National Library of Energy BETA

Sample records for uranyl nitrate solution

  1. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    DOE Patents [OSTI]

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  2. SEPARATION OF URANYL NITRATE BY EXTRACTION

    DOE Patents [OSTI]

    Stoughton, R.W.; Steahly, F.L.

    1958-08-26

    A process is presented for obtaining U/sup 233/ from solutions containing Pa/sup 233/. A carrier precipitate, such as MnO/sub 2/, is formed in such solutions and carries with it the Pa/sup 233/ present. This precipitate is then dissolved in nitric acid and the solution is aged to allow decay of the Pa/ sup 233/ into U/sup 233/. After a sufficient length of time the U/sup 233/ bearing solution is made 2.5 to 4.5 Molar in manganese nitrate by addition thereof, and the solution is then treated with ether to obtain uranyl nitrate by solvent extraction techniques.

  3. GRAPHITE PRODUCTION UTILIZING URANYL NITRATE HEXAHYDRATE CATALYST

    DOE Patents [OSTI]

    Sheinberg, H.; Armstrong, J.R.; Schell, D.H.

    1964-03-10

    ABS>The graphitizing of a mixture composed of furfuryl alcohol binder and uranyl nitrate hexahydrate hardener and the subsequent curing, baking, and graphitizing with pressure being initially applied prior to curing are described. The pressure step may be carried out by extrusion, methyl cellulose being added to the mixture before the completion of extrusion. Uranium oxide may be added to the graphitizable mixture prior to the heating and pressure steps. The graphitizable mixture may consist of discrete layers of different compositions. (AEC)

  4. Analysis of Enriched Uranyl Nitrate in Nested Annular Tank Array

    SciTech Connect (OSTI)

    John D. Bess; James D. Cleaver

    2009-06-01

    Two series of experiments were performed at the Rocky Flats Critical Mass Laboratory during the 1980s using highly enriched (93%) uranyl nitrate solution in annular tanks. [1, 2] Tanks were of typical sizes found in nuclear production plants. Experiments looked at tanks of varying radii in a co-located set of nested tanks, a 1 by 2 array, and a 1 by 3 array. The co-located set of tanks had been analyzed previously [3] as a benchmark for inclusion within the International Handbook of Evaluated Criticality Safety Benchmark Experiments. [4] The current study represents the benchmark analysis of the 1 by 3 array of a series of nested annular tanks. Of the seventeen configurations performed in this set of experiments, twelve were evaluated and nine were judged as acceptable benchmarks.

  5. CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Reinhart, G.M.; Collopy, T.J.

    1962-11-13

    A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)

  6. Uranyl-Peroxide Nanocapsules in Aqueous Solution: Force Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranyl-Peroxide Nanocapsules in Aqueous Solution: Force Field Development and First Applications Previous Next List Pere Mir, Bess Vlaisavljevich, Allison L. Dzubak, Shuxian Hu,...

  7. METHOD OF INHIBITING CORROSION IN URANYL SULFATE SOLUTIONS

    DOE Patents [OSTI]

    Bohlmann, E.G.; Griess, J.C. Jr.

    1960-08-23

    A method is given for treating a uranyl sulfate solution to inhibit the corrosiveness of the solution and elevate the phase separation temperature of the solution. Lithium sulfate is added to the solution in an amount ranging from 0.25 to 1.3 times the uranyl sulfate concentration. The corrosiveness of the solution with respect to stainless steel is substantially decreased by this means. This treatment also serves to raise the phase separation temperature of the solution (above 250 deg C), at which time the uranyl sulfate solution separates into two liquid phases of unequal uranium concentration and thus becomes unsuitable as nuclear reactor fuel.

  8. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF ? mediators

    SciTech Connect (OSTI)

    Orona, N.S.; Tasat, D.R.

    2012-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5200 ?M). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{sub 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup ?}). At high doses it provokes the secretion of TNF? and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup ?} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup ?} may be blocked, prevailing damage to DNA by the TNF? route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium?related diseases. -- Highlights: ? Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ? At low doses uranyl nitrate induces generation of superoxide anion. ? At high doses uranyl nitrate provokes secretion of TNF?. ? Uranyl nitrate induces apoptosis through all the range of

  9. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Youker, Amanda J.; Chemerisov, Sergey D.; Kalensky, Michael; Tkac, Peter; Bowers, Delbert L.; Vandegrift, George F.

    2013-01-01

    Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal) reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration onmore » Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.« less

  10. Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks

    SciTech Connect (OSTI)

    James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

    2009-09-01

    A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

  11. FY-15 Progress Report on Cleanup of irradiated SHINE Target Solutions Containing 140g-U/L Uranyl Sulfate

    SciTech Connect (OSTI)

    Bennett, Megan E.; Bowers, Delbert L.; Vandegrift, George F.

    2015-09-01

    During FY 2012 and 2013, a process was developed to convert the SHINE Target Solution (STS) of irradiated uranyl sulfate (140 g U/L) to uranyl nitrate. This process is necessary so that the uranium solution can be processed by the UREX (Uranium Extraction) separation process, which will remove impurities from the uranium so that it can be recycled. The uranyl sulfate solution must contain <0.02 M SO42- so that the uranium will be extractable into the UREXsolvent. In addition, it is desired that the barium content be below 0.0007 M, as this is the limit in the Resource Conservation and Recovery Act (RCRA).

  12. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOE Patents [OSTI]

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  13. The gas-phase bis-uranyl nitrate complex [(UO2)2(NO3)5]-: infrared spectrum and structure

    SciTech Connect (OSTI)

    Groenewold, G. S.; van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; McIIwain, Michael E.

    2011-12-01

    The infrared spectrum of the bis-uranyl nitrate complex [(UO2)2(NO3)5]- was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate v3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex [(UO2)2(NO3)5]- compared to the mono-complex [UO2(NO3)3]-, as indicated by a higher O-U-O asymmetric stretching (v3) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the v3 frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The lowest energy structure predicted by density functional theory (B3LYP functional) calculations was one in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  14. Structure and dynamics of aqueous solution of uranyl ions

    SciTech Connect (OSTI)

    Chopra, Manish; Choudhury, Niharendu

    2014-04-24

    The present work describes a molecular dynamics simulation study of structure and dynamics of aqueous solution of uranyl ions in water. Structural properties of the system in terms of radial distribution functions and dynamical characteristics as obtained through velocity autocorrelation function and mean square displacements have been analyzed. The results for radial distribution functions show the oxygen of water to form the first solvation shell at 2.4 around the uranium atom, whereas the hydrogen atoms of water are distributed around the uranium atom with the major peak at around 3.0 . Analyses of transport behaviors of ions and water through MSD indicates that the diffusion of the uranyl ion is much less as compared to that of the water molecules. It is also observed that the dynamical behavior of water molecules gets modified due to the presence of uranyl ion. The effect of increase in concentration of uranyl ions on the structure and dynamics of water molecules is also studied.

  15. Dehydration of Uranyl Nitrate Hexahydrate to Uranyl Nitrate Trihydrate under Ambient Conditions as Observed via Dynamic Infrared Reflectance Spectroscopy

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-05-22

    the hexahydrate [UO2(NO3)2(H2O)6] (UNH) and the trihydrate [UO2(NO3)2(H2O)3] (UNT) forms. Their stabilities depend on both relative humidity and temperature. Both phases have previously been studied by infrared transmission spectroscopy, but the data were limited by both instrumental resolution and the ability to prepare the samples as pellets without desiccating them. We report time-resolved infrared (IR) measurements using an integrating sphere that allow us to observe the transformation from the hexahydrate to the trihydrate simply by flowing dry nitrogen gas over the sample. Hexahydrate samples were prepared and confirmed via known XRD patterns, then measured in reflectance mode. The hexahydrate has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample dehydrates and recrystallizes to the trihydrate, first as a blue edge shoulder but ultimately resulting in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT since UNT has two non-equivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a morphological and structural change that has the lustrous lime green crystals changing to the dull greenish yellow of the trihydrate. Crystal structures and phase transformation were confirmed theoretically using DFT calculations and experimentally via microscopy methods. Both methods showed a transformation with two distinct sites for the uranyl cation in the trihydrate, as opposed to a single crystallographic site in the hexahydrate.

  16. ARRAYS OF BOTTLES OF PLUTONIUM NITRATE SOLUTION

    SciTech Connect (OSTI)

    Margaret A. Marshall

    2012-09-01

    In October and November of 1981 thirteen approaches-to-critical were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were sponsored by Rockwell Hanford Operations because of the lack of experimental data on the criticality of arrays of bottles of Pu solution such as might be found in storage and handling at the Purex Facility at Hanford. The results of these experiments were used to provide benchmark data to validate calculational codes used in criticality safety assessments of [the] plant configurations (Ref. 1). Data for this evaluation were collected from the published report (Ref. 1), the approach to critical logbook, the experimenters logbook, and communication with the primary experimenter, B. Michael Durst. Of the 13 experiments preformed 10 were evaluated. One of the experiments was not evaluated because it had been thrown out by the experimenter, one was not evaluated because it was a repeat of another experiment and the third was not evaluated because it reported the critical number of bottles as being greater than 25. Seven of the thirteen evaluated experiments were determined to be acceptable benchmark experiments. A similar experiment using uranyl nitrate was benchmarked as U233-SOL-THERM-014.

  17. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: A {sup 13}C-NMR study

    SciTech Connect (OSTI)

    Renault, Sophie; Faiz, Hassan; Gadet, Rudy; Ferrier, Bernard; Martin, Guy; Baverel, Gabriel; Conjard-Duplany, Agnes

    2010-01-01

    As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-{sup 13}C]-, or L-[2-{sup 13}C]-, or L-[3-{sup 13}C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice.

  18. Observation of Radiolytic Field Alteration of the Uranyl Cation in Bicarbonate Solution

    SciTech Connect (OSTI)

    Snow, Lanee A.; McNamara, Bruce K.; Sinkov, Sergey I.; Cho, Herman M.; Friese, Judah I.

    2006-12-01

    In previous work we demonstrated that radiolysis of uranyl tris carbonate in near neutral pH to alkaline carbonate solutions, could be followed by 13C NMR. Radiolysis of the complex produced novel uranyl peroxo carbonate solution state species, whose structures depended on the pH and radiolytic dose rate. In this work, we investigate speciation of the uranyl carbonate trimer which is predominant in bicarbonate solution near pH 5.9. We observe radiolytically derived speciation to different mixed peroxy carbonate species than seen in the higher pH solutions. Auto radiolysis of uranium (VI) carbonate solutions between pH 5.9 and 7.2 is shown to alter the uranium speciation over relatively short periods of time and was followed by 13C NMR and visible spectrophotometry, using dissolved 233(UO2)3(CO3)6 6- both as the radiolysis source (D= 14.9 Gy/hr) and as a trap for the newly formed hydrogen peroxide. Direct addition of hydrogen peroxide to solutions of the uranyl-carbonate trimer is shown to reproduce the 13 C NMR signatures of the complexe(s) formed by radiolysis, but additionally a variety of new complexes are revealed. Ratios of H2O2/trimer < 1.5 produced a uranyl peroxo carbonate adduct, that is shown to be common to the radiolytically produced species. Ratios of H2O2/ trimer >1 resulted in formation of stable higher order peroxo carbonate complexes. The 13C NMR signatures and visible spectra of these complexes are described here. Rigorous characterization of the species is an ongoing effort.

  19. Process for decomposing nitrates in aqueous solution

    DOE Patents [OSTI]

    Haas, Paul A.

    1980-01-01

    This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.

  20. Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Edward J. Mausolf; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; Bruce K. McNamara

    2015-09-08

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparationmore » and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm–1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm–1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. As a result, the phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with only one in the hexahydrate.« less

  1. Time-Resolved Infrared Reflectance Studies of the Dehydration-Induced Transformation of Uranyl Nitrate Hexahydrate to the Trihydrate Form

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-10-01

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s the different phases were studied by infrared transmission spectroscopy, but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. The phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with but one in the hexahydrate.

  2. Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Edward J. Mausolf; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; Bruce K. McNamara

    2015-09-08

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm–1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm–1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the

  3. Method for photochemical reduction of uranyl nitrate by tri-N-butyl phosphate and application of this method to nuclear fuel reprocessing

    DOE Patents [OSTI]

    De Poorter, Gerald L.; Rofer-De Poorter, Cheryl K.

    1978-01-01

    Uranyl ion in solution in tri-n-butyl phosphate is readily photochemically reduced to U(IV). The product U(IV) may effectively be used in the Purex process for treating spent nuclear fuels to reduce Pu(IV) to Pu(III). The Pu(III) is readily separated from uranium in solution in the tri-n-butyl phosphate by an aqueous strip.

  4. Method for improved decomposition of metal nitrate solutions

    DOE Patents [OSTI]

    Haas, P.A.; Stines, W.B.

    1981-01-21

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates is described, wherein thermal decomposition within a temperature range of about 300 to 800/sup 0/C is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  5. Method for improved decomposition of metal nitrate solutions

    DOE Patents [OSTI]

    Haas, Paul A.; Stines, William B.

    1983-10-11

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  6. Uranyl Nitrate Flow Loop

    SciTech Connect (OSTI)

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by the U.S. Department of Energy (DOE) NA-241, Office of Dismantlement and Transparency.

  7. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    SciTech Connect (OSTI)

    Chemerisov, Sergey; Gromov, Roman; Makarashvili, Vakho; Heltemes, Thad; Sun, Zaijing; Wardle, Kent E.; Bailey, James; Quigley, Kevin; Stepinski, Dominique; Vandegrift, George

    2014-10-01

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.

  8. The radiation induced chemistry of uranyl cation in aqueous carbonate bicarbonate solutions as followed by NMR spectroscopy

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Snow, Lanee A.; Soderquist, Chuck Z.; Sinkov, Sergei I.; Cho, Herman M.; Friese, Judah I.

    2006-05-01

    Alpha radiation induced formation of hydrogen peroxide in carbonate ?bicarbonate media was followed by 13C NMR using dissolved [233UO2(13CO3)3]4- as the alpha source (Dalpha= 12.1 Gy/hr). Between the pH region between 5.9 and 11.6 hydrogen peroxide causes a varied speciation of the uranyl carbonates that is a function of the uranium, carbonate and the hydrogen peroxide concentrations. It is shown that the speciation of the peroxy carbonates (or other species) formed in solution by titration with hydrogen peroxide are common to those formed by hydrogen peroxide generated by radiolysis. The radiolysis experiment was carried out above pH = 9.96 to minimize the loss of 13CO2 over a 2800 hr period. Radiolytic generation of hydrogen peroxide was followed by formation of a uranyl peroxy carbonate complex and complex formation accelerated for about 1200 hours. Complex formation was observed to terminate at a concentration between 1x10-4 and 5x10-4 M. It is assumed that either a steady state H2O2 production rate was established in solution or that some limiting feature of the experiment was responsible for slowing the yield of product.

  9. Experimental Results for Direct Electron Irradiation of a Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    SciTech Connect (OSTI)

    Chemerisov, Sergey; Gromov, R.; Makarashvili, Vakhtang; Heltemes, Thad; Sun, Zaijing; Wardle, Kent E.; Bailey, James; Stepinski, Dominique; Jerden, James; Vandegrift, George F.

    2015-01-30

    In support of the development of accelerator-driven production of fission product Mo-99 as proposed by SHINE Medical Technologies, a 35 MeV electron linac was used to irradiate depleted-uranium (DU) uranyl sulfate dissolved in pH 1 sulfuric acid at average power densities of 6 kW, 12 kW, and 15 kW. During these irradiations, gas bubbles were generated in the solution due to the radiolytic decomposition of water molecules in the solution. Multiple video cameras were used to record the behavior of bubble generation and transport in the solution. Seven six-channel thermocouples were used to record temperature gradients in the solution from self-heating. Measurements of hydrogen and oxygen concentrations in a helium sweep gas were recorded by a gas chromatograph to estimate production rates during irradiation. These data are being used to validate a computational fluid dynamics (CFD) model of the experiment that includes multiphase flow and a custom bubble injection model for the solution region.

  10. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect (OSTI)

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the NO2 radical.

  11. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    SciTech Connect (OSTI)

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.; Bounds, J.A.; Kimpland, R.H.; Damjanovich, R.P.; Jaegers, P.J.

    1997-08-01

    Experiments were performed to measure a variety of parameters for SHEBA: behavior of the facility during transient and steady-state operation; characteristics of the SHEBA fuel; delayed-critical solution height vs solution temperature; initial reactor period and reactivity vs solution height; calibration of power level vs reactor power instrumentation readings; flux profile in SHEBA; radiation levels and neutron spectra outside the assembly for code verification and criticality alarm and dosimetry purposes; and effect on reactivity of voids in the fuel.

  12. METHOD AND APPARATUS FOR CALCINING SALT SOLUTIONS

    DOE Patents [OSTI]

    Lawroski, S.; Jonke, A.A.; Taecker, R.G.

    1961-10-31

    A method is given for converting uranyl nitrate solution into solid UO/ sub 3/, The solution is sprayed horizontally into a fluidized bed of UO/sub 3/ particles at 310 to 350 deg C by a nozzle of the coaxial air jet type at about 26 psig, Under these conditions the desired conversion takes place, and caking in the bed is avoided.

  13. Optical apparatus and method for sensing uranyl

    DOE Patents [OSTI]

    Baylor, L.C.; Buchanan, B.R.

    1994-01-01

    An optical sensing device for uranyl and other substances, a method for making an optical sensing device and a method for chemically binding uranyl and other indicators to glass, quartz, cellulose and similar substrates. The indicator, such as arsenazo III, is immobilized on the substrate using a chemical binding process. The immobilized arsenazo III causes uranyl from a fluid sample to bind irreversibly to the substrate at its active sites, thus causing absorption of a portion of light transmitted through the substrate. Determination of the amount of light absorbed, using conventional means, yields the concentration of uranyl present in the sample fluid. The binding of uranyl on the substrate can be reversed by subsequent exposure of the substrate to a solution of 2,6-pyridinedicarboxylic acid. The chemical binding process is suitable for similarly binding other indicators, such as bromocresol green.

  14. Combined Extraction of Cesium and Strontium from Akaline Nitrate Solutions

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Bonnesen, Peter V; Engle, Nancy L; Haverlock, Tamara; Sloop Jr, Frederick {Fred} V; Moyer, Bruce A

    2006-01-01

    The combined extraction of cesium and strontium from caustic wastes can be achieved by adding a crown ether and a carboxylic acid to the Caustic-Side Solvent Extraction (CSSX) solvent. The ligand 4,4'(5')-di(tert-butyl)cyclohexano-18-crown-6 and one of four different carboxylic acids were combined with the components of the CSSX solvent optimized for the extraction of cesium, allowing for the simultaneous extraction of cesium and strontium from alkaline nitrate media simulating alkaline high level wastes present at the U.S. Department of Energy Savannah River Site. Extraction and stripping experiments were conducted independently and exhibited adequate results for mimicking waste simulant processing through batch contacts. The promising results of these batch tests showed that the system could reasonably be tested on actual waste.

  15. Composition for detecting uranyl

    DOE Patents [OSTI]

    Baylor, L.C.; Stephens, S.M.

    1994-01-01

    The present invention relates to an indicator composition for use in spectrophotometric detection of a substance in a solution, and a method for making the composition. Useful indicators are sensitive to the particular substance being measured, but are unaffected by the fluid and other chemical species that may be present in the fluid. Optical indicators are used to measure the uranium concentration of process solutions in facilities for extracting uranium from ores, production of nuclear fuels, and reprocessing of irradiated fuels. The composition comprises an organohalide covalently bonded to an indicator for the substance, in such a manner that the product is itself an indicator that provides increased spectral resolution for detecting the substance. The indicator is preferably arsenazo III and the organohalide is preferably cyanuric chloride. These form a composition that is ideally suited for detecting uranyl.

  16. LOW TEMPERATURE PROCESS FOR THE REMOVAL AND RECOVERY OF CHLORIDES AND NITRATES FROM AQUEOUS NITRATE SOLUTIONS

    DOE Patents [OSTI]

    Savolainen, J.E.

    1963-01-29

    A method is described for reducing the chloride content of a solution derived from the dissolution of a stainless steel clad nuclear fuel element with an aqua regia dissolution medium. The solutlon is adjusted to a nitric acid concentration in the range 5 to 10 M and is countercurrently contacted at room temperature with a gaseous oxide of nitrogen selected from NO, NO/sub 2/, N/sub 2/ O/sub 3/, and N/sub 2/O/sub 4/. Chlo ride is recovered from the contacted solution as nitrosyl chloride. After reduction of the chloride content, the solution is then contacted with gaseous NO to reduce the nitric acid molarity to a desired level. (AEC)

  17. Composition for detecting uranyl

    DOE Patents [OSTI]

    Baylor, Lewis C.; Stephens, Susan M.

    1995-01-01

    A composition for detecting the presence and concentration of a substance such as uranyl, comprising an organohalide covalently bonded to an indicator for said substance. The composition has at least one active OH site for forming a complex with the substance to be detected. The composition is made by reacting equimolar amounts of the indicator and the organohalide in a polar organic solvent. The absorbance spectrum of the composition-uranyl complex is shifted with respect to the absorbance spectrum of the indicator-uranyl complex, to provide better spectral resolution for detecting uranyl.

  18. Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution

    SciTech Connect (OSTI)

    Ganot, Yuval E-mail: ibar@bgu.ac.il; Bar, Ilana E-mail: ibar@bgu.ac.il

    2015-09-28

    Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO{sub 3}), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν{sub 1}(NO{sub 3}{sup −}), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340 mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset.

  19. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution

    SciTech Connect (OSTI)

    Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; Elwood Madden, Andrew S.

    2015-04-17

    We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pH 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.

  20. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; Elwood Madden, Andrew S.

    2015-04-17

    We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pHmore » 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.« less

  1. Pillared and open-framework uranyl diphosphonates

    SciTech Connect (OSTI)

    Adelani, Pius O.; Albrecht-Schmitt, Thomas E.

    2011-09-15

    The hydrothermal reactions of uranium trioxide, uranyl acetate, or uranyl nitrate with 1,4-benzenebisphosphonic acid in the presence of very small amount of HF at 200 deg. C results in the formation of three different uranyl diphosphonate compounds, [H{sub 3}O]{sub 2}{l_brace}(UO{sub 2}){sub 6}[C{sub 6}H{sub 4}(PO{sub 3})(PO{sub 2}OH)]{sub 2}[C{sub 6}H{sub 4}(PO{sub 2}OH){sub 2}]{sub 2}[C{sub 6}H{sub 4}(PO{sub 3}){sub 2}]{r_brace}(H{sub 2}O){sub 2} (Ubbp-1), [H{sub 3}O]{sub 4}{l_brace}(UO{sub 2}){sub 4}[C{sub 6}H{sub 4}(PO{sub 3}){sub 2}]{sub 2}F{sub 4}{r_brace}.H{sub 2}O (Ubbp-2), and {l_brace}(UO{sub 2})[C{sub 6}H{sub 2}F{sub 2}(PO{sub 2}OH){sub 2}(H{sub 2}O){r_brace}{sub 2}.H{sub 2}O (Ubbp-3). The crystal structures of these compounds were determined by single crystal X-ray diffraction experiments. Ubbp-1 consists of UO{sub 7} pentagonal bipyramids that are bridged by the phosphonate moieties to form a three-dimensional pillared structure. Ubbp-2 is composed of UO{sub 5}F{sub 2} pentagonal bipyramids that are bridged through the phosphonate oxygen atoms into one-dimensional chains that are cross-linked by the phenyl spacers into a pillared structure. The structure of Ubbp-3 is a three-dimensional open-framework with large channels containing water molecules with internal dimensions of approximately 10.9x10.9 A. Ubbp-1 and Ubbp-2 fluoresce at room temperature. - Graphical Abstract: Illustration of the three-dimensional open-framework structure of {l_brace}(UO{sub 2})[C{sub 6}H{sub 2}F{sub 2}(PO{sub 2}OH){sub 2}(H{sub 2}O){r_brace}{sub 2}.H{sub 2}O viewed along the c-axis. The structure is constructed from UO{sub 7} units, pentagonal bipyramids=green, oxygen=red, phosphorus=magenta, carbon=black, hydrogen=white. Highlights: > The influence of the uranyl salt anions and pH were critically examined in relation to structural variation. > The acetate and nitrate counter ions of uranyl may be acting as structure directing agents. > The use of rigid phenyl spacer yield

  2. Modeling of early age loss of lithium ions from pore solution of cementitious systems treated with lithium nitrate

    SciTech Connect (OSTI)

    Kim, Taehwan Olek, Jan

    2015-01-15

    Addition of lithium nitrate admixture to the fresh concrete mixture helps to minimize potential problems related to alkali-silica reaction. For this admixture to function as an effective ASR control measure, it is imperative that the lithium ions remain in the pore solution. However, it was found that about 50% of the originally added lithium ions are removed from the pore solution during early stages of hydration. This paper revealed that the magnitude of the Li{sup +} ion loss is highly dependent on the concentration of Li{sup +} ions in the pore solution and the hydration rate of the cementitious systems. Using these findings, an empirical model has been developed which can predict the loss of Li{sup +} ions from the pore solution during the hydration period. The proposed model can be used to investigate the effects of mixture parameters on the loss of Li{sup +} ions from the pore solution of cementitious system.

  3. Barium uranyl diphosphonates

    SciTech Connect (OSTI)

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Ewing, Rodney C.; Albrecht-Schmitt, Thomas E.

    2012-08-15

    Three Ba{sup 2+}/UO{sub 2}{sup 2+} methylenediphosphonates have been prepared from mild hydrothermal treatment of uranium trioxide, methylendiphosphonic acid (C1P2) with barium hydroxide octahydrate, barium iodate monohydrate, and small aliquots of HF at 200 Degree-Sign C. These compounds, Ba[UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{center_dot}1.4H{sub 2}O (Ba-1), Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2}F{sub 6}]{center_dot}6H{sub 2}O (Ba-2), and Ba{sub 2}[(UO{sub 2}){sub 2}(CH{sub 2}(PO{sub 3}){sub 2})F{sub 4}]{center_dot}5.75H{sub 2}O (Ba-3) all adopt layered structures based upon linear uranyl groups and disphosphonate molecules. Ba-2 and Ba-3 are similar in that they both have UO{sub 5}F{sub 2} pentagonal bipyramids that are bridged and chelated by the diphosphonate moiety into a two-dimensional zigzag anionic sheet (Ba-2) and a one-dimensional ribbon anionic chain (Ba-3). Ba-1, has a single crystallographically unique uranium metal center where the C1P2 ligand solely bridges to form [UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sup 2-} sheets. The interlayer space of the structures is occupied by Ba{sup 2+}, which, along with the fluoride ion, mediates the structure formed and maintains overall charge balance. - Graphical abstract: Illustration of the stacking of the layers in Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2})F{sub 6}]{center_dot}6H{sub 2}O viewed along the c-axis. The structure is constructed from UO{sub 7} pentagonal bipyramidal units, U(1)O{sub 7}=gray, U(2)O{sub 7}=yellow, barium=blue, phosphorus=magenta, fluorine=green, oxygen=red, carbon=black, and hydrogen=light peach. Highlights: Black-Right-Pointing-Pointer The polymerization of the UO{sub 2}{sup 2+} sites to form uranyl dimers leads to structural variations in compounds. Black-Right-Pointing-Pointer Barium cations stitch uranyl diphosphonate anionic layers together, and help mediate structure formation. Black-Right-Pointing-Pointer HF acts as both a

  4. Criticality experiments with planar arrays of three-liter bottles containing plutonium nitrate solution

    SciTech Connect (OSTI)

    Durst, B.M.; Clayton, E.D.; Smith, J.H.

    1985-01-01

    The objective of these experiments was to provide benchmark data to validate calculational codes used in critically safety assessments of plant configurations. Arrays containing up to as many as sixteen three-liter bottles filled with plutonium nitrate were used in the experiments. A split-table device was used in the final assembly of the arrays. Ths planar arrays were reflected with close fitting plexiglas on each side and on the bottom but not the top surface. The experiments addressed a number of factors effecting criticality: the critical air gap between bottles in an array of fixed number of bottles, the number of bottles required for criticality if the bottles were touching, and the effect on critical array spacing and critical bottle number due to the insertion of an hydrogeneous substance into the air gap between bottles. Each bottle contained about 2.4l of Pu(NO{sub 3}){sub 4} solution at a Pu concentration of 105g Pu/l, with the {sup 240}Pu content being 2.9 wt% at a free acid molarity H{sup +} of 5.1. After the initial series of experiments were performed with bottles separated by air gaps, plexiglas shells of varying thicknesses were placed around each bottle to investigate how moderation between bottles affects both the number of bottles required for criticality and the critical spacing between each bottle. The minimum of bottles required for criticality was found to be 10.9 bottles, occurring for a square array with bottles in contact. As the bottles were spaced apart, the critical number increased. For sixteen bottles in a square array, the critical separation between surfaces in both x and y direction was 0.96 cm. The addition of plexiglas around each bottle decreased the critical bottle number, compared to those separated in air, but the critical bottle number, even with interstitial plastic in place was always greater than 10.9 bottles. The most reactive configuration was a tightly packed array of bottles with no intervening material.

  5. Alkali metal nitrate purification

    DOE Patents [OSTI]

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  6. Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide

    SciTech Connect (OSTI)

    Gong, Yu; De Jong, Wibe A.; Gibson, John K.

    2015-05-13

    Activation of the oxo bond of uranyl, UO22+, was achieved by collision induced dissociation (CID) of UO2(N3)Cl2 in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2 was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2 resulted in the loss of N2 to form UO(NO)Cl2, in which the inert uranyl oxo bond has been activated. Formation of UO2Cl2 via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2 complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2 complex shows that the side-on bonded NO moiety can be considered as NO3, suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2 to form UO(NO)Cl2 and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2 and UO2Cl2. The observation of UO2Cl2 during CID is most likely due to the absence of an energy barrier for neutral ligand loss.

