Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NUREG/CR-6911 Tests of Uranium (VI) Adsorption  

E-Print Network [OSTI]

NUREG/CR-6911 Tests of Uranium (VI) Adsorption Models in a Field Setting U.S. Geological Survey U/CR-6911 Tests of Uranium (VI) Adsorption Models in a Field Setting Manuscript Completed: August 2006 Date Published: August 2006 Prepared by G. P. Curtis, J. A. Davis Water Resources Division U.S. Geological Survey

2

Uranium(VI) Diffusion in Low-Permeability Subsurface Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abstract: Uranium(VI) diffusion was investigated in a fine-grained saprolite sediment that was collected from U.S. Department of Energy (DOE) Oak Ridge site, TN, where...

3

Speciation of uranium(VI) sorption complexes on montmorillonite  

SciTech Connect (OSTI)

Environmental contaminant releases that contain uranium are among the most serious problems that must be confronted by restoration programs. To facilitate restoration, information concerning the speciation of uranium is needed. Under oxidizing conditions, dissolved uranium is predominantly in the U(VI) (uranyl) form and is quite mobile in the environment, however sorption onto soils may retard its movement. In this study, we have investigated the effects of changes in solution speciation on the nature of uranyl sorption complexes on montmorillonite, a common soil constituent. Aqueous U(VI) solutions between pH 3 to 7 were batch-equilibrated with montmorillonite for several days; specific pH values were selected such that the solutions consisted of dominantly monomeric, oligomeric, or a mix of monomeric and oligomeric aqueous uranyl species. Emission spectroscopy was used to investigate the nature of U(VI) sorbed to montmorillonite.

Chisholm-Brause, C.J.; Morris, D.E. (Los Alamos National Lab., NM (United States)); Richard, R.E. (Fort Lewis Coll., Durango, CO (United States). Dept. of Chemistry)

1992-01-01T23:59:59.000Z

4

Uranium (VI) solubility in carbonate-free ERDA-6 brine  

SciTech Connect (OSTI)

When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

Lucchini, Jean-francois [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

5

Effects of Solid-to-Solution Ratio on Uranium(VI) Adsorption and Its  

E-Print Network [OSTI]

Effects of Solid-to-Solution Ratio on Uranium(VI) Adsorption and Its Implications T A O C H E N G, and Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 West Dayton Street, Madison interacting ligands. Introduction The migration of uranium(VI), as well as other radionuclides and metal

Roden, Eric E.

6

Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide-  

E-Print Network [OSTI]

Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide uranium [U(VI)] mediated by the intrinsic phosphatase acti- vities of naturally occurring bacteria leaks occur, these wastes come into contact with surrounding geologic media, allowing for migration

Skolnick, Jeff

7

Dioctyl butyramide and dioctyl isobutyramide as extractants for uranium(VI) and plutonium(IV)  

Science Journals Connector (OSTI)

Two isomeric monoamides, dioctyl butyramide (DOBA) and dioctyl isobutyramide (DOIBA) were synthesized for extracting uranium(VI) and plutonium(IV) from aqueous nitric acid medium into various diluents such asn-do...

G. M. Nair; G. R. Mahajan; D. R. Prabhu

1996-03-01T23:59:59.000Z

8

Effects of Phosphate on Uranium(VI) Adsorption to Goethite-Coated Sand  

E-Print Network [OSTI]

Effects of Phosphate on Uranium(VI) Adsorption to Goethite-Coated Sand T A O C H E N G , M A R K O natural and contaminated environments. We studied U(VI) adsorption on goethite-coated sand (to mimic of increase in U(VI) adsorption. Phosphate was strongly bound by the goethite surface in the low pH range

Roden, Eric E.

9

Uranium(VI) extraction by TBP in the presence of HDBP  

SciTech Connect (OSTI)

The influence of di-n-butyl phosphoric acid (HDBP) upon extraction of uranium(VI) by tri-n-butyl phosphate (TBP) from 0.5--3.0 M nitric acid solutions has been studied. It has been shown that the uranium(VI) distribution coefficient D{sub U} for extraction by 1.1 M TBP in tri-decane or xylene is increased when HDBP is present in the organic phase. For iso-molar solutions of (TBP + HDBP) with a total concentration of 0.36 M, and Uranium(VI) aqueous concentration up to 10--20 g/l, a maximum value of D{sub U} is observed when TBP/HDBP = 1; for higher U(VI) concentration the maximum gradually disappears, with D{sub U} growing monotonically with the HDBP content in the organic phase. Uranium(VI) absorption spectra for 1.1 M TBP in tri-decane or xylene, containing HDBP, provide evidence for the formation of compounds, of which composition is intermediate between uranyl nitrate--TBP disolvate and the U(VI)--HDBP complex. It is proposed that these intermediate compounds are UO{sub 2}(NO{sub 3}){sub 2}HDBP.TBP and UO{sub 2}(NO{sub 3}){sub 2}(HDBP){sub 2}.

Fedorov, Yu.S.; Zilberman, B.Ya.; Kulikov, S.M.; Blazheva, I.V.; Mishin, E.N. [V.G. Khlopin Radium Inst., Saint-Petersburg (Russian Federation); Wallwork, A.L.; Denniss, I.S.; May, I. [British Nuclear Fuels plc, Sellafield (United Kingdom); Hill, N.J. [British Nuclear Fuels plc, Risley (United Kingdom)

1999-03-01T23:59:59.000Z

10

Biological monitoring and surveillance results of Gulf War I veterans exposed to depleted uranium  

Science Journals Connector (OSTI)

Objective: To relate medical surveillance outcomes to uranium biomonitoring results in a group of depleted uranium (DU)-exposed, Gulf War I veterans...Methods...: Thirty-two veterans of Gulf War ...

Melissa A. McDiarmid; Susan M. Engelhardt…

2006-01-01T23:59:59.000Z

11

Enumeration and Characterization of Iron(III)-Reducing Microbial Communities from Acidic Subsurface Sediments Contaminated with Uranium(VI)  

Science Journals Connector (OSTI)

...bioremediation potential in uranium-contaminated subsurface...reduced. Once nitrate is depleted, U(VI) and Fe(III...bacteria, a study in a uranium-contaminated mill tailing...sludge. American Public Health Association, Washington...detection of trace levels of uranium by laser-induced kinetic...

Lainie Petrie; Nadia N. North; Sherry L. Dollhopf; David L. Balkwill; Joel E. Kostka

2003-12-01T23:59:59.000Z

12

Interaction of Uranium(VI) with Phthalic Acid  

SciTech Connect (OSTI)

Phthalic acid, a ubiquitous organic compound found in soil, water, and in domestic and nuclear wastes can affect the mobility and bioavailability of metals and radionuclides. We examined the complexation of uranium with phthalic acid by potentiometric titration, electrospray ionization-mass spectroscopy (ESI-MS), and extended X-ray absorption fine structure (EXAFS) analysis. Potentiometric titration of a 1:1 U/phthalic acid indicated uranyl ion bonding with both carboxylate groups of phthalic acid; above pH 5 the uranyl ion underwent hydrolysis with one hydroxyl group coordinated to the inner-sphere of uranium. In the presence of excess phthalic acid, ESI-MS analysis revealed the formation of both 1:1 and 1:2 U/phthalic acid complexes. EXAFS studies confirmed the mononuclear biligand 1:2 U/phthalic acid complex as the predominant form. These results show that phthalates can form soluble stable complexes with uranium and may affect its mobility.

Vazquez, G.; Dodge, C; Francis, A

2008-01-01T23:59:59.000Z

13

In Situ Bioreduction of Uranium (VI) to Submicromolar Levels and Reoxidation by Dissolved Oxygen  

SciTech Connect (OSTI)

Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 {micro}M uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2 day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agency maximum contaminant limit (MCL) for drinking water (<30 {micro}g L{sup -1} or 0.126 {micro}M). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L{sup -1}) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from <0.13 to 2.0 {micro}M at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. At the completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 {micro}M. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species were Geothrix spp.

Wu, Weimin [ORNL; Carley, Jack M [ORNL; Luo, Jian [Stanford University; Ginder-Vogel, Matthew A. [Stanford University; Cardenas, Erick [Michigan State University, East Lansing; Leigh, Mary Beth [Michigan State University, East Lansing; Hwang, Chaichi [Miami University, Oxford, OH; Kelly, Shelly D [Argonne National Laboratory (ANL); Ruan, Chuanmin [ORNL; Wu, Liyou [University of Oklahoma, Norman; Van Nostrand, Joy [University of Oklahoma, Norman; Gentry, Terry J [ORNL; Lowe, Kenneth Alan [ORNL; Mehlhorn, Tonia L [ORNL; Carroll, Sue L [ORNL; Luo, Wensui [ORNL; Fields, Matthew Wayne [Miami University, Oxford, OH; Gu, Baohua [ORNL; Watson, David B [ORNL; Kemner, Kenneth M [Argonne National Laboratory (ANL); Marsh, Terence [Michigan State University, East Lansing; Tiedje, James [Michigan State University, East Lansing; Zhou, Jizhong [University of Oklahoma, Norman; Fendorf, Scott [Stanford University; Kitanidis, Peter K. [Stanford University; Jardine, Philip M [ORNL; Criddle, Craig [ORNL

2007-01-01T23:59:59.000Z

14

Extraction of uranium(VI) and plutonium(IV) with dihexylbutyramide and dihexylisobutyramide from nitric acid medium  

Science Journals Connector (OSTI)

The extraction of uranium(VI) and plutonium(IV) was carried out with two isomeric monoamides, dihexylbutyramide (DHBA) and dihexylisobutyramide (DHIBA) from nitric acid medium, usingn-dodecane as diluent. The pos...

G. M. Nair; D. R. Prabhu; G. R. Mahajan

1994-08-01T23:59:59.000Z

15

Investigation on Microbial Dissolution of Uranium (VI) from Autunite Mineral - 13421  

SciTech Connect (OSTI)

Precipitating autunite minerals by polyphosphate injection was identified as a feasible remediation strategy for sequestering uranium in contaminated groundwater and soil in situ at the Hanford Site. Autunite stability under vadose and saturated zone environmental conditions can help to determine the long-term effectiveness of this remediation strategy. The Arthrobacter bacteria are one of the most common groups in soils and are found in large numbers in Hanford soil as well as other subsurface environments contaminated with radionuclides. Ubiquitous in subsurface microbial communities, these bacteria can play a significant role in the dissolution of minerals and the formation of secondary minerals. The main objective of this investigation was to study the bacterial interactions under oxidizing conditions with uranium (VI); study the potential role of bicarbonate, which is an integral complexing ligand for U(VI) and a major ion in groundwater compositions; and present data from autunite dissolution experiments using Arthrobacter strain G968, a less U(VI)-tolerant strain. Sterile 100 mL glass mixed reactors served as the major bioreactor for initial experimentation. These autunite-containing bioreactors were injected with bacterial cells after the autunite equilibrated with the media solution amended with 0 mM, 3 mM 5 mM and 10 mM concentrations of bicarbonate. G968 Arthrobacter cells in the amount of 10{sup 6} cells/mL were injected into the reactors after 27 days, giving time for the autunite to reach steady state. Abiotic non-carbonate controls were kept without bacterial inoculation to provide a control for the biotic samples. Samples of the solution were analyzed for dissolved U(VI) by means of kinetic phosphorescence analyzer KPA-11 (Chemcheck Instruments, Richland, WA). Analysis showed that as [HCO{sub 3}{sup -}] increases, a diminishing trend on the effect of bacteria on autunite leaching is observed. Viability of cells was conducted after 24 hours of cell incubation with the appropriate uranium and bicarbonate concentration treatment. As expected, the cells started to reduce after day 41 due to the nutritional exhaustion of the media. Moreover, viable bacteria accounted for more than 94% in the presence of 10 mM bicarbonate. Experiments showed that despite differences between the G975 and the G968 bacterial strains resistance to U(VI), in the presence of bicarbonate ions they are able to dissolute uranium from autunite mineral at the same capacity. The effect of both bacterial strains on autunite dissolution is reduced as the concentration of bicarbonate increases while the increase in soluble U(VI) concentration induced by G968 and G975 is dwarfed, for larger [HCO{sub 3}{sup -}]. (authors)

Sepulveda, Paola; Katsenovich, Yelena; Lagos, Leonel [Applied Research Center, Florida International University. 10555 West Flagler St. Suite 2100, Miami Fl 33175 (United States)] [Applied Research Center, Florida International University. 10555 West Flagler St. Suite 2100, Miami Fl 33175 (United States)

2013-07-01T23:59:59.000Z

16

Uranium (VI)Bis(imido) chalcogenate complexes:synthesis and density functional theory analysis  

SciTech Connect (OSTI)

Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U(NtBu)2(EAr)2(OPPh3)2 (EAr = O-2-tBuC6H4, SPh, SePh, TePh) and U(NtBu)2(EAr)2(R2bpy) (EAr = SPh, SePh, TePh) (R2bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, tBu) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(NtBu)2(EAr)2(OPPh3)2 as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes.

Spencer, Liam P [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Boncella, James M [Los Alamos National Laboratory; Yang, Ping [Los Alamos National Laboratory; Scott, Brian L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

17

Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the contribution of variable grain sizes to uranium adsorptiondesorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size...

18

Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium  

Science Journals Connector (OSTI)

The accumulations of both natural (U) and depleted (DU) uranium in the earthworms (Eisenia fetida) were studied to evaluate corresponding biological effects. Concentrations of metals in the experimental soil ranged from 1.86 to 600 mg kg?1. Five biological endpoints: mortality, animals’ weight increasing, lysosomal membrane stability by measuring the neutral red retention time (the NRRT), histological changes and genetic effects (Comet assay) were used to evaluate biological effects in the earthworms after 7 and 28 days of exposure. No effects have been observed in terms of mortality or weight reduction. Cytotoxic and genetic effects were identified at quite low U concentrations. For some of these endpoints, in particular for genetic effects, the dose (U concentration)-effect relationships have been found to be non-linear. The results have also shown a statistically significant higher level of impact on the earthworms exposed to natural U compared to depleted U.

Anna Giovanetti; Sergey Fesenko; Maria L. Cozzella; Lisbet D. Asencio; Umberto Sansone

2010-01-01T23:59:59.000Z

19

Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments  

SciTech Connect (OSTI)

Adsorption on soil and sediment solids may decrease aqueous uranium concentrations and limit its propensity for migration in natural and contaminated settings. Uranium adsorption will be controlled in large part by its aqueous speciation, with a particular dependence on the presence of dissolved calcium and carbonate. Here we quantify the impact of uranyl speciation on adsorption to both goethite and sediments from the Hanford Clastic Dike and Oak Ridge Melton Branch Ridgetop formations. Hanford sediments were preconditioned with sodium acetate and acetic acid to remove carbonate grains, and Ca and carbonate were reintroduced at defined levels to provide a range of aqueous uranyl species. U(VI) adsorption is directly linked to UO{sub 2}{sup 2+} speciation, with the extent of retention decreasing with formation of ternary uranyl-calcium-carbonato species. Adsorption isotherms under the conditions studied are linear, and K{sub d} values decrease from 48 to 17 L kg{sup -1} for goethite, from 64 to 29 L kg{sup -1} for Hanford sediments, and from 95 to 51 L kg{sup -1} for Melton Branch sediments as the Ca concentration increases from 0 to 1 mM at pH 7. Our observations reveal that, in carbonate-bearing waters, neutral to slightly acidic pH values ({approx}5) and limited dissolved calcium are optimal for uranium adsorption.

Stewart, B.D. [Stanford University; Mayes, Melanie [ORNL; Fendorf, Scott [ORNL

2010-01-01T23:59:59.000Z

20

Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity  

SciTech Connect (OSTI)

Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

2011-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advective Desorption of Uranium (VI) from Contaminated Hanford Vadose Zone Sediments under Saturated and Unsaturated Conditions  

SciTech Connect (OSTI)

Sedimentary, hydrologic, and geochemical variations in the Hanford subsurface environment, as well as compositional differences in contaminating waste streams, have created vast differences in the migration and mobility of uranium within the subsurface environment. A series of hydraulically-saturated and -unsaturated column experiments were performed to i.) assess the effect of water content on the advective desorption and migration of uranium from contaminated sediments, and ii.) evaluate the uranium concentration that can develop in porewater and/or groundwater as a result of desorption/dissolution reactions. Flow rate and moisture content were varied to evaluate the influence of contact time, pore water velocity, and macropore desaturation on aqueous uranium concentrations. Sediments were collected from the T-TX-TY tank farm complex and the 300 Area Process Ponds located on the Hanford Site, southeastern Washington State. The sediments vary in depth, mineralogy, and in contamination events. Experiments were conducted under mildly alkaline/calcareous conditions representative of conditions commonly encountered at repository sites across the arid western United States and, in particular, the Hanford site. Results illustrate the release of uranium from these sediments is kinetically controlled and low water contents encountered within the Hanford vadose zone result in the formation of mobile-immobile water regimes, which isolate a fraction of the reactive sites within the sediments, effectively reducing the concentration of uranium released into migrating porewaters.

Wellman, Dawn M.; Zachara, John M.; Liu, Chongxuan; Qafoku, Nikolla; Smith, Steven C.; Forrester, Steven W.

2008-11-03T23:59:59.000Z

22

Extraction behavior of uranium(VI), plutonium(IV), zirconium(IV), ruthenium(III) and europium(III) with ?-pre-irradiated solutions of N,N?-methylbutyl substituted amides in n-dodecane  

Science Journals Connector (OSTI)

The extraction of plutonium(IV), uranium(VI), zirconium(IV), europium(III) and ruthenium(III) with ?-pre-irradiated n-dodecane solutions of methylbutyl substituted hexanamide (MBHA), octanamide (MBOA) and deca...

P. B. Ruikar; M. S. Nagar; M. S. Subramanian…

1995-09-15T23:59:59.000Z

23

Neptunium(V) Partitioning to Uranium(VI) Oxide and Peroxide Solids  

Science Journals Connector (OSTI)

Secondary uranium (U) solids are expected to be the long-term solubility limiting phases in cases of subsurface U contamination (1) and at geological repository sites for the disposal of U-based spent nuclear fuel (SNF) (2). ... Under the moist, oxidizing environment expected at Yucca Mountain, the proposed repository site in the United States, a paragenetic sequence of hexavalent U oxides and silicates is expected to form (4). ... Primary funding for this work was provided by the U.S. Department of Energy's (DOE) Office of Science Basic Energy Sciences program under contract DE-FG02-01ER15138. ...

Matthew Douglas; Sue B. Clark; Judah I. Friese; Bruce W. Arey; Edgar C. Buck; Brady D. Hanson

2005-05-04T23:59:59.000Z

24

Influence of calcite on uranium(VI) reactive transport in the groundwater–river mixing zone  

SciTech Connect (OSTI)

Calcite is an important mineral that can affect uranyl reactive transport in subsurface sediments. This study investigated the distribution of calcite and its influence on uranyl adsorption and reactive transport in the groundwater-river mixing zone at US Hanford 300A, Washington State. Simulations using a 2D reactive transport model under field-relevant hydrogeochemical conditions revealed a complex distribution of calcite concentration as a result of dynamic groundwater-river interactions. The calcite concentration distribution in turn affected the spatial and temporal changes in aqueous carbonate, calcium, and pH, which subsequently influenced U(VI) mobility and discharge rates into the river. The results implied that calcite distribution and its concentration dynamics is an important consideration for field characterization, monitoring, and reactive transport prediction.

Ma, Rui; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.; Zheng, Chunmiao

2014-01-23T23:59:59.000Z

25

Leukemic transformation of hematopoietic cells in mice internally exposed to depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a dense heavy metal ... have been wounded by DU shrapnel. The health effects of embedded DU are unknown. Published...in vitro can transform immortalized human osteoblast cells (HOS) to th...

Alexandra C. Miller; Catherine Bonait-Pellie…

2005-11-01T23:59:59.000Z

26

Rate-limited U(VI) desorption during a small-scale tracer test in a hetereogeneous uranium contaminated aquifer  

E-Print Network [OSTI]

of Contaminants in the Hanford Vadose Zone, Vadose Zone J. ,transport in a contaminated Hanford sediment, Environ. Sci.of U(VI) observed in Hanford sediment column experiments. A

Fox, P.M.

2013-01-01T23:59:59.000Z

27

Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments  

SciTech Connect (OSTI)

Rates of contaminant U(VI) release from individual size fractions of a composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through batch reactors to maintain quasi-constant chemical conditions. Variability in equilibrium adsorption among the various size fractions was determined in static batch reactors and analyzed using the surface complexation modeling approach. The estimated stoichiometric coefficients of U(VI) surface complexation reactions with respect to pH and carbonate concentrations varied with size fractions. This source of variability significantly increased the uncertainty in U(VI) conditional equilibrium constants over that estimated from experimental errors alone. A minimum difference between conditional equilibrium constants was established in order to evaluate statistically significant differences between sediment adsorption properties. A set of equilibrium and kinetic expressions for cation exchange, calcite dissolution, aerobic respiration, and silica dissolution were incorporated in a reaction-rate model to describe the temporal evolution of solute concentrations observed during the flow-through batch experiments. Parameters in the reaction-rate model, calibrated using experimental data for select size fractions, predicted the changes in solute concentrations for the bulk, <2 mm, sediment sample. Kinetic U(VI) desorption was well described using a multi-rate surface complexation model with an assumed lognormal distribution for the rate constants. The estimated mean and standard deviation were the same for all < 2mm size fractions, but differed in the 2-8mm size fraction. Micropore volumes in the varied size fractions were also similar as assessed using t-plots to analyze N2 desorption data. These findings provide further support for the link between microporosity and particle-scale mass transfer rates controlling kinetic U(VI) adsorption/desorption and for the utility of N2 desorption isotherms for characterizing pore networks that influence mass transfer rates.

Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

2013-02-12T23:59:59.000Z

28

Global transcriptional analysis of short-term hepatic stress responses in Atlantic salmon (Salmo salar) exposed to depleted uranium  

Science Journals Connector (OSTI)

Abstract Potential environmental hazards of radionuclides are often studied at the individual level. Sufficient toxicogenomics data at the molecular/cellular level for understanding the effects and modes of toxic action (MoAs) of radionuclide is still lacking. The current article introduces transcriptomic data generated from a recent ecotoxicological study, with the aims to characterize the MoAs of a metallic radionuclide, deplete uranium (DU) in an ecologically and commercially important fish species, Atlantic salmon (Salmo salar). Salmon were exposed to three concentrations (0.25, 0.5 and 1.0 mg/L) of DU for 48 h. Short-term global transcriptional responses were studied using Agilent custom-designed high density 60,000-feature (60 k) salmonid oligonucleotide microarrays (oligoarray). The microarray datasets deposited at Gene Expression Omnibus (GEO ID: GSE58824) were associated with a recently published study by Song et al. (2014) in BMC Genomics. The authors describe the experimental data herein to build a platform for better understanding the toxic mechanisms and ecological hazard of radionuclides such as DU in fish.

You Song; Brit Salbu; Hans-Christian Teien; Lene Sørlie Heier; Bjørn Olav Rosseland; Tore Høgåsen; Knut Erik Tollefsen

2014-01-01T23:59:59.000Z

29

DOE/EA-1607: Final Environmental Assessment for Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium (June 2009)  

Broader source: Energy.gov (indexed) [DOE]

μCi/cc microcuries per cubic centimeter μCi/cc microcuries per cubic centimeter MAP mitigation action plan MEI maximally exposed individual mg/kg milligrams per kilogram mrem millirem mSv millisievert MT metric ton MTCA Model Toxics Control Act MTU metric tons of uranium N/A not applicable Final Environmental Assessment: Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium vi NAAQS National Ambient Air Quality Standards NEF National Enrichment Facility NEPA National Environmental Policy Act NRC U.S. Nuclear Regulatory Commission NU natural uranium NUF 6 natural uranium hexafluoride pCi/g picocuries per gram PEIS programmatic environmental impact statement PM 2.5 particulate matter with a diameter of 2.5 microns or less PM 10 particulate matter with a diameter of 10 microns or less

30

Effect of temperature on the extraction of uranium(VI) from nitric acid by tri-n-amyl phosphate  

SciTech Connect (OSTI)

Studies have been carried out on the effect of temperature on the extraction of U(VI) from nitric acid medium by tri-n-amyl phosphate/n-dodecane, measured as a function of the extractant concentration and aqueous phase acidity. The results indicate that the extraction is exothermic as in the case of tri-n-butyl phosphate. From the data available an effort has been made to calculate the equilibrium constant, the Gibbs energy change and the entropy changes of the extraction reaction. 21 refs., 3 figs., 4 tabs.

Srinivasan, T.G.; Rao, P.R.V. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Sood, D.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)]|[BARC, Mumbai (India)

1997-01-01T23:59:59.000Z

31

Quantifying differences in the impact of variable chemistry on equilibrium uranium(VI) adsorption properties of aquifer sediments  

SciTech Connect (OSTI)

Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 hours although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A non-electrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2-, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (<0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logKc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

Stoliker, Deborah L.; Kent, Douglas B.; Zachara, John M.

2011-09-16T23:59:59.000Z

32

Distribution Behavior of U(VI), Pu(IV), Am(III), and Zr(IV) with N,N-Dihexyl Octanamide Under Uranium-Loading Conditions  

SciTech Connect (OSTI)

While the tri-n-butyl phosphate (TBP)-based PUREX process has been the workhorse of the nuclear fuel reprocessing industry for the last four and a half decades, a few drawbacks associated with the use of TBP have caused concern to the separation scientists and technologists. These shortcomings may pose a serious challenge particularly during the reprocessing of (a) short cooled thermal reactor fuels, (b) fast reactor fuels with the larger Pu content and significantly higher burn up, and (c) while treating various waste streams for their disposal to the environment. The N,N-dialkyl aliphatic amides have received particular attention as alternate potential extractants for the reprocessing of spent nuclear fuels in view of (a) the innocuous nature of their degradation products, namely, carboxylic acids/amines and (b) the possibility to incinerate the used solvent leading to reduced volume of secondary waste. The physical and chemical properties of these amides are influenced strongly by the nature of alkyl groups. The extractant N,N-dihexyl octanamide (DHOA) was found to be a promising candidate among a large number of extractants studied. Laboratory batch studies as well as mixer settler studies were performed under process conditions with DHOA and compared with those of TBP. DHOA was found to extract Pu(IV) more efficiently than TBP, both at trace-level concentration as well as under uranium loading conditions. In addition, the extraction behavior of Am(III) and Zr(IV) was studied at varying nitric acid concentrations (1 to 6 M). Extraction behavior of uranium at macroconcentrations (9.9 to 157.7 g/l) was carried out at different temperatures, and it was observed that D{sub U} decreased with the increase in U loading as well as with the increase of temperature (in the range 25 to 45 deg. C) and that the two-phase reaction was exothermic in nature. Mixer settler studies on U(VI) revealed that DHOA is similar to TBP during the extraction cycle but better than TBP during the stripping cycle.

Manchanda, V.K.; Ruikar, P.B.; Sriram, S.; Nagar, M.S.; Pathak, P.N.; Gupta, K.K.; Singh, R.K.; Chitnis, R.R.; Dhami, P.S.; Ramanujam, A. [Bhabha Atomic Research Centre (India)

2001-06-15T23:59:59.000Z

33

Sequential Extraction Method for Determination of Fe(II/III) and U(IV/ VI) in Suspensions of Iron-Bearing Phyllosilicates and Uranium  

E-Print Network [OSTI]

electron donors to stimulate anaerobic conditions and reduce mobile uranyl (VI) to sparingly soluble uraninite (U(IV)O2(s)).1-3 However, further studies have shown that uraninite can be reoxidized by nitrate,4

Burgos, William

34

Vi Rapp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vi Rapp Vi Rapp Vi Rapp Residential Building Systems Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R3074 Berkeley CA 94720 Office Location: 90-3080 (510) 495-2035 VHRapp@lbl.gov This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2013 Rapp, Vi H., Albert Pastor-Perez, Brett C. Singer, and Craig P. Wray. Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II., 2013. Download: PDF (836.92 KB) 2012 Rapp, Vi H., Brett C. Singer, J. Chris Stratton, and Craig P. Wray. Assessment of Literature Related to Combustion Appliance Venting Systems., 2012. Download: PDF (1.78 MB) Rapp, Vi H., A. DeFilippo, and Samveg Saxena. "Extending the lean operating

35

E-Print Network 3.0 - assessment methods vi Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

porous media. Materials and Methods Experimental... Effects of Solid-to-Solution Ratio on Uranium(VI) Adsorption and Its Implications T A O C H E N G... , Wisconsin 53706 U(VI)...

36

Dendritic Chelating Agents. 2. U(VI) Binding to Poly(amidoamine) and  

E-Print Network [OSTI]

. Introduction The mining and processing of uranium ores and the production, reprocessing and disposal of uranium streams is a key compo- nent of the uranium nuclear fuel cycle (1­4). Uranyl [U(VI)] is the most stable uranium species under the typical oxidizing conditionsencounteredinthetreatmentofaqueouseffluents (3

Goddard III, William A.

37

Predictive calculations to assess the long-term effect of cementitious materials on the pH and solubility of uranium(VI) in a shallow land disposal environment  

SciTech Connect (OSTI)

One proposed method of low-level radioactive waste (LLW) disposal is to mix the radioactive waste streams with cement, place the mixture in steel barrels, and dispose of the barrels in near-surface unsaturated sediments. Cement or concrete is frequently used in burial grounds, because cement porewaters are buffered at high pH values and lanthanides and actinides; are very insoluble in highly alkaline environments. Therefore, leaching of these contaminants from the combined cement/low-level radioactive waste streams will at least initially be retarded. The calculations performed in this study demonstrate that the pH of cement porewaters will be maintained at a value greater than 10 for 10,000 years under Hanford specific hydrogeochemical conditions. Ten thousand years is the period generally studied in longterm performance assessments per regulatory guidance. The concentrations of dissolved hexavalent uranium [U(VI)], the valence form of dissolved U usually present in oxidizing surface and groundwaters, are also constrained by the high pH and predicted solution compositions over the 10,000-year period, which is favorable from a long-term performance perspective.

Criscenti, L.J.; Serne, R.J.; Krupka, K.M. [Pacific Northwest Lab., Richland, WA (United States); Wood, M.I. [Westinghouse Hanford Company, Richland, WA (United States)

1996-09-01T23:59:59.000Z

38

Supercritical Fluid Extraction and Separation of Uranium from Other Actinides  

SciTech Connect (OSTI)

This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uranium from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.

Donna L. Quach; Bruce J. Mincher; Chien M. Wai

2014-06-01T23:59:59.000Z

39

Depleted uranium exposure and health effects in Gulf War veterans  

Science Journals Connector (OSTI)

...2006 research-article Depleted uranium exposure and health effects in Gulf War...Medicine) Gulf War and health. In Depleted uranium, pyridostigmine bromide...McDiarmid, M.A , Health effects of depleted uranium on exposed Gulf War...

2006-01-01T23:59:59.000Z

40

Fiscal Year 1985 Department of Energy Authorization: uranium enrichment, electric energy systems, and storage programs. Volume VI. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Eighth Congress, Second Session, February 22, 28; March 1984  

SciTech Connect (OSTI)

Volume VI of the hearing record covers three days of testimony on uranium enrichment, electric energy systems, and storage problems. DOE Assistant Secretary for Nuclear Energy Shelby Brewer reviewed the current market crisis which threatens the US capability of continuing as a reliable enrichment supplier, and outlined DOE's response to the problem. Laboratory and non-DOE witnesses from the nuclear industry followed with their assessments of the problem. Witnesses on the third day described research on high-voltage electric fields, how electromagnetic pulses affect the electric grid, and ways to improve the delivery of electric power, as well as efficient, cost-effective energy-storage systems.

Not Available

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

8 - Uranium  

Science Journals Connector (OSTI)

Release of uranium (U) to the environment is mainly through the nuclear fuel cycle. In oxic waters, U(VI) is the predominant redox state, while U(IV) is likely to be encountered in anoxic waters. The free uranyl ion ( UO 2 2 + ) dominates dissolved U speciation at low pH while complexes with hydroxides and carbonates prevail in neutral and alkaline conditions. Whether the toxicity of U(VI) to fish can be predicted based on its free ion concentration remains to be demonstrated but a strong influence of pH has been shown. In the field, U accumulates in bone, liver, and kidney, but does not biomagnify. There is certainly potential for uptake of U via the gill based on laboratory studies; however, diet and/or sediment may be the major route of uptake, and may vary with feeding strategy. Uranium toxicity is low relative to many other metals, and is further reduced by increased calcium, magnesium, carbonates, phosphate, and dissolved organic matter in the water. Inside fish, U produces reactive oxygen species and causes oxidative damage at the cellular level. The radiotoxicity of enriched U has been compared with chemical toxicity and it has been postulated that both may work through a mechanism of production of reactive oxygen species. In practical terms, the potential for chemotoxicity of U outweighs the potential for radiotoxicity. The toxicokinetics and toxicodynamics of U are well understood in mammals, where bone is a stable repository and the kidney the target organ for toxic effects from high exposure concentrations. Much less is known about fish, but overall, U is one of the less toxic metals.

