Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF4)  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF 4 ) Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering activities, contact: Director, Environmental Assessment Division Argonne National Laboratory Argonne, Illinois 60439-4832

2

METHOD OF DEHYDRATING URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

Drying and dehydration of aqueous-precipitated uranium tetrafluoride are described. The UF/sub 4/ which normally contains 3 to 4% water, is dispersed into the reaction zone of an operating reactor wherein uranium hexafluoride is being reduced to UF/sub 4/ with hydrogen. The water-containing UF/sub 4/ is dried and blended with the UF/sub 4/ produced in the reactor without interfering with the reduction reaction. (AEC)

Davis, J.O.; Fogel, C.C.; Palmer, W.E.

1962-12-18T23:59:59.000Z

3

PRODUCTION OF URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

A method is presented for producing uranium tetrafluoride from the gaseous hexafluoride by feeding the hexafluoride into a high temperature zone obtained by the recombination of molecularly dissociated hydrogen. The molal ratio of hydrogen to uranium hexnfluoride is preferably about 3 to 1. Uranium tetrafluoride is obtained in a finely divided, anhydrous state.

Shaw, W.E.; Spenceley, R.M.; Teetzel, F.M.

1959-08-01T23:59:59.000Z

4

ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

Lofthouse, E.

1954-08-31T23:59:59.000Z

5

Uranium Hexafluoride (UF6)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hexafluoride (UF6) Hexafluoride (UF6) Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Uranium Hexafluoride (UF6) Physical and chemical properties of UF6, and its use in uranium processing. Uranium Hexafluoride and Its Properties Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. UF6 crystals in a glass vial image UF6 crystals in a glass vial. Uranium hexafluoride does not react with oxygen, nitrogen, carbon dioxide, or dry air, but it does react with water or water vapor. For this reason,

6

Method for the recovery of uranium values from uranium tetrafluoride  

DOE Patents (OSTI)

The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

Kreuzmann, A.B.

1982-10-27T23:59:59.000Z

7

Method for the recovery of uranium values from uranium tetrafluoride  

DOE Patents (OSTI)

The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

Kreuzmann, Alvin B. (Cincinnati, OH)

1983-01-01T23:59:59.000Z

8

Synthesis of uranium metal using laser-initiated reduction of uranium tetrafluoride by calcium metal  

SciTech Connect

Uranium metal has numerous uses in conventional weapons (armor penetrators) and nuclear weapons. It also has application to nuclear reactor designs utilizing metallic fuels--for example, the former Integral Fast Reactor program at Argonne National Laboratory. Uranium metal also has promise as a material of construction for spent-nuclear-fuel storage casks. A new avenue for the production of uranium metal is presented that offers several advantages over existing technology. A carbon dioxide (CO{sub 2}) laser is used to initiate the reaction between uranium tetrafluoride (UF{sub 4}) and calcium metal. The new method does not require induction heating of a closed system (a pressure vessel) nor does it utilize iodine (I{sub 2}) as a chemical booster. The results of five reductions of UF{sub 4}, spanning 100 to 200 g of uranium, are evaluated, and suggestions are made for future work in this area.

West, M.H.; Martinez, M.M.; Nielsen, J.B.; Court, D.C.; Appert, Q.D.

1995-09-01T23:59:59.000Z

9

Health Effects Associated with Uranium Hexafluoride (UF6)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hexafluoride (UF6) UF6 Health Effects Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Health Effects Associated with Uranium Hexafluoride (UF6) Uranium...

10

A LABORATORY INVESTIGATION OF THE FLUORINATION OF CRUDE URANIUM TETRAFLUORIDE  

DOE Green Energy (OSTI)

Ore concentrates were converted directly to crude uranium tetrafluoride by hydrogen reduction aad hydrofluorination in fluidized-bed reactors. Small- scale laboratory experiments demonstrated that this process can be extended to the production of crude uranium hexafluoride through fluorination of the uranium tetrafluoride in a fluidized bed. The satisfactory temperature range for the reaction lies between 300 and 600 deg C. At 450 deg C the fluorine utilization is between 50 and 80%. With excess fluorine, over 99% of the uranium is volatilized from the solid material. The fluidization characteristics of certain materials are improved by the addition of an inert solid diluent to the bed. (auth) .

Sandus, O.; Steunenberg, R.K.

1957-12-01T23:59:59.000Z

11

A PILOT PLANT FOR THE REDUCTION OF URANIUM HEXAFLUORIDE TO URANIUM TETRAFLUORIDE WITH TRICHLOROETHYLENE  

SciTech Connect

Pilot plant experiments are described in which trichloroethylene was used for the reduction of uranium hexafluoride to uranium tetrafluoride. After unsatisfactory preliminary results with liquid phase reduction, satisfactory results were obtained with a vapor phase reduction system. It was found that vapor phase reduction at approximately 450 deg F, produced a low density product which contained only small quantities of uranium(VI); sintering the uranium tetrafluoride in a hydrogen fluoride atmosphere increased the product density to approximately 3 g/cc. The reduction was essentially complete, and the effluent gas contained less than 1 ppm of uranium hexafluoride. The purity of the uranium tetrafluoride produced was equivalent to that of the uranium hexafluoride used as feed. A complete discussion is given of the operation of the various parts of the system. (auth)

Baker, J.E.; Klaus, H.V.; Schmidt, R.A.; Smiley, S.H.

1956-05-31T23:59:59.000Z

12

PROCESS FOR THE PRODUCTION OF URANIUM TETRAFLUORIDE FROM URANIUM RAW MATERIAL  

SciTech Connect

This process consists oi the following steps: dissolving and leaching uranium raw material with sulfuric acid, adding a tetravalent uranium solution obtained by electrolytic reduction to the leach, subjecting the leach exuded by suifuric acid to an extraction with an organic solvent to refine and concentrate uranium, converting the extract to a tetravalent uranous solution by electrolytic reduction, and reacting hydrogen fluoride with the uranous solution to produce uranium tetrafluoride. (R.J.S.)

Ito, C.; Okuda, T.; Hamabe, N.

1962-11-20T23:59:59.000Z

13

FAQ 8-What is uranium hexafluoride (UF6)?  

NLE Websites -- All DOE Office Websites (Extended Search)

is uranium hexafluoride (UF6)? is uranium hexafluoride (UF6)? What is uranium hexafluoride (UF6)? Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. Liquid UF6 is formed only at temperatures greater than 147° F (64° C) and at pressures greater than 1.5 times atmospheric pressure (22 psia). At atmospheric pressure, solid UF6 will transform directly to UF6 gas (sublimation) when the temperature is raised to 134° F (57° C), without going through a liquid phase.

14

Uranium Health Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

For inhalation or ingestion of soluble or moderately soluble compounds such as uranyl fluoride (UO2F2) or uranium tetrafluoride (UF4), the uranium enters the bloodstream and...

15

FAQ 28-What are the potential health effects from uranium exposure...  

NLE Websites -- All DOE Office Websites (Extended Search)

For inhalation or ingestion of soluble or moderately soluble compounds such as uranyl fluoride (UO2F2) or uranium tetrafluoride (UF4), the uranium enters the bloodstream and...

16

News Media Exits for Depleted Uranium and Depleted UF6 Articles  

NLE Websites -- All DOE Office Websites (Extended Search)

line line Archived News and Events News Media Links News Media Exits for Depleted Uranium and Depleted UF6 Articles Online editions of newspapers that cover Depleted Uranium...

17

UF/sub 6//sup -/ production from surface reactions of uranium and fluorine  

SciTech Connect

The production of UF/sub 6//sup -/ by reaction of a collimated stream of fluorine gas with a resistively heated uranium wire was studied at temperatures from 870 to 1020/sup 0/C and pressures less than 10/sup -3/ torr. At these temperatures below the uranium melting point, the formation of UF/sub 3/ intermediate on the uranium surface resulted in low UF/sub 6//sup -/ yields. The kinetic energy of the UF/sub 6//sup -/ ion was on the order of thermal energies. The work function of uranium was measured to be 4.20 +- 0.14 eV.

McLean, J.E.; Dillon, J.J.; Talbert, C.M.

1978-10-19T23:59:59.000Z

18

CONTINUOUS PROCESS FOR PREPARING URANIUM HEXAFLUORIDE FROM URANIUM TETRAFLUORIDE AND OXYGEN  

DOE Patents (OSTI)

A process for preparing UF/sub 6/ by reacting UF/sub 4/ and oxygen is described. The UF/sub 4/ and oxygen are continuously introduced into a fluidized bed of UO/sub 2/F/sub 2/ at a temperature of 600 to 900 deg C. The concentration of UF/sub 4/ in the bed is maintained below 25 weight per cent in order to avoid sintering and intermediate compound formation. By-product U0/sub 2/F/sub 2/ is continuously removed from the top of the bed recycled. In an alternative embodiment heat is supplied to the reaction bed by burning carbon monoxide in the bed. The product UF/sub 6/ is filtered to remove entrained particles and is recovered in cold traps and chemical traps. (AEC)

Adams, J.B.; Bresee, J.C.; Ferris, L.M.

1961-11-21T23:59:59.000Z

19

URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

A process is described wherein an anionic exchange technique is employed to separate uramium from a large variety of impurities. Very efficient and economical purification of contamimated uranium can be achieved by treatment of the contaminated uranium to produce a solution containing a high concentration of chloride. Under these conditions the uranium exists as an aniomic chloride complex. Then the uranium chloride complex is adsorbed from the solution on an aniomic exchange resin, whereby a portion of the impurities remain in the solution and others are retained with the uramium by the resin. The adsorbed impurities are then removed by washing the resin with pure concentrated hydrochloric acid, after which operation the uranium is eluted with pure water yielding an acidic uranyl chloride solution of high purity.

Bailes, R.H.; Long, R.S.; Grinstead, R.R.

1957-09-17T23:59:59.000Z

20

PRODUCTION OF URANIUM  

DOE Patents (OSTI)

An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

Ruehle, A.E.; Stevenson, J.W.

1957-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

PROCESS FOR PRODUCING URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ convented to UF/sub 6/ by reaction with a fluorinating agent. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reaction chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. The oven is then swept clean of hydrogen and the water vapor formed by means of nitrogen and then while continuing to maintain the temperature between 400 and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion to uranium tetrafluoride, the temperature of the reaction chamber is lowered to ahout 400 deg C, and elemental fluorine is used as the fluorinating agent for the conversion of UF/sub 4/ into UF/sub 6/. The fluorine gas is passed into the chamber, and the UF/sub 6/ formed passes out and is delivered to a condenser.

Fowler, R.D.

1957-10-22T23:59:59.000Z

22

Depleted UF6 Management Program Overview Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Management Program Overview Presentation Cylinders Photo Next Screen A Legacy of Uranium Enrichment...

23

PRODUCTION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

Fowler, R.D.

1957-08-27T23:59:59.000Z

24

Production and Handling Slide 19: UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Refer to caption below for image description Uranium hexafluoride UF6...

25

PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE  

DOE Patents (OSTI)

This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.

Ellis, A.S.; Mooney, R.B.

1953-08-25T23:59:59.000Z

26

Evaluation of a RF-Based Approach for Tracking UF6 Cylinders at a Uranium Enrichment Plant  

SciTech Connect

Approved industry-standard cylinders are used globally to handle and store uranium hexafluoride (UF{sub 6}) feed, product, tails, and samples at uranium enrichment plants. The International Atomic Energy Agency (IAEA) relies on time-consuming physical inspections to verify operator declarations and detect possible diversion of UF{sub 6}. Development of a reliable, automated, and tamper-resistant system for near real-time tracking and monitoring UF{sub 6} cylinders (as they move within an enrichment facility) would greatly improve the inspector function. This type of system can reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a proof-of-concept approach that was designed to evaluate the feasibility of using radio frequency (RF)-based technologies to track individual UF{sub 6} cylinders throughout a portion of their life cycle, and thus demonstrate the potential for improved domestic accountability of materials, and a more effective and efficient method for application of site-level IAEA safeguards. The evaluation system incorporates RF-based identification devices (RFID) which provide a foundation for establishing a reliable, automated, and near real-time tracking system that can be set up to utilize site-specific, rules-based detection algorithms. This paper will report results from a proof-of-concept demonstration at a real enrichment facility that is specifically designed to evaluate both the feasibility of using RF to track cylinders and the durability of the RF equipment to survive the rigors of operational processing and handling. The paper also discusses methods for securely attaching RF devices and describes how the technology can effectively be layered with other safeguard systems and approaches to build a robust system for detecting cylinder diversion. Additionally, concepts for off-site tracking of cylinders are described.

Pickett, Chris A [ORNL; Younkin, James R [ORNL; Kovacic, Donald N [ORNL; Laughter, Mark D [ORNL; Hines, Jairus B [ORNL; Boyer, Brian [Los Alamos National Laboratory (LANL); Martinez, B. [Los Alamos National Laboratory (LANL)

2008-01-01T23:59:59.000Z

27

Signatures and Methods for the Automated Nondestructive Assay of UF6 Cylinders at Uranium Enrichment Plants  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facilitys entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of manpower and assay accuracy. Such a station would use sensors that can be operated in an unattended mode at an industrial facility: medium-resolution scintillators for gamma-ray spectroscopy (e.g., NaI(Tl)) and moderated He-3 neutron detectors. This sensor combination allows the exploitation of additional, more-penetrating signatures beyond the traditional 185-keV emission from U-235: neutrons produced from F-19(?,n) reactions (spawned primarily from U 234 alpha emission) and high-energy gamma rays (extending up to 8 MeV) induced by neutrons interacting in the steel cylinder. This paper describes a study of these non-traditional signatures for the purposes of cylinder enrichment verification. The signatures and the radiation sensors designed to collect them are described, as are proof-of-principle cylinder measurements and analyses. Key sources of systematic uncertainty in the non-traditional signatures are discussed, and the potential benefits of utilizing these non-traditional signatures, in concert with an automated form of the traditional 185-keV-based assay, are discussed.

Smith, Leon E.; Mace, Emily K.; Misner, Alex C.; Shaver, Mark W.

2010-08-08T23:59:59.000Z

28

Depleted UF6 Overview Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Information network Web Site. The presentation covers the following topics: The uranium mining and enrichment processes - how depleted UF6 is created, How and where...

29

Properties of UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

such as water vapor in the air, the UF6 and water react, forming corrosive hydrogen fluoride (HF) and a uranium-fluoride compound called uranyl fluoride (UO2F2). For more...

30

Depleted UF6 Production and Handling Slide Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Production and Handling Depleted UF6 Production and Handling Slide Presentation An online slide presentation about production and handling of depleted UF6, from mining of uranium...

31

FAQ 3-What are the common forms of uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

are the common forms of uranium? are the common forms of uranium? What are the common forms of uranium? Uranium can take many chemical forms. In nature, uranium is generally found as an oxide, such as in the olive-green-colored mineral pitchblende. Uranium oxide is also the chemical form most often used for nuclear fuel. Uranium-fluorine compounds are also common in uranium processing, with uranium hexafluoride (UF6) and uranium tetrafluoride (UF4) being the two most common. In its pure form, uranium is a silver-colored metal. The most common forms of uranium oxide are U3O8 and UO2. Both oxide forms have low solubility in water and are relatively stable over a wide range of environmental conditions. Triuranium octaoxide (U3O8) is the most stable form of uranium and is the form most commonly found in nature. Uranium dioxide (UO2) is the form in which uranium is most commonly used as a nuclear reactor fuel. At ambient temperatures, UO2 will gradually convert to U3O8. Because of their stability, uranium oxides are generally considered the preferred chemical form for storage or disposal.

32

PRODUCTION OF URANIUM MONOCARBIDE  

DOE Patents (OSTI)

A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)

Powers, R.M.

1962-07-24T23:59:59.000Z

33

MANUFACTURE OF UF$sub 4$  

DOE Patents (OSTI)

The manufacture of uranium tetrafluoride from urarium dioxide is described. Uranium dioxide is heated to about 500 deg C in a reactor. Anhydrous hydrogen fluoride is passed through the reactor in contact with uranium dioxide for several hours, the flow of hydrogen fluoride is discontinued, and hydrogen passed through the reactor for less than an hour. The flow of hydrogen fluoride is resumed for several hours, and then nitrogen is passed for a few minutes to expel unreacted hydrogen fluoride as water vapor. The reactor is cooled to room temperature and the uranium tetrafluoride removed.

Calcott, W.S.

1959-10-13T23:59:59.000Z

34

FLUX COMPOSITION AND METHOD FOR TREATING URANIUM-CONTAINING METAL  

DOE Patents (OSTI)

A flux composition is preseated for use with molten uranium and uranium alloys. It consists of about 60% calcium fluoride, 30% calcium chloride and 10% uranium tetrafluoride.

Foote, F.

1958-08-26T23:59:59.000Z

35

Process for electrolytically preparing uranium metal  

DOE Patents (OSTI)

A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

Haas, Paul A. (Knoxville, TN)

1989-01-01T23:59:59.000Z

36

Depleted UF6 Health Risks  

NLE Websites -- All DOE Office Websites (Extended Search)

(depleted UF6) is released to the atmosphere, the uranium compounds and hydrogen fluoride (HF) gas that are formed by reaction with moisture in the air can be chemically...

37

Properties of Uranium Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Triuranium Octaoxide (U3O8) Uranium Dioxide (UO2) Uranium Tetrafluoride (U4) Uranyl Fluoride (UO2F2) The physical properties of the pertinent chemical forms of uranium are...

38

PREPARATION OF URANIUM MONOSULFIDE  

DOE Patents (OSTI)

A process is given for preparing uranium monosulfide from uranium tetrafluoride dissolved in molten alkali metal chloride. A hydrogen-hydrogen sulfide gas mixture passed through the solution precipitates uranium monosulfide. (AEC)

Yoshioka, K.

1964-01-28T23:59:59.000Z

39

Method And Apparatus For Measuring Enrichment Of UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

For Measuring Enrichment Of UF6 A system and method are disclosed for determining the enrichment of .sup.235U in Uranium Hexafluoride (UF6) utilizing synthesized X-rays which...

40

Production and Handling Slide 18: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

last step of the conversion process involves the chemical conversion of uranium tetrafluoride UF4 to uranium hexafluoride UF6 using fluorine F2. Slide 1...

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE  

DOE Patents (OSTI)

C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.

Beede, R.L.; Hopkins, H.H. Jr.

1959-11-17T23:59:59.000Z

42

METHOD AND APPARATUS FOR MEASURING ENRICHMENT OF UF6 - Energy ...  

A system and method are disclosed for determining the enrichment of .sup.235U in Uranium Hexafluoride (UF6) utilizing synthesized X-rays which are ...

43

SYSTEM FOR CONVERSION OF UF$sub 4$ TO UF$sub 6$  

DOE Patents (OSTI)

Method and apparatus are presented for rapid and complete conversion of solid, powdered uranium tetrafiuorlde to uranlum hexafluorlde by treating the UF/ sub 4/ with fluorine gas at a temperature of about 800 icient laborato C.

Brater, D.G.; Pike, J.W.

1958-12-01T23:59:59.000Z

44

PRODUCTION OF URANIUM TETRACHLORIDE  

DOE Patents (OSTI)

A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

Calkins, V.P.

1958-12-16T23:59:59.000Z

45

METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE  

DOE Patents (OSTI)

A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

Tolley, W.B.; Smith, R.C.

1959-12-15T23:59:59.000Z

46

Results from a "Proof-of-Concept" Demonstration of RF-Based Tracking of UF6 Cylinders during a Processing Operation at a Uranium Enrichment Plant  

SciTech Connect

Approved industry-standard cylinders are used globally for processing, storing, and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants. To ensure that cylinder movements at enrichment facilities occur as declared, the International Atomic Energy Agency (IAEA) must conduct time-consuming periodic physical inspections to validate facility records, cylinder identity, and containment. By using a robust system design that includes the capability for real-time unattended monitoring (of cylinder movements), site-specific rules-based event detection algorithms, and the capability to integrate with other types of monitoring technologies, one can build a system that will improve overall inspector effectiveness. This type of monitoring system can provide timely detection of safeguard events that could be used to ensure more timely and appropriate responses by the IAEA. It also could reduce reliance on facility records and have the additional benefit of enhancing domestic safeguards at the installed facilities. This paper will discuss the installation and evaluation of a radio-frequency- (RF-) based cylinder tracking system that was installed at a United States Enrichment Corporation Centrifuge Facility. This system was installed primarily to evaluate the feasibility of using RF technology at a site and the operational durability of the components under harsh processing conditions. The installation included a basic system that is designed to support layering with other safeguard system technologies and that applies fundamental rules-based event processing methodologies. This paper will discuss the fundamental elements of the system design, the results from this site installation, and future efforts needed to make this technology ready for IAEA consideration.

Pickett, Chris A [ORNL; Kovacic, Donald N [ORNL; Whitaker, J Michael [ORNL; Younkin, James R [ORNL; Hines, Jairus B [ORNL; Laughter, Mark D [ORNL; Morgan, Jim [Innovative Solutions; Carrick, Bernie [USEC; Boyer, Brian [Los Alamos National Laboratory (LANL); Whittle, K. [USEC

2008-01-01T23:59:59.000Z

47

Video: The Depleted Uranium Hexafluoride Story  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Story The Depleted Uranium Hexafluoride Story An overview of Uranium, its isotopes, the need and history of diffusive separation, the handling of the Depleted Uranium...

48

PRODUCTION OF URANIUM  

DOE Patents (OSTI)

The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.

Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

1958-04-15T23:59:59.000Z

49

PROCESS FOR THE RECOVERY OF URANIUM  

DOE Patents (OSTI)

This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.

Morris, G.O.

1955-06-21T23:59:59.000Z

50

Raman Investigation of The Uranium Compounds U3O8, UF4, UH3 and UO3 under Pressure at Room Temperature  

DOE Green Energy (OSTI)

Our current state-of-the-art X-ray diffraction experiments are primarily sensitive to the position of the uranium atom. While the uranium - low-Z element bond (such as U-H or U-F) changes under pressure and temperature the X-ray diffraction investigations do not reveal information about the bonding or the stoichiometry. Questions that can be answered by Raman spectroscopy are (i) whether the bonding strength changes under pressure, as observed by either blue- or red-shifted peaks of the Raman active bands in the spectrum and (ii) whether the low-Z element will eventually be liberated and leave the host lattice, i.e. do the fluorine, oxygen, or hydrogen atoms form dimers after breaking the bond to the uranium atom. Therefore Raman spectra were also collected in the range where those decomposition products would appear. Raman is particularly well suited to these types of investigations due to its sensitivity to trace amounts of materials. One challenge for Raman investigations of the uranium compounds is that they are opaque to visible light. They absorb the incoming radiation and quickly heat up to the point of decomposition. This has been dealt with in the past by keeping the incoming laser power to very low levels on the tens of milliWatt range consequently affecting signal to noise. Recent modern investigations also used very small laser spot sizes (micrometer range) but ran again into the problem of heating and chemical sensitivity to the environment. In the studies presented here (in contrast to all other studies that were performed at ambient conditions only) we employ micro-Raman spectroscopy of samples situated in a diamond anvil cell. This increases the trustworthiness of the obtained data in several key-aspects: (a) We surrounded the samples in the DAC with neon as a pressure transmitting medium, a noble gas that is absolutely chemically inert. (b) Through the medium the sample is thermally heat sunk to the diamond anvils, diamond of course possessing the very best heat conductivity of any material. Therefore local heating and decomposition are avoided, a big challenge with other approaches casting doubts on their results. (c) This in turn benefits the signal/noise ratio tremendously since the Raman features of uranium-compounds are very small. The placement of the samples in DACs allows for higher laser powers to impinge on the sample spot while keeping the spot-size larger than in previous studies and keep the samples from heating up. Raman spectroscopy is a very sensitive non-invasive technique and we will show that it is even possible to distinguish the materials by their origin / manufacturer as we have studied samples from Cameco (Canada) and IBI-Labs (US-Florida) and can compare with ambient literature data for samples from Strem (US-MA) and Areva (Pierrelatte, France).

Lipp, M J; Jenei, Z; Park-Klepeis, J; Evans, W J

2011-12-15T23:59:59.000Z

51

Production and Handling Slide 16: Conversion of Yellow Cake to...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrofluoric acid HF is added to uranium dioxide UO2 to form uranium tetrafluoride UF4, often called "green salt." Slide 16...

52

Production and Handling Slide 38: 48G Depleted UF6 Storage Cylinder  

NLE Websites -- All DOE Office Websites (Extended Search)

48G Depleted UF6 Storage Cylinder Refer to caption below for image description After enrichment, depleted uranium hexafluoride is placed in large steel cylinders for storage....

53

PREPARATION OF HIGH PURITY UF$sub 4$  

DOE Patents (OSTI)

S>A process for preparing very highly pure uranous tetrafluoride from impure uranium laden solvent extraction strip solutions, ion exchange process and resin-inpulp process eluate solutions which are at least 8M in hydrochloric acid is described. The process first comprises treating any of the above-mentioned solutions with a reducing agent to reduce the uranium to the + 4 oxidation state, and then contacting the reduced solution with an extractant phase comprising about 10 to 70% of tri-butyl phosphate in an organic solvent-diluent selected from benzene, ethyl-benzene, chlorobenzene, xylene, kerosene, or the like. The uranium is extracted into the extractant phase and is subsequently precipitated by treating the extractant with an aqueous fluoride solution. The highly pure uranous tetrafluoride precipitate is separated from the phases and recovered for subsequent utilization. (AEC)

Magner, J.E.; Long, R.S.; Ellis, D.A.; Grinstead, R.R.

1962-04-17T23:59:59.000Z

54

PREPARATION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

1959-10-01T23:59:59.000Z

55

CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE  

DOE Patents (OSTI)

A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

Fried, S.; Davidson, N.R.

1957-09-10T23:59:59.000Z

56

Transportation Impact Assessment for Shipment of Uranium Hexafluoride (UF<sub>6</sub>) Cylinders from the East Tennessee Technology Park to the Portsmouth and Paducah Gaseous Diffusion  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Transportation Impact Assessment for Shipment of Uranium Hexafluoride (UF 6 ) Cylinders from the East Tennessee Technology Park to the Portsmouth and Paducah Gaseous Diffusion Plants Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering

57

Method and apparatus for measuring enrichment of UF6  

DOE Patents (OSTI)

A system and method are disclosed for determining the enrichment of .sup.235U in Uranium Hexafluoride (UF6) utilizing synthesized X-rays which are directed at a container test zone containing a sample of UF6. A detector placed behind the container test zone then detects and counts the X-rays which pass through the container and the UF6. In order to determine the portion of the attenuation due to the UF6 gas alone, this count rate may then be compared to a calibration count rate of X-rays passing through a calibration test zone which contains a vacuum, the test zone having experienced substantially similar environmental conditions as the actual test zone. Alternatively, X-rays of two differing energy levels may be alternately directed at the container, where either the container or the UF6 has a high sensitivity to the difference in the energy levels, and the other having a low sensitivity.

Hill, Thomas Roy (Santa Fe, NM); Ianakiev, Kiril Dimitrov (Los Alamos, NM)

2011-06-07T23:59:59.000Z

58

FAQ 12-What are the hazards associated with uranium hexafluoride...  

NLE Websites -- All DOE Office Websites (Extended Search)

hazards associated with uranium hexafluoride? What are the hazards associated with uranium hexafluoride? The characteristics of UF6 pose potential health risks, and the material is...

59

uranium hexafluoride - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. ... UF 6 is the form of uranium required for the enrichment process. Thank You.

60

Production and Handling Slide 5: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Refer to caption below for image description The third step in the uranium fuel cycle involves the conversion of "yellowcake" to uranium hexafluoride (UF6), the chemical form...