  7. Criticality Calculations Using the Isopiestic Density Law of Actinide Nitrates

    SciTech Connect (OSTI)

    Leclaire, Nicolas P.; Anno, Jacques A.; Courtois, Gerard; Dannus, Pascal; Poullot, Gilles; Rouyer, Veronique

    2003-12-15

    Up to now, criticality safety experts used density laws fitted on experimental data and applied them outside the measurement range. Depending on the case, such an approach could be wrong for nitrate solutions. Seven components are concerned: UO{sub 2}(NO{sub 3}){sub 2}, U(NO{sub 3}){sub 4}, Pu(NO{sub 3}){sub 4}, Pu(NO{sub 3}){sub 3}, Th(NO{sub 3}){sub 4}, Am(NO{sub 3}){sub 3}, and HNO{sub 3}. To obviate this problem, a new methodology based on the thermodynamic concept of mixtures of binary electrolytes solutions (one electrolyte + water) at constant water activity, a so-called 'isopiestic' solution, has been developed by the Institute de Radioprotection et de Surete Nucleaire (IRSN) to calculate the nitrate solutions density. This paper presents its qualification by using criticality experiments. The theory and the implementation are also given.Qualification results of the uranyl and plutonium nitrate solutions show that the new density law (also called the isopiestic law) is in good agreement with the benchmarks. Thus, no bias is put into evidence for the uranium solutions, and a small negative bias equal to 0.2% is found for the plutonium solutions.Moreover, the isopiestic law corrects the observed 1% overestimation of k{sub eff} due to the empirical IRSN Leroy and Jouan density law for uranium solutions and the observed 3.4% underestimation of k{sub eff} due to the ARH-600 density law for plutonium solutions.The isopiestic density law has been implemented in CIGALES V2.0, the graphical user interface of the French criticality safety package CRISTAL that calculates the atom densities of nuclides (and writes the input file for CRISTAL computations)

  8. Chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    These analytical procedures are designed to show whether a given material meets the purchaser's specifications as to plutonium content, effective fissile content, and impurity content. The following procedures are described in detail: plutonium by controlled-potential coulometry; plutonium by amperometric titration with iron(II); free acid by titration in an oxalate solution; free acid by iodate precipitation-potentiometric titration method; uranium by Arsenazo I spectrophotometric method; thorium by thorin spectrophotometric method; iron by 1,10-phenanthroline spectrophotometric method; chloride by thiocyanate spectrophotometric method; fluoride by distillation-spectrophotometric method; sulfate by barium sulfate turbidimetric method; isotopic composition by mass spectrometry; americium-241 by extraction and gamma counting; americium-241 by gamma counting; gamma-emitting fission products, uranium, and thorium by gamma-ray spectroscopy; rare earths by copper spark spectrochemical method; tungsten, niobium (columbium), and tantalum by spectrochemical method; simple preparation by spectrographic analysis for general impurities. (JMT)

  9. Purification of alkali metal nitrates

    DOE Patents [OSTI]

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  10. Re-passivation Potential of Alloy 22 in Chloride plus Nitrate Solutions using the Potentiodynamic-Galvano-static-Potentiostatic Method

    SciTech Connect (OSTI)

    Evans, Kenneth J.; Rebak, Raul B.

    2007-07-01

    In general, the susceptibility of Alloy 22 to suffer crevice corrosion is measured using the Cyclic Potentiodynamic Polarization (CPP) technique. This is a fast technique that gives rather accurate and reproducible values of re-passivation potential (ER1) in most cases. In the fringes of susceptibility, when the environment is not highly aggressive, the values of re-passivation potential using the CPP technique may not be highly reproducible, especially because the technique is fast. To circumvent this, the re-passivation potential of Alloy 22 was measured using a slower method that combines Potentiodynamic-Galvano-static-Potentiostatic steps (called here the Tsujikawa-Hisamatsu Electrochemical or THE method). The THE method applies the charge to the specimen in a more controlled way, which may give more reproducible re-passivation potential values, especially when the environment is not aggressive. The values of re-passivation potential of Alloy 22 in sodium chloride plus potassium nitrate solutions were measured using the THE and CPP methods. Results show that both methods yield similar values of re-passivation potential, especially under aggressive conditions. (authors)

  11. SEPARATION OF URANYL AND RUTHENIUM VALUES BY THE TRIBUTYL PHOSPHATE EXTRACTION PROCESS

    DOE Patents [OSTI]

    Wilson, A.S.

    1961-05-01

    A process is given for separating uranyl values from ruthenium values contained in an aqueous 3 to 4 M nitric acid solution. After the addition of hydrogen peroxide to obtain a concentration of 0.3 M, the uranium is selectively extracted with kerosene-diluted tributyl phosphate.

  12. Nitrate reduction

    DOE Patents [OSTI]

    Dziewinski, Jacek J. (Los Alamos, NM); Marczak, Stanislaw (Los Alamos, NM)

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  13. Structure and Reactivity of X-ray Amorphous Uranyl Peroxide,...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 Prev Next Title: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 ...

  14. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    SciTech Connect (OSTI)

    Arnold, John

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  15. Method of producing thin cellulose nitrate film

    DOE Patents [OSTI]

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  16. Process for reducing aqueous nitrate to ammonia

    DOE Patents [OSTI]

    Mattus, Alfred J.

    1993-01-01

    Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product.

  17. Process for reducing aqueous nitrate to ammonia

    DOE Patents [OSTI]

    Mattus, A.J.

    1993-11-30

    Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product. 3 figures.

  18. Biological denitrification of high concentration nitrate waste

    DOE Patents [OSTI]

    Francis, Chester W.; Brinkley, Frank S.

    1977-01-01

    Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

  19. Solid-state Dynamics of Uranyl Polyoxometalates. (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Solid-state Dynamics of Uranyl Polyoxometalates. Citation Details In-Document Search Title: ... Publication Date: 2014-01-01 OSTI Identifier: 1140494 Report ...

  20. Analysis of Tank 43H Samples at the Conclusion of Uranyl Carbonate Addition

    SciTech Connect (OSTI)

    Oji, L.N.

    2002-10-15

    Tank 43H serves as the feed Tank to the 2H evaporator. In the months of July and August 2001, about 21,000 gallons of a depleted uranyl carbonate solution were added to Tank 43H and agitated with two Flygt mixers. The depleted uranium addition served to decrease the U-235 enrichment in the Tank 43H supernate so that the supernate could be evaporated with no risk of accumulating enriched uranium.

  1. Solid-state Dynamics of Uranyl Polyoxometalates. (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Solid-state Dynamics of Uranyl Polyoxometalates. Citation Details ... Publication Date: 2014-02-01 OSTI Identifier: 1141018 Report Number(s): SAND2014-1617J Journal ID: ISSN ...

  2. Hydrothermal Phase Relations Among Uranyl Minerals at the Nopal I Analog Site

    SciTech Connect (OSTI)

    Murphy, William M.

    2007-07-01

    Uranyl mineral paragenesis at Nopal I is an analog of spent fuel alteration at Yucca Mountain. Petrographic studies suggest a variety of possible hydrothermal conditions for uranium mineralization at Nopal I. Calculated equilibrium phase relations among uranyl minerals show uranophane stability over a broad range of realistic conditions and indicate that uranyl mineral variety reflects persistent chemical potential heterogeneity. (author)

  3. Method of precipitating uranium from an aqueous solution and/or sediment

    SciTech Connect (OSTI)

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  4. WIPP Nitrate Updates 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update, July 23, 2015 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update, July 16, 2015 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update, July 9, 2015 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF WIPP Nitrate Salt Bearing

  5. Energetic Material - Electro Nitration - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro Nitration Idaho National Laboratory Contact INL About This Technology Technology Marketing SummaryINL has developed an improved method of nitrating a nitro compound by oxidizing a chemical mediator in the presence of a voltage in order to produce an oxidizing agent. Then, the agent reacts with a nitro compound and ion source in a solution in order to form a geminaldinitro compound. The electrochemical synthesis of geminaldinitro results in the formation of a nitro compound that may be

  6. Tritium gettering from air with hydrogen uranyl phosphate

    SciTech Connect (OSTI)

    Souers, P.C.; Uribe, F.S.; Stevens, C.G.; Tsugawa, R.T.

    1985-01-01

    Hydrogen uranyl phosphate (HUP), a solid proton electrolyte, getters tritium gas and water vapor from air by DC electrical action. We have reduced the formation of residual tritiated water to less than 2%, and demonstrated that HUP can clean a 5.5 m/sup 3/ working glove box. Data are presented to illustrate the parameters of the gettering and a model is derived. Two other tritium gettering electrolytes have been discovered. 9 refs., 5 figs., 3 tabs.

  7. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    SciTech Connect (OSTI)

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.

  8. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO22+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K1 values are significantly overestimated. Accurate predictions of the absolute log K1 values (root mean square deviation from experiment < 1.0 for log K1 values ranging from 0more » to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  9. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.; Trowbridge, Lee D.; Rondinone, Adam Justin; Anderson, Brian B.

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previousmore » measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).« less

  10. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    SciTech Connect (OSTI)

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.; Trowbridge, Lee D.; Rondinone, Adam Justin; Anderson, Brian B.

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).

  11. Thermochemical nitrate destruction

    DOE Patents [OSTI]

    Cox, John L. (Richland, WA); Hallen, Richard T. (Richland, WA); Lilga, Michael A. (Richland, WA)

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  12. Electromarking solution

    DOE Patents [OSTI]

    Bullock, Jonathan S.; Harper, William L.; Peck, Charles G.

    1976-06-22

    This invention is directed to an aqueous halogen-free electromarking solution which possesses the capacity for marking a broad spectrum of metals and alloys selected from different classes. The aqueous solution comprises basically the nitrate salt of an amphoteric metal, a chelating agent, and a corrosion-inhibiting agent.

  13. Conversion of actinide and RE oxides into nitrates and their recovery into fluids

    SciTech Connect (OSTI)

    Bondin, V.V.; Bychkov, S.I.; Efremov, I.G.; Revenko, Y.A.; Babain, V.A.; Murzin, A.A.; Romanovsky, V.N; Fedorov, Y.S.; Shadrin, A.Y.; Ryabkova, N.V.; Li, E.N.

    2007-07-01

    The conditions for uranium oxides completely convert into uranyl nitrate hexahydrate in nitrogen tetra-oxide media (75 deg. C, 0,5-3,0 MPa, [UO{sub x}]:[H{sub 2}O]:[NO{sub 2}]=1:8:6) were found out. The conversion of Pu contained simulator of oxide spent nuclear fuel of thermal reactors was successfully demonstrated. The possibility of uranium recovery up to 95% from TR SNF without plutonium separation from FP is practically showed, what corresponds with Non-proliferation Treaty. (authors)

  14. Thermochemical nitrate destruction

    DOE Patents [OSTI]

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  15. Method for loading resin beds

    DOE Patents [OSTI]

    Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

  16. WIPP Nitrate Updates 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Update, December 4, 2014 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF Jose R. FrancoCBFO and Robert L. McQuinnNWP dated December 5, 2014 WIPP Nitrate Salt...

  17. Time-dependent water dynamics in hydrated uranyl fluoride

    SciTech Connect (OSTI)

    Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; Huq, Ashfia; Mamontov, Eugene; Rondinone, Adam; Trowbridge, Lee D.

    2015-09-15

    In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translational diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.

  18. Time-dependent water dynamics in hydrated uranyl fluoride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; Huq, Ashfia; Mamontov, Eugene; Rondinone, Adam; Trowbridge, Lee D.

    2015-09-15

    In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translationalmore » diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.« less

  19. New three-dimensional inorganic frameworks based on the uranophane-type sheet in monoamine templated uranyl-vanadates

    SciTech Connect (OSTI)

    Jouffret, Laurent; Shao Zhenmian

    2010-10-15

    Seven new uranyl vanadates with mono-protonated amine or tetramethylammonium used as structure directing cations, (C{sub 2}NH{sub 8}){sub 2{l_brace}}[(UO{sub 2})(H{sub 2}O)][(UO{sub 2})(VO{sub 4})]{sub 4{r_brace}}.H{sub 2}O (DMetU5V4) (C{sub 2}NH{sub 8}){l_brace}[(UO{sub 2})(H{sub 2}O){sub 2}][(UO{sub 2})(VO{sub 4})]{sub 3{r_brace}}.H{sub 2}O (DMetU4V3), (C{sub 5}NH{sub 6}){sub 2{l_brace}}[(UO{sub 2})(H{sub 2}O)][(UO{sub 2})(VO{sub 4})]{sub 4{r_brace}}.H{sub 2}O (PyrU5V4), (C{sub 3}NH{sub 10}){l_brace}[(UO{sub 2})(H{sub 2}O){sub 2}][(UO{sub 2})(VO{sub 4})]{sub 3{r_brace}}.H{sub 2}O (isoPrU4V3), (N(CH{sub 3}){sub 4}){l_brace}[(UO{sub 2})(H{sub 2}O){sub 2}][(UO{sub 2})(VO{sub 4})]{sub 3{r_brace}}.H{sub 2}O (TMetU4V3), (C{sub 6}NH{sub 14}){l_brace}[(UO{sub 2})(H{sub 2}O){sub 2}][(UO{sub 2})(VO{sub 4})]{sub 3{r_brace}}.H{sub 2}O (CHexU4V3), and (C{sub 4}NH{sub 12}){l_brace}[(UO{sub 2})(H{sub 2}O)][(UO{sub 2})(VO{sub 4})]{sub 3{r_brace}} (TButU4V3) were prepared from mild-hydrothermal reactions using dimethylamine, pyridine, isopropylamine, tetramethylammonium hydroxide, cyclohexylamine and tertiobutylamine, respectively, with uranyl nitrate and vanadium oxide in acidic medium. The structures were solved using single-crystal X-ray diffraction data. The compounds exhibit three-dimensional uranyl-vanadate inorganic frameworks built from uranophane-type uranyl-vanadate layers pillared by uranyl polyhedra with cavities in between occupied by protonated organic moieties. In the uranyl-vanadate layers the orientations of the vanadate tetrahedra give new geometrical isomers leading to unprecedented pillared systems and new inorganic frameworks with U/V=4/3. Crystallographic data: (DMetU5V4) orthorhombic, Cmc2{sub 1} space group, a=15.6276(4), b=14.1341(4), c=13.6040(4) A; (DMetU4V3) monoclinic, P2{sub 1}/n space group, a=10.2312(4), b=13.5661(7), c=17.5291(7) A, {beta}=96.966(2); (PyrU5V4), triclinic, P1 space group, a=9.6981(3), b=9.9966(2), c=10.5523(2) A, {alpha}=117

  20. Experimental critical parameters of enriched uranium solution in annular tank geometries

    SciTech Connect (OSTI)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all.

  1. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions

    SciTech Connect (OSTI)

    Stewart, B.D.; Amos, R.T.; Nico, P.S.; Fendorf, S.

    2010-03-15

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate the impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl

  2. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOE Patents [OSTI]

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  3. Preparation of U.sub.3 O.sub.8

    DOE Patents [OSTI]

    Johnson, David R.

    1980-01-01

    A method is described for the preparation of U.sub.3 O.sub.8 nuclear fuel material by direct precipitation of uranyl formate monohydrate from uranyl nitrate solution. The uranyl formate monohydrate precipitate is removed, dried and calcined to produce U.sub.3 O.sub.8 having a controlled particle size distribution.

  4. Use of tensiometer for in situ measurement of nitrate leaching

    SciTech Connect (OSTI)

    Li, K.; Reddy, M.R.

    1999-07-01

    In order to monitor nitrate leaching from non-point source pollution, this study used tensiometers to measure in situ nitrate concentration and soil-moisture potential. Instead of filling the tensiometers with pure water, the study filled the tensiometers with nitrate ionic strength adjuster (ISA, 1 M (NH{sub 4}){sub 2}SO{sub 4}). After the installation of the tensiometers at various depths along soil profiles, a portable pressure transducer was used to measure the soil moisture potential, and a nitrate electrode attached to an ion analyzer was used to measure the nitrate concentration in situ. The measurement was continuous and non-destructive. To test this method in the laboratory, eight bottles filled with pure sand were treated with known nitrate solutions, and a tensiometer was placed in each bottle. Measurements were taken every day for 30 days. Laboratory test showed a linear relationship between the known nitrate concentration and the tensiometer readings (R{sup 2} = 0.9990). Then a field test was conducted in a watermelon field with green manure mulch. Field data indicated a potential of nitrate leaching below the soil depth of 100 cm when crop uptake of nutrients was low.

  5. Diffusion and Adsorption of Uranyl Carbonate Species in Nanosized Mineral Fractures

    SciTech Connect (OSTI)

    Kerisit, Sebastien N.; Liu, Chongxuan

    2012-02-07

    Atomistic simulations were performed to study the diffusion and adsorption of Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} and of some of its constituent species, i.e., UO{sub 2}{sup 2+}, CO{sub 3}{sup 2-}, and UO{sub 2}CO{sub 3}, in feldspar nano-sized fractures. Feldspar is important to uranium remediation efforts at the U.S. Department of Energy Hanford site as it has been found in recent studies to host contaminants within its intragrain fractures. In addition, uranyl carbonate species are known to dominate U(VI) speciation in conditions relevant to the Hanford site. Molecular dynamics (MD) simulations showed that the presence of the feldspar surface diminishes the diffusion coefficients of all the species considered in this work and that the diffusion coefficients do not reach their bulk aqueous solution values in the center of a 2.5 nm fracture. Moreover, the MD simulations showed that the rate of decrease in the diffusion coefficients with decreasing distance from the surface is greater for larger adsorbing species. Free energy profiles of the same species adsorbing on the feldspar surface revealed a large exothermic free energy of adsorption for UO{sub 2}{sup 2+} and UO{sub 2}CO{sub 3}, which are able to adsorb to the surface with their uranium atom directly bonded to a surface hydroxyl oxygen, whereas adsorption of CO{sub 3}{sup 2-} and Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}, which attach to the surface via hydrogen bonding from a surface hydroxyl group to a carbonate oxygen, was calculated to be either only slightly exothermic or endothermic.

  6. Electrochemical reduction of nitrate in the presence of an amide

    DOE Patents [OSTI]

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  7. URANIUM PURIFICATION PROCESS

    DOE Patents [OSTI]

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  8. Molecular dynamics simulations of uranyl adsorption and structure on the basal surface of muscovite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Cygan, Randall T.

    2014-02-05

    Anthropogenic activities have led to an increased concentration of uranium on the Earth’s surface and potentially in the subsurface with the development of nuclear waste repositories. Uranium is soluble in groundwater, and its mobility is strongly affected by the presence of clay minerals in soils and in subsurface sediments. We use molecular dynamics simulations to probe the adsorption of aqueous uranyl (UO22+) ions onto the basal surface of muscovite, a suitable proxy for typically ultrafine-grained clay phases. Model systems include the competitive adsorption between potassium counterions and aqueous ions (0.1 M and 1.0 M UO2Cl2 , 0.1 M NaCl). Wemore » find that for systems with potassium and uranyl ions present, potassium ions dominate the adsorption phenomenon. Potassium ions adsorb entirely as inner-sphere complexes associated with the ditrigonal cavity of the basal surface. Uranyl ions adsorb in two configurations when it is the only ion species present, and in a single configuration in the presence of potassium. Finally, the majority of adsorbed uranyl ions are tilted less than 45° relative to the muscovite surface, and are associated with the Si4Al2 rings near aluminum substitution sites.« less

  9. Molecular dynamics simulations of uranyl adsorption and structure on the basal surface of muscovite

    SciTech Connect (OSTI)

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Cygan, Randall T.

    2014-02-05

    Anthropogenic activities have led to an increased concentration of uranium on the Earth’s surface and potentially in the subsurface with the development of nuclear waste repositories. Uranium is soluble in groundwater, and its mobility is strongly affected by the presence of clay minerals in soils and in subsurface sediments. We use molecular dynamics simulations to probe the adsorption of aqueous uranyl (UO22+) ions onto the basal surface of muscovite, a suitable proxy for typically ultrafine-grained clay phases. Model systems include the competitive adsorption between potassium counterions and aqueous ions (0.1 M and 1.0 M UO2Cl2 , 0.1 M NaCl). We find that for systems with potassium and uranyl ions present, potassium ions dominate the adsorption phenomenon. Potassium ions adsorb entirely as inner-sphere complexes associated with the ditrigonal cavity of the basal surface. Uranyl ions adsorb in two configurations when it is the only ion species present, and in a single configuration in the presence of potassium. Finally, the majority of adsorbed uranyl ions are tilted less than 45° relative to the muscovite surface, and are associated with the Si4Al2 rings near aluminum substitution sites.

  10. Remediated Nitrate Salt Drums Background

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Providing Additional Pressure Relief to the Remediated Nitrate Salt Drums Background After the radiological event on February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), Department of Energy (DOE) scientists from several national laboratories conducted extensive experiments and modeling studies to determine what caused the drum to breach. These investigations indicated that an incompatible mixture of nitrate salts and an organic absorbent created the conditions that resulted in an

  11. Plutonium nitrate bottle counter manual

    SciTech Connect (OSTI)

    Menlove, H.O.; Adams, E.L.; Holbrooks, O.R.

    1984-03-01

    A neutron coincidence counter has been designed for plutonium nitrate assay in large storage bottles. This assay system can be used in the reprocessing plant or in the nitrate-to-oxide conversion facility. The system is based on the family of neutron detectors similar to the high-level neutron coincidence counter. This manual describes the system and gives performance and calibration parameters for typical applications. 4 references, 11 figures, 9 tables.

  12. MCNP5 CALCULATIONS REPLICATING ARH-600 NITRATE DATA

    SciTech Connect (OSTI)

    FINFROCK SH

    2011-10-25

    This report serves to extend the previous document: 'MCNP Calculations Replicating ARH-600 Data' by replicating the nitrate curves found in ARH-600. This report includes the MCNP models used, the calculated critical dimension for each analyzed parameter set, and the resulting data libraries for use with the CritView code. As with the ARH-600 data, this report is not meant to replace the analysis of the fissile systems by qualified criticality personnel. The M CNP data is presented without accounting for the statistical uncertainty (although this is typically less than 0.001) or bias and, as such, the application of a reasonable safety margin is required. The data that follows pertains to the uranyl nitrate and plutonium nitrate spheres, infinite cylinders, and infinite slabs of varying isotopic composition, reflector thickness, and molarity. Each of the cases was modeled in MCNP (version 5.1.40), using the ENDF/B-VI cross section set. Given a molarity, isotopic composition, and reflector thickness, the fissile concentration and diameter (or thicknesses in the case of the slab geometries) were varied. The diameter for which k-effective equals 1.00 for a given concentration could then be calculated and graphed. These graphs are included in this report. The pages that follow describe the regions modeled, formulas for calculating the various parameters, a list of cross-sections used in the calculations, a description of the automation routine and data, and finally the data output. The data of most interest are the critical dimensions of the various systems analyzed. This is presented graphically, and in table format, in Appendix B. Appendix C provides a text listing of the same data in a format that is compatible with the CritView code. Appendices D and E provide listing of example Template files and MCNP input files (these are discussed further in Section 4). Appendix F is a complete listing of all of the output data (i.e., all of the analyzed dimensions and the

  13. Direct Electrodeposition of UO2 from Uranyl Bis(trifluoromethanesulfonyl)imide Dissolved in 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide Room Temperature Ionic Liquid System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Freiderich, John W.; Wanigasekara, Eranda P.; Sun, Xiao-Guang; Meisner, Roberta Ann; Meyer, III, Harry M.; Luo, Huimin; Delmau, Laetitia Helene; Dai, Sheng; Moyer, Bruce A

    2013-11-11

    Our study demonstrates a direct electrodeposition of UO2 at a Pt cathode from a solution of uranyl bis(trifluoromethanesulfonyl)imide [UO2(NTf2)2)] in a bulk room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM+NTf2–). Cyclic voltammetry (CV) studies revealed two reduction waves corresponding to the conversion of uranium(VI) to uranium(IV), and a mechanism for the overall electroreduction is proposed. A controlled-potential experiment was performed, holding the reduction potential at–1.0 V for 24 h to obtain a brown-black deposit of UO2 on the Pt cathode. The Faradaic efficiency of the reduction process was determined to be >80%. The UO2deposit was characterized by powder X-ray diffraction (XRD)more » and X-ray photoelectron spectroscopy (XPS).« less

  14. Handling of Ammonium Nitrate Mother-Liquid Radiochemical Production - 13089

    SciTech Connect (OSTI)

    Zherebtsov, Alexander; Dvoeglazov, Konstantine; Volk, Vladimir; Zagumenov, Vladimir; Zverev, Dmitriy; Tinin, Vasiliy; Kozyrev, Anatoly; Shamin, Dladimir; Tvilenev, Konstantin

    2013-07-01

    The aim of the work is to develop a basic technology of decomposition of ammonium nitrate stock solutions produced in radiochemical enterprises engaged in the reprocessing of irradiated nuclear fuel and fabrication of fresh fuel. It was necessary to work out how to conduct a one-step thermal decomposition of ammonium nitrate, select and test the catalysts for this process and to prepare proposals for recycling condensation. Necessary accessories were added to a laboratory equipment installation decomposition of ammonium nitrate. It is tested several types of reducing agents and two types of catalyst to neutralize the nitrogen oxides. It is conducted testing of modes of the process to produce condensation, suitable for use in the conversion of a new technological scheme of production. It is studied the structure of the catalysts before and after their use in a laboratory setting. It is tested the selected catalyst in the optimal range for 48 hours of continuous operation. (authors)

  15. XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mayes, Richard T.; Piechowicz, Marek; Lin, Zekai; Veith, Gabriel M.; Dai, Sheng; Lin, Wenbin; Abney, C. W.; Bryantsev, V. S.

    2015-11-12

    In this study, limited resource availability and population growth have motivated interest in harvesting valuable metals from unconventional reserves, but developing selective adsorbents for this task requires structural knowledge of metal binding environments. Amidoxime polymers have been identified as the most promising platform for large-scale extraction of uranium from seawater. However, despite more than 30 years of research, the uranyl coordination environment on these adsorbents has not been positively identified. We report the first XAFS investigation of polyamidoxime-bound uranyl, with EXAFS fits suggesting a cooperative chelating model, rather than the tridentate or η2 motifs proposed by small molecule and computationalmore » studies. Samples exposed to environmental seawater also display a feature consistent with a μ2-oxo-bridged transition metal in the uranyl coordination sphere, suggesting in situ formation of a specific binding site or mineralization of uranium on the polymer surface. These unexpected findings challenge several long-held assumptions and have significant implications for development of polymer adsorbents with high selectivity.« less

  16. XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies

    SciTech Connect (OSTI)

    Mayes, Richard T.; Piechowicz, Marek; Lin, Zekai; Veith, Gabriel M.; Dai, Sheng; Lin, Wenbin; Abney, C. W.; Bryantsev, V. S.

    2015-11-12

    In this study, limited resource availability and population growth have motivated interest in harvesting valuable metals from unconventional reserves, but developing selective adsorbents for this task requires structural knowledge of metal binding environments. Amidoxime polymers have been identified as the most promising platform for large-scale extraction of uranium from seawater. However, despite more than 30 years of research, the uranyl coordination environment on these adsorbents has not been positively identified. We report the first XAFS investigation of polyamidoxime-bound uranyl, with EXAFS fits suggesting a cooperative chelating model, rather than the tridentate or η2 motifs proposed by small molecule and computational studies. Samples exposed to environmental seawater also display a feature consistent with a μ2-oxo-bridged transition metal in the uranyl coordination sphere, suggesting in situ formation of a specific binding site or mineralization of uranium on the polymer surface. These unexpected findings challenge several long-held assumptions and have significant implications for development of polymer adsorbents with high selectivity.

  17. METHOD FOR DECONTAMINATION OF REACTOR SOLUTIONS

    DOE Patents [OSTI]

    Maraman, W.J.; Baxman, H.R.; Baker, R.D.

    1959-05-01

    A process for U recovery from phosphate fuel solutions is described. To fuel solution drawn from the reactor is added Fe(NO/sub 3/)/sub 3/ which destroys the U complex and forms ferric phosphate complex. The UO/sub 2/(NO/sub 3/)/sub 2/ formed is extracted into TBP-kerosene in a countercurrent column. The TBP contalning UO/sub 2/(NO/sub 3/)/sub 2/ is further purified by an aqueous Al(NO/ sub 3/)/sub 3/ scrub solution. The pregnant solution then goes to an H/sub 3/PO/ sub 4/ stripping and kerosene washing column. The H/sub 3/PO/sub 4/--uranyl phosphate solution is separated at the bottom and boiled to remove HNO/sub 3/ then diluted to fuel solution make-up strength. (T.R.H.)

  18. Synthesis and structures of new uranyl malonate complexes with carbamide derivatives

    SciTech Connect (OSTI)

    Serezhkina, L. B.; Grigor’ev, M. S.; Medvedkov, Ya. A.; Serezhkin, V. N.