Richard R. Goulet; Claude Fortin; Douglas J. Spry

2011-01-01T23:59:59.000Z

42

Fiscal year 1986 Department of Energy Authorization (uranium enrichment and electric energy systems, energy storage and small-scale hydropower programs). Volume VI. Hearings before the Subcommittee on Energy Research and Production of the Committee on Science and Technology, US House of Representatives, Ninety-Ninth Congress, First Session, February 28; March 5, 7, 1985  

SciTech Connect (OSTI)

Volume VI of the hearing record covers three days of testimony on the future of US uranium enrichment and on programs involving electric power and energy storage. There were four areas of concern about uranium enrichment: the choice between atomic vapor laser isotope separation (AVLIS) and the advanced gas centrifuge (AGC) technologies, cost-effective operation of gaseous diffusion plants, plans for a gas centrifuge enrichment plant, and how the DOE will make its decision. The witnesses represented major government contractors, research laboratories, and energy suppliers. The discussion on the third day focused on the impact of reductions in funding for electric energy systems and energy storage and a small budget increase to encourage small hydropower technology transfer to the private sector. Two appendices with additional statements and correspondence follow the testimony of 17 witnesses.

Not Available

1985-01-01T23:59:59.000Z

43

Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

44

Caulobacter crescentus as a Whole-Cell Uranium Biosensor  

Science Journals Connector (OSTI)

...results, we constructed a uranium reporter that places...strongly upregulated under uranium stress conditions. MATERIALS...Pb(NO3)2], and depleted uranyl nitrate [UO2...and by Damon Runyon Cancer Research Foundation fellowship...specificity for chelated uranium(VI): isolation and...

Nathan J. Hillson; Ping Hu; Gary L. Andersen; Lucy Shapiro

2007-09-28T23:59:59.000Z

45

Effects of Chromium(VI) and Chromium(III) on Desulfovibrio vulgaris Cells  

SciTech Connect (OSTI)

Desulfovibrio vulgaris ATCC 29579 is a well studied sulfate reducer that has known capabilities of reducing heavy metals and radionuclides, like chromium and uranium. Cultures grown in a defined medium (i.e. LS4D) had a lag period of approximately 40 h when exposed to 50 ?Mof Cr(VI). Substrate analysis revealed that although chromium is reduced within the first 5 h, growth does not resume for another 35 h. During this time, small amounts of lactate are still utilized but the reduction of sulfate does not occur. Sulfate reduction occurs concurrently with the accumulation of acetate approximately 40 h after inoculation, when growth resumes. Similar amounts of hydrogen are produced during this time compared to hydrogen production by cells not exposed to Cr(VI); therefore an accumulation of hydrogen cannot account for the utilization of lactate. There is a significant decrease in the carbohydrate to protein ratio at approximately 25 h, and this result indicated that lactate is not converted to glycogen. Most probable number analysis indicated that cell viability decreased steadily after inoculation and reached approximately 6 x 104 cells/ml 20 h post-chromium exposure. Regeneration of reducing conditions during chromium exposure does not induce growth and in fact may make the growth conditions even more unfavorable. This result suggested that an increase in Eh was not solely responsible for the decline in viability. Cell pellets collected 10 h after chromium-exposure were unable to resume growth when suspended into fresh medium. Supernatants from these pellets were able to support cell growth upon re- inoculation. D. vulgaris cells treated with a non-dose dependent addition of ascorbate at the same time of Cr(VI) addition did not enter a lag period. Ascorbate added 3 h post-Cr(VI) exposure did not prevent the growth lag. These results indicated that Desulfovibrio utilized lactate to reduce Cr(VI) without the reduction of sulfate, that the decline in cell viability and cell growth was most likely a consequence of Cr(III), and that an organic ligand could protect D. vulgaris cells from Cr(III) toxicity. Lactate consumption decoupled from sulfate reduction in the presence of Cr(VI) could provide organic carbon for organo- Cr(III) complexes.

M.E. Clark; A. Klonowska; S.B. Thieman; B. Giles; J.D. Wall; and M.W. Fields

2007-04-19T23:59:59.000Z

46

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......I (2009) Depleted uranium: properties, military...Teratogenicity of depleted uranium aerosols: a review...expression in female breast cancer among an Iraqi population exposed to depleted uranium. J Carcinog 7: 8......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

47

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......Fairlie I (2009) Depleted uranium: properties, military use and health risks. Med Confl...et al (2002) Health effects of embedded depleted uranium. Mil Med 167...et al (2000) Health effects of depleted uranium on exposed Gulf......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

48

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......Abou-Donia, M. Depleted and natural uranium: chemistry...Environ. Health B Crit...et al. Health effects of embedded depleted uranium. Mil. Med...determinations in depleted uranium exposed Gulf...veterans. Health Phys. 77......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

49

Normalisation of spot urine samples to 24-h collection for assessment of exposure to uranium  

Science Journals Connector (OSTI)

......exposed to depleted uranium. Intern...Environ. Health (2006...concentrations of depleted uranium and radiation...shrapnel. Health Phys (2005...Haldimann M. Depleted uranium in Kosovo...workers. Health Phys (2002......

R. Marco; E. Katorza; R. Gonen; U. German; A. Tshuva; O. Pelled; O. Paz-Tal; A. Adout; Z. Karpas

2008-06-01T23:59:59.000Z

50

Flyer, Title VI  

Broader source: Energy.gov [DOE]

Titles VI and IX of the Civil Rights Act of 1964, as amended prohibit discrimination in programs and activities receiving Federal financial assistance.

51

Uranium Phases in Contaminated Sediments Below Hanford's U Tank Farm  

SciTech Connect (OSTI)

Macroscopic and spectroscopic investigations (XAFS, XRF and TRLIF) on Hanford contaminated vadose zone sediments from the U-tank farm showed that U(VI) exists as different surface phases as a function of depth below ground surface (bgs). Dominant U(VI) silicate precipitates (boltwoodite and uranophane) were present in shallow-depth sediments (15-16 m bgs). In the intermediate depth sediments (20-25 m bgs), adsorbed U(VI) phases dominated but small amounts of surface precipitates consisting of polynuclear U(VI) surface complex were also identified. The deep depth sediments (> 28 m bgs) showed no signs of contact with tank wastes containing Hanford-derived U(VI), but natural uranium solid phases were observed. Most of the U(VI) was preferentially associated with the silt and clay size fractions and showed strong correlation with Ca, especially for the precipitated U(VI) silicate phase in the shallow depth sediments. Because U(VI) silicate precipitates dominate the U(VI) phases in the shallow depth sediments, macroscopic (bi)carbonate leaching should result in U(VI) releases from both desorption and dissolution processes. Having several different U(VI) surface phases in the Hanford contaminated sediments indicates that the U(VI) release mechanism could be complicated and that detailed characterization of the sediments would be needed to estimate U(VI) fate and transport in vadose zone.

Um, Wooyong; Wang, Zheming; Serne, R. Jeffrey; Williams, Benjamin D.; Brown, Christopher F.; Dodge, Cleveland J.; FRANCIS, AROKIASAMY J.

2009-06-11T23:59:59.000Z

52

VI-1 TALKS PRESENTED  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R. Rapp, EMMI Rapid Reaction Task Force on "Direct-Photon Flow Puzzle", GSI, Darmstadt, Germany (February 2014). VI-7 Quarkonia in the quark-gluon plasma, R. Rapp, Invited...

53

In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ Biological Uranium Remediation In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the world, including agricultural evaporation ponds (1), U.S. Department of Energy nuclear weapons manufacturing areas, and mine tailings sites (2). In oxygen-containing groundwater, uranium is generally found in the hexavalent oxidation state (3,4), which is a relatively soluble chemical form. As U(VI) is transported through

54

Effect of Co-solutes on the Products and Solubility of Uranium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JG Catalano, and DE Giammar.2014."Effect of Co-solutes on the Products and Solubility of Uranium(VI) Precipitated with Phosphate."Chemical Geology 364:66-75. doi:10.1016...

55

Spatially resolved U(VI) partitioning and speciation: Implications for plume scale behavior of contaminant U in the Hanford vadose zone  

E-Print Network [OSTI]

EM/GJ1302- 2006, Stoller Hanford Office, Richland, WA. 2006.characterization of U(VI) in Hanford vadose zone poreUranium Geochemistry at the Hanford Site. Pacific Northwest

Wan, Jiamin

2009-01-01T23:59:59.000Z

56

Micropixe as a tool to search for uranium-bearing particles in lung tissues  

SciTech Connect (OSTI)

A proton microbeam is proposed as a tool to search for uranium-bearing particles in lung tissues. Preliminary experiments have been undertaken by irradiating with protons lung tissues of dogs previously exposed to uranium ore. 7 references.

Paschoa, A.S.; Wrenn, S.C.; Miller, M.E.; Jones, K.W.; Cholewa, M.; Hanson, A.L.

1982-01-01T23:59:59.000Z

57

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

58

URANIUM IN ALKALINE ROCKS  

E-Print Network [OSTI]

Greenland," in Uranium Exploration Geology, Int. AtomicOklahoma," 1977 Nure Geology Uranium Symposium, Igneous HostMcNeil, M. , 1977. "Geology of Brazil's Uranium and Thorium

Murphy, M.

2011-01-01T23:59:59.000Z

59

Remediation of Uranium-contaminated Groundwater by Sorption onto Hydroxyapatite Derived  

E-Print Network [OSTI]

Remediation of Uranium-contaminated Groundwater by Sorption onto Hydroxyapatite Derived from of CFHA to remove uranium (U(VI)) from aqueous phase was investigated using both batch and column experi metals and radionuclides forming minerals that are stable across a wide range of geological conditions

Clement, Prabhakar

60

Depleted uranium  

Science Journals Connector (OSTI)

The potential health effects arising from exposure to depleted uranium have been much in the news of late. Naturally occurring uranium contains the radioisotopes 238U (which dominates, at a current molar proportion of 99.3%), 235U and a small amount of 234U. Depleted uranium has an isotopic concentration of 235U that is below the 0.7% found naturally. This is either because the uranium has passed through a nuclear reactor which uses up some of the fissile 235U that fuels the fission chain-reaction, or because it is the uranium that remains when enriched uranium with an elevated concentration of 235U is produced in an enrichment plant, or because of a combination of these two processes. Depleted uranium has a lower specific activity than naturally occurring uranium because of the lower concentrations of the more radioactive isotopes 235U and 234U, but account must be taken of any contaminating radionuclides or exotic radioisotopes of uranium if the uranium has been irradiated. Uranium is a particularly dense element (about twice as dense as lead), and this property makes it useful in certain military applications, such as armour-piercing munitions. Depleted uranium, rather than natural uranium, is used because of its availability and, since the demise of the fast breeder reactor programme, the lack of alternative use. Depleted uranium weapons were used in the Gulf War of 1990 and also, to a lesser extent, more recently in the Balkans. This has led to speculation that depleted uranium may be associated with `Gulf War Syndrome', or other health effects that have been reported by military and civilian personnel involved in these conflicts and their aftermath. Although, on the basis of present scientific knowledge, it seems most unlikely that exposure to depleted uranium at the levels concerned could produce a detectable excess of adverse health effects, and in such a short timescale, the issue has become one of general concern and contention. As a consequence, any investigation needs to be thorough to produce sufficiently comprehensive evidence to stand up to close scrutiny and gain the support of the public, whatever the conclusions. Unfortunately, it is the nature of such inquiries that they take time, which is frustrating for some. In the UK, the Royal Society has instigated an independent investigation into the health effects of depleted uranium by a working group chaired by Professor Brian Spratt. This inquiry has been underway since the beginning of 2000. The working group's findings will be reviewed by a panel appointed by the Council of the Royal Society, and it is anticipated that the final report will be published in the summer of 2001. Further details can be found at www.royalsoc.ac.uk/templates/press/showpresspage.cfm?file=2001010801.txt. Nick Priest has summarised current knowledge on the toxicity (both radiological and chemical) of depleted uranium in a commentary in The Lancet (27 January 2001, 357 244-6). For those wanting to read a comprehensive review of the literature, in 1999 RAND published `A Review of the Scientific Literature as it Pertains to Gulf War Illnesses, Volume 7: Depleted Uranium' by Naomi Harley and her colleagues, which can be found at www.rand.org/publications/MR/MR1018.7/MR1018.7.html. An interesting article by Jan Olof Snihs and Gustav Akerblom entitled `Use of depleted uranium in military conflicts and possible impact on health and environment' was published in the December 2000 issue of SSI News (pp 1-8), and can be found at the website of the Swedish Radiation Protection Institute: www.ssi.se/tidningar/PDF/lockSSIn/SSI-news2000.pdf. Last year, a paper was published in the June issue of this Journal that is of some relevance to depleted uranium. McGeoghegan and Binks (2000 J. Radiol. Prot. 20 111-37) reported the results of their epidemiological study of the health of workers at the Springfields uranium production facility near Preston during 1946-95. This study included almost 14 000 radiation workers. Although organ-specific doses due to uranium are not yet available for these worker

Richard Wakeford

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

What is Depleted Uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is Uranium? What is Uranium? Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects What is Uranium? Physical and chemical properties, origin, and uses of uranium. Properties of Uranium Uranium is a radioactive element that occurs naturally in varying but small amounts in soil, rocks, water, plants, animals and all human beings. It is the heaviest naturally occurring element, with an atomic number of 92. In its pure form, uranium is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes, which are identified by the total number of protons and neutrons in the nucleus: uranium-238, uranium-235, and uranium-234. (Isotopes of an element have the

62

Title VI | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VI VI Title VI Title VI of the Civil Rights Act of 1964 prohibits discrimination on the basis of race, color, and national origin in programs and activities that receive federal financial assistance. The law states, in part, that: No person in the United States shall, on the ground of race, color, or national origin, be excluded from participation in, be denied the benefits of, or be subjected to discrimination under any program or activity receiving Federal financial assistance. The Office of Civil Rights is responsible for monitoring and enforcing compliance with Title VI, investigating Title VI-related complaints, and providing technical assistance to recipients of Department of Energy financial assistance. The Department has promulgated regulations that

63

Uranium Mining and Enrichment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Presentation » Uranium Mining and Enrichment Overview Presentation » Uranium Mining and Enrichment Uranium Mining and Enrichment Uranium is a radioactive element that occurs naturally in the earth's surface. Uranium is used as a fuel for nuclear reactors. Uranium-bearing ores are mined, and the uranium is processed to make reactor fuel. In nature, uranium atoms exist in several forms called isotopes - primarily uranium-238, or U-238, and uranium-235, or U-235. In a typical sample of natural uranium, most of the mass (99.3%) would consist of atoms of U-238, and a very small portion of the total mass (0.7%) would consist of atoms of U-235. Uranium Isotopes Isotopes of Uranium Using uranium as a fuel in the types of nuclear reactors common in the United States requires that the uranium be enriched so that the percentage of U-235 is increased, typically to 3 to 5%.

64

VI Classic Green and Poisson Functions 213 VI.1Problems in Half-Space . . . . . . . . . . . . . . . . . . . . . . . .*  

E-Print Network [OSTI]

Contents VI Classic Green and Poisson Functions 213 VI.2Green Function for the Heat Equation . . . . . . . . . . . . . .* * . . 220 VI.1.3The Case #12; Chapter VI Classic Green and Poisson Functions In Chapter IV we gave a definition

Menaldi, Jose-Luis

65

Uranium speciation in glass corrosion layers: An XAFS study  

SciTech Connect (OSTI)

Uranium L{sub 3} X-ray absorption data were obtained from two borosilicate glasses, which are considered as models for radioactive wasteforms, both before and after leaching. Surface sensitivity to uranium speciation was attained by a novel application of simultaneous fluorescence and electron-yield detection. Changes in speciation are clearly discernible, from U(VI) in the bulk to (UO{sub 2}){sup 2+}-uranyl in the corrosion layer. The uranium concentrations within the corrosion layer also show variations with leaching times that can be determined from the data.

Biwer, B.M.; Soderholm, L. [Argonne National Lab., IL (United States); Greegor, R.B. [Boeing Co., Seattle, WA (United States); Lytle, F.W. [EXAFS Co., Pioche, NV (United States)

1997-12-31T23:59:59.000Z

66

The role of nanopores on U(VI) sorption and redox behavior in U(VI)-contaminated subsurface sediments  

SciTech Connect (OSTI)

Most reactive surfaces in clay-dominated sediments are present within nanopores (pores of nm dimension). The behavior of geological fluids and minerals in nanopores is significantly different from those in normal non-nanoporous environments. The effect of nanopore surfaces on U(VI) sorption/desorption and reduction is likely to be significant in clay-rich subsurface environments. Our research results from both model nanopore system and natural sediments from both model system (synthetic nanopore alumina) and sediments from the ORNL Field Research Center prove that U(VI) sorption on nanopore surfaces can be greatly enhanced by nanopore confinement environments. The results from the project provide advanced mechanistic, quantitative information on the physiochemical controls on uranium sorption and redox behavior in subsurface sediments. The influence of nanopore surfaces on coupled uranium sorption/desorption and reduction processes is significant in virtually all subsurface environments, because most reactive surfaces are in fact nanopore surfaces. The results will enhance transfer of our laboratory-based research to a major field research initiative where reductive uranium immobilization is being investigated. Our results will also provide the basic science for developing in-situ colloidal barrier of nanoporous alumina in support of environmental remediation and long term stewardship of DOE sites.

Xu, Huifang; Roden, Eric E.; Kemner, Kenneth M.; Jung, Hun-Bok; Konishi, Hiromi; Boyanov, Maxim; Sun, Yubing; Mishra, Bhoopesh

2013-10-16T23:59:59.000Z

67

Assessing the Renal Toxicity of Capstone Depleted Uranium Oxides and Other Uranium Compounds  

SciTech Connect (OSTI)

The primary target for uranium toxicity is the kidney. The most frequently used guideline for uranium kidney burdens is the International Commission on Radiation Protection (ICRP) value of 3 µg U/g kidney, a value that is based largely upon chronic studies in animals. In the present effort, we have developed a risk model equation to assess potential outcomes of acute uranium exposure. Twenty-seven previously published case studies in which workers were acutely exposed to soluble compounds of uranium (as a result of workplace accidents) were analyzed. Kidney burdens of uranium for these individuals were determined based on uranium in the urine, and correlated with health effects observed over a period of up to 38 years. Based upon the severity of health effects, each individual was assigned a score (- to +++) and then placed into an Effect Group. A discriminant analysis was used to build a model equation to predict the Effect Group based on the amount of uranium in the kidneys. The model equation was able to predict the Effect Group with 85% accuracy. The risk model was used to predict the Effect Group for Soldiers exposed to DU as a result of friendly fire incidents during the 1991 Gulf War. This model equation can also be used to predict the Effect Group of new cases in which acute exposures to uranium have occurred.

Roszell, Laurie E.; Hahn, Fletcher; Lee, Robyn B.; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

68

LABORATORY VI ELECTRICITY FROM MAGNETISM  

E-Print Network [OSTI]

LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

Minnesota, University of

69

LABORATORY VI ELECTRICITY FROM MAGNETISM  

E-Print Network [OSTI]

LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored the magnetic field and its effect on moving charges. You also saw how electric currents could create magnetic can give rise to electric currents. This is the effect that allows the generation of electricity

Minnesota, University of

70

2.0 GEOGRAPHIC ANALYSIS ON THE LOCATION OF URANIUM MINES  

E-Print Network [OSTI]

2.0 GEOGRAPHIC ANALYSIS ON THE LOCATION OF URANIUM MINES With the exception of some phosphate mine areas in central and northern Florida, people are most likely to be exposed to uranium mining mines. Figure 2.1 was generated from uranium mining-related records from the U.S. Bureau of Mines-- now

71

Micro-Scale Heterogeneity in Biogeochemical Uranium Cycling  

SciTech Connect (OSTI)

One method for the in situ remediation of uranium contaminated subsurface environments is the removal of highly soluble U(VI) from groundwater by microbial reduction to the sparingly soluble U(IV) mineral uraninite. Success of this remediation strategy will, in part, be determined by the extent and products of microbial reduction. In heterogeneous subsurface environments, microbial processes will likely yield a combination of U(IV) and U(VI) phases distributed throughout the soil matrix. Here, we use a combination of bulk X-ray absorption spectroscopy (XAS) and micro-focused XAS and X-ray diffraction to determine uranium speciation and distribution with sediment from a pilot-scale uranium remediation project located in Oak Ridge, TN.

Ginder-Vogel, M.; Wu, W.-M.; Kelly, S.; Criddle, C.S.; Carley, J.; Jardine, P.; Kemner, K.M.; Fendorf, S.

2009-06-04T23:59:59.000Z

72

Depleted Uranium Health Effects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

73

Uranium industry annual 1996  

SciTech Connect (OSTI)

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

74

Effects of Fulvic Acid on Uranium(VI) Sorption Kinetics  

Science Journals Connector (OSTI)

Funding provided by the National Science Foundation, the Austrian Academy of Sciences, the U.S. DOE NABIR Program, and in part by the U.S. DOE Subsurface Biogeochemical Research program’s Sustainable Systems Science Focus Area at Lawrence Berkeley National Laboratory (Contract No. DE-AC02-05CH11231). ... In Handbook of soil science; Summer, M. E., Ed.; CRC Press: Boca Raton, FL, 2000. ...

Ruth M. Tinnacher; Peter S. Nico; James A. Davis; Bruce D. Honeyman

2013-04-03T23:59:59.000Z

75

Neurotoxicity of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a byproduct of the enrichment process of uranium for its more radioactive isotopes to be ... neurotoxicity of DU. This review reports on uranium uses and its published health effects, wit...

George C. -T. Jiang; Michael Aschiner

2006-04-01T23:59:59.000Z

76

Excess Uranium Management  

Broader source: Energy.gov [DOE]

The Department is issuing a Request for Information on the effects of DOE transfers of excess uranium on domestic uranium mining, conversion, and enrichment industries.

77

Coextraction behavior of Tc(VII) and U(VI) by CMPO  

SciTech Connect (OSTI)

The coextraction behavior of technetium(VII) and uranium(VI) from nitric acid solution by n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in the absence or presence of tributyl phosphate (TBP) was investigated. The extraction of technetium was remarkably enhanced in the presence of uranium at less than 0.1M nitric acid concentration, and with the initial concentration ratio of [U]/[Tc] = 50 in the aqueous phase, the distribution coefficient of Tc(VII) at 0.01M nitric acid was about one hundred times greater than that obtained in the absence of uranium. The coextraction of technetium and uranium was presumed to occur due to the same ion exchange mechanism as reported in the Tc-U-TBP system. However, the effect of TBP on this coextraction was not observed in the present study. 17 refs., 8 figs.

Takeuchi, Mitsuo; Tanaka, Satoru; Yamawaki, Michio (Univ. of Tokyo, Ibaraki (Japan)); Tachimori, Shoichi (Japan Atomic Energy Research Inst., Ibaraki (Japan))

1995-01-01T23:59:59.000Z

78

Uranium Industry Annual, 1992  

SciTech Connect (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

79

Microbial Reduction of Intragrain U(VI) in Contaminated Sediment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intragrain U(VI) in Contaminated Sediment. Microbial Reduction of Intragrain U(VI) in Contaminated Sediment. Abstract: The accessibility of precipitated, intragrain U(VI) in a...

80

Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report  

SciTech Connect (OSTI)

A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory proteins (Gmet_2478 and Gmet_1641) were up-regulated with exposure to Cr(VI). A nine-heme cytochrome C was purified that could reduce nitrite and could be oxidized by Cr(VI). For D. desulfuricans, we found that confirmed that Cr(VI) induced a prolonged lag period when Cr(VI) was reduced. Over three hundred proteins were unequivocally identified by LC/MS-MS and a significant number of down-regulated proteins for which the levels were changed >2 fold compared to control. Sulfite reductase levels were similar, however, nitrate and nitrite reductase were down-regulated. The supernatant of spent cultures was found to contain a filterable, heat stable compound that rapidly reduced Cr(VI). In addition, desulfoviridin was purified from nitrate grown cells and shown to have nitrite reductase activity that was inhibited by Cr(VI). For S. barnesii, periplasmic nitrate reductase (Nap), nitrite reductase (Nrf), and the metalloid reductase (Rar) were purified and characterized. The supernatant of spent cultures was also found to contain a filterable, heat stable compound that rapidly reduced Cr(VI) but that Rar also reduced Cr(VI). Our results from specific aims 1 through 3 indicate that for G. metallireducens, Cr(VI) inhibits nitrate respiration as it oxidizes cytochromes involved in nitrate respiration. Iron reduction is apparently not affected and the inhibitory affects of Cr(VI) may be attenuated by the addition of sufficient Fe(III) to generate Fe(II) that abiotically reduces the chromium. For S. barnesii, although the enzyme assays indicate that the components of the respiratory pathway for nitrate (e.g. Nap and Nrf) are inhibited by chromate, the organism has a mechanism to prevent this from actually occurring. Our current hypothesis is that the non-specific metalloid reductase (Rar) is providing resistance by reducing the Cr(VI). The strategy here would be to enhance its growth and metabolism in the natural setting. Lactate is a suitable electron donor for S. barnesii but other donors are possible. Although the version of the Phylochip used for monitoring the microb

John F. Stolz

2011-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Uranium Hexafluoride (UF6)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hexafluoride (UF6) Hexafluoride (UF6) Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Uranium Hexafluoride (UF6) Physical and chemical properties of UF6, and its use in uranium processing. Uranium Hexafluoride and Its Properties Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. UF6 crystals in a glass vial image UF6 crystals in a glass vial. Uranium hexafluoride does not react with oxygen, nitrogen, carbon dioxide, or dry air, but it does react with water or water vapor. For this reason,

82

Uranium industry annual 1998  

SciTech Connect (OSTI)

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

83

Uranium industry annual 1994  

SciTech Connect (OSTI)

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

84

Inhibition Effect of Secondary Phosphate Mineral Precipitation on Uranium Release from Contaminated Sediments  

SciTech Connect (OSTI)

The inhibitory effect of phosphate mineral precipitation on uranium release was evaluated using a U(VI)-contaminated sediment collected from the US Department of Energy (DOE) Hanford site. The sediment contained U(VI) that was associated with diffusion-limited intragrain regions within its mm-size granitic lithic fragments. The sediment was first treated to promote phosphate mineral precipitation in batch suspensions spiked with 1 and 50 mM aqueous phosphate, and calcium in a stoichiometric ratio of mineral hydroxyapatite. The phosphate-treated sediment was then leached to solubilize contaminant U(VI) in a column system using a synthetic groundwater that contained chemical components representative of Hanford groundwater. Phosphate treatment significantly decreased the extent of U(VI) release from the sediment. Within the experimental duration of about 200 pore volumes, the effluent U(VI) concentrations were consistently lower by over one and two orders of magnitude after the sediment was treated with 1 and 50 mM of phosphate, respectively. Measurements of solid phase U(VI) using various spectroscopes and chemical extraction of the sediment collectively indicated that the inhibition of U(VI) release from the sediment was caused by: 1) U(VI) adsorption to the secondary phosphate precipitates and 2) the transformation of initially present U(VI) mineral phases to less soluble forms.

Shi, Zhenqing; Liu, Chongxuan; Zachara, John M.; Wang, Zheming; Deng, Baolin

2009-11-01T23:59:59.000Z

85

Vi har fet et Det flles kursus har  

E-Print Network [OSTI]

offentlige tilskud. Det stiller krav til at vi laver modeller, der er mere dynamiske end vi er vant til inden

86

Uranium industry annual 1995  

SciTech Connect (OSTI)

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

87

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Broader source: Energy.gov (indexed) [DOE]

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

88

Depleted Uranium Technical Brief  

E-Print Network [OSTI]

and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological healthDepleted Uranium Technical Brief United States Environmental Protection Agency Office of Air

89

Delayed neutron assay to test sorbers for uranium-from-seawater applications  

E-Print Network [OSTI]

Delayed Fission Neutron (DFN) assay has been applied to the measurement of uranium content in sorbers exposed to natural seawater for the purpose of evaluating advanced ion exchange resins. DFN assay was found to be ...

Nitta, Cynthia K.

1982-01-01T23:59:59.000Z

90

Teratogenicity of depleted uranium aerosols: A review from an epidemiological perspective  

Science Journals Connector (OSTI)

Depleted uranium is being used increasingly often as a component of munitions in military conflicts. Military personnel, civilians and the DU munitions producers are being exposed to the DU aerosols that are g...

Rita Hindin; Doug Brugge; Bindu Panikkar

2005-08-01T23:59:59.000Z

91

s1, s2, . . . , sN vi = ai, i = i/vi, i = i/vi,  

E-Print Network [OSTI]

¹ ¹ vi = ai, i = i/vi, i = i/vi, xi = vi cos i cos i yi = vi sin i zi = vi cos i sin i amin ai(t) amax(t) i¹ ´ µ amin amax¸ max max ¹ º º þ º ¹ i¹ xri = xi + xdi cos i cos i - ydi cos i - zdi sin i cos i]T ¸ Ni i¹ ¸ rd R3 ¸ ¹ ¸ k > 0 º þ ¿ º º ý þ ¹ ¹ º º ¹ ¹ º ½ � � � º¸ � Ý���¹ ���� �º ��Ð� �� �Ý�� �� Ð

Granichin, Oleg

92

Welding of uranium and uranium alloys  

SciTech Connect (OSTI)

The major reported work on joining uranium comes from the USA, Great Britain, France and the USSR. The driving force for producing this technology base stems from the uses of uranium as a nuclear fuel for energy production, compact structures requiring high density, projectiles, radiation shielding, and nuclear weapons. This review examines the state-of-the-art of this technology and presents current welding process and parameter information. The welding metallurgy of uranium and the influence of microstructure on mechanical properties is developed for a number of the more commonly used welding processes.

Mara, G.L.; Murphy, J.L.

1982-03-26T23:59:59.000Z

93

FAQ 1-What is uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is uranium? What is uranium? What is uranium? Uranium is a radioactive element that occurs naturally in low concentrations (a few parts per million) in soil, rock, and surface and groundwater. It is the heaviest naturally occurring element, with an atomic number of 92. Uranium in its pure form is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes: primarily uranium-238, uranium-235, and a very small amount of uranium-234. (Isotopes are different forms of an element that have the same number of protons in the nucleus, but a different number of neutrons.) In a typical sample of natural uranium, most of the mass (99.27%) consists of atoms of uranium-238. About 0.72% of the mass consists of atoms of uranium-235, and a very small amount (0.0055% by mass) is uranium-234.

94

EPA Update: NESHAP Uranium Activities  

E-Print Network [OSTI]

for underground uranium mining operations (Subpart B) EPA regulatory requirements for operating uranium mill for Underground Uranium Mining Operations (Subpart B) #12;5 EPA Regulatory Requirements for Underground Uranium uranium mines include: · Applies to 10,000 tons/yr ore production, or 100,000 tons/mine lifetime · Ambient

95

Uranium hexafluoride public risk  

SciTech Connect (OSTI)

The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

1994-08-01T23:59:59.000Z

96

300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report  

SciTech Connect (OSTI)

The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

2009-06-30T23:59:59.000Z

97

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. (was Uranium Asset Management) Advance Uranium Asset Management Ltd. (was Uranium Asset Management) AREVA NC, Inc. (was COGEMA, Inc.) American Fuel Resources, LLC American Fuel Resources, LLC BHP Billiton Olympic Dam Corporation Pty Ltd AREVA NC, Inc. AREVA NC, Inc. CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd BHP Billiton Olympic Dam Corporation Pty Ltd ConverDyn CAMECO CAMECO Denison Mines Corp. ConverDyn ConverDyn Energy Resources of Australia Ltd. Denison Mines Corp. Energy Fuels Resources Energy USA, Inc. Effective Energy N.V. Energy Resources of Australia Ltd.

98

Uranium purchases report 1992  

SciTech Connect (OSTI)

Data reported by domestic nuclear utility companies in their responses to the 1991 and 1992 ``Uranium Industry Annual Survey,`` Form EIA-858, Schedule B ``Uranium Marketing Activities,are provided in response to the requirements in the Energy Policy Act 1992. Data on utility uranium purchases and imports are shown on Table 1. Utility enrichment feed deliveries and secondary market acquisitions of uranium equivalent of US DOE separative work units are shown on Table 2. Appendix A contains a listing of firms that sold uranium to US utilities during 1992 under new domestic purchase contracts. Appendix B contains a similar listing of firms that sold uranium to US utilities during 1992 under new import purchase contracts. Appendix C contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data.