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DEVELOPMENT OF THE CONTINUOUS METHOD FOR THE REDUCTION OF URANIUM HEXAFLUORIDE WITH HYDROGEN-PROCESS DEVELOPMENT. HOT WALL REACTOR  

DOE Green Energy (OSTI)

>A continuous process for the reduction of uranium hexafluoride to uranium tetrafluoride was developed and proved on a pilot-plant scale. Complete conversion to uranium tetrafluoride was realized by contacting gaseous uranium hexafluoride with hydrogen in a heated, vertical, open-tube reactor. The purity and density of the solid product met metal grade uranium tetrafluoride specifications. Some difficulty with the accumulation of fused uranium fluorides in the tower was encountered, however, and it was necessary to stop and desing the unit about every 8 to 24 hours. The reaction of uranium hexafluoride with gaseous trichloroethylene was stadied before the tests with hydrogen were made. Although the reduction to uranium tetrafluoride was complete, the solid product was highly contaminated with the organic by-products of the reaction and was quite low in density. Tests of this method were discontinued when promising results were obtained with hydrogen as the reductant. (auth)

Smiley, S H; Brater, D C

1958-06-27T23:59:59.000Z

62

NGSI: IAEA Verification of UF6 Cylinders  

Science Conference Proceedings (OSTI)

The International Atomic Energy Agency (IAEA) is often ignorant of the location of declared, uranium hexafluoride (UF6) cylinders following verification, because cylinders are not typically tracked onsite or off. This paper will assess various methods the IAEA uses to verify cylinder gross defects, and how the task could be ameliorated through the use of improved identification and monitoring. The assessment will be restricted to current verification methods together with one that has been applied on a trial basisshort-notice random inspections coupled with mailbox declarations. This paper is part of the NNSA Office of Nonproliferation and International Securitys Next Generation Safeguards Initiative (NGSI) program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF6 cylinders.

Curtis, Michael M.

2012-06-05T23:59:59.000Z

63

FAQ 7-How is depleted uranium produced?  

NLE Websites -- All DOE Office Websites (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

64

PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES  

DOE Patents (OSTI)

A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

Hamilton, N.E.

1957-12-01T23:59:59.000Z

65

Chemical Forms of Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

such as water vapor in the air, the UF6 and water react, forming corrosive hydrogen fluoride (HF) and a uranium-fluoride compound called uranyl fluoride (UO2F2). For this reason,...

66

Environmental Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

67

FAQ 9-Where does uranium hexafluoride come from?  

NLE Websites -- All DOE Office Websites (Extended Search)

hexafluoride come from? Where does uranium hexafluoride come from? The gaseous diffusion process used to enrich uranium requires uranium in the form of UF6. In the first step of...

68

Environmental Risks of Depleted UF6 Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Disposal A discussion of the environmental impacts...

69

Investigation of breached depleted UF{sub 6} cylinders  

Science Conference Proceedings (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

70

Corrosion of breached UF[sub 6] storage cylinders  

Science Conference Proceedings (OSTI)

This paper describes the corrosion processes that occurred following the mechanical failure of two steel 14-ton storage cylinders containing depleted UF[sub 6]. The failures both were traced to small mechanical tears that occurred during stacking of the cylinders. Although subsequent corrosion processes greatly extended the openings in the wall. the reaction products formed were quite protective and prevented any significant environmental insult or loss of uranium. The relative sizes of the two holes correlated with the relative exposure times that had elapsed from the time of stacking. From the sizes and geometries of the two holes, together with analyses of the reaction products, it was possible to determine the chemical reactions that controlled the corrosion process and to develop a scenario for predicting the rate of hydrolysis of UF[sub 6], the loss rate of HF, and chemical attack of a breached UF[sub 6] storage cylinder.

Barber, E.J.; Taylor, M.S.; DeVan, J.H.

1993-01-01T23:59:59.000Z

71

Investigation of breached depleted UF sub 6 cylinders  

Science Conference Proceedings (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

72

Corrosion of breached UF{sub 6} storage cylinders  

Science Conference Proceedings (OSTI)

This paper describes the corrosion processes that occurred following the mechanical failure of two steel 14-ton storage cylinders containing depleted UF{sub 6}. The failures both were traced to small mechanical tears that occurred during stacking of the cylinders. Although subsequent corrosion processes greatly extended the openings in the wall. the reaction products formed were quite protective and prevented any significant environmental insult or loss of uranium. The relative sizes of the two holes correlated with the relative exposure times that had elapsed from the time of stacking. From the sizes and geometries of the two holes, together with analyses of the reaction products, it was possible to determine the chemical reactions that controlled the corrosion process and to develop a scenario for predicting the rate of hydrolysis of UF{sub 6}, the loss rate of HF, and chemical attack of a breached UF{sub 6} storage cylinder.

Barber, E.J.; Taylor, M.S.; DeVan, J.H.

1993-02-01T23:59:59.000Z

73

Health Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

74

METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS  

DOE Patents (OSTI)

A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

Piper, R.D.

1962-09-01T23:59:59.000Z

75

METHOD FOR THE REDUCTION OF URANIUM COMPOUNDS  

DOE Patents (OSTI)

An improved technique of preparing massive metallic uranium by the reaction at elevated temperature between an excess of alkali in alkaline earth metal and a uranium halide, such ss uranium tetrafluoride is presented. The improvement comprises employing a reducing atmosphere of hydrogen or the like, such as coal gas, in the vessel during the reduction stage and then replacing the reducing atmosphere with argon gas prior to cooling to ambient temperature.

Cooke, W.H.; Crawford, J.W.C.

1959-05-12T23:59:59.000Z

76

Investigation of technology for monitoring UF/sub 6/ mass flow  

DOE Green Energy (OSTI)

The applicability of gas flow meters, in-line enrichment monitors, and instruments for measuring uranium or UF/sub 6/ concentrations in process streams as a means for verifying declared plant throughput have been investigated. The study was performed to assist the International Atomic Energy Agency in the development of an effective international safeguards approach for aerodynamic uranium enrichment plants. Because the process gas in an aerodynamic enrichment facility is a mixture of UF/sub 6/ and H/sub 2/, a mass flow measurement in conjunction with a measurement of the uranium (or UF/sub 6/) concentration in the process gas is required to quantify the amount of uranium being fed into, and withdrawn from, the cascades for nuclear materials accountability verification. In-line enrichment monitors developed for the US gas centrifuge enrichment plant are found to be applicable only to pure UF/sub 6/ streams. Of the five gas flow meters evaluated, the orifice meter and the pitot tube meter are judged the best choices for the proposed applications: the first is recommended for low-velocity gas, small diameter piping; the latter, for high-velocity gas, large diameter piping. Of the six procedures evaluated for measurement of uranium or UF/sub 6/ concentration in a mixed process stream, infrared-ultraviolet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement. 4 refs., 3 figs., 3 tabs.

Cooley, J.N.; Moran, B.W.; Swindle, D.W. Jr.

1987-06-01T23:59:59.000Z

77

Depleted UF6 Internet Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home Internet Resources Depleted UF6 Internet Resources Links...

78

CONTINUOUS PROCESS FOR THE CONVERSION OF UF$sub 6$ TO UF$sub 4$  

DOE Patents (OSTI)

A method is presented for reducing UF/sub 6/ to UF/sub 6/ with hydrogen. A preheated mixture of UF/sub 6/ and fluorine is contacted with a stoichiometric excess of preheated hydrogen in a reaction chamber thereby producing UF/sub 6/. The UF/sub 6/ reacts quantitatively and the UF/sub 6/ produced is of high purity and high density.

Smiley, S.H.; Brater, D.C.; Nimmo, R.H.

1959-10-01T23:59:59.000Z

79

Uranium Marketing Annual Report - Release Date: May 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

4. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and material type, 2012 deliveries 4. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and material type, 2012 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries Uranium Concentrate Natural UF6 Enriched UF6 Natural UF6 and Enriched UF6 Total U.S.-Origin Uranium Purchases W W W W 9,807 Weighted-Average Price W W W W 59.44 Foreign-Origin Uranium Purchases W W W W 47,713 Weighted-Average Price W W W W 54.07 Total Purchases 28,642 W W 28,878 57,520 Weighted-Average Price 54.20 W W 55.80 54.99 W = Data withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum of components because of independent rounding. Weighted-average prices are not adjusted for inflation. Natural UF6 is uranium hexafluoride. The natural UF6 and enriched UF6 quantity represents only the U3O8 equivalent uranium-component quantity specified in the contract for each delivery of natural UF6 and enriched UF6. The natural UF6 and enriched UF6 weighted-average price represent only the U3O8 equivalent uranium-component price specified in the contract for each delivery of natural UF6 and enriched UF6, and does not include the conversion service and enrichment service components.

80

FAQ 19-Is storage of uranium hexafluoride safe?  

NLE Websites -- All DOE Office Websites (Extended Search)

storage of uranium hexafluoride safe? Is storage of uranium hexafluoride safe? The advanced age of some of the steel cylinders in which the depleted UF6 is contained, and the way...

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

METHOD FOR RECOVERING URANIUM FROM OILS  

DOE Patents (OSTI)

A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

Gooch, L.H.

1959-07-14T23:59:59.000Z

82

The determination of UO/sub 2/ and UF/sub 4/ in fused fluoride salts  

Science Conference Proceedings (OSTI)

The determination of uranium oxide solubilities in fused fluoride salts is important in the electrolytic preparation of uranium metal. This project was initiated to develop a method for the determination of UO/sub 2/ separately from UF/sub 4/ in UF/sub 4/-CaF/sub 2/-LiF fused salts. Previous methods used for the determination of UO/sub 2/ in fused fluoride salts involved inert gas fusions where oxygen was liberated as CO/sub 2/, and hydrofluorination where oxygen was released as H/sub 2/O; but the special equipment used for these procedures was no longer available. These methods assumed that all of the oxygen liberated was due to UO/sub 2/ and does not consider impurities from reagents and other oxygen sources that amount to a bias of approximately 0.3 wt %. This titrimetric method eliminates the bias by selectively extracting the UF/sub 4/ with a Na/sub 2/EDTA-H/sub 3/BO/sub 3/ solution. The remaining uranium oxide residue is treated and titrated gravimetrically to a potentiometric endpoint with NBS standard K/sub 2/Cr/sub 2/O/sub 7/. An aliquot of the Na/sub 2/EDTA-H/sub 3/BO/sub 3/ extract is also titrated gravimetrically to a potentiometric endpoint, this uranium component is determined and calculated as UF/sub 4/. 4 refs., 2 figs., 2 tabs.

Batiste, D.J.; Lee, D.A.

1989-01-01T23:59:59.000Z

83

HEU to LEU Conversion and Blending Facility: UF{sub 6} blending alternative to produce LEU UF{sub 6} for commercial use  

Science Conference Proceedings (OSTI)

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF{sub 6} to produce a UF{sub 6} product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF{sub 6} blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

NONE

1995-09-01T23:59:59.000Z

84

PROCESS FOR PRODUCING URANIUM HALIDES  

DOE Patents (OSTI)

A process amd associated apparatus for producing UF/sub 4/ from U/sub 3/ O/sub 8/ by a fluidized'' technique are reported. The U/sub 3/O/sub 8/ is first reduced to UO/sub 2/ by reaction with hydrogen, and the lower oxide of uranium is then reacted with gaseous HF to produce UF/sub 4/. In each case the reactant gas is used, alone or in combination with inert gases, to fluidize'' the finely divided reactant solid. The complete setup of the plant equipment including bins, reactor and the associated piping and valving, is described. An auxiliary fluorination reactor allows for the direct production of UF/sub 6/ from UF/sub 4/ and fluorine gas, or if desired, UF/sub 4/ may be collected as the product.

Murphree, E.V.

1957-10-29T23:59:59.000Z

85

Method for converting UF5 to UF4 in a molten fluoride salt  

DOE Green Energy (OSTI)

The reduction of UF.sub.5 to UF.sub.4 in a molten fluoride salt by sparging with hydrogen is catalyzed by metallic platinum. The reaction is also catalyzed by platinum alloyed with gold reaction equipment.

Bennett, Melvin R. (Oak Ridge, TN); Bamberger, Carlos E. (Oak Ridge, TN); Kelmers, A. Donald (Oak Ridge, TN)

1977-01-01T23:59:59.000Z

86

Met and Mat Trans Abstracts A: October 1997  

Science Conference Proceedings (OSTI)

... obtained from basic research, which is highly focused on the requirements of the ..... by nucleation at the interface of matrix/vanadium-enriched large carbides, ... tested in both liquid and gaseous uranium tetrafluoride (UF4) at temperature...

87

Production and Handling Slide 35: UF6 Cylinder Data Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 Cylinder Data Summary UF6 Cylinder Data Summary Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Cylinder Data Summary Cylinder Model Nominal Diam. (in.) Material of Construction Minimum Volume Approximate Tare Weight Without Valve Protector Maximum Enrichment Uranium-235 Shipping Limit Maximum, a UF6 ft3 liters lb kg Weight % lb kg 1S 1.5 Nickel 0.0053 0.15 1.75 0.79 100.00 1.0 0.45 2S .5 Nickel 0.026 0.74 4.2 1.91 100.00 4.9 2.22 5A 5 Monel 0.284 8.04 55 25 100.00 55 24.95 5B 5 Nickel 0.284 8.04 55 25 100.00 55 24.95 8A 8 Monel 1.319 37.35 120 54 12.5 255 115.67 12A 12 Nickel 2.38 67.4 185 84 5.0 460 208.7 12B 12 Monel 2.38 67.4 185 84 5.0 460 208.7 308c 30 Steel 26.0 736.0 1,400 635 5.0b 5,020 2,277 48A 48 Steel 108.9 3,.84 4,500 2,041 4.5b 21,030 9,539 48Xd 48 Steel 108.9 3,084 4,500 2,041 4.5b,g 21,030 9,539 48F 48 Steel

88

Valve studies: Hydrogen fluoride monitoring of UF{sub 6} cylinder valves  

Science Conference Proceedings (OSTI)

Uranium hexafluoride (UF{sub 6}) cylinder valves have, like the cylinders, been in use and/or storage for periods ranging from 15 to 44 years. Visual inspection of the cylinders has shown that the extent of corrosion and the overall cylinder condition varies widely throughout the storage yards. One area of concern is the integrity of the cylinder valves. Visual inspection has found deposits which have been identified as radioactive material on or near the valves. These deposits suggest leakage of UF{sub 6} and may indicate valve degradation; however, these deposits may simply be residual material from cylinder filling operations.

Leedy, R.R.; Ellis, A.R.; Hoffmann, D.P.; Marsh, G.C. [and others

1996-08-01T23:59:59.000Z

89

Standard test method for determination of bromine and chlorine in UF6 and uranyl nitrate by X-Ray fluorescence (XRF) spectroscopy  

E-Print Network (OSTI)

1.1 This method covers the determination of bromine (Br) and chlorine (Cl) in uranium hexafluoride (UF6) and uranyl nitrate solution. The method as written covers the determination of bromine in UF6 over the concentration range of 0.2 to 8 ?g/g, uranium basis. The chlorine in UF6 can be determined over the range of 4 to 160 ?g/g, uranium basis. Higher concentrations may be covered by appropriate dilutions. The detection limit for Br is 0.2 ?g/g uranium basis and for Cl is 4 ?g/g uranium basis. 1.2 This standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2001-01-01T23:59:59.000Z

90

Video: Metamorphosis (Physical Characteristics of Uranium Hexafluoride)  

NLE Websites -- All DOE Office Websites (Extended Search)

Metamorphosis Metamorphosis Metamorphosis (Physical Characteristics of Uranium Hexafluoride) The Uranium Hexafluoride phase diagram is investigated. An experimental setup is shown to look at the gas, liquid, and solid phases at various temperatures and pressures. This information is used to understand what happens inside a DUF6 storage cylinder. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:12 Metamorphosis from the U.S. Department of Energy Video 00:45 Laboratory setup to examine the phases of UF6 Video 01:45 UF6 Phase Diagram Video 03:25 Liquid UF6 appearing in a glass tube Video 03:38 Cloud of HF from moisture reaction dissolving in UF6 gas Video 04:27 Beginning of UF6 phase change from liquid to solid Video 04:40 Formation of porous solid structure

91

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 2012 Uranium Marketing Annual Report Release Date: May 16, 2013 Next Release Date: May 2014 Deliveries Uranium Concentrate Natural UF 6 Enriched UF 6 Natural UF 6 and Enriched UF 6 Total Purchases W W W W 9,807 Weighted-Average Price W W W W 59.44 Purchases W W W W 47,713 Weighted-Average Price W W W W 54.07 Purchases 28,642 W W 28,878 57,520 Weighted-Average Price 54.20 W W 55.80 54.99 Notes: Totals may not equal sum of components because of independent rounding. Weighted-average prices are not adjusted for inflation. Natural UF 6 is uranium hexafluoride. The natural UF 6 and enriched UF 6 quantity represents only the U 3 O 8 equivalent uranium-component quantity specified in the contract for each delivery of natural UF 6 and enriched UF 6 . The natural UF 6 and enriched UF 6 weighted-average price represent only the U

92

Conceptual Ideas for New Nondestructive UF6 Cylinder Assay Techniques  

SciTech Connect

Nondestructive assay (NDA) measurements of uranium cylinders play an important role in helping the International Atomic Energy Agency (IAEA) safeguard uranium enrichment plants. Traditionally, these measurements have consisted of a scale or load cell to determine the mass of UF{sub 6} in the cylinder combined with a gamma-ray measurement of the 186 keV peak from {sup 235}U to determine enrichment. More recently, Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL) have developed systems that exploit the passive neutron signal from UF{sub 6} to determine uranium mass and/or enrichment. These include the Uranium Cylinder Assay System (UCAS), the Passive Neutron Enrichment Meter (PNEM), and the Hybrid Enrichment Verification Array (HEVA). The purpose of this report is to provide the IAEA with new ideas on technologies that may or may not be under active development but could be useful for UF{sub 6} cylinder assay. To begin, we have included two feasibility studies of active interrogation techniques. There is a long history of active interrogation in the field of nuclear safeguards, especially for uranium assay. Both of the active techniques provide a direct measure of {sup 235}U content. The first is an active neutron method based on the existing PNEM design that uses a correlated {sup 252}Cf interrogation source. This technique shows great promise for UF{sub 6} cylinder assay and is based on advanced technology that could be implemented in the field in the near term. The second active technique is nuclear resonance fluorescence (NRF). In the NRF technique, a bremsstrahlung photon beam could be used to illuminate the cylinder, and high-resolution gamma-ray detectors would detect the characteristic de-excitation photons. The results of the feasibility study show that under certain measurement geometries, NRF is impractical for UF6 cylinder assay, but the 'grazing transmission' and 'secant transmission' geometries have more potential for this application and should be assessed quantitatively. The next set of techniques leverage scintillator detectors that are sensitive to both neutron and gamma radiation. The first is the BC-523A capture-gated organic liquid scintillator. The detector response from several different neutron energies has been characterized and is included in the study. The BC-523A has not yet been tested with UF{sub 6} cylinders, but the application appears to be well suited for this technology. The second detector type is a relatively new inorganic scintillator called CLYC. CLYC provides a complementary detection approach to the HEVA and PNEM systems that could be used to determine uranium enrichment in UF{sub 6} cylinders. In this section, the conceptual idea for an integrated CLYC-HEVA/PNEM system is explored that could yield more precision and robustness against systemic uncertainties than any one of the systems by itself. This is followed by a feasibility study on using alpha-particle-induced reaction gamma-rays as a way to estimate {sup 234}U abundance in UF{sub 6}. Until now, there has been no readily available estimate of the strength of these reaction gamma-rays. Thick target yields of the chief reaction gammas are computed and show that they are too weak for practical safeguards applications. In special circumstances where long count times are permissible, the 1,275 keV F({alpha},x{gamma}) is observable. Its strength could help verify an operator declaration provided other knowledge is available (especially the age). The other F({alpha},x{gamma}) lines are concealed by the dominant uranium line spectrum and associated continuum. Finally, the last section provides several ideas for electromagnetic and acoustic nondestructive evaluation (NDE) techniques. These can be used to measure cylinder wall thickness, which is a source of systematic uncertainty for gamma-ray-based NDA techniques; characterize the UF{sub 6} filling profile inside the cylinder, which is a source of systematic uncertainty for neutron-based NDA techniques; locate hidden objects inside the cylinder; a

Miller, Karen A. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

93

Advancements of the Hybrid Method UF6 Container Inspection System  

Science Conference Proceedings (OSTI)

Safeguards inspectors currently visit uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution detectors on a limited number of cylinders taken to be representative of the plants cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute. Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter data (186 keV photons from 235U) and non-traditional, neutron-induced, high-energy gamma-ray signatures (3-8 MeV) with an array of collimated, medium-resolution scintillators. Previous work at PNNL (2010) demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term, unattended operations. This system aims to increase the number of inspected cylinders at higher accuracy and with lower cost than when compared to inspectors with hand-held instruments. Several measurement campaigns of 30B cylinder populations and a refined MCNP model will be reported. The MCNP model consists of per-gram basis vectors for the different uranium isotopes and several fill geometries, enabling fast generation of any UF6 enrichment level and multiple configurations. The refined model was used to optimize collimator design and detector configuration for the hybrid method. In addition, a new field prototype based on model results was utilized in a set of field measurements.

Mace, Emily K.; Orton, Christopher R.; Jordan, David V.; McDonald, Benjamin S.; Smith, Leon E.

2011-07-17T23:59:59.000Z

94

Production and Handling Slide 22: UF6 Phase Diagram  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 Phase Diagram Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Phase Diagram Refer to caption below for image...

95

Production and Handling Slide 31: Certification of UF6 Cylinder...  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 Cylinder Volume Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Certification of UF6 Cylinder Volume The cylinder...

96

Video: The Inside Story (of a Depleted Uranium Hexafluoride Cylinder)  

NLE Websites -- All DOE Office Websites (Extended Search)

Inside Story Inside Story The Inside Story The Inside Story (of a Depleted Uranium Hexafluoride Cylinder) Probes are used to look at the inside of a Uranium Hexafluoride cylinder. The distribution and structure of the contents are discussed. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:42 10 ton 48Xcylinder of UF6 Video 01:19 Liquid UF6 filling 95% of cylinder volume Video 02:15 Liquid UF6 Video 02:23 Beginning of UF6 phase change from liquid to solid Video 02:32 Solid UF6 Video 03:00 Probe and instrument to investigate inside cylinder Video 04:09 Workers preparing to insert TV camera probe into 48X cylinder containing 10 tons of solid UF6 Video 04:28 Inner surface of head of cylinder showing no corrosion

97

FAQ 17-Where is uranium hexafluoride stored in the United States...  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is uranium hexafluoride stored in the United States? Where is uranium hexafluoride stored in the United States? Most of the depleted UF6 accumulated since the 1940s is stored...

98

UF in Belize Wildlife Ecology & Conservation  

E-Print Network (OSTI)

UF in Belize Wildlife Ecology & Conservation Spring Break March 1-9, 2014 Understand Ecology and Conservation. Explain Concepts and Terms. Compare and Contrast Wildlife Ecology, Habitat, and Conservation & Life Sciences Department of Wildlife Ecology and Conservation Courses are taught by UF faculty WIS4905

Watson, Craig A.

99

Determination of the 235U Mass and Enrichment within Small UF6 Cylinders via a Neutron Coincidence Well Counting System  

Science Conference Proceedings (OSTI)

The construction of three new uranium enrichment facilities in the United States has sparked renewed interest in the development and enhancement of methods to determine the enrichment and fissile mass content of UF6 cylinders. We describe the design and examine the expected performance of a UF6 bottle counter developed for the assay of Type 5A cylinders. The counter, as designed and subsequently constructed, is a tall passive neutron well counter with a clam-shell configuration and graphite end plugs operated in fast neutron mode. Factory performance against expectation is described. The relatively high detection efficiency and effectively 4 detection geometry provide a near-ideal measurement configuration, making the UF6 bottle counter a valuable tool for the evaluation of the neutron coincidence approach to UF6 cylinder assay. The impacts of non-uniform filling, voids, enrichment, and mixed enrichments are examined

McElroy, Robert Dennis [ORNL; Croft, Dr. Stephen [Los Alamos National Laboratory (LANL); Young, Brian M [Canberra Industries, Inc., Meriden, CT; Venkataraman, Ram [Canberra Industries, Inc., Meriden, CT

2011-01-01T23:59:59.000Z

100

Integrating UF6 Cylinder RF Tracking With Continuous Load Cell Monitoring for Verifying Declared UF6 Feed and Withdrawal Operations Verifying Declared UF6 Feed and Withdrawal Operations  

SciTech Connect

Oak Ridge National Laboratory is demonstrating the integration of UF6 cylinder tracking, using RF technology, with continuous load cell monitoring (CLCM) at mock UF6 feed and withdrawal (F&W) stations. CLCM and cylinder tracking are two of several continuous-monitoring technologies that show promise in providing integrated safeguards of F&W operations at enrichment plants. Integrating different monitoring technologies allows advanced, automated event processing to screen innocuous events thereby minimizing false alerts to independent inspectors. Traditionally, international inspectors rely on batch verification of material inputs and outputs derived from operator declarations and periodic on-site inspections at uranium enrichment plants or other nuclear processing facilities. Continuously monitoring F&W activities between inspections while providing filtered alerts of significant operational events will substantially increase the amount of valuable information available to inspectors thereby promising to enhance the effectiveness of safeguards and to improve efficiency in conducting on-site inspections especially at large plants for ensuring that all operations are declared.

Krichinsky, Alan M [ORNL; Miller, Paul [ORNL; Pickett, Chris A [ORNL; Richardson, Dave [ORNL; Rowe, Nathan C [ORNL; Whitaker, J Michael [ORNL; Younkin, James R [ORNL

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EA-1290: Disposition of Russian Federation Titled Natural Uranium |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

290: Disposition of Russian Federation Titled Natural Uranium 290: Disposition of Russian Federation Titled Natural Uranium EA-1290: Disposition of Russian Federation Titled Natural Uranium SUMMARY This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United States to the Russian Federation. This amount of uranium is equivalent to 13,3000 metric tons of UF6. The EA also examines the impacts of this action on the global commons. Transfer of natural UF6 to the Russian Federation is part of a joint U.S./Russian program to dispose of highly enriched uranium (HEU) from dismantled Russian nuclear weapons. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD

102

Ultra-low field NMR for detection and characterization of 235 UF6  

SciTech Connect

We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

Espy, Michelle A [Los Alamos National Laboratory; Magnelind, Per E [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Urbaitis, Algis V [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

103

Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1  

SciTech Connect

This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

1995-07-05T23:59:59.000Z

104

Standard specification for uranium hexafluoride enriched to less than 5 % 235U  

E-Print Network (OSTI)

1.1 This specification covers nuclear grade uranium hexafluoride (UF6) that either has been processed through an enrichment plant, or has been produced by the blending of Highly Enriched Uranium with other uranium to obtain uranium of any 235U concentration below 5 % and that is intended for fuel fabrication. The objectives of this specification are twofold: (1) To define the impurity and uranium isotope limits for Enriched Commercial Grade UF6 so that, with respect to fuel design and manufacture, it is essentially equivalent to enriched uranium made from natural UF6; and (2) To define limits for Enriched Reprocessed UF6 to be expected if Reprocessed UF6 is to be enriched without dilution with Commercial Natural UF6. For such UF6, special provisions, not defined herein, may be needed to ensure fuel performance and to protect the work force, process equipment, and the environment. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched UF6 that is to be used in the pro...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

105

FAQ 16-How much depleted uranium hexafluoride is stored in the United  

NLE Websites -- All DOE Office Websites (Extended Search)

How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? U.S. DOE's inventory of depleted UF6 consists of approximately 700,000 metric tons of depleted UF6, containing about 470,000 metric tons of uranium, currently stored at the Paducah Site in Kentucky, the Portsmouth Site in Ohio, and the East Tennessee Technology Park (ETTP) in Tennessee (formerly known as the K-25 Site). This inventory of depleted UF6 is stored in about 57,000 steel cylinders. The inventory is listed in the table below. DOE Inventory of Depleted UF6 Location Total Cylinders Total Depleted UF6 (metric tons) Paducah, Kentucky 36,191 436,400 Portsmouth, Ohio 16,109 195,800 Oak Ridge, Tennessee 4,822 54,300

106

Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage  

DOE Patents (OSTI)

An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

Horton, J.A.; Hayden, H.W. Jr.