    2015-09-15

    Crystals of new malonate-containing uranyl complexes [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Imon)(H{sub 2}O)] (I) and [UO{sub 2}(C{sub 3}H{sub 2}O4)(Meur){sub 3}] (II), where Imon is imidazolidin-2-one (ethylenecarbamide) and Meur is methyl-carbamide, have been synthesized and studied by X-ray diffraction. Both compounds crystallize in the monoclinic system with the following unit-cell parameters (at 100 K): a = 11.1147(10) Å, b = 6.9900(6) Å, c = 14.4934(12) Å, β = 92.042(2)°, V = 1125.30(17) Å{sup 3}, sp. gr. P2{sub 1}/n, Z = 4, R{sub 1} = 0.0398 (I); a = 16.6613(5) Å, b = 9.5635(3) Å, c = 22.9773(6) Å, β = 103.669(2)°, V = 3557.51(18) Å{sup 3}, sp. gr. C2/c, Z = 8, R{sub 1} = 0.0207 (II). The crystals are composed of electroneutral chains [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Imon)(H{sub 2}O)] and mononuclear groups [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Meur){sub 3}] as the structural units belonging to the crystal-chemical groups AT{sup 11}M{sub 2}{sup 1} and AB{sup 01}M{sub 3}{sup 1} (A =UO{sub 2}{sup 2+}, T{sup 11} and B{sup 01} = C{sub 3}H{sub 2}, M{sup 1} = Imon, H{sub 2}O, or Meur), respectively, of uranyl complexes. The packing modes of the uranyl-containing complexes were analyzed by the method of molecular Voronoi—Dirichlet polyhedra.

  19. The Complexes of Bisphosphonate and Magnetite Nanoparticles to Remove Uranyl Ions from Aqueous Phase

    SciTech Connect (OSTI)

    Wang, L.; Yang, Z.; Gao, J.; Xu, K.; Gu, H.; Xu, B.; Zhang, B.; Zhang, X.

    2007-03-20

    Using tetraethyl-3-amino-propane-1,1-bisphosphonate (BP) as the functional molecule, we functionalized Fe3O4 magnetic nanoparticles via dopamine (DA) linkage to create a system with an Fe3O4-DA-BP nanostructure, which possesses high specificity for removing uranyl ions from water or blood. This work demonstrates that magnetic nanoparticles, combined with specific receptor-ligand interactions, promise a sensitive and rapid platform for the detection, recovery, and decorporation of radioactive metal toxins from biological environment.

  20. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOE Patents [OSTI]

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  1. RECOVERY OF CESIUM FROM WASTE SOLUTIONS

    DOE Patents [OSTI]

    Burgus, W.H.

    1959-06-30

    This patent covers the precipitation of fission products including cesium on nickel or ferric ferrocyanide and subsequent selective dissolution from the carrier with a solution of ammonia or mercurlc nitrate.

  2. Impact of pore size on the sorption of uranyl under seawater conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mayes, Richard T.; Gorka, Joanna; Dai, Sheng

    2016-04-05

    The extraction of uranium from seawater has received significant interest recently, because of the possibility of a near-limitless supply of uranium to fuel the nuclear power industry. While sorbent development has focused primarily on polymeric sorbents, nanomaterials represent a new area that has the potential to surpass the current polymeric sorbents, because of the high surface areas that are possible. Mesoporous carbon materials are a stable, high-surface-area material capable of extracting various chemical species from a variety of environments. Herein, we report the use of a dual templating process to understand the effect of pore size on the adsorption ofmore » uranyl ions from a uranyl brine consisting of seawater-relevant sodium, chloride, and bicarbonate ions. It was found that pore size played a more significant role in the effective use of the grafted polymer, leading to higher uranium capacities than the surface area. Furthermore, the pore size must be tailored to meet the demands of the extraction medium and analyte metal to achieve efficacy as an adsorbent.« less

  3. PREPARATION OF URANIUM TRIOXIDE

    DOE Patents [OSTI]

    Buckingham, J.S.

    1959-09-01

    The production of uranium trioxide from aqueous solutions of uranyl nitrate is discussed. The uranium trioxide is produced by adding sulfur or a sulfur-containing compound, such as thiourea, sulfamic acid, sulfuric acid, and ammonium sulfate, to the uranyl solution in an amount of about 0.5% by weight of the uranyl nitrate hexahydrate, evaporating the solution to dryness, and calcining the dry residue. The trioxide obtained by this method furnished a dioxide with a considerably higher reactivity with hydrogen fluoride than a trioxide prepared without the sulfur additive.

  4. URANIUM EXTRACTION

    DOE Patents [OSTI]

    Harrington, C.D.; Opie, J.V.

    1958-07-01

    The recovery of uranium values from uranium ore such as pitchblende is described. The ore is first dissolved in nitric acid, and a water soluble nitrate is added as a salting out agent. The resulting feed solution is then contacted with diethyl ether, whereby the bulk of the uranyl nitrate and a portion of the impurities are taken up by the ether. This acid ether extract is then separated from the aqueous raffinate, and contacted with water causing back extractioa of the uranyl nitrate and impurities into the water to form a crude liquor. After separation from the ether extract, this crude liquor is heated to about 118 deg C to obtain molten uranyl nitrate hexahydratc. After being slightly cooled the uranyl nitrate hexahydrate is contacted with acid free diethyl ether whereby the bulk of the uranyl nitrate is dissolved into the ethcr to form a neutral ether solution while most of the impurities remain in the aqueous waste. After separation from the aqueous waste, the resultant ether solution is washed with about l0% of its volume of water to free it of any dissolved impurities and is then contacted with at least one half its volume of water whereby the uranyl nitrate is extracted into the water to form an aqueous product solution.

  5. Nitrate removal from drinking water -- Review

    SciTech Connect (OSTI)

    Kapoor, A.; Viraraghavan, T.

    1997-04-01

    Nitrate concentrations in surface water and especially in ground water have increased in Canada, the US, Europe, and other areas of the world. This trend has raised concern because nitrates cause methemoglobiinemia in infants. Several treatment processes including ion exchange, biological denitrification, chemical denitrification, reverse osmosis, electrodialysis, and catalytic denitrification can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that ion exchange and biological denitrification are more acceptable for nitrate removal than reverse osmosis. Ion exchange is more viable for ground water while biological denitrification is the preferred alternative for surface water. This paper reviews the developments in the field of nitrate removal processes.

  6. Remediated Nitrate Salt Drums Safety Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Safety Update Remediated Nitrate Salt Drums Safety Update Topic: Mr. Nickless, Environmental Management Los Alamos, Provided a presentation on the status of the Nitrate Salt waste at Los Alamos.

  7. Process for extracting technetium from alkaline solutions

    DOE Patents [OSTI]

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  8. Combined uranous nitrate production consisting of undivided electrolytic cell and divided electrolytic cell (Electrolysis ? Electrolytic cell)

    SciTech Connect (OSTI)

    Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang; Li, Xiaodong; Yang, Hui; Xian, Liang

    2013-07-01

    The electrochemical reduction of uranyl nitrate is a green, mild way to make uranous ions. Undivided electrolyzers whose maintenance is less but their conversion ratio and current efficiency are low, have been chosen. However, at the beginning of undivided electrolysis, high current efficiency can also be maintained. Divided electrolyzers' conversion ratio and current efficiency is much higher because the re-oxidation of uranous on anode is avoided, but their maintenance costs are more, because in radioactive environment the membrane has to be changed after several operations. In this paper, a combined method of uranous production is proposed which consists of 2 stages: undivided electrolysis (early stage) and divided electrolysis (late stage) to benefit from the advantages of both electrolysis modes. The performance of the combined method was tested. The results show that in combined mode, after 200 min long electrolysis (80 min undivided electrolysis and 120 min divided electrolysis), U(IV) yield can achieve 92.3% (500 ml feed, U 199 g/l, 72 cm{sup 2} cathode, 120 mA/cm{sup 2}). Compared with divided mode, about 1/3 working time in divided electrolyzer is reduced to achieve the same U(IV) yield. If 120 min long undivided electrolysis was taken, more than 1/2 working time can be reduced in divided electrolyzer, which means that about half of the maintenance cost can also be reduced. (authors)

  9. Development of an Immobilisation Technology for Radioactive Waste Solution from Mo-99 Production

    SciTech Connect (OSTI)

    Sizgek, G.D.; Sizgek, E.

    2006-07-01

    Australian Nuclear Science and Technology Organisation (ANSTO) developed a method to immobilize the Intermediate Level Liquid Waste (ILLW) arising from its Mo-99 production process. The immobilisation process involves impregnation of waste solution into ceramic precursor powders, drying, calcining and consolidation (Hot Isostatic Pressing, HIP) to produce final ceramic waste form. Ceramic precursor powder is produced by spray drying of a sol-gel based colloidal dispersion. These free-flowing, microspherical, 20-80 microns, precursors have porosity of 40-50%. An in-house custom designed and manufactured microwave-heated and mechanically fluidized mixer-drier was used for impregnation of the precursor powder with the simulated waste (Depleted Uranyl Nitrate Hexahydrate, DUNH, and inactive Cs, Sr nitrates as fission products) and drying. During impregnation an evaporation rate of 1 l/h water per kW microwave energy in steady state was achieved by matching the feed rate of DUNH to produce equivalent of 35% UO{sub 2} loading. It was demonstrated that the tuned microwave energy can be delivered to the mixer-drier during the entire impregnation process within very low reflection values. The samples of the waste loaded free-flowing powder were subsequently calcined at 750 deg. C under reducing atmosphere for thermal denitration and mineral phase nucleation. Calcined powders were filled into cans. After evacuation and sealing, the cans were isostatically pressed at 1260 deg. C. The consolidated ceramic waste form produced from the DUNH run has been assessed by durability and material characterization tests. Successful confirmation of each processing step at pilot and/or plant scale, has led to the design and construction of the overall process at full scale (equivalent of processing 8 kg U per batch) in a simulated hot-cell mock-up plant. The constructed plant mainly consists of a Microwave-heated Mechanical Fluidized Bed (MWMFB) mixer-drier a fluidized bed calciner, an off

  10. Sandia Energy - Molten Nitrate Salt Initial Flow Testing is a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Initial Flow Testing is a Tremendous Success Home Renewable Energy News Concentrating Solar Power Solar Molten Nitrate Salt Initial Flow Testing is a Tremendous...

  11. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  12. Remediated Nitrate Salt Drums Storage at Los Alamos National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory As a part of its national security ...

  13. Direct Electrodeposition of UO2 from Uranyl Bis(trifluoromethanesulfonyl)imide Dissolved in 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide Room Temperature Ionic Liquid System

    SciTech Connect (OSTI)

    Freiderich, John W.; Wanigasekara, Eranda P.; Sun, Xiao-Guang; Meisner, Roberta Ann; Meyer, III, Harry M.; Luo, Huimin; Delmau, Laetitia Helene; Dai, Sheng; Moyer, Bruce A

    2013-11-11

    Our study demonstrates a direct electrodeposition of UO2 at a Pt cathode from a solution of uranyl bis(trifluoromethanesulfonyl)imide [UO2(NTf2)2)] in a bulk room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM+NTf2). Cyclic voltammetry (CV) studies revealed two reduction waves corresponding to the conversion of uranium(VI) to uranium(IV), and a mechanism for the overall electroreduction is proposed. A controlled-potential experiment was performed, holding the reduction potential at–1.0 V for 24 h to obtain a brown-black deposit of UO2 on the Pt cathode. The Faradaic efficiency of the reduction process was determined to be >80%. The UO2deposit was characterized by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

  14. Cesium recovery from aqueous solutions

    DOE Patents [OSTI]

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  15. Synthesis of a new energetic nitrate ester

    SciTech Connect (OSTI)

    Chavez, David E

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  16. Process for the preparation of an energetic nitrate ester

    DOE Patents [OSTI]

    Chavez, David E; Naud, Darren L; Hiskey, Michael A

    2013-12-17

    A process for the preparation of an energetic nitrate ester compound and related intermediates is provided.

  17. Treatment of Remediated Nitrate Salts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment of Remediated Nitrate Salts Treatment of Remediated Nitrate Salts Topic: Plan for remediation the nitrate salt waste from the 3706 campaign that is currently stored at Material Disposal Area G, presenter was David Funk, LANS. Nitrate Salts - November 18, 2015 (1 MB

  18. ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS

    DOE Patents [OSTI]

    Alter, H.W.; Barney, D.L.

    1958-09-30

    A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.

  19. Lithium-boron anodes in nitrate thermal battery cells

    SciTech Connect (OSTI)

    McManis III, G. E.; Fletcher, A. N.; Miles, M. H.

    1985-08-13

    A thermally activated electrochemical cell utilizes a lithium-boron anode and a molten nitrate electrolyte selected from the group consisting of lithium nitrate, a mixture of lithium nitrate and sodium nitrate, a mixture of lithium nitrate and potassium nitrate, and a mixture of lithium nitrate and sodium nitrate with potassium nitrate, to provide improved cell electrical performance. The electrolyte is contained on a fiberglass separator and the electrolyte adjacent to the cathode may contain silver nitrate as well. Current densities over 300 mA/cm/sup 2/ with a usable temperature range of over 150/sup 0/ C. have been obtained. Anode open circuit potentials of about 3.2 V were found with little polarization at 100 mA/cm/sup 2/ and with very slight polarization at 300 mA/cm/sup 2/.

  20. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOE Patents [OSTI]

    Beederman, M.; Vogler, S.; Hyman, H.H.

    1959-07-14

    The separation of rathenium from a rathenium containing aqueous solution is described. The separation is accomplished by adding sodium nitrite, silver nitrate and ozone to the ruthenium containing aqueous solution to form ruthenium tetroxide and ihen volatilizing off the ruthenium tetroxide.

  1. Submergible torch for treating waste solutions and method thereof

    DOE Patents [OSTI]

    Mattus, A.J.

    1994-12-06

    A submergible torch is described for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution. 2 figures.

  2. Submergible torch for treating waste solutions and method thereof

    DOE Patents [OSTI]

    Mattus, Alfred J.

    1994-01-01

    A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.

  3. Submergible torch for treating waste solutions and method thereof

    DOE Patents [OSTI]

    Mattus, Alfred J.

    1995-01-01

    A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.

  4. Separation of iodine from mercury containing scrubbing solutions

    DOE Patents [OSTI]

    Burger, Leland L.; Scheele, Randall D.

    1979-01-01

    Radioactive iodines can be recovered from a nitric acid scrub solution containing mercuric nitrate by passing a current through the scrub solution to react the iodine with the mercuric nitrate to form mercuric iodate which precipitates out. The mercuric iodate can then be reacted to recover the radioiodine for further processing into a form suitable for long-term storage and to recover the mercury for recycling.

  5. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    SciTech Connect (OSTI)

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.; Zachara, John M.; Zhu, Weihuang

    2013-03-15

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on the temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.

  6. Interaction between chitosan and uranyl ions. Role of physical and physicochemical parameters on the kinetics of sorption

    SciTech Connect (OSTI)

    Piron, E. |; Accominotti, M.; Domard, A.

    1997-03-19

    This work corresponds to the first part of our studies on the interactions between chitosan particles dispersed in water and uranyl ions. The measurements were obtained by ICP, and we considered the role of various physical and physicochemical parameters related to chitosan. We showed that the crystallinity, the particle dimensions, and the swelling in water of chitosan are parameters which are connected together and govern the kinetic laws of metal diffusion and sorption. The molecular mobility of the polymer chains is then essential parameter. 31 refs., 5 figs., 3 tabs.

  7. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  8. Denitration of High Nitrate Salts Using Reductants

    SciTech Connect (OSTI)

    HD Smith; EO Jones; AJ Schmidt; AH Zacher; MD Brown; MR Elmore; SR Gano

    1999-05-03

    This report describes work conducted by Pacific Northwest National Laboratory (PNNL), in conjunction with Idaho National Engineering and Environmental Laboratory (INEEL), to remove nitrates in simulated low-activity waste (LAW). The major objective of this work was to provide data for identifying and demonstrating a technically viable and cost-effective approach to condition LAW for immobilization (grout).

  9. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    SciTech Connect (OSTI)

    Steimke, J.

    2011-02-01

    This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves

  10. Nitrate to ammonia ceramic (NAC) bench scale stabilization study

    SciTech Connect (OSTI)

    Caime, W.J.; Hoeffner, S.L.

    1995-10-01

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. A process to reduce the nitrates to ammonia has been developed at ORNL. This technology creates a sludge lower in nitrates. This report describes stabilization possibilities of the sludge.

  11. Supplemental Cooling for Nitrate Salt Waste

    SciTech Connect (OSTI)

    Goldberg, Mitchell S.

    2015-08-19

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  12. THORIUM OXALATE-URANYL ACETATE COUPLED PROCEDURE FOR THE SEPARATION OF RADIOACTIVE MATERIALS

    DOE Patents [OSTI]

    Gofman, J.W.

    1959-08-11

    The recovery of fission products from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in acid and thorium oxalate is precipitated in ihe solution formed, whereby the fission products are carried on the thorium oxalate. The separated thorium oxalate precipitate is then dissolved in an aqueous oxalate solution and the solution formed is acidified, limiting ihe excess acidity to a maximum of 2 N, whereby thorium oxalate precipitates and carries lanthanum-rareearth- and alkaline-earth-metal fission products while the zirconium-fission-product remains in solution. This precipitate, too, is dissolved in an aqaeous oxalate solution at elevated temperature, and lanthanum-rare-earth ions are added to the solution whereby lanthanum-rare-earth oxalate forms and the lanthanum-rare-earth-type and alkalineearth-metal-type fission products are carried on the oxalate. The precipitate is separated from the solution.

  13. Nitric acid recovery from waste solutions

    DOE Patents [OSTI]

    Wilson, A. S.

    1959-04-14

    The recovery of nitric acid from aqueous nitrate solutions containing fission products as impurities is described. It is desirable to subject such solutions to concentration by evaporation since nitric acid is regenerated thereby. A difficulty, however, is that the highly radioactive fission product ruthenium is volatilized together with the nitric acid. It has been found that by adding nitrous acid, ruthenium volatilization is suppressed and reduced to a negligible degree so that the distillate obtained is practically free of ruthenium.

  14. Electrochemical cell having an alkali-metal-nitrate electrode

    DOE Patents [OSTI]

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  15. Project Profile: Advanced Nitrate Salt Central Receiver Power Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nitrate Salt Central Receiver Power Plant Project Profile: Advanced Nitrate Salt Central Receiver Power Plant Abengoa logo Abengoa, under the Baseload CSP FOA, demonstrated a 100-megawatt electrical (MWe) central receiver plant using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator. Approach Photo of two lit towers surrounded by much smaller blue flat plates that are mounted on the ground. Abengoa planned to

  16. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container

  17. Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    In addition to the remediated nitrate salt (RNS) waste at the Laboratory, similar drums are underground at WIPP and at Waste Control Specialists (WCS) in Andrews, Texas.

  18. Operating Experience Level 2, Evaluation of Nitrate Bearing Transurani...

    Broader source: Energy.gov (indexed) [DOE]

    015 OE-2 2015-01: Evaluation of Nitrate Bearing Transuranic Waste Streams This Operating Experience Level 2 (OE-2) document provides actions to perform an evaluation of...

  19. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  20. Corrosion of aluminides by molten nitrate salt

    SciTech Connect (OSTI)

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  1. Method for producing microcomposite powders using a soap solution

    DOE Patents [OSTI]

    Maginnis, Michael A.; Robinson, David A.

    1996-01-01

    A method for producing microcomposite powders for use in superconducting and non-superconducting applications. A particular method to produce microcomposite powders for use in superconducting applications includes the steps of: (a) preparing a solution including ammonium soap; (b) dissolving a preselected amount of a soluble metallic such as silver nitrate in the solution including ammonium soap to form a first solution; (c) adding a primary phase material such as a single phase YBC superconducting material in particle form to the first solution; (d) preparing a second solution formed from a mixture of a weak acid and an alkyl-mono-ether; (e) adding the second solution to the first solution to form a resultant mixture; (f) allowing the resultant mixture to set until the resultant mixture begins to cloud and thicken into a gel precipitating around individual particles of the primary phase material; (g) thereafter drying the resultant mixture to form a YBC superconducting material/silver nitrate precursor powder; and (h) calcining the YBC superconducting material/silver nitrate precursor powder to convert the silver nitrate to silver and thereby form a YBC/silver microcomposite powder wherein the silver is substantially uniformly dispersed in the matrix of the YBC material.

  2. PROCESS OF PREPARING URANIUM-IMPREGNATED GRAPHITE BODY

    DOE Patents [OSTI]

    Kanter, M.A.

    1958-05-20

    A method for the fabrication of graphite bodies containing uniformly distributed uranium is described. It consists of impregnating a body of graphite having uniform porosity and low density with an aqueous solution of uranyl nitrate hexahydrate preferably by a vacuum technique, thereafter removing excess aqueous solution from the surface of the graphite, then removing the solvent water from the body under substantially normal atmospheric conditions of temperature and pressure in the presence of a stream of dry inert gas, and finally heating the dry impregnated graphite body in the presence of inert gas at a temperature between 800 and 1400 d C to convert the uranyl nitrate hexahydrate to an oxide of uranium.

  3. Plant-Scale Concentration Column Designs for SHINE Target Solution Utilizing AG 1 Anion Exchange Resin

    SciTech Connect (OSTI)

    Stepinski, Dominique C.; Vandegrift, G. F.

    2015-09-30

    Argonne is assisting SHINE Medical Technologies (SHINE) in their efforts to develop SHINE, an accelerator-driven process that will utilize a uranyl-sulfate solution for the production of fission product Mo-99. An integral part of the process is the development of a column for the separation and recovery of Mo-99, followed by a concentration column to reduce the product volume from 15-25 L to <1 L. Argonne has collected data from batch studies and breakthrough column experiments to utilize the VERSE (Versatile Reaction Separation) simulation program (Purdue University) to design plant-scale product recovery and concentration processes.

  4. Enhanced liquid-liquid anion exchange using macrocyclic anion receptors: effect of receptor structure on sulphate-nitrate exchange selectivity

    SciTech Connect (OSTI)

    Moyer, Bruce A; Sloop Jr, Frederick {Fred} V; Fowler, Christopher J; Haverlock, Tamara; Kang, Hyun Ah; Delmau, Laetitia Helene; Bau, Diadra; Hossain, Alamgir; Bowman-James, Kristin; Shriver, James A.; Gross, Mr. Dustin E.; Bill, Nathan; Marquez, Manuel; Lynch, Vincent M.; Sessler, Jonathan L.

    2010-01-01

    When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1 receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.

  5. Cu(II) - Catalyzed Hydrazine Reduction of Ferrous Nitrate

    SciTech Connect (OSTI)

    Karraker, D.G.

    2001-10-15

    This report discusses the results of a study of catalyzed hydrazine reduction of ferrous nitrate. It is apparent that there is a substantial reaction between hydrazine and nitrate ion (or nitric acid) to produce HN3 during both the reduction of Fe(III) and during storage at room temperature.

  6. Effect of Phosphate, Fluoride, and Nitrate on Gibbsite Dissolution Rate and Solubility

    SciTech Connect (OSTI)

    Herting, Daniel L.

    2014-01-29

    Laboratory tests have been completed with simulated tank waste samples to investigate the effects of phosphate, fluoride, and nitrate on the dissolution rate and equilibrium solubility of gibbsite in sodium hydroxide solution at 22 and 40{degrees}C. Results are compared to relevant literature data and to computer model predictions. The presence of sodium nitrate (3 M) caused a reduction in the rate of gibbsite dissolution in NaOH, but a modest increase in the equilibrium solubility of aluminum. The increase in solubility was not as large, though, as the increase predicted by the computer model. The presence of phosphate, either as sodium phosphate or sodium fluoride phosphate, had a negligible effect on the rate of gibbsite dissolution, but caused a slight increase in aluminum solubility. The magnitude of the increased solubility, relative to the increase caused by sodium nitrate, suggests that the increase is due to ionic strength (or water activity) effects, rather than being associated with the specific ion involved. The computer model predicted that phosphate would cause a slight decrease in aluminum solubility, suggesting some Al-PO4 interaction. No evidence was found of such an interaction.

  7. Preparation of thin ceramic films via an aqueous solution route

    DOE Patents [OSTI]

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1989-01-01

    A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.

  8. Investigations on spectral and dielectric properties of semi-organic single crystal – morpholinium nitrate

    SciTech Connect (OSTI)

    Arul, H.; Babu, D. Rajan Vizhi, R. Ezhil

    2015-06-24

    Semi organic nonlinear optical crystal Morpholinium nitrate (MN) was synthesized and subsequently grown from the solution by slow evaporation method. The sample has been subjected to powder X-ray diffraction to identify the crystalline nature and the prominent peaks were indexed. The crystal belongs to the monoclinic system with a space group P2{sub 1}/C. Carbon NMR analysis confirms the presence of carbon in the structure of the title compound. Dielectric studies have been carried out on the grown crystal as a function of frequencies at different temperatures. Dielectric constant, dielectric loss and AC conductivity were also calculated.

  9. Nitrate contamination of groundwater: A conceptual management framework

    SciTech Connect (OSTI)

    Almasri, Mohammad N. . E-mail: mnmasri@najah.edu

    2007-04-15

    In many countries, public concern over the deterioration of groundwater quality from nitrate contamination has grown significantly in recent years. This concern has focused increasingly on anthropogenic sources as the potential cause of the problem. Evidence indicates that the nitrate (NO{sub 3}) levels routinely exceed the maximum contaminant level (MCL) of 10 mg/l NO{sub 3}-N in many aquifer systems that underlie agriculture-dominated watersheds. Degradation of groundwater quality due to nitrate pollution along with the increasing demand for potable water has motivated the adoption of restoration actions of the contaminated aquifers. Restoration efforts have intensified the dire need for developing protection alternatives and management options such that the ultimate nitrate concentrations at the critical receptors are below the MCL. This paper presents a general conceptual framework for the management of groundwater contamination from nitrate. The management framework utilizes models of nitrate fate and transport in the unsaturated and saturated zones to simulate nitrate concentration at the critical receptors. To study the impact of different management options considering both environmental and economic aspects, the proposed framework incorporates a component of a multi-criteria decision analysis. To enhance spatiality in model development along with the management options, the utilization of a land use map is depicted for the allocation and computation of on-ground nitrogen loadings from the different sources.

  10. U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION

    DOE Patents [OSTI]

    Clark, H.M.; Duffey, D.

    1958-06-10

    An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.

  11. Decontamination of water using nitrate selective ion exchange resin

    DOE Patents [OSTI]

    Lockridge, James E.; Fritz, James S.

    1990-07-31

    A method for nitrate decontamination of water which involves passing the water through a bed of alkyl phosphonium anion exchange resin which has pendant alkyl groups of C.sub.3 or larger.

  12. Evaluation of Nitrate-Bearing Transuranic Waste Streams

    Energy Savers [EERE]

    OE-2: 2015-1 June 2015 Evaluation of Nitrate-Bearing Transuranic Waste Streams PURPOSE This Operating Experience Level 2 (OE-2) document provides actions to perform an evaluation...

  13. Decontamination of water using nitrate selective ion exchange resin

    DOE Patents [OSTI]

    Lockridge, J.E.; Fritz, J.S.

    1990-07-31

    A method for nitrate decontamination of water which involves passing the water through a bed of alkyl phosphonium anion exchange resin which has pendant alkyl groups of C[sub 3] or larger.

  14. Nonaqueous purification of mixed nitrate heat transfer media

    DOE Patents [OSTI]

    Fiorucci, Louis C.; Morgan, Michael J.

    1983-12-20

    A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

  15. Molecular recognition of nitrated fatty acids by PPAR[gamma

    SciTech Connect (OSTI)

    Li, Yong; Zhang, Jifeng; Schopfer, Francisco J.; Martynowski, Dariusz; Garcia-Barrio, Minerva T.; Kovach, Amanda; Suino-Powell, Kelly; Baker, Paul R.S.; Freeman, Bruce A.; Chen, Y. Eugene; Xu, H. Eric

    2010-03-08

    Peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}) regulates metabolic homeostasis and adipocyte differentiation, and it is activated by oxidized and nitrated fatty acids. Here we report the crystal structure of the PPAR{gamma} ligand binding domain bound to nitrated linoleic acid, a potent endogenous ligand of PPAR{gamma}. Structural and functional studies of receptor-ligand interactions reveal the molecular basis of PPAR{gamma} discrimination of various naturally occurring fatty acid derivatives.

  16. Global Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Solutions Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions A-Z Index Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search BANGLADESH INDIA CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII SOUTH POLE ANTARCTICA NEW MEXICO SOUTH DAKOTA TEXAS GULF OF MEXICO NEW YORK PUERTO RICO AMAZON RAIN FOREST CANARY ISLANDS SWITZERLAND ETHIOPIA

  17. Synthesis, characterization, and structure of a uranyl complex with a disulfide ligand, Bis(di-n-propylammonium) Disulfidobis(di-n-propylthiocarbamato)dioxouranate(VI)

    SciTech Connect (OSTI)

    Perry, D.L.; Zalkin, A.; Ruben, H.; Templeton, D.H.

    1982-01-01

    Olive green crystals of the title compound, ((n-C/sub 3/H/sub 7/)/sub 2/NH/sub 2//sup +/)/sub 2/(UO/sub 2/((n-C/sub 3/H/sub 7/)/sub 2/NCOS)/sub 2/(S/sub 2/))/sup 2 -/, are orthorhombic, space group Pcan, with a = 15.326 (6) A, b = 17.474 (6) A, c = 14.728 (6) A, and Z = 4 (d/sub x/ = 1.45 g/cm/sup 3/). For 1833 data, I > sigma/sub I/, R = 0.052, and R/sub w/ = 0.069. The structure was revealed by single-crystal x-ray diffraction studies to consist of ((n-C/sub 3/H/sub 7/)/sub 2/NH/sub 2/)/sup +/ cations and (UO/sub 2/((n-C/sub 3/H/sub 7/)/sub 2/NCOS)/sub 2/(S/sub 2/))/sup 2 -/ anions with the uranium atom at the center of an irregular hexagonal bipyramid. The uranyl oxygen atoms occupy the axial positions. The equatorial coordiantion plane contains the disulfide (S/sub 2//sup 2 -/) group bonded in a side-on fashion and two oxygen and two sulfur donor atoms from the monothiocarbamate ligands. Interatomic distances are S-S = 2.05 (1) A and U-S = 2.711 (3) A (disulfide), U-S = 2.873 (3) A and U-O = 2.48 (1) A (thiocarbamate), and U-0 = 1.82 (1) A (uranyl). The nitrogen atom in the dipropylammonium cation is hydrogen bonded to the uranyl oxygen atoms.