Not Available

1993-08-19T23:59:59.000Z

99

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents [OSTI]

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

1995-06-06T23:59:59.000Z

100

Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions  

SciTech Connect (OSTI)

Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate the impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl-calcium-carbonato complexes, and ferrihydrite on the rate and extent of uranium reduction in complex geochemical systems.

Stewart, B.D.; Amos, R.T.; Nico, P.S.; Fendorf, S.

2010-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling  

SciTech Connect (OSTI)

The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of "local equilibrium" assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of U(VI) diffusion in silt/clay layers. Batch isotherm experiments were first used to confirm sorption isotherms under the intended test conditions and diffusion cell experiments were then conducted to explore the diffusion hypotheses. Important new information was obtained about the role of aqueous calcium and solid calcium carbonate in controlling sorption equilibrium with Hanford sediments. The retarded interparticle diffusion model with local sorption equilibrium was shown to very successfully simulate diffusion at high aqueous concentration of U(VI). By contrast, however, diffusion data obtained at low concentration suggested nonequilibrium of sorption even at diffusion time scales. Such nonequilibrium effects at low concentration are likely to be the result of sorption retarded intraparticle diffusion, and strong U(VI) sorption in the low concentration range.

Bai, Jing; Dong, Wenming; Ball, William P.

2006-10-12T23:59:59.000Z

102

Distribution and a possible mechanism of uranium accumulation in the Catahoula Tuff, Live Oak County, Texas  

E-Print Network [OSTI]

- and micro-scopic distribution of' uranium within the Catahoula Tuff. METHODS A uranium ore body exposed in the Pant Tuff' Member of the Catahoula Tuff and exposed by open-pit mining was inves- tigated in this study. The distribution of the uranium... by oil and mining companies and the United States Geological Survey found numerous radiometric anomalies, In 1959, the San Antonio Mine Company began open pit mining of several small, shallow (less than 15 meters deep) . oxidized ore bodies in Karnes...

Parks, Steven Louis

1979-01-01T23:59:59.000Z

103

2013 Uranium Marketing Annual Survey  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for inflation. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2013). UF 6 is uranium hexafluoride. The natural UF 6 and enriched...

104

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS  

E-Print Network [OSTI]

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS Thesis. I have benefitted from conversations with many persons w~ile engaged in this project. I would like

Winfree, Erik

105

Uranium industry annual 1993  

SciTech Connect (OSTI)

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

106

Uranium in the Near-shore Aquatic Food Chain: Studies on Periphyton and Asian Clams  

SciTech Connect (OSTI)

The benthic aquatic organisms in the near-shore environment of the Columbia River are the first biological receptors that can be exposed to groundwater contaminants coming from the U.S. Department of Energy's Hanford Site. The primary contaminant of concern in the former nuclear fuels processing area at the Site, known as the 300 Area, is uranium. Currently, there are no national clean up criteria for uranium and ecological receptors. This report summarizes efforts to characterize biological uptake of uranium in the food chain of the benthic aquatic organisms and provide information to be used in future assessments of uranium and the ecosystem.

Bunn, Amoret L.; Miley, Terri B.; Eslinger, Paul W.; Brandt, Charles A.; Napier, Bruce A.

2007-12-31T23:59:59.000Z

107

The Radiolysis of AmVI Solutions  

SciTech Connect (OSTI)

The reduction of bismuthate-produced AmVI by 60Co gamma-rays was measured using post-irradiation UV/Vis spectroscopy. The reduction of AmVI by radiolysis was rapid, producing AmV as the sole product. Relatively low absorbed doses in the ~0.3 kGy range quantitatively reduced a solution of 2.5 x 10-4 M AmVI. The addition of bismuthate to samples during irradiation did not appear to protect AmVI from radiolytic reduction during these experiments. It was also shown here that AmV is very stable toward radiation. The quantitative reduction of the AmVI concentration here corresponds to 1.4 hours of exposure to a process solution, however the actual americium concentrations will be higher and the expected contact times short when using centrifugal contactors. Thus, the reduction rate found in these initial experiments may not be excessive.

Bruce J. Mincher

2013-06-01T23:59:59.000Z

108

Determining Individual Mineral Contributions To U(VI) Adsorption...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Determining Individual Mineral Contributions To U(VI)...

109

Molecular Interactions of Plutonium(VI) with SyntheticManganese...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plutonium(VI) with Synthetic Manganese-Substituted Goethite. Abstract: Plutonium(VI) sorption on the surface of well-characterized synthetic manganese-substituted goethite...

110

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2 W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W Uranium Concentrate...

111

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

Uranium Marketing Uranium Marketing Annual Report May 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2010 Uranium Marketing Annual Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity, Renewables, and Uranium Statistics. Questions about the preparation and content of this report may be directed to Michele Simmons, Team Leader,

112

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

113

Depleted uranium instead of lead in munitions: the lesser evil  

Science Journals Connector (OSTI)

Uranium has many similarities to lead in its exposure mechanisms, metabolism and target organs. However, lead is more toxic, which is reflected in the threshold limit values. The main potential hazard associated with depleted uranium is inhalation of the aerosols created when a projectile hits an armoured target. A person can be exposed to lead in similar ways. Accidental dangerous exposures can result from contact with both substances. Encountering uranium fragments is of minor significance because of the low penetration depth of alpha particles emitted by uranium: they are unable to penetrate even the superficial keratin layer of human skin. An additional cancer risk attributable to the uranium exposure might be significant only in case of prolonged contact of the contaminant with susceptible tissues. Lead intoxication can be observed in the wounded, in workers manufacturing munitions etc; moreover, lead has been documented to have a negative impact on the intellectual function of children at very low blood concentrations. It is concluded on the basis of the literature overview that replacement of lead by depleted uranium in munitions would be environmentally beneficial or largely insignificant because both lead and uranium are present in the environment.

Sergei V Jargin

2014-01-01T23:59:59.000Z

114

Ultrafiltration evaluation with depleted uranium oxide  

SciTech Connect (OSTI)

Scientists at the Los Alamos National Laboratory Plutonium Facility are using electrodissolution in neutral to alkaline solutions to decontaminate oralloy parts that have surface plutonium contamination. Ultrafiltration of the electrolyte stream removes precipitate so that the electrolyte stream to the decontamination fixture is precipitate free. This report describes small-scale laboratory ultrafiltration experiments that the authors performed to determine conditions necessary for full-scale operation of an ultrafiltration module. Performance was similar to what they observed in the ferric hydroxide system. At 12 psi transmembrane pressure, a shear rate of 12,000 sec{sup {minus}1} was sufficient to sustain membrane permeability. Ultrafiltration of uranium(VI) oxide appears to occur as easily as ultrafiltration of ferric hydroxide. Considering the success reported in this study, the authors plan to add ultrafiltration to the next decontamination system for oralloy parts.

Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

1998-03-01T23:59:59.000Z

115

Depleted uranium management alternatives  

SciTech Connect (OSTI)

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

116

Dissolution rates of uranium compounds in simulated lung fluid  

SciTech Connect (OSTI)

Maximum dissolution rates of uranium into simulated lung fluid from a variety of materials were measured at 37/sup 0/in the where f/sub i/ is in order to estimate clearance rates from the deep lung. A batch procedure was utilized in which samples containing as little as 10 ..mu..g of natural uranium could be tested. The materials included: products of uranium mining, milling and refining operations, coal fly ash, an environmental sample from a site exposed to multiple uranium sources, and purified samples of (NH/sub 4/)/sub 2/U/sub 2/O/sub 7/ U/sub 3/O/sub 8/, UO/sub 2/, and UF/sub 4/. Dissolution of uranium from several materials indicated the presence of more than one type of uranium compound; but in all cases, the fraction F of uranium remaining undissolved at any time t could be represented by the sum of up to three terms in the series: F = ..sigma../sub i/f/sub i/ exp (-0.693t/UPSILON/sub i/), where f/sub i/ is the initial fraction of component i with dissolution half-time epsilon/sub i/. Values of epsilon/sub i/ varied from 0.01 day to several thousand days depending on the physical and chemical form of the uranium. Dissolution occurred predominantly by formation of the (UO/sub 2/(CO/sub 3/)/sub 3/)/sup 4 -/ ion; and as a result, tetravalent uranium compounds dissolved slowly. Dissolution rates of size-separated yellow-cake aerosols were found to be more closely correlated with specific surface area than with aerodynamic diameter.

Kalkwarf, D.R.

1981-01-01T23:59:59.000Z

117

Immobilization of U(VI) from Oxic Groundwater by Hanford 300 Area Sediments and Effects of Columbia River Water  

SciTech Connect (OSTI)

Regions within the U.S. Department of Energy Hanford 300 Area (300 A) site experience periodic hydrologic influences from the nearby Columbia River as a result of changing river stage, which causes changes in groundwater elevation, flow direction and water chemistry. An important question is the extent to which the mixing of Columbia River water and groundwater impacts the speciation and mobility of uranium (U). In this study, we designed experiments to mimic interactions among U, oxic groundwater or Columbia River water, and 300 A sediments in the subsurface environment of Hanford 300 A. The goals were to investigate mechanisms of: 1) U immobilization in 300 A sediments under bulk oxic conditions and 2) U remobilization from U-immobilized 300 A sediments exposed to oxic Columbia River water. Initially, 300 A sediments in column reactors were fed with U(VI)-containing oxic 1) synthetic groundwater (SGW), 2) organic-amended SGW (OA-SGW), and 3) de-ionized (DI) water to investigate U immobilization processes. After that, the sediments were exposed to oxic Columbia River water for U remobilization studies. The results reveal that U was immobilized by 300 A sediments predominantly through reduction (80-85%) when the column reactor was fed with oxic OA-SGW. However, U was immobilized by 300 A sediments through adsorption (100%) when the column reactors were fed with oxic SGW or DI water. The reduced U in the 300 A sediments fed with OA-SGW was relatively resistant to remobilization by oxic Columbia River water. Oxic Columbia River water resulted in U remobilization (?7%) through desorption, and most of the U that remained in the 300 A sediments fed with OA-SGW (?93%) was in the form of uraninite nanoparticles. These results reveal that: 1) the reductive immobilization of U through OA-SGW stimulation of indigenous 300 A sediment microorganisms may be viable in the relatively oxic Hanford 300 A subsurface environments and 2) with the intrusion of Columbia River water, desorption may be the primary process resulting in U remobilization from OA-SGW-stimulated 300 A sediments at the subsurface of the Hanford 300 A site.

Ahmed, B.; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I.; Kemner, Kenneth M.; Fredrickson, Jim K.; Beyenal, Haluk

2012-09-23T23:59:59.000Z

118

Blue Canyon VI | Open Energy Information  

Open Energy Info (EERE)

VI VI Jump to: navigation, search Name Blue Canyon VI Facility Blue Canyon VI Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDP Renewables North America LLC Developer EDP Renewables North America LLC Energy Purchaser Merchant Location Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

No Measurable Changes in 238U/235U due to Desorption–Adsorption of U(VI) from Groundwater at the Rifle, Colorado, Integrated Field Research Challenge Site  

Science Journals Connector (OSTI)

Uranium (U) is an element of considerable interest due to its importance for energy and weapons industries and its contribution to the risk associated with radioactive waste storage and disposal. ... (21)In the case of adsorption, where the U redox state does not change, differences between the coordination environments of the adsorbed and dissolved U(VI) species are suggested to be responsible for the isotope effect. ... We expect little isotope fractionation occurs with adsorption of uranyl carbonato and calcium-uranyl carbonato complexes, as outer-sphere complexes should not alter the local U(VI) environment. ...

Alyssa E. Shiel; Parker G. Laubach; Thomas M. Johnson; Craig C. Lundstrom; Philip E. Long; Kenneth H. Williams

2013-02-05T23:59:59.000Z

120

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 Mill Owner Mill Name County, State (existing and planned locations) Milling Capacity (short tons of ore per day) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished Denison White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

6. Employment in the U.S. uranium production industry by category, 2003-13 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

122

Uranium Marketing Annual Report -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2009-13 thousands pounds U3O8...

123

Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2013 million pounds U3O8 equivalent Delivery year Total purchased Purchased from U.S....

124

Uranium Marketing Annual Report -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9. Contracted purchases of uranium by owners and operators of U.S. civilian nuclear power reactors, signed in 2013, by delivery year, 2014-23 thousand pounds U3O8 equivalent Year...

125

Uranium purchases report 1993  

SciTech Connect (OSTI)

Data reported by domestic nuclear utility companies in their responses to the 1991 through 1993 ``Uranium Industry Annual Survey,`` Form EIA-858, Schedule B,`` Uranium Marketing Activities,`` are provided in response to the requirements in the Energy Policy Act 1992. Appendix A contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data. Additional information published in this report not included in Uranium Purchases Report 1992, includes a new data table. Presented in Table 1 are US utility purchases of uranium and enrichment services by origin country. Also, this report contains additional purchase information covering average price and contract duration. Table 2 is an update of Table 1 and Table 3 is an update of Table 2 from the previous year`s report. The report contains a glossary of terms.

Not Available

1994-08-10T23:59:59.000Z

126

Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

Fix, N. J.

2008-01-07T23:59:59.000Z

127

Uranium purchases report 1994  

SciTech Connect (OSTI)

US utilities are required to report to the Secretary of Energy annually the country of origin and the seller of any uranium or enriched uranium purchased or imported into the US, as well as the country of origin and seller of any enrichment services purchased by the utility. This report compiles these data and also contains a glossary of terms and additional purchase information covering average price and contract duration. 3 tabs.

NONE

1995-07-01T23:59:59.000Z

128

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

10. Uranium reserve estimates at the end of 2012 10. Uranium reserve estimates at the end of 2012 million pounds U3O8 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 1 Sixteen respondents reported reserve estimates on 71 mines and properties. These uranium reserve estimates cannot be compared with the much larger historical data set of uranium reserves that were published in the July 2010 report U.S. Uranium Reserves Estimates at http://www.eia.gov/cneaf/nuclear/page/reserves/ures.html. Reserves, as reported here, do not necessarily imply compliance with U.S. or Canadian government definitions for purposes of investment disclosure.

129

FAQ 5-Is uranium radioactive?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Is uranium radioactive? Is uranium radioactive? Is uranium radioactive? All isotopes of uranium are radioactive, with most having extremely long half-lives. Half-life is a measure of the time it takes for one half of the atoms of a particular radionuclide to disintegrate (or decay) into another nuclear form. Each radionuclide has a characteristic half-life. Half-lives vary from millionths of a second to billions of years. Because radioactivity is a measure of the rate at which a radionuclide decays (for example, decays per second), the longer the half-life of a radionuclide, the less radioactive it is for a given mass. The half-life of uranium-238 is about 4.5 billion years, uranium-235 about 700 million years, and uranium-234 about 25 thousand years. Uranium atoms decay into other atoms, or radionuclides, that are also radioactive and commonly called "decay products." Uranium and its decay products primarily emit alpha radiation, however, lower levels of both beta and gamma radiation are also emitted. The total activity level of uranium depends on the isotopic composition and processing history. A sample of natural uranium (as mined) is composed of 99.3% uranium-238, 0.7% uranium-235, and a negligible amount of uranium-234 (by weight), as well as a number of radioactive decay products.

130

Controlling uranium reactivity March 18, 2008  

E-Print Network [OSTI]

for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

Meyer, Karsten

131

Influence of uranium hydride oxidation on uranium metal behaviour  

SciTech Connect (OSTI)

This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

2013-07-01T23:59:59.000Z

132

Roadmap to the Project: Uranium Miners Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EXECUTIVE SUMMARY EXECUTIVE SUMMARY On October 15, 1990, Congress passed the Radiation Exposure Compensation Act of 1990 (RECA), which provided for compassionate payments to individuals who suffered from specified diseases presumably as a result of exposure to radiation in connection with the federal government's nuclear weapons testing program. Among those eligible for compensation under the Act are individuals who were employed in underground uranium mines in Arizona, Colorado, New Mexico, Utah or Wyoming during the 1947 to 1971 time period, who were exposed to specified minimum levels of radon, and who contracted specified lung disorders. The Department of Justice administers the RECA through the Radiation Exposure Compensation Program (Program). The provisions of the RECA defining compensation for uranium miners have been characterized by critics as unfair and inconsistent with current scientific information. The regulations of the Department of Justice implementing the statute have also been criticized as being unnecessarily stringent and unreasonably burdensome. These criticisms were noted, and in some cases affirmed, by the President's Advisory Committee on Human Radiation Experiments, charged by the President to investigate the history of human radiation experimentation conducted by the federal government during the Cold War period. In its Final Report, issued on October 3, 1995, the Advisory Committee recommended, among other things, that the Administration review the provisions of RECA governing compensation for uranium miners and the implementing regulations to ensure that they are fair, consistent with current scientific evidence, and compatible with the objectives of the Act.

133

Uranium hexafluoride handling. Proceedings  

SciTech Connect (OSTI)

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

134

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

year, 2009-13 Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2009-13). Table 19. Foreign purchases of uranium by U.S. suppliers...

135

Analysis of radiation exposure, Task Force RAZOR. Exercise Desert Rock VI, Operation Teapot. Technical report  

SciTech Connect (OSTI)

The radiation dose to Task Force RAZOR personnel participating in Shot Apple II of Operation Teapot, Exercise Desert Rock VI, is reconstructed. Task force personnel were exposed to initial radiation while in their vehicles or in trenches at the time of Apple II detonation. They were also exposed to residual radiation during their subsequent manuever and during an inspection of the equipment display area. The calculated total gamma doses to fully-participating Task Force RAZOR personnel range from about 0.8 rem to 1.8 rem. The highest dose was received by personnel of the armored infantry platoon on right flank nearest ground zero. Internal radiation dose commitments to maximally exposed personnel inside vehicles are estimated to be about 0.4 rem to the thyroid, 0.003 rem to the whole body, and 0.002 rem to the bone.

Edwards, R.; Goetz, J.; Klemm, J.

1983-07-15T23:59:59.000Z

136

Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size  

SciTech Connect (OSTI)

During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.

Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.; Traub, Richard J.

2009-03-01T23:59:59.000Z

137

Depleted Uranium Report from the Health Council of the Netherlands  

Science Journals Connector (OSTI)

The Health Council of the Netherlands, which is an independent scientific advisory body established in 1902 `to advise the government and Parliament on the current level of knowledge with respect to public health issues', has recently published an overview report on depleted uranium. The title of the report is `Health risks of exposure to depleted uranium' and it is freely available in both English and the original Dutch language. A brief summary of the report that was published on 16 May 2001 is presented here. The use of ammunition containing depleted uranium (DU) in Kosovo and elsewhere in the Balkans has provoked disquiet in Europe. In the Netherlands, concern over the release of this material had already been aroused previously following the crash of the El-Al airliner in the Bijlmermeer district of Amsterdam in 1992. It was against this background that the President of the Health Council decided to set up a Committee charged with the task of reviewing the health risks of exposure to DU and the preventive measures required for individuals present in areas where DU has been released into the environment. After reviewing the properties of uranium in general and depleted uranium in particular, and presenting data on the occurrence of the element in the environment and biological tissues, the committee assessed the chemical and radiological health effect of uranium and uranium compounds. The Health Council Committee concludes that radioactive contamination of the lungs is the principal health risk to be considered in connection with exposure to slightly soluble uranium compounds in the atmosphere. For soluble compounds, the chemical toxic effect in the kidneys is the primary consideration. The toxicological effects are to some extent concordant with those of other heavy metals. For relevant exposure scenarios the Committee does not anticipate that exposure to DU will result in a demonstrable increased risk of diseases and symptoms among exposed individuals as a result of a radiological or chemical toxic effect exerted by this substance. Cancer In view of the fact that DU emits ionising radiation in the form of alpha particles, the induction of cancer, in principle, needs to be taken into account in relation to individuals exhibiting internal contamination with DU. In case of inhalation of slightly soluble DU compounds, attention will in particular need to be focused on the lungs. The radiation dose caused by incidental exposure to DU in the exposure scenarios considered is limited compared with the radiation dose received during a lifetime of exposure to natural uranium. As at the common levels of exposure to natural uranium a contribution to the induction of cancer in the population cannot be demonstrated, the Committee concludes that the same is true for exposure to DU. This general conclusion is also valid for the appearance of lung cancer and for the appearance of leukaemia after the inhalation of dust containing slightly soluble uranium compounds. Renal damage For soluble compounds, the risk posed by exposure to DU is principally of a chemical toxic nature. In the case of increasing exposure, abnormalities will first of all appear in the kidneys. Exposure to small amounts (milligrams) of uranium over short periods will therefore result in changes in the kidneys, which lead to acute, usually reversible, renal impairment. No such dose-dependency has been observed, however, in the frequency of chronic renal disorders among population groups who are chronically exposed to enhanced quantities of natural uranium. Nor have studies involving workers in the uranium industry and ex-military personnel (including the group with shrapnel in the body) to date produced any evidence that uranium can cause renal impairment. Thus the present body of scientific data tends to suggest an absence of irreparable renal damage as a result of the intake of DU in the exposure scenarios considered. Prevention Although the risks associated with exposure to DU for the exposure scenarios considered appear to be very limited, the fundamental prin

W F Passchier; J W N Tuyn

2002-01-01T23:59:59.000Z

138

DarkStar VI | Open Energy Information  

Open Energy Info (EERE)

DarkStar VI DarkStar VI Jump to: navigation, search Name DarkStar VI Place Collinsville, Illinois Zip 62234-2022 Sector Services Product Manufacturer of biodiesel processing equipment and supplier of accessories, information and services. Coordinates 36.720014°, -79.91284° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.720014,"lon":-79.91284,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Corrosion-resistant uranium  

DOE Patents [OSTI]

The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

Hovis, Jr., Victor M. (Kingston, TN); Pullen, William C. (Knoxville, TN); Kollie, Thomas G. (Oak Ridge, TN); Bell, Richard T. (Knoxville, TN)

1983-01-01T23:59:59.000Z

140

Corrosion-resistant uranium  

DOE Patents [OSTI]

The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

1981-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Corrosion of aluminum-uranium alloys in water vapor at 200 C  

SciTech Connect (OSTI)

Specimens of aluminum-uranium alloys at 10 and 18 wt.% uranium were exposed to a saturated water vapor condition at 200 C up to about 12 weeks and compared to previous results for aluminum 1100. The aluminum-uranium materials exhibited a range of initial corrosion rates and approached similar rates with the formation of a passive film of boehmite (Al{sub 2}O{sub 3}{center{underscore}dot}H{sub 2}O). The initial corrosion rates of the aluminum-uranium materials were one to four times higher than that for aluminum 1100. It is postulated that a micro-galvanic coupling between the large UAl{sub 4} particles and the aluminum matrix has caused this difference. Sectioning the exposed specimens shows different characteristics of the oxide layers. In the oxide on the aluminum-10% uranium alloy (Al-10%U), small uranium aluminide particles can be seen in a boehmite matrix and do not seem to be corroded. The oxide film on the aluminum-18% uranium alloy (Al-18%U) appears to have two distinct oxide layers. The outer layer has mass aggregates in a boehmite matrix, while the inner layer contains UAl{sub 4} particles as in the case of Al-10%U.

Lam, P.S.; Sindelar, R.L.; Barrett, K.Y.

1999-07-01T23:59:59.000Z

142

HIGH-DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE S.G. Ermichev, V.I. Shapovalov, N.V.Sviridov (RFNC-VNIIEF, Sarov, Russia) V.K. Orlov, V.M. Sergeev, A. G. Semyenov, A.M. Visik, A.A. Maslov, A. V. Demin, D.D. Petrov, V.V. Noskov, V. I. Sorokin, O. I. Uferov (VNIINM, Moscow, Russia) L. Dole (ORNL, Oak Ridge, USA) Abstract - Russia is researching the production and testing of concretes with ceramic aggregate based on depleted uranium dioxide (UO 2 ). These DU concretes are to be used as structural and radiation-shielded material for casks for A-plant spent nuclear fuel transportation and storage. This paper presents the results of studies aimed at selection of ceramics and concrete composition, justification of their production technology, investigation of mechanical properties, and chemical stability.

143

Exposure to depleted uranium does not alter the co-expression of HER-2/neu and p53 in breast cancer patients  

Science Journals Connector (OSTI)

Amongst the extensive literature on immunohistochemical profile of breast cancer, very little is found on populations exposed to a potential risk factor such as depleted uranium. This study looked at the immunohi...

Mais M Al-Mumen; Asad A Al-Janabi; Alaa S Jumaa; Kaswer M Al-Toriahi…

2011-03-01T23:59:59.000Z

144

VI. References V. Realistic Learning (Rate Based  

E-Print Network [OSTI]

VI. References V. Realistic Learning (Rate Based III. Mean Field Model IV. Spike Timing Depended Results Batch Learning ber of pattern stored patterns Low pass filtering: Presynaptic Adaptation ( ):see Christian Albers and Klaus Pawelzik University of Bremen -- Institute for Theoretical Physics -- Department

Kreiter, Andreas K.

145

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Rats after Implantation with Depleted Uranium Fragments Guoying Zhu 1 * Mingguang...and distribution of uranium in depleted uranium (DU) implanted rats. Materials...of chronic exposure to DU. Depleted uranium|Bone|Kidney|Distribution......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

146

Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments  

SciTech Connect (OSTI)

In this study, sediments collected from boreholes drilled in 2010 and 2011 as part of a remedial investigation/feasibility study were characterized. The wells, located within or around two process ponds and one process trench waste site, were characterized in terms of total uranium concentration, mobile fraction of uranium, particle size, and moisture content along the borehole depth. In general, the gravel-dominated sediments of the vadose zone Hanford formation in all investigated boreholes had low moisture contents. Based on total uranium content, a total of 48 vadose zone and periodically rewetted zone sediment samples were selected for more detailed characterization, including measuring the concentration of uranium extracted with 8 M nitric acid, and leached using bicarbonate mixed solutions to determine the liable uranium (U(VI)) contents. In addition, water extraction was conducted on 17 selected sediments. Results from the sediment acid and bicarbonate extractions indicated the total concentrations of anthropogenic labile uranium in the sediments varied among the investigated boreholes. The peak uranium concentration (114.84 µg/g, acid extract) in <2-mm size fractions was found in borehole 399 1-55, which was drilled directly in the southwest corner of the North Process Pond. Lower uranium concentrations (~0.3–2.5 µg/g, acid extract) in <2-mm size fractions were found in boreholes 399-1-57, 399-1-58, and 399-1-59, which were drilled either near the Columbia River or inland and upgradient of any waste process ponds or trenches. A general trend of “total” uranium concentrations was observed that increased as the particle size decreased when relating the sediment particle size and acid extractable uranium concentrations in two selected sediment samples. The labile uranium bicarbonate leaching kinetic experiments on three selected sediments indicated a two-step leaching rate: an initial rapid release, followed by a slow continual release of uranium from the sediment. Based on the uranium leaching kinetic results, quasi equilibrium can be assumed after 1000-h batch reaction time in this study.

Wang, Guohui; Serne, R. Jeffrey; Lindberg, Michael J.; Um, Wooyong; Bjornstad, Bruce N.; Williams, Benjamin D.; Kutynakov, I. V.; Wang, Zheming; Qafoku, Nikolla

2012-11-26T23:59:59.000Z

147

Nuclear Fuel Facts: Uranium | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Uranium Management and Uranium Management and Policy » Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite. Uranium ore can be mined from open pits or underground excavations. The ore can then be crushed and treated at a mill to separate the valuable uranium from the ore. Uranium may also be dissolved directly from the ore deposits

148

ENDF-201, ENDF/B-VI summary documentation supplement 1, ENDF/HE-VI summary documentation  

SciTech Connect (OSTI)

The National Nuclear Data Center (NNDC) provides coordination for and serves as the secretariat to the Cross Section Evaluation Working Group (CSWEG). CSEWG is responsible for the oversight of the ENDF/B Evaluated Nuclear Data File. All data are checked and reviewed by CSEWG, and the file is maintained at the NNDC. For a description of the ENDF/B-VI file, see the ENDF-102 Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6. The purpose of this addendum to the ENDF/B-VI Summary Documentation is to provide documentation of Releases 1, 2, 3, and 4 for the ENDF/B-VI and ENDF/HE-VI evaluated nuclear data libraries. These releases contain many new and revised evaluations for the neutron, photo-atomic interaction, radioactive decay data, spontaneous fission product yield, neutron-induced fission product yield, thermal neutron scattering, proton, deuteron, and triton sublibraries. The summaries have been extracted mainly from the ENDF/B-VI File 1 comments (MT = 451), which have been checked, edited, and may also include supplementary information. Some summaries have been provided by the evaluators in electronic format, while others are extracted from reports on the evaluations. All references have been checked and corrected, or updated where appropriate. A list of the laboratories which have contributed evaluations used in ENDF/B-VI is given.

McLane, V.

1996-12-01T23:59:59.000Z

149

Analysis of radiation exposure, Third Marine Corps Provisional Atomic Exercise Brigade. Exercise Desert Rock VI, Operation Teapot. Technical report  

SciTech Connect (OSTI)

The radiation dose is reconstructed for 3d MCPAEB personnel participating in exercises involving helicopter-lifted assaults in conjunction with Shot Bee of Operation Teapot, Exercise Desert Rock VI. Brigade personnel were exposed to initial radiation while in trenches at the time of the Shot Bee detonation. They were also exposed to residual radiation from an earlier test shot (Shot Turk) during their subsequent maneuvers and to residual radiation from Shot Bee during an inspection of equipment displays. The calculated total gamma doses to the bulk of the participating troops range from about 0.57-0.85 rem.

Goetz, J.; Klemm, J.; Ortlieb, E.

1984-02-15T23:59:59.000Z

150

Assessment of Controlling Processes for Field-Scale Uranium Reactive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transport of U(VI) at the field-scale. The results indicate that multi-rate U(VI) sorptiondesorption, U(VI) surface complexation reactions, and initial U(VI) concentrations...

151

file://\\\\fs-f1\\shared\\uranium\\uranium.html  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

The initial uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

152

Method for fabricating uranium foils and uranium alloy foils  

DOE Patents [OSTI]

A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

2006-09-05T23:59:59.000Z

153

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

SciTech Connect (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

154

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

9. Summary production statistics of the U.S. uranium industry, 1993-2012 9. Summary production statistics of the U.S. uranium industry, 1993-2012 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Exploration and Development Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars)1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 Mine Production of Uranium (million pounds U3O8) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 Uranium Concentrate Production (million pounds U3O8) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1

155

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

8. U.S. uranium expenditures, 2003-2012 8. U.S. uranium expenditures, 2003-2012 million dollars Year Drilling Production Land and Other Total Expenditures Total Land and Other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Drilling: All expenditures directly associated with exploration and development drilling. Production: All expenditures for mining, milling, processing of uranium, and facility expense.

156

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......ingestion of natural uranium in food and drink, and...for the measurement of uranium in urine samples, DU...respect to potential health hazards can be detected...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Höllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

157

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......Article Assessment of exposure to depleted uranium P. Roth V. Hollriegl E. Werner...for determining the amount of depleted uranium (DU) incorporated. The problems...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Höllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

158

2013 Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

accounted for 32%. The remaining 16% originated from Brazil, China, Czech Republic, Germany, Hungary, Malawi, Namibia, Niger, Portugal, and South Africa. COOs purchased uranium...

159

U.S.Uranium Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

conditions. The uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

160

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2013)....

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 10, 11 and 16. 2003-2013-Form EIA-858, "Uranium Marketing Annual Survey". million pounds U 3 O 8 equivalent 1 Includes purchases between...

162

Linking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate using stable isotope probing in contaminated subsurface sediments  

SciTech Connect (OSTI)

Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [{sup 13}C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions.

Akob, Denise M. [Florida State University; Kerkhof, Lee [Rutgers University; Kusel, Kirsten [Friedrich Schiller University Jena, Jena Germany; Watson, David B [ORNL; Palumbo, Anthony Vito [ORNL; Kostka, Joel [Florida State University

2011-01-01T23:59:59.000Z

163

Low Dose Radiation Program: Workshop VI Abstracts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop VI Principal Investigator and Abstracts Workshop VI Principal Investigator and Abstracts Anderson, Carl Whole Genome Analysis of Functional Protein Binding Sites and DNA Methylation: Application to p53 and Low Dose Ionizing Radiation. Averbeck, Dietrich Cellular Responses at Low Doses of Ionizing Radiation. Azzam, Edouard Adaptive Responses to Low Dose/Low Dose-Rate ?-Rays in Normal Human Fibroblasts: The Role of Oxidative Metabolism. Bailey, Susan The Role of Telomere Dysfunction in Driving Genomic Instability. Balajee, Adayabalam Low Dose Radiation Induced DNA Damage Signaling and Repair Responses in Human 3-Dimensional Skin Model System. Barcellos-Hoff, Mary Helen Imaging Bioinformatics for Mapping Multidimensional Responses. Barcellos-Hoff, Mary Helen Biological Response to Radiation Mediated through the Microenvironment and

164

Final Technical Report -- GEO-VI - USGEO  

SciTech Connect (OSTI)

Representatives of US earth observations departments and agencies, other participating governments, NGOs and civil society participated in the Sixth Plenary Meeting of the Group on Earth Observations (GEO-VI), hosted by the United States in Washington, DC on November 17 and 18, 2009. The meeting was held in the Atrium Ballroom of the Ronald Reagan International Trade Center. Exhibitions of international Earth observation technology and programs were held concurrently in the same venue. A number of GEO committee meetings and side events were held in conjunction with the GEO-VI Plenary, including the GEO-IGOS Symposium on Earth observation science and applications, the GEOSS in the Americas Forum on Coastal Zones, and separate meetings of the GEO Communities of Practice on Carbon, Health, and Air Quality.