1995-05-30T23:59:59.000Z

107

Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage  

DOE Patents (OSTI)

An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

Horton, James A. (Livermore, CA); Hayden, Jr., Howard W. (Oakridge, TN)

1995-01-01T23:59:59.000Z

108

METHOD OF PRODUCING URANIUM  

DOE Patents (OSTI)

A modified process is described for the production of uranium metal by means of a bomb reduction of UF/sub 4/. Difficulty is sometimes experienced in obtaining complete separation of the uranium from the slag when the process is carried out on a snnall scale, i.e., for the production of 10 grams of U or less. Complete separation may be obtained by incorporating in the reaction mixture a quantity of MnCl/sub 2/, so that this compound is reduced along with the UF/sub 4/ . As a result a U--Mn alloy is formed which has a melting point lower than that of pure U, and consequently the metal remains molten for a longer period allowing more complete separation from the slag.

Foster, L.S.; Magel, T.T.

1958-05-13T23:59:59.000Z

109

Depleted Uranium Uses Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

DU Uses DU Uses Depleted Uranium Uses Research & Development A Depleted Uranium Uses Research and Development Program was initiated to explore beneficial uses of depleted uranium (DU) and other materials resulting from conversion of depleted UF6. A Depleted Uranium Uses Research and Development Program was initiated to explore the safe, beneficial use of depleted uranium and other materials resulting from conversion of depleted UF6 (e.g., fluorine and empty carbon steel cylinders) for the purposes of resource conservation and cost savings compared with disposal. This program explored the risks and benefits of several depleted uranium uses, including uses as a radiation shielding material, a catalyst, and a semi-conductor material in electronic devices.

110

Production and Handling Slide 33: Density of UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

of UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Density of UF6 Refer to caption below for image description The...

111

Production and Handling Slide 20: Advantages of UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Advantages of UF6 Only one isotope of F2 Can be handled at reasonable...

112

Unsubscribe from the Depleted UF6 E-mail List  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Unsubscribe Unsubscribe from the Depleted UF6 E-mail List This form allows you to remove yourself from the Depleted UF6 e-mail list. Type your e-mail address here:...

113

Depleted uranium plasma reduction system study  

Science Conference Proceedings (OSTI)

A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

1994-12-01T23:59:59.000Z

114

Neutron methods for measuring {sup 235}U content in UF{sub 6} gas  

SciTech Connect

In the United States and Russia, UF{sub 6} gas streams of highly enriched uranium and lower enrichment uranium am being blended to reduce the stockpile of the highly enriched material. The resultant uranium is no longer useful for weapons, but is suitable as fuel for nuclear reactors. A method to verify the blending of high- and low-enrichment uranium was developed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy, Office of Research and Development (NN-20). In the United States, blending occurs at the U.S. Department of Energy`s Portsmouth Gaseous Diffusion Plant located near Portsmouth, Ohio. In Russia, the blending takes place at Novouralsk. The United States is purchasing the blended product produced in Russia in a program to reduce the availability of enriched uranium that can be used for weapons production. Monitoring the {sup 235}U mass flux of the input stream having the highly enriched uranium will provide confidence that high-enrichment uranium is being consumed in the blending process, and monitoring the output stream will provide an on-line measure of the {sup 235}U in the mixed product. The Portsmouth plant is a potential test facility for non-destructive technology to monitor blending. In addition, monitoring the blending at Portsmouth can support International Atomic Energy Agency activities on controlling and reducing enriched uranium stockpiles.

Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Pappas, R.A.; Sunberg, D.S.

1996-10-01T23:59:59.000Z

115

Next Generation Safeguards Initiative: Overview and Policy Context of UF6 Cylinder Tracking Program  

Science Conference Proceedings (OSTI)

Thousands of cylinders containing uranium hexafluoride (UF{sub 6}) move around the world from conversion plants to enrichment plants to fuel fabrication plants, and their contents could be very useful to a country intent on diverting uranium for clandestine use. Each of these large cylinders can contain close to a significant quantity of natural uranium (48Y cylinder) or low-enriched uranium (LEU) (30B cylinder) defined as 75 kg {sup 235}U which can be further clandestinely enriched to produce 1.5 to 2 significant quantities of high enriched uranium (HEU) within weeks or months depending on the scale of the clandestine facility. The National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) kicked off a 5-year plan in April 2011 to investigate the concept of a unique identification system for UF{sub 6} cylinders and potentially to develop a cylinder tracking system that could be used by facility operators and the International Atomic Energy Agency (IAEA). The goal is to design an integrated solution beneficial to both industry and inspectorates that would improve cylinder operations at the facilities and provide enhanced capabilities to deter and detect both diversion of low-enriched uranium and undeclared enriched uranium production. The 5-year plan consists of six separate incremental tasks: (1) define the problem and establish the requirements for a unique identification (UID) and monitoring system; (2) develop a concept of operations for the identification and monitoring system; (3) determine cylinder monitoring devices and technology; (4) develop a registry database to support proof-of-concept demonstration; (5) integrate that system for the demonstration; and (6) demonstrate proof-of-concept. Throughout NNSA's performance of the tasks outlined in this program, the multi-laboratory team emphasizes that extensive engagement with industry stakeholders, regulatory authorities and inspectorates is essential to its success.

Boyer, Brian D [Los Alamos National Laboratory; Whitaker, J. Michael [ORNL; White-Horton, Jessica L. [ORNL; Durbin, Karyn R. [NNSA

2012-07-12T23:59:59.000Z

116

UF in Belize Marine Ecology and Conservation  

E-Print Network (OSTI)

UF in Belize Marine Ecology and Conservation Spring Extended: May 26-June 2, 2014 Understand Marine Ecology and Conservation. Explain Marine Ecology, Habitat, and Conservation Terms as they Relate to the Tropics of Belize. Compare and Contrast Marine Ecology, Habitat, and Conservation Principles and Practices

Florida, University of

117

Sustainable Energy Policy University Facilities (UF)  

E-Print Network (OSTI)

Sustainable Energy Policy University Facilities (UF) POLICY 10 Effective Date: August 11, 2008 Last of this policy is to create a realistic and comprehensive document that identifies energy and water conservation that will be taken to address these issues and reach the energy efficiency goals of the University. This policy

Stuart, Steven J.

118

A "Proof-of-Concept" Demonstration of RF-Based Technologies for UF6 Cylinder Tracking at Centrifuge Enrichment Plant  

SciTech Connect

This effort describes how radio-frequency (RF) technology can be integrated into a uranium enrichment facility's nuclear materials accounting and control program to enhance uranium hexafluoride (UF6) cylinder tracking and thus provide benefits to both domestic and international safeguards. Approved industry-standard cylinders are used to handle and store UF6 feed, product, tails, and samples at uranium enrichment plants. In the international arena, the International Atomic Energy Agency (IAEA) relies on time-consuming manual cylinder inventory and tracking techniques to verify operator declarations and to detect potential diversion of UF6. Development of a reliable, automated, and tamper-resistant process for tracking and monitoring UF6 cylinders would greatly reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a "proof-of concept" system that was designed show the feasibility of using RF based technologies to track individual UF6 cylinders throughout their entire life cycle, and thus ensure both increased domestic accountability of materials and a more effective and efficient method for application of IAEA international safeguards at the site level. The proposed system incorporates RF-based identification devices, which provide a mechanism for a reliable, automated, and tamper-resistant tracking network. We explore how securely attached RF tags can be integrated with other safeguards technologies to better detect diversion of cylinders. The tracking system could also provide a foundation for integration of other types of safeguards that would further enhance detection of undeclared activities.

Pickett, Chris A [ORNL; Younkin, James R [ORNL; Kovacic, Donald N [ORNL; Dixon, E. T. [Los Alamos National Laboratory (LANL); Martinez, B. [Los Alamos National Laboratory (LANL)

2007-01-01T23:59:59.000Z

119

Conversion of depleted uranium hexafluoride to a solid uranium compound  

DOE Patents (OSTI)

A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2001-01-01T23:59:59.000Z

120

Overview of Depleted Uranium Hexafluoride Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Sorption of Np and Tc in Underground Waters by Uranium Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

worldwide. As a rule DUF 6 is stored in steel cylinders near power stations 1,2 in Russia, and at uranium en- richment plants in the U.S. It is desirable to convert the UF 6 to...

122

Depleted UF6 Conversion facility EIS Topics  

NLE Websites -- All DOE Office Websites (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

123

Removal of fluoride impurities from UF/sub 6/ gas  

DOE Patents (OSTI)

A method of purifying a UF/sub 6/ gas stream containing one or more metal fluoride impurities composed of a transuranic metal, transition metal or mixtures thereof, is carried out by contacting the gas stream with a bed of UF/sub 5/ in a reaction vessel under conditions where at least one impurity reacts with the UF/sub 5/ to form a nongaseous product and a treated gas stream, and removing the treated gas stream from contact with the bed. The nongaseous products are subsequently removed in a reaction with an active fluorine affording agent to form a gaseous impurity which is removed from the reaction vessel. The bed of UF/sub 5/ is formed by the reduction of UF/sub 6/ in the presence of uv light. One embodiment of the reaction vessel includes a plurality of uv light sources as tubes on which UF/sub 5/ is formed. 2 figures.

Beitz, J.V.

1984-01-06T23:59:59.000Z

124

Removal of fluoride impurities from UF.sub.6 gas  

DOE Patents (OSTI)

A method of purifying a UF.sub.6 gas stream containing one or more metal fluoride impurities composed of a transuranic metal, transition metal or mixtures thereof, is carried out by contacting the gas stream with a bed of UF.sub.5 in a reaction vessel under conditions where at least one impurity reacts with the UF.sub.5 to form a nongaseous product and a treated gas stream, and removing the treated gas stream from contact with the bed. The nongaseous products are subsequently removed in a reaction with an active fluorine affording agent to form a gaseous impurity which is removed from the reaction vessel. The bed of UF.sub.5 is formed by the reduction of UF.sub.6 in the presence of UV light. One embodiment of the reaction vessel includes a plurality of UV light sources as tubes on which UF.sub.5 is formed.

Beitz, James V. (Hinsdale, IL)

1985-01-01T23:59:59.000Z

125

Method for cleaning bomb-reduced uranium derbies  

DOE Patents (OSTI)

The concentration of carbon in uranium metal ingots induction cast from derbies prepared by the bomb-reduction of uranium tetrafluoride in the presence of magnesium is effectively reduced to less than 100 ppm by removing residual magnesium fluoride from the surface of the derbies prior to casting. This magnesium fluoride is removed from the derbies by immersing them in an alkali metal salt bath which reacts with and decomposes the magnesium fluoride. A water quenching operation followed by a warm nitric acid bath and a water rinse removes the residual salt and reaction products from the derbies.

Banker, John G. (Boulder, CO); Wigginton, Hubert L. (Oak Ridge, TN); Beck, David E. (Knoxville, TN); Holcombe, Cressie E. (Knoxville, TN)

1981-01-01T23:59:59.000Z

126

Enrichment Assay Methods for a UF6 Cylinder Verification Station  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facilitys entire cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute for inspectors. Pacific Northwest National Laboratory (PNNL) is developing an unattended measurement system capable of automated enrichment measurements over the full volume of Type 30B and Type 48 cylinders. This Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The focus of this paper is the development of nondestructive assay (NDA) methods that combine traditional enrichment signatures (e.g. 185-keV emission from U-235) and more-penetrating non-traditional signatures (e.g. high-energy neutron-induced gamma rays spawned primarily from U-234 alpha emission) collected by medium-resolution gamma-ray spectrometers (i.e. sodium iodide or lanthanum bromide). The potential of these NDA methods for the automated assay of feed, tail and product cylinders is explored through MCNP modeling and with field measurements on a cylinder population ranging from 0.2% to 5% in U-235 enrichment.

Smith, Leon E.; Jordan, David V.; Misner, Alex C.; Mace, Emily K.; Orton, Christopher R.

2010-11-30T23:59:59.000Z

127

Investigation of breached depleted UF sub 6 cylinders  

Science Conference Proceedings (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team's principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation. 4 refs., 2 figs.

DeVan, J.H.

1991-01-01T23:59:59.000Z

128

Uranium Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

Enrichment Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Uranium Enrichment A description of the uranium enrichment process, including gaseous...

129

The uranium cylinder assay system for enrichment plant safeguards  

Science Conference Proceedings (OSTI)

Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Rael, Carlos D [Los Alamos National Laboratory; Iwamoto, Tomonori [JNFL; Tamura, Takayuki [JNFL; Aiuchi, Syun [JNFL

2010-01-01T23:59:59.000Z

130

Assessment of UF6 Equation of State  

SciTech Connect

A common assumption in the mathematical analysis of flows of compressible fluids is to treat the fluid as a perfect gas. This is an approximation, as no real fluid obeys the perfect gas relationships over all temperature and pressure conditions. An assessment of the validity of treating the UF{sub 6} gas flow field within a gas centrifuge with perfect gas relationships has been conducted. The definition of a perfect gas is commonly stated in two parts: (1) the gas obeys the thermal equation of state, p = {rho}RT (thermally perfect), and, (2) the gas specific heats are constant (calorically perfect). Analysis indicates the thermally perfect assumption is valid for all flow conditions within the gas centrifuge, including shock fields. The low operating gas pressure is the primary factor in the suitability of the thermally perfect equation of state for gas centrifuge computations. UF{sub 6} is not calorically perfect, as the specific heats vary as a function of temperature. This effect is insignificant within the bulk of the centrifuge gas field, as gas temperatures vary over a narrow range. The exception is in the vicinity of shock fields, where temperature, pressure, and density gradients are large, and the variation of specific heats with temperature should be included in the technically detailed analyses. Results from a normal shock analysis incorporating variable specific heats is included herein, presented in the conventional form of shock parameters as a function of inlet Mach Number. The error introduced by assuming constant specific heats is small for a nominal UF{sub 6} shock field, such that calorically perfect shock relationships can be used for scaling and initial analyses. The more rigorous imperfect gas analysis should be used for detailed analyses.

Brady, P; Chand, K; Warren, D; Vandersall, J

2009-02-11T23:59:59.000Z

131

Conversion of Yellow Cake to UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Yellow cake is converted to uranium hexafluoride through a multi-step chemical process using nitric acid, ammonium hydroxide, hydrogen, hydrofluoric acid (HF) and fluorine (F2)....

132

Production and Handling Slide 29: UF6 Cylinder Fill Limit Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Cylinder Fill Limit Criteria No UF6 cylinder shall be filled...

133

Technical documentation of HGSYSTEM/UF{sub 6} model  

Science Conference Proceedings (OSTI)

MMES has been directed to upgrade the safety analyses for the gaseous diffusion plants at Paducah KY and Piketon OH. These will require assessment of consequences of accidental releases of UF{sub 6} to the atmosphere at these plants. The HGSYSTEM model has been chosen as the basis for evaluating UF{sub 6} releases; it includes dispersion algorithms for dense gases and treats the chemistry and thermodynamics of HF, a major product of the reaction of UF{sub 6} with water vapor in air. Objective of this project was to incorporate additional capability into HGSYSTEM: UF{sub 6} chemistry and thermodynamics, plume lift-off algorithms, and wet and dry deposition. The HGSYSTEM modules are discussed. The hybrid HGSYSTEM/UF{sub 6} model has been evaluated in three ways.

Hanna, S.R.; Chang, J.C.; Zhang, J.X. [Earth Technology Corp., Concord, MA (United States)

1996-01-01T23:59:59.000Z

134

Releases of UF{sub 6} to the atmosphere after a potential fire in a cylinder storage yard  

Science Conference Proceedings (OSTI)

Uranium hexafluoride (UF{sub 6}), a toxic material, is stored in just over 6200 cylinders at the K-25 site in Oak Ridge, Tennessee. The safety analysis report (SAR) for cylinder yard storage operations at the plant required the development of accident scenarios for the potential release of UF{sub 6} to the atmosphere. In accordance with DOE standards and guidance, the general approach taken in this SAR was to examine the functions and contents of the cylinder storage yards to determine whether safety-significant hazards were present for workers in the immediate vicinity, workers on-site, the general public off-site, or the environment. and to evaluate the significance of any hazards that were found. A detailed accident analysis was performed to determine a set of limiting accidents that have potential for off-site consequences. One of the limiting accidents identified in the SAR was the rupture of a cylinder engulfed in a fire.

Lombardi, D.A.; Williams, W.R.; Anderson, J.C. [and others

1997-06-01T23:59:59.000Z

135

Indirect NMR detection of 235U in gaseous uranium hexafluoride National Center for Physics, P.O. Box MG-6, Bucharest, Romania  

E-Print Network (OSTI)

L-493 Indirect NMR detection of 235U in gaseous uranium hexafluoride I. Ursu National Center- vation of235 U NMR signal in liquid UF6 at B = 11.747 T has been recently reported [7]. The aim of this Letter is to investigate the effect of the 23 5U enrichment on the 19F NMR spectra in gaseous UF6. Using

Paris-Sud XI, Université de

136

UF.sub.6 -Recovery process utilizing desublimation  

DOE Patents (OSTI)

The invention is a UF.sub.6 -recovery process of the kind in which a stream of substantially pure gaseous UF.sub.6 is directed through an externally chilled desublimer to convert the UF.sub.6 directly to an annular solid ring adhering to the interior wall of the desublimer. After accumulation of a desired amount of solid UF.sub.6, the desublimer is heated to liquefy the solid. Subsequently, the liquid is recovered from the desublimer. It has been found that during the heating operation the desublimer is subjected to excessive mechanical stresses. In addition, it has been found that the incorporation of a very small percentage of relatively noncondensable, nonreactive gas (e.g., nitrogen) in the UF.sub.6 input to the desublimer effects significant decreases in the stresses generated during the subsequent melting operation. This modification to the process provides valuable advantages in terms of reduced hazard, lower operating costs for the desublimer, and increased service life for the desublimer and its auxiliaries. The new process is especially suitable for the recovery of enriched UF.sub.6 from high-speed UF.sub.6 gas-centrifuge cascades.

Eby, Robert S. (11 Newhope La., Oak Ridge, TN 37830); Stephenson, Michael J. (115 Concord Rd., Oak Ridge, TN 37830); Andrews, Deborah H. (421 Cumberland St., Harriman, TN 37748); Hamilton, Thomas H. (821 Walker Springs Rd., Knoxville, TN 37923)

1985-01-01T23:59:59.000Z

137

UF/sub 6/-recovery process utilizing desublimation  

DOE Patents (OSTI)

The invention is a UF/sub 6/-recovery process of the kind in which a stream of substantially pure gaseous UF/sub 6/ is directed through an externally chilled desublimer to convert the UF/sub 6/ directly to an annular solid ring adhering to the interior wall of the desublimer. After accumulation of a desired amount of solid UF/sub 6/, the desublimer is heated to liquefy the solid. Subsequently, the liquid is recovered from the desublimer. It has been found that during the heating operation the desublimer is subjected to excessive mechanical stresses. In addition, it has been found that the incorporation of a very small percentage of relatively noncondensable, nonreactive gas (e.g., nitrogen) in the UF/sub 6/ input to the desublimer effects significant decreases in the stresses generated during the subsequent melting operation. This modification to the process provides valuable advantages in terms of reduced hazard, lower operating costs for the desublimer, and increased service life for the desublimer and its auxiliaries. The new process is especially suitable for the recovery of enriched UF/sub 6/ from high-speed UF/sub 6/ gas-centrifuge cascades.

Eby, R.S.; Stephenson, M.J.; Andrews, D.H.; Hamilton, T.H.

1983-12-21T23:59:59.000Z

138

Uranium hexafluoride: A manual of good handling practices. Revision 7  

SciTech Connect

The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

NONE

1995-01-01T23:59:59.000Z

139

Status Report on the Passive Neutron Enrichment Meter (PNEM) for UF6 Cylinder Assay  

SciTech Connect

The Passive Neutron Enrichment Meter (PNEM) is a nondestructive assay (NDA) system being developed at Los Alamos National Laboratory (LANL). It was designed to determine {sup 235}U mass and enrichment of uranium hexafluoride (UF{sub 6}) in product, feed, and tails cylinders (i.e., 30B and 48Y cylinders). These cylinders are found in the nuclear fuel cycle at uranium conversion, enrichment, and fuel fabrication facilities. The PNEM is a {sup 3}He-based neutron detection system that consists of two briefcase-sized detector pods. A photograph of the system during characterization at LANL is shown in Fig. 1. Several signatures are currently being studied to determine the most effective measurement and data reduction technique for unfolding {sup 235}U mass and enrichment. The system collects total neutron and coincidence data for both bare and cadmium-covered detector pods. The measurement concept grew out of the success of the Uranium Cylinder Assay System (UCAS), which is an operator system at Rokkasho Enrichment Plant (REP) that uses total neutron counting to determine {sup 235}U mass in UF{sub 6} cylinders. The PNEM system was designed with higher efficiency than the UCAS in order to add coincidence counting functionality for the enrichment determination. A photograph of the UCAS with a 48Y cylinder at REP is shown in Fig. 2, and the calibration measurement data for 30B product and 48Y feed and tails cylinders is shown in Fig. 3. The data was collected in a low-background environment, meaning there is very little scatter in the data. The PNEM measurement concept was first presented at the 2010 Institute of Nuclear Materials Management (INMM) Annual Meeting. The physics design and uncertainty analysis were presented at the 2010 International Atomic Energy Agency (IAEA) Safeguards Symposium, and the mechanical and electrical designs and characterization measurements were published in the ESARDA Bulletin in 2011.

Miller, Karen A. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Marlow, Johnna B. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

140

Evaluation of environmental-control technologies for commercial nuclear fuel-conversion (UF/sub 6/) facilities  

Science Conference Proceedings (OSTI)

At present in the United States, there are two commercial conversion facilities. These facilities process uranium concentrate into UF/sub 6/ for shipment to the enrichment facilities. One conversion facility uses a dry hydrofluor process, whereas the other facility uses a process known as the wet solvent extraction-fluorination process. Because of the different processes used in the two plants, waste characteristics, quantities, and treatment practices differ at each facility. Wastes and effluent streams contain impurities found in the concentrate (such as uranium daughters, vanadium, molybdenum, selenium, arsenic, and ammonia) and process chemicals used in the circuit (including fluorine, nitrogen, and hydrogen), as well as small quantities of uranium. Studies of suitable disposal options for the solid wastes and sludges generated at the facilities and the long-term effects of emissions to the ambient environment are needed. 30 figures, 34 tables.

Perkins, B.L.

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Uranium Marketing Annual Report - Release Date: May 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

2. Inventories of natural and enriched uranium by material type as of end of year, 2008-2012 thousand pounds U3O8 equivalent 2. Inventories of natural and enriched uranium by material type as of end of year, 2008-2012 thousand pounds U3O8 equivalent Inventories at the End of the Year Type of Uranium Inventory 2008 2009 2010 2011 P2012 Owners and Operators of U.S. Civilian Nuclear Power Reactors Inventories 82,972 84,757 86,527 89,835 97,466 Uranium Concentrate (U3O8) 12,286 15,094 13,076 14,718 13,454 Natural UF6 46,525 38,463 35,767 35,883 30,168 Enriched UF6 13,748 18,195 25,392 19,596 38,903 Fabricated Fuel (not inserted into a reactor) 10,414 13,006 12,292 19,638 14,941 U.S. Supplier Inventories 27,010 26,774 24,732 22,269 23,264 Uranium Concentrate (U3O8) 12,264 12,132 10,153 7,057 W Natural UF6 W W W W W Enriched UF6 W W W W W

142

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

143

Uranium hexafluoride handling. Proceedings  

SciTech Connect

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

144

Depleted uranium: A DOE management guide  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

145

Automated UF6 Cylinder Enrichment Assay: Status of the Hybrid Enrichment Verification Array (HEVA) Project: POTAS Phase II  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) intends to automate the UF6 cylinder nondestructive assay (NDA) verification currently performed by the International Atomic Energy Agency (IAEA) at enrichment plants. PNNL is proposing the installation of a portal monitor at a key measurement point to positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until inspector arrival. This report summarizes the status of the research and development of an enrichment assay methodology supporting the cylinder verification concept. The enrichment assay approach exploits a hybrid of two passively-detected ionizing-radiation signatures: the traditional enrichment meter signature (186-keV photon peak area) and a non-traditional signature, manifested in the high-energy (3 to 8 MeV) gamma-ray continuum, generated by neutron emission from UF6. PNNL has designed, fabricated, and field-tested several prototype assay sensor packages in an effort to demonstrate proof-of-principle for the hybrid assay approach, quantify the expected assay precision for various categories of cylinder contents, and assess the potential for unsupervised deployment of the technology in a portal-monitor form factor. We refer to recent sensor-package prototypes as the Hybrid Enrichment Verification Array (HEVA). The report provides an overview of the assay signatures and summarizes the results of several HEVA field measurement campaigns on populations of Type 30B UF6 cylinders containing low-enriched uranium (LEU), natural uranium (NU), and depleted uranium (DU). Approaches to performance optimization of the assay technique via radiation transport modeling are briefly described, as are spectroscopic and data-analysis algorithms.

Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; McDonald, Benjamin S.; Kulisek, Jonathan A.; Smith, Leon E.

2012-06-01T23:59:59.000Z

146

Video: Part of the 'Hole' Story (of Uranium Hexafluoride Cylinders)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hole Story Hole Story Part of the "Hole" Story (of Uranium Hexafluoride Cylinders) Holes in the depleted Uranium Hexafluoride storage cylinders are investigated. It is shown that corrosion products cause the openings to be self-healing. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:00 Part of the 'Hole' Story Video 00:05 One of the depleted UF6 cylinder storage lots at Portsmouth Video 00:28 48G cylinders, each containing 14 tons of depleted UF6, in storage Video 00:52 Stacked 48G cylinders Video 01:35 UF6 sealed in glass tube Video 02:01 A lifting lug of one cylinder damaging a neighboring cylinder Video 02:37 Damage to small hole cylinder from impact with a lifting lub of an adjoining cylinder

147

A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF sub 6  

Science Conference Proceedings (OSTI)

Moderation control for maintaining nuclear criticality safety in 2-1/2-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a safetime,'' for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations. 2 refs., 5 figs., 1 tab.

Newvahner, R.L. (Portsmouth Gaseous Diffusion Plant, OH (United States)); Pryor, W.A. (PAI Corp., Oak Ridge, TN (United States))

1991-08-16T23:59:59.000Z

148

Detection of uranium enrichment activities using environmental monitoring techniques  

SciTech Connect

Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF{sub 6} gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques.

Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

1993-03-30T23:59:59.000Z

149

RESULTS FROM A DEMONSTRATION OF RF-BASED UF6 CYLINDER ACCOUNTING AND TRACKING SYSTEM INSTALLED AT A USEC FACILITY  

SciTech Connect

Approved industry-standard cylinders are used globally for storing and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants and processing facilities. To verify that no diversion or undeclared production of nuclear material involving UF{sub 6} cylinders at the facility has occurred, the International Atomic Energy Agency (IAEA) conducts periodic, labor-intensive physical inspections to validate facility records, cylinder identities, and cylinder weights. A reliable cylinder monitoring system that would improve overall inspector effectiveness would be a significant improvement to the current international safeguards inspection regime. Such a system could include real-time unattended monitoring of cylinder movements, situation-specific rules-based event detection algorithms, and the capability to integrate with other types of safeguards technologies. This type of system could provide timely detection of abnormal operational activities that may be used to ensure more appropriate and efficient responses by the IAEA. A system of this type can reduce the reliance on paper records and have the additional benefit of facilitating domestic safeguards at the facilities at which it is installed. A radio-frequency (RF)-based system designed to track uranium hexafluoride (UF{sub 6}) cylinders during processing operations was designed, assembled, and tested at the United States Enrichment Corporation (USEC) facility in Portsmouth, Ohio, to determine the operational feasibility and durability of RF technology. The overall objective of the effort was to validate the robustness of RF technology for potential use as a future international safeguards tool for tracking UF6 cylinders at uranium-processing facilities. The results to date indicate that RF tags represent a feasible technique for tracking UF{sub 6} cylinders in operating facilities. Additional work will be needed to improve the operational robustness of the tags for repeated autoclave processing and to add tamper-indicating and data authentication features to some of the pertinent system components. Future efforts will focus on these needs along with implementing protocols relevant to IAEA safeguards. The work detailed in this report demonstrates the feasibility of constructing RF devices that can survive the operational rigors associated with the transportation, storage, and processing of UF6 cylinders. The system software specially designed for this project is called Cylinder Accounting and Tracking System (CATS). This report details the elements of the CATS rules-based architecture and its use in safeguards-monitoring and asset-tracking applications. Information is also provided on improvements needed to make the technology ready, as well as options for improving the safeguards aspects of the technology. The report also includes feedback from personnel involved in the testing, as well as individuals who could utilize an RF-based system in supporting the performance of their work. The system software was set up to support a Mailbox declaration, where a declaration can be made either before or after cylinder movements take place. When the declaration is made before cylinders move, the operators must enter this information into CATS. If the IAEA then shows up unexpectedly at the facility, they can see how closely the operational condition matches the declaration. If the declaration is made after the cylinders move, this provides greater operational flexibility when schedules are interrupted or are changed, by allowing operators to declare what moves have been completed. The IAEA can then compare where cylinders are with where CATS or the system says they are located. The ability of CATS to automatically generate Mailbox declarations is seen by the authors as a desirable feature. The Mailbox approach is accepted by the IAEA but has not been widely implemented (and never in enrichment facilities). During the course of this project, we have incorporated alternative methods for implementation.

Pickett, Chris A [ORNL; Kovacic, Donald N [ORNL; Morgan, Jim [Innovative Solutions; Younkin, James R [ORNL; Carrick, Bernie [USEC; Ken, Whittle [USEC; Johns, R E [Pacific Northwest National Laboratory (PNNL)

2008-09-01T23:59:59.000Z

150

Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

151

Depleted UF6 Management Information Network - A resource for...  

NLE Websites -- All DOE Office Websites (Extended Search)

is an online repository of information about the U.S. Department of Energy's (DOE's) inventory of depleted uranium hexafluoride (DUF6), a product of the uranium enrichment...

152

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel ... nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections ...

153

Prototype Radiation Detector Positioning System For The Automated Nondestructive Assay Of Uf6 Cylinders  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facilitys entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of efficiency and assay accuracy. This paper describes an approach denoted the Integrated Cylinder Verification Station (ICVS) that supports 100% cylinder verification, provides volume-averaged cylinder enrichment assay, and reduces inspector manpower needs. To allow field measurements to be collected to validate data collection algorithms, a prototype radiation detector positioning system was constructed. The system was designed to accurately position an array of radiation detectors along the length of a cylinder to measure UF6 enrichment. A number of alternative radiation shields for the detectors were included with the system. A collimated gamma-ray spectrometer module that allows translation of the detectors in the surrounding shielding to adjust the field of view, and a collimating plug in the end to further reduce the low-energy field of view, were also developed. Proof-of-principle measurements of neutron and high-energy gamma-ray signatures, using moderated neutron detectors and large-volume spectrometers in a fixed-geometry, portal-like configuration, supported an early assessment of the viability of the concept. The system has been used successfully on two testing campaigns at an AREVA fuel fabrication plant to scan over 30 product cylinders. This paper will describe the overall design of the detector positioning system and provide an overview of the Integrated Cylinder Verification Station (ICVS) approach.

Hatchell, Brian K.; Valdez, Patrick LJ; Orton, Christopher R.; Mace, Emily K.

2011-08-07T23:59:59.000Z

154

Criticality safety considerations for MSRE fuel drain tank uranium aggregation  

SciTech Connect

This paper presents the results of a preliminary criticality safety study of some potential effects of uranium reduction and aggregation in the Molten Salt Reactor Experiment (MSRE) fuel drain tanks (FDTs) during salt removal operations. Since the salt was transferred to the FDTs in 1969, radiological and chemical reactions have been converting the uranium and fluorine in the salt to UF{sub 6} and free fluorine. Significant amounts of uranium (at least 3 kg) and fluorine have migrated out of the FDTs and into the off-gas system (OGS) and the auxiliary charcoal bed (ACB). The loss of uranium and fluorine from the salt changes the chemical properties of the salt sufficiently to possibly allow the reduction of the UF{sub 4} in the salt to uranium metal as the salt is remelted prior to removal. It has been postulated that up to 9 kg of the maximum 19.4 kg of uranium in one FDT could be reduced to metal and concentrated. This study shows that criticality becomes a concern when more than 5 kg of uranium concentrates to over 8 wt% of the salt in a favorable geometry.

Hollenbach, D.F.; Hopper, C.M. [Oak Ridge National Lab., TN (United States). Computational Physics and Engineering Div.

1997-03-01T23:59:59.000Z

155

Uranium Marketing Annual Report - Release Date: May 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2012 deliveries 7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2012 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Spot 1 Contracts Long-Term Contracts 2 Total Material Type Quantity with Reported Price Weighted-Average Price Quantity with Reported Price Weighted-Average Price Quantity with Reported Price Weighted-Average Price U3O8 3,364 54.00 25,279 54.22 28,642 54.20 Natural UF6 W W W W W W Enriched UF6 W W W W W W Natural UF6 and Enriched UF6 4,718 48.92 23,589 57.18 28,307 55.80 Total 8,082 51.04 48,867 55.65 56,949 54.99 W = Data withheld to avoid disclosure of individual company data. 1 A one-time delivery (usually) of the entire contract to occur within one year of contract execution (signed date).

156

Corrosion monitoring in the UF{sub 6} cylinder yards at the Oak Ridge K-25 Site: FY 1994 report  

Science Conference Proceedings (OSTI)

Depleted uranium hexafluoride (UF{sub 6}) at the U.S. Department of Energy`s K-25 Site at Oak Ridge, Tennessee, has been stored in large steel cylinders that have undergone significant atmospheric corrosion damage over the last 35 years. A detailed experimental program to characterize the corrosion damage was initiated in 1992. Large amounts of corrosion scale and deep pits are found to cover UF{sub 6} cylinder surfaces. Ultrasonic wall thickness measurements have shown uniform corrosion losses up to 20 mils (0.5 mm) and pits up to 100 mils (2.5 mm) deep. Electrical resistance corrosion probes, TOW sensors, and thermocouples have been attached to cylinder bodies. Atmospheric conditions are monitored using rain gauges, relative humidity sensors, and thermocouples. Long-term (16-year) data are being obtained from mild steel corrosion coupons on test racks as well as attached directly to cylinder surfaces. Corrosion rates have been found to be intimately related to the times-of-wetness, both tending to be higher on cylinder tops due to apparent sheltering effects. Data from the various tests are compared, discrepancies are discussed, and a pattern of cylinder corrosion as a function of cylinder position and location is described.

Rao, M. [Midwest Technical Inc., Oak Ridge, TN (United States); Adamski, R.; Broders, J.; Ellis, A.; Freels, D.; Kelley, D.; Phillips, B. [Oak Ridge K-25 Site, TN (United States)

1994-10-01T23:59:59.000Z

157

Evaluation of coverage of enriched UF{sub 6} cylinder storage lots by existing criticality accident alarms  

SciTech Connect

The Portsmouth Gaseous Diffusion Plant (PORTS) is leased from the US Department of Energy (DOE) by the United States Enrichment Corporation (USEC), a government corporation formed in 1993. PORTS is in transition from regulation by DOE to regulation by the Nuclear Regulatory Commission (NRC). One regulation is 10 CFR Part 76.89, which requires that criticality alarm systems be provided for the site. PORTS originally installed criticality accident alarm systems in all building for which nuclear criticality accidents were credible. Currently, however, alarm systems are not installed in the enriched uranium hexafluoride (UF{sub 6}) cylinder storage lots. This report analyzes and documents the extent to which enriched UF{sub 6} cylinder storage lots at PORTS are covered by criticality detectors and alarms currently installed in adjacent buildings. Monte Carlo calculations are performed on simplified models of the cylinder storage lots and adjacent buildings. The storage lots modelled are X-745B, X-745C, X745D, X-745E, and X-745F. The criticality detectors modelled are located in building X-343, the building X-344A/X-342A complex, and portions of building X-330. These criticality detectors are those located closest to the cylinder storage lots. Results of this analysis indicate that the existing criticality detectors currently installed at PORTS are largely ineffective in detecting neutron radiation from criticality accidents in most of the cylinder storage lots at PORTS, except sometimes along portions of their peripheries.

Lee, B.L. Jr.; Dobelbower, M.C.; Woollard, J.E.; Sutherland, P.J.; Tayloe, R.W. Jr.

1995-03-01T23:59:59.000Z

158

Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride  

E-Print Network (OSTI)

1.1 These test methods cover procedures for subsampling and for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride UF6. Most of these test methods are in routine use to determine conformance to UF6 specifications in the Enrichment and Conversion Facilities. 1.2 The analytical procedures in this document appear in the following order: Note 1Subcommittee C26.05 will confer with C26.02 concerning the renumbered section in Test Methods C761 to determine how concerns with renumbering these sections, as analytical methods are replaced with stand-alone analytical methods, are best addressed in subsequent publications. Sections Subsampling of Uranium Hexafluoride 7 - 10 Gravimetric Determination of Uranium 11 - 19 Titrimetric Determination of Uranium 20 Preparation of High-Purity U3O 8 21 Isotopic Analysis 22 Isotopic Analysis by Double-Standard Mass-Spectrometer Method 23 - 29 Determination of Hydrocarbons, Chlorocarbons, and Partially Substitut...

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

159

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report 2012 Uranium Marketing Annual Report Release Date: May 16, 2013 Next Release Date: May 2014 2008 2009 2010 2011 P2012 Owners and Operators of U.S. Civilian Nuclear Power Reactors Inventories 82,972 84,757 86,527 89,835 97,466 Uranium Concentrate (U 3 O 8 ) 12,286 15,094 13,076 14,718 13,454 Natural UF 6 46,525 38,463 35,767 35,883 30,168 Enriched UF 6 13,748 18,195 25,392 19,596 38,903 Fabricated Fuel (not inserted into a reactor) 10,414 13,006 12,292 19,638 14,941 U.S. Supplier Inventories 27,010 26,774 24,732 22,269 23,264 Uranium Concentrate (U 3 O 8 ) 12,264 12,132 10,153 7,057 W Natural UF 6 W W W W W Enriched UF 6 W W W W W Fabricated Fuel (not inserted into a reactor) 0 0 0 0 0 Total Commercial Inventories 109,983 111,531 111,259 112,104 120,730

160

Uranium and Its Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

and Its Compounds Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects...

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

"2012 Uranium Marketing Annual Report"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2012 deliveries" 7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2012 deliveries" "thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent" "Material Type","Spot Contracts 1",,"Long-Term Contracts 2",,"Total" ,"Quantity with Reported Price","Weighted-Average Price","Quantity with Reported Price","Weighted-Average Price","Quantity with Reported Price","Weighted-Average Price" "U3O8",3364,54,25279,54.22,28642,54.2 "Natural UF6","W","W","W","W","W","W" "Enriched UF6","W","W","W","W","W","W"

162

Production and Handling Slide 30: UF6 Cylinder Fill Limit Weights  

NLE Websites -- All DOE Office Websites (Extended Search)

Weights Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Cylinder Fill Limit Weights A minimum volume, stated in cubic...

163

Automated Nondestructive Assay of UF6 Cylinders: Detector Characterization and Initial Measurements  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders assumed to be representative of the facility's entire cylinder inventory. These measurements are time-consuming and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of manpower and assay accuracy. Pacific Northwest National Laboratory is developing an Integrated Cylinder Verification System (ICVS) intended for this purpose and has developed a field prototype of the nondestructive assay (NDA) components of an ICVS. The nondestructive assay methods would combine the 'traditional' enrichment-meter signature (i.e. 186-keV emission from 235U) as well as 'non-traditional' high-energy photon signatures derived from neutrons produced primarily by 19F({alpha},n) reactions. This paper describes the design, calibration and characterization of the NaI(Tl) and LaBr3(Ce) spectrometers utilized in the field prototype. An overview of a recent field measurement campaign is then provided, supported by example gamma-ray pulse-height spectra collected on cylinders of known enrichment.

Mace, Emily K.; Smith, Leon E.

2011-10-01T23:59:59.000Z

164

PREVENTION OF SCALE FORMATION IN URANIUM SOLVENT EXTRACTOR  

DOE Patents (OSTI)

A method for preventing the formation of scale in uranium solvent extraction apparatus is presented. The scale, consisting chiefly of precipitated silica and the sulfates uf calcium and lead, may be prevented by a combination of measures, chiefly by prior heating and agitation to crystallize and remove silica, and by a maintenance of uranyl nitrate concentration in the feed and extractant above certain levels to increase the solubility of the calcium and lead sulfates.

Delaplaine, J.W.

1957-11-01T23:59:59.000Z

165

Criticality concerns in cleaning large uranium hexafluoride cylinders  

SciTech Connect

Cleaning large cylinders used to transport low-enriched uranium hexafluoride (UF{sub 6}) presents several challenges to nuclear criticality safety. This paper presents a brief overview of the cleaning process, the criticality controls typically employed and their bases. Potential shortfalls in implementing these controls are highlighted, and a simple example to illustrate the difficulties in complying with the Double Contingency Principle is discussed. Finally, a summary of recommended criticality controls for large cylinder cleaning operations is presented.

Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

1995-06-01T23:59:59.000Z

166

C-616 UF$sub 6$ HYDROLYSIS FUMES  

SciTech Connect

Experiments were carried out to determine how fast the concentration of suspended material decreases in fumes produced by the hydrolysis of UF/sub 6/ vapor in damp air. The rate of aggregation is a function chiefly of the number of particles per unit gas volume, but depends also on the chemical composition, size and shape of the particles, the temperature and pressure, and the degree of agitation. The rate of settling depends on the weight and shape of the particles and the viscosity of the gas. (W.L.H.)

Fisher, M.; Cines, M.R.

1945-01-24T23:59:59.000Z

167

Environmental Risks of Depleted UF6-related Manufacturing Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

and operation of a facility to fabricate representative products containing depleted uranium. Impacts Analyzed in the PEIS The PEIS evaluated the general environmental impacts...

168

From the Lab to the real world : sources of error in UF {sub 6} gas enrichment monitoring  

SciTech Connect

Safeguarding uranium enrichment facilities is a serious concern for the International Atomic Energy Agency (IAEA). Safeguards methods have changed over the years, most recently switching to an improved safeguards model that calls for new technologies to help keep up with the increasing size and complexity of todays gas centrifuge enrichment plants (GCEPs). One of the primary goals of the IAEA is to detect the production of uranium at levels greater than those an enrichment facility may have declared. In order to accomplish this goal, new enrichment monitors need to be as accurate as possible. This dissertation will look at the Advanced Enrichment Monitor (AEM), a new enrichment monitor designed at Los Alamos National Laboratory. Specifically explored are various factors that could potentially contribute to errors in a final enrichment determination delivered by the AEM. There are many factors that can cause errors in the determination of uranium hexafluoride (UF{sub 6}) gas enrichment, especially during the period when the enrichment is being measured in an operating GCEP. To measure enrichment using the AEM, a passive 186-keV (kiloelectronvolt) measurement is used to determine the {sup 235}U content in the gas, and a transmission measurement or a gas pressure reading is used to determine the total uranium content. A transmission spectrum is generated using an x-ray tube and a notch filter. In this dissertation, changes that could occur in the detection efficiency and the transmission errors that could result from variations in pipe-wall thickness will be explored. Additional factors that could contribute to errors in enrichment measurement will also be examined, including changes in the gas pressure, ambient and UF{sub 6} temperature, instrumental errors, and the effects of uranium deposits on the inside of the pipe walls will be considered. The sensitivity of the enrichment calculation to these various parameters will then be evaluated. Previously, UF{sub 6} gas enrichment monitors have required empty pipe measurements to accurately determine the pipe attenuation (the pipe attenuation is typically much larger than the attenuation in the gas). This dissertation reports on a method for determining the thickness of a pipe in a GCEP when obtaining an empty pipe measurement may not be feasible. This dissertation studies each of the components that may add to the final error in the enrichment measurement, and the factors that were taken into account to mitigate these issues are also detailed and tested. The use of an x-ray generator as a transmission source and the attending stability issues are addressed. Both analytical calculations and experimental measurements have been used. For completeness, some real-world analysis results from the URENCO Capenhurst enrichment plant have been included, where the final enrichment error has remained well below 1% for approximately two months.

Lombardi, Marcie L.

2012-03-01T23:59:59.000Z

169

A more accurate and penetrating method to measure the enrichment and mass of UF6 storage containers using passive neutron self-interrogation  

Science Conference Proceedings (OSTI)

This paper describes an unattended mode neutron measurement that can provide the enrichment of the uranium in UF{sub 6} cylinders. The new passive neutron measurement provides better penetration into the uranium mass than prior gamma-ray enrichment measurement methods. The Passive Neutron Enrichment Monitor (PNEM) provides a new measurement technique that uses passive neutron totals and coincidence counting together with neutron self-interrogation to measure the enrichment in the cylinders. The measurement uses the neutron rates from two detector pods. One of the pods has a bare polyethylene surface next to the cylinder and the other polyethylene surface is covered with Cd to prevent thermal neutrons from returning to the cylinder. The primary neutron source from the enriched UF{sub 6} is the alpha-particle decay from the {sub 234}U that interacts with the fluorine to produce random neutrons. The singles neutron counting rate is dominated by the {sub 234}U neutrons with a minor contribution from the induced fissions in the {sub 235}U. However, the doubles counting rate comes primarily from the induced fissions (i.e., multiplication) in the {sub 235}U in enriched uranium. The PNEM concept makes use of the passive neutrons that are initially produced from the {sub 234}U reactions that track the {sub 235}U enrichment during the enrichment process. The induced fission reactions from the thermal-neutron albedo are all from the {sub 235}U and provide a measurement of the {sub 235}U. The Cd ratio has the desirable feature that all of the thermal-neutron-induced fissions in {sub 235}U are independent of the original neutron source. Thus, the ratio is independent of the uranium age, purity, and prior reactor history.

Menlove, Howard O [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

170

URANIUM ALLOYS  

DOE Patents (OSTI)

A uranium alloy is reported containing from 0.1 to 5 per cent by weight of molybdenum and from 0.1 to 5 per cent by weight of silicon, the balance being uranium.

Colbeck, E.W.

1959-12-29T23:59:59.000Z

171

Pyrolitic Uranium Compound (PYRUC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Pyrolitic Uranium Compound Pyrolitic Uranium Compound (PYRUC) PYRolitic Uranium Compound (PYRUC) is a shielding material consisting of depleted uranium UO2 or UC in either pellet...

172

Record of Decision for Long-term Management and Use of Depleted Uranium Hexafluoride  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Record of Decision SUMMARY: The Department of Energy ("DOE" or "the Department") issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF 6 ). DOE has decided to promptly convert the depleted UF 6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both. The depleted uranium oxide will be

173

Modeling of UF{sub 6} enrichment with gas centrifuges for nuclear safeguards activities  

Science Conference Proceedings (OSTI)

The physical modeling of uranium isotopes ({sup 235}U, {sup 238}U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF{sub 6} gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution and the solution was obtained using the Matlab software tool. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays). Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the 'on site' inspectors' measurements.

Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G. [European Commission, Joint Research Centre, Institute for Transuranium Elements Via Fermi, 2749-TP181,20127 Ispra (Italy)

2012-09-26T23:59:59.000Z

174

Summary of Field Measurement on UF6 Cylinders Using Electro-Mechanically Cooled Systems  

SciTech Connect

Measurement of the enrichment of solid state UF6 stored within large metal cylinders is a task commonly performed by plant operators and inspectors. The measurement technologies typically used range from low-resolution, high-efficiency sodium iodide detectors to high-resolution, moderate-efficiency high-purity germanium (HPGe) detectors. The technology used and methods deployed are dependent upon the material being measured, environmental conditions, time constraints, and measurement-precision requirements. Operators and inspectors typically use specially designed, HPGe detectors that are cooled with liquid nitrogen in situations where high-resolution measurements are required. However, the requirement for periodically refilling the system with liquid nitrogen makes remote usage cumbersome and slow. The task of cooling the detector reduces the available time for the inspector to perform other safeguards activities while on site. If the inspector has to reduce the count time for each selected cylinder to ensure that all preselected cylinders are measured during the inspection, the resulting measurement uncertainties may be increased, making it more difficult to detect and verify potential discrepancies in the operator's declarations. However, recent advances in electromechanically cooled HPGe detectors may provide the inspector with an improved verification tool by eliminating the need for liquid nitrogen. This report provides a summary of test results for field measurements performed using electromechanically cooled HPGe detectors on depleted, natural, and low-enriched uranium cylinders. The results of the study provide valuable information to inspectors and operators regarding the capabilities and limitations of electromechanically cooled systems based on true field-measurement conditions.

McGinnis, Brent R [ORNL; Smith, Steven E [ORNL; Solodov, Alexander A [ORNL; Whitaker, J Michael [ORNL; Morgan, James B [ORNL; MayerII, Richard L. [USEC; Montgomery, J. Brent [U.S. Enrichment Corporation Paducah Gaseous Diffusion Plant

2009-01-01T23:59:59.000Z

175

FAQ 15-What are the dimensions of a depleted uranium hexafluoride cylinder?  

NLE Websites -- All DOE Office Websites (Extended Search)

are the dimensions of a depleted uranium hexafluoride cylinder? are the dimensions of a depleted uranium hexafluoride cylinder? What are the dimensions of a depleted uranium hexafluoride cylinder? Several different cylinder types are in use, although the vast majority of cylinders are designed to contain 14-tons (12-metric tons) of depleted UF6. The 14-ton-capacity cylinders are 12 ft (3.7 m) long by 4 ft (1.2 m) in diameter, with most having an initial wall thickness of 5/16 in. (0.79 cm) of steel. The cylinders have external stiffening rings that provide support. Lifting lugs for handling are attached to the stiffening rings. A small percentage of the cylinders have skirted ends (extensions of the cylinder walls past the rounded ends of the cylinder). Each cylinder has a single valve for filling and emptying located on one end at the 12 o'clock position. Similar, but slightly smaller, cylinders designed to contain 10 tons (9 metric tons) of depleted UF6 are also in use. Cylinders are manufactured in accordance with an American National Standards Institute standard (ANSI N14.1, American National Standard for Nuclear Materials - Uranium Hexafluoride - Packaging for Transport) as specified in 49 CFR 173.420, the federal regulations governing transport of depleted UF6.

176

Results of ultrasonic testing evaluations on UF{sub 6} storage cylinders  

Science Conference Proceedings (OSTI)

The three site cylinder management program is responsible for the safe storage of the DOE owned UF{sub 6} storage cylinders at PORTS, PGDP and at the K-25 site. To ensure the safe storage of the UF{sub 6} in the cylinders, the structural integrity of the cylinders must be evaluated. This report represents the latest cylinder integrity investigation that utilized wall thickness evaluations to identify thinning due to atmospheric exposure.

Lykins, M.L.

1997-02-01T23:59:59.000Z

177

Natural phenomena evaluations of the K-25 site UF{sub 6} cylinder storage yards  

Science Conference Proceedings (OSTI)

The K-25 Site UF{sub 6} cylinder storage yards are used for the temporary storage of UF{sub 6} normal assay cylinders and long-term storage of other UF{sub 6} cylinders. The K-25 Site UF{sub 6} cylinder storage yards consist of six on-site areas: K-1066-B, K-1066-E, K-1066-F, K-1066-J, K-1066-K and K-1066-L. There are no permanent structures erected on the cylinder yards, except for five portable buildings. The operating contractor for the K-25 Site is preparing a Safety Analysis Report (SAR) to examine the safety related aspects of the K-25 Site UF{sub 6} cylinder storage yards. The SAR preparation encompasses many tasks terminating in consequence analysis for the release of gaseous and liquid UF{sub 6}, one of which is the evaluation of natural phenomena threats, such as earthquakes, floods, and winds. In support of the SAR, the six active cylinder storage yards were evaluated for vulnerabilities to natural phenomena, earthquakes, high winds and tornados, tornado-generated missiles, floods (local and regional), and lightning. This report summarizes those studies. 30 refs.

Fricke, K.E.

1996-09-15T23:59:59.000Z

178

URANIUM COMPOSITIONS  

DOE Patents (OSTI)

This patent relates to high purity uranium alloys characterized by improved stability to thermal cycling and low thermal neutron absorption. The high purity uranium alloy contains less than 0.1 per cent by weight in total amount of any ore or more of the elements such as aluminum, silicon, phosphorous, tin, lead, bismuth, niobium, and zinc.

Allen, N.P.; Grogan, J.D.

1959-05-12T23:59:59.000Z

179

Uranium Enrichment Measurements without Calibration Using Gamma Rays Above 100 keV  

DOE Green Energy (OSTI)

The verification of UF{sub 6} shipping cylinders is an important activity in routine safeguards inspections. Current measurement methods using either sodium-iodide or high-purity germanium detectors require calibrations that are not always appropriate for field measurements, because of changes in geometry or container wall thickness. The introduction of the MGAU code demonstrated the usefulness of intrinsically calibrated measurements for inspections. MGAU uses the 100-keV region of the uranium gamma-ray spectrum. The thick walls of UF{sub 6} shipping cylinders and the low-energy analysis preclude the routine use of MGAU for these measurements. We have developed a uranium enrichment measurement method for measurements using high-purity germanium detectors, which do not require calibration, and uranium gamma rays above 100 keV. The method uses seven gamma rays from {sup 235}U and {sup 238}U to determine their relative detection efficiency intrinsically and with an additional gamma ray from {sup 234}U, the relative abundance of these three uranium isotopes. The method uses a function that describes the basic physical processes that predominantly determine the relative detection efficiency curve. These are the detector efficiency, the absorption by the cylinder wall, and the self-absorption by the uranium contents. We will describe this model and initial testing on various uranium materials and detector types.