  18. SYNTHESIS, CHARACTERIZATION, AND STRUCTURE OF A URANYL COMPLEX WITH A DISULFIDE LIGAND, BIS(DI-n-PROPYLAMMONIUM) DISULFIDOBIS (DI-n-PROPYLMONOTHIOCARBAMATO) DIOXOURANATE(VI)

    SciTech Connect (OSTI)

    Perry, Dale L.; Zalkin, Allan; Ruben, Helena; Templeton, David H.

    1981-05-01

    Olive-green crystals of the title compound, [({underline n}-C{sub 3}H{sub 7}){sub 2}NH{sub 2}{sup +}]{sub 2} [UO(({underline n}-C{sub 3}H{sub 7}){sub 2}NCOS){sub 2}(S{sub 2}){sup -2}, are orthorhombic, space group Pcan, with {underline a}= 15.326(6) {Angstrom}, {underline b} = 17.474(6) {Angstrom}, {underline C} = 14.728(6) {Angstrom}, and Z = 4, (d{sub X} = 1.45 g/cm{sup 3}). For 1833 data, I >{sigma}, R = 0.052, and R{sub w} = 0.069. The structure was revealed by single-crystal x-ray diffraction studies to consist of [(n-C{sub 3}H{sub 7}){sub 2}NH{sub 2}]+ cations and [UO{sub 2}(({underline n|-C{sub 3}H{sub 7}){sub 2}NCOS){sub 2}(S{sub 2}){sup -2} anions with the uranium atom at the center of an irregular hexagonal bipyramid. The uranyl oxygen atoms occupy the axial positions. The equatorial coordination plane contains the disulfide (S{sub 2}{sup -2}) group bonded in a "side-on" fashion, and two oxygen and two sulfur donor atoms from the monothiocarbamate ligands. Interatomic distances are S-S = 2.05(1) {Angstrom}, U-S= 2.714(3) {Angstrom} (disulfide); U-S= 2.871(3) {Angstrom} and U-O = 2.46(1) {Angstrom} (thiocarbamate); U-O = 1.81(1) {Angstrom} (uranyl), The nitrogen atom in the dipropylammonium cation is hydrogen bonded to the uranyl oxgyen atoms,

  19. Evaporation of iodine-containing off-gas scrubber solution

    DOE Patents [OSTI]

    Partridge, J.A.; Bosuego, G.P.

    1980-07-14

    Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

  20. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOE Patents [OSTI]

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  1. Analytical Characterization of the Thorium Nitrate Stockpile

    SciTech Connect (OSTI)

    Mattus, CH

    2003-12-30

    For several years, Oak Ridge National Laboratory (ORNL) has been supporting the Defense Logistics Agency-Defense National Stockpile Center with stewardship of a thorium nitrate (ThN) stockpile. The effort for fiscal year 2002 was to prepare a sampling and analysis plan and to use the activities developed in the plan to characterize the ThN stockpile. The sampling was performed in June and July 2002 by RWE NUKEM with oversight by ORNL personnel. The analysis was performed by Southwest Research Institute of San Antonio, Texas, and data validation was performed by NFT, Inc., of Oak Ridge, Tennessee. Of the {approx} 21,000 drums in the stockpile, 99 were sampled and 53 were analyzed for total metals composition, radiological constituents (using alpha and gamma spectrometry), and oxidizing characteristics. Each lot at the Curtis Bay Depot was sampled. Several of the samples were also analyzed for density. The average density of the domestic ThN was found to be 1.89 {+-} 0.08 g/cm{sup 3}. The oxidizer test was performed following procedures issued by the United Nations in 1999. Test results indicated that none of the samples tested was a Division 5.1 oxidizer per Department of Transportation definition. The samples were analyzed for total metals following the U.S. Environmental Protection Agency methods SW-846-6010B and 6020 (EPA 2003) using a combination of inductively coupled plasma--atomic emission spectroscopy and inductively coupled plasma--mass spectroscopy techniques. The results were used to compare the composition of the eight Resource Conservation and Recovery Act metals present in the sample (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) to regulatory limits. None of the samples was found to be hazardous for toxicity characteristics. The radiological analyses confirmed, when possible, the results obtained by the inductively coupled plasma analyses. These results--combined with the historical process knowledge acquired on the material

  2. RADIOACTIVE HIGH LEVEL WASTE TANK PITTING PREDICTIONS: AN INVESTIGATION INTO CRITICAL SOLUTION CONCENTRATIONS

    SciTech Connect (OSTI)

    Hoffman, E.

    2012-11-08

    A series of cyclic potentiodynamic polarization tests was performed on samples of ASTM A537 carbon steel in support of a probability-based approach to evaluate the effect of chloride and sulfate on corrosion the steel's susceptibility to pitting corrosion. Testing solutions were chosen to systemically evaluate the influence of the secondary aggressive species, chloride, and sulfate, in the nitrate based, high-level wastes. The results suggest that evaluating the combined effect of all aggressive species, nitrate, chloride, and sulfate, provides a consistent response for determining corrosion susceptibility. The results of this work emphasize the importance for not only nitrate concentration limits, but also chloride and sulfate concentration limits.

  3. Potential Radon-222 Emissions from the Thorium Nitrate Stockpile

    SciTech Connect (OSTI)

    Terry, J.W.

    2003-09-04

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency, has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The thorium nitrate stockpile was produced from 1959 to 1964 for the Atomic Energy Commission and previously has been under the control of several federal agencies. The stockpile consists of approximately 7 million pounds of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States (75% by weight at Curtis Bay, Maryland, and 25% by weight at Hammond, Indiana). The material is stored in several configurations in over 21,000 drums. The U.S. Congress has declared the entire DNSC thorium nitrate stockpile to be in excess of the needs of the Department of Defense. Part of DNSC's mission is to safely manage the continued storage, future sales, and/or disposition of the thorium nitrate stockpile. Historically, DNSC has sold surplus thorium nitrate to domestic and foreign companies, but there is no demand currently for this material. Analyses conducted by Oak Ridge National Laboratory (ORNL) in 2001 demonstrated that disposition of the thorium nitrate inventory as a containerized waste, without processing, is the least complex and lowest-cost option for disposition. A characterization study was conducted in 2002 by ORNL, and it was determined that the thorium nitrate stockpile may be disposed of as low-level waste. The Nevada Test Site (NTS) was used as a case study for the disposal alternative, and special radiological analyses and waste acceptance requirements were documented. Among the special radiological considerations is the emission of {sup 220}Rn and {sup 222}Rn from buried material. NTS has a performance objective on the emissions of radon: 20 pCi m{sup -2} sec{sup -1} at the surface of the disposal facility. The radon emissions from the buried thorium nitrate stockpile have been modeled. This paper presents background information and summarizes

  4. METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION

    DOE Patents [OSTI]

    James, R.A.; Thompson, S.G.

    1959-11-01

    A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.

  5. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    DOE Patents [OSTI]

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  6. Thorium Nitrate Stockpile--From Here to Eternity

    SciTech Connect (OSTI)

    Hermes, W. H.; Hylton, T. D.; Mattus, C.H.; Storch, S. N.; Singley, P.S.; Terry. J. W.; Pecullan, M.; Reilly, F. K.

    2003-02-26

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency (DLA) has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The stockpile is made up of approximately 3.2 million kg (7 million lb) of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States. DNSC sought technical assistance from Oak Ridge National Laboratory (ORNL) to define and quantify the management options for the thorium nitrate stockpile. This paper describes methodologies and results comprising the work in Phase 1 and Phase 2. The results allow the DNSC to structure and schedule needed tasks to ensure continued safe long-term storage and/or phased disposal of the stockpile.

  7. Speciation model selection by Monte Carlo analysis of optical absorption spectra: Plutonium(IV) nitrate complexes

    SciTech Connect (OSTI)

    Berg, John M.; Veirs, D. Kirk; Vaughn, Randolph B.; Cisneros, Michael R.; Smith, Coleman A.

    2000-06-01

    Standard modeling approaches can produce the most likely values of the formation constants of metal-ligand complexes if a particular set of species containing the metal ion is known or assumed to exist in solution equilibrium with complexing ligands. Identifying the most likely set of species when more than one set is plausible is a more difficult problem to address quantitatively. A Monte Carlo method of data analysis is described that measures the relative abilities of different speciation models to fit optical spectra of open-shell actinide ions. The best model(s) can be identified from among a larger group of models initially judged to be plausible. The method is demonstrated by analyzing the absorption spectra of aqueous Pu(IV) titrated with nitrate ion at constant 2 molal ionic strength in aqueous perchloric acid. The best speciation model supported by the data is shown to include three Pu(IV) species with nitrate coordination numbers 0, 1, and 2. Formation constants are {beta}{sub 1}=3.2{+-}0.5 and {beta}{sub 2}=11.2{+-}1.2, where the uncertainties are 95% confidence limits estimated by propagating raw data uncertainties using Monte Carlo methods. Principal component analysis independently indicates three Pu(IV) complexes in equilibrium. (c) 2000 Society for Applied Spectroscopy.

  8. Infrared Multiphoton Dissociation Spectroscopy of a Gas-Phase Complex of Uranyl and 3-Oxa-Glutaramide: An Extreme Red-Shift of the [O=U=O]²⁺ Asymmetric Stretch

    SciTech Connect (OSTI)

    Gibson, John K.; Hu, Hanshi; Van Stipdonk, Michael J.; Berden, Giel; Oomens, Jos; Li, Jun

    2015-04-09

    The gas-phase complex UO₂(TMOGA)₂²⁺ (TMOGA = tetramethyl-3-oxa-glutaramide) prepared by electrospray ionization was characterized by infrared multiphoton dissociation (IRMPD) spectroscopy. The IRMPD spectrum from 700–1800 cm⁻¹ was interpreted using a computational study based on density functional theory. The predicted vibrational frequencies are in good agreement with the measured values, with an average deviation of only 8 cm⁻¹ (<1%) and a maximum deviation of 21 cm⁻¹ (<2%). The only IR peak assigned to the linear uranyl moiety was the asymmetric ν₃ mode, which appeared at 965 cm⁻¹ and was predicted by DFT as 953 cm⁻¹. This ν₃ frequency is red-shifted relative to bare uranyl, UO₂²⁺, by ca. 150 cm⁻¹ due to electron donation from the TMOGA ligands. Based on the degree of red-shifting, it is inferred that two TMOGA oxygen-donor ligands have a greater effective gas basicity than the four monodentate acetone ligands in UO₂(acetone)₄²⁺. The uranyl ν₃ frequency was also computed for uranyl coordinated by two TMGA ligands, in which the central Oether of TMOGA has been replaced by CH₂. The computed ν₃ for UO₂(TMGA)₂²⁺, 950 cm⁻¹, is essentially the same as that for UO₂(TMOGA)₂²⁺, suggesting that electron donation to uranyl from the Oether of TMOGA is minor. The computed ν₃ asymmetric stretching frequencies for the three actinyl complexes, UO₂(TMOGA)₂²⁺, NpO₂(TMOGA)₂²⁺ and PuO₂(TMOGA)₂²⁺, are comparable. This similarity is discussed in the context of the relationship between ν₃ and intrinsic actinide-oxygen bond energies in actinyl complexes.

  9. Structure and dynamics of complexes of the uranyl ion with nonamethylimidodiphosphoramide (NIPA). 2. NMR studies of complexes (UO/sub 2/(NIPA)/sub 2/X)(CIO/sub 4/)/sub 2/ with X = H/sub 2/O, MeOH, EtOH, or Me/sub 2/CO

    SciTech Connect (OSTI)

    Rodehueser, L.; Rubini, P.R.; Bokolo, K.; Delpuech, J.J.

    1982-03-01

    The /sup 31/P and /sup 1/H spectra at -90/sup 0/C of the title uranyl complex ions (prepared as solutions of the solid perchlorates in inert anhydrous organic solvents (CH/sub 3/NO/sub 2/, CH/sub 2/Cl/sub 2/)) reveal a pentacoordinated arrangement of two symmetrically doubly bonded NIPA molecules and one solvent molecule about the uranyl group. In the case of (UO/sub 2/(NIPA)/sub 2/(EtOH))(ClO/sub 4/)/sub 2/, an intermolecular exchange between bound and free ethanol molecules is observed above -75/sup 0/C upon addition of ethanol to a solution of the complex. The observed rate law, k/sub inter/ = kK(EtOH)/(1 + K(EtOH) is accounted for by the existence of an outer-sphere complex (UO/sub 2//sup 2 +/(NIPA)/sub 2/(EtOH))EtOH in fast equilibrium (K) with the initial complex and free ethanol. The rate-determining step (k) consists of an outer-sphere to inner-sphere interchange of ethanol molecules. The thermodynamic and kinetic parameters are K(25/sup 0/C) = 15.8 dm/sup 3/ mol/sup -1/, k(25/sup 0/C) = 1.0 x 10/sup 4/s/sup -1/, ..delta..H and ..delta..H/sub inter//sup + +/ = -4.8 and 7.6 kcal mol/sup -1/, and ..delta..S and ..delta..S/sub inter//sup + +/ = 10.7 and -14.7 eu. A second exchange takes place at higher temperatures (above -30/sup 0/C) yielding full dynamic equivalence of the phosphorus nuclei of the coordinated NIPA molecules. The observed rate law k/sub intra/ = k/sub ex/(1 + K(EtOH)) reveals that the internal rearrangement of NIPA molecules occurs on the complex ion (UO/sub 2/(NIPA)/sub 2/(EtOH))/sup 2 +/ but not on the outer-sphere complex: k/sub ex/(25/sup 0/C) = 0.91 x 10/sup 3/s/sup -1/, ..delta..H/sub intra//sup + +/ = 10.6 kcal mol/sup -1/ and ..delta..S/sub intra//sup + +/ = -9.4 eu. Possible mechanisms for this exchange are discussed. 5 figures, 2 tables.

  10. Polymer solutions

    DOE Patents [OSTI]

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  11. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    SciTech Connect (OSTI)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  12. PROCESSES OF RECOVERING URANIUM FROM A CALUTRON

    DOE Patents [OSTI]

    Baird, D.O.; Zumwalt, L.R.

    1958-07-15

    An improved process is described for recovering the residue of a uranium compound which has been subjected to treatment in a calutron, from the parts of the calutron disposed in the source region upon which the residue is deposited. The process may be utilized when the uranium compound adheres to a surface containing metals of the group consisting of copper, iron, chromium, and nickel. The steps comprise washing the surface with an aqueous acidic oxidizing solvent for the uranium whereby there is obtained an acidic aqueous Solution containing uranium as uranyl ions and metals of said group as impurities, treating the acidic solution with sodium acetate in the presenee of added sodium nitrate to precipitate the uranium as sodium uranyl acetate away from the impurities in the solution, and separating the sodium uranyl acetate from the solution.

  13. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  14. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  15. Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Background Technical Area (TA) 54 is Los Alamos National Laboratory's transuranic (TRU) and low-level waste storage, characterization, and remediation area. The 63-acre site is located one mile from the community of White Rock and approximately one-eighth mile from the boundary be- tween Pueblo de San Ildefonso and the Laboratory. As a part of its national security mission, the Laboratory conducts research that generates

  16. WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update May 12, 2015 Panel 6 and Panel 7, Room 7 a. Rollback * Contamination Assessment-This prerequisite is complete and therefore status updates are no longer required. * Fixing/Decontamination Activities-Decontaminated equipment has been removed from Room 7 of Panel 7 to prepare for Room 7 closure activities. Remaining items in Panel 7, Room 7 include thirteen empty magnesium oxide racks, about 200 roof bolts, nine messenger

  17. Alloy solution hardening with solute pairs

    DOE Patents [OSTI]

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  18. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOE Patents [OSTI]

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  19. Real time in situ detection of organic nitrates in atmospheric aerosols

    SciTech Connect (OSTI)

    Rollins, Andrew W.; Smith, Jared D.; Wilson, Kevin R.; Cohen, Ronald C.

    2010-06-11

    A new field instrument is described that quantifies total particle phase organic nitrates. The instrument is based on the thermal dissociation laser induced fluorescence (TD-LIF) method that thermally converts nitrates to NO2 which is then detected by LIF. This instrument is unique in its ability to provide fast sensitive measurements of particle phase organic nitrates, without interference from inorganic nitrate. Here we use it to quantify organic nitrates in SOA generated from high-NOx photooxidation of limonene, a-pinene, D-3-carene, and tridecane. In these experiments the organic nitrate moiety is observed to be 6-15percent of the total SOA mass, depending on the organic precursor.

  20. Effect of composition on the density of multi-component molten nitrate salts.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.

    2009-12-01

    The density of molten nitrate salts was measured to determine the effects of the constituents on the density of multi-component mixtures. The molten salts consisted of various proportions of the nitrates of potassium, sodium, lithium and calcium. Density measurements ere performed using an Archimedean method and the results were compared to data reported in the literature for the individual constituent salts or simple combinations, such as the binary Solar Salt mixture of NaNO3 and KNO3. The addition of calcium nitrate generally ncreased density, relative to potassium nitrate or sodium nitrate, while lithium nitrate decreased density. The temperature dependence of density is described by a linear equation regardless of composition. The molar volume, and thereby, density of multi-component mixtures an be calculated as a function of temperature using a linear additivity rule based on the properties of the individual constituents.

  1. Laser-induced breakdown spectroscopic study of ammonium nitrate plasma

    SciTech Connect (OSTI)

    Hanif, M.; Salik, M.; Baig, M. A.

    2013-12-15

    We present the optical emission studies of the ammonium nitrate plasma produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser. The target material was placed in front of the laser beam in an open atmospheric air. The spectrum reveals numerous transitions of neutral nitrogen. We have studied the spatial behavior of the plasma temperature (T{sub e}) and electron number density (N{sub e}) determined using the Boltzmann plot method and Stark broadened line profiles, respectively. Besides, we have studied the variation of the plasma parameters as a function of the laser irradiance.

  2. Low-melting point inorganic nitrate salt heat transfer fluid

    DOE Patents [OSTI]

    Bradshaw, Robert W.; Brosseau, Douglas A.

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  3. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    SciTech Connect (OSTI)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  4. Mercuric iodate precipitation from radioiodine-containing off-gas scrubber solution

    DOE Patents [OSTI]

    Partridge, Jerry A.; Bosuego, Gail P.

    1982-01-01

    Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

  5. PROCESS OF PURIFYING URANIUM

    DOE Patents [OSTI]

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  6. Investigating In Situ Bioremediation Approaches for Sustained Uranium Immobilization Independent of Nitrate Reduction

    SciTech Connect (OSTI)

    Phelps, Tommy; Balkwill, David

    2006-06-01

    The daunting prospect of complete nitrate removal at DOE sites, such as the ERSP Oak Ridge Field Research Center (FRC), provides strong incentive to explore bioremediation strategies that will allow for uranium bioreduction and long-term stabilization in the presence of nitrate. The cost and effort required for complete nitrate removal from the FRC and similar DOE-contaminated sites may prove to be unworkable. For example, field tests of uranium bioreduction at the FRC have shown that nitrate levels rebound quickly and completely after cessation of active biostimulation.

  7. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response...

    Broader source: Energy.gov (indexed) [DOE]

    Pilot Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various public websites. Technical Area (TA)-54 Area G Nitrate-Salt ...

  8. Memo - Legacy Technical Area (TA)-55 Nitrate Salt Wastes at TA...

    Office of Environmental Management (EM)

    Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various public websites. Memo - Legacy Technical Area (TA)-55 Nitrate Salt ...

  9. The chemistry of plutonium(VI) in aqueous carbonate solutions

    SciTech Connect (OSTI)

    Stout, B.E.; Choppin, G.R. . Dept. of Chemistry); Sullivan, J.C. )

    1990-01-01

    The dynamic behavior of carbonate ion as a ligand that interacts with the hexavalent actinyl ions of U, Np, and Pu has been examined by {sup 13}C NMR. The first order rate parameter that describes the exchange between bulk solution and bound carbonate decreases with increasing pH. At a pH of 10.0, 25{degree}C, the respective values of k for the U(VI), Np(VI) and Pu(VI) complexes are 27.1 {plus minus} 0.3, 64.7 {plus minus} 3.3 and 706 {plus minus} 29. The variation of k with temperature was used to calculate the values of {Delta}H{sup +} = 53 and 42 kJ/M; and {Delta}S{sup +} = {minus}40 and {minus}71 J/M-K for the uranyl and neptunyl systems, respectively. A plausible reaction scheme for the exchange reaction is considered. The influence of these slow carbonate exchange reactions on selected electron transfer reactions is noted. 19 refs., 4 figs., 2 tabs.

  10. Effect of Co-solutes on the Products and Solubility of Uranium(VI) Precipitated with Phosphate

    SciTech Connect (OSTI)

    Mehta, Vrajesh; Maillot, Fabien; Wang, Zheming; Catalano, Jeffrey G.; Giammar, Daniel E.

    2014-01-22

    Uranyl phosphate solids are often found with uranium ores, and their low solubility makes them promising target phases for in situ remediation of uranium-contaminated subsurface environments. The products and solubility of uranium(VI) precipitated with phosphate can be affected by the pH, dissolved inorganic carbon (DIC) concentration, and co-solute composition (e.g. Na+/Ca2+) of the groundwater. Batch experiments were performed to study the effect of these parameters on the products and extent of uranium precipitation induced by phosphate addition. In the absence of co-solute cations, chernikovite [H3O(UO2)(PO4)•3H2O] precipitated despite uranyl orthophosphate [(UO2)3(PO4)2•4H2O] being thermodynamically more favorable under certain conditions. As determined using X-ray diffraction, electron microscopy, and laser induced fluorescence spectroscopy, the presence of Na+ or Ca2+ as a co-solute led to the precipitation of sodium autunite ([Na2(UO2)2(PO4)2] and autunite [Ca(UO2)2(PO4)2]), which are structurally similar to chernikovite. In the presence of sodium, the dissolved U(VI) concentrations were generally in agreement with equilibrium predictions of sodium autunite solubility. However, in the calcium-containing systems, the observed concentrations were below the predicted solubility of autunite, suggesting the possibility of uranium adsorption to or incorporation in a calcium phosphate precipitate in addition to the precipitation of autunite.

  11. PLUTONIUM SEPARATION METHOD

    DOE Patents [OSTI]

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  12. Stainless steel corrosion by molten nitrates : analysis and lessons learned.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael

    2011-09-01

    A secondary containment vessel, made of stainless 316, failed due to severe nitrate salt corrosion. Corrosion was in the form of pitting was observed during high temperature, chemical stability experiments. Optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were all used to diagnose the cause of the failure. Failure was caused by potassium oxide that crept into the gap between the primary vessel (alumina) and the stainless steel vessel. Molten nitrate solar salt (89% KNO{sub 3}, 11% NaNO{sub 3} by weight) was used during chemical stability experiments, with an oxygen cover gas, at a salt temperature of 350-700 C. Nitrate salt was primarily contained in an alumina vessel; however salt crept into the gap between the alumina and 316 stainless steel. Corrosion occurred over a period of approximately 2000 hours, with the end result of full wall penetration through the stainless steel vessel; see Figures 1 and 2 for images of the corrosion damage to the vessel. Wall thickness was 0.0625 inches, which, based on previous data, should have been adequate to avoid corrosion-induced failure while in direct contact with salt temperature at 677 C (0.081-inch/year). Salt temperatures exceeding 650 C lasted for approximately 14 days. However, previous corrosion data was performed with air as the cover gas. High temperature combined with an oxygen cover gas obviously drove corrosion rates to a much higher value. Corrosion resulted in the form of uniform pitting. Based on SEM and EDS data, pits contained primarily potassium oxide and potassium chromate, reinforcing the link between oxides and severe corrosion. In addition to the pitting corrosion, a large blister formed on the side wall, which was mainly composed of potassium, chromium and oxygen. All data indicated that corrosion initiated internally and moved outward. There was no evidence of intergranular corrosion nor were there any indication of fast pathways along grain boundaries. Much of the

  13. Viscosity of multi-component molten nitrate salts : liquidus to 200 degrees C.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.

    2010-03-01

    The viscosity of molten salts comprising ternary and quaternary mixtures of the nitrates of sodium, potassium, lithium and calcium was determined experimentally. Viscosity was measured over the temperature range from near the relatively low liquidus temperatures of he individual mixtures to 200C. Molten salt mixtures that do not contain calcium nitrate exhibited relatively low viscosity and an Arrhenius temperature dependence. Molten salt mixtures that contained calcium nitrate were relatively more viscous and viscosity increased as the roportion of calcium nitrate increased. The temperature dependence of viscosity of molten salts containing calcium nitrate displayed curvature, rather than linearity, when plotted in Arrhenius format. Viscosity data for these mixtures were correlated by the Vogel-Fulcher- ammann-Hesse equation.

  14. Hydroxylamine Nitrate Decomposition under Non-radiological Conditions

    SciTech Connect (OSTI)

    McFarlane, Joanna; Delmau, Laetitia Helene; DePaoli, David W.; Mattus, Catherine H.; Phelps, Clarice E.; Roach, Benjamin D.

    2015-07-01

    Hydroxylamine nitrate (HAN) is used to reduce Pu(IV) to Pu(III) in the separation of plutonium from uranium. HAN becomes unstable under certain conditions and has been known to explode, causing injury to humans including death. Hence, it is necessary to deactivate HAN once the reduction of plutonium is finished. This report reviews what is known about the chemistry of HAN and various methods to achieve a safe decomposition. However, there are areas where more information is needed to make a decision about the handling of HAN in reprocessing of nuclear fuel. Experiments have demonstrated a number of non-radiolytic ways to safely decompose HAN, including heating in HNO3, photolytic oxidation in the presence of H2O2, and the addition of a metal such as Fe(III) that will oxidize the HAN.

  15. PROCESS OF IMPREGNATING GRAPHITE WITH A URANIUM COMPOUND

    DOE Patents [OSTI]

    Sanz, M.C.; Randolph, R.R.; Starr, C.

    1960-07-26

    A process of forming reactor material is given comprising impregnating graphite with uranyl nitrate and heating the graphite until the salt is converted into an oxide.

  16. Fernald Environmental Management Project Director's Final Findings...

    Office of Environmental Management (EM)

    the hazardous waste in the uranyl nitrate hexahydrate (UNH) System Parties DOE; Fernald Environmental Restoration Management Corporation (FERMCO); Ohio Environmental Protection...

  17. Revised RCRA closure plan for the Interim Drum Yard (S-030) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Smith, C.M.

    1994-09-01

    The Interim Drum Yard (IDY) facility is a containerized waste storage area located in the Y-12 exclusion area. It was used to store waste materials which are regulated by RCRA (Resource Conservation and Recovery Act); uranyl nitrate solutions were also stored there. The closure plan outlines the actions required to achieve closure of IDY and is being submitted in accordance with TN Rule 1200-1-11.05(7) and 40 CFR 265.110.

  18. Ab initio calculations of singlet and triplet excited states of chlorine nitrate and nitric acid

    SciTech Connect (OSTI)

    Grana, A.M.; Head-Gordon, M. |; Lee, T.J.

    1995-03-16

    Ab initio calculations of vertical excitations to single and triplet excited states of chlorine nitrate and nitric acid are reported, using the CIS, CIS(D), and CCSD methods. The effects of basis set composition and calculational methods are investigated. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low lying singlet states of chlorine nitrate appear to be directly dissociative in the CIO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied. 70 refs., 2 figs., 6 tabs.

  19. Separation of thorium impurity from plutonium in the nitrate anion exchange process

    SciTech Connect (OSTI)

    Marsh, S.F.; Phillips, B.J.; Aldaz, E.A.; Williams, W.E.

    1989-04-01

    Thorium is a common impurity in many materials processed at the Los Alamos Plutonium Facility. Although the thorium impurity level is usually less than 1000 ppM, it frequently exceeds the maximum allowable limit of 100 ppM. Thorium is especially difficult to separate from plutonium because it accompanies plutonium in the three aqueous nitrate processes used at Los Alamos: nitrate anion exchange, oxalate precipitation, and peroxide precipitation. Nitrate anion exchange, the major aqueous plutonium purification process, has recently been modified to remove most of the thorium from sorbed plutonium by washing the column with 4.7 M nitric acid-0.007 M hydrofluoric acid. This chromatographic washing technique requires careful process control that is readily attainable with the recently developed Los Alamos On-Line Gamma Monitor. The successful separation of thorium using this modification has been demonstrated in routine, full-scale, nitrate anion exchange operations. 3 refs., 8 figs.

  20. EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate...

    Office of Environmental Management (EM)

    and recommendation. Conclusions: 1. Nitrate salts not yet remediated having no free liquid should be mixed with at least 1.2 volumes of Kitty LitterZeolite clay per...

  1. EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container...

    Office of Environmental Management (EM)

    EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container Response Instructions Effective Date: 5282014 The Responsible Manager has determined that the following...

  2. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-05-13

    The nitrate (NO3–) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO3– derived from atmospheric deposition versus that derived from microbial nitrification.