Hirsch, Leonard

2009-11-30T23:59:59.000Z

165

Marathon/Vitro to seek uranium  

Science Journals Connector (OSTI)

Marathon/Vitro to seek uranium ... Last week, Marathon Oil agreed with Vitro Corp. of America to explore jointly for uranium in North America. ...

1967-03-13T23:59:59.000Z

166

Final Uranium Leasing Program Programmatic Environmental Impact...  

Broader source: Energy.gov (indexed) [DOE]

for DOE's Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium...

167

Conversion of depleted uranium hexafluoride to a solid uranium compound  

DOE Patents [OSTI]

A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2001-01-01T23:59:59.000Z

168

Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation  

Science Journals Connector (OSTI)

......of doses to members of the public, since all humans are exposed...22). For members of the public, ingestion could also be an...Physics Society First Annual Meeting 25-27 June 1956. 33-48...United States Uranium Registry/Hanford Environmental Health Foundation......

R. J. Tanner; J. S. Eakins; J. T. M. Jansen; J. D. Harrison

2012-08-01T23:59:59.000Z

169

Corrosion of Uranium in Desert Soil, with Application to GCD Source Term M  

SciTech Connect (OSTI)

Uranium fragments from the Sandia Sled Track were studied as analogues for weapons components and depleted uranium buried at the Greater Confinement Disposal (GCD) site in Nevada. The Sled Track uranium fragments originated as weapons mockups and counterweights impacted on concrete and soil barriers, and experienced heating and fragmentation similar to processes thought to affect the Nuclear Weapons Accident Residues (NWAR) at GCD. Furthermore, the Sandia uranium was buried in unsaturated desert soils for 10 to 40 years, and has undergone weathering processes expected to affect the GCD wastes. Scanning electron microscopy, X-ray diffraction and microprobe analyses of the fragments show rapid alteration from metals to dominantly VI-valent oxy-hydroxides. Leaching studies of the samples give results consistent with published U-oxide dissolution rates, and suggest longer experimental periods (ca. 1 year) would be required to reach equilibrium solution concentrations. Thermochemical modeling with the EQ3/6 code indicates that the uranium concentrations in solutions saturated with becquerelite could increase as the pore waters evaporate, due to changes in carbonate equilibria and increased ionic strength.

ANDERSON, HOWARD L.; BACA, JULIANNE; KRUMHANSL, JAMES L.; STOCKMAN, HARLAN W.; THOMPSON, MOLLIE E.

1999-09-01T23:59:59.000Z

170

Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates  

E-Print Network [OSTI]

speciation in Hanford waste tank sludge simulants. J. Nucl.and Sr(II) from simulated tank waste sludges. Sep. Sci.Promoted Dissolution of Waste Tank Sludge Surrogates. In

Powell, Brian A.

2008-01-01T23:59:59.000Z

171

Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges  

E-Print Network [OSTI]

Aluminum Dissolution in Tank Waste Sludges Brian A. PowellThe underground storage tanks at the Hanford site containtime, the material in the tanks has stratified to produce a

Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

2006-01-01T23:59:59.000Z

172

Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates  

E-Print Network [OSTI]

in Hanford waste tank sludge simulants. J. Nucl. Sci.from simulated tank waste sludges. Sep. Sci. Tech. 38(2),Dissolution of Waste Tank Sludge Surrogates. In preparation,

Powell, Brian A.

2008-01-01T23:59:59.000Z

173

Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges  

E-Print Network [OSTI]

Dissolution in Tank Waste Sludges Brian A. Powell 1 ,to produce a clay-like sludge layer, a slurry phase, and anto be concentrated in the sludge phase, which is primarily

Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

2006-01-01T23:59:59.000Z

174

Removal of Uranium(VI) from Solution by Fungal Biomass and Fungal Wall-Related Biopolymers  

Science Journals Connector (OSTI)

...REMOVAL OF ARSENIC FROM CONTAMINATED DRINKING-WATER BY A CHITOSAN-CHITIN MIXTURE, WATER RESEARCH 14 : 1307 ( 1980 ). GALUN...cross-links and masks binding sites. Sodium azide, an inhibitor of electron transport, does not affect the uptake process...

M. GALUN; P. KELLER; D. MALKI; H. FELDSTEIN; E. GALUN; S. M. SIEGEL; B. Z. SIEGEL

1983-01-21T23:59:59.000Z

175

Synthesis and characterization of mono- and bis-(tetraalkylmalonamide)uranium(VI) complexes  

Science Journals Connector (OSTI)

The complex [UO2(NO3)2(TMMA)] (TMMA=N,N,N?,N?-tetramethylmalonamide) was structurally characterized by single-crystal X-ray diffraction. The complex consists of two bidentate nitrate ions and one bidentate TMMA ligand coordinated to the UO2 2+ ion. The complex [UO2(THMA)2]2+ (THMA=N,N,N?,N?-tetrahexylmalonamide) was prepared as the BF4? salt; this material tended to form an oil. However, [UO2(TMMA)2](OTf)2 (OTf=triflate) was isolated as a crystalline solid. Comparison of the Fourier transform infrared spectra of these complexes to the spectra of complexes formed in liquid–liquid extraction systems supports the hypothesis that complexes of the type [UO2(NO3)2L] and [UO2L2](NO3)2 (L=diamide extractant) form in the extraction systems.

Gregg J Lumetta; Bruce K McNamara; Brian M Rapko; Richard L Sell; Robin D Rogers; Grant Broker; James E Hutchison

2000-01-01T23:59:59.000Z

176

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Milling Capacity (short tons of ore per day) 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby Uranium One Americas, Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Changing License To Operational Standby

177

DeMEASS VI Conference Ede, the Netherlands  

E-Print Network [OSTI]

DeMEASS VI Conference Ede, the Netherlands May 26-28, 2014 A Hybrid Trailing Edge Control Surface, YANG, GÃ?RSES, AHN, Ã?ZGEN, YAMAN 2/23 DeMEASS VI Conference Ede, the Netherlands May 26-28, 2014, Ã?ZGEN, YAMAN DeMEASS VI Conference Ede, the Netherlands May 26-28, 2014 A Hybrid Trailing Edge Control

Yaman, Yavuz

178

Ch. VI, The geophysical environment around Waunita Hot Springs...  

Open Energy Info (EERE)

Ch. VI, The geophysical environment around Waunita Hot Springs Author A. L. Lange Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

179

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. uranium mine production and number of mines and sources, 2003-2012 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W Total Mine Production (thousand pounds U3O8) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Number of Operating Mines Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources1 1 1 2 1 1 1 2 1 1 1

180

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources,Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Program to monitor Department of Energy workers exposed to hazardous and radioactive substances  

Broader source: Energy.gov (indexed) [DOE]

50 CHAPTER 42 SUBCHAPTER VI Part C 5 2733 50 CHAPTER 42 SUBCHAPTER VI Part C 5 2733 Program to monitor Department of Energy workers exposed to hazardous and radioactive substances (a) In general The Secretary shall establish and carry out a program for the identification and on-going medical evaluation of current and former Department of Energy employees who are subject to significant health risks as a result of the exposure of such employees to hazardous or radioactive substances during such empIoyment. (b) Implementation of program ( I ) The Secretary shall, with the concurrence of the Secretary of Health and Human Services, issue regulations under which the Secretary shall implement the program. Such regulations shall, to the extent practicable, provide for a process to- (A) identify the hazardous substances and radioactive substances to which

182

Program to monitor Department of Energy workers exposed to hazardous and radioactive substances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

50 CHAPTER 42 SUBCHAPTER VI Part C 5 2733 50 CHAPTER 42 SUBCHAPTER VI Part C 5 2733 Program to monitor Department of Energy workers exposed to hazardous and radioactive substances (a) In general The Secretary shall establish and carry out a program for the identification and on-going medical evaluation of current and former Department of Energy employees who are subject to significant health risks as a result of the exposure of such employees to hazardous or radioactive substances during such empIoyment. (b) Implementation of program ( I ) The Secretary shall, with the concurrence of the Secretary of Health and Human Services, issue regulations under which the Secretary shall implement the program. Such regulations shall, to the extent practicable, provide for a process to- (A) identify the hazardous substances and radioactive substances to which

183

FAQ 7-How is depleted uranium produced?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

184

Uranyl Protoporphyrin: a New Uranium Complex  

Science Journals Connector (OSTI)

...received 3 times the LD50 of uranium as uranyl protoporphyrin...nitrate, had showed livers depleted of glycogen and kidneys...destruc-tion typical of uranium poisoning. The uranium-damaged...T. Godwin et al., Cancer 8, 601 (1954). 5...excretion of hexavalent uranium in man," in Proc...

ROBERT E. BASES

1957-07-26T23:59:59.000Z

185

Uranium: Environmental Pollution and Health Effects  

Science Journals Connector (OSTI)

Uranium is found ubiquitously in nature in low concentrations in soil, rock, and water. Naturally occurring uranium contains three isotopes, namely 238U, 235U, and 234U. All uranium isotopes have the same chemical properties, but they have different radiological properties. The main civilian use of uranium is to fuel nuclear power plants, whereas high enriched (in 235U) uranium is used in the military sector as nuclear explosives and depleted uranium (DU) as penetrators or tank shielding. Exposure to uranium may cause health problems due to its radiological (uranium is predominantly emitting alpha-particles) and chemical actions (heavy metal toxicity). Uranium uptake may occur by ingestion, inhalation, contaminated wounds, and embedded fragments especially for soldiers. Inhalation of dust is considered the major pathway for uranium uptake in workplaces. Soluble uranium compounds tend to quickly pass through the body, whereas insoluble uranium compounds pose a more serious inhalation exposure hazard. The kidney is the most sensitive organ for uranium chemotoxicity. An important indirect radiological effect of uranium is the increased risk of lung cancers from inhalation of the daughter products of radon, a noble gas in the uranium decay chains that transports uranium-derived radioactivity from soil into the indoor environment. No direct evidence about the carcinogenic effect of DU in humans is available yet.

D. Melo; W. Burkart

2011-01-01T23:59:59.000Z

186

Air quality VI details environmental progress  

SciTech Connect (OSTI)

A report is given of the International Conference on Air Quality VI where key topics discussed were control of mercury, trace elements, sulphur trioxide and particulates. This year a separate track was added on greenhouse gas reduction, with panels on greenhouse gas policy and markets, CO{sub 2} capture and sequestration, and monitoring, mitigation and verification. In keynote remarks, NETL Director Carl Bauer noted that emissions have gone down since 1990 even though coal consumption has increased. The conference provided an overview of the state-of-the-science regarding key pollutants and CO{sub 2}, the corresponding regulatory environment, and the technology readiness of mitigation techniques. 1 photo.

NONE

2007-12-31T23:59:59.000Z

187

Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium  

SciTech Connect (OSTI)

The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000 ?m). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state.

Nguyen, Hung D.; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I.; Kemner, Kenneth M.; Fredrickson, Jim K.; Beyenal, Haluk

2012-01-01T23:59:59.000Z

188

The End of Cheap Uranium  

E-Print Network [OSTI]

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

Michael Dittmar

2011-06-21T23:59:59.000Z

189

Safe Operating Procedure SAFETY PROTOCOL: URANIUM  

E-Print Network [OSTI]

involve the use of natural or depleted uranium. Natural isotopes of uranium are U-238, U-235 and U-234 (see Table 1 for natural abundances). Depleted uranium contains less of the isotopes: U-235 and U-234. The specific activity of depleted uranium (5.0E-7 Ci/g) is less than that of natural uranium (7.1E-7 Ci

Farritor, Shane

190

A review of uranium economics  

Science Journals Connector (OSTI)

The recent increase in the demand for power for commercial use, the challenges facing fossil fuel use and the prospective of cheap nuclear power motivate different countries to plan for the use of nuclear power. This paper reviews many aspects of uranium economics, which includes the advantages and disadvantages of nuclear power, comparisons with other sources of power, nuclear power production and requirements, the uranium market, uranium pricing, spot price and long-term price indicators, and the cost of building a nuclear power facility.

A.K. Mazher

2009-01-01T23:59:59.000Z

191

Uranium Mining Life-Cycle Energy Cost vs. Uranium Resources  

Science Journals Connector (OSTI)

The long-term viability of nuclear energy systems depends on the availability of uranium and on the question, whether the overall energy balance of the fuel cycle is positive, taking into account the full life-cy...

W. Eberhard Falck

2012-01-01T23:59:59.000Z

192

Integrated Ecogenomics Study for Bioremediation of Cr(VI) at Hanford 100H Area  

E-Print Network [OSTI]

reducer isolated from the Hanford 100H site capable of Iron(study for bioremediation of Cr(VI) at Hanford 100H area RomyVI)contamination at Hanford ?? Cr(VI) highly soluble, toxic

Chakraborty, Romy

2008-01-01T23:59:59.000Z

193

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Environmental and health consequences of depleted uranium use in the 1991 Gulf...Properties, use and health effects of depleted uranium (DU): a general...J. (2002). Health effects of embedded depleted uranium. Mil Med. 167......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

194

Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy  

Science Journals Connector (OSTI)

...Molecular design for uranium neutron-capture therapy (cancer/immunotherapy...methodology for cancer therapy. Boron...system using uranium, as described...800 to =400 uranium atoms per apoferritin...uranyl ions were depleted, and loading...

J F Hainfeld

1992-01-01T23:59:59.000Z

195

Characterization of uranium isotopic abundances in depleted uranium metal assay standard 115  

Science Journals Connector (OSTI)

Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a ... TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. T...

K. J. Mathew; G. L. Singleton; R. M. Essex…

2013-04-01T23:59:59.000Z

196

Depleted Uranium Hexafluoride Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

197

Disposition of uranium-233  

SciTech Connect (OSTI)

The US is developing a strategy for the disposition of surplus weapons-usable uranium-233 ({sup 233}U). The strategy (1) identifies the requirements for the disposition of surplus {sup 233}U; (2) identifies potential disposition options, including key issues to be resolved with each option; and (3) defines a road map that identifies future key decisions and actions. The disposition of weapons-usable fissile materials is part of a US international arms-control program for reduction of the number of nuclear weapons and the quantities of nuclear-weapons-usable materials worldwide. The disposition options ultimately lead to waste forms requiring some type of geological disposal. Major options are described herein.

Tousley, D.R. [Dept. of Energy, Washington, DC (United States). Office of Fissile Materials Disposition; Forsberg, C.W.; Krichinsky, A.M. [Oak Ridge National Lab., TN (United States)

1997-10-16T23:59:59.000Z

198

Corrosion of Aluminum-Uranium Alloys in Water Vapor at 200\\260C  

SciTech Connect (OSTI)

Coupons of aluminum-uranium alloys at 10 and 18 weight percent were exposed to a saturated water vapor condition at 200 degrees C up to about 1500 hours and compared to previous results for aluminum 1100. The aluminum-uranium materials exhibited a range of initial corrosion rates and approached similar rates with the formation of a passive film of boehmite (Al2O3oH2O). The cast and extruded 10 percent uranium, having a primary aluminum-eutectic microstructure, was more corrosion resistant than the 18% cast and extruded. The initial corrosion rates of the aluminum-uranium materials were one to four times higher than that for aluminum 1100. It is postulated that a micro-galvanic coupling between the large UAl4 particles and the aluminum matrix has caused the variation. Sectioning the exposed specimens shows different characteristics of the oxide layers. In the case of the cast and extruded Al-10 percent U alloy, small uranium aluminide particles can be seen in the boehmite matrix and do not seem to be corroded. The oxide film of the Al-18 percent U alloy appears to have two distinct oxide layers. The outer layer has mass aggregates formed in the aluminum oxide matrix, while the inner layer contains UAl4 particles as in the case of Al-10 percent U

Lam, P.S.

1998-11-25T23:59:59.000Z

199

Design of Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Matveev V.Z., Morenko A.I., Shapovalov V.I. Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 37 Mira Prospect, Sarov, Russia, 607190, matveev@vniief.ru Maslov A.A., Orlov V.K., Semenov A.G., Sergeev V.M., Yuferov O.I., Visik A.M. Bochvar Institute of Inorganic Materials (VNIINM) 5-A Rogova street, p.b. 369, Moscow, Russia, 123060, majul2000@mail.ru Abstract - The report is dedicated to a problem of creation of a new generation of dual-purpose transport packing complete sets (TPCS) 1 with advanced safety. These sets are intended for transportation and storage of spent nuclear fuel assemblies (SNFA) 2 of VVER reactors and spent spark elements (SSE)

200

Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure  

Science Journals Connector (OSTI)

Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose–response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect.

Sabrina Barillet; Christelle Adam-Guillermin; Olivier Palluel; Jean-Marc Porcher; Alain Devaux

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PHASE ANALYSES OF URANIUM-BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO  

SciTech Connect (OSTI)

The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions.

M. Ren; P. Goodell; A. Kelts; E.Y. Anthony; M. Fayek; C. Fan; C. Beshears

2005-07-11T23:59:59.000Z

202

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Domestic Uranium Production Report June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2012 Domestic Uranium Production Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

203

2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Uranium Marketing Annual Report May 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report ii

204

Uranium Enrichment's $7-Billion Uncertainty  

Science Journals Connector (OSTI)

...229 : 1407 ( 1985 ). Uranium...claims John R. Longenecker, who heads...because it be-John Longenecker '"ou have...based on gas centrifuges Finally...research on the centrifuge technology...21 June 1985, p. 1407...

COLIN NORMAN

1986-04-18T23:59:59.000Z

205

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 28, 29, 30 and 31. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". Notes: Totals may not equal sum of components because of independent...

206

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 10, 11 and 16. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". dollars per pound U 3 O 8 equivalent dollars per pound U 3 O 8...

207

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 28, 29, 30 and 31. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". million pounds U 3 O 8 equivalent million pounds U 3 O 8 equivalent...

208

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 22, 23, 25, and 27. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". - No data reported. 0 10 20 30 40 50 60 70 1994 1995 1996 1997...

209

2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3. U.S. uranium concentrate production, shipments, and sales, 2003-13" "Activity at U.S. Mills and In-Situ-Leach Plants",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013...

210

Uranium Resources Inc URI | Open Energy Information  

Open Energy Info (EERE)

Uranium Resources Inc URI Uranium Resources Inc URI Jump to: navigation, search Name Uranium Resources, Inc. (URI) Place Lewisville, Texas Zip 75067 Product Uranium Resources, Inc. (URI) is primarily engaged in the business of acquiring, exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References Uranium Resources, Inc. (URI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Uranium Resources, Inc. (URI) is a company located in Lewisville, Texas . References ↑ "Uranium Resources, Inc. (URI)" Retrieved from "http://en.openei.org/w/index.php?title=Uranium_Resources_Inc_URI&oldid=352580" Categories: Clean Energy Organizations

211

Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)  

SciTech Connect (OSTI)

The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3) Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method against experimental data, (4) Application of the method to plausibly explain operational experience, and (5) Application of the method to present process steps to demonstrate process safety and margin. Essentially, the logic above is used to demonstrate that runaway reactions cannot occur during normal SNF Project process steps, and to illustrate the depth of the technical basis for such a conclusion. Some off-normal conditions are identified here that could potentially lead to runaway reactions. However, this document is not intended to provide an exhaustive analysis of such cases. In summary, this report provides a ''toolkit'' of models and approaches for analysis of pyrophoricity safety issues at Hanford, and the technical basis for the recommended approaches. A summary of recommended methods appears in Section 9.0.

PLYS, M.G.

2000-10-10T23:59:59.000Z

212

Inositol hexaphosphate: a potential chelating agent for uranium  

Science Journals Connector (OSTI)

......and staining pigments. Depleted uranium, a by-product of uranium...177-193. 2 World Health Organization (WHO). Uranium in drinking-water...the lethal effect of oral uranium poisoning. Health Phys. (2000) 78(6......

D. Cebrian; A. Tapia; A. Real; M. A. Morcillo

2007-11-01T23:59:59.000Z

213

Bioreduction and immobilization of uranium in situ: a case study at a USA Department of Energy radioactive waste site, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Bioremediation of uranium contaminated groundwater was tested by delivery of ethanol as an electron donor source to stimulate indigenous microbial bioactivity for reduction and immobilization of uranium in situ, followed by tests of stability of uranium sequestration in the bioreduced area via delivery of dissolved oxygen or nitrate at the US Department of energy's Integrated Field Research Challenge site located at Oak Ridge, Tennessee, USA. After long term treatment that spanned years, uranium in groundwater was reduced from 40-60 mg {center_dot} L{sup -1} to <0.03 mg {center_dot} L{sup -1}, below the USA EPA standard for drinking water. The bioreduced uranium was stable under anaerobic or anoxic conditions, but addition of DO and nitrate to the bioreduced zone caused U remobilization. The change in the microbial community and functional microorganisms related to uranium reduction and oxidation were characterized. The delivery of ethanol as electron donor stimulated the activities of indigenous microorganisms for reduction of U(VI) to U(IV). Results indicated that the immobilized U could be partially remobilized by D0 and nitrate via microbial activity. An anoxic environmental condition without nitrate is essential to maintain the stability of bioreduced uranium.

Wu, Weimin [Stanford University; Carley, Jack M [ORNL; Watson, David B [ORNL; Gu, Baohua [ORNL; Brooks, Scott C [ORNL; Kelly, Shelly D [Argonne National Laboratory (ANL); Kemner, Kenneth M [Argonne National Laboratory (ANL); Van Nostrand, Joy [University of Oklahoma, Norman; Wu, Liyou [University of Oklahoma, Norman; Zhou, Jizhong [University of Oklahoma, Norman; Luo, Jian [Georgia Institute of Technology; Cardenas, Erick [Michigan State University, East Lansing; Fields, Matthew Wayne [Miami University, Oxford, OH; Marsh, Terence [Michigan State University, East Lansing; Tiedje, James [Michigan State University, East Lansing; Green, Stefan [Florida State University; Kostka, Joel [Florida State University; Kitanidis, Peter K. [Stanford University; Jardine, Philip [University of Tennessee, Knoxville (UTK); Criddle, Craig [Stanford University

2011-01-01T23:59:59.000Z

214

Reduction of Np(VI) and Pu(VI) by organic chelating agents  

SciTech Connect (OSTI)

The reduction of NpO{sub 2}{sup 2+} and PuO{sub 2}{sup 2+} by oxalate, citrate, and ethylenediaminetetraacetic acid (EDTA) was investigated in low ionic strength media and brines. This was done to help establish the stability of the An(VI) oxidation state depended on the pH nd relative strength of the various oxidation state-specific complexes. At low ionic strength and pH 6, NpO{sub 2}{sup 2+} was rapidly reduced to form NpO{sub 2}{sup +} organic complexes. At longer times, Np(IV) organic complexes were observed in the presence of citrate. PuO{sub 2}{sup 2+} was predominantly reduced to Pu{sup 4+}, resulting in the formation of organic complexes or polymeric/hydrolytic precipitates. The relative rates of reduction to the An(V) complex were EDTA > citrate > oxalate. Subsequent reduction to An(IV) complexes, however, occurred in the following order: citrate > EDTA > oxalate because of the stability of the An(VI)-EDTA complex. The presence of organic complexants led to the rapid reduction of NpO{sub 2}{sup 2+} and PuO{sub 2}{sup 2+} in G-Seep brine at pHs 5 and 7. At pHs 8 and 10 in ERDA-6 brine, carbonate and hydrolytic complexes predominated and slowed down or prevented the reduction of An(VI) by the organics present.

Reed, D.T.; Wygmans, D.G.; Aase, S.B.; Banaszak, J.E. [Argonne National Lab., IL (United States)

1998-06-01T23:59:59.000Z

215

Residual oil saturation, Annex VI-1. Venezuela-MEM/USA-DOE fossil energy report VI-1  

SciTech Connect (OSTI)

This report, dealing with the US/Venezuela Cooperative exchange agreement on residual oil saturation (Annex VI), contains the results of efforts by scientists from both countries to improve the state of present technology for accurately measuring the amount of residual oil remaining in a particular reservoir of interest. To date, those efforts have resulted in an exchange of ideas through a sharing of technical literature and bibliographic listings pertinent to the subject, reciprocal visits to the laboratories and field sites where residual oil saturation measurement R and D is in progress, an exchange of ideas through workshops held in each country, and open discussions covering areas of future cooperative R and D. The text of the basic agreement , Annex VI and all amendments, are appended to the report. In addition to a chronicle of events detailing progress under Annex VI, this report also inlcudes a discussion of future work to be performed in the areas of subsidence accompanying the extraction of oil and interwell oil saturation measurement. A meeting was held in Bartlesville May 10 and 11 to formulate plans in this area.

Wesson, T.C.; VonDomselaar, H.

1983-04-01T23:59:59.000Z

216

Variations of the Isotopic Ratios of Uranium in Environmental Samples Containing Traces of Depleted Uranium: Theoretical and Experimental Aspects  

Science Journals Connector (OSTI)

......Samples Containing Traces of Depleted Uranium: Theoretical and Experimental...for the detection of traces of depleted uranium (DU) in environmental samples...percentage composition is about 20% depleted uranium and 80% natural uranium, for......

M. Magnoni; S. Bertino; B. Bellotto; M. Campi

2001-12-01T23:59:59.000Z

217

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......after parenteral injections of depleted uranium S. Fukuda 1 * M. Ikeda 1 M...intramuscular (i.m.) injections of depleted uranium (DU) was examined and the...with uranium. INTRODUCTION Depleted uranium (DU) can affect human health......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

218

Polyethylene Encapsulated Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

219

Spectrophotometric determination of tantalum in boron, uranium, zirconium, and uranium-Zircaloy-2 alloy with malachite green  

Science Journals Connector (OSTI)

Spectrophotometric determination of tantalum in boron, uranium, zirconium, and uranium-Zircaloy-2 alloy with malachite green ...

Allan R. Eberle; Morris W. Lerner

1967-01-01T23:59:59.000Z

220

Uranium Bioreduction Rates across Scales: Biogeochemical Hot Moments and Hot Spots during a Biostimulation Experiment at Rifle, Colorado  

SciTech Connect (OSTI)

We aim to understand the scale-dependent evolution of uranium bioreduction during a field experiment at a former uranium mill site near Rifle, Colorado. Acetate was injected to stimulate Fe-reducing bacteria (FeRB) and to immobilize aqueous U(VI) to insoluble U(IV). Bicarbonate was coinjected in half of the domain to mobilize sorbed U(VI). We used reactive transport modeling to integrate hydraulic and geochemical data and to quantify rates at the grid block (0.25 m) and experimental field scale (tens of meters). Although local rates varied by orders of magnitude in conjunction with biostimulation fronts propagating downstream, field-scale rates were dominated by those orders of magnitude higher rates at a few selected hot spots where Fe(III), U(VI), and FeRB were at their maxima in the vicinity of the injection wells. At particular locations, the hot moments with maximum rates negatively corresponded to their distance from the injection wells. Although bicarbonate injection enhanced local rates near the injection wells by a maximum of 39.4%, its effect at the field scale was limited to a maximum of 10.0%. We propose a rate-versus-measurement-length relationship (log R' = -0.63

Bao, Chen; Wu, Hongfei; Li, Li; Newcomer, Darrell R.; Long, Philip E.; Williams, Kenneth H.

2014-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China  

E-Print Network [OSTI]

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern Available online 25 January 2005 Abstract We show evidence that the primary uranium minerals, uraninite-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically

Fayek, Mostafa

222

Efficiency of Exterior Exposed Ductwork  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Efficiency of Exterior Exposed Ductwork Most of California's commercial buildings have thermal distribution systems, the majority (63%) of which are air-based and distribute air through ductworks. Thermal distribution ductwork systems in small commercial buildings are similar to those in residential construction [Winter 1995, p.8] and have the same leakage and conduction-loss problems. The extent of these duct-related thermal losses depends on the location of the ductwork-the largest thermal losses occur when the ducts are entirely outside the building envelope. Leakage, conduction losses, direct solar radiation effects and solar reflection all affect the magnitude of thermal loss. Differences in the lengths of exterior ducts also affect a distribution system's energy

223

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Wyoming 134 139 181 195 245 301 308 348 424 512 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W California, Montana, North Dakota, Oklahoma, Oregon, and Virginia 0 0 0 0 9 17 W W W W Total 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 7. Employment in the U.S. uranium production industry by state, 2003-2012 person-years

224

The End of Cheap Uranium  

E-Print Network [OSTI]

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

Dittmar, Michael

2011-01-01T23:59:59.000Z

225

Uranium Metal: Potential for Discovering Commercial Uses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranium Metal Uranium Metal Potential for Discovering Commercial Uses Steven M. Baker, Ph.D. Knoxville Tn 5 August 1998 Summary Uranium Metal is a Valuable Resource 3 Large Inventory of "Depleted Uranium" 3 Need Commercial Uses for Inventory  Avoid Disposal Cost  Real Added Value to Society 3 Uranium Metal Has Valuable Properties  Density  Strength 3 Market will Come if Story is Told Background The Nature of Uranium Background 3 Natural Uranium: 99.3% U238; 0.7% U 235 3 U235 Fissile  Nuclear Weapons  Nuclear Reactors 3 U238 Fertile  Neutron Irradiation of U238 Produces Pu239  Neutrons Come From U235 Fission  Pu239 is Fissile (Weapons, Reactors, etc.) Post World War II Legacy Background 3 "Enriched" Uranium Product  Weapons Program 

226

Domestic Uranium Production Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report - Annual Domestic Uranium Production Report - Annual With Data for 2012 | Release Date: June 06, 2013 | Next Release Date: May 2014 |full report Previous domestic uranium production reports Year: 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Figure 1. U.S. Uranium drilling by number of holes, 2004-2012 U.S. uranium exploration drilling was 5,112 holes covering 3.4 million feet in 2012. Development drilling was 5,970 holes and 3.7 million feet. Combined, total uranium drilling was 11,082 holes covering 7.2 million feet, 5 percent more holes than in 2011. Expenditures for uranium drilling in the United States were $67 million in 2012, an increase of 24 percent compared with 2011. Mining, production, shipments, and sales U.S. uranium mines produced 4.3 million pounds U3O8 in 2012, 5 percent more

227

Polyethylene Encapsulation of Depleted Uranium Trioxide  

Science Journals Connector (OSTI)

Depleted uranium, in the form of uranium trioxide (UO3) powder, was encapsulated in molten polyethylene forming a stable, dense composite henceforth known as DUPoly (patent pending). Materials were fed by calibra...

J. W. Adams; P. R. Lageraaen; P. D. Kalb…

2002-01-01T23:59:59.000Z

228

Statistical data of the uranium industry  

SciTech Connect (OSTI)

Data are presented on US uranium reserves, potential resources, exploration, mining, drilling, milling, and other activities of the uranium industry through 1980. The compendium reflects the basic programs of the Grand Junction Office. Statistics are based primarily on information provided by the uranium exploration, mining, and milling companies. Data on commercial U/sub 3/O/sub 8/ sales and purchases are included. Data on non-US uranium production and resources are presented in the appendix. (DMC)

none,

1981-01-01T23:59:59.000Z

229

RETENTION AND CHEMICAL SPECIATION OF URANIUM IN A WETLAND ON THE SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

Uranium speciation and retention mechanism onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction desorption tests and U L{sub 3}-edge X-ray absorption near-edge structure (XANES) spectroscopy of contaminated wetland sediments. U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH <4 and pH >8. Sequential extraction tests indicated that the U(VI) species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and NOM fraction (Na-pyrophosphate extractable). Uranium L3- edge XANES spectra of the U-retained sediments were nearly identical to that of uranyl acetate. The primary oxidation state of U in these sediments was as U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species. The molecular mechanism responsible for the high U retention in the SRS wetland sediments is likely related to the chemical bonding of U to organic carbon.

Li, D.; CHANG, H.: SEAMAN, J.; Jaffe, P.; Groos, P.; Jiang, D.; Chen, N.; Lin, J.; Arthur, Z.; Scheckel, K.; Kaplan, D.