Ruhter, W D; Wang, T F; Hayden, C

2001-09-27T23:59:59.000Z

180

Depleted Uranium and Uranium Alloys  

Science Conference Proceedings (OSTI)

...Naturally occurring uranium makes up 0.0004% of the crust of the Earth; it is 40 times more plentiful than silver, and 800 times more plentiful than gold. Natural uranium contains approximately 0.7% fissionable U 235 and 99.3%

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Study of Chemical Changes in Uranium Oxyfluoride Particles Progress Report March - October 2009  

SciTech Connect

Nuclear forensics relies on the analysis of certain sample characteristics to determine the origin and history of a nuclear material. In the specific case of uranium enrichment facilities, it is the release of trace amounts of uranium hexafluoride (UF{sub 6}) gas - used for the enrichment of uranium - that leaves a process-characteristic fingerprint. When UF{sub 6} gas interacts with atmospheric moisture, uranium oxyfluoride particles or particle agglomerates are formed with sizes ranging from several microns down to a few tens of nanometers. These particles are routinely collected by safeguards organizations, such as the International Atomic Energy Agency (IAEA), allowing them to verify whether a facility is compliant with its declarations. Spectrometric analysis of uranium particles from UF{sub 6} hydrolysis has revealed the presence of both particles that contain fluorine, and particles that do not. It is therefore assumed that uranium oxyfluoride is unstable, and decomposes to form uranium oxide. Understanding the rate of fluorine loss in uranium oxyfluoride particles, and the parameters that control it, may therefore contribute to placing boundaries on the particle's exposure time in the environment. Expressly for the purpose of this study, we prepared a set of uranium oxyfluoride particles at the Institute for Reference Materials and Measurements (EU-JRC-IRMM) from a static release of UF{sub 6} in a humid atmosphere. The majority of the samples was stored in controlled temperature, humidity and lighting conditions. Single particles were characterized by a suite of micro-analytical techniques, including NanoSIMS, micro-Raman spectrometry (MRS), scanning (SEM) and transmission (TEM) electron microscopy, energy-dispersive X-ray spectrometry (EDX) and focused ion beam (FIB). The small particle size was found to be the main analytical challenge. The relative amount of fluorine, as well as the particle chemical composition and morphology were determined at different stages in the ageing process, and immediately after preparation. This report summarizes our most recent findings for each of the analytical techniques listed above, and provides an outlook on what remains to be resolved. Additional spectroscopic and mass spectrometric measurements were carried out at Pacific Northwest National Laboratory, but are not included in this summary.

Kips, R; Kristo, M; Hutcheon, I

2009-11-22T23:59:59.000Z

182

Uranium industry annual 1997  

SciTech Connect

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

183

Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride  

SciTech Connect

The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.

Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

1998-09-01T23:59:59.000Z

184

MODEL AND ALGORITHM EVALUATION FOR THE HYBRID UF6 CONTAINER INSPECTION SYSTEM  

Science Conference Proceedings (OSTI)

ABSTRACT Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter (186 keV photons from U-235) data and non-traditional, neutron-induced, high-energy gamma-signatures (3-8.5 MeV) with an array of collimated, medium-resolution scintillators. Previous (2010) work at PNNL demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term unattended operations. We used Monte Carlo modeling with MCNP5 to support system design (e.g., number and configuration of detector arrays, and design of iron/poly collimators for enhanced (n,?) conversion) and enrichment algorithm development. We developed a first-generation modeling framework in 2010. These tools have since been expanded, refined and benchmarked against field measurements with a prototype system of a 30B cylinder population (0.2 to 4.95 weight % U-235). The MCNP5 model decomposes the radiation transport problem into a linear superposition of basis spectra representing contributions from the different uranium isotopes and gamma-ray generation mechanisms (e.g. neutron capture). This scheme accommodates fast generation of virtual assay signatures for arbitrary enrichment, material age, and fill variations. Ongoing (FY-2011) refinements to the physics model include accounting for generation of bremsstrahlung photons, arising primarily from the beta decay of Pa-234m, a U-238 daughter. We are using the refined model to optimize collimator design for the hybrid method. The traditional assay method benefits from a high degree of collimation (to isolate each detectors field-of-view) and relatively small detector area, while the non-traditional method benefits from a wide field-of-view, i.e. less collimation and larger detectors. We implement the enrichment-meter method by applying a square-wave digital filter to a raw spectrum and extracting the 186-keV peak area directly from the convolute spectrum. Ongoing enhancements to this approach include mitigating a systematic peak-area measurement deficit arising from curvature in the spectrum continuum shape. An optimized system prototype based on model results is utilized in a new set of 2011 field measurements, and model and measurement enrichment assay uncertainties are compared.

McDonald, Benjamin S.; Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; Smith, Leon E.; Wittman, Richard S.

2011-06-14T23:59:59.000Z

185

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Table 21. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2008-2012

186

Challenges dealing with depleted uranium in Germany - Reuse or disposal  

SciTech Connect

During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)

Moeller, Kai D. [Federal Office for Radiation Protection, Bundesamt fuer Strahlenschutz - BFS, Postfach 10 01 49, D-38201 Salzgitter (Germany)

2007-07-01T23:59:59.000Z

187

Evaluation of a dry process for conversion of U-AVLIS product to UF{sub 6}. Milestone U361  

Science Conference Proceedings (OSTI)

A technical and engineering evaluation has been completed for a dry UF{sub 6} production system to convert the product of an initial two-line U-AVLIS plant. The objective of the study has been to develop a better understanding of process design requirements, capital and operating costs, and demonstration requirements for this alternate process. This report summarizes the results of the study and presents various comparisons between the baseline and alternate processes, building on the information contained in UF{sub 6} Product Alternatives Review Committee -- Final Report. It also provides additional information on flowsheet variations for the dry route which may warrant further consideration. The information developed by this study and conceptual design information for the baseline process will be combined with information to be developed by the U-AVLIS program and by industrial participants over the next twelve months to permit a further comparison of the baseline and alternate processes in terms of cost, risk, and compatibility with U-AVLIS deployment schedules and strategies. This comparative information will be used to make a final process flowsheet selection for the initial U-AVLIS plant by March 1993. The process studied is the alternate UF{sub 6} production flowsheet. Process steps are (1) electron-beam distillation to reduce enriched product iron content from about 10 wt % or less, (2) hydrofluorination of the metal to UF{sub 4}, (3) fluorination of UF{sub 4} to UF{sub 6}, (4) cold trap collection of the UF{sub 6} product, (5) UF{sub 6} purification by distillation, and (6) final blending and packaging of the purified UF{sub 6} in cylinders. A preliminary system design has been prepared for the dry UF{sub 6} production process based on currently available technical information. For some process steps, such information is quite limited. Comparisons have been made between this alternate process and the baseline plant process for UF{sub 6} production.

NONE

1992-05-01T23:59:59.000Z

188

PROCESS FOR TREATING VOLATILE METAL FLUORIDES  

DOE Patents (OSTI)

This patent relates to the purification of uranium hexafluoride, made by reacting the metal or its tetrafluoride with fluorine, from the frequently contained traces of hydrofluoric acid. According to the present process, UF/sub 6/ containing as an impurity a small amount of hydrofluoric acid, is treated to remove such impurity by contact with an anhydrous alkali metal fluoride such as sodium fluoride. In this way a non-volatile complex containing hydrofluoric acid and the alkali metal fluoride is formed, and the volatile UF /sub 6/ may then be removed by distillation.

Rudge, A.J.; Lowe, A.J.

1957-10-01T23:59:59.000Z

189

What is Depleted Uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is Uranium? What is Uranium? Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects What is Uranium? Physical and chemical properties, origin, and uses of uranium. Properties of Uranium Uranium is a radioactive element that occurs naturally in varying but small amounts in soil, rocks, water, plants, animals and all human beings. It is the heaviest naturally occurring element, with an atomic number of 92. In its pure form, uranium is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes, which are identified by the total number of protons and neutrons in the nucleus: uranium-238, uranium-235, and uranium-234. (Isotopes of an element have the

190

URANIUM IN ALKALINE ROCKS  

E-Print Network (OSTI)

combine to indicate uranium enrichment of an alkaline magma.uranium, the Ilfmaussaq intrusion contains an unusually high enrichment

Murphy, M.

2011-01-01T23:59:59.000Z

191

Uranium Mining and Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Presentation » Uranium Mining and Enrichment Overview Presentation » Uranium Mining and Enrichment Uranium Mining and Enrichment Uranium is a radioactive element that occurs naturally in the earth's surface. Uranium is used as a fuel for nuclear reactors. Uranium-bearing ores are mined, and the uranium is processed to make reactor fuel. In nature, uranium atoms exist in several forms called isotopes - primarily uranium-238, or U-238, and uranium-235, or U-235. In a typical sample of natural uranium, most of the mass (99.3%) would consist of atoms of U-238, and a very small portion of the total mass (0.7%) would consist of atoms of U-235. Uranium Isotopes Isotopes of Uranium Using uranium as a fuel in the types of nuclear reactors common in the United States requires that the uranium be enriched so that the percentage of U-235 is increased, typically to 3 to 5%.

192

New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities  

Science Conference Proceedings (OSTI)

An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSAs Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilitiesin this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVAhybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

Brim, Cornelia P.

2013-03-04T23:59:59.000Z

193

Uranium (U)  

Science Conference Proceedings (OSTI)

Table 63   Properties of unstable uranium isotopes with α-particle emission...Table 63 Properties of unstable uranium isotopes with α-particle emission Isotope Abundance, % Half-life ( t 1/2 ), years Energy, MeV 234 U 0.0055 2.47 ? 10 5 4.77, 4.72, 4.58, 4.47, 235 U 0.720 7.1 ? 10 6 4.40, 4.2 238 U 99.274 4.51 ? 10 9 4.18...

194

Uranium-234  

SciTech Connect

Translation of Uran-234 by J. Sehmorak. The following subjects are discussed: /sup 234/U and other natural radioactive isotopes, fractionation of heavy radioactive elements in nature, fractionation of radioactive isotopes, /sup 234/U in nuclear geochemistry, /sup 234/U in uranium minerals, /sup 234/U in continental waters and in quaternary deposits, and /sup 234/U in the ocean. (LK)

Cherdyntsev, V.V.

1971-01-01T23:59:59.000Z

195

Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

Science Conference Proceedings (OSTI)

The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

NONE

1996-07-01T23:59:59.000Z

196

Selection of a management strategy for depleted uranium hexafluoride  

Science Conference Proceedings (OSTI)

A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

1995-09-06T23:59:59.000Z

197

Depleted Uranium Health Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

198

Uranium industry annual 1996  

SciTech Connect

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

199

The ultimate disposition of depleted uranium  

SciTech Connect

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

200

A concept of a nonfissile uranium hexafluoride overpack for storage, transport, and processing of corroded cylinders  

SciTech Connect

There is a need to develop a means of safely transporting breached 48-in. cylinders containing depleted uranium hexafluoride (UF{sub 6}) from current storage locations to locations where the contents can be safely removed. There is also a need to provide a method of safely and easily transporting degraded cylinders that no longer meet the US Department of Transportation (DOT) and American National Standards Institute, Inc., (ANSI) requirements for shipments of depleted UF{sub 6}. A study has shown that an overpack can be designed and fabricated to satisfy these needs. The envisioned overpack will handle cylinder models 48G, 48X, and 48Y and will also comply with the ANSI N14.1 and the American Society of Mechanical Engineers (ASME) Sect. 8 requirements.

Pope, R.B.; Cash, J.M. [Oak Ridge National Lab., TN (United States); Singletary, B.H. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Uranium Quick Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Quick Facts Uranium Quick Facts A collection of facts about uranium, DUF6, and DOEs DUF6 inventory. Over the years, the Department of Energy has received numerous...

202

URANIUM IN ALKALINE ROCKS  

E-Print Network (OSTI)

1977. "Geology of Brazil's Uranium and Thorium Occurrences,"A tantalo-niobate of uranium, near pyrochlore. Isometric,niobate and tantalate of uranium, with ferrous iron and rare

Murphy, M.

2011-01-01T23:59:59.000Z

203

Derived enriched uranium market  

SciTech Connect

The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market.

Rutkowski, E.

1996-12-01T23:59:59.000Z

204

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

OFFICE OF DEPLETED URANIUM HEXAFLUORIDE MANAGEMENT Issuance Of Final Report On Preconceptual Designs For Depleted Uranium Hexafluoride Conversion Plants The Department of Energy...

205

Uranium Oxide Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

of semiconductors, it would consume the annual production rate of depleted uranium from uranium enrichment facilities. For more information: PDF Semiconductive Properties of...

206

COPPER COATED URANIUM ARTICLE  

DOE Patents (OSTI)

Various techniques and methods for obtaining coppercoated uranium are given. Specifically disclosed are a group of complex uranium coatings having successive layers of nickel, copper, lead, and tin.

Gray, A.G.

1958-10-01T23:59:59.000Z

207

Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA)

Home > Nuclear > Domestic Uranium Production Report Domestic Uranium Production Report Data for: 2005 Release Date: May 15, 2006 Next Release: May 15, 2007

208

Manhattan Project: Uranium cubes  

Office of Scientific and Technical Information (OSTI)

Cubes of uranium metal, Los Alamos, 1945 Events > Difficult Choices, 1942 > More Uranium Research, 1942 Events > Bringing It All Together, 1942-1945 > Basic Research at Los Alamos,...

209

Frequently Asked Questions (FAQs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Frequently Asked Questions (FAQs) Frequently asked questions (FAQs) about uranium, uranium hexafluoride (UF6), UF6 storage and depleted UF6 management. Below is a list of...

210

Uranium Industry Annual, 1992  

Science Conference Proceedings (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

211

REDUCTION OF URANIUM HEXAFLUORIDE RETENTION ON BEDS OF MAGNESIUM FLUORIDE USED FOR REMOVAL OF TECHNETIUM HEXAFLUORIDE  

SciTech Connect

The excessive loss of uranium incurred when discarding magnesium fluoride, (the adsorber used to selectively remove technetium hexafluoride from uranium hexafluoride streams) is a problem common to all volatility processes for recovering enriched uranium fuels. As a result of the work described, two schemes for the release of the uranium hexafluoride from the magnesium fluoride and its separation from the technetium hexafluoride are proposed. One scheme depends on preferential thermal desorption of the uranium hexafluoride at 350 deg C and the other on selective adsorption of the uranium hexafluoride on sodium fluoride pellets following the codesorption of the two hexafluorides with fluorine at 500 deg C from the magnesium fluoride pellets. These proposals are aimed at reducing the amount of retained uranium to less than 1 g per 1000 g of discardable magnesium fluoride. In the work reported, the deposition of uranium on magnesium fluoride as a function of heating, fluorination, and hydrogen fluoride pretreatment of the magnesium fluoride pellets prior to exposure to uranium hexafluoride was characterized in a series of gasometric studies. The dependence of the quantity of uranium hexafluoride adsorbed on pressure and temperature was also determined. The data show that physical adsorption is the mechanism for the deposition of most of the uranium hexafluoride on well- stabilized magnesium fluoride pellets. More than 90% of the adsorbate can be removed by heating to 350 deg C. Chemisorption (formation of a double salt) is probably not involved because of the small (<0.05) mole ratio of UF/sub 6//MgF/ sub 2/ observed. (auth)

Katz, S.

1964-01-31T23:59:59.000Z

212

Enriched-uranium feed costs for the High-Temperature Gas-Cooled reactor: trends and comparison with other reactor concepts  

SciTech Connect

This report discusses each of the components that affect the unit cost for enriched uranium; that is, ore costs, U/sub 3/O/sub 8/ to UF/sub 6/ conversion cost, costs for enriching services, and changes in transaction tails assay. Historical trends and announced changes are included. Unit costs for highly enriched uranium (93.15 percent /sup 235/U) and for low-enrichment uranium (3.0, 3.2, and 3.5 percent /sup 235/U) are displayed as a function of changes in the above components and compared. It is demonstrated that the trends in these cost components will probably result in significantly less cost increase for highly enriched uranium than for low-enrichment uranium--hence favoring the High-Temperature Gas-Cooled Reactor.

Thomas, W.E.

1976-04-01T23:59:59.000Z

213

Use of Savannah River Site facilities for blend down of highly enriched uranium  

SciTech Connect

Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO{sub 3}) powder, uranyl nitrate [UO{sub 2}(NO{sub 3}){sub 2}] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO{sub 2}) or uranium hexafluoride (UF{sub 3}), the normal inputs for commercial fuel fabrication. This study`s scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO{sub 2} or UF{sub 6}, blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM).

Bickford, W.E.; McKibben, J.M.

1994-02-01T23:59:59.000Z

214

FAQ 23-How much depleted uranium -- including depleted uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

is stored in the United States? How much depleted uranium -- including depleted uranium hexafluoride -- is stored in the United States? In addition to the depleted uranium stored...

215

Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF/sub 6/. [ClF/sub 3/  

DOE Patents (OSTI)

This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF/sub 6/. The contaminants include fluorine and fluorides which are more reactive with CaCO/sub 3/ than is UF/sub 6/. The method comprises contacting the contaminant-carrying UF/sub 6/ with particulate CaCO/sub 3/ at a temperature effecting reaction of the contaminant and the CaCO/sub 3/.

Jones, R.L.; Otey, M.G.; Perkins, R.W.

1980-11-24T23:59:59.000Z

216

DECONTAMINATION OF URANIUM  

DOE Patents (OSTI)

This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.

Feder, H.M.; Chellew, N.R.

1958-02-01T23:59:59.000Z

217

Development of the Process for the Recovery and Conversion of {sup 233}UF{sub 6} Chemisorbed in NaF Traps from the Molten Salt Reactor Remediation Project  

SciTech Connect

The Molten Salt Reactor Experiment (MSRE) site at Oak Ridge National Laboratory is being cleaned up and remediated. The removal of {approx}37 kg of fissile {sup 233}U is the main activity. Of that inventory, {approx}23 kg has already been removed as UF{sub 6} from the piping system and chemisorbed in 25 NaF traps. This material is in temporary storage while it awaits conversion to a stable oxide. The planned recovery of {approx}11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a uranium oxide (U{sub 3}O{sub 8}), which is suitable for long-term storage.The conversion of the MSRE material into an oxide presents unique problems, such as criticality concerns, a large radiation field caused by the daughters of {sup 232}U (an impurity isotope in the {sup 233}U), and the possible spread of the high-radiation field from the release of {sup 220}Rn gas. To overcome these problems, a novel process was conceived and developed. This process was specially tailored for providing remote operations inside a hot cell while maintaining full containment at all times to avoid the spread of contamination. This process satisfies criticality concerns, maximizes the recovery of uranium, minimizes any radiation exposure to operators, and keeps waste disposal to a minimum.

Cul, Guillermo D. del; Icenhour, Alan S.; Simmons, Darrell W. [Oak Ridge National Laboratory (United States)

2001-10-15T23:59:59.000Z

218

Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1  

SciTech Connect

The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

Becker, D.L.; Green, D.J.; Lindquist, M.R.

1993-07-01T23:59:59.000Z

219

Disposition of highly enriched uranium obtained from the Republic of Kazakhstan. Environmental assessment  

Science Conference Proceedings (OSTI)

This EA assesses the potential environmental impacts associated with DOE`s proposal to transport 600 kg of Kazakhstand-origin HEU from Y-12 to a blending site (B&W Lynchburg or NFS Erwin), transport low-enriched UF6 blending stock from a gaseous diffusion plant to GE Wilmington and U oxide blending stock to the blending site, blending the HEU and uranium oxide blending stock to produce LEU in the form of uranyl nitrate, and transport the uranyl nitrate from the blending site to USEC Portsmouth.

NONE

1995-05-01T23:59:59.000Z

220

Uranium industry annual 1998  

SciTech Connect

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Uranium industry annual 1994  

SciTech Connect

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

222

Process for electroslag refining of uranium and uranium alloys  

DOE Patents (OSTI)

A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

1975-07-22T23:59:59.000Z

223

SOLDERING OF URANIUM  

SciTech Connect

One of Its Monograph Series, The Industrial Atom.'' The joining of uranium to uranium has been done successfully using a number of commercial soft solders and fusible alloys. Soldering by using an ultrasonic soldering iron has proved the best method for making sound soldered joints of uranium to uranium and of uranium to other metals, such as stainless steel. Other method of soldering have shown some promise but did not give reliable joints all the time. The soldering characteristics of uranium may best be compared to those of aluminum. (auth)

Hanks, G.S.; Doll, D.T.; Taub, J.M.; Brundige, E.L.

1957-01-01T23:59:59.000Z

224

URANIUM RECOVERY PROCESS  

DOE Patents (OSTI)

A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

1959-02-10T23:59:59.000Z

225

PRODUCTION OF PURIFIED URANIUM  

DOE Patents (OSTI)

A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

1960-01-26T23:59:59.000Z

226

Containment and storage of uranium hexafluoride at US Department of Energy uranium enrichment plants  

Science Conference Proceedings (OSTI)

Isotopically depleted UF{sub 6} (uranium hexafluoride) accumulates at a rate five to ten times greater than the enriched product and is stored in steel vessels at the enrichment plant sites. There are approximately 55,000 large cylinders now in storage at Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee. Most of them contain a nominal 14 tons of depleted UF{sub 6}. Some of these cylinders have been in the unprotected outdoor storage environment for periods approaching 40 years. Storage experience, supplemented by limited corrosion data, suggests a service life of about 70 years under optimum conditions for the 48-in. diameter, 5/16-in.-wall pressure vessels (100 psi working pressure), using a conservative industry-established 1/4-in.-wall thickness as the service limit. In the past few years, however, factors other than atmospheric corrosion have become apparent that adversely affect the serviceability of small numbers of the storage containers and that indicate the need for a managed program to ensure maintenance ofcontainment integrity for all the cylinders in storage. The program includes periodic visual inspections of cylinders and storage yards with documentation for comparison with other inspections, a group of corrosion test programs to permit cylinder life forecasts, and identification of (and scheduling for remedial action) situations in which defects, due to handling damage or accelerated corrosion, can seriously shorten the storage life or compromise the containment integrity of individual cylinders. The program also includes rupture testing to assess the effects of certain classes of damage on overall cylinder strength, aswell as ongoing reviews of specifications, procedures, practices, and inspection results to effect improvements in handling safety, containment integrity, and storage life.

Barlow, C.R.; Alderson, J.H.; Blue, S.C.; Boelens, R.A.; Conkel, M.E.; Dorning, R.E.; Ecklund, C.D.; Halicks, W.G.; Henson, H.M.; Newman, V.S.; Philpot, H.E.; Taylor, M.S.; Vournazos, J.P. [Oak Ridge K-25 Site, TN (United States). UEO Enrichment Technical Operations Div.; Russell, J.R. [USDOE Oak Ridge Field Office, TN (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States); Ziehlke, K.T. [MJB Technical Associates (United States)

1992-07-01T23:59:59.000Z

227

EPA Update: NESHAP Uranium Activities  

E-Print Network (OSTI)

measurements have been performed on high-enriched uranium (HEU) oxide fuel pins and depleted uranium metal

228

Method of recovering uranium hexafluoride  

DOE Patents (OSTI)

A method of recovering uranium hexafluoride from gaseous mixtures which comprises adsorbing said uranium hexafluoride on activated carbon is described.

Schuman, S.

1975-12-01T23:59:59.000Z

229

Atomic Data for Uranium (U )  

Science Conference Proceedings (OSTI)

... Uranium (U) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Uranium (U). ...

230

From the lab to the real world : sources of error in UF6 gas enrichment monitoring.  

E-Print Network (OSTI)

??Safeguarding uranium enrichment facilities is a serious concern for the International Atomic Energy Agency (IAEA). Safeguards methods have changed over the years, most recently switching (more)

Lombardi, Marcie

2012-01-01T23:59:59.000Z

231

Uranium from phosphate ores  

SciTech Connect

The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant.

Hurst, F.J.

1983-01-01T23:59:59.000Z

232

METHOD FOR PURIFYING URANIUM  

DOE Patents (OSTI)

A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

Knighton, J.B.; Feder, H.M.

1960-04-26T23:59:59.000Z

233

Uranium Quick Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Quick Facts A collection of facts about uranium, DUF6, and DOEs DUF6 inventory. Over the years, the Department of Energy has received numerous inquiries from the...

234

Cathodoluminescence of uranium oxides  

SciTech Connect

The cathodoluminescence of uranium oxide surfaces prepared in-situ from clean uranium exposed to dry oxygen was studied. The broad asymmetric peak observed at 470 nm is attributed to F-center excitation.

Winer, K.; Colmenares, C.; Wooten, F.

1984-08-09T23:59:59.000Z

235

Bicarbonate leaching of uranium  

SciTech Connect

The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented.

Mason, C.

1998-12-31T23:59:59.000Z

236

Uranium industry annual 1995  

SciTech Connect

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

237

Portsmouth DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Portsmouth DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND.............................................................................................................

238

Paducah DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Paducah DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND............................................................................................................. 3 3

239

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

240

Overview: A Legacy of Uranium Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

A Legacy of Uranium Enrichment Depleted Uranium is a Legacy of Uranium Enrichment Cylinders Photo Next Screen Management Responsibilities...

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FAQ 10-Why is uranium hexafluoride used?  

NLE Websites -- All DOE Office Websites (Extended Search)

uranium hexafluoride used? Why is uranium hexafluoride used? Uranium hexafluoride is used in uranium processing because its unique properties make it very convenient. It can...

242

URANIUM RECOVERY PROCESS  

DOE Patents (OSTI)

In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

Yeager, J.H.

1958-08-12T23:59:59.000Z

243

URANIUM SEPARATION PROCESS  

DOE Patents (OSTI)

The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

1959-07-14T23:59:59.000Z

244

Method for converting uranium oxides to uranium metal  

DOE Green Energy (OSTI)

A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

Duerksen, Walter K. (Norris, TN)

1988-01-01T23:59:59.000Z

245

Method for converting uranium oxides to uranium metal  

DOE Patents (OSTI)

A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixtures is then cooled to a temperature less than -100/sup 0/C in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

Duerksen, W.K.

1987-01-01T23:59:59.000Z

246

Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder  

Science Conference Proceedings (OSTI)

Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

Rothman, A.B.

1996-02-01T23:59:59.000Z

247

Speci cation and Veri cation of a Steam-Boiler with Signal-Coq Micka l Kerb uf1  

E-Print Network (OSTI)

Speci cation and Veri cation of a Steam-Boiler with Signal-Coq Micka l Kerb uf1 , David Nowak2 assistant, Coq, for the speci cation and the veri cation of co-inductive properties of the well-known steam-boiler cation tools. Keywords: synchronous programming, theorem proving, the steam- boiler problem. 1

Paris-Sud XI, Université de

248

FAQ 1-What is uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is uranium? What is uranium? What is uranium? Uranium is a radioactive element that occurs naturally in low concentrations (a few parts per million) in soil, rock, and surface and groundwater. It is the heaviest naturally occurring element, with an atomic number of 92. Uranium in its pure form is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes: primarily uranium-238, uranium-235, and a very small amount of uranium-234. (Isotopes are different forms of an element that have the same number of protons in the nucleus, but a different number of neutrons.) In a typical sample of natural uranium, most of the mass (99.27%) consists of atoms of uranium-238. About 0.72% of the mass consists of atoms of uranium-235, and a very small amount (0.0055% by mass) is uranium-234.

249

Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders  

Science Conference Proceedings (OSTI)

A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

Lykins, M.L.

1995-08-01T23:59:59.000Z

250

Uranium hexafluoride public risk  

SciTech Connect

The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

1994-08-01T23:59:59.000Z

251

Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union  

SciTech Connect

The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

Not Available

1994-01-01T23:59:59.000Z

252

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. (was Uranium Asset Management) Advance Uranium Asset Management Ltd. (was Uranium Asset Management) AREVA NC, Inc. (was COGEMA, Inc.) American Fuel Resources, LLC American Fuel Resources, LLC BHP Billiton Olympic Dam Corporation Pty Ltd AREVA NC, Inc. AREVA NC, Inc. CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd BHP Billiton Olympic Dam Corporation Pty Ltd ConverDyn CAMECO CAMECO Denison Mines Corp. ConverDyn ConverDyn Energy Resources of Australia Ltd. Denison Mines Corp. Energy Fuels Resources Energy USA, Inc. Effective Energy N.V. Energy Resources of Australia Ltd.