  3. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instructions | Department of Energy Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the

  4. Analytical Chemistry and Materials Characterization Results for Debris Recovered from Nitrate Salt Waste Drum S855793

    SciTech Connect (OSTI)

    Martinez, Patrick Thomas; Chamberlin, Rebecca M.; Schwartz, Daniel S.; Worley, Christopher Gordon; Garduno, Katherine; Lujan, Elmer J. W.; Borrego, Andres Patricio; Castro, Alonso; Colletti, Lisa Michelle; Fulwyler, James Brent; Holland, Charlotte S.; Keller, Russell C.; Klundt, Dylan James; Martinez, Alexander; Martin, Frances Louise; Montoya, Dennis Patrick; Myers, Steven Charles; Porterfield, Donivan R.; Schake, Ann Rene; Schappert, Michael Francis; Soderberg, Constance B.; Spencer, Khalil J.; Stanley, Floyd E.; Thomas, Mariam R.; Townsend, Lisa Ellen; Xu, Ning

    2015-09-16

    Solid debris was recovered from the previously-emptied nitrate salt waste drum S855793. The bulk sample was nondestructively assayed for radionuclides in its as-received condition. Three monoliths were selected for further characterization. Two of the monoliths, designated Specimen 1 and 3, consisted primarily of sodium nitrate and lead nitrate, with smaller amounts of lead nitrate oxalate and lead oxide by powder x-ray diffraction. The third monolith, Specimen 2, had a complex composition; lead carbonate was identified as the predominant component, and smaller amounts of nitrate, nitrite and carbonate salts of lead, magnesium and sodium were also identified. Microfocused x-ray fluorescence (MXRF) mapping showed that lead was ubiquitous throughout the cross-sections of Specimens 1 and 2, while heteroelements such as potassium, calcium, chromium, iron, and nickel were found in localized deposits. MXRF examination and destructive analysis of fragments of Specimen 3 showed elevated concentrations of iron, which were broadly distributed through the sample. With the exception of its high iron content and low carbon content, the chemical composition of Specimen 3 was within the ranges of values previously observed in four other nitrate salt samples recovered from emptied waste drums.

  5. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    SciTech Connect (OSTI)

    Meusinger, Carl; Johnson, Matthew S. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joel, E-mail: jsavarino@lgge.obs.ujf-grenoble.fr [Univ. Grenoble Alpes, LGGE, F-38000 Grenoble (France); CNRS, LGGE, F-38000 Grenoble (France)

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200nm band was found to be ?1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  6. NO3- Coordination in Aqueous Solutions by 15N/14N and 18O/natO Isotopic Substitution: What Can We Learn from Molecular Simulation?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chialvo, Ariel A.; Vlcek, Lukas

    2014-12-16

    We explore the deconvolution of the water-nitrate correlations by the first-order difference approach involving neutron diffraction of heavy- and null-aqueous solutions of KNO3 under 14N 15N and natON 18ON substitutions to achieve a full characterization of the first water coordination around the nitrate ion. For that purpose we performed isobaric-isothermal simulations of 3.5m KNO3 aqueous solutions at ambient conditions to generate the relevant radial distribution functions (RDF) required in the analysis (a) to identify the individual partial contributions to the total neutron weighted distribution function, (b) to isolate and assess the contribution of NO3 -!K+ pair formation, (c) to testmore » the accuracy of the NDIS-based coordination calculations and XRDbased assumptions, and (d) to describe the water coordination around both the nitrogen and oxygen sites of the nitrate ion.« less

  7. Randa Energy Solutions LLC R A Energy Solutions | Open Energy...

    Open Energy Info (EERE)

    LLC R A Energy Solutions Jump to: navigation, search Name: Randa Energy Solutions, LLC (R&A Energy Solutions) Place: North Ridgeville, Ohio Zip: 44039 Product: String...

  8. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    SciTech Connect (OSTI)

    Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël; Meusinger, Carl; Johnson, Matthew S.; Jost, Rémy; Bhattacharya, S. K.

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying

  9. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dewji, Shaheen A.; Lee, Denise L.; Croft, Stephen; Hertel, Nolan E.; Chapman, Jeffrey Allen; McElroy, Jr., Robert Dennis; Cleveland, S.

    2016-03-28

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP).more » In particular, uranyl nitrate (UO2(NO3)2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of gamma

  10. WET FLUORIDE SEPARATION METHOD

    DOE Patents [OSTI]

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-11-25

    The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.

  11. Nitrate Biogeochemistry and Reactive Transport in California Groundwater: LDRD Final Report

    SciTech Connect (OSTI)

    Esser, B K; Beller, H; Carle, S; Cey, B; Hudson, G B; Leif, R; LeTain, T; Moody-Bartel, C; Moore, K; McNab, W; Moran, J; Tompson, A

    2006-02-24

    Nitrate is the number one drinking water contaminant in the United States. It is pervasive in surface and groundwater systems,and its principal anthropogenic sources have increased dramatically in the last 50 years. In California alone, one third of the public drinking-water wells has been lost since 1988 and nitrate contamination is the most common reason for abandonment. Effective nitrate management in groundwater is complicated by uncertainties related to multiple point and non-point sources, hydrogeologic complexity, geochemical reactivity, and quantification of denitrification processes. In this paper, we review an integrated experimental and simulation-based framework being developed to study the fate of nitrate in a 25 km-long groundwater subbasin south of San Jose, California, a historically agricultural area now undergoing rapid urbanization with increasing demands for groundwater. The modeling approach is driven by a need to integrate new and archival data that support the hypothesis that nitrate fate and transport at the basin scale is intricately related to hydrostratigraphic complexity, variability of flow paths and groundwater residence times, microbial activity, and multiple geochemical reaction mechanisms. This study synthesizes these disparate and multi-scale data into a three-dimensional and highly resolved reactive transport modeling framework.

  12. Solution deposition assembly

    DOE Patents [OSTI]

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  13. TVA- Solar Solutions Initiative

    Broader source: Energy.gov [DOE]

    Solar Solutions Initiative (SSI) is a pilot program that offers additional financial incentives for Solar PV systems participating in the Renewable Standard Offer program. Applications for new...

  14. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott; Wang, Ruiping; Derouane, Eric

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  15. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    SciTech Connect (OSTI)

    Tilley, Drake; Kelly, Bruce; Burkholder, Frank

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  16. Atmospheric formation and removal of C3-C5 peroxyacyl nitrates

    SciTech Connect (OSTI)

    Grosjean, D.

    1993-12-31

    The C3-C5 peroxyacyl nitrates RC(O)OONO{sub 2} (R=Et, n-Pr, i-Pr, n-Bu, i-Bu, sec-Bu, t-Bu, Ch{sub 2}=CH- and CH{sub 2}=C(CH{sub 3})-) have been synthesized and prepared in situ and have been characterized by electron capture gas chromatography. Their thermal decomposition rates have been measured and are similar to that of PAN (R = CH{sub 3}). Carbonyl products have been identified and the corresponding reaction mechanisms have been outlined. Ambient levels of several peroxyacyl nitrates (R =CH{sub 3}, Et, n-Pr and CH{sub 2}=(CH{sub 3})-) have been measured. The results are discussed with focus on atmospheric hydrocarbons as precursors to C3-C5 peroxyacyl nitrates in the atmosphere.

  17. Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal

    SciTech Connect (OSTI)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Zeng, Qiang; Edelmann, Richard E.; Pentrak, Martin; Agrawal, Abinash

    2015-05-05

    Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electron donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mssbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mssbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.

  18. EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate Salts

    Office of Environmental Management (EM)

    Amount of Zeolite Required to Meet the Constraints Established by the EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate Salts 5/8/2012 LANL-Carlsbad Office Difficult Waste Team P2010-3306 Amount of Zeolite Required to Meet the Constraints Established by the EMRTC Report RF 10- 13: Application to LANL Evaporator Nitrate Salts 2 Purpose: The following document was developed in support of the Los Alamos National Laboratory Transuranic Program (LTP) by the LANL-Carlsbad Office, Difficult

  19. Solvent wash solution

    DOE Patents [OSTI]

    Neace, James C. (Blackville, SC)

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  20. Solvent wash solution

    DOE Patents [OSTI]

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  1. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, R.L.

    1997-03-11

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  2. Dispersant solutions for dispersing hydrocarbons

    DOE Patents [OSTI]

    Tyndall, Richard L. (Clinton, TN)

    1997-01-01

    A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.

  3. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  4. In situ BTEX biotransformation under enhanced nitrate- and sulfate-reducing conditions

    SciTech Connect (OSTI)

    Reinhard, M.; Shang, S.; Kitanidis, P.K.; Orwin, E.; Hopkins, G.D.; LeBron, C.A.

    1997-01-01

    In situ anaerobic biotransformation of BTEX (benzene, toluene, ethylbenzene, o-xylene, and m-xylene) was investigated under enhanced nitrate- and sulfate-reducing conditions. Controlled amounts of BTEX compounds added to slugs of treated groundwater were released into a gasoline-contaminated aquifer at Seal Beach, CA. In a series of studies, the slugs, 470-1700 L in volume, were released into the aquifer through a multi-port injection/extraction well and were subsequently withdrawn over a 2-3 month period. To evaluate unamended in situ conditions, the injectate was treated with granular activated carbon (GAC) and augmented with bromide as a tracer. To evaluate nitrate- and sulfate-reducing conditions, the injectate was also deionized and augmented with 200-300 {mu}g/L BTEX, nitrate or sulfate, and background electrolytes. Under unamended conditions, transformation appeared to be limited to the slow removal of toluene and m,p-xylene (i.e. sum of m+p-xylene). Under nitrate-reducing conditions, toluene, ethylbenzene, and m-xylene were transformed without a lag phase in less than 10 days, and o-xylene was transformed in 72 days. Under sulfate-reducing conditions, toluene, m-xylene and o-xylene were completely transformed in less then 50 days, and ethylbenzene was removed in 60 days. Benzene appeared to be removed under sulfate-reducing conditions, but the trend was pronounced only at some levels. 47 refs., 11 figs., 2 tabs.

  5. Sodium nitrate containing mixture for producing ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Blake, R.D.; Meek, T.T.

    1984-10-10

    A mixture for, and method of using such a mixture, for producing a ceramic-glass-ceramic seal by the use of microwave energy are disclosed, wherein the mixture comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  6. Residential Energy Efficiency Solutions

    Broader source: Energy.gov [DOE]

    Our mission is to increase the availability of high-quality, safe, affordable and workforce housing options. Through innovative reuse and rehabilitation we incorporate economic benefits, environmental stewardship/energy efficiency, and social solutions.

  7. High temperature synthesis of two open-framework uranyl silicates with ten-ring channels: Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19} and Rb{sub 2}(UO{sub 2}){sub 2}Si{sub 5}O{sub 13}

    SciTech Connect (OSTI)

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E.

    2013-01-15

    The uranyl silicates Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19} and Rb{sub 2}(UO{sub 2}){sub 2}Si{sub 5}O{sub 13} were obtained by mixing stoichiometric amounts of uranium metal, tellurium dioxide, silicon dioxide, and an excess of correspondent alkali metal halide flux. These compounds crystallize in the orthorhombic space groups Pnma and C222 with eight and two units per unit cell, respectively. Their crystal structures are dominated by zippered pentagonal bipyramidal chains of UO{sub 7} and silicates layer that are further connected into 3D frameworks. The cesium compound has silicate double layers while rubidium has a single layer. Six-ring voids and ten-ring channels are found in both compounds. - Graphical abstract: A view of the three-dimensional network structure of Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19}. Highlights: Black-Right-Pointing-Pointer Three-dimensional uranium silicates. Black-Right-Pointing-Pointer Analogs of natural uranyl silicate minerals. Black-Right-Pointing-Pointer Complexity and symmetry ambiguity of uranyl silicates.

  8. Thermodynamic and structural description of europium complexation in 1-octanol solution

    SciTech Connect (OSTI)

    Charbonnel, M.C.; Vu, T.H.; Boubals, N.; Couston, L.

    2008-07-01

    Polydentate N-bearing ligands such as bis-triazinyl-pyridines (BTPS) are interesting extractants for actinide(III)/lanthanide(III) separation. A description of europium complexation in 1-octanol solutions was undertaken to enhance the knowledge of the extraction mechanisms. Time- Resolved Laser-Induced Fluorescence (TRLIF) spectroscopy allows determination of the first solvation shell for europium(III) nitrate, chloride, and perchlorate with different amounts of water. Europium nitrate complexation by iPr-BTP was then studied by TRLIF and microcalorimetry; the stability constant related to the formation of Eu(BTP){sub 3}{sup 3+} is similar by both techniques (log {beta}{sub 3} = 11.3 {+-} 0.5). The difference of solvation of the cation seems to have an influence on the thermodynamic properties related to the complexation with organic ligands. (authors)

  9. Solution mass measurement

    SciTech Connect (OSTI)

    Ford, W.; Marshall, R.S.; Osborn, L.C.; Picard, R.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the efforts to develop and demonstrate a solution mass measurement system for use at the Los Alamos Plutonium Facility. Because of inaccuracy of load cell measurements, our major effort was directed towards the pneumatic bubbler tube. The differential pressure between the air inlet to the bubbler tube and the glovebox interior is measured and is proportional to the solution mass in the tank. An inexpensive, reliable pressure transducer system for measuring solution mass in vertical, cylindrical tanks was developed, tested, and evaluated in a laboratory test bed. The system can withstand the over- and underpressures resulting from solution transfer operations and can prevent solution backup into the measurement pressure transducer during transfers. Drifts, noise, quantization error, and other effects limit the accuracy to 30 g. A transportable calibration system using a precision machined tank, pneumatic bubbler tubes, and a Ruska DDR 6000 electromanometer was designed, fabricated, tested, and evaluated. Resolution of the system is +-3.5 g out of 50 kg. The calibration error is 5 g, using room-temperature water as the calibrating fluid. Future efforts will be directed towards in-plant test and evaluation of the tank measurement systems. 16 figures, 3 tables.

  10. [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology

    SciTech Connect (OSTI)

    Mer, A.; Obbade, S.; Rivenet, M.; Renard, C.; Abraham, F.

    2012-01-15

    The new lanthanum uranyl vanadate divanadate, [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] was obtained by reaction at 800 Degree-Sign C between lanthanum chloride, uranium oxide (U{sub 3}O{sub 8}) and vanadium oxide (V{sub 2}O{sub 5}) and the structure was determined from single-crystal X-ray diffraction data. This compound crystallizes in the orthorhombic system with space group P2{sub 1}2{sub 1}2{sub 1} and unit-cell parameters a=6.9470(2) A, b=7.0934(2) A, c=25.7464(6) A, V=1268.73(5) A{sup 3}, Z=4. A full matrix least-squares refinement yielded R{sub 1}=0.0219 for 5493 independent reflections. The crystal structure is characterized by the stacking of uranophane-type sheets {sup 2}{sub {infinity}}[(UO{sub 2})(VO{sub 4})]{sup -} and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +} connected through La-O bonds involving the uranyl oxygen of the uranyl-vanadate sheets. The double layers result from the connection of two {sup 2}{sub {infinity}}[La(UO{sub 2})(VO{sub 4}){sub 2}]{sup -} sheets derived from the uranophane anion-topology by replacing half of the uranyl ions by lanthanum atoms and connected through the formation of divanadate entities. - Graphical abstract: A view of the three-dimensional structure of [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})]. Highlights: Black-Right-Pointing-Pointer New lanthanum uranyl vanadate divanadate has been synthesized. Black-Right-Pointing-Pointer Structure was determined from single-crystal X-ray diffraction data. Black-Right-Pointing-Pointer Structure is characterized by uranophane-type sheets and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +}.

  11. Microbial Activity and Precipitation at Solution-Solution Mixing...

    Office of Scientific and Technical Information (OSTI)

    Media -- Subsurface Biogeochemical Research Citation Details In-Document Search Title: Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media -- ...

  12. Fissile solution measurement apparatus

    DOE Patents [OSTI]

    Crane, T.W.; Collinsworth, P.R.

    1984-06-11

    An apparatus for determining the content of a fissile material within a solution by detecting delayed fission neutrons emitted by the fissile material after it is temporarily irradiated by a neutron source. The apparatus comprises a container holding the solution and having a portion defining a neutron source cavity centrally disposed within the container. The neutron source cavity temporarily receives the neutron source. The container has portions defining a plurality of neutron detector ports that form an annular pattern and surround the neutron source cavity. A plurality of neutron detectors count delayed fission neutrons emitted by the fissile material. Each neutron detector is located in a separate one of the neutron detector ports.

  13. Sol Solution | Open Energy Information

    Open Energy Info (EERE)

    Solution Jump to: navigation, search Name: Sol Solution Place: Los Gatos, California Zip: 95030 Region: Bay Area Sector: Solar Product: Rainbow Concentrator, Current matching...

  14. Building Solutions | Open Energy Information

    Open Energy Info (EERE)

    Building Solutions Jump to: navigation, search Name: Building Solutions Place: California Sector: Efficiency Product: California-based energy efficiency contractor and consultancy....

  15. Soy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Soy Solutions Place: Milford, Iowa Zip: 51351 Product: Manufacturer and distributor of 100 percent Soy-Based Biodiesel References: Soy...

  16. Enspiria Solutions | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Enspiria Solutions Jump to: navigation, search Name: Enspiria Solutions Place: Greenwood Village, Colorado Sector: Services Product: Greenwood...

  17. Powerit Solutions | Open Energy Information

    Open Energy Info (EERE)

    Powerit Solutions Jump to: navigation, search Name: Powerit Solutions Address: 568 First Ave South Place: Seattle, Washington Zip: 98104 Region: Pacific Northwest Area Sector:...

  18. Energy Solutions Conference

    Broader source: Energy.gov [DOE]

    The virtual Energy Solutions Conference will be held March 23–24, 2016. Bioenergy Technologies Office Director Jonathan Male will be giving a virtual presentation on the Office’s activities supporting the federal bioeconomy as part of the renewable energy portion of the program.

  19. SCADA Engineering Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Solutions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  20. Deactivation of Building 7602

    SciTech Connect (OSTI)

    Yook, H.R.; Barnett, J.R.; Collins, T.L.

    1995-10-01

    The Department of Energy (DOE) has sponsored research and development programs in Building 7602 at Oak Ridge National Laboratory (ORNL) since 1984. This work focused on development of advanced technology for processing nuclear fuels. Building 7602 was used for engineering-scale tests using depleted and natural uranium to simulate the nuclear fuel. In April 1994 the DOE Office of Nuclear Energy (NE) sent supplemental FY 1994 guidance to ORNL stating that in FY 1995 and beyond, Building 7602 is considered surplus to NE programs and missions and shall be shut down (deactivated) and maintained in a radiologically and industrially safe condition with minimal surveillance and maintenance (S&M). DOE-NE subsequently provided FY 1995 funding to support the deactivation activities. Deactivation of Building 7602 was initiated on October 1, 1994. The principal activity during the first quarter of FY 1995 was removal of process materials (chemicals and uranium) from the systems. The process systems were operated to achieve chemical solution concentrations needed for reuse or disposal of the solutions prior to removal of the materials from the systems. During this phase of deactivation the process materials processed and removed were: (1) Uranyl nitrate solution 30,178 L containing 4490 kg of uranium; (2) Nitric acid (neutralized) 9850 L containing less than 0.013 kg of uranium; (3) Organic solution 3346 L containing 265 kg of uranium; (4) Uranium oxide powder 95 kg; and (5) Miscellaneous chemicals. At the end of December 1994, the process systems and control systems were shut down and deactivated. Disposition of the process materials removed from the process systems in Building 7602 proved to be the most difficult part of the deactivation. An operational stand down and funding reductions at Y-12 prevented planned conversion of the uranyl nitrate solution to depleted uranium oxide powder. This led to disposal of the uranyl nitrate solution as waste.

  1. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  2. DWPF coupled feed flowsheet material balance with batch one sludge and copper nitrate catalyst

    SciTech Connect (OSTI)

    Choi, A.S.

    1993-09-28

    The SRTC has formally transmitted a recommendation to DWPF to replace copper formate with copper nitrate as the catalyst form during precipitate hydrolysis [1]. The SRTC was subsequently requested to formally document the technical bases for the recommendation. A memorandum was issued on August 23, 1993 detailing the activities (and responsible individuals) necessary to address the impact of this change in catalyst form on process compatibility, safety, processibility environmental impact and product glass quality [2]. One of the activities identified was the preparation of a material balance in which copper nitrate is substituted for copper formate and the identification of key comparisons between this material balance and the current Batch 1 sludge -- Late Wash material balance [3].

  3. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

  4. TREATMENT TESTS FOR EX SITU REMOVAL OF CHROMATE & NITRATE & URANIUM (VI) FROM HANFORD (100-HR-3) GROUNDWATER FINAL REPORT

    SciTech Connect (OSTI)

    BECK MA; DUNCAN JB

    1994-01-03

    This report describes batch and ion exchange column laboratory scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}{sup -}) and uranium (present as uranium [VI]) from contaminated Hanford site groundwaters. The technologies investigated include: chemical precipitation or coprecipitation to remove chromate and uranium; and anion exchange to remove chromate, uranium and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan. The method suggested for future study is anion exchange.

  5. Crystal structure of a new amine nitrate: 4-dimethylaminopyridinium nitrate (C{sub 7}H{sub 11}N{sub 2})NO{sub 3}

    SciTech Connect (OSTI)

    Benhassan, D. Rekik, W.; Naïli, H.; Ślepokura, Katarzyna

    2015-12-15

    The title compound (C{sub 7}H{sub 11}N{sub 2})NO{sub 3} (I) was obtained by the slow evaporation method at room temperature. Its crystal structure consists of organic cations (C{sub 7}H{sub 11}N{sub 2}){sup +} and nitrate anions (NO{sub 3}){sup –} linked by two types of hydrogen bonds. Each monoprotonated nitrogen atom, called bifurcated, is engaged in two N–H···O hydrogen bonds with two symmetric oxygen atoms. In addition, the crystal structure stability is established by C–H···O hydrogen bonds that ensure the formation of infinite layers, parallel to (001) plane. These layers are related together through π···π interactions established between aromatic amines.

  6. Energy: elusive solutions

    SciTech Connect (OSTI)

    Velocci, T.

    1980-08-01

    The author states that America's seven-year search for answers to the energy crisis has produced more promise than substance. In fact, the US is even more dependent on imported oil today than it was in 1973 when the Arabs slapped on their economy-busting embargo. US imports have risen from 35% then to 40% now of daily oil consumption. The price of a barrel has doubled since last year and US product is sagging. Synthetic fuels from oil shale and coal deposits and conservation are still seen as the only solution to US independence from OPEC nations. (PSB)

  7. Dirac solutions for quaternionic potentials

    SciTech Connect (OSTI)

    De Leo, Stefano Giardino, Sergio

    2014-02-15

    The Dirac equation is solved for quaternionic potentials, i?V{sub 0} + j?W{sub 0} (V{sub 0}?R , W{sub 0}?C). The study shows two different solutions. The first one contains particle and anti-particle solutions and leads to the diffusion, tunneling, and Klein energy zones. The standard solution is recovered taking the complex limit of this solution. The second solution, which does not have a complex counterpart, can be seen as a V{sub 0}-antiparticle or |W{sub 0}|-particle solution.

  8. Molten salt flux synthesis and structure of the new layered uranyl tellurite, K{sub 4}[(UO{sub 2}){sub 5}(TeO{sub 3}){sub 2}O{sub 5}

    SciTech Connect (OSTI)

    Woodward, Jonathan D.; Albrecht-Schmitt, Thomas E. . E-mail: albreth@auburn.edu

    2005-09-15

    The reaction of UO{sub 3} and TeO{sub 3} with a KCl flux at 800 deg. C for 3 days yields single crystals of K{sub 4}[(UO{sub 2}){sub 5}(TeO{sub 3}){sub 2}O{sub 5}]. The structure of the title compound consists of layered, two-dimensional {sub {infinity}}{sup 2}[(UO{sub 2}){sub 5}(TeO{sub 3}){sub 2}O{sub 5}]{sup 4-} sheets arranged in a stair-like topology separated by potassium cations. Contained within these sheets are one-dimensional uranium oxide ribbons consisting of UO{sub 7} pentagonal bipyramids and UO{sub 6} tetragonal bipyramids. The ribbons are in turn linked by corner-sharing with trigonal pyramidal TeO{sub 3} units to form sheets. The lone-pair of electrons from the TeO{sub 3} groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet nonpolar. The potassium cations form contacts with nearby tellurite units and axial uranyl oxygen atoms. Crystallographic data (193K, MoK{alpha}, {lambda}=0.71073A): triclinic, space group P1-bar , a=6.8514(5)A, b=7.1064(5)A, c=11.3135(8)A, {alpha}=99.642(1){sup o}, {beta}=93.591(1){sup o}, {gamma}=100.506(1){sup o}, V=531.48(7)A{sup 3}, Z=1,R(F)=4.19% for 149 parameters and 2583 reflections with I>2{sigma}(I)

  9. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    SciTech Connect (OSTI)

    Simpson, Philippa J.L.; Codd, Rachel; School of Medical Sciences and Bosch Institute, University of New South Wales, New South Wales 2006

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. Black-Right-Pointing-Pointer Protein homology model of NapA from S. gelidimarina and mesophilic homologue. Black-Right-Pointing-Pointer Six amino acid residues identified as lead candidates governing NapA cold adaptation. Black-Right-Pointing-Pointer Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap{sub Sgel}) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap{sub Sput}) was examined at varied temperature. Irreversible deactivation of Nap{sub Sgel} and Nap{sub Sput} occurred at 54.5 and 65 Degree-Sign C, respectively. When Nap{sub Sgel} was preincubated at 21-70 Degree-Sign C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 Degree-Sign C, which suggested that Nap{sub Sgel} was poised for optimal catalysis at modest temperatures and, unlike Nap{sub Sput}, did not benefit from thermally-induced refolding. At 20 Degree-Sign C, Nap{sub Sgel} reduced selenate at 16% of the rate of nitrate reduction. Nap{sub Sput} did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap{sub Sgel} that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap{sub Sgel} cold-adapted phenotype. Protein homology modeling of Nap{sub Sgel} using a

  10. Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant

    SciTech Connect (OSTI)

    Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.

    1996-09-01

    The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are the MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.

  11. Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Paticulate Organic Nitrates

    SciTech Connect (OSTI)

    Bruns, Emily; Perraud, Veronique; Zelenyuk, Alla; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Imre, D.; Finlayson-Pitts, Barbara J.; Alexander, M. L.

    2010-02-01

    While multifunctional organic nitrates are formed during the atmospheric oxidation of volatile organic compounds, relatively little is known about their signatures in particle mass spectrometers. High resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was applied to NH4NO3, NaNO3 and isosorbide 5-mononitrate (IMN) particles, and to secondary organic aerosol (SOA) from NO3 radical reactions at 22 C and 1 atm in air with and pinene, 3-carene, limonene and isoprene. For comparison, single particle laser ablation mass spectra (SPLAT II) were also obtained for IMN and SOA from the pinene reaction. The mass spectra of all particles exhibit significant intensity at m/z 30, and for the SOA, weak peaks corresponding to various organic fragments containing nitrogen [CxHyNzOa]+ were identified using HR-ToF-AMS. The NO+/NO2+ ratios from HR-ToF-AMS were 10-15 for IMN and the SOA from the and pinene, 3-carene and limonene reactions, ~5 for the isoprene reaction, 2.4 for NH4NO3 and 80 for NaNO3. The N/H ratios from HR-ToF-AMS for the SOA were smaller by a factor of 2 to 4 than the -ONO2/C-H ratios measured using FTIR on particles impacted on ZnSe windows. While the NO+/NO2+ ratio may provide a generic indication of organic nitrates under some conditions, specific identification of particulate organic nitrates awaits further development of particle mass spectrometry techniques.

  12. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOE Patents [OSTI]

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  13. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  14. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    SciTech Connect (OSTI)

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  15. Suntech Energy Solutions Formerly EI Solutions | Open Energy...

    Open Energy Info (EERE)

    Place: Pasadena, California Zip: 91103 Sector: Solar Product: A California-based solar power systems integrator and installer. References: Suntech Energy Solutions...

  16. A study of the organic emission from a turbocharged diesel engine running on 12 percent hexyl nitrate dissolved in ethanol

    SciTech Connect (OSTI)

    Walde, N.; Westerholm, R.; Persson, K.-A.

    1984-01-01

    A highly rated turbocharged diesel engine adapted for an alternative fuel based on ethanol and hexyl nitrate has been investigated with respect to the emission of organic compounds in the exhausts. The adaption involves: ignition nozzles with larger holes, a change of injection timing and more fuel injected per stroke. Emissions were measured at four different driving modes ie, 1, 8, 10 and 12 respectively, in the California Cycle. The exhaust composition are different compared to conventional diesel emissions. The main part of the organic pollutants consists of unburned ethanol and hexyl nitrate, acetaldehyde being the most abundant aldehyde.

  17. A literature review of radiolytic gas generation as a result of the decomposition of sodium nitrate wastes

    SciTech Connect (OSTI)

    Kasten, J.L.

    1991-01-01

    The objective of this literature review is to determine expected chemical reactions and the gas generation associated with radiolytic decomposition of radioactive sodium nitrate wastes such as the wastes stored in the Melton Valley Storage Tanks (MVST) at Oak Ridge National Laboratory (ORNL). The literature survey summarizes expected chemical reactions and identifies the gases expected to be generated as a result of the radiolytic decomposition. The literature survey also identifies G values, which are the expression for radiation chemical yields as molecules of gas formed per 100 eV of absorbed energy, obtained from experimental studies of the radiolytic decomposition of water and sodium nitrate. 2 tabs., 32 refs.

  18. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    SciTech Connect (OSTI)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.; Silvers, Kurt L.; Baker, Aaron B.; Gano, Susan R.; Thornton, Brenda M.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantify the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.

  19. Better Buildings Residential Program Solution Center Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration Better Buildings Residential Program Solution Center Demonstration from the U.S. Department of Energy. Solution Center Demo (2.8 MB) More Documents & Publications Building Science Solutions … Faster and Better Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center

  20. RECOVERY OF URANIUM FROM PITCHBLENDE

    DOE Patents [OSTI]

    Ruehle, A.E.