2013-06-17T23:59:59.000Z

230

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

10. Uranium reserve estimates at the end of 2012" 10. Uranium reserve estimates at the end of 2012" "million pounds U3O8" "Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s)","Forward Cost 2" ,"$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound" "Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work","W","W",101.956759 "Properties Under Development for Production","W","W","W" "Mines in Production","W",21.40601,"W" "Mines Closed Temporarily and Closed Permanently","W","W",133.139239 "In-Situ Leach Mining","W","W",128.576534

231

Y-12 Uranium Exposure Study  

SciTech Connect (OSTI)

Following the recent restart of operations at the Y-12 Plant, the Radiological Control Organization (RCO) observed that the enriched uranium exposures appeared to involve insoluble rather than soluble uranium that presumably characterized most earlier Y-12 operations. These observations necessitated changes in the bioassay program, particularly the need for routine fecal sampling. In addition, it was not reasonable to interpret the bioassay data using metabolic parameter values established during earlier Y-12 operations. Thus, the recent urinary and fecal bioassay data were interpreted using the default guidance in Publication 54 of the International Commission on Radiological Protection (ICRP); that is, inhalation of Class Y uranium with an activity median aerodynamic diameter (AMAD) of 1 {micro}m. Faced with apparently new workplace conditions, these actions were appropriate and ensured a cautionary approach to worker protection. As additional bioassay data were accumulated, it became apparent that the data were not consistent with Publication 54. Therefore, this study was undertaken to examine the situation.

Eckerman, K.F.; Kerr, G.D.

1999-08-05T23:59:59.000Z

232

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Lost Creek ISR LLC Lost Creek Project Sweetwater, Wyoming 2,000,000 Developing

233

The Uranium Institute 24th Annual Symposium  

E-Print Network [OSTI]

the waste U-238 into Pu-239 for burning. By this means 100 times as much energy can be obtained from it to extract the uranium, enriching the natural uranium in the fissile isotope U-235, burning the U-235 than the uranium fuel it burns, leading to a breeder reactor. In addition, if the reactor is a fast

Laughlin, Robert B.

234

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...least some of the uranium had been irradiated...not represent a health threat,” says Danesi...VISAR KRYEZIU/AP Depleted uranium is what's left...not represent a health threat, says...VISAR KRYEZIU/AP Depleted uranium is what's left...

Richard Stone

2002-09-13T23:59:59.000Z

235

D Riso-R-429 Automated Uranium  

E-Print Network [OSTI]

routinely used analytical techniques for uranium determina- tions in geological samples, fissionCM i D Riso-R-429 Automated Uranium Analysis by Delayed-Neutron Counting H. Kunzendorf, L. Løvborg AUTOMATED URANIUM ANALYSIS BY DELAYED-NEUTRON COUNTING H. Kunzendorf, L. Løvborg and E.M. Christiansen

236

SEGS VI Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SEGS VI Solar Power Plant SEGS VI Solar Power Plant Jump to: navigation, search Name SEGS VI Solar Power Plant Facility SEGS VI Sector Solar Facility Type Concentrating Solar Power Developer Luz Location Kramer Junction, California Coordinates 34.9925°, -117.540833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9925,"lon":-117.540833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" "Mill Owner","Mill Name","County, State (existing and planned locations)","Milling Capacity","Operating Status at End of the Year" ,,,"(short tons of ore per day)",2008,2009,2010,2011,2012 "Cotter Corporation","Canon City Mill","Fremont, Colorado",0,"Standby","Standby","Standby","Reclamation","Demolished" "EFR White Mesa LLC","White Mesa Mill","San Juan, Utah",2000,"Operating","Operating","Operating","Operating","Operating"

238

The reduction of Np(VI) and Pu(VI) by organic chelating agents.  

SciTech Connect (OSTI)

The reduction of NpO{sup 2+} and PuO{sub 2}{sup 2+} by oxalate. citrate, and ethylenediaminetetraacetic acid (EDTA) was investigated in low ionic strength media and brines. This was done to help establish the stability of the An(VI) oxidation state in the presence of organic complexants. The stability of the An(VI) oxidation state depended on the pH and relative strength of the various oxidation state-specific complexes. At low ionic strength and pH 6, NpO{sub 2}O{sup 2+} was rapidly reduced to form NpO{sub 2}{sup +} organic complexes. At longer times, Np(IV) organic complexes were observed in the presence of citrate. PuO{sub 2}{sup 2+} was predominantly reduced to Pu{sup 4+}, resulting in the formation of organic complexes or polymeric/hydrolytic precipitates. The relative rates of reduction to the An(V) complex were EDTA > citrate > oxalate. Subsequent reduction to An(IV) complexes, however, occurred in the following order: citrate > EDTA > oxalate because of the stability of the An(V)-EDTA complex. The presence of organic complexants led to the rapid reduction of NpO{sub 2}{sup 2+} and PuO{sub 2}P{sup 2+} in G-seep brine at pHs 5 and 7. At pHs 8 and 10 in ERDA-6 brine, carbonate and hydrolytic complexes predominated and slowed down or prevented the reduction of An(VI) by the organics present.

Reed, D.T.; Aase, S.B.; Banaszak, J.E.

1998-03-19T23:59:59.000Z

239

Fire testing of bare uranium hexafluoride cylinders  

SciTech Connect (OSTI)

In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)

1991-12-31T23:59:59.000Z

240

Fire testing of bare uranium hexafluoride cylinders  

SciTech Connect (OSTI)

In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

VIM: Initial ENDF/B-VI experience  

SciTech Connect (OSTI)

The VIM Monte Carlo particle transport code uses detailed continuous-energy cross sections produced from ENDF/B data by a set of specialized codes developed or adapted for use at Argonne National Laboratory. ENDF/B-IV data were used until about 1979, and Version V data since then. These VIM libraries were extensively benchmarked against the MC{sup 2}-2 code and against ZPR and ZPPR criticals for fast spectrum calculations, as well as other fast and thermal experiments and calculations. Recently, the cross section processing codes have been upgraded to accommodate ENDF/B-VI files, and a small library has been tested. Several fundamental tasks comprise the construction of a faithful representation of ENDF data for VIM calculations: (1) The resolved resonance parameters are converted to Doppler-broadened continuous-energy cross sections with energy grids suitable for linear-linear interpolation. (2) The unresolved resonance parameter distributions are sampled to produce many (40-400) resonance ladders in each energy band. These are converted to Doppler-broadened continuous energy resonance cross sections that are then binned by cross section, accumulating ladders until statistical convergence, the result being probability tables of total cross sections and conditional mean scattering and fission cross sections. VIM samples these tables at run time, and File 3 back ground cross sections are added. (3) Anisotropic angular distribution data are converted to angular probability tables. All other ENDF data are unmodified, except for format.

Blomquist, R.N.

1997-08-01T23:59:59.000Z

242

Competing retention pathways of uranium upon reaction with Fe(II)  

SciTech Connect (OSTI)

Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3•nH2O) to goethite (?-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway’s contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation state of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ~7, [U(VI)] from 1 to 170 ?M, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM) coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended x-ray absorption fine structure (EXAFS) spectroscopy, x-ray powder diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14 to 89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ? 50 ?M when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64 to 89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.

Massey, Michael S.; Lezama Pacheco, Juan S.; Jones, Morris; Ilton, Eugene S.; Cerrato, Jose M.; Bargar, John R.; Fendorf, Scott

2014-10-01T23:59:59.000Z

243

Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report  

SciTech Connect (OSTI)

This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors.

Samet, J.; Gilliland, F.D.

1998-08-13T23:59:59.000Z

244

Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF ? mediators  

SciTech Connect (OSTI)

Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5–200 ?M). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{sub 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup ?}). At high doses it provokes the secretion of TNF? and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup ?} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup ?} may be blocked, prevailing damage to DNA by the TNF? route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium?related diseases. -- Highlights: ? Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ? At low doses uranyl nitrate induces generation of superoxide anion. ? At high doses uranyl nitrate provokes secretion of TNF?. ? Uranyl nitrate induces apoptosis through all the range of doses tested.

Orona, N.S. [School of Science and Technology, National University of General Martín, Avda Gral Paz 5445 (1650) San Martín, Buenos Aires (Argentina)] [School of Science and Technology, National University of General Martín, Avda Gral Paz 5445 (1650) San Martín, Buenos Aires (Argentina); Tasat, D.R., E-mail: deborah.tasat@unsam.edu.ar [School of Science and Technology, National University of General Martín, Avda Gral Paz 5445 (1650) San Martín, Buenos Aires (Argentina); School of Dentistry, University of Buenos Aires, M. T. de Alvear 2142 (1122), Buenos Aires (Argentina)

2012-06-15T23:59:59.000Z

245

Reactivity Effects of Differences Between JEFF-3.1 and ENDF/B-VI.8 in Analysis of Six MASURCA Cores of the R-Z Program  

SciTech Connect (OSTI)

Six early cores of the MASURCA R-Z program were modeled using ERANOS 2.1. These cores were designed such that their neutron spectra would be similar to that of an oxide-fueled sodium-cooled fast reactor, some containing enriched uranium and others containing depleted uranium and plutonium. Effects of modeling assumptions and solution methods both in ECCO lattice calculations and in BISTRO Sn flux solutions were evaluated using JEFF-3.1 cross-section libraries. Reactivity effects of differences between JEFF-3.1 and ENDF/B-VI.8 were also quantified using perturbation theory analysis. The most important nuclide with respect to reactivity differences between cross-section libraries was 23Na, primarily a result of differences in the angular dependence of elastic scattering which is more forward-peaked in ENDF/B-VI.8 than in JEFF-3.1. Differences in 23Na inelastic scattering cross-sections between libraries also generated significant differences in reactivity, more due to the differences in magnitude of the cross-sections than the angular dependence. The nuclide 238U was also found to be important with regard to reactivity differences between the two libraries mostly due to a large effect of inelastic scattering differences and two smaller effects of elastic scattering and fission cross-sections. In the cores which contained plutonium, 239Pu fission cross-section differences contributed significantly to the reactivity differences between libraries.

MIchael A. Pope

2010-02-01T23:59:59.000Z

246

Uranium 2014 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

Organisation for Economic Cooperation and Development. Paris

2014-01-01T23:59:59.000Z

247

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report"

248

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904 2011 5,441 3,322 5,156 3,003 10,597 6,325 2012 5,112 3,447 5,970 3,709 11,082 7,156 NA = Not available. W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-

249

Uranium: Prices, rise, then fall  

SciTech Connect (OSTI)

Uranium prices hit eight-year highs in both market tiers, $16.60/lb U{sub 3}O{sub 8} for non-former Soviet Union (FSU) origin and $15.50 for FSU origin during mid 1996. However, they declined to $14.70 and $13.90, respectively, by the end of the year. Increased uranium prices continue to encourage new production and restarts of production facilities presently on standby. Australia scrapped its {open_quotes}three-mine{close_quotes} policy following the ouster of the Labor party in a March election. The move opens the way for increasing competition with Canada`s low-cost producers. Other events in the industry during 1996 that have current or potential impacts on the market include: approval of legislation outlining the ground rules for privatization of the US Enrichment Corp. (USEC) and the subsequent sales of converted Russian highly enriched uranium (HEU) from its nuclear weapons program, announcement of sales plans for converted US HEU and other surplus material through either the Department of Energy or USEC, and continuation of quotas for uranium from the FSU in the United States and Europe. In Canada, permitting activities continued on the Cigar Lake and McArthur River projects; and construction commenced on the McClean Lake mill.

Pool, T.C.

1997-03-01T23:59:59.000Z

250

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9. Summary production statistics of the U.S. uranium industry, 1993-2012" 9. Summary production statistics of the U.S. uranium industry, 1993-2012" "Item",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,"E2003",2004,2005,2006,2007,2008,2009,2010,2011,2012 "Exploration and Development" "Surface Drilling (million feet)",1.1,0.7,1.3,3,4.9,4.6,2.5,1,0.7,"W","W",1.2,1.7,2.7,5.1,5.1,3.7,4.9,6.3,7.2 "Drilling Expenditures (million dollars)1",5.7,1.1,2.6,7.2,20,18.1,7.9,5.6,2.7,"W","W",10.6,18.1,40.1,67.5,81.9,35.4,44.6,53.6,66.6 "Mine Production of Uranium" "(million pounds U3O8)",2.1,2.5,3.5,4.7,4.7,4.8,4.5,3.1,2.6,2.4,2.2,2.5,3,4.7,4.5,3.9,4.1,4.2,4.1,4.3 "Uranium Concentrate Production" "(million pounds U3O8)",3.1,3.4,6,6.3,5.6,4.7,4.6,4,2.6,2.3,2,2.3,2.7,4.1,4.5,3.9,3.7,4.2,4,4.1

251

From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria  

SciTech Connect (OSTI)

One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

REGUERA, GEMMA [Michigan State University

2014-01-16T23:59:59.000Z

252

Influences of Organic Carbon Supply Rate on Uranium Bioreduction in Initially Oxidizing, Contaminated Sediment  

SciTech Connect (OSTI)

Remediation of uranium (U) contaminated sediments through in-situ stimulation of bioreduction to insoluble UO{sub 2} is a potential treatment strategy under active investigation. Previously, we found that newly reduced U(IV) can be reoxidized under reducing conditions sustained by a continuous supply of organic carbon (OC) because of residual reactive Fe(III) and enhanced U(VI) solubility through complexation with carbonate generated through OC oxidation. That finding motivated this investigation directed at identifying a range of OC supply rates that is optimal for establishing U bioreduction and immobilization in initially oxidizing sediments. The effects of OC supply rate, from 0 to 580 mmol OC (kg sediment){sup -1} year{sup -1}, and OC form (lactate and acetate) on U bioreduction were tested in flow-through columns containing U-contaminated sediments. An intermediate supply rate on the order of 150 mmol OC (kg sediment){sup -1} year{sup -1} was determined to be most effective at immobilizing U. At lower OC supply rates, U bioreduction was not achieved, and U(VI) solubility was enhanced by complexation with carbonate (from OC oxidation). At the highest OC supply rate, resulting highly carbonate-enriched solutions also supported elevated levels of U(VI), even though strongly reducing conditions were established. Lactate and acetate were found to have very similar geochemical impacts on effluent U concentrations (and other measured chemical species), when compared at equivalent OC supply rates. While the catalysts of U(VI) reduction to U(IV) are presumably bacteria, the composition of the bacterial community, the Fe reducing community, and the sulfate reducing community had no direct relationship with effluent U concentrations. The OC supply rate has competing effects of driving reduction of U(VI) to low solubility U(IV) solids, as well as causing formation of highly soluble U(VI)-carbonato complexes. These offsetting influences will require careful control of OC supply rates in order to optimize bioreduction-based U stabilization.

Tokunaga, Tetsu K.; Wan, Jiamin; Kim, Yongman; Daly, Rebecca A.; Brodie, Eoin L.; Hazen, Terry C.; Herman, Don; Firestone, Mary K.

2008-06-10T23:59:59.000Z

253

Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs  

E-Print Network [OSTI]

An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

Matthews, Isaac A

2010-01-01T23:59:59.000Z

254

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2. U.S. uranium mine production and number of mines and sources, 2003-2012" 2. U.S. uranium mine production and number of mines and sources, 2003-2012" "Production / Mining Method",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Underground" "(estimated contained thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W" "Open Pit" "(estimated contained thousand pounds U3O8)",0,0,0,0,0,0,0,0,0,0 "In-Situ Leaching" "(thousand pounds U3O8)","W","W",2681,4259,"W","W","W","W","W","W" "Other1" "(thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W"

255

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

256

Potential Uses of Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

257

Semiconductive Properties of Uranium Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SEMICONDUCTIVE PROPERTIES OF URANIUM OXIDES SEMICONDUCTIVE PROPERTIES OF URANIUM OXIDES Thomas Meek Materials Science Engineering Department University of Tennessee Knoxville, TN 37931 Michael Hu and M. Jonathan Haire Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6179 August 2000 For the Waste Management 2001 Symposium Tucson, Arizona February 25-March 1, 2001 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________ * Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy

258

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7. Employment in the U.S. uranium production industry by state, 2003-2012" 7. Employment in the U.S. uranium production industry by state, 2003-2012" "person-years" "State(s)",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Wyoming",134,139,181,195,245,301,308,348,424,512 "Colorado and Texas",48,140,269,263,557,696,340,292,331,248 "Nebraska and New Mexico",92,102,123,160,149,160,159,134,127,"W" "Arizona, Utah, and Washington",47,40,75,120,245,360,273,281,"W","W" "Alaska, Michigan, Nevada, and South Dakota",0,0,0,16,25,30,"W","W","W","W" "California, Montana, North Dakota, Oklahoma, Oregon, and Virginia",0,0,0,0,9,17,"W","W","W","W"

259

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2008,2009,2010,2011,2012 "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

260

Depleted Uranium (DU) Cermet Waste Package  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Depleted Uranium Uses Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DU Uses DU Uses Depleted Uranium Uses Research & Development A Depleted Uranium Uses Research and Development Program was initiated to explore beneficial uses of depleted uranium (DU) and other materials resulting from conversion of depleted UF6. A Depleted Uranium Uses Research and Development Program was initiated to explore the safe, beneficial use of depleted uranium and other materials resulting from conversion of depleted UF6 (e.g., fluorine and empty carbon steel cylinders) for the purposes of resource conservation and cost savings compared with disposal. This program explored the risks and benefits of several depleted uranium uses, including uses as a radiation shielding material, a catalyst, and a semi-conductor material in electronic devices.

262

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

263

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources 1 1 1 2 1 1 1 2 1 1 1 Total Mines and Sources 4 6 10 11 12 17 20 9 11 12 Other 1 Number of Operating Mines Table 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Underground Open Pit In-Situ Leaching Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012).

264

Review of uranium bioassay techniques  

SciTech Connect (OSTI)

A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

Bogard, J.S.

1996-04-01T23:59:59.000Z

265

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. 0 200 400 600 800 1,000 1,200 1,400 1,600 2004 2005 2006 2007 2008

266

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network [OSTI]

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

267

Excretion of depleted uranium by Gulf war veterans  

Science Journals Connector (OSTI)

......Dosimetry Article Excretion of depleted uranium by Gulf war veterans R. E...personnel had potential intakes of depleted uranium (DU), including shrapnel...excretion rate. Excretion of depleted uranium by Gulf War veterans. | During......

R. E. Toohey

2003-07-01T23:59:59.000Z

268

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

269

Uranium Pollution of Meat in Tien-Shan  

Science Journals Connector (OSTI)

Uranium in water, soil, fodder and food products (especially meat) was studied in areas of former Soviet uranium industry in Tien-Shan 1950–1970. Uranium environment migration was very intensive in Tien-Shan, due...

Rustam Tuhvatshin; Igor Hadjamberdiev…

2008-01-01T23:59:59.000Z

270

Energy and momentum of Bianchi Type VI_h Universes  

E-Print Network [OSTI]

We obtain the energy and momentum of the Bianchi type VI_h universes using different prescriptions for the energy-momentum complexes in the framework of general relativity. The energy and momentum of the Bianchi VI_h universe are found to be zero for the parameter h = -1 of the metric. The vanishing of these results support the conjecture of Tryon that Universe must have a zero net value for all conserved quantities.This also supports the work of Nathan Rosen with the Robertson-Walker metric. Moreover, it raises an interesting question: "Why h=-1 case is so special?"

S. K. Tripathy; B. Mishra; G. K. Pandey; A. K. Singh; T. Kumar; S. S. Xulu

2015-01-19T23:59:59.000Z

271

Energy and momentum of Bianchi Type VI_h Universes  

E-Print Network [OSTI]

We obtain the energy and momentum of the Bianchi type VI_h universes using different prescriptions for the energy-momentum complexes in the framework of general relativity. The energy and momentum of the Bianchi VI_h universe are found to be zero for the parameter h = -1 of the metric. The vanishing of these results support the conjecture of Tryon that Universe must have a zero net value for all conserved quantities.This also supports the work of Nathan Rosen with the Robertson-Walker metric. Moreover, it raises an interesting question: "Why h=-1 case is so special?"

Tripathy, S K; Pandey, G K; Singh, A K; Kumar, T; Xulu, S S

2015-01-01T23:59:59.000Z

272

Measurements of daily urinary uranium excretion in German peacekeeping personnel and residents of the Kosovo region to assess potential intakes of depleted uranium (DU)  

Science Journals Connector (OSTI)

Following the end of the Kosovo conflict, in June 1999, a study was instigated to evaluate whether there was a cause for concern of health risk from depleted uranium (DU) to German peacekeeping personnel serving in the Balkans. In addition, the investigations were extended to residents of Kosovo and southern Serbia, who lived in areas where DU ammunitions were deployed. In order to assess a possible DU intake, both the urinary uranium excretion of volunteer residents and water samples were collected and analysed using inductively coupled plasma-mass spectrometry (ICP-MS). More than 1300 urine samples from peacekeeping personnel and unexposed controls of different genders and age were analysed to determine uranium excretion parameters. The urine measurements for 113 unexposed subjects revealed a daily uranium excretion rate with a geometric mean of 13.9 ng/d (geometric standard deviation (GSD) = 2.17). The analysis of 1228 urine samples from the peacekeeping personnel resulted in a geometric mean of 12.8 ng/d (GSD = 2.60). It follows that both unexposed controls and peacekeeping personnel excreted similar amounts of uranium. Inter-subject variation in uranium excretion was high and no significant age-specific differences were found. The second part of the study monitored 24 h urine samples provided by selected residents of Kosovo and adjacent regions of Serbia compared to controls from Munich, Germany. Total uranium and isotope ratios were measured in order to determine DU content. 235U/238U ratios were within ± 0.3% of the natural value, and 236U/238U was less than 2 × 10? 7, indicating no significant DU in any of the urine samples provided, despite total uranium excretion being relatively high in some cases. Measurements of ground and tap water samples from regions where DU munitions were deployed did not show any contamination with DU, except in one sample. It is concluded that both peacekeeping personnel and residents serving or living in the Balkans, respectively, were not exposed to significant amounts of DU.

U. Oeh; N.D. Priest; P. Roth; K.V. Ragnarsdottir; W.B. Li; V. Höllriegl; M.F. Thirlwall; B. Michalke; A. Giussani; P. Schramel; H.G. Paretzke

2007-01-01T23:59:59.000Z

273

Structural Sequestration of Uranium in Bacteriogenic Manganese...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of metal-contaminated waters (in engineered remediation technologies, for example)?" Uranium is a key contaminant of concern at US DOE sites and shuttered mining and ore...

274

Uranium Weapons Components Successfully Dismantled | National...  

National Nuclear Security Administration (NNSA)

Successfully Dismantled March 20, 2007 Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons...

275

Colorimetric detection of uranium in water  

DOE Patents [OSTI]

Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

DeVol, Timothy A. (Clemson, SC); Hixon, Amy E. (Piedmont, SC); DiPrete, David P. (Evans, GA)

2012-03-13T23:59:59.000Z

276

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

The initial uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

277

Adsorptive Stripping Voltammetric Measurements of Trace Uranium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurements of Trace Uranium at the Bismuth Film Electrode. Abstract: Bismuth-coated carbon-fiber electrodes have been successfully applied for adsorptive-stripping...

278

Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A...

279

Statistical data of the uranium industry  

SciTech Connect (OSTI)

Statistical Data of the Uranium Industry is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1981. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining, and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office (GJAO) of the US Department of Energy. The production, reserves, and drilling information is reported in a manner which avoids disclosure of proprietary information.

none,

1982-01-01T23:59:59.000Z

280

Optimizing Cr(VI) adsorption on activated carbon produced from heavy oil fly ash  

Science Journals Connector (OSTI)

In order to explore the beneficial utilization of heavy oil fly ash (HOFA) generated in the power plants, the present study is intended to optimize the chromium(VI) [Cr(VI)] adsorption on activated carbon prod...

Abdullah Mofarrah; Tahir Husain; Bing Chen

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Accelerated Publications Three-Dimensional Structure of DesVI from Streptomyces Venezuelae: A Sugar  

E-Print Network [OSTI]

Accelerated Publications Three-Dimensional Structure of DesVI from Streptomyces Venezuelae: A Sugar for the biosynthesis of dTDP-desosamine in Streptomyces Venezuelae, with the last step catalyzed by DesVI, an N

Holden, Hazel

282

Abiotic U(VI) Reduction by Sorbed Fe(II) on Natural Sediments...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U(VI) Reduction by Sorbed Fe(II) on Natural Sediments. Abiotic U(VI) Reduction by Sorbed Fe(II) on Natural Sediments. Abstract: Laboratory experiments were performed as a function...

283

N,N'-Dioctanoylpiperazine as a novel extractant for U(VI)  

Science Journals Connector (OSTI)

N,N'-Dioctanoylpiperazine (DOPEZ), a novel extractant for U(VI) in carbon tetrachloride has been studied. The principal factors affecting the U(VI) distribution ratio, i.e., the concentration of aqueous nitric ac...

Yang Xing-Cun; Bao Bo-Rong; Sun Guo-Xin…

2003-12-01T23:59:59.000Z

284

E-Print Network 3.0 - air pollution vi Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vi Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution vi Page: << < 1 2 3 4 5 > >> 1 Air Pollution Physics and Chemistry EAS 6790...

285

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......chemical forms of the uranium in the body after intake...REFERENCES 1 Mould R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J...Abou-Donia M. B. Depleted and natural uranium: chemistry and toxicological......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

286

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......contaminated accidentally with uranium. INTRODUCTION Depleted uranium (DU) can affect human health via chemical and radiation...B. Teratogenicity of depleted uranium aerosols: a review from...perspective. Environ. Health (2005) 4:17-35......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

287

SRP Scientific Meeting: Depleted Uranium  

Science Journals Connector (OSTI)

London, January 2002 The meeting was organised by the SRP to review current research and discuss the use, dispersion into the environment and radiological impact of depleted uranium (DU) by the UK and US in recent military conflicts. Brian Spratt chaired the morning session of the meeting and stressed the need to gauge the actual risks involved in using DU and to balance professional opinions with public mistrust of scientists and government bodies. He asked whether more could be done by the radiation protection profession to improve communication with the media, pressure groups and the public in general. Ron Brown, of the MOD Dstl Radiological Protection Services, gave a thorough overview of the origins and properties of DU, focusing on munitions, in the UK and abroad and public concerns arising from its use in the 1991 Gulf War. He gave a brief overview of past DU munitions studies by the UK and US governments and contrasted this with the lack of hard data used to back up claims made by pressure groups. He compared the known risks of DU with other battlefield risks, e.g. biological agents, chemical attacks and vaccines, and questioned whether peacetime dose limits should apply to soldiers on the battlefield. Barry Smith, of the British Geological Survey, spoke on DU transport, pathways and exposure routes focusing on groundwater as an important example in the Former Yugoslav Republic of Kosovo. He discussed the large amount of work that has already been done on natural uranium in groundwater, with particular emphasis on its mobility within the soil and rock profile being strongly dependent on precipitation and the local geochemical conditions. Therefore, generic risk assessments will not be sufficient in gauging risks to local populations after the introduction of DU into their environment; local geochemical conditions must be taken into account. However, experiments are required to fully appreciate the extent to which DU, particularly DU:Ti alloys used in munitions, disperses into the environment in a variety of soil types. Barry outlined recent computer modelling work investigating the time taken for DU to migrate from a buried munition to a borehole in three different scenarios. The modelling revealed times from 30 years to 5 ? 109 years depending on the local geochemical environment and the depth of the DU penetrator in the soil profile. This suggests the real possibility of borehole contamination within a human lifetime in wet conditions similar to those found in Kosovo. Nick Priest, of Middlesex University, discussed methods of biological monitoring for natural and depleted uranium. The preferred method of detection is by 24 h urine sampling, with measurement of the total mass or isotopic ratios of uranium using mass spectroscopy (ICPMS). This is because uranium is only deposited in new areas of bone growth, a slow process in healthy adults, the remainder is filtered by the kidneys and excreted in urine, giving a non-invasive and rapid sample collection method. Nick also described a rapid assessment technique to look for total uranium and DU in a sample, using a multi-collector ICPMS, specifically looking at the 235U:238U ratio with 236U as a tracer to determine the total mass of uranium present and its source. The MC-ICPMS method was applied in a BBC Scotland funded study of uptakes of uranium in three populations in the Balkans during March 2001. Variable levels of DU were found in each population. The age of the subject was found to influence the excretion of natural uranium and DU to the same degree, increasing age leading to increased excretion. Overall, the levels of DU were extremely small (tens of µg), but DU was found to be present in each population investigated. The MC-ICPMS method is capable of detecting  1% DU in natural uranium and Nick intends to extend the study to include ground and drinking water samples and food in the same populations. Neil Stradling gave a talk on the contribution of the NRPB to the WHO report on DU published in April 2001. It addressed the biokinetics of inhaled uranium

David Kestell

2002-01-01T23:59:59.000Z

288

Dissolution of Uranium-Bearing Minerals and Mobilization of Uranium by Organic Ligands in a Biologically Reduced Sediment  

SciTech Connect (OSTI)

The stability and mobility of uranium (U) is a concern following its reductive precipitation or immobilization by techniques such as bioremediation at contaminated sites. In this study, the influences of complexing organic ligands such as citrate and ethylenediaminetetraacetate (EDTA) on the mobilization of U were investigated in both batch and column flow systems using a contaminated and bioreduced sediment. Results indicate that both reduced U(IV) and oxidized U(VI) in the sediment can be effectively mobilized with the addition of EDTA or citrate under anaerobic conditions. The dissolution and mobilization of U appear to be correlated to the dissolution of iron (Fe)- or aluminum (Al)-bearing minerals, with EDTA being more effective (with R2 0.89) than citrate (R2 <0.60) in dissolving these minerals. The column flow experiments confirm that U, Fe, and Al can be mobilized by these ligands under anoxic conditions, although the cumulative amounts of U removal constituted ~0.1% of total U present in this sediment following a limited period of leaching. This study concludes that the presence of complexing organic ligands may pose a long-term concern by slowly dissolving U-bearing minerals and mobilizing U even under a strict anaerobic environment.

Luo, Wensui [ORNL; Gu, Baohua [ORNL

2011-01-01T23:59:59.000Z

289

Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on...

290

Legacy Management Work Progresses on Defense-Related Uranium...  

Broader source: Energy.gov (indexed) [DOE]

Most recently, LM visited 84 defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global...

291

Secretarial Determination for the Sale or Transfer of Uranium...  

Broader source: Energy.gov (indexed) [DOE]

of Uranium.pdf More Documents & Publications Secretarial Determination Pursuant to USEC Privatization Act for the Sale or Transfer of Low-Enriched Uranium Secretarial...

292

Secretarial Determination of No Adverse Material Impact for Uranium...  

Energy Savers [EERE]

5-15-14.pdf More Documents & Publications Excess Uranium Inventory Management Plan 2008 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the...

293

President Truman Increases Production of Uranium and Plutonium...  

National Nuclear Security Administration (NNSA)

Uranium and Plutonium Washington, DC President Truman approves a 1.4 billion expansion of Atomic Energy Commission facilities to produce uranium and plutonium for nuclear weapons...

294

Editorial - Depleted Uranium: A Problem of Perception rather than Reality  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Editorial Editorial - Depleted Uranium: A Problem of Perception rather than Reality R. L. Kathren Depleted uranium: a problem of perception rather than reality......

R. L. Kathren

2001-05-01T23:59:59.000Z

295

Modeling of Depleted Uranium Transport in Subsurface Systems  

Science Journals Connector (OSTI)

Groundwater and soil contamination with depleted uranium (DU) isan important public concern because ... four extremecases of climate and existing conditions of uranium penetrator fragments. The simulations demons...

J. Paul Chen; Sotira Yiacoumi

2002-10-01T23:59:59.000Z

296

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

297

3rd Quarter 2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " U.S. Energy Information Administration 3rd Quarter 2014 Domestic Uranium Production Report...

298

Microbial Reduction of Uranium under Iron- and Sulfate-reducing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranium under Iron- and Sulfate-reducing Conditions: Effect of Amended Goethite on Microbial Community Microbial Reduction of Uranium under Iron- and Sulfate-reducing Conditions:...

299

Probing the 5f electrons in a plutonyl(VI) cluster complex  

SciTech Connect (OSTI)

The authors report the structural, spectroscopic and preliminary magnetic characterization of a tri-metallic plutonyl(VI) polyoxometalate complex.