253

Preparation of uranium compounds  

SciTech Connect

UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

2013-02-19T23:59:59.000Z

254

First Principles Calculations of Uranium and Uranium-Zirconium Alloys  

Science Conference Proceedings (OSTI)

Presentation Title, First Principles Calculations of Uranium and Uranium- Zirconium Alloys. Author(s), Benjamin Good, Benjamin Beeler, Chaitanya Deo, Sergey...

255

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents (OSTI)

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

1995-06-06T23:59:59.000Z

256

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents (OSTI)

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

257

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report"...

258

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

1. U.S. uranium drilling activities, 2003-2012 Exploration Drilling Development Drilling Exploration and Development Drilling Year Number of Holes Feet (thousand) Number of Holes...

259

Uranium 'pearls' before slime  

NLE Websites -- All DOE Office Websites (Extended Search)

harm to themselves, scientists have wondered how on Earth these microbes do it. For Shewanella oneidensis, a microbe that modifies uranium chemistry, the pieces are coming...

260

Uranium Purchases Report  

Reports and Publications (EIA)

Final issue. This report details natural and enriched uranium purchases as reported by owners and operators of commercial nuclear power plants. 1996 represents the most recent publication year.

Douglas Bonnar

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Uranium Purchases Report 1995  

U.S. Energy Information Administration (EIA)

DOE/EIA0570(95) Distribution Category UC950 Uranium Purchases Report 1995 June 1996 Energy Information Administration Office of Coal, Nuclear, ...

262

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA)

udrilling 2012 Domestic Uranium Production Report Next Release Date: May 2014 Table 1. U.S. uranium drilling activities, 2003-2012 Year Exploration Drilling

263

URANIUM LEACHING AND RECOVERY PROCESS  

DOE Patents (OSTI)

A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

McClaine, L.A.

1959-08-18T23:59:59.000Z

264

PROCESS FOR MAKING URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for producing uranium hexafluoride by reacting uranium hexachloride with hydrogen fluoride at a temperature below about 150 deg C, under anhydrous conditions.

Rosen, R.

1959-07-14T23:59:59.000Z

265

Uranium industry annual 1993  

SciTech Connect

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

266

URANIUM SEPARATION PROCESS  

DOE Patents (OSTI)

The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

McVey, W.H.; Reas, W.H.

1959-03-10T23:59:59.000Z

267

Uranium from phosphate ores  

Science Conference Proceedings (OSTI)

Phosphate rock, the major raw material for phosphate fertilizers, contains uranium that can be recovered when the rock is processed. This makes it possible to produce uranium in a country that has no uranium ore deposits. The author briefly describes the way that phosphate fertilizers are made, how uranium is recovered in the phosphate industry, and how to detect uranium recovery operations in a phosphate plant. Uranium recovery from the wet-process phosphoric acid involves three unit operations: (1) pretreatment to prepare the acid; (2) solvent extraction to concentrate the uranium; (3) post treatment to insure that the acid returning to the acid plant will not be harmful downstream. There are 3 extractants that are capable of extracting uranium from phosphoric acid. The pyro or OPPA process uses a pyrophosphoric acid that is prepared on site by reacting an organic alcohol (usually capryl alcohol) with phosphorous pentoxide. The DEPA-TOPO process uses a mixture of di(2-ethylhexyl)phosphoric acid (DEPA) and trioctyl phosphine oxide (TOPO). The components can be bought separately or as a mixture. The OPAP process uses octylphenyl acid phosphate, a commercially available mixture of mono- and dioctylphenyl phosphoric acids. All three extractants are dissolved in kerosene-type diluents for process use.

Hurst, F.J.

1983-01-01T23:59:59.000Z

268

DECONTAMINATION OF URANIUM  

DOE Patents (OSTI)

A process is given for separating fission products from uranium by extracting the former into molten aluminum. Phase isolation can be accomplished by selectively hydriding the uranium at between 200 and 300 deg C and separating the hydride powder from coarse particles of fissionproduct-containing aluminum. (AEC)

Spedding, F.H.; Butler, T.A.

1962-05-15T23:59:59.000Z

269

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

Uranium Marketing Uranium Marketing Annual Report May 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2010 Uranium Marketing Annual Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity, Renewables, and Uranium Statistics. Questions about the preparation and content of this report may be directed to Michele Simmons, Team Leader,

270

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

271

URANIUM PRECIPITATION PROCESS  

DOE Patents (OSTI)

A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

1957-12-01T23:59:59.000Z

272

Method of absorbing UF.sub.6 from gaseous mixtures in alkamine absorbents  

DOE Patents (OSTI)

A method of recovering uranium hexafluoride from gaseous mixtures employing as an absorbent a liquid composition at least one of the components of which is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2.

Lafferty, Robert H. (Oak Ridge, TN); Smiley, Seymour H. (Oak Ridge, TN); Radimer, Kenneth J. (Little Falls, NJ)

1976-04-06T23:59:59.000Z

273

India's Worsening Uranium Shortage  

Science Conference Proceedings (OSTI)

As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commissions Mid-Term Appraisal of the countrys current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of Indias uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

Curtis, Michael M.

2007-01-15T23:59:59.000Z

274

RECOVERY OF URANIUM VALUES  

DOE Patents (OSTI)

A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine in the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected amine dissolved in a nonpolar water-immiscible organic solvent such as kerosene. The uranium which is substantially completely exiracted by the organic phase may be stripped therefrom by waters and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

Brown, K.B.; Crouse, D.J. Jr.; Moore, J.G.

1959-03-10T23:59:59.000Z

275

Depleted uranium management alternatives  

SciTech Connect

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

276

Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium  

Science Conference Proceedings (OSTI)

Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

Gillas, D. L.; Chambers, B. K.

2002-02-26T23:59:59.000Z

277

BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE  

E-Print Network (OSTI)

Metallic Inclusions in Uranium Dioxide", LBL-11117 (1980).in Hypostoichiornetric Uranium Dioxide 11 , LBL-11095 (OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa L. Yang and

Yang, Rosa L.

2013-01-01T23:59:59.000Z

278

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 Mill Owner Mill Name County, State (existing and planned locations) Milling Capacity (short tons of ore per day) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished Denison White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby

279

Uranium-Based Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium-Based Catalysts S. H. Overbury, Cyrus Riahi-Nezhad, Zongtao Zhang, Sheng Dai, and Jonathan Haire Oak Ridge National Laboratory* P.O. Box 2008 Oak Ridge, Tennessee...

280

Domestic Uranium Production Report  

Annual Energy Outlook 2012 (EIA)

6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Uranium Management and Policy  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Uranium Management and Policy (NE-54), as part of the Office of Fuel Cycle Technologies (NE-5), supports the Department of Energy (DOE) by assuring domestic supplies of fuel for...

282

300 AREA URANIUM CONTAMINATION  

SciTech Connect

{sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

BORGHESE JV

2009-07-02T23:59:59.000Z

283

Depleted uranium valuation  

SciTech Connect

The following uses for depleted uranium were examined to determine its value: a substitute for lead in shielding applications, feed material in gaseous diffusion enrichment facilities, feed material for an advanced enrichment concept, Mixed Oxide (MOx) diluent and blanket material in LMFBRs, and fertile material in LMFBR systems. A range of depleted uranium values was calculated for each of these applications. The sensitivity of these values to analysis assumptions is discussed. 9 tables.

Lewallen, M.A.; White, M.K.; Jenquin, U.P.

1979-04-01T23:59:59.000Z

284

Uranium purchases report 1994  

SciTech Connect

US utilities are required to report to the Secretary of Energy annually the country of origin and the seller of any uranium or enriched uranium purchased or imported into the US, as well as the country of origin and seller of any enrichment services purchased by the utility. This report compiles these data and also contains a glossary of terms and additional purchase information covering average price and contract duration. 3 tabs.

1995-07-01T23:59:59.000Z

285

URANIUM SEPARATION PROCESS  

DOE Patents (OSTI)

A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

Lyon, W.L.

1962-04-17T23:59:59.000Z

286

Uranium tailings bibliography  

SciTech Connect

A bibliography containing 1,212 references is presented with its focus on the general problem of reducing human exposure to the radionuclides contained in the tailings from the milling of uranium ore. The references are divided into seven broad categories: uranium tailings pile (problems and perspectives), standards and philosophy, etiology of radiation effects, internal dosimetry and metabolism, environmental transport, background sources of tailings radionuclides, and large-area decontamination. (JSR)

Holoway, C.F.; Goldsmith, W.A.; Eldridge, V.M.

1975-12-01T23:59:59.000Z

287

URANIUM EXTRACTION PROCESS  

DOE Patents (OSTI)

A process is described for recovering uranium values from acidic aqueous solutions containing hexavalent uranium by contacting the solution with an organic solution comprised of a substantially water-immiscible organlc diluent and an organic phosphate to extract the uranlum values into the organic phase. Carbon tetrachloride and a petroleum hydrocarbon fraction, such as kerosene, are sultable diluents to be used in combination with organlc phosphates such as dibutyl butylphosphonate, trlbutyl phosphine oxide, and tributyl phosphate.

Baldwin, W.H.; Higgins, C.E.

1958-12-16T23:59:59.000Z

288

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

10. Uranium reserve estimates at the end of 2012 10. Uranium reserve estimates at the end of 2012 million pounds U3O8 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 1 Sixteen respondents reported reserve estimates on 71 mines and properties. These uranium reserve estimates cannot be compared with the much larger historical data set of uranium reserves that were published in the July 2010 report U.S. Uranium Reserves Estimates at http://www.eia.gov/cneaf/nuclear/page/reserves/ures.html. Reserves, as reported here, do not necessarily imply compliance with U.S. or Canadian government definitions for purposes of investment disclosure.

289

FAQ 5-Is uranium radioactive?  

NLE Websites -- All DOE Office Websites (Extended Search)

Is uranium radioactive? Is uranium radioactive? Is uranium radioactive? All isotopes of uranium are radioactive, with most having extremely long half-lives. Half-life is a measure of the time it takes for one half of the atoms of a particular radionuclide to disintegrate (or decay) into another nuclear form. Each radionuclide has a characteristic half-life. Half-lives vary from millionths of a second to billions of years. Because radioactivity is a measure of the rate at which a radionuclide decays (for example, decays per second), the longer the half-life of a radionuclide, the less radioactive it is for a given mass. The half-life of uranium-238 is about 4.5 billion years, uranium-235 about 700 million years, and uranium-234 about 25 thousand years. Uranium atoms decay into other atoms, or radionuclides, that are also radioactive and commonly called "decay products." Uranium and its decay products primarily emit alpha radiation, however, lower levels of both beta and gamma radiation are also emitted. The total activity level of uranium depends on the isotopic composition and processing history. A sample of natural uranium (as mined) is composed of 99.3% uranium-238, 0.7% uranium-235, and a negligible amount of uranium-234 (by weight), as well as a number of radioactive decay products.

290

Hybrid Enrichment Assay Methods for a UF6 Cylinder Verification Station: FY10 Progress Report  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) is developing the concept of an automated UF6 cylinder verification station that would be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until the arrival of International Atomic Energy Agency (IAEA) inspectors. At the center of this unattended system is a hybrid enrichment assay technique that combines the traditional enrichment-meter method (based on the 186 keV peak from 235U) with non-traditional neutron-induced high-energy gamma-ray signatures (spawned primarily by 234U alpha emissions and 19F(alpha, neutron) reactions). Previous work by PNNL provided proof-of-principle for the non-traditional signatures to support accurate, full-volume interrogation of the cylinder enrichment, thereby reducing the systematic uncertainties in enrichment assay due to UF6 heterogeneity and providing greater sensitivity to material substitution scenarios. The work described here builds on that preliminary evaluation of the non-traditional signatures, but focuses on a prototype field system utilizing NaI(Tl) and LaBr3(Ce) spectrometers, and enrichment analysis algorithms that integrate the traditional and non-traditional signatures. Results for the assay of Type-30B cylinders ranging from 0.2 to 4.95 wt% 235U, at an AREVA fuel fabrication plant in Richland, WA, are described for the following enrichment analysis methods: 1) traditional enrichment meter signature (186 keV peak) as calculated using a square-wave convolute (SWC) algorithm; 2) non-traditional high-energy gamma-ray signature that provides neutron detection without neutron detectors and 3) hybrid algorithm that merges the traditional and non-traditional signatures. Uncertainties for each method, relative to the declared enrichment for each cylinder, are calculated and compared to the uncertainties from an attended HPGe verification station at AREVA, and the IAEAs uncertainty target values for feed, tail and product cylinders. A summary of the major findings from the field measurements and subsequent analysis follows: Traditional enrichment-meter assay using specially collimated NaI spectrometers and a Square-Wave-Convolute algorithm can achieve uncertainties comparable to HPGe and LaBr for product, natural and depleted cylinders. Non-traditional signatures measured using NaI spectrometers enable interrogation of the entire cylinder volume and accurate measurement of absolute 235U mass in product, natural and depleted cylinders. A hybrid enrichment assay method can achieve lower uncertainties than either the traditional or non-traditional methods acting independently because there is a low degree of correlation in the systematic errors of the two individual methods (wall thickness variation and 234U/235U variation, respectively). This work has indicated that the hybrid NDA method has the potential to serve as the foundation for an unattended cylinder verification station. When compared to todays handheld cylinder-verification approach, such a station would have the following advantages: 1) improved enrichment assay accuracy for product, tail and feed cylinders; 2) full-volume assay of absolute 235U mass; 3) assay of minor isotopes (234U and 232U) important to verification of feedstock origin; single instrumentation design for both Type 30B and Type 48 cylinders; and 4) substantial reduction in the inspector manpower associated with cylinder verification.

Smith, Leon E.; Jordan, David V.; Orton, Christopher R.; Misner, Alex C.; Mace, Emily K.

2010-08-01T23:59:59.000Z

291

FAQ 13-How is uranium hexafluoride stored?  

NLE Websites -- All DOE Office Websites (Extended Search)

atmospheric pressure in the top. The UF6 inside the cylinder combines with the iron on the inner surfaces to form a surface layer of iron fluoride that inhibits internal corrosion...

292

FAQ 6-What is depleted uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted uranium? What is depleted uranium? Depleted uranium is created during the processing that is done to make natural uranium suitable for use as fuel in nuclear power plants...

293

Tag: uranium | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

uranium Tag: uranium Displaying 1 - 10 of 23... Category: News The Nation's Expert in All Things Uranium Y-12 serves the nation and the world as a center of excellence for uranium...

294

The Nature of Vibrational Softening in ? - Uranium  

Science Conference Proceedings (OSTI)

... The Nature of Vibrational Softening in ? - Uranium. The standard textbook ... B / atom. All experiments used uranium powder. High ...

295

Education: Digital Resource Center - WEB: Uranium Information ...  

Science Conference Proceedings (OSTI)

Sep 24, 2007 ... Uranium, Electricity and the Greenhouse Effect ... Educational Resource Papers," Australian Uranium Association Ltd. Site updated weekly.

296

Energy Levels of Neutral Uranium ( U I )  

Science Conference Proceedings (OSTI)

... Data, Uranium (U) Homepage - Introduction Finding list Select element by name. ... Version Energy Levels of Neutral Uranium ( U I ). ...

297

Domestic Uranium Production Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, ... with currently proven mining and processing technology and under current law and regulations.

298

Domestic Uranium Production Report 2004 -2011  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections ...

299

Uranium resources: Issues and facts  

SciTech Connect

Although there are several secondary issues, the most important uranium resource issue is, ``will there be enough uranium available at a cost which will allow nuclear power to be competitive in the future?`` This paper will attempt to answer this question by discussing uranium supply, demand, and economics from the perspective of the United States. The paper will discuss: how much uranium is available; the sensitivity of nuclear power costs to uranium price; the potential future demand for uranium in the Unites States, some of the options available to reduce this demand, the potential role of the Advanced Liquid Metal Cooled Reactor (ALMR) in reducing uranium demand; and potential alternative uranium sources and technologies.

Delene, J.G.

1993-12-31T23:59:59.000Z

300

METHOD OF RECOVERING URANIUM COMPOUNDS  

DOE Patents (OSTI)

S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

Poirier, R.H.

1957-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

METHOD OF SINTERING URANIUM DIOXIDE  

DOE Green Energy (OSTI)

This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

Henderson, C.M.; Stavrolakis, J.A.

1963-04-30T23:59:59.000Z

302

Uranium-titanium-niobium alloy  

DOE Patents (OSTI)

A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

Ludtka, Gail M. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

303

It's Elemental - The Element Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

into uranium-233, also through beta decay. If completely fissioned, one pound (0.45 kilograms) of uranium-233 will provide the same amount of energy as burning 1,500 tons...

304

EXTRACTION OF URANIUM  

DOE Patents (OSTI)

An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.

Kesler, R.D.; Rabb, D.D.

1959-07-28T23:59:59.000Z

305

Uranium immobilization and nuclear waste  

SciTech Connect

Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

Duffy, C.J.; Ogard, A.E.

1982-02-01T23:59:59.000Z

306

PROCESS OF PREPARING URANIUM CARBIDE  

DOE Patents (OSTI)

A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

Miller, W.E.; Stethers, H.L.; Johnson, T.R.

1964-03-24T23:59:59.000Z

307

PROCESS OF RECOVERING URANIUM  

DOE Patents (OSTI)

An improved precipitation method is described for the recovery of uranium from aqueous solutions. After removal of all but small amounts of Ni or Cu, and after complexing any iron present, the uranium is separated as the peroxide by adding H/sub 2/O/sub 2/. The improvement lies in the fact that the addition of H/sub 2/O/sub 2/ and consequent precipitation are carried out at a temperature below the freezing; point of the solution, so that minute crystals of solvent are present as seed crystals for the precipitation.

Price, T.D.; Jeung, N.M.

1958-06-17T23:59:59.000Z

308

TREATMENT OF URANIUM SURFACES  

DOE Patents (OSTI)

An improved process is presented for prcparation of uranium surfaces prior to electroplating. The surfacc of the uranium to be electroplated is anodized in a bath comprising a solution of approximately 20 to 602 by weight of phosphoric acid which contains about 20 cc per liter of concentrated hydrochloric acid. Anodization is carried out for approximately 20 minutes at a current density of about 0.5 amperes per square inch at a temperature of about 35 to 45 C. The oxidic film produced by anodization is removed by dipping in strong nitric acid, followed by rinsing with water just prior to electroplating.

Slunder, C.J.

1959-02-01T23:59:59.000Z

309

Production and Handling Slide 21: Melting Points of Uranium and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Points of Uranium and Uranium Compounds Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Melting Points of Uranium and Uranium...

310

FAQ 26-Are there any uses for depleted uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

uses for depleted uranium? Are there any uses for depleted uranium? Several current and potential uses exist for depleted uranium. Depleted uranium could be mixed with highly...

311

An Operator Perspective from a Facility Evaluation of an RFID-Based UF6 Cylinder Accounting and Tracking System  

SciTech Connect

An operational field test of a Radio-Frequency Identification (RFID) system for tracking and accounting UF6 cylinders was conducted at the Global Nuclear Fuel Americas (GNF) fuel fabrication plant in 2009. The Cylinder Accountability and Tracking System (CATS) was designed and deployed by Oak Ridge National Laboratory (ORNL) and evaluated in cooperation with GNF. The system required that passive RFID be attached to several UF6 30B cylinders as they were received at the site; then the cylinders were tracked as they proceeded to interim storage, to processing in an autoclave, and eventually to disposition from the site. This CATS deployment also provided a direct integration of scale data from the site accountability scales. The integration of this information into the tracking data provided an attribute for additional safeguards for evaluation. The field test provided insight into the advantages and challenges of using RFID at an operating nuclear facility. The RFID system allowed operators to interact with the technology and demonstrated the survivability of the tags and reader equipment in the process environment. This paper will provide the operator perspective on utilizing RFID technology for locating cylinders within the facility, thereby tracking the cylinders for process and for Material Control & Accounting functions. The paper also will present the operator viewpoint on RFID implemented as an independent safeguards system.

Martyn, Rose [Global Nuclear Fuels; Fitzgerald, Peter [Global Nuclear Fuels; Stehle, Nicholas D [ORNL; Rowe, Nathan C [ORNL; Younkin, James R [ORNL

2011-01-01T23:59:59.000Z

312

Results of Continuous Load Cell Monitoring Field Trial for UF6 Withdrawals at an Operating Industrial Plant  

Science Conference Proceedings (OSTI)

Continuous load cell monitoring (CLCM) has been implemented and tested for use as a safeguards tool during a 2009 field trial in an operating UF6 transfer facility. The transfer facility is part of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio, operated by the United States Enrichment Corporation. During the field trial, two process scales for UF{sub 6} cylinders were continuously monitored for a 6-month period as cylinders were being filled. The collected CLCM data were used in testing an event processor serving as a filter for highlighting measurements representing significant operational activities that are important in verifying declared operations. The collection of CLCM data, coupled with rules-based event processing, can provide inspectors with knowledge of a facility's feed and withdrawal activities occurring between site visits. Such process knowledge promises to enhance the effectiveness of safeguards by enabling inspectors to quantitatively compare declared activities directly with process measurements. Selected results of the field trial and event processing will be presented in the context of their value to an independent inspector and a facility operator.

Krichinsky, Alan M [ORNL; Bell, Lisa S [ORNL; Conchewski, Curtis A [ORNL; Peters, Benjamin R [ORNL; Pickett, Chris A [ORNL; Richardson, Dave [ORNL; Rowe, Nathan C [ORNL; Younkin, James R [ORNL

2010-01-01T23:59:59.000Z

313

Uranium mineralization in fluorine-enriched volcanic rocks  

Science Conference Proceedings (OSTI)

Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

1980-09-01T23:59:59.000Z

314

High loading uranium fuel plate  

DOE Patents (OSTI)

Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

1990-01-01T23:59:59.000Z

315

STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS  

DOE Patents (OSTI)

A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)

Crouse, D.J. Jr.

1962-09-01T23:59:59.000Z

316

Depleted Uranium Technical Brief  

E-Print Network (OSTI)

. This Technical Brief specifically addresses DU in an environmental contamination setting and specifically does.S. Department of Energy (DOE) and other govern ment sources. DU occurs in a number of different compounds airborne releases of uranium at one DOE facility amounted to 310,000 kg between 1951 and 1988, which

317

URANIUM RECOVERY PROCESS  

DOE Patents (OSTI)

The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

Hyman, H.H.; Dreher, J.L.

1959-07-01T23:59:59.000Z

318

Benchmark Gamma Spectroscopy Measurements of Uranium Hexafluoride in Aluminmum Pipe with a Sodium Iodide Detector  

SciTech Connect

The expected increased demand in fuel for nuclear power plants, combined with the fact that a significant portion of the current supply from the blend down of weapons-source material will soon be coming to an end, has led to the need for new sources of enriched uranium for nuclear fuel. As a result, a number of countries have announced plans, or are currently building, gaseous centrifuge enrichment plants (GCEPs) to supply this material. GCEPs have the potential to produce uranium at enrichments above the level necessary for nuclear fuel purposes-enrichments that make the uranium potentially usable for nuclear weapons. As a result, there is a critical need to monitor these facilities to ensure that nuclear material is not inappropriately enriched or diverted for unintended use. Significant advances have been made in instrument capability since the current International Atomic Energy Agency (IAEA) monitoring methods were developed. In numerous cases, advances have been made in other fields that have the potential, with modest development, to be applied in safeguards applications at enrichment facilities. A particular example of one of these advances is the flow and enrichment monitor (FEMO). (See Gunning, J. E. et al., 'FEMO: A Flow and Enrichment Monitor for Verifying Compliance with International Safeguards Requirements at a Gas Centrifuge Enrichment Facility,' Proceedings of the 8th International Conference on Facility Operations - Safeguards Interface. Portland, Oregon, March 30-April 4th, 2008.) The FEMO is a conceptual instrument capable of continuously measuring, unattended, the enrichment and mass flow of {sup 235}U in pipes at a GCEP, and consequently increase the probability that the potential production of HEU and/or diversion of fissile material will be detected. The FEMO requires no piping penetrations and can be installed on pipes containing the flow of uranium hexafluoride (UF{sub 6}) at a GCEP. This FEMO consists of separate parts, a flow monitor (FM) and an enrichment monitor (EM). Development of the FM is primarily the responsibility of Oak Ridge National Laboratory, and development of the EM is primarily the responsibility of Los Alamos National Laboratory. The FM will measure {sup 235}U mass flow rate by combining information from measuring the UF{sub 6} volumetric flow rate and the {sup 235}U density. The UF{sub 6} flow rate will be measured using characteristics of the process pumps used in product and tail UF{sub 6} header process lines of many GCEPs, and the {sup 235}U density will be measured using commercially available sodium iodide (NaI) gamma ray scintillation detectors. This report describes the calibration of the portion of the FM that measures the {sup 235}U density. Research has been performed to define a methodology and collect data necessary to perform this calibration without the need for plant declarations. The {sup 235}U density detector is a commercially available system (GammaRad made by Amptek, www.amptek.com) that contains the NaI crystal, photomultiplier tube, signal conditioning electronics, and a multichannel analyzer (MCA). Measurements were made with the detector system installed near four {sup 235}U sources. Two of the sources were made of solid uranium, and the other two were in the form of UF{sub 6} gas in aluminum piping. One of the UF{sub 6} gas sources was located at ORNL and the other at LANL. The ORNL source consisted of two pipe sections (schedule 40 aluminum pipe of 4-inch and 8-inch outside diameter) with 5.36% {sup 235}U enrichment, and the LANL source was a 4-inch schedule 40 aluminum pipe with 3.3% {sup 235}U enrichment. The configurations of the detector on these test sources, as well as on long straight pipe configurations expected to exist at GCEPs, were modeled using the computer code MCNP. The results of the MCNP calculations were used to define geometric correction factors between the test source and the GCEP application. Using these geometric correction factors, the experimental 186 keV counts in the test geometry were extrapolated to the expected GCEP ge

March-Leuba, Jose A [ORNL; Uckan, Taner [ORNL; Gunning, John E [ORNL; Brukiewa, Patrick D [ORNL; Upadhyaya, Belle R [ORNL; Revis, Stephen M [ORNL

2010-01-01T23:59:59.000Z

319

Nuclear Fuel Facts: Uranium | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Management and Uranium Management and Policy » Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite. Uranium ore can be mined from open pits or underground excavations. The ore can then be crushed and treated at a mill to separate the valuable uranium from the ore. Uranium may also be dissolved directly from the ore deposits

320

PRODUCTION OF URANIUM METAL BY CARBON REDUCTION  

DOE Patents (OSTI)

The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

Holden, R.B.; Powers, R.M.; Blaber, O.J.

1959-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Remediation and Recovery of Uranium from Contaminated  

E-Print Network (OSTI)

uranium containing the mixture of isotopes occurring in nature; uranium depleted in the isotope 235; Depleted uranium 1000 kilograms; and Thorium 1000 kilograms. #12;INFCIRC/254/Rev.9/Part.1 November 2007 Annex B, section 4.); 2.5. Plants for the separation of isotopes of natural uranium, depleted uranium

Lovley, Derek

322

Method of preparation of uranium nitride  

SciTech Connect

Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

2013-07-09T23:59:59.000Z

323

Uranyl Nitrate Flow Loop  

Science Conference Proceedings (OSTI)

The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by the U.S. Department of Energy (DOE) NA-241, Office of Dismantlement and Transparency.