    1958-06-24

    The decontamination of uranium from molybdenum is described. When acid solutions containing uranyl nitrate are contacted with ether for the purpose of extracting the uranium values, complex molybdenum compounds are coextracted with the uranium and also again back-extracted from the ether with the uranium. This invention provides a process for extracting uranium in which coextraction of molybdenum is avoided. It has been found that polyhydric alcohols form complexes with molybdenum which are preferentially water-soluble are taken up by the ether extractant to only a very minor degree. The preferred embodiment of the process uses mannitol, sorbitol or a mixture of the two as the complexing agent.

  1. Financing Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing Solutions Financing Solutions Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and tribal governments to invest in clean energy technologies. However, the clean energy puzzle can be daunting, especially when it comes to financing. With that in mind this website aims to provide an overview of financing as it pertains to state, local, and tribal governments who are designing and implementing clean energy financing programs. Learn

  2. Employment Solutions Division (HC-13)

    Broader source: Energy.gov [DOE]

    This division develops and implements innovative HCM business solutions relating to corporate recruiting, organizational and workforce development, workforce and succession planning, talent...

  3. MPower Solutions | Open Energy Information

    Open Energy Info (EERE)

    Dundee,, United Kingdom Zip: DD2 4UH Product: MPower Solutions is one Europe's largest battery manufacturers supplying over 500,000 batteries every month. MPower provides optimised...

  4. SBY Solutions | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: SBY Solutions Place: Israel Zip: 42836 Sector: Solar Product: Solar panel installer, mainly focusing on rooftops. References: SBY...

  5. Extraordinary vacuum black string solutions

    SciTech Connect (OSTI)

    Kim, Hyeong-Chan; Lee, Jungjai

    2008-01-15

    In addition to the boosted static solution there are two other classes of stationary stringlike solutions of the vacuum Einstein equation in (4+1) dimensions. Each class is characterized by three parameters of mass, tension, and momentum flow along the fifth coordinate. We analyze the metric properties of one of the two classes, which was previously assumed to be naked singular, and show that the solution spectrum contains black string and wormhole in addition to the known naked singularity as the momentum flow to mass ratio increases. Interestingly, there does not exist new zero momentum solution in these cases.

  6. Biofuel Solutions | Open Energy Information

    Open Energy Info (EERE)

    developer, which had been developing one plant in Fairmont, Minnesota and another in Wood River, Biofuel Energy LLC took over plant development of Biofuel Solutions' projects in...

  7. DEVELOPMENT Solutions | Open Energy Information

    Open Energy Info (EERE)

    Product: DEVELOPMENT Solutions (DS) supports investors to realise projects with sustainable applications, including in the areas of environment, energy efficiency, water...

  8. Extracting alcohols from aqueous solutions

    DOE Patents [OSTI]

    Compere, Alicia L.; Googin, John M.; Griffith, William L.

    1984-01-01

    Hydrocarbon and surfactants are contacted with a solution of alcohol and water to extract the alcohol into the hydrocarbon-surfactant mixture.

  9. Cleantech Solutions | Open Energy Information

    Open Energy Info (EERE)

    New York Zip: 10023 Region: Northeast - NY NJ CT PA Area Sector: Efficiency Product: Energy efficiency solutions and consumption monitoring systems for buildings Website:...

  10. RWE Solutions | Open Energy Information

    Open Energy Info (EERE)

    RWE Solutions Place: Neu-Isenburg, Germany Zip: 63263 Sector: Solar Product: Germany-based, subsidiary of RWE AG plans, builds and manages energy infrastructure for utilities...

  11. Dow Building Solutions | Open Energy Information

    Open Energy Info (EERE)

    Dow Building Solutions Jump to: navigation, search Name: Dow Building Solutions Place: Midland, MI Website: www.dowbuildingsolutions.com References: Dow Building Solutions1...

  12. Future Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Future Energy Solutions Place: Didcot, United Kingdom Zip: OX11 0QR Product: Future Energy Solutions is a sustainable energy...

  13. Carbon Solutions Group | Open Energy Information

    Open Energy Info (EERE)

    Solutions Group Jump to: navigation, search Name: Carbon Solutions Group Place: Chicago, Illinois Zip: 60601 Sector: Carbon Product: Carbon Solutions Group collaborates with...

  14. ECO Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    ECO Solutions LLC Jump to: navigation, search Name: ECO Solutions, LLC Place: Chatsworth, Georgia Zip: 30705 Product: ECO Solutions operates a biodiesel plant in Georgia with a...

  15. Energy Capital Solutions | Open Energy Information

    Open Energy Info (EERE)

    Capital Solutions Jump to: navigation, search Logo: Energy Capital Solutions Name: Energy Capital Solutions Address: 2651 North Harwood Street, Suite 410 Place: Dallas, Texas Zip:...

  16. Solar Choice Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Choice Solutions Inc Jump to: navigation, search Name: Solar Choice Solutions Inc. Place: Calabasas, California Zip: 91302 Sector: Solar Product: Solar Choice Solutions Inc. is an...

  17. Institute for Environmental Solutions | Open Energy Information

    Open Energy Info (EERE)

    Environmental Solutions Jump to: navigation, search Logo: Institute for Environmental Solutions Name: Institute for Environmental Solutions Address: 761 Newport St. Place: Denver,...

  18. Mechanical Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Mechanical Solutions Inc Jump to: navigation, search Name: Mechanical Solutions Inc Place: New York Product: New York-based contractor. References: Mechanical Solutions Inc1 This...

  19. Chevron Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Chevron Energy Solutions Jump to: navigation, search Logo: Chevron Energy Solutions Name: Chevron Energy Solutions Address: 345 California Street, 18th Floor Place: San Francisco,...

  20. AFV Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Inc Place: Mesa, Arizona Zip: 85210 Product: AFV Solutions is a manufacturer of electric-hybrid buses and energy conversion systems for cars. References: AFV Solutions...

  1. Wind Park Solutions Arcadia | Open Energy Information

    Open Energy Info (EERE)

    Park Solutions Arcadia Jump to: navigation, search Name: Wind Park Solutions Arcadia Place: Big Sandy, Montana Sector: Wind energy Product: JV between Wind Park Solutions America...

  2. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOE Patents [OSTI]

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1998-10-20

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents. 9 figs.

  3. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Zhang, Sheng-Shui (Tucson, AZ); Xu, Kang (Tempe, AZ)

    1998-01-01

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents.

  4. CONCENTRATION AND DECONTAMINATION OF SOLUTIONS CONTAINING PLUTONIUM VALUES BY BISMUTH PHOSPHATE CARRIER PRECIPITATION METHODS

    DOE Patents [OSTI]

    Seaborg, G.T.; Thompson, S.G.

    1960-08-23

    A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.

  5. Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films

    SciTech Connect (OSTI)

    Yeager, J. D.; Chellappa, R.; Singh, S.; Majewski, J.

    2015-06-01

    Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 °C, though we observe small material loss between 60 and 100 °C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is most common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.

  6. Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yeager, J. D.; Chellappa, R.; Singh, S.; Majewski, J.

    2015-06-01

    Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 °C, though we observe small material loss between 60 and 100 °C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is mostmore » common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.« less

  7. Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films

    SciTech Connect (OSTI)

    Yeager, J. D.; Chellappa, R.; Singh, S.; Majewski, J.

    2015-06-01

    Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 C, though we observe small material loss between 60 and 100 C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is most common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.

  8. Structural Aspects of Hydrogen Bonding with Nitrate and Sulfate: Design Criteria for Polyalcohol Hosts

    SciTech Connect (OSTI)

    Hay, Benjamin P.; Dixon, David A.; Lumetta, Gregg J.; Vargas, Rubicelia; Garza, Jorge

    2004-01-01

    Organic hosts for oxyanion complexation can be constructed by combining two or more hydrogen bonding sites. The deliberate design of architectures for such hosts requires knowledge of the optimal geometry for the hydrogen bonds formed between the host and the guest. Important structural parameters include the O--H distance, the O--H-D angle, the X-O--H angle, and the X-O--H-D dihedral angle (H-D=hydrogen bond donor, X=any atom). This information can be obtained through the analysis of hydrogen bonding observed in crystal structures and electronic structure calculations on simple gas-phase complexes. In this chapter, we present an analysis of hydrogen bonding structural parameters for alcohol hydrogen donors and the oxygen atom acceptors in nitrate and sulfate.

  9. FLUIDIZED BED STEAM REFORMING TECHNOLOGY FOR ORGANIC AND NITRATE SALT SUPERNATE

    SciTech Connect (OSTI)

    Jantzen, C; Michael02 Smith, M

    2007-03-30

    About two decades ago a process was developed at the Savannah River Site (SRS) to remove Cs137 from radioactive high level waste (HLW) supernates so the supernates could be land disposed as low activity waste (LAW). Sodium tetraphenylborate (NaTPB) was used to precipitate Cs{sup 137} as CsTPB. The flowsheet called for destruction of the organic TPB by acid hydrolysis so that the Cs{sup 137} enriched residue could be mixed with other HLW sludge, vitrified, and disposed of in a federal geologic repository. The precipitation process was demonstrated full scale with actual HLW waste and a 2.5 wt% Cs137 rich precipitate containing organic TPB was produced admixed with 240,000 gallons of salt supernate. Organic destruction by acid hydrolysis proved to be problematic and other disposal technologies were investigated. Fluidized Bed Steam Reforming (FBSR), which destroys organics by pyrolysis, is the current baseline technology for destroying the TPB and the waste nitrates prior to vitrification. Bench scale tests were designed and conducted at the Savannah River National Laboratory (SRNL) to reproduce the pyrolysis reactions. The formation of alkali carbonate phases that are compatible with DWPF waste pre-processing and vitrification were demonstrated in the bench scale tests. Test parameters were optimized for a pilot scale FBSR demonstration that was performed at the SAIC Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003. An engineering scale demonstration was completed by THOR{reg_sign} Treatment Technologies (TTT) and SRNL in 2006 at the Hazen Research, Inc. test facility in Golden, CO. The same mineral carbonate phases, the same organic destruction (>99.99%) and the same nitrate/nitrite destruction (>99.99%) were produced at the bench scale, pilot scale, and engineering scale although different sources of carbon were used during testing.

  10. THE SENSITIVITY OF CARBON STEELS' SUSCEPTIBILITY TO LOCALIZED CORROSION TO THE PH OF NITRATE BASED NUCLEAR WASTES

    SciTech Connect (OSTI)

    BOOMER KD

    2010-01-14

    The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production, which is stored in 177 underground storage tanks. The tanks will be in use until waste processing operations are completed. The wastes tend to be high pH (over 10) and nitrate based. Under these alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However, the presence of nitrate and other aggressive species, can lead to pitting and stress corrosion cracking. This work is a continuation of previous work that investigated the propensity of steels to suffer pitting and stress corrosion cracking in various waste simulants. The focus of this work is an investigation of the sensitivity of the steels' pitting and stress corrosion cracking susceptibility tosimulant pH. Previous work demonstrated that wastes that are high in aggressive nitrate and low in inhibitory nitrite are susceptible to localized corrosion. However, the previous work involved wastes with pH 12 or higher. The current work involves wastes with lower pH of 10 or 11. It is expected that at these lower pHs that a higher nitrite-to-nitrate ratio will be necessary to ensure tank integrity. This experimental work involved both electrochemical testing, and slow strain rate testing at either the free corrosion potential or under anodic polarization. The results of the current work will be discussed, and compared to work previously presented.

  11. Draft Genome Sequence for Microbacterium laevaniformans Strain OR221, a Bacterium Tolerant to Metals, Nitrate, and Low pH

    SciTech Connect (OSTI)

    Brown, Steven D; Palumbo, Anthony Vito; Panikov, Nikolai; Ariyawansa, Thilini; Klingeman, Dawn Marie; Johnson, Courtney M; Land, Miriam L; Utturkar, Sagar M; Epstein, Slava

    2012-01-01

    Microbacterium laevaniformans strain OR221 was isolated from subsurface sediments obtained from the Field Research Center (FRC) in Oak Ridge, TN. It was characterized as a bacterium tolerant to heavy metals such as uranium, nickel, cobalt, cadmium, as well as nitrate and low pH. We present its draft genome sequence.

  12. Iron-stabilized nanocrystalline ZrO{sub 2} solid solutions: Synthesis by combustion and thermal stability

    SciTech Connect (OSTI)

    Legorreta Garcia, Felipe; Resende, Valdirene Gonzaga de; De Grave, Eddy; Peigney, Alain; Barnabe, Antoine; Laurent, Christophe

    2009-06-03

    The synthesis of Fe{sup 3+}-stabilized zirconia by the nitrate/urea combustion route was investigated. Using several characterization techniques, including X-ray diffraction, field-emission-gun scanning electron microscopy and notably Moessbauer spectroscopy, it was possible to determine the appropriate amount of urea that allows to obtain a totally stabilized Zr{sub 0.9}Fe{sub 0.1}O{sub 1.95} solid solution. The nanocrystalline zirconia solid solution is mostly tetragonal, but the presence of the cubic phase could not be ruled out. An in-depth study of the thermal stability in air showed that the Fe{sup 3+} solubility in the stabilized solid solution starts to decrease at about 875 deg. C which results in the formation of hematite (possibly containing some Zr{sup 4+}) at the surface of the zirconia grains and further provokes the progressive transformation into the monoclinic zirconia phase.

  13. Conference Agenda: Residential Energy Efficiency Solutions 2012...

    Office of Environmental Management (EM)

    Conference Agenda: Residential Energy Efficiency Solutions 2012 Conference Agenda: Residential Energy Efficiency Solutions 2012 Presents conference agenda including a general ...

  14. Uranium fate in Hanford sediment altered by simulated acid waste solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gartman, Brandy N.; Qafoku, Nikolla P.; Szecsody, James E.; Kukkadapu, Ravi K.; Wang, Zheming; Wellman, Dawn M.; Truex, Michael J.

    2015-07-31

    Many aspects of U(VI) behavior in sediments that are previously exposed to acidic waste fluids for sufficiently long times to induce significant changes in pH and other physical, mineralogical and chemical properties, are not well documented in the literature. For this reason, we conducted a series of macroscopic batch experiments combined with a variety of bulk characterization studies (Mössbauer and laser spectroscopy), micro-scale inspections (µ-XRF), and molecular scale interrogations (XANES) with the objectives to: i) determine the extent of U(VI) partitioning to Hanford sediments previously exposed to acidic waste simulants (pH = 2 and pH = 5) and under neutralmore » conditions (pH = 8) at varying background solution concentrations (i.e., NaNO3); ii) determine micron-scale solid phase associated U valence state and phase identity; and iii) provide information for a plausible conceptual model of U(VI) attenuation under waste plume acidic conditions. The results of the batch experiments showed that the acid pre-treated sediment had high affinity for aqueous U(VI), which was removed from solution via two pH dependent and apparently different mechanisms (adsorption at pH = 2 and precipitation at pH = 5). The micro-scale inspections and XANES analyses confirmed that high concentration areas were rich mainly in U(VI), demonstrating that most of the added U(VI) was not reduced to U(IV). The laser spectroscopy data showed that uranyl phosphates {e.g. metaautunite [Ca(UO2)2(PO4)2•10-12H2O] and phosphuranylite [KCa(H3O)3(UO2)7(PO4)4O4•8(H2O)]} were present in the sediments. They also showed clear differences between the U bearing phases in the experiments conducted in the presence or absence of air. As a result, the data generated from these experiments will help in a better understanding of the reactions and processes that have a significant effect and/or control U mobility.« less

  15. Uranium fate in Hanford sediment altered by simulated acid waste solutions

    SciTech Connect (OSTI)

    Gartman, Brandy N.; Qafoku, Nikolla P.; Szecsody, James E.; Kukkadapu, Ravi K.; Wang, Zheming; Wellman, Dawn M.; Truex, Michael J.

    2015-07-31

    Many aspects of U(VI) behavior in sediments that are previously exposed to acidic waste fluids for sufficiently long times to induce significant changes in pH and other physical, mineralogical and chemical properties, are not well documented in the literature. For this reason, we conducted a series of macroscopic batch experiments combined with a variety of bulk characterization studies (Mössbauer and laser spectroscopy), micro-scale inspections (µ-XRF), and molecular scale interrogations (XANES) with the objectives to: i) determine the extent of U(VI) partitioning to Hanford sediments previously exposed to acidic waste simulants (pH = 2 and pH = 5) and under neutral conditions (pH = 8) at varying background solution concentrations (i.e., NaNO3); ii) determine micron-scale solid phase associated U valence state and phase identity; and iii) provide information for a plausible conceptual model of U(VI) attenuation under waste plume acidic conditions. The results of the batch experiments showed that the acid pre-treated sediment had high affinity for aqueous U(VI), which was removed from solution via two pH dependent and apparently different mechanisms (adsorption at pH = 2 and precipitation at pH = 5). The micro-scale inspections and XANES analyses confirmed that high concentration areas were rich mainly in U(VI), demonstrating that most of the added U(VI) was not reduced to U(IV). The laser spectroscopy data showed that uranyl phosphates {e.g. metaautunite [Ca(UO2)2(PO4)2•10-12H2O] and phosphuranylite [KCa(H3O)3(UO2)7(PO4)4O4•8(H2O)]} were present in the sediments. They also showed clear differences between the U bearing phases in the experiments conducted in the presence or absence of air. As a result, the data generated from these experiments will help in a better understanding of the reactions and

  16. l[nterial &oratory the New York h'

    Office of Legacy Management (LM)

    re- ceive and possess 25 gram3 of umnium (20 percent enrichment in uwnium 235) in the form of uranyl nitrate, for radiation chemistry osperiments. MalZnckrodt Chanical1Vork.q St. ...

  17. CRITICALITY SAFETY OF PROCESSING SALT SOLUTION AT SRS

    SciTech Connect (OSTI)

    Stephens, K; Davoud Eghbali, D; Michelle Abney, M

    2008-01-15

    High level radioactive liquid waste generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site has been stored as 36 million gallons in underground tanks. About ten percent of the waste volume is sludge, composed of insoluble metal hydroxides primarily hydroxides of Mn, Fe, Al, Hg, and most radionuclides including fission products. The remaining ninety percent of the waste volume is saltcake, composed of primarily sodium (nitrites, nitrates, and aluminates) and hydroxides. Saltcakes account for 30% of the radioactivity while the sludge accounts for 70% of the radioactivity. A pilot plant salt disposition processing system has been designed at the Savannah River Site for interim processing of salt solution and is composed of two facilities: the Actinide Removal Process Facility (ARPF) and the Modular Caustic Side Solvent Extraction Unit (MCU). Data from the pilot plant salt processing system will be used for future processing salt at a much higher rate in a new salt processing facility. Saltcake contains significant amounts of actinides, and other long-lived radioactive nuclides such as strontium and cesium that must be extracted prior to disposal as low level waste. The extracted radioactive nuclides will be mixed with the sludge from waste tanks and vitrified in another facility. Because of the presence of highly enriched uranium in the saltcake, there is a criticality concern associated with concentration and/or accumulation of fissionable material in the ARP and MCU.

  18. Precipitation pathways for ferrihydrite formation in acidic solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Mengqiang; Khalid, Syed; Frandsen, Cathrine; Wallace, Adam F.; Legg, Benjamin; Zhang, Hengzhong; Morup, Steen; Banfield, Jillian F.; Waychunas, Glenn A.

    2015-10-03

    In this study, iron oxides and oxyhydroxides form via Fe3+ hydrolysis and polymerization in many aqueous environments, but the pathway from Fe3+ monomers to oligomers and then to solid phase nuclei is unknown. In this work, using combined X-ray, UV–vis, and Mössbauer spectroscopic approaches, we were able to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H2O)63+, μ-oxo aquo dimers and ferrihydrite, and that with time, the μ-oxo dimer decreases while the othermore » two species increase in their concentrations. No larger Fe oligomers were detected. Given that the structure of the μ-oxo dimer is incompatible with those of all Fe oxides and oxyhydroxides, our results suggest that reconfiguration of the μ-oxo dimer structure occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process.« less

  19. Chitosan sorbents for platinum sorption from dilute solutions

    SciTech Connect (OSTI)

    Guibal, E.; Larkin, A.; Vincent, T.; Tobin, J.M.

    1999-10-01

    Chitosan has proved efficient at removing platinum in dilute effluents. The maximum uptake capacity reaches 300 mg/g (almost 1.5 mmol/g). The optimum pH for sorption is pH 2. A glutaraldehyde cross-linking pretreatment is necessary to stabilize the biopolymer in acidic solutions. Sorption isotherms have been studied as a function of pH, sorbent particle size, and the cross-linking ratio. Surprisingly, the extent of the cross-linking (determined by the concentration of the cross-linking agent in the treatment bath) has no significant influence on uptake capacity. Competitor anions such as chloride or nitrate induce a large decrease in the sorption efficiency. Sorption kinetics show also that uptake rate is not significantly changed by increasing either the cross-linking ratio or the particle size of the sorbent. Mass transfer rates are significantly affected by the initial platinum concentration and by the conditioning of the biopolymer. Gel-bead conditioning appears to reduce the sorption rate. While for molybdate and vanadate ions, mass transfer was governed by intraparticle mass transfer, for platinum, both external and intraparticle diffusion control the uptake rate. In contrast with the former ions, platinum does not form polynuclear hydrolyzed species, which are responsible for steric hindrance of diffusion into the polymer network.

  20. Sunflower Solutions | Open Energy Information

    Open Energy Info (EERE)

    tracking systems maker for PV modules targeted at installations in the developing world. References: Sunflower Solutions1 This article is a stub. You can help OpenEI by...

  1. Cold Climate Building Enclosure Solutions

    Office of Scientific and Technical Information (OSTI)

    Enclosure Solutions Jan Kosny, Ali Fallahi, and Nitin Shukla Fraunhofer CSE January 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the...

  2. Comprehensive Water-Efficiency Solutions

    SciTech Connect (OSTI)

    McMordie Stoughton, Kate

    2015-07-15

    Energy performance contracts can be an effective way to integrate comprehensive water-efficient technologies and solutions into energy efficiency projects. Current practices often miss key opportunities to incorporate a full suite of water measures primarily because a comprehensive approach is not taken in the assessment. This article provides information on how to develop a comprehensive water project that leads to innovative solutions and potential for large water reduction.

  3. Cosmological solution moduli of bigravity

    SciTech Connect (OSTI)

    Yılmaz, Nejat Tevfik

    2015-09-29

    We construct the complete set of metric-configuration solutions of the ghost-free massive bigravity for the scenario in which the g−metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW) one, and the interaction Lagrangian between the two metrics contributes an effective ideal fluid energy-momentum tensor to the g-metric equations. This set corresponds to the exact background cosmological solution space of the theory.

  4. Performance testing accountability measurements

    SciTech Connect (OSTI)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    1993-12-31

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay) measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.

  5. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    SciTech Connect (OSTI)

    Barney, G.S.

    1996-04-26

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 {degree}C, 30 {degree}C, 40 {degree}C, and 50 {degree}C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  6. Mineral Dissolution and Secondary Precipitation on Quartz Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity

    SciTech Connect (OSTI)

    Wang, Guohui; Um, Wooyong

    2012-11-23

    Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energys Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.

  7. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    SciTech Connect (OSTI)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-06-08

    The nitrate (NO??) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO?? derived from at NO?? signal with ??N averaging 4.8 1.0 (standard error of the mean) and ??O averaging 70.2 1.7. In active layer pore waters, NO?? primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average ??N and ??O of NO?? from high-centered polygons were 0.5 1.1 and 4.1 0.6, respectively. When compared to the ??N of reduced nitrogen (N) sources, and the ??O of soil pore waters, it was evident that NO?? in high-centered polygons was primarily from microbial nitrification. Permafrost NO?? had ??N ranging from approximately 6 to 10, similar to atmospheric and microbial NO??, and highly variable ??O ranging from approximately 2 to 38. Permafrost ice wedges contained a significant atmospheric component of NO??, while permafrost textural ice contained a greater proportion of microbially derived NO??. Large-scale permafrost thaw in this environment would release NO?? with a ??O signature intermediate to that of atmospheric and microbial NO?. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO?? dual isotope technique in tundra environments, attribution of NO?? from thawing permafrost will not be straightforward. The NO?? isotopic signature, however, appears useful in identifying NO?? sources in extant permafrost ice.

  8. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  9. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600%C2%B0C with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  10. Solidification of Acidic, High Nitrate Nuclear Wastes by Grouting or Absorption on Silica Gel

    SciTech Connect (OSTI)

    A. K. Herbst; S. V. Raman; R. J. Kirkham

    2004-01-01

    The use of grout and silica gel were explored for the solidification of four types of acidic, high nitrate radioactive wastes. Two methods of grouting were tested: direct grouting and pre-neutralization. Two methods of absorption on silica gel were also tested: direct absorption and rotary spray drying. The waste simulant acidity varied between 1 N and 12 N. The waste simulant was neutralized by pre-blending calcium hydroxide with Portland cement and blast furnace slag powders prior to mixing with the simulant for grout solidification. Liquid sodium hydroxide was used to partially neutralize the simulant to a pH above 2 and then it was absorbed for silica gel solidification. Formulations for each of these methods are presented along with waste form characteristics and properties. Compositional variation maps for grout formulations are presented which help determine the optimum "recipe" for a particular waste stream. These maps provide a method to determine the proportions of waste, calcium hydroxide, Portland cement, and blast furnace slag that provide a waste form that meets the disposal acceptance criteria. The maps guide researchers in selecting areas to study and provide an operational envelop that produces acceptable waste forms. The grouts both solidify and stabilize the wastes, while absorption on silica gel produces a solid waste that will not pass standard leaching procedures (TCLP) if required. Silica gel wastes can be made to pass most leach tests if heated to 600C.

  11. EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container Response Instructions

    Office of Environmental Management (EM)

    EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container Response Instructions Effective Date: 5/28/2014 The Responsible Manager has determined that the following organizations' review/concurrence is required for the initial document and for major revisions a same type and level review is required. Review documentation is contained in the Document History File: EWMO Engineering LANL TRU Programs - Shipping and Safe Storage Disposition LANL TRU Programs - Drum Disposition Project LANL

  12. Electrodialysis operation with buffer solution

    DOE Patents [OSTI]

    Hryn, John N.; Daniels, Edward J.; Krumdick, Greg K.

    2009-12-15

    A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.

  13. Building America Solution Center Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar July 22, 2015 Put New Tools and Content on the Building America Solution Center to Work for You! CHRISSI ANTONOPOULOS Pacific NW National Laboratory 2 | Building America eere.energy.gov 2015 has been an exciting year for the Building America Solution Center! Along with continuous content additions, there are many new features we'd like to share with you: * EPA Indoor airPLUS checklist manager * A new sales tool * Over 80 videos * Existing homes expanded content and navigation Overview 3

  14. TrueWind Solutions | Open Energy Information

    Open Energy Info (EERE)

    TrueWind Solutions Jump to: navigation, search Name: TrueWind Solutions Place: Albany, NY Website: www.awstruepower.com References: TrueWind Solutions1 Information About...

  15. Recovery of uranium from dilute solution using liquid emulsion membrane system

    SciTech Connect (OSTI)

    Mukhopadhyay, S.; Ghosh, S.K.; Juvekar, V.A.

    2008-07-01

    The liquid emulsion membrane (LEM) technique has great potential for application in the nuclear industry for large interfacial area, low consumption of organics, and high recovery from dilute streams. A LEM system composed DEHPA-kerosene-SPAN80-HNO{sub 3} has been developed for recovery of uranium from dilute nitrate solution, which gives 98% extraction and 88% stripping in a single stage. An attempt has been made to understand the mechanism of the LEM process, in which phenomena like per-traction, occlusion, swelling, and leakage occur simultaneously. The effect of various parameters on these phenomena has been described with a mathematical model, which is able to explain the experimental findings. (authors)

  16. Funding Opportunity Webinar - Advancing Solutions to Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Funding Opportunity Webinar - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings View ...

  17. Advanced Hydro Solutions | Open Energy Information

    Open Energy Info (EERE)

    Hydro Solutions Jump to: navigation, search Name: Advanced Hydro Solutions Place: Fairlawn, Ohio Zip: 44333 Sector: Hydro Product: Ohio-based company seeking to develop...

  18. Island Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    search Name: Island Energy Solutions Place: Kailua, Hawaii Zip: 96734 Product: Island Energy Solutions, Inc. is an electrical contracting company, based out of Kailua, Oahu,...

  19. Understanding and Manipulating Solution Chemistry of Polysulfides...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding and Manipulating Solution Chemistry of Polysulfides for Lithium Sulfur Batteries (Top)Fundamental details regarding the solution chemistry of polysulfides in organic ...

  20. Freedom Energy Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    Energy Solutions LLC Jump to: navigation, search Name: Freedom Energy Solutions LLC Place: Westminster, Maryland Zip: 21157 Sector: Geothermal energy, Solar Product: Retailer and...

  1. Conservation Resource Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Conservation Resource Solutions Place: Cumming, Georgia Zip: 30040 Sector: Services Product: String representation "Conservation Re ......

  2. Bio Solutions Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Manufacturing Inc Jump to: navigation, search Name: Bio Solutions Manufacturing Inc Place: Las Vegas, Nevada Zip: 89103 Product: Waste-to-energy bioremediation developer....

  3. First Carbon Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: First Carbon Solutions Place: Bethesda, Maryland Product: To be completed... Coordinates: 40.020185, -81.073819 Show Map Loading...

  4. Clean Energy Solutions Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Logo: Clean Energy Solutions Center Name Clean Energy Solutions Center AgencyCompany Organization Clean Energy Ministerial Sector Energy Focus...

  5. Quantum Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Quantum Energy Solutions Place: Rancho Cordova, California Zip: 95742 Product: California-based energy management company that was...

  6. AG Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: AG Solutions Inc. Place: Gladstone, Michigan Product: 10Mgpy biodiesel producer in Gladstone, Michigan. References: AG Solutions Inc.1 This article is a...

  7. Biodiesel Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Inc Jump to: navigation, search Name: Biodiesel Solutions Inc Place: Sparks, Nevada Zip: 89431 Product: Designs and manufactures processing equipment and accessories to...

  8. Challenges and Solutions for Multifamily Modeling | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges and Solutions for Multifamily Modeling Challenges and Solutions for Multifamily Modeling This presentation was delivered at the U.S. Department of Energy Building ...

  9. Officials Establish Training Institute, Creating Enterprise Solution...

    Office of Environmental Management (EM)

    Officials Establish Training Institute, Creating Enterprise Solution for Worker Safety Officials Establish Training Institute, Creating Enterprise Solution for Worker Safety March ...

  10. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf (938.86 KB) ...

  11. Presentation: Better Buildings Residential Program Solution Center...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation: Better Buildings Residential Program Solution Center, from the U.S. Department of Energy's Better Buildings Neighborhood Program, April 2014. Solution Center Overview...

  12. Eco Power Solutions | Open Energy Information

    Open Energy Info (EERE)

    Power Solutions Jump to: navigation, search Name: Eco Power Solutions Place: Quincy, Massachusetts Zip: 2169 Product: Massachusetts-based, energy recovery and emission control...

  13. Eco Sustainable Solutions Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sustainable Solutions Ltd Jump to: navigation, search Name: Eco Sustainable Solutions Ltd Place: Dorset, United Kingdom Zip: BH23 6BG Sector: Biomass Product: Focused on organics...

  14. Smarter Grid Solutions | Open Energy Information

    Open Energy Info (EERE)

    Smarter Grid Solutions Jump to: navigation, search Name: Smarter Grid Solutions Place: United Kingdom Product: String representation "The SGS technol ... the technology." is too...

  15. Reaction Engineering Solutions Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Reaction Engineering Solutions Ltd. Place: Cambridge, United Kingdom Zip: CB4 3QG Product: PUk-based, provider of computational solutions...

  16. Atlantic Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Atlantic Energy Solutions Place: Foxboro, Massachusetts Sector: Efficiency, Renewable Energy Product: Atlantic Energy Solutions provides energy auditing for its customers and...

  17. Technology Market Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Technology & Market Solutions Place: Fairfax Station, Virginia Zip: 22039 Product: A consulting practice concentrating on technological,...

  18. Solution Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    Solution Capital Partners Jump to: navigation, search Name: Solution Capital Partners Place: New York Zip: NY 10036 Product: A New York-based investment firm active in the...

  19. Regional Climate Vulnerabilities and Resilience Solutions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Climate Vulnerabilities and Resilience Solutions Regional Climate Vulnerabilities and Resilience Solutions This interactive map is not viewable in your browser. Please ...

  20. Eco Alternative Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Eco Alternative Energy Solutions Place: Puerto Rico Product: Puerto Rico-based majority owner of joint venture Pevafersa America, which...

  1. Energy Options Solutions | Open Energy Information

    Open Energy Info (EERE)

    Energy Options & Solutions Place: Ann Arbor, Michigan Zip: 48103 Product: Michigan-based alternative energy consultant. References: Energy Options & Solutions1 This article is a...

  2. Duke Energy Generation Services formerly Cinergy Solutions |...

    Open Energy Info (EERE)

    Generation Services formerly Cinergy Solutions Jump to: navigation, search Name: Duke Energy Generation Services (formerly Cinergy Solutions) Place: Cincinatti, Ohio Zip: 45202...

  3. PowerIt Solutions | Open Energy Information

    Open Energy Info (EERE)

    Place: Seattle, Washington Zip: 98104 Product: Powerit Solutions provides energy demand response and demand control solutions for industrial and commercial applications....

  4. M S Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: MS Solutions Place: Burdwan, West Bengal, India Sector: Biomass Product: Burdwan-based biomass cogenration project developer....

  5. Econic Renewable Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Econic Renewable Energy Solutions Jump to: navigation, search Name: Econic Renewable Energy Solutions Place: Norfolk, United Kingdom Zip: NR 105PQ Sector: Renewable Energy Product:...

  6. Renewable Energy Solutions, LLC | Open Energy Information

    Open Energy Info (EERE)

    Solutions, LLC Jump to: navigation, search Name: Renewable Energy Solutions, LLC Place: Fairfield, California Zip: 94534 Region: Bay Area Sector: Services Year Founded: 2008...

  7. International Environmental Solutions IES | Open Energy Information

    Open Energy Info (EERE)

    Environmental Solutions IES Jump to: navigation, search Name: International Environmental Solutions (IES) Place: Romoland, California Zip: 92585 Product: It is an environmentally...

  8. Better Buildings Residential Program Solution Center Demonstration...

    Energy Savers [EERE]

    Residential Program Solution Center Demonstration Better Buildings Residential Program ... Residential Program Solution Center Demonstration from the U.S. Department of Energy. ...

  9. Better Buildings Residential Program Solution Center Demonstration...

    Office of Environmental Management (EM)

    Webinar Better Buildings Residential Program Solution Center Demonstration Webinar Demonstration webinar slides for Better Buildings Residential Program Solution Center, November 19, ...

  10. Enisolar Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Enisolar Energy Solutions Place: Istanbul, Turkey Sector: Wind energy Product: Turkey-based wind, PV, and hybrid system integrator; also...

  11. Guardian Energy Management Solutions | Open Energy Information

    Open Energy Info (EERE)

    Guardian Energy Management Solutions Jump to: navigation, search Name: Guardian Energy Management Solutions Address: 753 Forest Street, Suite 110 Place: Marlborough, Massachusetts...

  12. Atlas Material Testing Solutions | Open Energy Information

    Open Energy Info (EERE)

    Atlas Material Testing Solutions Jump to: navigation, search Name: Atlas Material Testing Solutions Place: Chicago, IL Zip: 60613 Website: atlas-mts.com Coordinates: 41.9529209,...

  13. Global Power Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    Global Power Solutions LLC Jump to: navigation, search Name: Global Power Solutions LLC Place: Colorado Zip: CO 80401 Sector: Geothermal energy Product: String representation...

  14. Ebony Solutions UK | Open Energy Information

    Open Energy Info (EERE)

    Ebony Solutions UK Jump to: navigation, search Name: Ebony Solutions UK Place: Northwich, Cheshire, United Kingdom Zip: CW8 2SX Product: A UK biodiesel manufacturer. References:...

  15. Solar Electric Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    Electric Solutions LLC Jump to: navigation, search Name: Solar Electric Solutions, LLC Place: Woodland Hills, California Zip: 91364 Sector: Solar Product: California-based...

  16. Energy Solutions Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Solutions Co Ltd Jump to: navigation, search Name: Energy Solutions Co Ltd Place: Seoul, Korea (Republic) Sector: Efficiency Product: A Korean builderengineering contractor...

  17. BFC Solutions Limited | Open Energy Information

    Open Energy Info (EERE)

    BFC Solutions Limited Jump to: navigation, search Name: BFC Solutions Limited Place: Taunton, England, United Kingdom Zip: TA1 PEJ Sector: Carbon Product: Somerset-based...

  18. PNE Renewable Solutions JV | Open Energy Information

    Open Energy Info (EERE)

    PNE Renewable Solutions JV Jump to: navigation, search Name: PNE & Renewable Solutions JV Place: Delaware Sector: Wind energy Product: Delaware-based limited liability company and...

  19. EQuilibrium Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    EQuilibrium Solutions Inc Jump to: navigation, search Name: eQuilibrium Solutions Inc Place: Boston, Massachusetts Zip: 2215 Sector: Carbon, Efficiency Product: Boston-based...

  20. Solargen Solutions UK | Open Energy Information

    Open Energy Info (EERE)

    Solargen Solutions UK Jump to: navigation, search Name: Solargen Solutions UK Place: United Kingdom Zip: NP 44 3AS Sector: Renewable Energy, Solar Product: String representation...

  1. Washington TRU Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Washington TRU Solutions Inc Jump to: navigation, search Name: Washington TRU Solutions, Inc. Place: Carlsbad, New Mexico Zip: 88220 Product: New Mexico-based managing and...

  2. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for ...

  3. Solar amp Electric Solutions | Open Energy Information

    Open Energy Info (EERE)

    Electric Solutions Jump to: navigation, search Name: Solar & Electric Solutions Place: Santa Cruz, California Zip: 95062 Sector: Solar Product: Small solar installation firm in...

  4. Global Warming Solutions Inc previously Southern Investments...

    Open Energy Info (EERE)

    Solutions Inc previously Southern Investments Inc Jump to: navigation, search Name: Global Warming Solutions Inc (previously Southern Investments Inc) Place: Houston, Texas...

  5. Consolidated Edison Solutions, Inc. ESCO Qualification Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet Consolidated Edison Solutions, Inc. ESCO Qualification Sheet Document outlines the energy service company (ESCO) qualifications for ConEdison Solutions. PDF icon ces

  6. Nextreme Thermal Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Nextreme Thermal Solutions Inc Jump to: navigation, search Name: Nextreme Thermal Solutions Inc Place: North Carolina Zip: 27709-3981 Product: String representation "Manufactures...

  7. Exchange Reactions Between a Molten Salt and a Solution of Tri...

    Office of Scientific and Technical Information (OSTI)

    LIQUIDS; LITHIUM NITRATES; MAGNESIUM; MAGNESIUM COMPLEXES; MAGNESIUM COMPOUNDS; MERCURY COMPOUNDS; MINERAL ACIDS; MIXING; NICKEL; NICKEL COMPLEXES; NICKEL COMPOUNDS; ...

  8. 2016 Midwest Energy Solutions Conference

    Broader source: Energy.gov [DOE]

    Once a year, MEEA invites all energy stakeholders to gather at our annual Midwest Energy Solutions Conference to raise awareness and reinforce the importance of energy efficiency in the Midwest. MES is about celebrating accomplishments in energy efficiency, as well as laying out the efficiency program and policy landscape for the coming year.

  9. 2016 Midwest Energy Solutions Conference

    Broader source: Energy.gov [DOE]

    The Midwest Energy Efficiency Alliance invites all energy stakeholders to gather at the annual Midwest Energy Solutions Conference to raise awareness and reinforce the importance of energy efficiency in the Midwest. This annual conference is about celebrating accomplishments and inspirations in energy efficiency, as well as laying out the efficiency program and policy landscape for the coming year.

  10. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    SciTech Connect (OSTI)

    Pierce, R. A.

    2012-03-12

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into the H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. At 25 C, for 6 M HNO{sub 3}, 11 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2.5 g/L and 0.8 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}. The solubility of Gd in 4 M HNO{sub 3} with 0.15 M oxalate at 10 C is about 1.5 g/L. For 6 M HNO{sub 3} with 0.15 M oxalate, the solubility of Gd at 10 C

  11. Solution based temperature of Perovskite-type oxide films and powders

    SciTech Connect (OSTI)

    McHale, J.M. Jr.

    1995-04-01

    Conventional solid state reactions are diffusion limited processes that require high temperatures and long reaction times to reach completion. In this work, several solution based methods were utilized to circumvent this diffusion limited reaction and achieve product formation at lower temperatures. The solution methods studied all have the common goal of trapping the homogeneity inherent in a solution and transferring this homogeneity to the solid state, thereby creating a solid atomic mixture of reactants. These atomic mixtures can yield solid state products through {open_quotes}diffusionless{close_quotes} mechanisms. The effectiveness of atomic mixtures in solid state synthesis was tested on three classes of materials, varying in complexity. A procedure was invented for obtaining the highly water soluble salt, titanyl nitrate, TiO(NO{sub 3}){sub 2}, in crystalline form, which allowed the production of titanate materials by freeze drying. The freeze drying procedures yielded phase pure, nanocrystalline BaTiO{sub 3} and the complete SYNROC-B phase assemblage after ten minute heat treatments at 600{degrees}C and 1100{degrees}C, respectively. Two novel methods were developed for the solution based synthesis of Ba{sub 2}YCu{sub 3}O{sub 7-x} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}. Thin and thick films of Ba{sub 2}YCu{sub 3}O{sub 7-x} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} were synthesized by an atmospheric pressure, chemical vapor deposition technique. Liquid ammonia solutions of metal nitrates were atomized with a stream of N{sub 2}O and ignited with a hydrogen/oxygen torch. The resulting flame was used to coat a substrate with superconducting material. Bulk powders of Ba{sub 2}YCu{sub 3}O{sub 7-x} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} were synthesized through a novel acetate glass method. The materials prepared were characterized by XRD, TEM, SEM, TGA, DTA, magnetic susceptibility and electrical resistivity measurements.

  12. Solution based synthesis of perovskite-type oxide films and powders

    SciTech Connect (OSTI)

    McHale, J.M. Jr.

    1995-01-01

    Conventional solid state reactions are diffusion limited processes that require high temperatures and long reaction times to reach completion. In this work, several solution based methods were utilized to circumvent this diffusion limited reaction and achieve product formation at lower temperatures. The solution methods studied all have the common goal of trapping the homogeneity inherent in a solution and transferring this homogeneity to the solid state, thereby creating a solid atomic mixture of reactants. These atomic mixtures can yield solid state products through diffusionless mechanisms. The effectiveness of atomic mixtures in solid state synthesis was tested on three classes of materials, varying in complexity. A procedure was invented for obtaining the highly water soluble salt, titanyl nitrate, TiO(NO{sub 3}){sub 2}, in crystalline form, which allowed the production of titanate materials by freeze drying. The freeze drying procedures yielded phase pure, nanocrystalline BaTiO{sub 3} and the complete SYNROC-B phase assemblage after ten minute heat treatments at 600 C and 1,100 C, respectively. Two novel methods were developed for the solution based synthesis of Ba{sub 2}YCu{sub 3}O{sub 7{minus}x} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}. Thin and thick films of Ba{sub 2}YCu{sub 3}O{sub 7{minus}x} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} were synthesized by an atmospheric pressure, chemical vapor deposition technique. Liquid ammonia solutions of metal nitrates were atomized with a stream of N{sub 2}O and ignited with a hydrogen/oxygen torch. The resulting flame was used to coat a substrate with superconducting material. Bulk powders of Ba{sub 2}YCu{sub 3}O{sub 7{minus}x} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} were synthesized through a novel acetate glass method. The materials prepared were characterized by XRD, TEM, SEM, TGA, DTA, magnetic susceptibility and electrical resistivity measurements.

  13. Analysis of the Fisher solution

    SciTech Connect (OSTI)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2010-01-15

    We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the 'scalar charge' {Sigma}. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,{Sigma}) maps the exterior region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its 'big bang' and 'big crunch'. The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are 'dual to the horizon'.

  14. Description of Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer

    SciTech Connect (OSTI)

    Prakash, Om; Green, Stefan; Jasrotia, Puja; Overholt, Will; Canion, Andy; Watson, David B; Brooks, Scott C; Kostka,

    2012-01-01

    Bacterial strains 2APBS1T and 116-2 were isolated from the subsurface of a nuclear legacy waste site where sediments are co-contaminated with large amounts of acidity, nitrate, metal radionuclides and other heavy metals. A combination of physiological and genetic assays indicated that these strains represent the first members of the Rhodanobacter genus shown to be capable of complete denitrification. Cells of strain 2APBS1T and 116-2 were Gram negative, non-spore-forming, rods, 3-5 micro;m long and 0.25-0.5 m in diameter. The isolates were facultative anaerobes, and had temperature and pH optima for growth at 30 C and pH 6.5, respectively, and could tolerate up to 2.0 % NaCl, though growth improved in its absence. Strains 2APBS1T and 116-2 contained fatty acid profiles and 100 % Q-8 ubiquinone, that are characteristic features of the genus Rhodanobacter. Although strains 2APBS1T and 116-2 share high SSU rRNA gene sequence similarity to R. thiooxydans (>99%), DNA-DNA hybridization values were substantially below the 70% threshold used to designate novel species. Thus, based on genotypic, phylogenetic, chemotaxonomic and physiological differences, strains 2APBS1T and 116-2 are considered to represent a novel species of the genus Rhodanobacter, for which the name Rhodanobacter denitrificans sp. nov is proposed. The type strain is 2APBS1T (=DSM 23569T =JCM 17641T). Strain 116-2 (=DSM 24678 = JCM 17642) is a reference strain.

  15. Nonphosphate Degradation Products of Tributyl Phosphate and Their Reactivities in Purex Media Under Extreme Conditions

    SciTech Connect (OSTI)

    Tashiro, Yoshikazu; Kodama, Ryuji; Sugai, Hiroshi; Suzuki, Katsuhiko; Matsuoka, Shingo

    2000-01-15

    The chemical degradation of tributyl phosphate (TBP) in liquid systems, where TBP was in contact with aqueous solutions containing nitric acid and/or uranyl nitrate, was studied experimentally to clarify the mechanisms of the formation and successive reactions of nonphosphate products under atmospheric pressure. Butyl nitrate, propionic acid, acetic acid, butric acid, and butyl alcohol were formed as the nonphosphate butyl products derived from the butyl-groups of TBP in an open system. The total amount of these products almost equals the amount of the major intermediate phosphate products reduced, i.e., di- and monobutyl phosphates and phosphoric acid. Butyl alcohol was found to be the precursor of the other nonphosphate products.Even when the extremely degraded solvent was further contacted with 10 M nitric acid at 90 deg. C, no significant heat evolution was observed at atmospheric pressure. Only butyl alcohol changed into carboxylic acids by exothermic oxidative reactions.

  16. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOE Patents [OSTI]

    Schulz, W.W.

    1959-08-01

    The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.

  17. Energy solutions?Director Eric Isaacs

    ScienceCinema (OSTI)

    Eric ISaacs

    2013-06-05

    Argonne's Director Eric Isaacs talks about the laboratory's efforts for creating new, clean energy solutions.

  18. Fissile solution dynamics: Student research

    SciTech Connect (OSTI)

    Hetrick, D.L.

    1994-09-01

    There are two research projects in criticality safety at the University of Arizona: one in dynamic simulation of hypothetical criticality accidents in fissile solutions, and one in criticality benchmarks using transport theory. We have used the data from nuclear excursions in KEWB, CRAC, and SILENE to help in building models for solution excursions. An equation of state for liquids containing gas bubbles has been developed and coupled to point-reactor dynamics in an attempt to predict fission rate, yield, pressure, and kinetic energy. It appears that radiolytic gas is unimportant until after the first peak, but that it does strongly affect the shape of the subsequent power decrease and also the dynamic pressure.

  19. COMPOSITION OF VAPORS FROM BOILING NITRIC ACID SOLUTIONS B A

    Office of Scientific and Technical Information (OSTI)

    ... Concentrated nitric acid may react with ethanol to form ethyl nitrate which is highly ... By adding ethanol to the sample as suggested by the work of L a m b , Carlton, and M e l d ...

  20. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  1. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  2. Electrochromic salts, solutions, and devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  3. Clean Energy Solutions Center (Presentation)

    SciTech Connect (OSTI)

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  4. Functionalized polymers for binding to solutes in aqueous solutions

    DOE Patents [OSTI]

    Smith, Barbara F.; Robison, Thomas W.

    2006-11-21

    A functionalized polymer for binding a dissolved molecule in an aqueous solution is presented. The polymer has a backbone polymer to which one or more functional groups are covalently linked. The backbone polymer can be such polymers as polyethylenimine, polyvinylamine, polyallylamine, and polypropylamine. These polymers are generally water-soluble, but can be insoluble when cross-linked. The functional group can be for example diol derivatives, polyol derivatives, thiol and dithiol derivatives, guest-host groups, affinity groups, beta-diphosphonic acids, and beta-diamides

  5. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources,more » and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.« less

  6. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    SciTech Connect (OSTI)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources, and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.

  7. Microcalorimetric measurement of reaction enthalpies in solutions of uranium and neptunium compounds

    SciTech Connect (OSTI)

    Schreiner, F.; Friedman, A.M.; Richards, R.R.; Sullivan, J.C.

    1984-01-01

    The formation of complexes of uranyl and neptunyl(VI) ions with carbonate and hydrogen carbonate has been studied by titration microcalorimetry. The measurements were carried out with a computer-controlled microcalorimeter which is described in detail. Sample volumes are typically in the range of 1.5 to 2.5 ccm, containing about 0.05 millimole of the ionic species to be studied. The small volume renders the calorimeter useful for the measurement of uncommon and strongly radioactive substances. Enthalpies of reaction were obtained for the formation of the dicarbonato and the tricarbonato uranyl ions in a sulfate medium of ionic strength 1.6. The enthalpies are ..delta..H/sub 2/ = -39.6 +- 1 kJ/mol and -57.5 +- 1.5 kJ/mol, respectively. The titration data for the neptunyl(VI) - carbonate system yield a value of -50 +- 2 kJ/mol for the tricarbonato-neptunyl ion when interpreted in analogy to the uranyl system.

  8. Fluidized Bed Steam Reforming (FBSR) Mineralization for High Organic and Nitrate Waste Streams for the Global Nuclear Energy Partnership (GNEP)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Williams, M.R. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NOx in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 deg. C) compared to vitrification (1150-1300 deg. C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {>=}1000 deg. C. Pollucite mineralization creates secondary aqueous waste streams and NOx. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O. (authors)

  9. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  10. Solvent Modification in Ion-Pair Extraction: Effect on Sodium Nitrate Transport in Nitrobenzene Using a Crown Ether

    SciTech Connect (OSTI)

    Levitskaia, Tatiana G.; Lumetta, Gregg J.

    2005-10-31

    A comparative quantitative analysis of the effect of solvent modifiers on an ion-pair extraction of an inorganic salt by a crown ether was conducted. Two classes of the solvent modifiers that possess electron-pair donor (EPD) or hydrogen-bond donor (HBD) groups were investigated. The equilibrium constants corresponding to the extraction of sodium nitrate into nitrobenzene (NB) employing model neutral host cis-syn-cis-dicyclohexano-18-crown-6 (1) with and without solvent modifier were determined using the SXLSQI computer model. For a series of EPD modifiers—including tri-n-butyl- and tri-phenylphosphate, tri-n-butyl- and tri-phenylphosphine oxide, N,N-di-n-butyl- and N,N-di-phenyl acetamide—the enhancement of the NaNO3 extraction by 1 was found to be dependent on the hydrogen-bond acceptance ability of the modifier quantified by the b solvatochromic parameter. Application of the solvent EPD modifier improved solvation of the sodium ion, lowering the large energy barrier of Na+ partitioning into the extraction phase. A HBD modifier 3,5-di-t-butylphenol 8 that forms strong hydrogen bonds with nitrate anion in NB, exhibited even greater enhancement of the NaNO3 extraction by 1. The determined extraction constants were correlated with the b or a solvatochromic parameters of the solvent modifiers and linear trends were observed. Hydrogen bond interaction between 3,5-di-t-butylphenol 8 and nitrate anion in the presence of the sodium-loaded crown ether in the extraction phases was studied by vibrational spectroscopy. Formation of the simple 1:1 adduct was demonstrated.

  11. Clean Energy Solutions Centers Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Solutions Centers Fact Sheet Clean Energy Solutions Centers Fact Sheet A fact sheet describing the mission of the Clean Energy Solution Center. Clean Energy Solutions ...

  12. Commercial Lighting Solutions Webtool Peer Review Report, Office Solutions

    SciTech Connect (OSTI)

    Beeson, Tracy A.; Jones, Carol C.

    2010-02-01

    The Commercial Lighting Solutions (CLS) project directly supports the U.S. Department of Energys Commercial Building Energy Alliance efforts to design high performance buildings. CLS creates energy efficient best practice lighting designs for widespread use, and they are made available to users via an interactive webtool that both educates and guides the end user through the application of the Lighting Solutions. This report summarizes the peer review of the CLS webtool for offices. The methodology for the peer review process included data collection (stakeholder input), analysis of the comments, and organization of the input into categories for prioritization of the comments against a set of criteria. Based on this process, recommendations were developed for the release of version 2.0 of the webtool at the Lightfair conference in Las Vegas in May 2010. The report provides a list of the top ten most significant and relevant improvements that will be made within the webtool for version 2.0 as well as appendices containing the comments and short-term priorities in additional detail. Peer review comments that are considered high priority by the reviewers and the CLS team but cannot be completed for Version 2.0 are listed as long-term recommendations.

  13. Process for the extraction of technetium from uranium

    DOE Patents [OSTI]

    Gong, Cynthia-May S.; Poineau, Frederic; Czerwinski, Kenneth R.

    2010-12-21

    A spent fuel reprocessing method contacts an aqueous solution containing Technetium(V) and uranyl with an acidic solution comprising hydroxylamine hydrochloride or acetohydroxamic acid to reduce Tc(V) to Tc(II, and then extracts the uranyl with an organic phase, leaving technetium(II) in aqueous solution.

  14. NO3- Coordination in Aqueous Solutions by 15N/14N and 18O/natO Isotopic Substitution: What Can We Learn from Molecular Simulation?

    SciTech Connect (OSTI)

    Chialvo, Ariel A.; Vlcek, Lukas

    2014-12-16

    We explore the deconvolution of the water-nitrate correlations by the first-order difference approach involving neutron diffraction of heavy- and null-aqueous solutions of KNO3 under 14N 15N and natON 18ON substitutions to achieve a full characterization of the first water coordination around the nitrate ion. For that purpose we performed isobaric-isothermal simulations of 3.5m KNO3 aqueous solutions at ambient conditions to generate the relevant radial distribution functions (RDF) required in the analysis (a) to identify the individual partial contributions to the total neutron weighted distribution function, (b) to isolate and assess the contribution of NO3 -!K+ pair formation, (c) to test the accuracy of the NDIS-based coordination calculations and XRDbased assumptions, and (d) to describe the water coordination around both the nitrogen and oxygen sites of the nitrate ion.

  15. Ultrafast studies of solution dynamics

    SciTech Connect (OSTI)

    Woodruff, W.H.; Dyer, R.B.; Callender, R.H.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Fast chemical dynamics generally must be initiated photochemically. This limits the applicability of modern laser methods for following the structural changes that occur during chemical and biological reactions to those systems that have an electronic chromophore that has a significant yield of photoproduct when excited. This project has developed a new and entirely general approach to ultrafast initiation of reactions in solution: laser-induced temperature jump (T-jump). The results open entire new fields of study of ultrafast molecular dynamics in solution. The authors have demonstrated the T-jump technique on time scales of 50 ps and longer, and have applied it to study of the fast events in protein folding. They find that a general lifetime of alpha-helix formation is ca 100 ns, and that tertiary folds (in apomyoglobin) form in ca 100 {mu}s.

  16. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect (OSTI)

    Scheele, R.D. ); Cady, H.H. )

    1992-01-01

    As part of the Hanford Site's evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL's thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  17. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect (OSTI)

    Scheele, R.D.; Cady, H.H.

    1992-01-01

    As part of the Hanford Site`s evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL`s thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  18. Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts

    SciTech Connect (OSTI)

    Dodds, J.N. |

    1994-07-01

    Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, Na{sub 2}NiFe(CN){sub 6}, and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which indicated that endothermic dehydration and melting of the nitrates take place before the occurrence of exothermic reactions that being about 300{degrees}C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction that produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release. Comparisons of this estimated heat release rate with heat transfer rates from a hypothetical ``hot spot`` show that, even in a worst-case scenario, the heat transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions.

  19. Use of LEU in the aqueous homogeneous medical isotope production reactor

    SciTech Connect (OSTI)

    Ball, R.M.

    1997-08-01

    The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its large negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution.

  20. Midwest Energy Solutions Conference | Department of Energy

    Energy Savers [EERE]

    Energy Solutions Conference Midwest Energy Solutions Conference February 22, 2017 9:00AM EST to February 24, 2017 5:00PM EST Chicago Hilton and Towers Chicago, Illinois

  1. Battery Wireless Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Inc Jump to: navigation, search Name: Battery & Wireless Solutions Inc Place: New Westminster, British Columbia, Canada Zip: V3M 5V9 Product: Distributor of battery and...

  2. Solar Project Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Place: California Sector: Solar Product: US-based JV to build solar-power plants in California. References: Solar Project Solutions1 This article is a stub. You can...

  3. Eco Green Solutions | Open Energy Information

    Open Energy Info (EERE)

    Eco Green Solutions Place: Brazil Product: Brazil-based Ecodiesel creditor. References: Eco Green Solutions1 This article is a stub. You can help OpenEI by expanding it. Eco...

  4. EM Energy Solutions Ltd | Open Energy Information

    Open Energy Info (EERE)

    EM Energy Solutions Ltd Jump to: navigation, search Name: EM Energy Solutions Ltd Place: London, United Kingdom Zip: NW3 5QY Product: Consultant specialising in the development and...

  5. Westinghouse TRU Solutions Launches New Web Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRU Solutions LLC Launches New Web Site CARLSBAD, N.M., February 2, 2001 - Westinghouse TRU Solutions LLC (WTS) today launched its new Web site. WTS is the new management and ...

  6. MOLECULAR APPROACHES FOR IN SITU IDENTIFCIATION OF NITRATE UTILIZATION BY MARINE BACTERIA AND PHYTOPLANKTON

    SciTech Connect (OSTI)

    Frischer, Marc E.; Verity, Peter G.; Gilligan, Mathew R.; Bronk, Deborah A.; Zehr, Jonathan P.; Booth, Melissa G.