May, Iain [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

300

Properties, use and health effects of depleted uranium (DU): a general overview  

Science Journals Connector (OSTI)

Depleted uranium (DU), a waste product of uranium enrichment, has several civilian and military applications. It was used as armor-piercing ammunition in international military conflicts and was claimed to contribute to health problems, known as the Gulf War Syndrome and recently as the Balkan Syndrome. This led to renewed efforts to assess the environmental consequences and the health impact of the use of DU. The radiological and chemical properties of DU can be compared to those of natural uranium, which is ubiquitously present in soil at a typical concentration of 3 mg/kg. Natural uranium has the same chemotoxicity, but its radiotoxicity is 60% higher. Due to the low specific radioactivity and the dominance of alpha-radiation no acute risk is attributed to external exposure to DU. The major risk is DU dust, generated when DU ammunition hits hard targets. Depending on aerosol speciation, inhalation may lead to a protracted exposure of the lung and other organs. After deposition on the ground, resuspension can take place if the DU containing particle size is sufficiently small. However, transfer to drinking water or locally produced food has little potential to lead to significant exposures to DU. Since poor solubility of uranium compounds and lack of information on speciation precludes the use of radioecological models for exposure assessment, biomonitoring has to be used for assessing exposed persons. Urine, feces, hair and nails record recent exposures to DU. With the exception of crews of military vehicles having been hit by DU penetrators, no body burdens above the range of values for natural uranium have been found. Therefore, observable health effects are not expected and residual cancer risk estimates have to be based on theoretical considerations. They appear to be very minor for all post-conflict situations, i.e. a fraction of those expected from natural radiation.

A Bleise; P.R Danesi; W Burkart

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advances in Fe(VI) charge storage: Part I. Primary alkaline super-iron batteries  

Science Journals Connector (OSTI)

Recent advances in super-iron batteries, based on an unusual Fe(VI) cathodic charge storage, are presented. Fe(VI) cathodes that have been demonstrated in super-iron batteries include the synthesized Fe(VI) compound with three-electron cathodic charge capacity Na2FeO4, K2FeO4, Rb2FeO4, Cs2FeO4 (alkali Fe(VI) salts), alkali earth Fe(VI) salts BaFeO4, SrFeO4, and also a transition Fe(VI) salt Ag2FeO4 which exhibits a five-electron cathodic charge storage. This paper focus on the primary alkaline Fe(VI) charge storage in aqueous electrolyte systems. Primary alkaline super-iron batteries exhibit a higher capacity than conventional alkaline batteries. Configuration optimization, enhancement and mediation of Fe(VI) cathode charge transfer of primary Fe(VI) alkaline batteries are summarized. Composite Fe(VI)/Mn(IV or VII), Fe(VI)/Ag(II) and zirconia coating stabilized Fe(VI)/Ag(II) cathode alkaline batteries are also illustrated.

Xingwen Yu; Stuart Licht

2007-01-01T23:59:59.000Z

302

E-Print Network 3.0 - automaatne- vi vabalpsissteem Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vi 2 value of bit 2 Does the 2-bit counter above reach state 11... v3 v4 v5 v6 v7 f0 f1 f2 fi vi+1 vi+3 ... Source: Franco, John - Department of Electrical and Computer...

303

Contribution of Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms to U(VI) Immobilization  

SciTech Connect (OSTI)

The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) in U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells without EPS, we showed that i) bEPS from Shewanella sp. HRCR-1 biofilms contributed significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; ii) bEPS could be considered as a functional extension of the cells for U(VI) immobilization and they likely play more important roles at initial U(VI) concentrations; and iii) U(VI) reduction efficiency was found to be dependent upon initial U(VI) concentration and the efficiency decreased at lower concentrations. To quantify relative contribution of sorption and reduction in U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(V). We found that, when in reduced form, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated reactivity of laEPS while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, might facilitate U(VI) reduction.

Cao, Bin; Ahmed, B.; Kennedy, David W.; Wang, Zheming; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Isern, Nancy G.; Majors, Paul D.; Beyenal, Haluk

2011-06-05T23:59:59.000Z

304

Temperature effect on U(VI) sorption onto Na-bentonite1 Ziqian Yang a  

E-Print Network [OSTI]

1 Temperature effect on U(VI) sorption onto Na-bentonite1 Ziqian Yang a , Lei Huang a , Zhijun Guo Nantes/Université de5 Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes, France6 Sorption / U(VI ) / Na-bentonite / Temperature effect / Surface complexation model7 Summary8 U(VI) sorption on a purified

Boyer, Edmond

305

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...poses virtually no cancer risk. Moreover, Danesi's...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...

Richard Stone

2002-09-13T23:59:59.000Z

306

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Activity at U.S. Mills and In-Situ-Leach Plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Ore from Underground Mines and Stockpiles Fed to Mills 1 0 W W W 0 W W W W W Other Feed Materials 2 W W W W W W W W W W Total Mill Feed W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,000 2,282 2,689 4,106 4,534 3,902 3,708 4,228 3,991 4,146 (thousand pounds U 3 O 8 ) E1,600 2,280 2,702 3,838 4,050 4,130 3,620 5,137 4,000 3,911 Deliveries (thousand pounds U 3 O 8 ) W W W 3,786 3,602 3,656 2,044 2,684 2,870 3,630 Weighted-Average Price (dollars per pound U 3 O 8 ) W W W 28.98 42.11 43.81 36.61 37.59 52.36 49.63 Notes: The 2003 annual amounts were estimated by rounding to the nearest 200,000 pounds to avoid disclosure of individual company data. Totals may not equal sum of components

307

IPNS enriched uranium booster target  

SciTech Connect (OSTI)

Since startup in 1981, IPNS has operated on a fully depleted /sup 238/U target. With the booster as in the present system, high energy protons accelerated to 450 MeV by the Rapid Cycling Synchrotron are directed at the target and by mechanisms of spallation and fission of the uranium, produce fast neutrons. The neutrons from the target pass into adjacent moderator where they slow down to energies useful for spectroscopy. The target cooling systems and monitoring systems have operated very reliably and safely during this period. To provide higher neutron intensity, we have developed plans for an enriched uranium (booster) target. HETC-VIM calculations indicate that the target will produce approx.90 kW of heat, with a nominal x5 gain (k/sub eff/ = 0.80). The neutron beam intensity gain will be a factor of approx.3. Thermal-hydraulic and heat transport calculations indicate that approx.1/2 in. thick /sup 235/U discs are subject to about the same temperatures as the present /sup 238/U 1 in. thick discs. The coolant will be light demineralized water (H/sub 2/O) and the coolant flow rate must be doubled. The broadening of the fast neutron pulse width should not seriously affect the neutron scattering experiments. Delayed neutrons will appear at a level about 3% of the total (currently approx.0.5%). This may affect backgrounds in some experiments, so that we are assessing measures to control and correct for this (e.g., beam tube choppers). Safety analyses and neutronic calculations are nearing completion. Construction of the /sup 235/U discs at the ORNL Y-12 facility is scheduled to begin late 1985. The completion of the booster target and operation are scheduled for late 1986. No enriched uranium target assembly operating at the projected power level now exists in the world. This effort thus represents an important technological experiment as well as being a ''flux enhancer''.

Schulke, A.W. Jr.

1985-01-01T23:59:59.000Z

308

Uranium in prehistoric Indian pottery  

E-Print Network [OSTI]

present in the sample, and the cross l section of the process (the measure of the probability of a neutron interacting with an uranium atom), In general, a daughter product 235 of U fission is analyzed on a detector which counts either gamma rays... for quantitative analysis of various elements on archaeological artifacts, Manganese has been determined in Mesoamerican pot sherds (Bennyhoff and Heizer 1965). A Pu-Be radioisotope neutron source with a flux of 4 x 10 4 -2 -1 neutrons cm sec was used...

Filberth, Ernest William

2012-06-07T23:59:59.000Z

309

Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium  

Science Journals Connector (OSTI)

Abstract Bioremediation is an attractive option for the treatment of radioactive waste. We provide a proof of principle for augmentation of uranium bioprecipitation using the radiation inducible promoter, Pssb from Deinococcus radiodurans. Recombinant cells of D. radiodurans carrying acid phosphatase gene, phoN under the regulation of Pssb when exposed to 7 kGy gamma radiation at two different dose rates of 56.8 Gy/min and 4 Gy/min, showed 8–9 fold increase in acid phosphatase activity. Highest whole cell PhoN activity was obtained after 2 h in post irradiation recovery following 8 kGy of high dose rate radiation. Such cells showed faster removal of high concentrations of uranium than recombinant cells expressing PhoN under a radiation non-inducible deinococcal promoter, PgroESL and could precipitate uranium even after continuous exposure to 0.6 Gy/min gamma radiation for 10 days. Radiation induced recombinant D. radiodurans cells when lyophilized retained high levels of PhoN activity and precipitated uranium efficiently. These results highlight the importance of using a suitable promoter for removal of radionuclides from solution.

Chitra Seetharam Misra; Rita Mukhopadhyaya; Shree Kumar Apte

2014-01-01T23:59:59.000Z

310

Biological effects of embedded depleted uranium (DU): summary of Armed Forces Radiobiology Research Institute research  

Science Journals Connector (OSTI)

The Persian Gulf War resulted in injuries of US Coalition personnel by fragments of depleted uranium (DU). Fragments not immediately threatening the health of the individuals were allowed to remain in place, based on long-standing treatment protocols designed for other kinds of metal shrapnel injuries. However, questions were soon raised as to whether this approach is appropriate for a metal with the unique radiological and toxicological properties of DU. The Armed Forces Radiobiology Research Institute (AFRRI) is investigating health effects of embedded fragments of DU to determine whether current surgical fragment removal policies remain appropriate for this metal. These studies employ rodents implanted with DU pellets as well as cultured human cells exposed to DU compounds. Results indicate uranium from implanted DU fragments distributed to tissues far-removed from implantation sites, including bone, kidney, muscle, and liver. Despite levels of uranium in the kidney that were nephrotoxic after acute exposure, no histological or functional kidney toxicity was observed. However, results suggest the need for further studies of long-term health impact, since DU was found to be mutagenic, and it transformed human osteoblast cells to a tumorigenic phenotype. It also altered neurophysiological parameters in rat hippocampus, crossed the placental barrier, and entered fetal tissue. This report summarizes AFRRI's depleted uranium research to date.

D.E McClain; K.A Benson; T.K Dalton; J Ejnik; C.A Emond; S.J Hodge; J.F Kalinich; M.A Landauer; A.C Miller; T.C Pellmar; M.D Stewart; V Villa; J Xu

2001-01-01T23:59:59.000Z

311

Overview of Depleted Uranium Hexafluoride Management Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

312

National Uranium Resource Evaluation, Tonopah quadrangle, Nevada  

SciTech Connect (OSTI)

The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas.

Hurley, B W; Parker, D P

1982-04-01T23:59:59.000Z

313

Remediation of chromium(VI) in the vadose zone: stoichiometry and kinetics of chromium(VI) reduction by sulfur dioxide  

E-Print Network [OSTI]

. The reaction was also rapid, with the half-time of about 45 minutes at pH 6 and about 16 hours at pH 7. A two-step kinetic model was developed to describe changes in concentrations of Cr(VI), S(IV), and S(V). Nonlinear regression was applied to obtain...

Ahn, Min

2004-11-15T23:59:59.000Z

314

Composition, stability, and measurement of reduced uranium phases for groundwater bioremediation at Old Rifle, CO  

SciTech Connect (OSTI)

Reductive biostimulation is currently being explored as a possible remediation strategy for uranium (U) contaminated groundwater, and is currently being investigated at a field site in Rifle, CO, USA. The long-term stability of the resulting U(IV) phases is a key component of the overall performance and depends upon a variety of factors, including rate and mechanism of reduction, mineral associations in the subsurface, and propensity for oxidation. To address these factors, several approaches were used to evaluate the redox sensitivity of U: measurement of the rate of oxidative dissolution of biogenic uraninite (UO2(s)) deployed in groundwater at Rifle, characterization of a zone of natural bioreduction exhibiting relevant reduced mineral phases, and laboratory studies of the oxidative capacity of Fe(III) and reductive capacity of Fe(II) with regard to U(IV) and U(VI), respectively.

Campbell, Kate M.; Davis, J. A.; Bargar, John R.; Giammar, Daniel E.; Bernier-Latmani, Rizlan; Kukkadapu, Ravi K.; Williams, K. H.; Veramani, H.; Ulrich, Kai-Uwe; Stubbs, J. B.; Yabusaki, Steven B.; Figueroa, Linda A.; Lesher, Emily; Wilkins, Michael J.; Peacock, Aaron D.; Longg, P. E.

2011-03-26T23:59:59.000Z

315

Spectroscopic study of the interaction of U(VI) with transferrin and albumin for speciation of U(VI) under blood serum conditions  

E-Print Network [OSTI]

of the interactions of uranium with blood serum components is of high relevance for a rational design of molecules of high relevance for the understanding of toxicological effects of uranium as well as for the devel suitable for in vivo chelation of uranium. We have determined the stability constants for the complexation

Boyer, Edmond

316

Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration  

SciTech Connect (OSTI)

To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

Francis, C. W.

1993-09-01T23:59:59.000Z

317

Reassessment of individual dosimetry of long-lived alpha radionuclides of uranium miners through experimental determination of urinary excretion of uranium  

Science Journals Connector (OSTI)

......iranium in urine of uranium miners as a tool for...230Th in excreta of uranium mill crushermen. Health Phys. (1983) 45...Measurement of daily urinary uranium excretion in German...potential intakes of depleted uranium(DU). Sci......

I. Malátová; V. Becková; L. Tomásek; M. Slezáková-Marusiaková; J. Hulka

2013-04-01T23:59:59.000Z

318

FAQ 3-What are the common forms of uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are the common forms of uranium? are the common forms of uranium? What are the common forms of uranium? Uranium can take many chemical forms. In nature, uranium is generally found as an oxide, such as in the olive-green-colored mineral pitchblende. Uranium oxide is also the chemical form most often used for nuclear fuel. Uranium-fluorine compounds are also common in uranium processing, with uranium hexafluoride (UF6) and uranium tetrafluoride (UF4) being the two most common. In its pure form, uranium is a silver-colored metal. The most common forms of uranium oxide are U3O8 and UO2. Both oxide forms have low solubility in water and are relatively stable over a wide range of environmental conditions. Triuranium octaoxide (U3O8) is the most stable form of uranium and is the form most commonly found in nature. Uranium dioxide (UO2) is the form in which uranium is most commonly used as a nuclear reactor fuel. At ambient temperatures, UO2 will gradually convert to U3O8. Because of their stability, uranium oxides are generally considered the preferred chemical form for storage or disposal.

319

Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer  

SciTech Connect (OSTI)

Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.

Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla; Peacock, Aaron D.; Lesher, E.; Williams, Kenneth H.; Bargar, John R.; Wilkins, Michael J.; Figueroa, Linda A.; Ranville, James; Davis, James; Long, Philip E.

2012-05-23T23:59:59.000Z

320

Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters  

SciTech Connect (OSTI)

Uranium speciation and physical-chemical characteristics were studied in solids precipitated from synthetic acidic to circumneutral wastewaters in the presence and absence of dissolved silica and phosphate to examine thermodynamic and kinetic controls on phase formation. Composition of synthetic wastewater was based on disposal sites 216-U-8 and 216-U-12 Cribs at the Hanford site (WA, USA). In the absence of dissolved silica or phosphate, crystalline or amorphous uranyl oxide hydrates, either compreignacite or meta-schoepite, precipitated at pH 5 or 7 after 30 d of reaction, in agreement with thermodynamic calculations. In the presence of 1 mM dissolved silica representative of groundwater concentrations, amorphous phases dominated by compreignacite precipitated rapidly at pH 5 or 7 as a metastable phase and formation of poorly-crystalline boltwoodite, the thermodynamically stable uranyl silicate phase, was slow. In the presence of phosphate (3 mM), meta-ankoleite initially precipitated as the primary phase at pH 3, 5, or 7 regardless of the presence of 1 mM dissolved silica. Analysis of precipitates by U LIII-edge EXAFS indicated that “autunite-type” sheets of meta-ankoleite transformed to “phosphuranylite-type” sheets after 30 d of reaction, probably due to Ca substitution in the structure. Low solubility of uranyl phosphate phases limits dissolved U(VI) concentrations but differences in particle size, crystallinity, and precipitate composition vary with pH and base cation concentration, which will influence the thermodynamic and kinetic stability of these phases.

Kanematsu, Masakazu; Perdrial, Nicolas; Um, Wooyong; Chorover, Jon; O'Day, Peggy A.

2014-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The removal of uranium(VI) from aqueous solution by graphene oxide–carbon nanotubes hybrid aerogels  

Science Journals Connector (OSTI)

Novel graphene oxide–carbon nanotubes (GO–CNTs) hybrid aerogels were fabricated via a freeze-drying method ... solutions of GO and CNTs. The resulting aerogels were characterized by scanning electron microscopy, ...

Zexing Gu; Yun Wang; Jun Tang; Jijun Yang…

2014-11-01T23:59:59.000Z

322

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars) 1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 (million pounds U 3 O 8 ) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 (million pounds U 3 O 8 ) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1 (million pounds U 3 O 8 ) 3.4 6.3 5.5 6.0 5.8 4.9 5.5 3.2 2.2 3.8 1.6 2.3 2.7 3.8 4.0 4.1 3.6 5.1 4.0 3.9 (person-years) 871 980 1,107 1,118 1,097 1,120 848 627 423 426 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196

323

Carbonate Leaching of Uranium from Contaminated Soils  

Science Journals Connector (OSTI)

Uranium (U) was successfully removed from contaminated soils from the Fernald Environmental Management Project (FEMP) site near Fernald, Ohio. ... The concentrations of uranium and other metals in the effluent were analyzed using a Varian Liberty 200 inductively coupled plasma atomic emission spectrophotometer (ICP-AES) or a kinetic phosphorescence analyzer (KPA). ... When 30% hydrogen peroxide (H2O2) was added prior to the carbonate solution, no increase in the removal of uranium was detected (data not shown) due to effervescence with heating, liberating carbon dioxide, and thus preventing uniform distribution of H2O2. ...

C. F. V. Mason; W. R. J. R. Turney; B. M. Thomson; N. Lu; P. A. Longmire; C. J. Chisholm-Brause

1997-09-30T23:59:59.000Z

324

Statistical data of the uranium industry  

SciTech Connect (OSTI)

This report is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1982. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office of the US Department of Energy. Statistical data obtained from surveys conducted by the Energy Information Administration are included in Section IX. The production, reserves, and drilling data are reported in a manner which avoids disclosure of proprietary information.

none,

1983-01-01T23:59:59.000Z

325

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect (OSTI)

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

326

Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths  

E-Print Network [OSTI]

problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactiveMB. (2004). Depleted and natural uranium: chemistry and

Hwang, Chiachi

2009-01-01T23:59:59.000Z

327

El VI Festival de Teatro Hispano (Miami, 1991)  

E-Print Network [OSTI]

FALL 1991 153 El VI Festival de Teatro Hispano (Miami, 1991) José A. Escarpanter La sexta edición del Festival de Teatro Hispano, organizado por Teatro Avante de Miami, se desarrolló del 31 de mayo al 16 de junio, esta vez en dos teatros, lo... cual permitió la presentación de un mayor número de grupos que en años anteriores, pues cada noche se celebraron funciones en ambas salas. En total participaron dieciséis conjuntos, de los cuales cuatro fueron compañías locales. De otras ciudades de...

Escarpanter, José A.

1991-10-01T23:59:59.000Z

328

Uranium contamination of the Aral Sea  

Science Journals Connector (OSTI)

Located in an endorrheic basin, the Aral Sea is mainly fed by water from two large rivers, the Syrdarya and the Amudarya. As a result, contaminants in dissolved and suspended form discharged by the rivers are accumulating in the lake. The northern Small Aral water contained 37 µg l? 1uranium and water in the western basin of the Large Aral up to 141 µg l? 1uranium in 2002, 2004 and 2006. The present day uranium concentrations in Aral Sea water mainly originate from the Syrdarya River due to uranium mining and tailings in the river watershed, and have been elevated up to 5 times compared to the pre-desiccation times by the ongoing desiccation in the western basin of the Large Aral. Current data indicate that groundwater does not seem to contribute much to the uranium budget. The uranium concentration in the lake is controlled by internal lake processes. Due to the high ionic strength of the Aral Sea water uranium is kept soluble. 238U/Cl?mass ratios range from 5.88 to 6.15 µg g? 1in the Small Aral and from 3.00 to 3.32 µg g? 1in the Large Aral. Based on the238U/Cl?mass ratios, a removal rate of 8% uranium from the water column inventory to the sediments has been estimated for anoxic waters, and it ranges between 2% and 5% in oxic waters, over periods of time without mixing. Most of the uranium removal seems to occur by co-precipitation with calcite and gypsum both in anoxic and oxic waters. According to simulations with PHREEQC, uraninite precipitation contributes little to the removal from anoxic Aral Sea water. In most of the sampled locations, water column removal of uranium matches the sediment inventory. Based on budget calculations, the future development of uranium load in the Aral Sea has been estimated for different scenarios. If the Syrdarya River discharge is below or in balance with the loss by evaporation, the uranium concentration in the Small Aral will increase from 37 µg l–1to 55 µg l? 1in 20 years time. When the river discharge is larger than loss by evaporation, present-day uranium concentration in the lake may be kept at the current level or even decrease slightly. From the ecotoxicological point of view, an increase in Syrdarya River discharge as the major water source will be crucial for the water quality of the Small Aral, despite its high uranium load. However, as it is intended to restore fishery in the Small Aral, accumulation of uranium in fish has to be monitored. Since the western basin of the Large Aral received no Syrdarya River water since 2005, and may become disconnected from the eastern basin, the slightly higher observed uranium removal from anoxic waters may result in a decrease in uranium concentrations in the western basin by 20% in 20 years time.

Jana Friedrich

2009-01-01T23:59:59.000Z

329

EXPOSING PRIVACY CONCERNS IN MHEALTH DATA SHARING  

E-Print Network [OSTI]

EXPOSING PRIVACY CONCERNS IN MHEALTH DATA SHARING Dartmouth Computer Science Technical Report TR of Graduate Studies #12;Abstract Mobile health (mHealth) has become important in the field of healthcare to understand the privacy concerns that patients have when they use mHealth devices. We conducted a user study

330

Synthesis of uranium nitride and uranium carbide powder by carbothermic reduction  

SciTech Connect (OSTI)

Uranium nitride and uranium carbide are being considered as high burnup fuels in next generation nuclear reactors and accelerated driven systems for the transmutation of nuclear waste. The same characteristics that make nitrides and carbides candidates for these applications (i.e. favorable thermal properties, mutual solubility of nitrides, etc.), also make these compositions candidate fuels for space nuclear reactors. In this paper, we discuss the synthesis and characterization of depleted uranium nitride and carbide for a space nuclear reactor program. Importantly, this project emphasized that to synthesize high quality uranium nitride and carbide, it is necessary to understand the exact stoichiometry of the oxide feedstock. (authors)

Dunwoody, J.T.; Stanek, C.R.; McClellan, K.J.; Voit, S.L.; Volz, H.M. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Hickman, R.R. [NASA Marshall Space Flight Center, Huntsville, Alabama (United States)

2007-07-01T23:59:59.000Z

331

Crystal Chemistry of Early Actinides (Thorium, Uranium, and Neptunium) and Uranium Mesoporous Materials.  

E-Print Network [OSTI]

??Despite their considerable global importance, the structural chemistry of actinides remains understudied. Thorium and uranium fuel cycles are used in commercial nuclear reactors in India… (more)

Sigmon, Ginger E.

2010-01-01T23:59:59.000Z

332

Prokaryotic microorganisms in uranium mining waste piles and their interactions with uranium and other heavy metals.  

E-Print Network [OSTI]

??The influence of uranyl and sodium nitrate under aerobic and anaerobic conditions on the microbial community structure of a soil sample from the uranium mining… (more)

Geißler, Andrea

2007-01-01T23:59:59.000Z

333

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

11 11 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Total Land and Other 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Notes: Expenditures are in nominal U.S. dollars. Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Reclamation Drilling: All expenditures directly associated with exploration and development drilling.

334

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. Forward-Cost Uranium Reserves by Mining Method, Year-End 2008 Mining Method 50 per pound 100 per pound Ore (million tons) Gradea (percent U3O8) U3O8 (million pounds) Ore...

335

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

1. U.S. Forward-Cost Uranium Reserves by State, Year-End 2008 State 50lb 100lb Ore (million tons) Gradea (%) U3O8 (million lbs) Ore (million tons) Gradea (%) U3O8 (million lbs)...

336

Uranium Management and Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Test Program, and reporting annually to Congress on the impact of the U.S.-Russia Highly Enriched Uranium Purchase Agreement on the U.S. nuclear fuel industry. NE-54's...

337

Depleted uranium disposition study -- Supplement, Revision 1  

SciTech Connect (OSTI)

The Department of Energy Office of Weapons and Materials Planning has requested a supplemental study to update the recent Depleted Uranium Disposition report. This supplemental study addresses new disposition alternatives and changes in status.

Becker, G.W.

1993-11-01T23:59:59.000Z

338

Method of recovering uranium from aqueous solution  

SciTech Connect (OSTI)

Anion exchange resin derived from insoluble crosslinked polymers of vinyl benzyl chloride which are prepared by polymerizing vinyl benzyl chloride and a crosslinking monomer are particularly suitable in the treatment of uranium bearing leach liquors.

Albright, R.L.

1980-01-22T23:59:59.000Z

339

Ex Parte Communications- Uranium Producers of America  

Broader source: Energy.gov [DOE]

On Thursday, February 12, 2015, representatives from the Uranium  Producers  of America (UPA) met with the Department of Energy (DOE) officials to discuss the management of the federal excess...

340

The Uranium Resource: A Comparative Analysis  

SciTech Connect (OSTI)

An analogy was drawn between uranium and thirty five minerals for which the USGS maintains extensive records. The USGS mineral price data, which extends from 1900 to the present, was used to create a simple model describing long term price evolution. Making the assumption that the price of uranium, a geologically unexceptional mineral, will evolve in a manner similar to that of the USGS minerals, the model was used to project its price trend for this century. Based upon the precedent set by the USGS data, there is an 80% likelihood that the price of uranium will decline. Moreover, the most likely scenario would see the equilibrium price of uranium decline by about 40% by mid-century. (authors)

Schneider, Erich A. [The University of Texas at Austin, 1 University Station C2200, Austin, TX, 78712 (United States); Sailor, William C. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM, 87545 (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Part I: Typology of Uranium Deposits  

Science Journals Connector (OSTI)

A variety of global and regional classification schemes for uranium deposits have been proposed in the past by a number of geoscientists including Heinrich (1958), Roubault (1958), Ruzicka (1971), Ziegler (197...

Franz J. Dahlkamp

2009-01-01T23:59:59.000Z

342

Uranium Leasing Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

» Uranium Leasing Program » Uranium Leasing Program Uranium Leasing Program Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado LM currently manages the Uranium Leasing Program and continues to administer 31 lease tracts, all located within the Uravan Mineral Belt in southwestern Colorado. Twenty-nine of these lease tracts are actively held under lease and two lease tracts have been placed in inactive status indefinitely. Administrative duties include the ongoing monitoring and oversight of leaseholders' activities and the annual inspection of these lease tracts to identify and correct safety hazards or other environmental compliance issues. Program Summary Current Status The U.S. Department of Energy (DOE) has extended the public comment

343

Uranium Marketing Annual Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Report Uranium Marketing Annual Report With Data for 2012 | Release Date: May 16, 2013 | Next Release Date: May 2014 | full report Previous uranium marketing annual reports Year: 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 Go Uranium purchases and prices Owners and operators of U.S. civilian nuclear power reactors ("civilian owner/operators" or "COOs") purchased a total of 58 million pounds U3O8e (equivalent1) of deliveries from U.S. suppliers and foreign suppliers during 2012, at a weighted-average price of $54.99 per pound U3O8e. The 2012 total of 58 million pounds U3O8e increased 5 percent compared with the 2011 total of 55 million pounds U3O8e. The 2012 weighted-average price of

344

Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany  

Science Journals Connector (OSTI)

The Erzgebirge (‘Ore Mountains’) area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called ‘Schneeberg’ disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 109 Euro. A comparison with concentrations of depleted uranium at certain sites is given.

A Meinrath; P Schneider; G Meinrath

2003-01-01T23:59:59.000Z

345

Depleted uranium: A DOE management guide  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

346

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

347

Manhattan Project: More Uranium Research, 1942  

Office of Scientific and Technical Information (OSTI)

Cubes of uranium metal, Los Alamos, 1945 MORE URANIUM RESEARCH Cubes of uranium metal, Los Alamos, 1945 MORE URANIUM RESEARCH (1942) Events > Difficult Choices, 1942 More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 During the first half of 1942, several routes to a bomb via uranium continued to be explored. At Columbia University, Harold Urey worked on the gaseous diffusion and centrifuge systems for isotope separation in the codenamed SAM (Substitute or Special Alloy Metals) Laboratory. At Berkeley, Ernest Lawrence continued his investigations on electromagnetic separation using the "calutron" he had converted from his thirty-seven-inch cyclotron. Phillip Abelson, who had moved from the Carnegie Institution and the National Bureau of Standards to the Naval Research Laboratory, continued his work on liquid thermal diffusion but with few positive results, and he had lost all contact with the S-1 Section of the Office of Scientific Research and Development. Meanwhile Eger Murphree's group hurriedly studied ways to move from laboratory experiments to production facilities.

348

Domestic Uranium Production Report - Quarterly - Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

All Nuclear Reports All Nuclear Reports Domestic Uranium Production Report - Quarterly Data for 3rd Quarter 2013 | Release Date: October 31, 2013 | Next Release Date: February 2014 | full report Previous Issues Year: 2013-Q2 2013-Q1 2012-Q4 2012-Q3 2012-Q2 2012-Q1 2011-Q4 2011-Q3 2011-Q2 2011-Q1 2010-Q4 2010-Q3 2010-Q2 2010-Q1 2009-Q4 2009-Q3 2009-Q2 2009-Q1 2008-Q4 2008-Q3 2008-Q2 2008-Q1 Go 3rd Quarter 2013 U.S. production of uranium concentrate in the third quarter 2013 was 1,171,278 pounds U3O8, down 16 percent from the previous quarter and up 12 percent from the third quarter 2012. Third quarter 2013 uranium production is at its highest level since 1999. During the third quarter 2013, U.S. uranium was produced at six U.S. uranium facilities. U.S. Uranium Mill in Production (State)

349

Field-based detection and monitoring of uranium in contaminated groundwater using two immunosensors  

SciTech Connect (OSTI)

Field-based monitoring of environmental contaminants has long been a need for environmental scientists. Described herein are two kinetic exclusion-based immunosensors, a field portable sensor (FPS) and an inline senor, that were deployed at the Integrated Field Research Challenge Site of the U.S. Department of Energy in Rifle, CO. Both sensors utilized a monoclonal antibody that binds to a U(VI)-dicarboxyphenanthroline complex (DCP) in a kinetic exclusion immunoassay format. These sensors were able to monitor changes of uranium in groundwater samples from {approx} 1 {micro}M to below the regulated drinking water limit of 126 nM (30 ppb). The FPS is a battery-operated sensor platform that can determine the uranium level in a single sample in 5-10 min, if the instrument has been previously calibrated with standards. The average minimum detection level (MDL) in this assay was 0.33 nM (79 ppt), and the MDL in the sample (based on a 1:200?1:400 dilution) was 66?132 nM (15.7?31.4 ppb). The inline sensor, while requiring a grounded power source, has the ability to autonomously analyze multiple samples in a single experiment. The average MDL in this assay was 0.12 nM (29 ppt), and the MDL in the samples (based on 1:200 or 1:400 dilutions) was 24?48 nM (5.7?11.4 ppb). Both sensor platforms showed an acceptable level of agreement (r{sup 2} = 0.94 and 0.76, for the inline and FPS, respectively) with conventional methods for uranium quantification.

Melton, S.J.; Yu, H.; Williams, K.H.; Morris, S.A.; Long, P.E.; Blake, D.A.

2009-05-01T23:59:59.000Z

350

Y-12 Knows Uranium | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Knows Uranium Knows Uranium Y-12 Knows Uranium Posted: July 22, 2013 - 3:45pm | Y-12 Report | Volume 10, Issue 1 | 2013 Y-12 produces many forms of uranium. They may be used in chemical processing steps on-site or shipped elsewhere to serve as raw materials for nuclear fuel or as research tools. All of uranium's uses, defense related and otherwise, are critical to the nation. Y-12's understanding of uranium, coupled with the site's work with enriched uranium metal, alloys, oxides, compounds and solutions, is unique in the Nuclear Security Enterprise. "The Y-12 work force understands both established uranium science and the esoteric things related to uranium's behavior," said engineer Alan Moore. "Such a deep, detailed understanding comes from experience,

351

Summary of the planning, management, and evaluation process for the Geothermal Program Review VI conference  

SciTech Connect (OSTI)

The purpose of this document is to present an overview of the planning, facilitation, and evaluation process used to conduct the Geothermal Program Review VI (PR VI) conference. This document was also prepared to highlight lessons learned from PR VI and, by utilizing the evaluation summaries and recommendations, be used as a planning tool for PR VII. The conference, entitled Beyond Goals and Objectives,'' was sponsored by the US Department of Energy's (DOE) Geothermal Technology Division (GTD), PR VI was held in San Francisco, California on April 19--21, 1988 and was attended by 127 participants. PR VI was held in conjunction with the National Geothermal Association's (NGA) Industry Round Table. This document presents a brief summary of the activities, responsibilities, and resources for implementing the PR VI meeting and provides recommendations, checklists, and a proposed schedule for assisting in planning PR VII.

Not Available

1988-10-01T23:59:59.000Z

352

Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation  

Science Journals Connector (OSTI)

......higher fraction of depleted uranium (DU). These...in mandibular cancer patients following...Reprocessed uranium exposure and lung cancer risk. Health...and risks from uranium are not increased...The impact of depleted uranium (DU......

R. J. Tanner; J. S. Eakins; J. T. M. Jansen; J. D. Harrison

2012-08-01T23:59:59.000Z

353

Sizing particles of natural uranium and nuclear fuels using poly-allyl-diglycol carbonate autoradiography  

Science Journals Connector (OSTI)

......particles of natural uranium and nuclear fuels...low enriched, depleted and natural uranium and also aged...committed doses and cancer risks(4...Bristol, UK, sized uranium fragments found...nuclear fuels of depleted uranium (depUO2......

G. Hegyi; R. B. Richardson

2008-07-01T23:59:59.000Z

354

Method for making graded I-III-VI.sub.2 semiconductors and solar cell obtained thereby  

DOE Patents [OSTI]

Improved cell photovoltaic conversion efficiencies are obtained by the simultaneous elemental reactive evaporation process of Mickelsen and Chen for making semiconductors by closer control of the evaporation rates and substrate temperature during formation of the near contact, bulk, and near junction regions of a graded I-III-VI.sub.2, thin film, semiconductor, such as CuInSe.sub.2 /(Zn,Cd)S or another I-III-VI.sub.2 /II-VI heterojunction.

Devaney, Walter E. (Seattle, WA)

1987-08-04T23:59:59.000Z

355

RisNyt NO2 2005 I de kommende rtier vil vi se store  

E-Print Network [OSTI]

- per: For det første et meget tættere samspil mellem energiproduktion og forbrug end vi kender i dag

356

Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A,...

357

U(VI) sorption and reduction kinetics on the magnetite (111) surface  

E-Print Network [OSTI]

U(VI) (introduced as uranyl nitrate), 1 mM NaNO 3 , [CO 3 ]respect to uraninite and uranyl nitrate mechanical mixture

Singer, D.M.

2013-01-01T23:59:59.000Z

358

Evaluated nuclear data file ENDF/B-VI  

SciTech Connect (OSTI)

For the past 25 years, the United States Department of Energy has sponsored a cooperative program among its laboratories, contractors and university research programs to produce an evaluated nuclear data library which would be application independent and universally accepted. The product of this cooperative activity is the ENDF/B evaluated nuclear data file. After approximately eight years of development, a new version of the data file, ENDF/B-VI has been released. The essential features of this evaluated data library are described in this paper. 7 refs.

Dunford, C.L.

1991-01-01T23:59:59.000Z

359

The United States Transuranium and Uranium Registries. Revision 1, [Annual] report, October 1, 1990--April 1992  

SciTech Connect (OSTI)

This paper describes the history, organization, activities and recent scientific accomplishments of the United States Transuranium and Uranium Registries. Through voluntary donations of tissue obtained at autopsies, the Registries carry out studies of the concentration, distribution and biokinetics of plutonium in occupationally exposed persons. Findings from tissue analyses from more than 200 autopsies include the following: a greater proportion of the americium intake, as compared with plutonium, was found in the skeleton; the half-time of americium in liver is significantly shorter than that of plutonium; the concentration of actinide in the skeleton is inversely proportional to the calcium and ash content of the bone; only a small percentage of the total skeletal deposition of plutonium is found in the marrow, implying a smaller risk from irradiation of the marrow relative to the bone surfaces; estimates of plutonium body burden made from urinalysis typically exceed those made from autopsy data; pathologists were unable to discriminate between a group of uranium workers and persons without known occupational exposure on the basis of evaluation of microscopic kidney slides; the skeleton is an important long term depot for uranium, and that the fractional uptake by both skeleton and kidney may be greater than indicated by current models. These and other findings and current studies are discussed in depth.

Kathren, R.L.

1992-09-01T23:59:59.000Z

360

DOE Uranium Leasing Program - Lease Tract Metrics  

Broader source: Energy.gov (indexed) [DOE]

Uranium Leasing Program -- Lease Tract Metrics Uranium Leasing Program -- Lease Tract Metrics Lease Tract Lessee Lease Date Bid (%) Reclamation Bond a Total Acres Acres Excluded b Comment C-JD-5 Gold Eagle Mining, Inc. 04/30/08 12.00 37,000 150.71 C-JD-5A Golden Eagle Uranium, LLC 06/27/08 20.10 5,000 24.54 C-JD-6 Cotter Corporation 04/30/08 14.20 19,000 530.08 C-JD-7 c Cotter Corporation 04/30/08 27.30 1,206,000 493.01 C-JD-8 Cotter Corporation 04/30/08 36.20 4,000 954.62 C-JD-8A No bids received - remains inactive N/A N/A N/A 77.91 C-JD-9 Cotter Corporation 04/30/08 24.30 72,000 1,036.50 C-SR-10 Golden Eagle Uranium, LLC 06/27/08 13.10 5,000 637.64 C-SR-11 Cotter Corporation 04/30/08 11.67 43,000 1,303.22 200.25 Summit Canyon area excluded from lease tract C-SR-11A Golden Eagle Uranium, LLC 06/27/08 14.30 5,000 1,296.81 C-SR-12 Colorado Plateau Partners 06/27/08

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Announces Policy for Managing Excess Uranium Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Policy for Managing Excess Uranium Inventory Policy for Managing Excess Uranium Inventory DOE Announces Policy for Managing Excess Uranium Inventory March 12, 2008 - 10:52am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today released a Policy Statement on the management of the Department of Energy's (DOE) excess uranium inventory, providing the framework within which DOE will make decisions concerning future use and disposition of its inventory. During the coming year, DOE will continue its ongoing program for downblending excess highly enriched uranium (HEU) into low enriched uranium (LEU), evaluate the benefits of enriching a portion of its excess natural uranium into LEU, and complete an analysis on enriching and/or selling some of its depleted uranium. Specific transactions are expected to occur in

362

NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...  

National Nuclear Security Administration (NNSA)

Releases NNSA Authorizes Start-Up of Highly Enriched Uranium ... NNSA Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 applicationmsword icon R-10-01...

363

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...transmission of genetic damage by depleted uranium and tungsten alloy Alexandra Miller...The radioactive heavy metal, depleted uranium (DU), an alpha-particle emitter...fragments will affect the long-term health of offspring conceived by these...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

364

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Association for Cancer Research 1 May 2005...Proc Amer Assoc Cancer Res, Volume 46, 2005 Depleted uranium internal contamination...Proc Amer Assoc Cancer Res, Volume 46, 2005] 2080 Depleted uranium is a heavy metal...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

365

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Association for Cancer Research 15 April...Proc Amer Assoc Cancer Res, Volume 47, 2006 Depleted uranium - induced malignant...Proc Amer Assoc Cancer Res, Volume 47, 2006] 5215 Depleted uranium (DU) has been...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

366

Depleted uranium mobility and fractionation in contaminated soil (Southern Serbia)  

Science Journals Connector (OSTI)

During the Balkan conflict in 1999, soil in contaminated areas was enriched in depleted uranium (DU) isotopic signature, relative to the in-situ natural uranium present. After the military activities, most...

Mirjana B. Radenkovi?; Svjetlana A. Cupa?…

2008-01-01T23:59:59.000Z

367

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial...Wise 1 1Univ. of Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military applications...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

368

Numerical simulation for formed projectile of depleted uranium alloy  

Science Journals Connector (OSTI)

The numerical simulation for forming projectile of depleted uranium alloy with the SPH (Smooth Particle Hydrodynamic ... . To describe the deformed behaviors of the depleted uranium alloy under high pressure and ...

Song Shun-cheng; Gao Ping; Cai Hong-nian

2003-09-01T23:59:59.000Z

369

Revised evaluations for ENDF/B-VI Revision 2  

SciTech Connect (OSTI)

The purpose of this paper is to report on revised cross-section evaluations for 17 nuclides that have been prepared for ENDF/B-VI Revision 2. The nuclides considered include five fission products and various isotopes of cadmium and hafnium. The previous ENDF/B-VI evaluations for these 17 nuclides were carried over from ENDF/B-V and were completed in the 1974--1980 time period. By utilizing the experimental data that have become available since 1980 the revised evaluations will result in significant improvements in the evaluated nuclear data files. The primary emphasis was placed on the resolved and unresolved resonance regions, but new experimental data were also used to improve the cross sections for energies above the unresolved resonance region. Negative elastic scattering cross sections were encountered in some of the previous evaluations; since the revised evaluations use multilevel Breit-Wigner (MLBW) parameters, rather than single-level Breit-Wigner (SLBW), this problem is eliminated.

Wright, R.Q.

1993-03-01T23:59:59.000Z

370

Kinetics of chromium(VI) reduction by ferrous iron  

SciTech Connect (OSTI)

Chromium is a primary inorganic contaminant of concern at the Pantex Plant. Chromium concentrations have been found to be two orders of magnitude higher than the drinking water standards, particularly in certain wells in the perched aquifer below Zone 12. In situ reduction of a mobile form of chromium, Cr(VI) to an immobile form, Cr(III), was examined as a viable option to active soil restoration. Successfully immobilizing chromium in the vadose zone as Cr(III) will reduce the amount of chromium that reaches the groundwater table. The results from the solution experiments indicated that chromium was rapidly and stoichiometrically reduced by Fe(II) in solution. Also, the slurry experiments showed that the aquifer solids removed Fe(II) from solution, but a portion of the iron removed remained available for reaction with Cr(VI), but at a slower rate. A model to predict different amounts of iron pseudo-components was developed, which allowed prediction of iron amounts required to reduce chromium under in situ conditions.

Batchelor, B.; Schlautman, M.; Hwang, I.; Wang, R. [Texas A and M Univ., College Station, TX (United States). Dept. of Civil Engineering

1998-09-01T23:59:59.000Z

371

Retrieval of buried depleted uranium from the T-1 trench  

SciTech Connect (OSTI)

The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

Burmeister, M. [Rocky Mountain Remediation Services, Golden, CO (United States); Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Field Office; Greengard, T. [Kaiser-Hill Co., Golden, CO (United States)]|[Science Applications International Corp. (United States); Hull, C. [S.M. Stoller Corp., Boulder, CO (United States); Barbour, D.; Quapp, W.J. [Starmet Corp. (United States)

1998-07-01T23:59:59.000Z

372

Uranium Sequestration via Phosphate Infiltration/Injection Test...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Immediate sequestration - Stable mineral form * Apatite formation - Sorbent for uranium - Conversion to autunite 5 Advantages of Phosphate Technology * Direct treatment...

373

Field-scale evaluation of biological uranium reduction and reoxidation in the near-source zone at the NABIR Field Research Center in Oak Ridge, TN  

SciTech Connect (OSTI)

The primary objective of the project is to advance the understanding and predictive capability of coupled hydrological, geochemical, and microbiological processes that control the in situ transport and bioremediation radionuclides and co-contaminants at multiple scales. Specific objectives include: (1) Investigate the feasibility of in situ bioremediation of uranium in a highly contaminated region within the subsurface of Area 3 of the DoE ERSP FRC (2) Using a variety of tracer strategies, develop and model a system that establishes hydraulic control of the target region for biostimulation (3) Perform long term in situ biostimulation studies that create a microbial communities capable of reducing residual nitrate to N2 and mobile U(VI) to sparingly soluble U(IV) (4) Use a variety of solid and solution phase interrogation techniques to quantify the extent of in situ reduction and immobilization of U(VI). (5) Investigate a variety of geochemical factors that influence the stability and possible reoxidation of reduced uranium.

Craig S. Criddle; Peter Kitanidis; Scott Fendorf; Weimin Wu; Philip M. Jardine; Jizhong Zhou; Baohua Gu

2006-06-01T23:59:59.000Z

374

Depleted uranium plasma reduction system study  

SciTech Connect (OSTI)

A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

1994-12-01T23:59:59.000Z

375

Depleted uranium hexafluoride: Waste or resource?  

SciTech Connect (OSTI)

the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

1995-07-01T23:59:59.000Z

376

Method for fluorination of uranium oxide  

DOE Patents [OSTI]

Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

Petit, George S. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

377

Uncertainty analysis of multi-rate kinetics of uranium desorption...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface complexation reactions has been proposed to describe diffusion-limited U(VI) sorptiondesorption in heterogeneous subsurface sediments. An important assumption in the rate...

378

Modeling Uranium-Proton Ion Exchange in Biosorption  

E-Print Network [OSTI]

threatening heavy metals because of its high toxicity and some radioactivity. Excessive amounts of uranium seaweed biomass was used to remove the heavy metal uranium from the aqueous solution. Uranium biosorption the heavy metal uptake performance of different biosorbents.LangmuirandFreundlichmodelsoftengenerally fit

Volesky, Bohumil

379

Bioremediation of Uranium Plumes with Nano-scale  

E-Print Network [OSTI]

(IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - MobilizationBioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from

Fay, Noah

380

EPA Uranium Program Update Loren W. Setlow and  

E-Print Network [OSTI]

30, 2008 #12;2 Overview EPA Radiation protection program Uranium reports and abandoned mine lands and Liability Act #12;4 Uranium Reports and Abandoned Mine Lands Program ·Technologically Enhanced Naturally Occurring Radioactive Materials from Uranium Mining, Volume I: Mining and Reclamation Background (Revised

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Soil to plant transfer of 238 Th on a uranium  

E-Print Network [OSTI]

Soil to plant transfer of 238 U, 226 Ra and 232 Th on a uranium mining-impacted soil from species grown in soils from southeastern China contaminated with uranium mine tailings were analyzed The radioactive waste (e.g. tailings) produced by uranium mining activities contains a series of long

Hu, Qinhong "Max"

382

Plutonium recovery from spent reactor fuel by uranium displacement  

DOE Patents [OSTI]

A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, J.P.

1992-03-17T23:59:59.000Z

383

Estimating terrestrial uranium and thorium by antineutrino flux measurements  

E-Print Network [OSTI]

of uranium and thorium concentrations in geological reservoirs relies largely on geochemi- cal modelEstimating terrestrial uranium and thorium by antineutrino flux measurements Stephen T. Dye, and approved November 16, 2007 (received for review July 11, 2007) Uranium and thorium within the Earth produce

Mcdonough, William F.

384

A Geostatistical Study of the Uranium Deposit at Kvanefjeld,  

E-Print Network [OSTI]

with the geology. It is also shown that, although anisotropy exists, the uranium variation has a secondRisa-R-468 A Geostatistical Study of the Uranium Deposit at Kvanefjeld, The Ilimaussaq Intrusion A GEOSTATISTICAL STUDY OF THE URANIUM DEPOSIT AT KVANEFJELD, THE ILIMAUSSAQ INTRUSION, SOUTH GREENLAND Flemming

385

UMBC Policy on Facilities Use UMBC Policy # VI-4.10.01 1  

E-Print Network [OSTI]

UMBC Policy on Facilities Use UMBC Policy # VI-4.10.01 1 I. Introduction This policy is predicated on the University System of Maryland Policy 145.0 VI-4.10- POLICY ON THE USE of Regents on January 11, 1990. The policy reads: 1. The physical facilities of the University System may

Adali, Tulay

386

U. S. forms uranium enrichment corporation  

SciTech Connect (OSTI)

After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business. On July 1, the Department of Energy turned over to a new government-owned entity--the US Enrichment Corp. (USEC)--both the DOE enrichment plants at Paducah, Ky., and Portsmouth, Ohio, and domestic and international marketing of enriched uranium from them. Pushed by the inability of DOE's enrichment operations to meet foreign competition, Congress established USEC under the National Energy Policy Act of 1992, envisioning the new corporation as the first step to full privatization. With gross revenues of $1.5 billion in fiscal 1992, USEC would rank 275th on the Fortune 500 list of top US companies. USEC will lease from DOE the Paducah and Portsmouth facilities, built in the early 1950s, which use the gaseous diffusion process for uranium enrichment. USEC's stock is held by the US Treasury, to which it will pay annual dividends. Martin Marietta Energy Systems, which has operated Paducah since 1984 and Portsmouth since 1986 for DOE, will continue to operate both plants for USEC. Closing one of the two facilities will be studied, especially in light of a 40% world surplus of capacity over demand. USEC also will consider other nuclear-fuel-related ventures. USEC will produce only low-enriched uranium, not weapons-grade material. Indeed, USEC will implement a contract now being completed under which the US will purchase weapons-grade uranium from dismantled Russian nuclear weapons and convert it into low-enriched uranium for power reactor fuel.

Seltzer, R.

1993-07-12T23:59:59.000Z

387

Chromium(VI) bioremoval by pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination  

SciTech Connect (OSTI)

Laboratory batch and column experiments were conducted to investigate the role of microbial exudates, e.g., exopolymeric substance (EPS) and alginic acid, on microbial Cr(VI) reduction by two different Pseudomonas strains (P. putida P18 and P. aeuroginosa P16) as a method for treating subsurface environment contaminated with Cr(VI). Our results indicate that microbial exudates significantly enhanced microbial Cr(VI) reduction rates by forming less toxic and highly soluble organo-Cr(III) complexes despite the fact Cr(III) has a very low solubility under the experimental conditions studied (e.g., pH 7). The formation of soluble organo-Cr(III) complexes led to the protection of the cells and chromate reductases from inactivation. In systems with no organic ligands, soluble organo-Cr(III) end products were formed between Cr(III) and the EPS directly released by bacteria due to cell lysis. Our results also provide evidence that cell lysis played an important role in microbial Cr(VI) reduction by Pseudomonas bacteria due to the release of constitutive reductases that intracellularly and/or extracellularly catalyzed the reduction of Cr(VI) to Cr(III). The overall results highlight the need for incorporation of the release and formation of organo-Cr(III) complexes into reactive transport models to more accurately design and monitor in situ microbial remediation techniques for the treatment of subsurface systems contaminated with Cr(VI).

Dogan, N.M.; Dodge, C.; Kantar, C.; Gulcan, S.; Yilmaz, B.C.; Mazmanci, M.A.

2011-02-14T23:59:59.000Z

388

Chromium(VI) Bioremoval by Pseudomonas Bacteria: Role of Microbial Exudates for Natural Attenuation and Biotreatment of Cr(VI) Contamination  

SciTech Connect (OSTI)

Laboratory batch and column experiments were conducted to investigate the role of microbial exudates, e.g., exopolymeric substance (EPS) and alginic acid, on microbial Cr(VI) reduction by two different Pseudomonas strains (P. putida P18 and P. aeuroginosa P16) as a method for treating subsurface environment contaminated with Cr(VI). Our results indicate that microbial exudates significantly enhanced microbial Cr(VI) reduction rates by forming less toxic and highly soluble organo-Cr(III) complexes despite the fact Cr(III) has a very low solubility under the experimental conditions studied (e.g., pH 7). The formation of soluble organo-Cr(III) complexes led to the protection of the cells and chromate reductases from inactivation. In systems with no organic ligands, soluble organo-Cr(III) end products were formed between Cr(III) and the EPS directly released by bacteria due to cell lysis. Our results also provide evidence that cell lysis played an important role in microbial Cr(VI) reduction by Pseudomonas bacteria due to the release of constitutive reductases that intracellularly and/or extracellularly catalyzed the reduction of Cr(VI) to Cr(III). The overall results highlight the need for incorporation of the release and formation of organo-Cr(III) complexes into reactive transport models to more accurately design and monitor in situ microbial remediation techniques for the treatment of subsurface systems contaminated with Cr(VI).

N Mercan Dogan; C Kantar; S Gulcan; C Dodge; B Coskun Yilmaz; M Ali Mazmanci

2011-12-31T23:59:59.000Z

389

SciTech Connect: enriched uranium  

Office of Scientific and Technical Information (OSTI)

enriched uranium Find enriched uranium Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

390

Aseismic design criteria for uranium enrichment plants  

SciTech Connect (OSTI)

In this paper technological, economical, and safety issues of aseismic design of uranium enrichment plants are presented. The role of management in the decision making process surrounding these issues is also discussed. The resolution of the issues and the decisions made by management are controlling factors in developing aseismic design criteria for any facility. Based on past experience in developing aseismic design criteria for the GCEP various recommendations are made for future enrichment facilities, and since uranium enrichment plants are members of the nuclear fuel cycle the discussion and recommendations presented herein are applicable to other nonreactor nuclear facilities.

Beavers, J.E.

1980-01-01T23:59:59.000Z

391

Evaporation of Enriched Uranium Solutions Containing Organophosphates  

SciTech Connect (OSTI)

The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The preliminary SRTC data, in conjunction with information in the literature, is promising. However, very few experiments have been run, and none of the results have been confirmed with repeat tests. As a result, it is believed that insufficient data exists at this time to warrant Separations making any process or program changes based on the information contained in this report. When this data is confirmed in future testing, recommendations will be presented.

Pierce, R.A.

1999-03-18T23:59:59.000Z

392

Uranium in the Savannah River Site environment  

SciTech Connect (OSTI)

The purpose of this report is to consolidate the history of environmental uranium studies conducted by SRS and to describe the status of uranium in the environment. The report is intended to be a ``living document`` that will be updated periodically. This draft issue, February 1992, documents studies that occurred from 1954 to 1989. Data in this report are taken primarily from annual and semiannual environmental reports for SRS. Semiannual reports were published from 1954 through 1962. Annual reports have been published since 1963. Occasionally unpublished data are included in this report for completeness.

Evans, A.G.; Bauer, L.R.; Haselow, J.S.; Hayes, D.W.; Martin, H.L.; McDowell, W.L.; Pickett, J.B.

1992-12-09T23:59:59.000Z

393

Uranium in the Savannah River Site environment  

SciTech Connect (OSTI)

The purpose of this report is to consolidate the history of environmental uranium studies conducted by SRS and to describe the status of uranium in the environment. The report is intended to be a living document'' that will be updated periodically. This draft issue, February 1992, documents studies that occurred from 1954 to 1989. Data in this report are taken primarily from annual and semiannual environmental reports for SRS. Semiannual reports were published from 1954 through 1962. Annual reports have been published since 1963. Occasionally unpublished data are included in this report for completeness.

Evans, A.G.; Bauer, L.R.; Haselow, J.S.; Hayes, D.W.; Martin, H.L.; McDowell, W.L.; Pickett, J.B.

1992-12-09T23:59:59.000Z

394

Epidemiological Studies of Leukemia in Persons Exposed to Ionizing Radiation  

Science Journals Connector (OSTI)

...exposed to ionizing radiation, the author...the higher dose range regardless...low dose range, it is emphasized...possibility of radiation hazards existing at low doses should not...exposed to ionizing radiation...exposed to ionizing radiation, the author...the higher dose range regardless...

L. H. Hempelmann

1960-01-01T23:59:59.000Z

395

Production and Characterization of Monodisperse Plutonium, Uranium, and Mixed Uranium?Plutonium Particles for Nuclear Safeguard Applications  

Science Journals Connector (OSTI)

Production and Characterization of Monodisperse Plutonium, Uranium, and Mixed Uranium?Plutonium Particles for Nuclear Safeguard Applications ... In order to prevent nuclear proliferation, the isotopic analysis of uranium and plutonium microparticles has strengthened the means in international safeguards for detecting undeclared nuclear activities. ...

Y. Ranebo; N. Niagolova; N. Erdmann; M. Eriksson; G. Tamborini; M. Betti

2010-04-23T23:59:59.000Z

396

Integrated Ecogenomics Study for Bioremediation of Cr(VI) at Hanford 100H Area  

SciTech Connect (OSTI)

Hexavalent chromium is a widespread contaminant found in groundwater. In order to stimulate microbially mediated Cr(VI)-reduction, a poly-lactate compound was injected into Cr(VI)-contaminated aquifers at site 100H at Hanford. Investigation of bacterial community composition using high-density DNA microarray analysis of 16S rRNA gene products revealed a stimulation of Pseudomonas, Desulfovibrio and Geobacter species amongst others. Enrichment of these organisms coincided with continued Cr(VI) depletion. Functional gene-array analysis of DNA from monitoring well indicated high abundance of genes involved in nitrate-reduction, sulfate-reduction, iron-reduction, methanogenesis, chromium tolerance/reduction. Clone-library data revealed Psedomonas was the dominant genus in these samples. Based on above results, we conducted lab investigations to study the dominant anaerobic culturable microbial populations present at this site and their role in Cr(VI)-reduction. Enrichments using defined anaerobic media resulted in isolation of an iron-reducing, a sulfate-reducing and a nitrate-reducing isolate among several others. Preliminary 16S rDNA sequence analysis identified the isolates as Geobacter metallireducens, Pseudomonas stutzeri and Desulfovibrio vulgaris species respectively. The Pseudomonas isolate utilized acetate, lactate, glycerol and pyruvate as alternative carbon sources, and reduced Cr(VI). Anaerobic washed cell suspension of strain HLN reduced almost 95?M Cr(VI) within 4 hr. Further, with 100?M Cr(VI) as sole electron-acceptor, cells grew to 4.05 x 107 /ml over 24 h after an initial lag, demonstrating direct enzymatic Cr(VI) reduction coupled to growth. These results demonstrate that Cr(VI)-immobilization at Hanford 100H site could be mediated by direct microbial metabolism in addition to indirect chemical reduction of Cr(VI) by end-products of microbial activity.

Chakraborty, Romy; Chakraborty, Romy

2008-08-12T23:59:59.000Z

397

Uranium in natural waters sampled within former uranium mining sites in Kazakhstan and Kyrgyzstan  

Science Journals Connector (OSTI)

New data are presented on 238U concentrations in surface and ground waters sampled at selected uranium mining sites in Kazakhstan and Kyrgyzstan and in water supplies of settlements located in the vicinity of the...

B. M. Uralbekov; B. Smodis; M. Burkitbayev

2011-09-01T23:59:59.000Z

398

Possibility of nuclear pumped laser experiment using low enriched uranium  

SciTech Connect (OSTI)

Possibility to perform experiments for nuclear pumped laser oscillation by using low enriched uranium is investigated. Kinetic analyses are performed for two types of reactor design, one is using highly enriched uranium and the other is using low enriched uranium. The reactor design is based on the experiment reactor in IPPE. The results show the oscillation of nuclear pumped laser in the case of low enriched uranium reactor is also possible. The use of low enriched uranium in the experiment will make experiment easier.

Obara, Toru; Takezawa, Hiroki [Center for Research into Innovative Nuclear Energy Systems Tokyo Institute of Technology 2-12-1-N1-19, Ookayama Meguro-ku, Tokyo 152-8550 (Japan)

2012-06-06T23:59:59.000Z

399

Reassessment of individual dosimetry of long-lived alpha radionuclides of uranium miners through experimental determination of urinary excretion of uranium  

Science Journals Connector (OSTI)

......the occurrence of lung cancers(1). External gamma...been measured in Czech uranium mines since 1960s(2...Measurement of daily urinary uranium excretion in German peacekeeping...potential intakes of depleted uranium(DU). Sci. Total......

I. Malátová; V. Becková; L. Tomásek; M. Slezáková-Marusiaková; J. Hulka

2013-04-01T23:59:59.000Z

400

Content of uranium in urine of uranium miners as a tool for estimation of intakes of long-lived alpha radionuclides  

Science Journals Connector (OSTI)

......238U and 230Th in excreta of uranium mill crushermen. Health Phys. (1983) 45(3...Measurement of daily urinary uranium excretion in German peacekeeping...assess potential intakes of depleted uranium(DU). Sci. Total Environ......

I. Malátová; V. Becková; L. Tomásek; J. Hulka

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1  

SciTech Connect (OSTI)

The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

402

CFD Simulation of the NREL Phase VI Rotor  

E-Print Network [OSTI]

The simulation of the turbulent and potentially separating flow around a rotating, twisted, and tapered airfoil is a challenging task for CFD simulations. This paper describes CFD simulations of the NREL Phase VI turbine that was experimentally characterized in the 24.4m x 36.6m NREL/NASA Ames wind tunnel (Hand et al., 2001). All computations in this article are performed on the experimental base configuration of 0o yaw angle, 3o tip pitch angle, and a rotation rate of 72 rpm. The significance of specific mesh resolution regions to the accuracy of the CFD prediction is discussed. The ability of CFD to capture bulk quantities, such as the shaft torque, and the detailed flow characteristics, such as the surface pressure distributions, are explored for different inlet wind speeds. Finally, the significant three-dimensionality of the boundary layer flow is demonstrated.

Song, Yang

2014-01-01T23:59:59.000Z

403

Uranium Leasing Program: Program Summary | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Uranium Leasing Program » Uranium Leasing Uranium Leasing Program » Uranium Leasing Program: Program Summary Uranium Leasing Program: Program Summary Uranium Leasing Program: Program Summary The Atomic Energy Act and other legislative actions authorized the U.S. Atomic Energy Commission (AEC), predecessor agency to the DOE, to withdraw lands from the public domain and then lease them to private industry for mineral exploration and for development and mining of uranium and vanadium ore. A total of 25,000 acres of land in southwestern Colorado, northern New Mexico, and southeastern Utah was withdrawn from the public domain during the late 1940s and early 1950s. In 1948, AEC included portions of these lands in 48 mineral leases that were negotiated with adjacent mine owners/operators. This early leasing

404

Uranium at Y-12: Accountability | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... ... Uranium at Y-12: Accountability Posted: July 22, 2013 - 3:37pm | Y-12 Report | Volume 10, Issue 1 | 2013 Accountability of enriched uranium is facilitated by the ability to put uranium into well-blended aqueous, organic, crystalline, powder, granular, metallic and compound forms that can be sampled and analyzed. Periodic inventories are necessary to find and account for all the enriched uranium that hides in equipment corners and crevices. This allows enriched uranium to be processed in large quantities and accounted for by the gram. Y-12 employees know where uranium resides in large, complex facilities and how to use computer tools to track and monitor its movement (see Uranium Track Team). Learn more about some of the complexities in reprocessing and safeguarding

405

FAQ 8-What is uranium hexafluoride (UF6)?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is uranium hexafluoride (UF6)? is uranium hexafluoride (UF6)? What is uranium hexafluoride (UF6)? Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. Liquid UF6 is formed only at temperatures greater than 147° F (64° C) and at pressures greater than 1.5 times atmospheric pressure (22 psia). At atmospheric pressure, solid UF6 will transform directly to UF6 gas (sublimation) when the temperature is raised to 134° F (57° C), without going through a liquid phase.