Ladd-Lively, Jennifer L [ORNL

2008-10-01T23:59:59.000Z

324

Method of preparing uranium nitride or uranium carbonitride bodies  

DOE Patents (OSTI)

Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U.sub.3 O.sub.8 and carbon by varying the weight ratio of carbon to U.sub.3 O.sub.8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies.

Wilhelm, Harley A. (Ames, IA); McClusky, James K. (Valparaiso, IN)

1976-04-27T23:59:59.000Z

325

Method for fabricating uranium foils and uranium alloy foils  

DOE Patents (OSTI)

A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

2006-09-05T23:59:59.000Z

326

Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

1995-12-01T23:59:59.000Z

327

Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities  

SciTech Connect

Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of density, concentration and enrichment. A detailed uncertainty analysis will be presented providing insights into instrumentation limitations to spoofing.

Dewji, Shaheen A [ORNL; Lee, Denise L [ORNL; Croft, Stephen [ORNL; McElroy, Robert Dennis [ORNL; Hertel, Nolan [Georgia Institute of Technology; Chapman, Jeffrey Allen [ORNL; Cleveland, Steven L [ORNL

2013-01-01T23:59:59.000Z

328

ELECTROLYSIS OF THORIUM AND URANIUM  

DOE Patents (OSTI)

An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

Hansen, W.N.

1960-09-01T23:59:59.000Z

329

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

9. Summary production statistics of the U.S. uranium industry, 1993-2012 9. Summary production statistics of the U.S. uranium industry, 1993-2012 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Exploration and Development Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars)1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 Mine Production of Uranium (million pounds U3O8) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 Uranium Concentrate Production (million pounds U3O8) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1

330

WELDED JACKETED URANIUM BODY  

DOE Patents (OSTI)

A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

Gurinsky, D.H.

1958-08-26T23:59:59.000Z

331

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

8. U.S. uranium expenditures, 2003-2012 8. U.S. uranium expenditures, 2003-2012 million dollars Year Drilling Production Land and Other Total Expenditures Total Land and Other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Drilling: All expenditures directly associated with exploration and development drilling. Production: All expenditures for mining, milling, processing of uranium, and facility expense.

332

METHOD OF JACKETING URANIUM BODIES  

DOE Patents (OSTI)

An improved process is presented for providing uranium slugs with thin walled aluminum jackets. Since aluminum has a slightiy higher coefficient of thermal expansion than does uraaium, both uranium slugs and aluminum cans are heated to an elevated temperature of about 180 C, and the slug are inserted in the cans at that temperature. During the subsequent cooling of the assembly, the aluminum contracts more than does the uranium and a tight shrink fit is thus assured.

Maloney, J.O.; Haines, E.B.; Tepe, J.B.

1958-08-26T23:59:59.000Z

333

PROCESS FOR PREPARING URANIUM METAL  

DOE Patents (OSTI)

A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

Prescott, C.H. Jr.; Reynolds, F.L.

1959-01-13T23:59:59.000Z

334

FAQ 2-Where does uranium come from?  

NLE Websites -- All DOE Office Websites (Extended Search)

come from? Where does uranium come from? Small amounts of uranium are found almost everywhere in soil, rock, and water. However, concentrated deposits of uranium ores are found in...

335

IMPROVED PROCESSES FOR RECOVERING AND PURIFYING URANIUM  

DOE Patents (OSTI)

A process is described for reclaiming metallic uranium enriched with uranium-235 from the collector of a calutron upon which the enriched metallic uranium is Editor please delete 22166.

Price, T.D.; Henrickson, A.V.

1959-05-12T23:59:59.000Z

336

OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE  

E-Print Network (OSTI)

IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE Kee Chul Kim Ph.D.727-366; Figure 1. Oxygen-uranium phase-equilibrium _ystem [18]. uranium dioxide powders and 18 0 enriched carbon

Kim, Kee Chul

2010-01-01T23:59:59.000Z

337

Reoxidation of Bioreduced Uranium Under Reducing Conditions  

E-Print Network (OSTI)

Microbial reduction of uranium. Nature 350, 413-416 (1991).C. Enzymatic iron and uranium reduction by sulfate-reducingS. Reduction of hexavalent uranium from organic complexes by

2005-01-01T23:59:59.000Z

338

PROCESS FOR REMOVING NOBLE METALS FROM URANIUM  

DOE Patents (OSTI)

A pyrometallurgical method is given for purifying uranium containing ruthenium and palladium. The uranium is disintegrated and oxidized by exposure to air and then the ruthenium and palladium are extracted from the uranium with molten zinc.

Knighton, J.B.

1961-01-31T23:59:59.000Z

339

Y-12 and uranium history  

NLE Websites -- All DOE Office Websites (Extended Search)

German chemists, Otto Hahn and Fritz Strassman, successfully described a new term, nuclear fission, for their experiment that resulted in the first splitting of the uranium atom....

340

Highly Enriched Uranium Transparency Program  

NLE Websites -- All DOE Office Websites (Extended Search)

and Climate Research Center for Geospatial Analysis Program Highlights Index Highly Enriched Uranium Transparency Program EVS staff members helped to implement transparency and...

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

THERMAL DECOMPOSITION OF URANIUM COMPOUNDS  

DOE Patents (OSTI)

A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

Magel, T.T.; Brewer, L.

1959-02-10T23:59:59.000Z

342

SEPARATION OF THORIUM FROM URANIUM  

DOE Patents (OSTI)

A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

Bane, R.W.

1959-09-01T23:59:59.000Z

343

PREPARATION OF URANIUM(IV) NITRATE SOLUTIONS  

SciTech Connect

A procedure was developed for the preparation of uranium(IV) nitrate solutions in dilute nitric acid. Zinc metal was used as a reducing agent for uranium(VI) in dilute sulfuric acid. The uranium(IV) was precipitated as the hydrated oxide and dissolved in nitric acid. Uranium(IV) nitrate solutions were prepared at a maximum concentration of 100 g/l. The uranium(VI) content was less than 2% of the uranium(IV). (auth)

Ondrejcin, R.S.

1961-07-01T23:59:59.000Z

344

Uranium Compounds and Other Natural Radioactivities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Science Division XSD Groups Industry Argonne Home Advanced Photon Source Uranium Compounds and Other Natural Radioactivities Uranium containing compounds and other...

345

Uranium Downblending and Disposition Project Technology Readiness...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium...

346

Uranium Mining Tax (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Savings Uranium Mining Tax (Nebraska) Uranium Mining Tax (Nebraska) Eligibility Agricultural...

347

Microsoft Word - UraniumBioreductionV3  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlight - March 2013 Biotic-Abiotic Pathways: A New Paradigm for Uranium Reduction in Sediments Uranium, one of the most common radioactive elements on Earth, makes its...

348

Uranium Leasing Program | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Leasing Program Uranium Leasing Program Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado LM currently...

349

Consolidated Edison Uranium Solidification Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Edison Uranium Solidification Project Consolidated Edison Uranium Solidification Project CEUSP Inventory11-6-13Finalprint-ready.pdf CEUSPtimelinefinalprint-ready...

350

Uranium Enrichment Decontamination and Decommissioning Fund's...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

351

Understanding How Uranium Changes in Subsurface Environments...  

Office of Science (SC) Website

whether it is immobilized or moves out of a contaminated area, potentially into water supplies. The Impact New research on the transformation of uranium (VI) to uranium...

352

Domestic Uranium Production Report - Quarterly - Energy ...  

U.S. Energy Information Administration (EIA)

Total anticipated uranium market requirements at U.S. civilian nuclear power reactors are 50 million pounds for 2013. 2. 1 2012 Uranium Marketing ...

353

FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE  

DOE Patents (OSTI)

A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

1962-06-26T23:59:59.000Z

354

Solubility measurement of uranium in uranium-contaminated soils  

SciTech Connect

A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site.

Lee, S.Y.; Elless, M.; Hoffman, F.

1993-08-01T23:59:59.000Z

355

Aluminosilicate Precipitation Impact on Uranium  

SciTech Connect

Experiments have been conducted to examine the fate of uranium during the formation of sodium aluminosilicate (NAS) when wastes containing high aluminate concentrations are mixed with wastes of high silicate concentration. Testing was conducted at varying degrees of uranium saturation. Testing examined typical tank conditions, e.g., stagnant, slightly elevated temperature (50 C). The results showed that under sub-saturated conditions uranium is not removed from solution to any large extent in both simulant testing and actual tank waste testing. This aspect was not thoroughly understood prior to this work and was necessary to avoid criticality issues when actual tank wastes were aggregated. There are data supporting a small removal due to sorption of uranium on sites in the NAS. Above the solubility limit the data are clear that a reduction in uranium concentration occurs concomitant with the formation of aluminosilicate. This uranium precipitation is fairly rapid and ceases when uranium reaches its solubility limit. At the solubility limit, it appears that uranium is not affected, but further testing might be warranted.

WILMARTH, WILLIAM

2006-03-10T23:59:59.000Z

356

METHOD OF SEPARATING URANIUM SUSPENSIONS  

DOE Patents (OSTI)

A process is presented for separating colloidally dissed uranium oxides from the heavy water medium in upwhich they are contained. The method consists in treating such dispersions with hydrogen peroxide, thereby converting the uranium to non-colloidal UO/sub 4/, and separating the UO/sub 4/ sfter its rapid settling.

Wigner, E.P.; McAdams, W.A.

1958-08-26T23:59:59.000Z

357

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Milling Capacity (short tons of ore per day) 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby Uranium One Americas, Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Changing License To Operational Standby

358

METHOD OF ELECTROPLATING ON URANIUM  

DOE Patents (OSTI)

This patent relates to a preparation of metallic uranium surfaces for receiving coatings, particularly in order to secure adherent electroplated coatings upon uranium metal. In accordance with the invention the uranium surface is pretreated by degreasing in trichloroethylene, followed by immersion in 25 to 50% nitric acid for several minutes, and then rinsed with running water, prior to pickling in trichloroacetic acid. The last treatment is best accomplished by making the uranium the anode in an aqueous solution of 50 per cent by weight trichloroacetic acid until work-distorted crystals or oxide present on the metal surface have been removed and the basic crystalline structure of the base metal has been exposed. Following these initial steps the metallic uranium is rinsed in dilute nitric acid and then electroplated with nickel. Adnerent firmly-bonded coatings of nickel are obtained.

Rebol, E.W.; Wehrmann, R.F.

1959-04-28T23:59:59.000Z

359

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. uranium mine production and number of mines and sources, 2003-2012 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W Total Mine Production (thousand pounds U3O8) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Number of Operating Mines Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources1 1 1 2 1 1 1 2 1 1 1

360

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources,Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

THE RECOVERY OF URANIUM FROM GAS MIXTURE  

DOE Patents (OSTI)

A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)

Jury, S.H.

1964-03-17T23:59:59.000Z

362

Process for removing carbon from uranium  

DOE Patents (OSTI)

Carbon contamination is removed from uranium and uranium alloys by heating in inert atmosphere to 700.degree.-1900.degree.C in effective contact with yttrium to cause carbon in the uranium to react with the yttrium. The yttrium is either in direct contact with the contaminated uranium or in indirect contact by means of an intermediate transport medium.

Powell, George L. (Oak Ridge, TN); Holcombe, Jr., Cressie E. (Knoxville, TN)

1976-01-01T23:59:59.000Z

363

APPENDIX J Partition Coefficients For Uranium  

E-Print Network (OSTI)

APPENDIX J Partition Coefficients For Uranium #12;Appendix J Partition Coefficients For Uranium J.1.0 Background The review of uranium Kd values obtained for a number of soils, crushed rock and their effects on uranium adsorption on soils are discussed below. The solution pH was also used as the basis

364

The End of Cheap Uranium  

E-Print Network (OSTI)

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

Michael Dittmar

2011-06-18T23:59:59.000Z

365

ELECTRODEPOSITION OF NICKEL ON URANIUM  

SciTech Connect

Electrodeposited nickel coatings on uranium for protection from destructive corrosion in boiling water wns investigated. Correlation between the pretreatment of the uranium and subsequent protection by thin nickel coatings was established. Thin electrodeposited nickel coatings provide better protection when applied to a matte surface produced by blasting with an aqueous suspension of silica (100 mesh) followed by a cathodic treatment in 35 wt% sulfuric acid than when applied to the rough surfaces produced on uranium by anodic pretreatments and acid pickling. Blistering of nickel electrodeposits arising from hydrogen was encountered and eliminated. (auth)

Beard, A.P.; Crooks, D.D.

1954-08-31T23:59:59.000Z

366

SEPARATION OF URANIUM FROM THORIUM  

DOE Patents (OSTI)

A process is presented for separating uranium from thorium wherein the ratio of thorium to uranium is between 100 to 10,000. According to the invention the thoriumuranium mixture is dissolved in nitric acid, and the solution is prepared so as to obtain the desired concentration within a critical range of from 4 to 8 N with regard to the total nitrate due to thorium nitrate, with or without nitric acid or any nitrate salting out agent. The solution is then contacted with an ether, such as diethyl ether, whereby uranium is extracted into ihe organic phase while thorium remains in the aqueous phase.

Hellman, N.N.

1959-07-01T23:59:59.000Z

367

FLUORINE PROCESS FOR SEPARATION OF MATERIALS  

DOE Patents (OSTI)

A process is described for separating plutoniunn from neutron-irradiated uranium, which consists of reacting the irradiated uranium mass with HF to form the tetrafluorides of U, Pu, and Np, and then reacting this mixture of tetrafluorides with fiuorine at temperature between 140 and 315 d C. This causes volatile hexafluorides of U and Np to form while at the temperature employed the Pu tetrafluoride is unaffected and remains as a residue.

Seaborg, G.T.; Brown, H.S.

1958-05-01T23:59:59.000Z

368

Uranium Lease Tracts Location Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Uranium Lease Tracts Location Map Uranium Lease Tracts Location Map Uranium Lease Tracts...

369

FAQ 11-What are the properties of uranium hexafluoride?  

NLE Websites -- All DOE Office Websites (Extended Search)

properties of uranium hexafluoride? What are the properties of uranium hexafluoride? Uranium hexafluoride can be a solid, liquid, or gas, depending on its temperature and pressure....

370

THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE  

E-Print Network (OSTI)

Soubbaramayer, (1979) in "Uranium Enrichment", S. Villani,and Davies, E. (1973) "Uranium Enrichment by Gas Centrifuge"THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

Olander, Donald R.

2013-01-01T23:59:59.000Z

371

Production and Handling Slide 43: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentation Table of Contents The Uranium Fuel Cycle Refer to caption below for image description Enriched uranium hexafluoride, generally containing 3 to 5% uranium-235, is sent...

372

Highly Enriched Uranium Materials Facility | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Enriched Uranium ... Highly Enriched Uranium Materials Facility HEUMF The Highly Enriched Uranium Materials Facility is our nation's central repository for highly enriched...

373

Summary Production Statistics of the U.S. Uranium Industry ...  

U.S. Energy Information Administration (EIA)

Domestic Uranium Production Report presents information Operating Status of U.S. Uranium Expenditures, 2003-2005. ... Mine Production of Uranium

374

THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE  

E-Print Network (OSTI)

Soubbaramayer, (1979) in "Uranium Enrichment", S. Villani,and Davies, E. (1973) "Uranium Enrichment by Gas Centrifuge"Nuclear Energy THE THEORY OF URANIUM ENRICHMENT BY THE GAS

Olander, Donald R.

2013-01-01T23:59:59.000Z

375

Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation  

E-Print Network (OSTI)

Phillips. 1992. Bioremediationof uraniumcontaminationwith enzymaticuraniumreduction. Environ. Sci. Microbial reduction of uranium. Nature350:413?416.

Wilkins, M.J.

2010-01-01T23:59:59.000Z

376

CALIFORNIUM ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS  

E-Print Network (OSTI)

Isotopes from Bombardment of Uranium with Carbon Ions A.ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS A.the irradiations, the uranium was dissolved in dilute

Ghiorso, A.; Thompson, S.G.; Street, K. Jr.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

377

THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.  

E-Print Network (OSTI)

Products in Irradiated Uranium Dioxide," UKAEA Report AERE-OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa Lu Yang (Chemical State of Irradiated Uranium- Plutonium Oxide Fuel

Yang, Rosa Lu.

2010-01-01T23:59:59.000Z

378

THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.  

E-Print Network (OSTI)

State of Irradiated Uranium- Plutonium Oxide Fuel Pins,"Ingots Formed in Uranium-Plutonium Oxide Irradiated in EBR-Roake, "Fission Products and Plutonium Migration in Uranium-

Yang, Rosa Lu.

2010-01-01T23:59:59.000Z

379

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

380

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Domestic Uranium Production Report June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2012 Domestic Uranium Production Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Uranium Marketing Annual Report May 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report ii

382

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3. U.S. uranium concentrate production, shipments, and sales, 2003-2012" "Activity at U.S. Mills and In-Situ-Leach Plants",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012...

383

Depleted Uranium (DU) Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

Fill Depleted Uranium (DU) Dioxide Fill DU dioxide in the form of sand may be used to fill the void spaces in the waste package after the package is loaded with SNF. This...

384

Beneficial Uses of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 2 (ref. 1). The content of 235 U in DU is dependent on economics. If the cost of natural uranium feed is high relative to the cost of enrichment services, then a low 235 U...

385

LIQUID METAL COMPOSITIONS CONTAINING URANIUM  

DOE Patents (OSTI)

Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

Teitel, R.J.

1959-04-21T23:59:59.000Z

386

SURFACE TREATMENT OF METALLIC URANIUM  

DOE Patents (OSTI)

The treatment of metallic uranium to provide a surface to which adherent electroplates can be applied is described. Metallic uranium is subjected to an etchant treatment in aqueous concentrated hydrochloric acid, and the etched metal is then treated to dissolve the resulting black oxide and/or chloride film without destroying the etched metal surface. The oxide or chloride removal is effected by means of moderately concentrated nitric acid in 3 to 20 seconds.

Gray, A.G.; Schweikher, E.W.

1958-05-27T23:59:59.000Z

387

Laser induced phosphorescence uranium analysis  

DOE Patents (OSTI)

A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

Bushaw, B.A.

1983-06-10T23:59:59.000Z

388

Rescuing a Treasure Uranium-233  

SciTech Connect

Uranium-233 (233U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium (232Th). At high purities, this synthetic isotope serves as a crucial reference for accurately quantifying and characterizing natural uranium isotopes for domestic and international safeguards. Separated 233U is stored in vaults at Oak Ridge National Laboratory. These materials represent a broad spectrum of 233U from the standpoint isotopic purity the purest being crucial for precise analyses in safeguarding uranium. All 233U at ORNL currently is scheduled to be down blended with depleted uranium beginning in 2015. Such down blending will permanently destroy the potential value of pure 233U samples as certified reference material for use in uranium analyses. Furthermore, no replacement 233U stocks are expected to be produced in the future due to a lack of operating production capability and the high cost of returning to operation this currently shut down capability. This paper will describe the efforts to rescue the purest of the 233U materials arguably national treasures from their destruction by down blending.

Krichinsky, Alan M [ORNL; Goldberg, Dr. Steven A. [DOE SC - Chicago Office; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL)

2011-01-01T23:59:59.000Z

389

Uranium Resources Inc URI | Open Energy Information  

Open Energy Info (EERE)

Uranium Resources Inc URI Uranium Resources Inc URI Jump to: navigation, search Name Uranium Resources, Inc. (URI) Place Lewisville, Texas Zip 75067 Product Uranium Resources, Inc. (URI) is primarily engaged in the business of acquiring, exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References Uranium Resources, Inc. (URI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Uranium Resources, Inc. (URI) is a company located in Lewisville, Texas . References ↑ "Uranium Resources, Inc. (URI)" Retrieved from "http://en.openei.org/w/index.php?title=Uranium_Resources_Inc_URI&oldid=352580" Categories: Clean Energy Organizations

390

Use of the UNCLE Facility to Assess Integrated Online Monitoring Systems for Detection of Diversions at Uranium Conversion Facilities  

Science Conference Proceedings (OSTI)

Historically, the approach to safeguarding nuclear material in the front end of the fuel cycle was implemented only at the stage when UF6 was declared as feedstock for enrichment plants. Recent International Atomic Energy Agency (IAEA) circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exist. Oak Ridge National Laboratory has developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions for a purified uranium-bearing aqueous stream exiting the solvent extraction process conducted in a natural uranium conversion plant (NUCP) operating at 6000 MTU/year. Monitoring instruments, including the 3He passive neutron detector developed at Los Alamos National Laboratory and the Endress+Hauser Promass 83F Coriolis meter, have been tested at UNCLE and field tested at Springfields. The field trials demonstrated the need to perform full-scale equipment testing under controlled conditions prior to field deployment of operations and safeguards monitoring at additional plants. Currently, UNCLE is testing neutron-based monitoring for detection of noncompliant activities; however, gamma-ray source term monitoring is currently being explored complementary to the neutron detector in order to detect undeclared activities in a more timely manner. The preliminary results of gamma-ray source term modeling and monitoring at UNCLE are being analyzed as part of a comprehensive source term and detector benchmarking effort. Based on neutron source term detection capabilities, alternative gamma-based detection and monitoring methods will be proposed to more effectively monitor NUCP operations in verifying or detecting deviations from declared conversion activities.

Dewji, Shaheen A [ORNL; Chapman, Jeffrey Allen [ORNL; Lee, Denise L [ORNL; Rauch, Eric [Los Alamos National Laboratory (LANL); Hertel, Nolan [Georgia Institute of Technology

2011-01-01T23:59:59.000Z

391

FAQ 30-Have there been accidents involving uranium hexafluoride...  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 was released, which reacted with steam from the process and created HF and uranyl fluoride. This accident resulted in two deaths from HF inhalation and three individuals...

392

SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY  

DOE Patents (OSTI)

A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

Clark, H.M.; Duffey, D.

1958-06-17T23:59:59.000Z

393

Process for alloying uranium and niobium  

DOE Patents (OSTI)

Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uranium sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

Holcombe, C.E.; Northcutt, W.G.; Masters, D.R.; Chapman, L.R.

1990-12-31T23:59:59.000Z

394

Available Technologies: Cost-effective Recovery of Uranium ...  

Uranium contamination of groundwater is an environmental problem at many DOE facilities and at uranium mining/processing sites.

395

U.S. Uranium Expenditures, 2003-2010  

U.S. Energy Information Administration (EIA)

Domestic Uranium Production Report presents information Operating Status of U.S. Uranium Expenditures, 2003-2005

396

U.S. mine production of uranium, 1993-2011  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... Privacy/Security Copyright & Reuse Accessibility. Related Sites ...

397

Polyethylene Encapsulated Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

398

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

DOE Green Energy (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

N /A

2003-11-28T23:59:59.000Z

399

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site  

DOE Green Energy (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

N /A

2003-11-28T23:59:59.000Z

400

Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium(III)  

E-Print Network (OSTI)

Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium-mail: kmeyer@ucsd.edu Abstract: The synthesis and spectroscopic characterization of the mononuclear uranium complex [((ArO)3tacn)UIII (NCCH3)] is reported. The uranium(III) complex reacts with organic azides

Meyer, Karsten

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China  

E-Print Network (OSTI)

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern Available online 25 January 2005 Abstract We show evidence that the primary uranium minerals, uraninite-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically

Fayek, Mostafa

402

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Wyoming 134 139 181 195 245 301 308 348 424 512 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W California, Montana, North Dakota, Oklahoma, Oregon, and Virginia 0 0 0 0 9 17 W W W W Total 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 7. Employment in the U.S. uranium production industry by state, 2003-2012 person-years

403

The End of Cheap Uranium  

E-Print Network (OSTI)

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

Dittmar, Michael

2011-01-01T23:59:59.000Z

404

Domestic Uranium Production Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report - Annual Domestic Uranium Production Report - Annual With Data for 2012 | Release Date: June 06, 2013 | Next Release Date: May 2014 |full report Previous domestic uranium production reports Year: 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Figure 1. U.S. Uranium drilling by number of holes, 2004-2012 U.S. uranium exploration drilling was 5,112 holes covering 3.4 million feet in 2012. Development drilling was 5,970 holes and 3.7 million feet. Combined, total uranium drilling was 11,082 holes covering 7.2 million feet, 5 percent more holes than in 2011. Expenditures for uranium drilling in the United States were $67 million in 2012, an increase of 24 percent compared with 2011. Mining, production, shipments, and sales U.S. uranium mines produced 4.3 million pounds U3O8 in 2012, 5 percent more

405

Uranium Metal: Potential for Discovering Commercial Uses  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Metal Uranium Metal Potential for Discovering Commercial Uses Steven M. Baker, Ph.D. Knoxville Tn 5 August 1998 Summary Uranium Metal is a Valuable Resource 3 Large Inventory of "Depleted Uranium" 3 Need Commercial Uses for Inventory  Avoid Disposal Cost  Real Added Value to Society 3 Uranium Metal Has Valuable Properties  Density  Strength 3 Market will Come if Story is Told Background The Nature of Uranium Background 3 Natural Uranium: 99.3% U238; 0.7% U 235 3 U235 Fissile  Nuclear Weapons  Nuclear Reactors 3 U238 Fertile  Neutron Irradiation of U238 Produces Pu239  Neutrons Come From U235 Fission  Pu239 is Fissile (Weapons, Reactors, etc.) Post World War II Legacy Background 3 "Enriched" Uranium Product  Weapons Program 

406

COLORIMETRIC DETERMINATION OF URANIUM(IV)  

SciTech Connect

A colorimetric method was developed for the determination of uranium(IV) in the presence of uranium(VI), nitric acid, hydroxylamine sulfate, and hydrazine. A coefficient of variation of 2.4% (n = 25) was obtained. (auth)

Dorsett, R.S.

1961-05-01T23:59:59.000Z

407

Uranium Management and Policy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Management and Policy Uranium Management and Policy The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah,...

408

Draft Uranium Leasing Program Programmatic Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

five times the uranium concentration; this ratio was selected on the basis of the mining production rate of vanadium versus that of uranium. The RfCs used in the calculation were...

409

INHERENTLY SAFE IN SITU URANIUM RE OVERY  

Nuclear power and waste opportunities contact us at Mining operations Increased safety of uranium removal Environmentally friendly process

410

Molecular Mechanisms of Uranium Reduction by Clostridia  

SciTech Connect

The objective of this research is to elucidate systematically the molecular mechanisms involved in the reduction of uranium by Clostridia.

Francis, A.J.; Matin, A.C.; Gao, W.; Chidambaram, D.; Barak, Y.; Dodge, C.J.

2006-04-05T23:59:59.000Z

411

Domestic Uranium Production Report - Quarterly - Energy ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. ... Privacy/Security Copyright & Reuse Accessibility. Related Sites U.S. ...