    2013-09-12

    Traditionally, the importance of inorganic nitrogen (N) for the nutrition and growth of marine phytoplankton has been recognized, while inorganic N utilization by bacteria has received less attention. Likewise, organic N has been thought to be important for heterotrophic organisms but not for phytoplankton. However, accumulating evidence suggests that bacteria compete with phytoplankton for nitrate (NO3-) and other N species. The consequences of this competition may have a profound effect on the flux of N, and therefore carbon (C), in ocean margins. Because it has been difficult to differentiate between N uptake by heterotrophic bacterioplankton versus autotrophic phytoplankton, the processes that control N utilization, and the consequences of these competitive interactions, have traditionally been difficult to study. Significant bacterial utilization of DIN may have a profound effect on the flux of N and C in the water column because sinks for dissolved N that do not incorporate inorganic C represent mechanisms that reduce the atmospheric CO2 drawdown via the ?biological pump? and limit the flux of POC from the euphotic zone. This project was active over the period of 1998-2007 with support from the DOE Biotechnology Investigations ? Ocean Margins Program (BI-OMP). Over this period we developed a tool kit of molecular methods (PCR, RT-PCR, Q-PCR, QRT-PCR, and TRFLP) and combined isotope mass spectrometry and flow-cytometric approaches that allow selective isolation, characterization, and study of the diversity and genetic expression (mRNA) of the structural gene responsible for the assimilation of NO3- by heterotrophic bacteria (nasA). As a result of these studies we discovered that bacteria capable of assimilating NO3- are ubiquitous in marine waters, that the nasA gene is expressed in these environments, that heterotrophic bacteria can account for a significant fraction of total DIN uptake in different ocean margin systems, that the expression of nasA is

  7. Engineering report (conceptual design) PFP solution stabilization

    SciTech Connect (OSTI)

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  8. Basic energy properties of electrolytic solutions database. ...

    Office of Scientific and Technical Information (OSTI)

    THERMAL CONDUCTIVITY; VISCOSITY; ALKALI METAL COMPOUNDS; CHLORIDES; CHLORINE COMPOUNDS; DISPERSIONS; HALIDES; HALOGEN COMPOUNDS; MIXTURES; SODIUM COMPOUNDS; SOLUTIONS; ...

  9. Presentation: Better Buildings Residential Program Solution Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy's Better Buildings Neighborhood Program, April 2014. Solution Center Overview and Tour (5.23

  10. Presentation: Better Buildings Residential Program Solution Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy, Better Buildings Neighborhood Program. Solution Center Overview and Tour (3.78

  11. Cleantech Solutions (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts Zip: 02108 Region: Greater Boston Area Sector: Efficiency Product: Energy efficiency solutions and consumption monitoring systems for buildings Website:...

  12. Clean Energy Solutions Center Services (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  13. NOPR EnergySolutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EnergySolutions NOPR EnergySolutions NOPR EnergySolutions (508.69 KB) More Documents & Publications Meeting Notes re NOI for Convention on Supplementary Compensation Enforcement Letter, NEL-2011-03 - October 24, 2011 EIS-0359: DOE Notice of Availability of the Draft Supplement Analysis

  14. Solution synthesis of germanium nanocrystals

    DOE Patents [OSTI]

    Gerung, Henry; Boyle, Timothy J.; Bunge, Scott D.

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  15. Regional Transmission Projects: Finding Solutions

    SciTech Connect (OSTI)

    The Keystone Center

    2005-06-15

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association

  16. Removal of uranium from aqueous HF solutions

    DOE Patents [OSTI]

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  17. Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions

    SciTech Connect (OSTI)

    Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E.; Meisel, D.

    1992-07-01

    Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

  18. Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions

    SciTech Connect (OSTI)

    Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E. ); Meisel, D. )

    1992-01-01

    Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

  19. Temperature dependent DC electrical conductivity studies of ZnO nanoparticle thick films prepared by simple solution combustion method

    SciTech Connect (OSTI)

    Naveen, C. S. Jayanna, H. S. Lamani, Ashok R. Rajeeva, M. P.

    2014-04-24

    ZnO nanoparticles of different size were prepared by varying the molar ratio of glycine and zinc nitrate hexahydrate as fuel and oxidizer (F/O = 0.8, 1.11, 1.7) by simple solution combustion method. Powder samples were characterized by UV-Visible spectrophotometer, X-ray diffractometer, Scanning electron microscope (SEM). DC electrical conductivity measurements at room temperature and in the temperature range of 313-673K were carried out for the prepared thick films and it was found to increase with increase of temperature which confirms the semiconducting nature of the samples. Activation energies were calculated and it was found that, F/O molar ratio 1.7 has low E{sub AL} (Low temperature activation energy) and high E{sub AH} (High temperature activation energy) compared to other samples.

  20. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    SciTech Connect (OSTI)

    Jasrotia, Puja; Green, Stefan; Canion, Andy; Overholt, Will; Prakash, Om; Wafula, Dennis; Hubbard, Daniela; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka,

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  1. Aromatic nitration with ion radical pairs (ArH/sup +/,NO/sub 2/) as reactive intermediates. Time-resolved studies of charge-transfer activation of dialkoxybenzenes

    SciTech Connect (OSTI)

    Sankararaman, S.; Haney, W.A.; Kochi, J.K.

    1987-08-19

    Aromatic nitrations carried out both under electrophilic conditions and by charge-transfer activation afford the same yields and isomer distributions of nitration products from a common series of aromatic ethers (ArH). Time-resolved spectroscopy establishes the charge-transfer nitration to proceed via the ion radical pair (ArH/sup +/,NO/sub 2/), generated by the deliberate excitation of the electron donor-acceptor or ..pi.. complex of the arene with C(NO/sub 2/)/sub 4/. Laser flash photolysis of the charge-transfer band defines the evolution of the arene cation radical ArH/sup +/ and allows its decay kinetics to be delineated in various solvents and with added salts. The internal trapping of ArH/sup +/ is examined in the substituted p-dimethoxybenzenes CH/sub 3/OC/sub 6/H/sub 4/OCH/sub 2/X with X = CO/sub 2/H, CO/sub 2//sup -/, CO/sub 2/Et, and CH/sub 2/OH as the pendant functional groups. The mechanistic relevance of the collapse of (ArH/sup +/, NO/sub 2/) to the Wheland intermediate is discussed in the context of electrophilic aromatic nitrations.

  2. Coupled Fluid Energy Solute Transport

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    CFEST is a Coupled Fluid, Energy, and Solute Transport code for the study of a multilayered, nonisothermal ground-water system. It can model discontinuous as well as continuous layers, time-dependent and constant source/sinks, and transient as well as steady-state flow. The finite element method is used for analyzing isothermal and nonisothermal events in a confined aquifer system. Only single-phase Darcian flow is considered. In the Cartesian coordinate system, flow in a horizontal plane, in a verticalmore » plane, or in a fully three-dimensional region can be simulated. An option also exists for the axisymmetric analysis of a vertical cross section. The code employs bilinear quadrilateral elements in all two dimensional analyses and trilinear quadrilateral solid elements in three dimensional simulations. The CFEST finite element formulation can approximate discontinuities, major breaks in slope or thickness, and fault zones in individual hydrogeologic units. The code accounts for heterogeneity in aquifer permeability and porosity and accommodates anisotropy (collinear with the Cartesian coordinates). The variation in the hydraulic properties is described on a layer-by-layer basis for the different hydrogeologic units. Initial conditions can be prescribed hydraulic head or pressure, temperature, or concentration. CFEST can be used to support site, repository, and waste package subsystem assessments. Some specific applications are regional hydrologic characterization; simulation of coupled transport of fluid, heat, and salinity in the repository region; consequence assessment due to natural disruption or human intrusion scenarios in the repository region; flow paths and travel-time estimates for transport of radionuclides; and interpretation of well and tracer tests.« less

  3. Technical solutions to nonproliferation challenges

    SciTech Connect (OSTI)

    Satkowiak, Lawrence

    2014-05-09

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  4. Supergravity solutions without triholomorphic U(1) isometries

    SciTech Connect (OSTI)

    Ghezelbash, A. M.

    2008-12-15

    We investigate the construction of five-dimensional supergravity solutions that do not have any triholomorphic U(1) isometries. We construct a class of solutions that in various limits of parameters reduces to many of previously constructed five-dimensional supergravity solutions based on both hyper-Kaehler base spaces that can be put into a Gibbons-Hawking form and hyper-Kaehler base spaces that cannot be put into a Gibbons-Hawking form. We find a new solution which is over triaxial Bianchi type IX Einstein-hyper-Kaehler base space with no triholomorphic U(1) symmetry. One special case of this solution corresponds to a five-dimensional solution based on Eguchi-Hanson type II geometry.

  5. Energy Technology Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Solutions Energy Technology Solutions Public-private partnerships transforming industry and list of commercialized technologies, knowledge-based results, and promising technologies itp_successes.pdf (5.39 MB) More Documents & Publications Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010 ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive

  6. Integrated Engineering, Construction, and Management Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Engineering, Construction, and Management Solutions Washington Group International Contact: Susan Scott Public Affairs (505) 234-7204 http://www.wipp.ws Washington TRU Solutions LLC Washington TRU Solutions LLC Waste Isolation Pilot Plant Waste Isolation Pilot Plant P.O. Box 2078 P.O. Box 2078 Carlsbad, New Mexico 88221 Carlsbad, New Mexico 88221 For immediate release For immediate release Firm Awarded WIPP Records Demonstration Contract CARLSBAD, N.M., February 17, 2005 - Washington

  7. RECOVERY OF TETRAVALENT CATIONS FROM AQUEOUS SOLUTIONS

    DOE Patents [OSTI]

    Moore, R.L.

    1958-05-01

    The recovery of plutonium, zirconium, and tetravalent cerium values from aqueous solutions is described. It consists of adding an alkyl phosphate to a nnineral acid aqueous solution containing the metal to be recovered, whereby a precipitate forms with the tetravalent values, and separating the precipitate from the solution. All alkyl phosphates, if water-soluble, are suitable for the process; however, monobutyl phosphate has been found best.

  8. Independent Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Independent Energy Solutions Address: 1090 Joshua Way Place: Vista, California Zip: 92081 Region: Southern CA Area Sector: Solar Product: Renewable...

  9. Washington River Protection Solutions - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Solutions, LLC logo The operation of maintaining the underground waste storage tanks at Hanford falls under the jurisdiction of Washington River Protection...

  10. Solar India Solutions | Open Energy Information

    Open Energy Info (EERE)

    Visakhapatnam, Andhra Pradesh, India Zip: 530016 Sector: Efficiency Product: Andhra-based energy efficiency consultant. References: Solar India Solutions1 This article is a stub....

  11. Natural Solutions Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Natural Solutions Pvt. Ltd. Place: Mumbai, Maharashtra, India Sector: Renewable Energy Product: Mumbai-based IT consultant. The firm plans to set...

  12. SMECO- Small Business/Non-Profit Solutions

    Broader source: Energy.gov [DOE]

    Southern Maryland Electric Cooperative (SMECO) offers Small Business Solutions program, which provides incentives up to 80% of the cost of retrofit projects for qualified small business and non...

  13. Mobile Power Solutions | Open Energy Information

    Open Energy Info (EERE)

    laboratory focused on United NationsDepartment of Transportation compliance and battery performance testing. References: Mobile Power Solutions1 This article is a stub....

  14. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency ... system to manage multi-modemulti-fuel combustion events and achieve an up to 30 percent ...

  15. H I Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 30144-1299 Product: Building Management Systems solutions company, providing computer based automation systems for industrial, commercial, office, retail, educational and...

  16. Basic energy properties of electrolytic solutions database. ...

    Office of Scientific and Technical Information (OSTI)

    Basic energy properties of electrolytic solutions database. Viscosity, thermal conductivity, density, enthalpy Citation Details In-Document Search Title: Basic energy properties ...

  17. Removal of radioisotopes from waste solutions

    DOE Patents [OSTI]

    Kirby, H.W.

    1973-10-01

    The invention comprises removing radioisotopes from waste liquids or solutions by passing these through filters and through a column containing a suitable salt of phosphoric acid. (Official Gazette)

  18. Quantitative Experimental Determination of the Solid Solution...

    Office of Scientific and Technical Information (OSTI)

    Quantitative Experimental Determination of the Solid Solution Hardening Potential of Rhenium, Tungsten and Molybdenum in Single Crystal Nickel-based Superalloys Citation Details ...

  19. RECOVERY OF PLUTONIUM FROM AQUEOUS SOLUTIONS

    DOE Patents [OSTI]

    Reber, E.J.

    1959-09-01

    A process is described for recovering plutonium values from aqueous solutions by precipitation on bismuth phosphate. The plutonium is secured in its tetravalent state. bismuth salt is added to the solution, and ant excess of phosphoric acid anions is added to the solution in two approximately equal installments. The rate of addition of the first installment is about two to three times as high as the rate of addition of the second installment, whereby a precipitate of bismuth phosphate forms, the precipitate carrying the plutonium values. The precipitate is separated from the solution.

  20. TVA- Energy Right Solutions for Business

    Broader source: Energy.gov [DOE]

    TVA offers the Energy Right Solutions Program to commercial and industrial facilities. In addition to prescriptive rebates for lighting, motors, HVAC, and kitchen equipment, administrators take a...

  1. TVA- Energy Right Solutions for Business

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) offers the Energy Right Solutions Program for commercial and industrial facilities.  Prescriptive rebates are available for lighting, motors, HVAC, and kitchen...

  2. Building America Technology Solutions Case Study: Combustion...

    Energy Savers [EERE]

    Combustion Safety Simplified Test Protocol Building America Technology Solutions Case Study: Combustion Safety Simplified Test Protocol Two U.S. Department of Energy Building ...

  3. El Paso Electric Company- Residential Solutions Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric Residential Solutions Program offers El Paso Electric customers and participating contractors cash and non-cash incentives for implementing energy efficiency improvements in...

  4. Infinite Power Solutions | Open Energy Information

    Open Energy Info (EERE)

    Colorado Zip: 80127 Product: Littleton-based solid-state, rechargeable thin-film micro-energy storage device manufacturer. References: Infinite Power Solutions1 This article...

  5. GSA Solutions for Federally Recognized Tribes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 13 Office, Special Use, Household and Quarters Furniture Wall Coverings, Drapes, and Lighting Packaged Furniture Programs Office, Imaging, and Document Solutions ...

  6. ECO2 Asset Solutions | Open Energy Information

    Open Energy Info (EERE)

    Asset Solutions Place: Tampa, Florida Sector: Carbon, Services Product: Florida-based provider of advisory services to both buyers and sellers on the Carbon Markets. They serve a...

  7. Stellar Energy Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 95448 Sector: Renewable Energy, Solar Product: Turn-key renewable energy solutions provider specializing in solar electric roofing. References: Stellar...

  8. EnergySolutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah Zip: 84101 Sector: Services Product: Utah-based international nuclear services company that provides services and solutions to the nuclear industry....

  9. New Grid Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Energy Solutions Address: 3704 Macomb St Place: Washington DC Zip: 20016 Sector: Biomass, Buildings, Efficiency, Geothermal energy, Services, Solar Product: Renewable Energy and...

  10. Titrimetric determination of hydrazine in actinide solutions

    SciTech Connect (OSTI)

    Polyakov, O.N.; Baranov, S.M.; Zubarev, V.G.

    1988-01-01

    A simple rapid method is proposed for the determination of hydrazine and its derivatives in actinide solutions. The potentiometric titration of acid combined with the hydrazine, using a standard NaOH solution, is carried out in a stirred aqueous acetone medium. Ammonium oxalate is added to the solution being titrated to prevent hydrolysis of the actinides. The content of hydrazine and/or its derivatives is equivalent to the amount of acid found. The method is recommended for the determination of hydrazine and its derivatives at concentration of 0.005 M and above in actinide solutions. The rms error of the measurements is 0.07.

  11. Better Buildings Residential Program Solution Center Demonstration...

    Office of Environmental Management (EM)

    The Better Buildings Residential Program Solution Center is a robust online collection of ... Neighborhood Program partners, Home Performance with ENERGY STAR Sponsors, and others. ...

  12. Engineered Solutions: Proposed Penalty (2010-CE-2112)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Engineered Solutions, Inc. failed to certify a dehumidifier as compliant with the applicable energy conservation standards.

  13. Innovative Energy Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Innovative Energy Solutions Inc Place: Las Vegas, Nevada Zip: 89101 Sector: Hydro, Hydrogen Product: Holds serveral patents related to waste heat recovery, heat generating...

  14. NCRC Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    search Name: NCRC Energy Solutions Place: Plano, Texas Zip: 75093 Sector: Hydro, Hydrogen Product: Developed and controls all rights to a proprietary software application...

  15. New Energy Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Energy Solutions Inc Place: Pittsfield, Massachusetts Zip: MA 01201 Sector: Hydro, Hydrogen Product: Small private new energy company active in the fuel cell, hydrogen and wave...

  16. Navigating the State and Local Solution Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Technical Assistance (P&TA) Team: Assists in developing tools and solutions to barriers facing state and local government expansion of energy efficiency policies and programs and ...

  17. Engineered Solutions: Order (2010-CE-2112)

    Broader source: Energy.gov [DOE]

    DOE issued an Order after entering into a Compromise Agreement with Engineered Solutions, Inc. to resolve a case involving the failure to certify dehumidifier basic model SD109.

  18. National Laboratories' Energy Technologies and System Solutions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories' Energy Technologies and System Solutions Center Director - Sandia Energy Energy Search Icon Sandia Home Locations ... Nuclear Fuel Cycle Defense Waste Management Programs ...

  19. Energy Solutions S A | Open Energy Information

    Open Energy Info (EERE)

    Solutions S.A. Place: PERNIK, Bulgaria Zip: 2304 Sector: Solar Product: produces photovoltaic modules using mono- and poly-crystalline Si solar cells. Crystalline Si...

  20. Enterprise Solar Solutions | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: New York-based company that specializes in commercial solar photovoltaic applications for businesses. References: Enterprise Solar Solutions1 This article...

  1. Building America Technology Solutions Case Study: Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Passive Vents in New-Construction Multifamily Buildings Building America Technology Solutions Case Study: Evaluation of Passive Vents in New-Construction Multifamily ...

  2. Community Renewable Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Community Renewable Solutions LLC Place: Santa Barbara, California Phone Number: 805 284 9028 Website: www.communityrenewables.biz...

  3. Tangent Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Tangent Energy Solutions Place: Pennsylvania Zip: PA 19348 Product: Pennsylvania-based company developing and implementing sustainable energy...

  4. Cleantech Solutions (Colorado) | Open Energy Information

    Open Energy Info (EERE)

    Place: Boulder, Colorado Zip: 80301 Region: Rockies Area Sector: Efficiency Product: Energy efficiency solutions and consumption monitoring systems for buildings Website:...

  5. DG Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    92101 Product: Develops owns and operates industrial, commercial and institutional cogeneration plants from 2-50MW. References: DG Energy Solutions1 This article is a stub. You...

  6. Green Heat Solutions Limited | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Green Heat Solutions Limited Region: Scotland Sector: Marine and Hydrokinetic Website: http: This company is listed in the Marine and Hydrokinetic...

  7. Energy Solutions International | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Energy Solutions International Place: St. Paul, Minnesota Zip: 55107 Product: For the last decade, ESI has been creating fluorescent...

  8. CO2 Global Solutions International | Open Energy Information

    Open Energy Info (EERE)

    Global Solutions International Jump to: navigation, search Name: CO2 Global Solutions International Place: Madrid, Spain Zip: 28001 Sector: Carbon Product: CO2 Global Solutions is...

  9. Clean Energy Solutions Centers Fact Sheet | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A fact sheet describing the mission of the Clean Energy Solution Center. Clean Energy Solutions Centers Fact Sheet More Documents & Publications Clean-Energy-Solutions-Centers-Fact...

  10. EA-284-A Sempra Energy Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-284-A Sempra Energy Solutions Order authorizing Sempra Energy Solutions to export electric energy to Mexico. PDF icon EA-284-A Sempra Energy Solutions More Documents & ...

  11. EA-284-C NOBLE AMERICAS ENERGY SOLUTIONS LLC | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C NOBLE AMERICAS ENERGY SOLUTIONS LLC EA-284-C NOBLE AMERICAS ENERGY SOLUTIONS LLC Order authorizing Noble Americas Energy Solutions to export electric energy to Mexico. PDF icon ...

  12. Efficient Solutions for New Homes Case Study: Demonstration House...

    Energy Savers [EERE]

    Demonstration House of Cold-Climate Solutions for Affordable Housing Efficient Solutions for New Homes Case Study: Demonstration House of Cold-Climate Solutions for Affordable ...

  13. Soleil Energy Solutions Greensboro North Carolina | Open Energy...

    Open Energy Info (EERE)

    Soleil Energy Solutions Greensboro North Carolina Jump to: navigation, search Logo: Soleil Energy Solutions Greensboro North Carolina Name: Soleil Energy Solutions Greensboro North...

  14. PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM

    DOE Patents [OSTI]

    Wheelwright, E.J.

    1959-02-17

    A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.

  15. Conference Agenda: Residential Energy Efficiency Solutions 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Conference Agenda: Residential Energy Efficiency Solutions 2012 Conference Agenda: Residential Energy Efficiency Solutions 2012 Presents conference agenda including a general overview and detailed breakouts. Conference Agenda (380.26 KB) More Documents & Publications Draft Agenda for U.S.-Africa Energy Ministerial Biomass 2009 Conference Agenda Biomass 2010 Conference Agenda

  16. ADSORPTION OF CERIUM VALUES FROM AQUEOUS SOLUTIONS

    DOE Patents [OSTI]

    Roberts, F.P.

    1963-08-13

    Cerium can be removed from aqueous nitric acid (2 to 13 M) solutions by passing the latter over a PbO/sub 2/-containing anion exchange resin. The cerium is taken up by the resin, while any lanthanides, yttrium, and strontium present remain in the solution. (AEC)

  17. GE Lighting Solutions: Order (2013-SE-4901)

    Broader source: Energy.gov [DOE]

    DOE ordered General Electric Lighting Solutions, LLC to pay a $5,360 civil penalty after finding GE Lighting Solutions had manufactured and distributed in commerce in the U.S. 30 units of basic model DR4-RTFB-23B and 177 units (of which 85 units remain in inventory) of basic model DR4-RTFB-77A-002, noncompliant traffic signal modules.

  18. Zinc Bromide Waste Solution Treatment Options

    SciTech Connect (OSTI)

    Langston, C.A.

    2001-01-16

    The objective of this effort was to identify treatment options for 20,000 gallons of low-level radioactively contaminated zinc bromide solution currently stored in C-Area. These options will be relevant when the solutions are declared waste.

  19. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect (OSTI)

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  20. Reference electrode for strong oxidizing acid solutions

    DOE Patents [OSTI]

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  1. PROCESSES OF RECLAIMING URANIUM FROM SOLUTIONS

    DOE Patents [OSTI]

    Zumwalt, L.R.

    1959-02-10

    A process is described for reclaiming residual enriched uranium from calutron wash solutions containing Fe, Cr, Cu, Ni, and Mn as impurities. The solution is adjusted to a pH of between 2 and 4 and is contacted with a metallic reducing agent, such as iron or zinc, in order to reduce the copper to metal and thereby remove it from the solution. At the same time the uranium present is reduced to the uranous state The solution is then contacted with a precipitate of zinc hydroxide or barium carbonate in order to precipitate and carry uranium, iron, and chromium away from the nickel and manganese ions in the solution. The uranium is then recovered fronm this precipitate.

  2. EA-306 MAG Energy Solutions, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MAG Energy Solutions, Inc. EA-306 MAG Energy Solutions, Inc. Order authorizing MAG Energy Solutions, Inc. to export electric energy to Canada PDF icon EA-306 MAG Energy Solutions, ...

  3. Energy Technology Solutions: Public-Private Partnerships Transforming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010 Energy Technology Solutions: Public-Private Partnerships Transforming Industry, ...

  4. Environmental Management and Planning Solutions, Inc | Open Energy...

    Open Energy Info (EERE)

    Environmental Management and Planning Solutions, Inc Jump to: navigation, search Name: Environmental Management and Planning Solutions, Inc Abbreviation: EMPSi Website:...

  5. Residential Energy Efficiency Solutions: From Innovation to Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency Solutions: From Innovation to Market Transformation Conference, July 2012 Residential Energy Efficiency Solutions: From Innovation to Market ...

  6. Better Buildings Residential Program Solution Center Demonstration Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Webinar Better Buildings Residential Program Solution Center Demonstration Webinar Demonstration webinar slides for Better Buildings Residential Program Solution Center, November 19, 2014. Solution Center Demonstration Webinar Slides (3.8 MB) More Documents & Publications Presentation: Better Buildings Residential Program Solution Center Presentation: Better Buildings Residential Program Solution Center Better Buildings Residential Program Solution Center

  7. Stabilization of polyaniline solutions through additives

    DOE Patents [OSTI]

    Wrobleski, Debra A. (Los Alamos, NM); Benicewicz, Brian C. (Los Alamos, NM)

    1996-01-01

    A stabilized non-conductive polyaniline solution comprising from about 1 to bout 10 percent by weight polyaniline or a polyaniline derivative, from about 90 to about 99 percent by weight N-methylpyrrolidone, and from about 0.5 percent by weight to about 15 percent by weight of a solution stabilizing additive selected from the group consisting of hindered amine light stabilizers, polymeric amines, and dialkylamines, percent by weight of additive based on the total weight of polyaniline or polyaniline derivative is provided together with a method for stabilizing a polyaniline solution.

  8. Stabilization of polyaniline solutions through additives

    DOE Patents [OSTI]

    Wrobleski, D.A.; Benicewicz, B.C.

    1996-12-10

    A stabilized non-conductive polyaniline solution comprising from about 1 to about 10 percent by weight polyaniline or a polyaniline derivative, from about 90 to about 99 percent by weight N-methylpyrrolidone, and from about 0.5 percent by weight to about 15 percent by weight of a solution stabilizing additive selected from the group consisting of hindered amine light stabilizers, polymeric amines, and dialkylamines, percent by weight of additive based on the total weight of polyaniline or polyaniline derivative is provided together with a method for stabilizing a polyaniline solution. 4 figs.

  9. Supersymmetric Kerr-anti-de Sitter solutions

    SciTech Connect (OSTI)

    Cvetic, Mirjam; Gao Peng; Simon, Joan

    2005-07-15

    We prove the existence of one quarter supersymmetric type IIB configurations that arise as nontrivial scaling solutions of the standard five-dimensional Kerr-anti-de Sitter black holes by the explicit construction of its Killing spinors. This neutral, spinning solution is asymptotic to the static anti-de Sitter space-time with cosmological constant -(1/l{sup 2}), it has two finite equal angular momenta J{sub 1}={+-}J{sub 2}, mass M=(1/l)(|J{sub 1}|+|J{sub 2}|) and a naked singularity. We also address the scaling limit associated with one-half supersymmetric solution with only one angular momentum.

  10. Membrane separation of ionic liquid solutions

    SciTech Connect (OSTI)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  11. Separation of metal ions from aqueous solutions

    DOE Patents [OSTI]

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  12. Extraction of uranium from spent fuels using liquefied gases

    SciTech Connect (OSTI)

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2007-07-01

    For reprocessing of spent nuclear fuels, a novel method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. As a fundamental study, the nitrate conversion with liquefied nitrogen dioxide and the nitrate extraction with supercritical carbon dioxide were demonstrated by using uranium dioxide powder, uranyl nitrate and tri-n-butylphosphate complex in the present study. (authors)

  13. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States

    SciTech Connect (OSTI)

    E.M. Elliott; C. Kendall; S.D. Wanke; D.A. Burns; E.W. Boyer; K. Harlin; D.J. Bain; T.J. Butler

    2007-11-15

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in 15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that 15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO{sub 4}{sup 2-}, or NO{sub 3}{sup -} concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO{sub 3}{sup -} deposition at sites in this study is strongly associated with NOx emissions from power plants. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in 15N values are a robust indicator of stationary NOx contributions to wet NO{sub 3}{sup -} deposition and hence a valuable complement to existing tools for assessing relationships between NO{sub 3}{sup -} deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. 44 refs., 3 figs.

  14. SolSolution | Open Energy Information

    Open Energy Info (EERE)

    Boston Area Sector: Solar Year Founded: 2007 Phone Number: 805-813-4418 Website: www.sol-solution.org Coordinates: 42.363951, -71.10122 Show Map Loading map......

  15. Concentration of perrhenate and pertechnetate solutions

    DOE Patents [OSTI]

    Knapp, Furn F.; Beets, Arnold L.; Mirzadeh, Saed; Guhlke, Stefan

    1998-01-01

    A method of preparing a concentrated solution of a carrier-free radioisotope which includes the steps of: a. providing a generator column loaded with a composition containing a parent radioisotope; b. eluting the generator column with an eluent solution which includes a salt of a weak acid to elute a target daughter radioisotope from the generator column in a first eluate. c. eluting a cation-exchange column with the first eluate to exchange cations of the salt for hydrogen ions and to elute the target daughter radioisotope and a weak acid in a second eluate; d. eluting an anion-exchange column with the second eluate to trap and concentrate the target daughter radioisotope and to elute the weak acid solution therefrom; and e. eluting the concentrated target daughter radioisotope from the anion-exchange column with a saline solution.

  16. TVA- Energy Right Solutions for Business

    Broader source: Energy.gov [DOE]

    TVA offers the Energy Right Solutions Program to commercial and industrial facilities.  In addition to prescriptive rebates for lighting, motors, HVAC, and kitchen equipment, administrators take a...

  17. Glendale Water and Power- Solar Solutions Program

    Broader source: Energy.gov [DOE]

    The Solar Solutions program provides all customer groups with an incentive to install photovoltaic (PV) systems on their homes and buildings. Rebate levels will decrease over time on an annual...

  18. Prime BioSolutions | Open Energy Information

    Open Energy Info (EERE)

    search Name: Prime BioSolutions Place: Omaha, Nebraska Zip: 68137 Product: Ethanol and biogas producer using the closed-loop system. Coordinates: 33.180954, -94.743294 Show Map...

  19. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect (OSTI)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  20. IID Energy- PV Solutions Rebate Program

    Broader source: Energy.gov [DOE]

    IID accepted applications for the 2015 PV Solutions Program from Jan. 3, 2015 – Jan. 31, 2015. Winners were determined via lottery. The program is now closed for the remainder of 2015, but another...