406

DOE Releases Excess Uranium Inventory Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Excess Uranium Inventory Plan Excess Uranium Inventory Plan DOE Releases Excess Uranium Inventory Plan December 16, 2008 - 8:51am Addthis WASHINGTON, D.C. - The United States Department of Energy (DOE) today issued its Excess Uranium Inventory Management Plan (the Plan), which outlines the Department's strategy for the management and disposition of its excess uranium inventories. The Plan highlights DOE's ongoing efforts to enhance national security and promote a healthy domestic nuclear infrastructure through the efficient and cost-effective management of its excess uranium inventories. The Department has a significant inventory of uranium that is excess to national defense needs and is expensive both to manage and secure. "The Plan provides the general public and interested stakeholders more

407

Uranium Processing Facility | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About / Transforming Y-12 / Uranium Processing Facility About / Transforming Y-12 / Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly, disassembly, dismantlement, quality evaluation, and product certification. An integral part of Y-12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium Processing Facility is one of two facilities at Y-12 whose joint mission will be to accomplish the storage and processing of all enriched uranium in one much smaller, centralized area. Safety, security and flexibility are key design attributes of the facility, which is in the preliminary design phase of work. UPF will be built to modern standards and engage new technologies through a responsive and agile

408

Nuclear & Uranium - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear & Uranium Nuclear & Uranium Glossary › FAQS › Overview Data Summary Uranium & Nuclear Fuel Nuclear Power Plants Radioactive Waste International All Nuclear Data Reports Analysis & Projections Most Requested Nuclear Plants and Reactors Projections Uranium All Reports EIA's latest Short-Term Energy Outlook for electricity › chart showing U.S. electricity generation by fuel, all sectors Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. Quarterly uranium production data › image chart of Quarterly uranium production as described in linked report Source: U.S. Energy Information Administration, Domestic Uranium Production Report - Quarterly, 3rd Quarter 2013, October 31, 2013. Uprates can increase U.S. nuclear capacity substantially without building

409

EA-1290: Disposition of Russian Federation Titled Natural Uranium |  

Broader source: Energy.gov (indexed) [DOE]

290: Disposition of Russian Federation Titled Natural Uranium 290: Disposition of Russian Federation Titled Natural Uranium EA-1290: Disposition of Russian Federation Titled Natural Uranium SUMMARY This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United States to the Russian Federation. This amount of uranium is equivalent to 13,3000 metric tons of UF6. The EA also examines the impacts of this action on the global commons. Transfer of natural UF6 to the Russian Federation is part of a joint U.S./Russian program to dispose of highly enriched uranium (HEU) from dismantled Russian nuclear weapons. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD

410

Excess Uranium Inventory Management Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective management of the Energy Department's surplus uranium inventory in support of meeting its critical environmental cleanup and national security missions. The Plan is not a commitment to specific activities beyond those that have already been contracted nor is it a restriction on actions that the Department may undertake in the future as a result of changing conditions. It replaces an earlier plan issued in 2008 and reflects updated information on the Department of Energy's management and disposition of its excess uranium inventories. Excess Uranium Inventory Management Plan More Documents & Publications

411

Abandoned Uranium Mines Report to Congress: LM Wants Your Input |  

Broader source: Energy.gov (indexed) [DOE]

Abandoned Uranium Mines Report to Congress: LM Wants Your Input Abandoned Uranium Mines Report to Congress: LM Wants Your Input Abandoned Uranium Mines Report to Congress: LM Wants Your Input April 11, 2013 - 1:33pm Addthis C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts C-SR-10 Uintah Mine, Colorado, LM Uranium Lease Tracts What does this project do? Goal 4. Optimize the use of land and assets Abandoned Uranium Mines Report to Congress The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is seeking stakeholder input on an abandoned uranium mines report to Congress. On January 2, 2013, President Obama signed into law the National Defense Authorization Act for Fiscal Year 2013, which requires the Secretary of Energy, in consultation with the Secretary of the U.S Department of the Interior (DOI) and the Administrator

412

Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment |  

Broader source: Energy.gov (indexed) [DOE]

Uranium Leasing Program Draft Programmatic EIS Issued for Public Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment March 15, 2013 - 11:08am Addthis Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment DOE has issued the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS)(DOE/EIS-0472D) for public review and comment. The document is available here and on the ULP PEIS website. Under the Uranium Leasing Program, the DOE Office of Legacy Management administers 31 tracts of land in Mesa, Montrose, and San Miguel counties that are leased to private entities to mine uranium and vanadium. The program covers an area of approximately 25,000 acres. No mining operations are active on the ULP lands at this time. DOE is preparing the ULP PEIS to

413

Management Controls over the Department of Energy's Uranium Leasing  

Broader source: Energy.gov (indexed) [DOE]

Management Controls over the Department of Energy's Uranium Leasing Management Controls over the Department of Energy's Uranium Leasing Program, OAS-M-08-05 Management Controls over the Department of Energy's Uranium Leasing Program, OAS-M-08-05 The Department of Energy's Uranium Leasing Program was established by the Atomic Energy Act of 1954 to develop a supply of domestic uranium to meet the nation's defense needs. Pursuant to the Act, the Program leases tracts of land to private sector entities for the purpose of mining uranium ore. According to Department officials, one purpose of the Program is to obtain a fair monetary return to the Government. The Program is administered by the Department's Office of Legacy Management through a contractor. The uranium leases issued by the Department include two types of royalty

414

Uranium at Y-12: Recovery | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Recovery Uranium at Y-12: Recovery Posted: July 22, 2013 - 3:44pm | Y-12 Report | Volume 10, Issue 1 | 2013 Recovery involves reclaiming uranium from numerous sources and configurations and handling uranium in almost any form, including oxides and liquids (see A Rich Resource Requires Recovery). Y-12 has the equipment and expertise to recover uranium that is present in filters, wipes, mop water and elsewhere. For many salvage materials, the uranium is extracted and then manipulated into a uranyl nitrate solution, purified and chemically converted through several stages. Then it is reduced to a mass of uranium metal. This mass, called a button, is used in casting operations. The chemical operators who recover and purify uranium understand and monitor complex chemical reactions, flow rates, temperatures

415

The multiphoton ionization of uranium hexafluoride  

SciTech Connect (OSTI)

Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

Armstrong, D.P. (Oak Ridge K-25 Site, TN (United States). UEO Enrichment Technical Operations Div.) [Oak Ridge K-25 Site, TN (United States). UEO Enrichment Technical Operations Div.

1992-05-01T23:59:59.000Z

416

U.S. forms uranium enrichment corporation  

Science Journals Connector (OSTI)

After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business.On July 1, the Department of Energy turned over to a new government-owned entity—the U.S. Enrichment Corp. (USEC)—both the DOE enrichment ...

RICHARD SELTZER

1993-07-12T23:59:59.000Z

417

URANIUM MILL TAILINGS RADON FLUX CALCULATIONS  

E-Print Network [OSTI]

at the Piñon Ridge Property in western Montrose County, Colorado. The Piñon Ridge Mill includesURANIUM MILL TAILINGS RADON FLUX CALCULATIONS PI�ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Submitted To: Energy Fuels Resources Corporation 44 Union Boulevard, Suite 600 Lakewood, Colorado 80228

418

The Quest for the Heaviest Uranium Isotope  

E-Print Network [OSTI]

We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

2011-07-06T23:59:59.000Z

419

Radiological health aspects of uranium milling  

SciTech Connect (OSTI)

This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

Fisher, D.R.; Stoetzel, G.A.

1983-05-01T23:59:59.000Z

420

Isotopic Fractionation of Uranium in Sandstone  

Science Journals Connector (OSTI)

...Lake district 2.3 284270 Uraninite ore, Gambler Pit, Karnes County, Tex. + 1.8 246885 Drill-core sample, Palangana Salt dome, Duval County, Tex 3.3 APP-1/62 Uranium-bearing asphaltite from sandstone, Mine LaMotte, Madison...

John N. Rosholt; William R. Shields; Ernest L. Garner

1963-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Radiological aspects of in situ uranium recovery  

SciTech Connect (OSTI)

In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium in situ leaching in situ recovery (ISL / ISR), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and may make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since 1975. Solution mining involves the pumping of groundwater, fortified with oxidizing and complexing agents into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant. Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which Radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. An overview of the major aspects of the health physics and radiation protection programs that were developed at these facilities are discussed and contrasted to circumstances of the current generation and state of the art of Uranium ISR technologies and facilities. (authors)

BROWN, STEVEN H. [SHB INC., 7505 S. Xanthia Place, Centennial, Colorado (United States)

2007-07-01T23:59:59.000Z

422

Microsoft Word - Tracking the Sun VI_working version.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VI VI An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2012 Galen Barbose, Naïm Darghouth, Samantha Weaver, and Ryan Wiser July 2013 Tracking the Sun VI An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2012 Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Primary Authors: Galen Barbose, Naïm Darghouth, Samantha Weaver, Ryan Wiser Executive Summary ...................................................................................................... 1 1. Introduction .............................................................................................................. 5 2. Data Summary .......................................................................................................... 8

423

Examination of the health status of populations from depleted-uranium-contaminated regions  

Science Journals Connector (OSTI)

During the NATO air strikes on the Federal Republic of Yugoslavia (Serbia and Montenegro) in 1999, depleted-uranium ammunition was used on 112 locations, mainly Kosovo, in the south of Serbia, and one location in Montenegro. Blood samples of residents from depleted-uranium-contaminated areas were gathered and blood cell and chromosomal aberrations were analyzed. During the last 3 years blood samples from 21 residents of Kosovo (Štrpce), from 29 residents from the south of Serbia (the Vranje and Bujanovac regions), and from 19 technical television workers from the site of Plja?kovica, in the vicinity of Vranje, were collected. Blood samples from 33 residents of central Serbia and 46 occupational workers exposed to X-rays were used as controls. All subjects studied were without any clinical symptoms of disease. The examinations included general clinical assessment; urine samples for ?-and ?-spectrometry analysis; complete blood counts; ratio-percentages of blood cells in stained (Giemsa) capillary smears, individual leukocyte line elements; morphological changes observed under a microscope; the presence of immature forms or blasts; and leukocyte enzyme activity [alkaline phosphatase leukocyte (APL)]. Chromosomal aberrations were evaluated in 200 peripheral blood lymphocytes in mitosis. An increased incidence of rogue cells and chromosomal aberrations was found in the blood of the residents of Vranje and Bujanovac, but this was below the incidence of chromosomal aberrations in individuals occupationally exposed to ionizing irradiation. Blast cells were not found. Blood counts were decreased in only a few samples, while morphological changes of both nuclei and cytoplasm were marked in individuals in south and central Serbia. Enzymatic activity (as measured by the APL score) was decreased in samples with chromosomal aberrations and cyto-morphological changes in subjects from the south of Serbia. The contamination level measured by this examination was low. Because of the presence of depleted uranium (uranium-238) in the soil and in plants, the prevention of consequences necessitates the identification of the initial biological effects on sensitive tissues. Early identification of serious blood cell changes is important for appropriate medical treatment.

Snežana Mila?i?; Dragana Petrovi?; Dubravka Jovi?i?; Radomir Kova?evi?; Jadranko Simi?

2004-01-01T23:59:59.000Z

424

Elucidating Bioreductive Transformations within Physically Complex Media: Impact on the Fate and Transport of Uranium and Chromium  

SciTech Connect (OSTI)

Uranium and chromium are two elements of particular concern within the DOE complex that, owing to their abundance and toxicity, appear well suited for biologically mediated reductive stabilization. Subsurface microbial activity can alter the redox state of toxic metals and radionuclides, rending them immobile. Furthermore, anaerobic bacterial metabolic products will help to buffer pulses of oxidation, typically from fluxes of nitrate or molecular oxygen, and thus may stabilize reduced contaminants from oxidative mobilization. Imparting an important criterion on the probability that contaminants will undergo reductive stabilization, however, is the physical nature along with the chemical and physical heterogeneity of the media. In our study we have been investigating the impact of chemical/mineralogical heterogeneity on uranium reduction, with an emphasis on iron transformations and resulting impacts on contaminant retention. We have, in particular, emphasized considering chemical/mineralogical and physical complexity on bioreduction of metals. Over the past year we have also made appreciable advances on discerning geochemical constraints on microbially mediated reduction of U(VI) and on means to discern spatial heterogeneity in operative biogeochemical reactions within soils and sediments.

Fendorf, Scott; Francis, Chris; Benner, Shawn; Jardine, Phil

2006-11-01T23:59:59.000Z

425

Uranium deposition study on aluminum: results of early tests  

SciTech Connect (OSTI)

Laboratory experiments to quantify uranium compound deposition on Aluminum 3003 test coupons have been initiated. These experiments consist of exposing the coupons to normal assay UF/sub 6/ (0.7% /sup 235/U) in nickel reaction vessels under various conditions of UF/sub 6/ pressure, temperature, and time. To-date, runs from 5 minutes to 2000 hr have been completed at a UF/sub 6/ pressure of 100 torr and at a temperature of 60/sup 0/C. Longer exposure times are in progress. Initial results indicated that a surface film of uranium, primarily as uranyl fluoride (UO/sub 2/F/sub 2/), is deposited very soon after exposure to UF/sub 6/. In a five minute UF/sub 6/ exposure at a temperature of 60/sup 0/C, an average of 2.9 ..mu..g U/cm/sup 2/ was deposited; after 24 hr the deposit typically increased to 5.0 ..mu..g/cm/sup 2/ and then increased to 10.4 ..mu..g/cm/sup 2/ after 2000 hr. This amount of deposit (at 2000 hr exposure) would contribute roughly 10 to 20% to the total 186 keV gamma signal obtained from a GCEP product header pipe being operated at UF/sub 6/ pressures of 2 to 5 torr. The amount of isotopic exchange which would occur in the deposit in the event that HEU and LEU productions were alternated is considered. It is felt that isotopic exchange would not occur to any significant amount within the fixed deposit during relatively short HEU production periods since the HEU would be present primarily as adsorbed UF/sub 6/ molecules on the surface of the deposit. The adsorbed HEU molecules would be removed by evacuation and diluted by LEU production. Major increases in the deposit count would be observed if a leak occurred or moisture was introduced into the system while HEU was being produced.

Hughes, M.R.; Nolan, T.A.

1984-06-19T23:59:59.000Z

426

Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094  

SciTech Connect (OSTI)

Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly and the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)

Camper, Larry W.; Michalak, Paul; Cohen, Stephen; Carter, Ted [Nuclear Regulatory Commission (United States)

2012-07-01T23:59:59.000Z

427

Constitutive Type VI Secretion System Expression Gives Vibrio cholerae Intra- and Interspecific Competitive Advantages  

E-Print Network [OSTI]

The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae – the causative agent of cholera. All V. cholerae strains examined to date ...

Unterweger, Daniel

428

Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR)  

E-Print Network [OSTI]

Christodoulatos, C. Ettringite-Induced Heave in Chromite Orehydrotalcite calcite quartz ettringite amorphous HB n.d.of the total Cr(VI). Ettringite (Ca 6 Al 2 (SO 4 ) 3 (OH) 12

CHRYSOCHOOU, MARIA

2010-01-01T23:59:59.000Z

429

Sorption von Ln(III)/An(III) und U(VI) an Tonmineralen und natürlichen Tongesteinen.  

E-Print Network [OSTI]

??In this thesis sorption of An(III)/(VI) is studied onto monomineralic clays and natural claystones by batch and spectroscopic studies and model calculations, in order to… (more)

Hartmann, Eva

2010-01-01T23:59:59.000Z

430

Methylbutylmalonamide as an extractant for U(VI), Pu(IV) and Am(III)  

Science Journals Connector (OSTI)

The unsymmetrical diamide methylbuthylmalonamide has been synthesized and used in the extraction of U(VI), Pu(IV) and Am(III) in benzene medium. The distribution ratio for the three cations was found to increa...

G. M. Nair; D. R. Prabhu; G. R. Mahajan

1994-01-03T23:59:59.000Z

431

Depleted Uranium Uses: Regulatory Requirements and Issues  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Depleted Uranium Uses Depleted Uranium Uses Regulatory Requirements Regulatory Requirements and Issues and Issues Nancy L. Ranek Nancy L. Ranek Argonne National Laboratory Argonne National Laboratory August 5, 1998 August 5, 1998 Beneficial Reuse '98 Beneficial Reuse '98 Knoxville, TN Knoxville, TN NOTES Work Performed for: Office of Facilities (NE-40) Office of Nuclear Energy, Science and Technology U.S. Department of Energy Work Performed by: Environmental Assessment Division Argonne National Laboratory 955 L'Enfant Plaza North, S.W. Washington, D.C. 20024 Phone: 202/488-2417 E-mail: ranekn@smtplink.dis.anl.gov 2 2 2 Programmatic Environmental Programmatic Environmental Impact Statement (PEIS) Impact Statement (PEIS) Draft PEIS Published 12/97 * Preferred Alternative = 100% Use

432

Video: Metamorphosis (Physical Characteristics of Uranium Hexafluoride)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metamorphosis Metamorphosis Metamorphosis (Physical Characteristics of Uranium Hexafluoride) The Uranium Hexafluoride phase diagram is investigated. An experimental setup is shown to look at the gas, liquid, and solid phases at various temperatures and pressures. This information is used to understand what happens inside a DUF6 storage cylinder. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:12 Metamorphosis from the U.S. Department of Energy Video 00:45 Laboratory setup to examine the phases of UF6 Video 01:45 UF6 Phase Diagram Video 03:25 Liquid UF6 appearing in a glass tube Video 03:38 Cloud of HF from moisture reaction dissolving in UF6 gas Video 04:27 Beginning of UF6 phase change from liquid to solid Video 04:40 Formation of porous solid structure

433

Statistical data of the uranium industry  

SciTech Connect (OSTI)

This document is a compilation of historical facts and figures through 1979. These statistics are based primarily on information provided voluntarily by the uranium exploration, mining, and milling companies. The production, reserves, drilling, and production capability information has been reported in a manner which avoids disclosure of proprietary information. Only the totals for the $1.5 reserves are reported. Because of increased interest in higher cost resources for long range planning purposes, a section covering the distribution of $100 per pound reserves statistics has been newly included. A table of mill recovery ranges for the January 1, 1980 reserves has also been added to this year's edition. The section on domestic uranium production capability has been deleted this year but will be included next year. The January 1, 1980 potential resource estimates are unchanged from the January 1, 1979 estimates.

none,

1980-01-01T23:59:59.000Z

434

Uranium enrichment management review: summary of analysis  

SciTech Connect (OSTI)

In May 1980, the Assistant Secretary for Resource Applications within the Department of Energy requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. After extensive investigation, analysis, and discussion, the review group presented its findings and recommendations in a report on December 2, 1980. The following pages contain background material on which that final report was based. This report is arranged in chapters that parallel those of the uranium enrichment management review final report - chapters that contain summaries of the review group's discussion and analyses in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. Further information, in-depth analysis, and discussion of suggested alternative management practices are provided in five appendices.

Not Available

1981-01-01T23:59:59.000Z

435

The health effects of depleted uranium  

Science Journals Connector (OSTI)

There has been a substantial amount of public discussion on the health effects of the use of depleted uranium (DU) munitions. In response to this concern the Royal Society set up an independent, expert working group to investigate the health effects of DU munitions. The Royal Society has now produced two reports, and this summary covering the key conclusions and recommendations from both reports. The part I report considered the increased risks of radiation-induced cancer from exposures to DU on the battlefield. Part II dealt with the risks from the chemical toxicity of uranium, non-malignant radiation effects from DU intakes, the long-term environmental consequences of the deployment of DU munitions and responses to part I including issues arising at a public meeting to discuss the part I report.

The Royal Society Working Group on the Health Hazards of

2002-01-01T23:59:59.000Z

436

Uranium Oxide Aerosol Transport in Porous Graphite  

SciTech Connect (OSTI)

The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

2012-01-23T23:59:59.000Z

437

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect (OSTI)

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

438

CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Criticality Safety program at the Y-12 - Enriched Uranium Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Criticality Safety - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

439

CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion  

Broader source: Energy.gov (indexed) [DOE]

Y-12 Enriched Uranium Operations Oxide Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

440

Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at  

Broader source: Energy.gov (indexed) [DOE]

Uranium Mill Tailings Cleanup Project Steps into Spotlight at Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna October 22, 2012 - 12:00pm Addthis Moab Federal Project Director Donald Metzler presents at the Uranium Mining Remediation Exchange Group meeting in Germany in September 2011. Moab Federal Project Director Donald Metzler presents at the Uranium Mining Remediation Exchange Group meeting in Germany in September 2011. Moab Federal Project Director Donald Metzler Moab Federal Project Director Donald Metzler Moab Federal Project Director Donald Metzler presents at the Uranium Mining Remediation Exchange Group meeting in Germany in September 2011. Moab Federal Project Director Donald Metzler

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

"2012 Uranium Marketing Annual Report"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012" 4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012" 2010,2011,2012 "American Fuel Resources, LLC","Advance Uranium Asset Management Ltd. (was Uranium Asset Management)","Advance Uranium Asset Management Ltd. (was Uranium Asset Management)" "AREVA NC, Inc. (was COGEMA, Inc.)","American Fuel Resources, LLC","American Fuel Resources, LLC" "BHP Billiton Olympic Dam Corporation Pty Ltd","AREVA NC, Inc.","AREVA NC, Inc." "CAMECO","BHP Billiton Olympic Dam Corporation Pty Ltd","BHP Billiton Olympic Dam Corporation Pty Ltd" "ConverDyn","CAMECO","CAMECO" "Denison Mines Corp.","ConverDyn","ConverDyn"

442

DOE Extends Public Comment Period for Uranium Program Environmental Impact  

Broader source: Energy.gov (indexed) [DOE]

Uranium Program Environmental Uranium Program Environmental Impact Statement DOE Extends Public Comment Period for Uranium Program Environmental Impact Statement April 18, 2013 - 1:08pm Addthis Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs, (720) 377-9672, ULinfo@lm.doe.gov GRAND JUNCTION, Colo. - The U.S. Department of Energy (DOE) today announced that the public comment period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS) has been extended to May 31, 2013. Under the Uranium Leasing Program, DOE's Office of Legacy Management manages 31 tracts of land in Mesa, Montrose, and San Miguel counties in Colorado - approximately 25,000 acres - that are leased to private entities for uranium and vanadium mining. No mining operations are active

443

CRAD, Emergency Management - Y-12 Enriched Uranium Operations Oxide  

Broader source: Energy.gov (indexed) [DOE]

Emergency Management - Y-12 Enriched Uranium Operations Oxide Emergency Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Emergency Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Emergency Management program at the Y-12 Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide

444

CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Y-12 Enriched Uranium Operations Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, DOE Oversight - Y-12 Enriched Uranium Operations Oxide Conversion

445

The uranium cylinder assay system for enrichment plant safeguards  

SciTech Connect (OSTI)

Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Rael, Carlos D [Los Alamos National Laboratory; Iwamoto, Tomonori [JNFL; Tamura, Takayuki [JNFL; Aiuchi, Syun [JNFL

2010-01-01T23:59:59.000Z

446

In-line assay monitor for uranium hexafluoride  

DOE Patents [OSTI]

An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.

Wallace, S.A.

1980-03-21T23:59:59.000Z

447

CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov (indexed) [DOE]

Y-12 Enriched Uranium Operations Oxide Conversion Y-12 Enriched Uranium Operations Oxide Conversion Facility CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility January 2005 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Y-12 Enriched Uranium Operations Oxide Conversion Facility More Documents & Publications CRAD, Conduct of Operations - Y-12 Enriched Uranium Operations Oxide

448

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

449

The CZTU uranium concentration analysis code  

SciTech Connect (OSTI)

A {sup 235}U analysis code, CZTU, has been written that can non- destructively evaluate the percentage of {sup 235}U in a uranium sample from the analysis of the emitted gamma rays. This code utilizes gamma spectra measured from room temperature Cadmium Zinc Telluride (CdZnTe or CZT) detectors. It has an accuracy midway between that obtained with sodium iodide and germanium crystal detectors. This report describes how to use the code, some results, limitations and design considerations.

Clark, D., LLNL

1998-07-17T23:59:59.000Z

450

Engineering assessment of inactive uranium mill tailings  

SciTech Connect (OSTI)

The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

Not Available

1981-07-01T23:59:59.000Z

451

Uranio impoverito: perché? (Depleted uranium: why?)  

E-Print Network [OSTI]

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of understanding the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

Germano D'Abramo

2003-05-28T23:59:59.000Z

452

Crystalline phases of II-VI compound semiconductors grown by pulsed laser deposition  

E-Print Network [OSTI]

-VI compound semiconductors, ZnS, ZnSe, CdS, CdSe, and CdTe, were grown epitaxially on 111 and 100 InP and Ga and mirror-like surface morphology. It was found that, on 111 -oriented substrates, CdS and CdSe films were, which is the main source of the troublesome native doping in II-VI compounds. High energy atoms and ions

Kwok, Hoi S.

453

Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks  

SciTech Connect (OSTI)

Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

Rodriguez, Derrick [Colorado School of Mines

2014-12-22T23:59:59.000Z

454

Uranium and other heavy metals in the plant-animal-human food chain near abandoned mining sites and structures in an American Indian community in northwestern New Mexico  

E-Print Network [OSTI]

comparable to National Uranium Resource Evaluation (NURE)comparable to National Uranium Resource Evaluation (NURE)

Samuel-Nakamura, Christine

2013-01-01T23:59:59.000Z

455

Uncertainty clouds uranium enrichment corporation's plans  

SciTech Connect (OSTI)

An expected windfall to the US Treasury from the sale of the Energy Dept.'s commercial fuel enrichment facilities may evaporate in the next few weeks when the Clinton administration submits its fiscal 1994 budget proposal to Congress, according to congressional and administration officials. Under the Energy Policy Act of 1992, DOE is required to lease two uranium enrichment facilities, Portsmouth, Ohio, and Paducah, KY., to the government-owned US Enrichment Corp. (USEC) by July 1. Estimates by OMB and Treasury indicate a potential yearly payoff of $300 million from the government-owned company's sale of fuel for commercial reactors. Those two facilities use a process of gaseous diffusion to enrich uranium to about 3 percent for use as fuel in commercial power plants. DOE has contracts through at least 1996 to provide about 12 million separative work units (SWUs) yearly to US utilities and others world-wide. But under an agreement signed between the US and Russia last August, at least 10 metric tons, or 1.5 million SWUs, of low-enriched uranium (LEU) blended down from Russia warheads is expected to be delivered to the US starting in 1994. It could be sold at $50 to $60 per SWU, far below what DOE currently charges for its SWUs - $135 per SWU for 70 percent of the contract price and $90 per SWU for the remaining 30 percent.

Lane, E.

1993-03-24T23:59:59.000Z

456

Colloids generation from metallic uranium fuel  

SciTech Connect (OSTI)

The possibility of colloid generation from spent fuel in an unsaturated environment has significant implications for storage of these fuels in the proposed repository at Yucca Mountain. Because colloids can act as a transport medium for sparingly soluble radionuclides, it might be possible for colloid-associated radionuclides to migrate large distances underground and present a human health concern. This study examines the nature of colloidal materials produced during corrosion of metallic uranium fuel in simulated groundwater at elevated temperature in an unsaturated environment. Colloidal analyses of the leachates from these corrosion tests were performed using dynamic light scattering and transmission electron microscopy. Results from both techniques indicate a bimodal distribution of small discrete particles and aggregates of the small particles. The average diameters of the small, discrete colloids are {approximately}3--12 nm, and the large aggregates have average diameters of {approximately}100--200 nm. X-ray diffraction of the solids from these tests indicates a mineral composition of uranium oxide or uranium oxy-hydroxide.

Metz, C.; Fortner, J.; Goldberg, M.; Shelton-Davis, C.

2000-07-20T23:59:59.000Z

457

The geochemistry of uranium in the Orca Basin  

E-Print Network [OSTI]

inhibit=. vertical mixing between basin brine and overlying seawater. This severely limits the transport of hexa- valent uranium across this boundary. Second, the major depositional process in the basin is mass transport of sediments from... The continuing growth of nuclear power combined with the steady depletion of existing high-grade uranium ore has brought about an increase in the use of and search for lower-grade uranium deposits. According to Lieberman (1976), there is little undiscovered...

Weber, Frederick Fewell

2012-06-07T23:59:59.000Z

458

Observation of the uranium 235 nuclear magnetic resonance signal (*)  

E-Print Network [OSTI]

before. We report here the first NMR observation of 23SU. The uranium hexafluoride has been chosenL-1017 Observation of the uranium 235 nuclear magnetic resonance signal (*) H. Le Bail, C. Chachaty signal de résonance magnétique nucléaire de l'isotope 235 de l'uranium est présentée. Elle a été

Paris-Sud XI, Université de

459

U.S. Forward-Cost Uranium Reserves by Mining Method, 2003  

Gasoline and Diesel Fuel Update (EIA)

Home > Nuclear > U.S. Uranium Reserves > Major U.S. Uranium Reserve Areas Major U.S. Uranium Reserve Areas. Having trouble? Call 202 586-8800 for help....

460

Effect of twinning on texture evolution of depleted uranium using a viscoplastic self-consistent model.  

E-Print Network [OSTI]

??Texture evolution of depleted uranium is investigated using a viscoplastic self-consistent model. Depleted uranium, which has the same structure as alpha-uranium, is difficult to model… (more)

Ho, John

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium vi exposed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......M. Depleted and natural uranium: chemistry and toxicological...internal contamination with uranium. Croat. Med. J. 40...1999). 5. Mould, R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

462

An assessment of the radiological scenario around uranium mines in Singhbhum East district, Jharkhand, India  

Science Journals Connector (OSTI)

......radiological scenario around uranium mines in Singhbhum East...The Health Hazards of Depleted Uranium Munitions (2001) The...in soil and lifetime cancer risk due to gamma radioactivity...radiological scenario around uranium mines in Singhbhum East......

R. M. Tripathi; S. K. Sahoo; S. Mohapatra; A. C. Patra; P. Lenka; J. S. Dubey; V. N. Jha; V. D. Puranik

2012-07-01T23:59:59.000Z

463

Distribution of uranium and some selected trace metals in human scalp hair from Balkans  

Science Journals Connector (OSTI)

......Balkan conflict zones, uranium isotopic measurement...blood and urine. Natural uranium (NU) comprises 0...27 % of 238U, whereas depleted uranium (DU), produced in...incidence of several cancers (including childhood......

Z. S. Zunic; S. Tokonami; S. Mishra; H. Arae; R. Kritsananuwat; S. K. Sahoo

2012-11-01T23:59:59.000Z

464

A Bayesian analysis of uncertainties on lung doses resulting from occupational exposures to uranium  

Science Journals Connector (OSTI)

......lung dose and lung cancer incidence resulting...occupational exposures to uranium. These calculations...from inhalation of uranium ignore significant...estimates of lung cancer are based on PEs...from inhalation of depleted uranium. Health Phys......

M. Puncher; A. Birchall; R. K. Bull

2013-09-01T23:59:59.000Z

465

Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body  

Science Journals Connector (OSTI)

...surrounded the adverse health effects of depleted uranium (DU) munitions...Society. 2001 The health hazards of depleted uranium munitions-Part 1...Society. 2002 The health effects of depleted uranium munitions-Part 2...

2010-01-01T23:59:59.000Z

466

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......ionizing radiation. Health risks|Depleted uranium|Chromosome aberrations...and Jadranko SIMIC2 Health risks/Depleted uranium/Chromosome aberrations...Institute symposia "The Health Effects of Depleted Uranium." Remarks and slides......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

467

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......Society. The Health Hazards of Depleted Uranium Munitions-Part...Carpenter D. O. Depleted uranium contamination...implications for health assessment...Sunder S. Depleted uranium dust from fired...properties. Health Phys (2004......

Marcelo Valdés

2009-02-01T23:59:59.000Z

468

Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation  

Science Journals Connector (OSTI)

......UK The impact of depleted uranium (DU) on human health has been the subject...977-985. 11 World Health Organization. Depleted uranium: sources, exposure...Royal Society. The health hazards of depleted uranium munitions-Part I......

R. J. Tanner; J. S. Eakins; J. T. M. Jansen; J. D. Harrison

2012-08-01T23:59:59.000Z

469

A Bayesian analysis of uncertainties on lung doses resulting from occupational exposures to uranium  

Science Journals Connector (OSTI)

......dose coefficients of uranium compounds handled during...fabrication in France. Health Phys. (2002) 82...bioassays measurements: uranium dose assessment: a...doses from inhalation of depleted uranium. Health Phys. (2008) 95......

M. Puncher; A. Birchall; R. K. Bull

2013-09-01T23:59:59.000Z

470

Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition  

Science Journals Connector (OSTI)

......War about the health significance of exposure to depleted uranium (DU), the...perforated by depleted uranium ammunition...War about the health significance of exposure to depleted uranium (DU), the......

M. A. Parkhurst

2003-07-01T23:59:59.000Z

471

Daily uranium excretion in German peacekeeping personnel serving on the Balkans compared to ICRP model prediction  

Science Journals Connector (OSTI)

......assess a possible health risk of depleted uranium (DU) for residents...119-122. 10 WHO. Depleted uranium: Sources, exposure and health effects. (2001...assess a possible health risk of depleted uranium (DU) for residents......

U. Oeh; W. B. Li; V. Höllriegl; A. Giussani; P. Schramel; P. Roth; H. G. Paretzke

2007-11-01T23:59:59.000Z

472

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Science of Cancer Health Disparities- Feb...AZ Abstract B41: Depleted uranium-induced oxidative...Science of Cancer Health Disparities- Feb...high deposits of uranium or tailings. There...occupational exposures to depleted uranium via military...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

473

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric...the study was hit by depleted uranium projectiles during...M. , Haldimann M. Depleted uranium in Kosovo: an assessment...exposure for aid workers. Health Phys. (2002) 82......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

474

Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic Metallosphaera species  

Science Journals Connector (OSTI)

...2005 ) Oxidation states of uranium in depleted uranium particles from Kuwait . J Environ...HDTR-09-0300 and National Institutes of Health Grant R01 GM090209-01. The...Supporting Information (PDF) Uranium extremophily is an adaptive...

Arpan Mukherjee; Garrett H. Wheaton; Paul H. Blum; Robert M. Kelly

2012-01-01T23:59:59.000Z

475

The reliability of dose coefficients for inhalation and ingestion of uranium by members of the public  

Science Journals Connector (OSTI)

......of bioassay data for depleted uranium. (2007) Health Protection Agency. Report...doses from inhalation of depleted uranium. Health Phys. (2008) 95...of bioassay data for depleted uranium. (2007) Health Protection Agency. Report......

M. Puncher; G. Burt

2013-12-01T23:59:59.000Z