412

Highly Enriched Uranium Transparency Program | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Enriched Uranium Transparency Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

413

Uranium Weapons Components Successfully Dismantled | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Weapons Components Successfully Dismantled | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

414

A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants  

SciTech Connect

This report describes an engineering-scale, mock UF6 feed and withdrawal (F&W) system, its operation, and its intended uses. This system has been assembled to provide a test bed for evaluating and demonstrating new methodologies that can be used in remote, unattended, continuous monitoring of nuclear material process operations. These measures are being investigated to provide independent inspectors improved assurance that operations are being conducted within declared parameters, and to increase the overall effectiveness of safeguarding nuclear material. Testing applicable technologies on a mock F&W system, which uses water as a surrogate for UF6, enables thorough and cost-effective investigation of hardware, software, and operational strategies before their direct installation in an industrial nuclear material processing environment. Electronic scales used for continuous load-cell monitoring also are described as part of the basic mock F&W system description. Continuous monitoring components on the mock F&W system are linked to a data aggregation computer by a local network, which also is depicted. Data collection and storage systems are described only briefly in this report. The mock UF{sub 6} F&W system is economical to operate. It uses a simple process involving only a surge tank between feed tanks and product and withdrawal (or waste) tanks. The system uses water as the transfer fluid, thereby avoiding the use of hazardous UF{sub 6}. The system is not tethered to an operating industrial process involving nuclear materials, thereby allowing scenarios (e.g., material diversion) that cannot be conducted otherwise. These features facilitate conducting experiments that yield meaningful results with a minimum of expenditure and quick turnaround time. Technologies demonstrated on the engineering-scale system lead to field trials (described briefly in this report) for determining implementation issues and performance of the monitoring technologies under plant operating conditions. The ultimate use of technologies tested on the engineering-scale test bed is to work with safeguards agencies to install them in operating plants (e.g., enrichment and fuel processing plants), thereby promoting new safeguards measures with minimal impact to operating plants. In addition, this system is useful in identifying features for new plants that can be incorporated as part of 'safeguards by design,' in which load cells and other monitoring technologies are specified to provide outputs for automated monitoring and inspector evaluation.

Krichinsky, Alan M [ORNL; Bates, Bruce E [ORNL; Chesser, Joel B [ORNL; Koo, Sinsze [ORNL; Whitaker, J Michael [ORNL

2009-12-01T23:59:59.000Z

415

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

10. Uranium reserve estimates at the end of 2012" 10. Uranium reserve estimates at the end of 2012" "million pounds U3O8" "Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s)","Forward Cost 2" ,"$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound" "Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work","W","W",101.956759 "Properties Under Development for Production","W","W","W" "Mines in Production","W",21.40601,"W" "Mines Closed Temporarily and Closed Permanently","W","W",133.139239 "In-Situ Leach Mining","W","W",128.576534

416

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Lost Creek ISR LLC Lost Creek Project Sweetwater, Wyoming 2,000,000 Developing

417

Safe Operating Procedure SAFETY PROTOCOL: URANIUM  

E-Print Network (OSTI)

bodies depleted by uranium solution extraction and which remain underground do not constitute byproductEPA Update: NESHAP Uranium Activities Reid J. Rosnick Environmental Protection Agency Radiation Protection Division (6608J) Washington, DC 20460 NMA/NRC Uranium Recovery Workshop July 2, 2009 #12

Farritor, Shane

418

Controlling uranium reactivity March 18, 2008  

E-Print Network (OSTI)

. Redistribution of depleted uranium (DU soils and water at two US Army proving grounds. Ann. M Health Phys. SocRemediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction ElizabethJ.P.Phillips, Edward R. Landa and DerekR. Lovley Key words: Bioremediation; Uranium; Mill tailings

Meyer, Karsten

419

The Uranium Institute 24th Annual Symposium  

E-Print Network (OSTI)

:same as iron. 3.2 Preparation A standard analysis of the depleted uranium,provided by COGEMA, is given-sur-Tille, France Abstract : After reviewing briefly the influence of the incorporationof vanadium in the uranium,nickel and iron, on the properties of the uranium-0.2%vanadium alloys. Tensile tests at both ambient and elevated

Laughlin, Robert B.

420

Sustained Removal of Uranium From Contaminated Groundwater  

E-Print Network (OSTI)

approximately 5 mm in diameter by 5 mm tal/. Compositions measured ranged from depleted uranium oxide to mixtures of plutonium and depleted uranium oxide (MOX) and mixed oxides with small percentages of minor.1943 - - - Title: Resonant Ultrasound Spectroscopy Measurements of the Elastic Properties of Uranium

Lovley, Derek

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS  

DOE Patents (OSTI)

The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.

Spedding, F.H.; Butler, T.A.; Johns, I.B.

1959-03-10T23:59:59.000Z

422

High strength uranium-tungsten alloys  

SciTech Connect

Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

423

High strength uranium-tungsten alloy process  

SciTech Connect

Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

424

METHOD AND FLUX COMPOSITION FOR TREATING URANIUM  

DOE Patents (OSTI)

ABS>A flux composition is described fer use with molten uranium or uranium alloys. The flux consists of about 46 weight per cent calcium fiuoride, 46 weight per cent magnesium fluoride and about 8 weight per cent of uranium tetrafiuoride.

Foote, F.

1958-08-23T23:59:59.000Z

425

CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS  

DOE Patents (OSTI)

A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

Clifford, W.E.

1962-05-29T23:59:59.000Z

426

Clean Air Act Requirements: Uranium Mill Tailings  

E-Print Network (OSTI)

EPA'S Clean Air Act Requirements: Uranium Mill Tailings Radon Emissions Rulemaking Reid J. Rosnick Presentation to Environmental Protection Agency Uranium Contamination Radiation Protection Division (6608J requirements for operating uranium mill tailings (Subpart W) Status update on Subpart W activities Outreach

427

URANIUM MILL TAILINGS RADON FLUX CALCULATIONS  

E-Print Network (OSTI)

URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PI?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO (EFRC) proposes to license, construct, and operate a conventional acid leach uranium and vanadium mill storage pad, and access roads. The mill is designed to process ore containing uranium and vanadium

428

Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths  

E-Print Network (OSTI)

uranium reduction in uranium mine sediment. Appl Environspp. can be stimulated in uranium mine sediments (Suzuki et

Hwang, Chiachi

2009-01-01T23:59:59.000Z

429

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" "Mill Owner","Mill Name","County, State (existing and planned locations)","Milling Capacity","Operating Status at End of the Year" ,,,"(short tons of ore per day)",2008,2009,2010,2011,2012 "Cotter Corporation","Canon City Mill","Fremont, Colorado",0,"Standby","Standby","Standby","Reclamation","Demolished" "EFR White Mesa LLC","White Mesa Mill","San Juan, Utah",2000,"Operating","Operating","Operating","Operating","Operating"

430

PROCESS FOR PRODUCTION OF URANIUM  

DOE Patents (OSTI)

A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.

Crawford, J.W.C.

1959-09-29T23:59:59.000Z

431

METHOD OF PROTECTIVELY COATING URANIUM  

DOE Patents (OSTI)

A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

Eubank, L.D.; Boller, E.R.

1959-02-01T23:59:59.000Z

432

Selective leaching of uranium from uranium-contaminated soils  

SciTech Connect

Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminate or remove uranium to acceptable regulatory levels. The objective was to selectively extract uranium using a soil washing/extraction process without seriously degrading the soil`s physicochemical characteristics or generating a secondary waste form that would be difficult to manage and/or dispose of. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. One of the soils is from near the Plant 1 storage pad and the other soil was taken from near a waste incinerator used to burn low-level contaminated trash. The third soil was a surface soil from an area formally used as a landfarm for the treatment of spent oils at the Oak Ridge Y-12 Plant. The sediment sample was material sampled from a storm sewer sediment trap at the Oak Ridge Y-12 Plant. Uranium concentrations in the Fernald soils ranged from 450 to 550 {mu}g U/g of soil while the samples from the Y-12 Plant ranged from 150 to 200 {mu}g U/g of soil.

Francis, C.W.; Mattus, A.J.; Farr, L.L.; Lee, S.Y. [Oak Ridge National Lab., TN (United States); Elless, M.P. [Oak Ridge National Lab., TN (United States)]|[Oak Ridge Associated Universities, Inc., TN (United States)

1993-06-01T23:59:59.000Z

433

Stationary and protable instruments for assay of HEU (highly enriched uranium) solids holdup  

SciTech Connect

Two NaI(Tl)-based instruments, one stationary and one portable, designed for automated assay of highly enriched uranium (HEU) solids holdup, are being evaluated at the scrap recovery facility of the Oak Ridge Y-12 Plant. The stationary instrument, a continuous monitor of HEU within the filters of the chip burner exhaust system, measures the HEU deposits that accumulate erratically and rapidly during chip burner operation. The portable system was built to assay HEU in over 100 m of elevated piping used to transfer UO/sub 3/, UO/sub 2/, and UF/sub 4/ powder to, from, and between the fluid bed conversion furnances and the powder storage hoods. Both instruments use two detector heads. Both provide immediate automatic readout of accumulated HEU mass. The 186-keV /sup 235/U gamma ray is the assay signature, and the 60-keV gamma ray from an /sup 241/Am source attached to each detector is used to normalize the 186-keV rate. The measurement geometries were selected for compatibility with simple calibration models. The assay calibrations were calculated from these models and were verified and normalized with measurements of HEU standards built to match geometries of uniform accumulations on the surfaces of the process equipment. This instrumentation effort demonstrates that simple calibration models can often be applied to unique measurement geometries, minimizing the otherwise unreasonable requirements for calibration standards and allowing extension of the measurements to other process locations.

Russo, P.A.; Sprinkle, J.K. Jr.; Stephens, M.M.; Brumfield, T.L.; Gunn, C.S.; Watson, D.R.

1987-01-01T23:59:59.000Z

434

Electron Backscatter Diffraction (EBSD) Characterization of Uranium and Uranium Alloys  

SciTech Connect

Electron backscatter diffraction (EBSD) was used to examine the microstructures of unalloyed uranium, U-6Nb, U-10Mo, and U-0.75Ti. For unalloyed uranium, we used EBSD to examine the effects of various processes on microstructures including casting, rolling and forming, recrystallization, welding, and quasi-static and shock deformation. For U-6Nb we used EBSD to examine the microstructural evolution during shape memory loading. EBSD was used to study chemical homogenization in U-10Mo, and for U-0.75Ti, we used EBSD to study the microstructure and texture evolution during thermal cycling and deformation. The studied uranium alloys have significant microstructural and chemical differences and each of these alloys presents unique preparation challenges. Each of the alloys is prepared by a sequence of mechanical grinding and polishing followed by electropolishing with subtle differences between the alloys. U-6Nb and U-0.75Ti both have martensitic microstructures and both require special care in order to avoid mechanical polishing artifacts. Unalloyed uranium has a tendency to rapidly oxidize when exposed to air and a two-step electropolish is employed, the first step to remove the damaged surface layer resulting from the mechanical preparation and the second step to passivate the surface. All of the alloying additions provide a level of surface passivation and different one and two step electropolishes are employed to create good EBSD surfaces. Because of its low symmetry crystal structure, uranium exhibits complex deformation behavior including operation of multiple deformation twinning modes. EBSD was used to observe and quantify twinning contributions to deformation and to examine the fracture behavior. Figure 1 shows a cross section of two mating fracture surfaces in cast uranium showing the propensity of deformation twinning and intergranular fracture largely between dissimilarly oriented grains. Deformation of U-6Nb in the shape memory regime occurs by the motion of twin boundaries formed during the martensitic transformation. Deformation actually results in a coarsening of the microstructure making EBSD more practical following a limited amount of strain. Figure 2 shows the microstructure resulting from 6% compression. Casting of U-10Mo results in considerable chemical segregation as is apparent in Figure 2a. The segregation subsists through rolling and heat treatment processes as shown in Figure 2b. EBSD was used to study the effects of homogenization time and temperature on chemical heterogeneity. It was found that times and temperatures that result in a chemically homogeneous microstructure also result in a significant increase in grain size. U-0.75Ti forms an acicular martinsite as shown in Figure 4. This microstructure prevails through cycling into the higher temperature solid uranium phases.

McCabe, Rodney J. [Los Alamos National Laboratory; Kelly, Ann Marie [Los Alamos National Laboratory; Clarke, Amy J. [Los Alamos National Laboratory; Field, Robert D. [Los Alamos National Laboratory; Wenk, H. R. [University of California, Berkeley

2012-07-25T23:59:59.000Z

435

Isotopic ratio method for determining uranium contamination  

SciTech Connect

The presence of high concentrations of uranium in the subsurface can be attributed either to contamination from uranium processing activities or to naturally occurring uranium. A mathematical method has been employed to evaluate the isotope ratios from subsurface soils at the Rocky Flats Nuclear Weapons Plant (RFP) and demonstrates conclusively that the soil contains uranium from a natural source and has not been contaminated with enriched uranium resulting from RFP releases. This paper describes the method used in this determination which has widespread application in site characterizations and can be adapted to other radioisotopes used in manufacturing industries. The determination of radioisotope source can lead to a reduction of the remediation effort.

Miles, R.E.; Sieben, A.K.

1994-02-03T23:59:59.000Z

436

Uranium mill monitoring for natural fission reactors  

SciTech Connect

Isotopic monitoring of the product stream from operating uranium mills is proposed for discovering other possible natural fission reactors; aspects of their occurrence and discovery are considered. Uranium mill operating characteristics are formulated in terms of the total uranium capacity, the uranium throughput, and the dilution half-time of the mill. The requirements for detection of milled reactor-zone uranium are expressed in terms of the dilution half-time and the sampling frequency. Detection of different amounts of reactor ore with varying degrees of /sup 235/U depletion is considered.

Apt, K.E.

1977-12-01T23:59:59.000Z

437

Process for alloying uranium and niobium  

SciTech Connect

Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

Holcombe, Cressie E. (Farragut, TN); Northcutt, Jr., Walter G. (Oak Ridge, TN); Masters, David R. (Knoxville, TN); Chapman, Lloyd R. (Knoxville, TN)

1991-01-01T23:59:59.000Z

438

Removal of uranium from aqueous HF solutions  

DOE Patents (OSTI)

This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

Pulley, Howard (West Paducah, KY); Seltzer, Steven F. (Paducah, KY)

1980-01-01T23:59:59.000Z

439

Method for producing uranium atomic beam source  

DOE Patents (OSTI)

A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.

Krikorian, Oscar H. (Danville, CA)

1976-06-15T23:59:59.000Z

440

Removal of uranium from aqueous HF solutions  

Science Conference Proceedings (OSTI)

This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separating the solution from the settled particulates. The CaF2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium without introducing contaminants to the product solution.

Pulley, H.; Seltzer, S.F.

1980-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Domestic utility attitudes toward foreign uranium supply  

SciTech Connect

The current embargo on the enrichment of foreign-origin uranium for use in domestic utilization facilities is scheduled to be removed in 1984. The pending removal of this embargo, complicated by a depressed worldwide market for uranium, has prompted consideration of a new or extended embargo within the US Government. As part of its on-going data collection activities, Nuclear Resources International (NRI) has surveyed 50 domestic utility/utility holding companies (representing 60 lead operator-utilities) on their foreign uranium purchase strategies and intentions. The most recent survey was conducted in early May 1981. A number of qualitative observations were made during the course of the survey. The major observations are: domestic utility views toward foreign uranium purchase are dynamic; all but three utilities had some considered foreign purchase strategy; some utilities have problems with buying foreign uranium from particular countries; an inducement is often required by some utilities to buy foreign uranium; opinions varied among utilities concerning the viability of the domestic uranium industry; and many utilities could have foreign uranium fed through their domestic uranium contracts (indirect purchases). The above observations are expanded in the final section of the report. However, it should be noted that two of the observations are particularly important and should be seriously considered in formulation of foreign uranium import restrictions. These important observations are the dynamic nature of the subject matter and the potentially large and imbalanced effect the indirect purchases could have on utility foreign uranium procurement.

1981-06-01T23:59:59.000Z

442

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report"

443

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904 2011 5,441 3,322 5,156 3,003 10,597 6,325 2012 5,112 3,447 5,970 3,709 11,082 7,156 NA = Not available. W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-

444

METHOD OF PURIFYING URANIUM METAL  

DOE Patents (OSTI)

The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

Blanco, R.E.; Morrison, B.H.

1958-12-23T23:59:59.000Z

445

Uranium Trace Elements Erik Hunter  

E-Print Network (OSTI)

be made. The electroscope relied upon the ability of the gamma radiation emitted by the sample to ionize that prove anomalous in the field can be subjected to more accurate tests in the lab that will determine #12;associated with the device was reported to be +/- 4% of the actual uranium content in the sample

446

Status of domestic uranium industry  

Science Conference Proceedings (OSTI)

The domestic uranium industry continues to operate at a reduced level, due to low prices and increased foreign competition. For four years (1984-1987) the Secretary of Energy declared the industry to be nonviable. A similar declaration is expected for 1988. Exploration and development drilling, at the rate of 2 million ft/year, continue in areas of producing mines and recent discoveries, especially in northwestern Arizona, northwestern Nebraska, south Texas, Wyoming, and the Paradox basin of Colorado and Utah. Production of uranium concentrate continues at a rate of 13 to 15 million lb of uranium oxide (U{sub 3}O{sub 8}) per year. Conventional mining in New Mexico, Arizona, Utah, Colorado, Wyoming, and Texas accounts for approximately 55% of the production. The remaining 45% comes from solution (in situ) mining, from mine water recovery, and as by-products from copper production and the manufacture of phosphoric acid. Solution mining is an important technique in Wyoming, Nebraska, and Texas. By-product production comes from phosphate plants in Florida and Louisiana and a copper mine in Utah. Unmined deposits in areas such as the Grants, New Mexico, district are being investigated for their application to solution mining technology. The discovered uranium resources in the US are quite large, and the potential to discover additional resources is excellent. However, higher prices and a strong market will be necessary for their exploitation.

Chenoweth, W.L.

1989-09-01T23:59:59.000Z

447

Uranium: Prices, rise, then fall  

SciTech Connect

Uranium prices hit eight-year highs in both market tiers, $16.60/lb U{sub 3}O{sub 8} for non-former Soviet Union (FSU) origin and $15.50 for FSU origin during mid 1996. However, they declined to $14.70 and $13.90, respectively, by the end of the year. Increased uranium prices continue to encourage new production and restarts of production facilities presently on standby. Australia scrapped its {open_quotes}three-mine{close_quotes} policy following the ouster of the Labor party in a March election. The move opens the way for increasing competition with Canada`s low-cost producers. Other events in the industry during 1996 that have current or potential impacts on the market include: approval of legislation outlining the ground rules for privatization of the US Enrichment Corp. (USEC) and the subsequent sales of converted Russian highly enriched uranium (HEU) from its nuclear weapons program, announcement of sales plans for converted US HEU and other surplus material through either the Department of Energy or USEC, and continuation of quotas for uranium from the FSU in the United States and Europe. In Canada, permitting activities continued on the Cigar Lake and McArthur River projects; and construction commenced on the McClean Lake mill.

Pool, T.C.

1997-03-01T23:59:59.000Z

448

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9. Summary production statistics of the U.S. uranium industry, 1993-2012" 9. Summary production statistics of the U.S. uranium industry, 1993-2012" "Item",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,"E2003",2004,2005,2006,2007,2008,2009,2010,2011,2012 "Exploration and Development" "Surface Drilling (million feet)",1.1,0.7,1.3,3,4.9,4.6,2.5,1,0.7,"W","W",1.2,1.7,2.7,5.1,5.1,3.7,4.9,6.3,7.2 "Drilling Expenditures (million dollars)1",5.7,1.1,2.6,7.2,20,18.1,7.9,5.6,2.7,"W","W",10.6,18.1,40.1,67.5,81.9,35.4,44.6,53.6,66.6 "Mine Production of Uranium" "(million pounds U3O8)",2.1,2.5,3.5,4.7,4.7,4.8,4.5,3.1,2.6,2.4,2.2,2.5,3,4.7,4.5,3.9,4.1,4.2,4.1,4.3 "Uranium Concentrate Production" "(million pounds U3O8)",3.1,3.4,6,6.3,5.6,4.7,4.6,4,2.6,2.3,2,2.3,2.7,4.1,4.5,3.9,3.7,4.2,4,4.1

449

Inherently safe in situ uranium recovery.  

SciTech Connect

Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

2009-05-01T23:59:59.000Z

450

Inherently safe in situ uranium recovery.  

SciTech Connect

Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

2009-05-01T23:59:59.000Z

451

URANIUM RECOVERY, URANIUM GEOCHEMISTRY, THERMOLUMINESCENCE AND RELATED STUDIES. Final Report  

SciTech Connect

The recovery of urantum at the mine with portable equipment was shown to be feasible, using a process which involves grinding the ore, leaching with nitric acid, extracting with tributyl phosphate and kerosene, and precipitation with ammonia gas. The system is more expensive than a stationary plant but couid be used in an emergency or in difficulty accessible locations. The distribution of uranium was studied in various geographical locations and in several different materials including limestones, granites, clays, rivers and underground water, lignites, and volcanic ash and lavas. Geochemical studies, based on thermoluminescence, including stratigraphy, age determinations of limestones, and aragonite-calcite relations in calcium csrbonate are presented along with thermoluminescence studies of lithium fluoride, alkali halides, aluminum oxides, sulfates, and other inorganic salts and minerals. Radiation damage to lithium fluoride and metamixed minerals was studied, and apparatus was developed for measuring thermoluminescence of crystals exposed to gamma radiation, scintillameters for measuring alpha particle activity in materials containing a trace of uranium, and an analytical method for determining less than 1 part per million uranium. (J.R.D.)

Daniels, F.

1957-11-01T23:59:59.000Z

452

U-AVLIS feed conversion using continuous metallothermic reduction of UF{sub 4}: System description and cost estimate  

SciTech Connect

The purpose of this document is to present a system description and develop baseline capital and operating cost estimates for commercial facilities which produced U-Fe feedstock for AVLIS enrichment plants using the continuous fluoride reduction (CFR) process. These costs can then be used together with appropriate economic assumptions to calculate estimated unit costs to the AVLIS plant owner (or utility customer) for such conversion services. Six cases are being examined. All cases assume that the conversion services are performed by a private company at a commercial site which has an existing NRC license to possess source material and which has existing uranium processing operations. The cases differ in terms of annual production capacity and whether the new process system is installed in a new building or in an existing building on the site. The six cases are summarized here.

Not Available

1994-04-01T23:59:59.000Z

453

Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders  

Science Conference Proceedings (OSTI)

Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

1996-10-01T23:59:59.000Z

454

Table 4.10 Uranium Reserves, 2008 (Million Pounds Uranium Oxide)  

U.S. Energy Information Administration (EIA)

money. The forward costs used to estimate U.S. uranium ore reserves are independent of the price at which uranium produced from the estimated reserves might be sold ...

455

Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs  

E-Print Network (OSTI)

An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

Matthews, Isaac A

2010-01-01T23:59:59.000Z

456

Semiconductive Properties of Uranium Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

SEMICONDUCTIVE PROPERTIES OF URANIUM OXIDES SEMICONDUCTIVE PROPERTIES OF URANIUM OXIDES Thomas Meek Materials Science Engineering Department University of Tennessee Knoxville, TN 37931 Michael Hu and M. Jonathan Haire Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6179 August 2000 For the Waste Management 2001 Symposium Tucson, Arizona February 25-March 1, 2001 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________ * Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy

457

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7. Employment in the U.S. uranium production industry by state, 2003-2012" 7. Employment in the U.S. uranium production industry by state, 2003-2012" "person-years" "State(s)",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Wyoming",134,139,181,195,245,301,308,348,424,512 "Colorado and Texas",48,140,269,263,557,696,340,292,331,248 "Nebraska and New Mexico",92,102,123,160,149,160,159,134,127,"W" "Arizona, Utah, and Washington",47,40,75,120,245,360,273,281,"W","W" "Alaska, Michigan, Nevada, and South Dakota",0,0,0,16,25,30,"W","W","W","W" "California, Montana, North Dakota, Oklahoma, Oregon, and Virginia",0,0,0,0,9,17,"W","W","W","W"

458

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2. U.S. uranium mine production and number of mines and sources, 2003-2012" 2. U.S. uranium mine production and number of mines and sources, 2003-2012" "Production / Mining Method",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Underground" "(estimated contained thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W" "Open Pit" "(estimated contained thousand pounds U3O8)",0,0,0,0,0,0,0,0,0,0 "In-Situ Leaching" "(thousand pounds U3O8)","W","W",2681,4259,"W","W","W","W","W","W" "Other1" "(thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W"

459

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

460

Potential Uses of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

Note: This page contains sample records for the topic "uranium tetrafluoride uf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Measurement of Trace Uranium Isotopes  

Science Conference Proceedings (OSTI)

The extent to which thermal ionization mass spectrometry (TIMS) can measure trace quantities of 233U and 236U in the presence of a huge excess of natural uranium is evaluated. This is an important nuclear non-proliferation measurement. Four ion production methods were evaluated with three mass spectrometer combinations. The most favorable combinations are not limited by abundance sensitivity; rather, the limitations are the ability to generate a uranium ion beam of sufficient intensity to obtain the required number of counts on the minor isotopes in relationship to detector background. The most favorable situations can measure isotope ratios in the range of E10 if sufficient sample intensity is available. These are the triple sector mass spectrometer with porous ion emitters (PIE) and the single sector mass spectrometer with energy filtering.

Matthew G. Watrous; James E. Delmore

2011-05-01T23:59:59.000Z

462

Depleted uranium disposal options evaluation  

SciTech Connect

The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

1994-05-01T23:59:59.000Z

463

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2008,2009,2010,2011,2012 "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

464

Defining the needs for non-destructive assay of UF6 feed, product, and tails at gas centrifuge enrichment plants and possible next steps  

SciTech Connect

Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of UF{sub 6} bulk material used in the process of enrichment at GCEPS. The inspectors also take destructive assay (DA) samples for analysis off-site which provide accurate, on the order of 0.1 % to 0.5% uncertainty, data on the enrichment of the UF{sub 6} feed, tails, and product. However, DA sample taking is a much more labor intensive and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of the results and contains the possibility of the loss of the continuity of knowledge of the samples during the storage and transit of the material. Use of the IAEA's inspection sampling algorithm shows that while total sample size is fixed by the total population of potential samples and its intrinsic qualities, the split of the samples into NDA or DA samples is determined by the uncertainties in the NDA measurements. Therefore, the larger the uncertainties in the NDA methods, more of the sample taken must be DA samples. Since the DA sampling is arduous and costly, improvements in NDA methods would reduce the number of DA samples needed. Furthermore, if methods of on-site analysis of the samples could be developed that have uncertainties in the 1-2% range, a lot of the problems inherent in DA sampling could be removed. The use of an unattended system that could give an overview of the entire process giving complementary data on the enrichment process as well as accurate measures of enrichment and weights of the UF{sub 6} feed, tails, and product would be a major step in enhancing the ability of NDA beyond present attended systems. The possibility of monitoring the feed, tails, and product header pipes in such a way as to gain safeguards relevant flow and enrichment information without compromising the intellectual property of the operator including proprietary equipment and operational parameters would be a huge step forward. This paper contains an analysis of possible improvements in unattended and attended NDA systems including such process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector measurements reducing the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GeEPs safeguards.

Boyer, Brian D [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Moran, Bruce W [IAEA; Lebrun, Alain [IAEA

2009-01-01T23:59:59.000Z

465

Depleted Uranium (DU) Cermet Waste Package  

NLE Websites -- All DOE Office Websites (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

466

Uranium Metal Analysis via Selective Dissolution  

DOE Green Energy (OSTI)

Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

2008-09-10T23:59:59.000Z

467

PRETREATING URANIUM FOR METAL PLATING  

DOE Patents (OSTI)

A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

Wehrmann, R.F.

1961-05-01T23:59:59.000Z

468

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources 1 1 1 2 1 1 1 2 1 1 1 Total Mines and Sources 4 6 10 11 12 17 20 9 11 12 Other 1 Number of Operating Mines Table 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Underground Open Pit In-Situ Leaching Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012).

469

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. 0 200 400 600 800 1,000 1,200 1,400 1,600 2004 2005 2006 2007 2008

470

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network (OSTI)

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery