers, practical and logistical problems. As a practical illustration of some of the issues and problems, the four-phase waste management strategy developed over 15 years by one of the largest universities in Southern England - the University of Southampton (UoS) - is outlined as a case study. The UoS is committed to protecting the environment by developing practices that are safe, sustainable and environmentally friendly and has developed a practical, staged approach to manage waste in an increasingly sustainable fashion. At each stage, the approach taken to the development of infrastructure (I), service provision (S) and behavior change (B) is explained, taking into account the Political, Economic, Social, Technological, Legal and Environmental (PESTLE) factors. Signposts to lessons learned, good practice and useful resources that other institutions - both nationally and internationally - can access are provided. As a result of the strategy developed at the UoS, from 2004 to 2008 waste costs fell by around Pounds 125k and a recycling rate of 72% was achieved. The holistic approach taken - recognizing the PESTLE factors and the importance of a concerted ISB approach - provides a realistic, successful and practical example for other institutions wishing to effectively and sustainably manage their waste.

  16. SOVIET SCIENTIST ASSESSES FUTURE OF WORLD FISHERIES

    E-Print Network [OSTI]

    ." The possibility of recycling wastes in some instances was seen as a solution. The con- ference rec ommended that "r e sea r chon waste -recycling techniques in industry should be encouraged as widely as possible Exploitable Mar i n e Grounds : Since most organic productivity occurs in water layers penetrated by sunlight

  17. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  18. Biotechnology for environmental control and waste treatment

    SciTech Connect (OSTI)

    Donaldson, T.L.; Harris, M.T.; Lee, D.D.; Walker, J.F.; Strandberg, G.W.

    1985-01-01T23:59:59.000Z

    A slide show is reproduced here to review the technology of anaerobic digestion as a process for cleaning waste waters from municipal and industry wastes. Radioactive wastes are addressed also. (PSB)

  19. Hazardous Waste Management Standards and Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

  20. Hazardous Waste Facility Siting Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

  1. Eugene Solid Waste Management Market Analysis

    E-Print Network [OSTI]

    Oregon, University of

    Eugene Solid Waste Management Market Analysis Prepared By: Mitchell Johnson Alex Sonnichsen #12;Eugene Solid Waste Management Market Analysis May 2012 Page 1 Summary This study examines the economic impact of the solid waste management system

  2. Printed on recycled paper. 2013 Cornell Waste

    E-Print Network [OSTI]

    Chen, Tsuhan

    management by focusing University resources and capabilities on this pressing economic, environmental of waste generation and composition, waste reduction, risk management, environmental equity and publicPrinted on recycled paper. 2013 Cornell Waste Management Institute CWMI is a program

  3. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30T23:59:59.000Z

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  4. 2005 ASME Pressure Vessels and Piping Conference Denver, Colorado, USA

    E-Print Network [OSTI]

    Özer, Mutlu

    1 DRAFT 2005 ASME Pressure Vessels and Piping Conference Denver, Colorado, USA July 17-21, 2005 subjected to lateral earthquake loads. The results are verified with different codes (e.g. Eurocode8, API

  5. Chevron U.S.A. Inc.- 14-119-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed August 27, 2014 by Chevron U.S.A. Inc. (Chevron), requesting blanket authorization to export liquefied natural gas (LNG)...

  6. DuraLamp USA: Proposed Penalty (2010-CE-0912)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that DuraLamp USA, Inc. failed to certify a variety of general service fluorescent lamps as compliant with the applicable energy conservation standards.

  7. Smeg USA: Proposed Penalty (2011-CE-14/1909)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Smeg USA, Inc. failed to certify a variety of dishwashers and refrigerators as compliant with the applicable energy conservation standards.

  8. De'Longhi USA: Order (2010-CE-2114)

    Broader source: Energy.gov [DOE]

    DOE issued an Order after entering into a Compromise Agreement with De'Longhi USA, Inc. to resolve a case involving the failure to certify that a variety of dehumidifiers comply with the applicable energy conservation standards.

  9. De'Longhi USA: Proposed Penalty (2010-CE-2114)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that De'Longhi USA, Inc. failed to certify a variety of dehumidifiers as compliant with the applicable energy conservation standards.

  10. atlanta georgia usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    values SECURING AMERICA'S FUTURE 12;0 1Georgia Tech Research Institute Annual Report Bennett, Gisele 9 School of Biology Atlanta, Georgia 30332-0230 USA Biology and Medicine...

  11. Designing Sustainability at BMW Group: The Designworks/USA Experience

    E-Print Network [OSTI]

    McElhaney, Kellie A; Toffel, Michael W.; Hill, Natalie

    2002-01-01T23:59:59.000Z

    SUSTAINABILITY MANAGEMENT: FROM BMW GROUP TO DESIGNWORKS/USAGuido Prick and Chris Bangle of BMW Group. In addition, weDesigning Sustainability at BMW Group: The Designworks/USA

  12. Coolside waste management research

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Objective was to produce sufficient information on physical and chemical nature of Coolside waste (Coolside No.1, 3 at Edgewater power plant) to design and construct stable, environmentally safe landfills. Progress during this period was centered on analytical method development, elemental and mineralogical analysis of samples, and field facilities preparation to receive lysimeter fill. Sample preparation techniques for thick target PIXE/PIGE were investigated; good agreement between measured and actual values for standard fly ash were obtained for all elements except Fe, Ba, K (PIXE).

  13. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal848 UnlimitedIntegrated DisposalWaste Treatment and

  14. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural PublicRates >-Plans andWaste Isolation

  15. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect (OSTI)

    Anderson, Robert Stephen

    2001-02-01T23:59:59.000Z

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  16. Fish mercury distribution in Massachusetts, USA lakes

    SciTech Connect (OSTI)

    Rose, J.; Hutcheson, M.S.; West, C.R.; Pancorbo, O.; Hulme, K.; Cooperman, A.; DeCesare, G.; Isaac, R.; Screpetis, A.

    1999-07-01T23:59:59.000Z

    The sediment, water, and three species of fish from 24 of Massachusetts' (relatively) least-impacted water bodies were sampled to determine the patterns of variation in edible tissue mercury concentrations and the relationships of these patterns to characteristics of the water, sediment, and water bodies (lake, wetland, and watershed areas). Sampling was apportioned among three different ecological subregions and among lakes of differing trophic status. The authors sought to partition the variance to discover if these broadly defined concepts are suitable predictors of mercury levels in fish. Average muscle mercury concentrations were 0.15 mg/kg wet weight in the bottom-feeding brown bullheads (Ameriurus nebulosus); 0.31 mg/kg in the omnivorous yellow perch (Perca flavescens); and 0.39 mg/kg in the predaceous largemouth bass (Micropterus salmoides). Statistically significant differences in fish mercury concentrations between ecological subregions in Massachusetts, USA, existed only in yellow perch. The productivity level of the lakes (as deduced from Carlson's Trophic Status Index) was not a strong predictor of tissue mercury concentrations in any species. pH was a highly (inversely) correlated environmental variable with yellow perch and brown bullhead tissue mercury. Largemouth bass tissue mercury concentrations were most highly correlated with the weight of the fish (+), lake size (+), and source area sizes (+). Properties of individual lakes appear more important for determining fish tissue mercury concentrations than do small-scale ecoregional differences. Species that show major mercury variation with size or trophic level may not be good choices for use in evaluating the importance of environmental variables.

  17. Solid Waste Management Act (West Virginia)

    Broader source: Energy.gov [DOE]

    In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of...

  18. Independent Oversight Review, Waste Treatment and Immobilization...

    Energy Savers [EERE]

    Waste Treatment and Immobilization Plant Project - October 2010 October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant...

  19. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations, EP-WCRR-WO-DOP-0233 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 The documents...

  20. Independent Oversight Assessment, Salt Waste Processing Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

  1. Enforcement Letter, Westinghouse Waste Isolation Division - October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Westinghouse Waste Isolation Division related to Quality Assurance and Occupational Radiation Protection Noncompliances at the Waste Isolation Pilot Plant On October 3, 2000,...

  2. Waste Package Materials Performance Peer Review | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Waste Package Materials Performance Peer Review Waste Package Materials Performance Peer Review A consensus peer review of the current technical basis and the planned experimental...

  3. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Environmental Management (EM)

    Observation of the Waste Treatment and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities...

  4. Sandia National Laboratories: radiation waste cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste cleanup ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  5. Integrated Solid Waste Management Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and municipality is required to file an integrated...

  6. DC Hazardous Waste Management (District of Columbia)

    Broader source: Energy.gov [DOE]

    This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

  7. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    system (LMH), the melter equipment support handling system (LSH), the radioactive solid waste handling system (RWH), and the radioactive liquid waste disposal system (RLD)....

  8. Chapter 47 Solid Waste Facilities (Kentucky)

    Broader source: Energy.gov [DOE]

    This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or facilities, and the standards for certification of...

  9. Development of Thermoelectric Technology for Automotive Waste...

    Energy Savers [EERE]

    Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S....

  10. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  11. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  12. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01T23:59:59.000Z

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  13. Solid Waste Management Policy and Programs (Minnesota)

    Broader source: Energy.gov [DOE]

    These statutes encourage the State and local governments to develop waste management strategies to achieve the maximum possible reduction in waste generation, eliminate or reduce adverse...

  14. Independent Oversight Assessment, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the...

  15. Municipal Solid Waste Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector.

  16. Waste Management Programmatic Environmental Impact Statement...

    Office of Environmental Management (EM)

    Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision Waste Management Programmatic Environmental Impact Statement (WM PEIS)...

  17. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  18. Missouri Hazardous Waste Management Law (Missouri)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

  19. Waste incineration and the community -

    E-Print Network [OSTI]

    Columbia University

    , metals, plastics, paper and hazardous materials from the organic portion of household waste, together the volumes collected have often exceeded the recycling capacity. Composting the organic portion has also beenWaste incineration and the community - The Amsterdam experience The successful community relations

  20. Generating Steam by Waste Incineration

    E-Print Network [OSTI]

    Williams, D. R.; Darrow, L. A.

    1981-01-01T23:59:59.000Z

    Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

  1. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-12-15T23:59:59.000Z

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG). Cancels: DOE N 221.12, Reporting Fraud, Waste, and Abuse, dated 10-19-06

  2. Waste Management Coordinating Lead Authors

    E-Print Network [OSTI]

    Columbia University

    -to-energy ..............................................601 10.4.4 Biological treatment including composting, anaerobic digestion, and MBT (Mechanical Biological Treatment) ........................................601 10.4.5 Waste reduction, re-use and recycling ..............602 10.4.6 Wastewater and sludge treatment.....................602 10.4.7 Waste

  3. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    SciTech Connect (OSTI)

    Jantzen, Carol M. [Savannah River National Lab., Aiken SC (United States); Lee, William E. [Imperial College, London (United Kingdom). Dept. of Materials; Ojovan, Michael I. [Univ. of Sheffield (United Kingdom). Dept. of Materials Science and Engineering

    2012-10-19T23:59:59.000Z

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.

  4. The Waste Isolation Pilot Plant - An International Center of Excellence for ''Training in and Demonstration of Waste Disposal Technologies''

    SciTech Connect (OSTI)

    Matthews, Mark L.; Eriksson, Leif G.

    2003-02-25T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) site, which is managed and operated by the United States (U.S.) Department of Energy (USDOE) Carlsbad Field Office (CBFO) and located in the State of New Mexico, presently hosts an underground research laboratory (URL) and the world's first certified and operating deep geological repository for safe disposition of long-lived radioactive materials (LLRMs). Both the URL and the repository are situated approximately 650 meters (m) below the ground surface in a 250-million-year-old, 600-m-thick, undisturbed, bedded salt formation, and they have been in operation since 1982 and 1999, respectively. Founded on long-standing CBFO collaborations with international and national radioactive waste management organizations, since 2001, WIPP serves as the Center of Excellence in Rock Salt for the International Atomic Energy Agency's (IAEA's) International Network of Centers on ''Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities'' (the IAEA Network). The primary objective for the IAEA Network is to foster collaborative projects among IAEA Member States that: supplement national efforts and promote public confidence in waste disposal schemes; contribute to the resolution of key technical issues; and encourage the transfer and preservation of knowledge and technologies.

  5. Characterization of geothermal solid wastes

    SciTech Connect (OSTI)

    Morris, W.F.; Stephens, F.B.

    1981-07-01T23:59:59.000Z

    The compositions of 5 major types of geothermal wastes have been determined, and samples have been subjected to EPA recommended extraction tests to determine if they contain toxic metals that would classify the wastes as hazardous. Of the samples tested, the extracts of geothermal brines clearly contain levels of As, Ba and Pb exceeding the maximum allowed concentrations that characterize wastes as toxic. Only one other waste type, geothermal scale, exhibited EP toxicity. Pb was found in the extract of geothermal scale at a level of 7 mg/l, only 2 mg/l over the maximum limit. All of the other types of geothermal waste samples showed levels of toxic metals in the extracts well below the regulated limits.

  6. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

    1990-01-01T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  7. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24T23:59:59.000Z

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  8. Method of recycling hazardous waste

    SciTech Connect (OSTI)

    NONE

    1999-11-11T23:59:59.000Z

    The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

  9. UK report on waste management

    SciTech Connect (OSTI)

    Ferguson, J. [London Waste Regulation Authority (United Kingdom)

    1995-09-01T23:59:59.000Z

    Arising jointly from the National and European Union requirements for more intensive attention to be paid to the environment, the United Kingdom (UK) has taken many strides forward in protecting the environment from pollution and preventing harm to human health arising from the handling, transport and disposal of wastes. Major adjustments are taking place in Europe following the opening up of the Eastern European countries. The consequences of the illegal movement of wastes and its mistreatment and disposal are now recognised within the European Union. The UK as a member State is well aware of the consequences which arise from the lack of proper waste management. This paper discusses waste management and legislation pertaining to waste management in the United Kingdom.

  10. World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...

    Open Energy Info (EERE)

    U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

  11. World Record Earned Value Management System Certification for Cleanup of the East Tennessee Technology Park, Oak Ridge, Tennessee, USA - 13181

    SciTech Connect (OSTI)

    Haynes, Ray; Hirschy, Anita [URS - CH2M Oak Ridge, LLC (UCOR), East Tennessee Technology Park D and D and Environmental Remediation Project, Oak Ridge, Tennessee 37830 (United States)] [URS - CH2M Oak Ridge, LLC (UCOR), East Tennessee Technology Park D and D and Environmental Remediation Project, Oak Ridge, Tennessee 37830 (United States)

    2013-07-01T23:59:59.000Z

    On projects that require Earned Value Management (EVMS) Certification, it is critical to quickly prepare for and then successfully obtain certification. This is especially true for government contracts. Projects that do poorly during the review are subject to financial penalties to their company and they lose creditability with their customer creating problems with the project at the outset. At East Tennessee Technology Park (ETTP), we began preparing for Department of Energy (DOE) certification early during proposal development. Once the contract was awarded, while still in transition phase from the previous contractor to our new company, we immediately began reviewing the project controls systems that were in place on the project and determined if any replacements needed to be made immediately. The ETTP contract required the scheduling software to be upgraded to Primavera P6 and we determined that no other software changes would be done prior to certification. Next, preparation of the Project Controls System Description (PCSD) and associated procedures began using corporate standards as related to the project controls systems. During the transition phase, development was started on the Performance Measurement Baseline which is the resource loaded schedule used to measure our performance on the project and which is critical to good Earned Value Management of the project. Early on, and throughout the baseline review, there was positive feedback from the Department of Energy that the quality of the new baseline was good. Having this superior baseline also contributed to our success in EVMS certification. The combined companies of URS and CH2M Hill had recent experience with certifications at other Department of Energy sites and we were able to capitalize on that knowledge and experience. Generic PCSD and procedures consistent with our co-operations approach to Earned Value Management were available to us and were easily tailorable to the specifics of our contract and site. We also had corporate EVMS experts available to us so as to draw upon their recent certification experiences with lessons learned. This knowledge was especially helpful for training of personnel that were involved in the certification which included Project Controls, Project Management and Control Account Managers. We were also able to bring in these corporate experts to assist with our training efforts. To assure our readiness for the review, we conducted a 'White Hat' review. The 'White Hat' team consisted of corporate experts in EVMS along with an industry expert in EVMS from Humphrey and Associates. This review identified early any weaknesses that we had so corrections could be enacted prior to the EVMS Certification Readiness Review. It also helped give the evaluators confidence that we had done proper due diligence prior to their arrival. Also critical to our success, was early communication with our evaluators. It is important to start the communications early to ensure you understand the expectations of the certification team and the process that will be used during the certification. Communication through the entire process is critical to understand expectations and issues along the way. Very important to the overall process was management commitment, support and reinforcement. Management made sure that all personnel involved knew the importance and made preparations a priority. This was noted as a key strength by the evaluators during the out-brief. As a result of our preparation, our review yielded one Corrective Action Report (CAR) and two Continuous Improvement Opportunities (CIOs). The Certification team in their out-brief explained that this was the lowest number of CARs and CIOs in the history of EVMS certifications in the DOE Complex. (authors)

  12. Process waste assessment for solid low-level radioactive waste and solid TRU waste

    SciTech Connect (OSTI)

    Haney, L. [Westinghouse Savannah River Co., Aiken, SC (United States); Gamble, G.S. [Law Environmental, Inc., Kennesaw, GA (United States)

    1994-04-01T23:59:59.000Z

    Process Waste Assessments (PWAs) are a necessary and important part of a comprehensive waste management plan. PWAs are required by Federal RCRA regulations, certain state regulations and Department of Energy Orders. This paper describes the assessment process and provides examples used by Law Environmental, Inc., in performing numerous PWAs at the Savannah River Site in Aiken, SC.

  13. International Migration in the Developing World: Origin and

    E-Print Network [OSTI]

    Lopez-Carr, David

    > 100k in 1800 ­ 40% 1900 #12;USA Urbanization History · Before 1790 with mechanization of agriculture #12;USA Urbanization History · Transportation technologies ­ Rail transportation, Trolleys, Automobiles · Policy and Social change #12;High ­ Low Rural Growth Areas Red = 8% increase

  14. Tank waste remediation system dangerous waste training plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    1999-05-13T23:59:59.000Z

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench.

  15. HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously with the words "Hazardous Waste."

    E-Print Network [OSTI]

    Slatton, Clint

    HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously. Decontaminate 5. Dispose of cleanup debris as Hazardous Waste Chemical Spill ­ major 1. Evacuate area, isolate with the words "Hazardous Waste." 2. Label all containers accurately, indicating the constituents and approximate

  16. LLNL Waste Minimization Program Plan

    SciTech Connect (OSTI)

    Not Available

    1990-02-14T23:59:59.000Z

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs.

  17. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  18. Tank Waste Disposal Program redefinition

    SciTech Connect (OSTI)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01T23:59:59.000Z

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  19. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    D'Amico, E. L [Washington TRU Solutions (United States); Edmiston, D. R. [John Hart and Associates (United States); O'Leary, G. A. [CH2M-WG Idaho, LLC (United States); Rivera, M. A. [Aspen Resources Ltd., Inc. (United States); Steward, D. M. [Boulder Research Enterprises, LLC (United States)

    2006-07-01T23:59:59.000Z

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  20. Waste drum refurbishment

    SciTech Connect (OSTI)

    Whitmill, L.J.

    1996-10-18T23:59:59.000Z

    Low-carbon steel, radioactive waste containers (55-gallon drums) are experiencing degradation due to moisture and temperature fluctuations. With thousands of these containers currently in use; drum refurbishment becomes a significant issue for the taxpayer and stockholders. This drum refurbishment is a non-intrusive, portable process costing between 1/2 and 1/25 the cost of repackaging, depending on the severity of degradation. At the INEL alone, there are an estimated 9,000 drums earmarked for repackaging. Refurbishing drums rather than repackaging can save up to $45,000,000 at the INEL. Based on current but ever changing WIPP Waste Acceptance Criteria (WAC), this drum refurbishment process will restore drums to a WIPP acceptable condition plus; drums with up to 40% thinning o the wall can be refurbished to meet performance test requirements for DOT 7A Type A packaging. A refurbished drum provides a tough, corrosion resistant, waterproof container with longer storage life and an additional containment barrier. Drums are coated with a high-pressure spray copolymer material approximately .045 inches thick. Increase in internal drum temperature can be held to less than 15 F. Application can be performed hands-on or the equipment is readily adaptable and controllable for remote operations. The material dries to touch in seconds, is fully cured in 48 hours and has a service temperature of {minus}60 to 500 F. Drums can be coated with little or no surface preparation. This research was performed on drums however research results indicate the coating is very versatile and compatible with most any material and geometry. It could be used to provide abrasion resistance, corrosion protection and waterproofing to almost anything.

  1. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    SciTech Connect (OSTI)

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21T23:59:59.000Z

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  2. Bubblers Speed Nuclear Waste Processing at SRS

    SciTech Connect (OSTI)

    None

    2010-11-14T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  3. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

    1982-01-01T23:59:59.000Z

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  4. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23T23:59:59.000Z

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  5. Waste Toolkit A-Z Plastic Grundon

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Plastic ­ Grundon Also see `Swap Shop' and `Office Recycling ­ Grundon' in the Waste Toolkit A-Z How can I recycle plastic? There are lots of different types of plastic. Typically, waste contractors can only recycle PETE plastic and HDPE plastic. The University's preferred waste

  6. What is Hazardous Hazardous waste is

    E-Print Network [OSTI]

    de Lijser, Peter

    What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E.calrecycle.ca.gov www.earth911.com Campus Hazardous Waste Roundup Roundups conducted the last week of: January April

  7. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema (OSTI)

    None

    2014-08-06T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  8. Waste disposal options report. Volume 1

    SciTech Connect (OSTI)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01T23:59:59.000Z

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

  9. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  10. Municipal Solid Waste in The United States

    E-Print Network [OSTI]

    Barlaz, Morton A.

    2011 Facts and Figures Municipal Solid Waste in The United States #12;United States Environmental Protection Agency Office of Solid Waste (5306P) EPA530-R-13-001 May 2013 www.epa.gov #12;MUNICIPAL SOLID WASTE IN THE UNITED STATES: 2011 FACTS AND FIGURES Table of Contents Chapter Page MUNICIPAL SOLID WASTE

  11. AUSTRIA SHOWCASE WASTE-to-ENERGY

    E-Print Network [OSTI]

    &P #12;7 Waste Prevention: The Danube begins here ... © EbS, Austria #12;8 Treatment of Municipal Solid1 AUSTRIA SHOWCASE WASTE-to-ENERGY in AUSTRIA AECC Aberdeen Exhibition & Conference Center (M.I.T.) #12;2 Table of Content · Development of waste management in Austria · Status-Quo of waste

  12. http://wmr.sagepub.com/ Waste Management &

    E-Print Network [OSTI]

    : International Solid Waste Association can be found at:Waste Management & ResearchAdditional serviceshttp://wmr.sagepub.com/ Research Waste Management & http://wmr.sagepub.com/content/13/4/363 The online version of this article can be found at: DOI: 10.1177/0734242X9501300407 1995 13: 363Waste Manag

  13. ISWA Study Tour WASTE-TO-ENERGY

    E-Print Network [OSTI]

    .30 pm ­ 2.00 pm Development of Municipal Solid Waste Management and Treatment Facilities in Vienna, Treatment, and Intermediate Storage - without any disposal of untreated wastes exceeding 5 % TOC and public acceptance of hazardous waste treatment and waste incineration plants (typical "lulu" projects

  14. Industrial waste reduction: The process problem

    SciTech Connect (OSTI)

    Valentino, F.W.; Walmet, G.E.

    1986-09-01T23:59:59.000Z

    Industrial waste problems, especially those involving hazardous waste, seem to be pervasive. The national media report newly discovered waste problems and sites with alarming regularity. Examples that immediately come to mind are Love Canal, New York; Times Beach, Missouri; and Seveso, Italy. Public perceptions of the industrial waste problem, reflecting the media's focus, appear to be that: large corporations are solely responsible for creating waste dumps, and the only role of government is to prevent illegal dumping and to regulate, fine, and require corporations to rectify the problem; all efforts should be directed toward preventing illegal dumping and treatment of the existing waste dumps; all industrial wastes can be classified as hazardous in nature. This general impression is both inaccurate and incomplete. All industrial waste is not hazardous (although most of it is not benign). All waste producers are not large corporations: nearly all industries produce some wastes. And, while existing waste sites must be effectively treated, additional efforts are needed at other points in the industrial waste cycle. Most people would agree both that waste dumping must be carefully regulated because of its negative impacts on the environment and that the less waste the better, even with carefully regulated disposal. Since nearly all industry now produces some waste and no one expects industry to shut down to resolve the waste problem, other strategies need to be available to deal with the problem at the front end. This paper discusses alternative strategies.

  15. Waste Disposal Site and Radioactive Waste Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

  16. Waste Examination Assay Facility operations: TRU waste certification

    SciTech Connect (OSTI)

    Schultz, F.J.; Caylor, B.A.; Coffey, D.E.; Phoenix, L.B.

    1987-01-01T23:59:59.000Z

    The ORNL Waste Examination Assay Facility (WEAF) was established to nondestructively assay (NDA) transuranic (TRU) waste generated at Oak Ridge National Laboratory (ORNL). The present facility charter encompasses the NDA and nondestructive examination (NDE) of both TRU and low-level wastes (LLW). Presently, equipment includes a Neutron Assay System (NAS), a Segmented Gamma Scanner (SGS), a drum-sized Real-Time Radiography (RTR) system, and a Neutron Slab Detector (NSD). The first three instruments are computer interfaced. Approximately 2300 TRU waste drums have been assayed with the NAS and the SGS. Another 3000 TRU and LLW drums have been examined with the RTR unit. Computer data bases have been developed to collate the large amount of data generated during the assays and examinations. 6 refs., 1 tab.

  17. Geothermal California: California Claims the World's Highest...

    Open Energy Info (EERE)

    World's Highest Geothermal Power Output with Potential for Even More Production With Advanced Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  18. Keeping Tabs on the World's Dangerous Chemicals

    Broader source: Energy.gov [DOE]

    Sandia chemical engineer Nancy Jackson has worked in laboratories around the world to help ensure that chemicals are used safely and kept secure.

  19. Three Wishes for the World (with comment)

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    of cooperation. But once Hitler was gone, the world wasorganized at Nuremberg by Hitler and his cronies. Duringexperiences. Nevertheless, Hitler’s rallies were too big for

  20. Student's algorithm solves real-world problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    real-world problems," said David Kratzer of the Laboratory's High Performance Computer Systems group and the Supercomputing Challenge coordinator. The goal of the year-long...

  1. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01T23:59:59.000Z

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  2. Consolidation process for producing ceramic waste forms

    DOE Patents [OSTI]

    Hash, Harry C. (Joliet, IL); Hash, Mark C. (Shorewood, IL)

    2000-01-01T23:59:59.000Z

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  3. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01T23:59:59.000Z

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  4. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01T23:59:59.000Z

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  5. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  6. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    SciTech Connect (OSTI)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2014-12-01T23:59:59.000Z

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  7. Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository--BMT1 of the DECOVALEX III project. Part 2: Effects of THM

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste, Germany (7) Canadian Nuclear Safety Commission (CNSC), Ottawa, Canada (8) Lawrence Berkeley National Laboratory (LBNL), Berkeley, USA (9) INERIS-LAEGO, Ecole des Mines de Nancy, Nancy, France (10) Japan Nuclear

  8. Transforming trash: reuse as a waste management and climate change mitigation strategy

    E-Print Network [OSTI]

    Vergara, Sintana Eugenia

    2011-01-01T23:59:59.000Z

    Biological treatment of waste solids. Waste Management andOF POLLUTANTS FROM SOLID WASTE Solid waste affects the32 5. Solid waste and its impact on the

  9. Waste Minimization: A Hidden Energy Savings?

    E-Print Network [OSTI]

    Good, R. L.; Hunt, K. E.

    vation and Recovery Act (RCRA), serve to regulate waste handling, storage, and disposal. However, these and other governmental laws and regulations have a common purpose: ultimate waste management is not producing waste at all. The common terms...-examination of waste generation within the petro chemical industry. In today's political/regulatory arena, industrial waste, both hazardous and non hazardous, has become an extreme potential liability in handling, storing, and disposal. Traditional methods...

  10. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  11. A THEORY OF WASTE AND VALUE 

    E-Print Network [OSTI]

    Ferná ndez-Solis, José Rybkowski, Zofia K.

    2015-02-08T23:59:59.000Z

    . However, when discrete waste requires the involvement of several stakeholders, the opportunity for synergistic waste can be expected to increase. In this case, synergistic waste can be considered to be multiplicative and contagious. When patterns... of breakdowns that become contagious and therefore cause systemic waste, a situation that integrated contracts address (Lichtig 2005). Figure 5. Web of Temporary Relationships. Figure 6. Breakdowns – One Source of Waste. These loops form a web...

  12. Cogeneration/Cogeneration - Solid Waste

    E-Print Network [OSTI]

    Pyle, F. B.

    1980-01-01T23:59:59.000Z

    This paper reviews the rationale for cogeneration and basic turbine types available. Special considerations for cogeneration in conjunction with solid waste firing are outlined. Optimum throttle conditions for cogeneration are significantly...

  13. Waste Handeling Building Conceptual Study

    SciTech Connect (OSTI)

    G.W. Rowe

    2000-11-06T23:59:59.000Z

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.

  14. On Going TRU Waste Disposition

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01T23:59:59.000Z

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  15. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1...

  16. On Going TRU Waste Disposition

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    The ongoing effort to contain dangerous, radioactive TRU waste. Under the Recovery Act, the Savannah River Site is able to safely test and transport these items to WIPP in Carlsbad, New Mexico.

  17. Solid Waste Disposal Facilities (Massachusetts)

    Broader source: Energy.gov [DOE]

    These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the...

  18. Hazardous and Industrial Waste (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

  19. Hazardous Waste Management Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the...

  20. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-06T23:59:59.000Z

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG).

  1. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-29T23:59:59.000Z

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General’s responsibilities in this area. No cancellation.

  2. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-07-29T23:59:59.000Z

    DOE N 221.8 notifies all DOE employees, including National Nuclear Security Administration employees, of their duty to report allegations of fraud, waste, and abuse to appropriate authorities, including the DOE Office of Inspector General. No cancellation.

  3. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-07T23:59:59.000Z

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General's responsibilities in this area. Does not cancel other directives.

  4. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-06-09T23:59:59.000Z

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General’s responsibilities in this area. No cancellation.

  5. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-07-29T23:59:59.000Z

    To notify all DOE employees of their duty to report allegations of fraud, waste, and abuse, and to notify all DOE employees of the Inspector General's responsibilities in this area. No cancellation.

  6. Reporting Fraud, Waste and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-07-12T23:59:59.000Z

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG).

  7. Reporting Fraud, Waste and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-10-19T23:59:59.000Z

    To notify all Department of Energy employees, including National Nuclear Security Administration employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General. No cancellation.

  8. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-20T23:59:59.000Z

    To notify all Department of Energy employees, including National Nuclear Security Administration employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General.

  9. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12T23:59:59.000Z

    To notify all Department of Energy (DOE) employees, including National Nuclear Security Administration (NNSA) employees, of their duty to report allegations of fraud, waste, and abuse to the appropriate authorities, including the DOE Office of Inspector General (OIG).

  10. Solid Waste Management Rules (Vermont)

    Broader source: Energy.gov [DOE]

    These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

  11. Cogeneration/Cogeneration - Solid Waste 

    E-Print Network [OSTI]

    Pyle, F. B.

    1980-01-01T23:59:59.000Z

    This paper reviews the rationale for cogeneration and basic turbine types available. Special considerations for cogeneration in conjunction with solid waste firing are outlined. Optimum throttle conditions for cogeneration are significantly...

  12. 9th World Wide Workshop for Young Environmental Scientists WWW-YES-Brazil-2009: Urban waters: resource or risks? 26-30 October 2009

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . INTRODUCTION Problem The landfilling is an attractive method for the municipal solid waste management due9th World Wide Workshop for Young Environmental Scientists WWW-YES-Brazil-2009: Urban waters problems of the urban water management in developing countries C. Madera* and Viviana Valencia

  13. 9th World Wide Workshop for Young Environmental Scientists WWW-YES-Brazil-2009: Urban waters: resource or risks? 26-30 October 2009

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    supply, sanitation and waste management facilities. Urban context of the Mingoa River watershed9th World Wide Workshop for Young Environmental Scientists WWW-YES-Brazil-2009: Urban waters on the Municipal Lake of Yaoundé, Cameroon Marielle Naah* *Laboratoire Eau Environnement et Systèmes Urbains (LEESU

  14. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    SciTech Connect (OSTI)

    Ebert, William; Pereira, Candido; Heltemes, Thad A.; Youker, Amanda; Makarashvili, Vakhtang; Vandegrift, George F.

    2014-01-01T23:59:59.000Z

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  15. Waste Stream Disposal Pharmacy Quick Sheet (6/16/14) Also pharmacy employees must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous Additional Waste

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Additional Waste Disposal Location Green Bins for Non-hazardous waste Black Bins must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous for Hazardous Waste Yellow Trace Chemo Disposal Bin Red Sharps Bins Red

  16. Technology Entrepreneurship Program Real-world practice with real-world technologies

    E-Print Network [OSTI]

    Technology Entrepreneurship Program Real-world practice with real-world technologies What it's all about Pacific Northwest National Laboratory's (PNNL) Technology Entrepreneurship Program (TEP) provides university students with access to PNNL-developed available technologies. Laboratory staff work

  17. Remediation of oil field wastes

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.

    1990-01-01T23:59:59.000Z

    Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

  18. REPORT from 1st Annual World Congress of BIOENERGY ,

    E-Print Network [OSTI]

    ordering for Dalian urban solid waste to Energy plant . It marks the first solid waste incineration project sessions . Dr. Kalogirou was the chair of the special WTE session entitled: «Integrated Municipal Solid Waste Management: Recycling and Waste to Energy», with co Chair Professor Carlo Va der Casteele from

  19. I-NERI Annual Technical Progress Report 2007-004-K Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing

    SciTech Connect (OSTI)

    S. Frank

    2010-09-01T23:59:59.000Z

    The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of in the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests were produced concentrated salt products that acted as the feed material for development of advanced waste forms investigated in this proposal. Accomplishments from the first year activities associated with this I-NERI project included the down selection of candidate waste forms to immobilize fission products separated from electrorefiner salt, and the design of equipment to fabricate actual waste forms in the Hot Fuels Examination Facility (HFEF) at the INL. Reported in this document are accomplishments from the second year (FY10) work performed at the INL, and includes the testing of waste form fabrication equipment, repeating the fission product precipitation experiment, and initial waste form fabrication efforts.

  20. Managing Risk in the Modern World

    E-Print Network [OSTI]

    Fenton, Norman

    Managing Risk in the Modern World Applications of Bayesian Networks A Knowledge Transfer Report By Norman Fenton and Martin Neil #12;13 MANAGING RISK IN THE MODERN WORLD Applications of Bayesian Networks of Agena, a company that specialises in risk management for critical systems. Norman is an Affiliated