Sample records for uranium statistics questions

  1. Statistical data of the uranium industry

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Statistical Data of the Uranium Industry is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1981. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining, and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office (GJAO) of the US Department of Energy. The production, reserves, and drilling information is reported in a manner which avoids disclosure of proprietary information.

  2. STATISTICS 8 CHAPTERS 1 TO 6, SAMPLE MULTIPLE CHOICE QUESTIONS

    E-Print Network [OSTI]

    Utts, Jessica

    .. This scenario applies to Questions 1 and 2: A study was done to compare the lung capacity of coal miners types are similar, but the coal miners generally exercise less than the farm workers. 1. Which were randomly assigned to either walk or read, rather than choosing their own activity. d. A random

  3. STATISTICS 7 CHAPTERS 1 TO 6, SAMPLE MULTIPLE CHOICE QUESTIONS

    E-Print Network [OSTI]

    Utts, Jessica

    . This scenario applies to Questions 1 and 2: A study was done to compare the lung capacity of coal miners types are similar, but the coal miners generally exercise less than the farm workers. 1. Which were randomly assigned to either walk or read, rather than choosing their own activity. d. A random

  4. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  5. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  6. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  7. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  8. Thermal hydraulic limits analysis for the MIT Research Reactor low enrichment uranium core conversion using statistical propagation of parametric uncertainties

    E-Print Network [OSTI]

    Chiang, Keng-Yen

    2012-01-01T23:59:59.000Z

    The MIT Research Reactor (MITR) is evaluating the conversion from highly enriched uranium (HEU) to low enrichment uranium (LEU) fuel. In addition to the fuel element re-design from 15 to 18 plates per element, a reactor ...

  9. Uranium industry annual 1998

    SciTech Connect (OSTI)

    NONE

    1999-04-22T23:59:59.000Z

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  10. Uranium industry annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  11. Uranium resources: Issues and facts

    SciTech Connect (OSTI)

    Delene, J.G.

    1993-12-31T23:59:59.000Z

    Although there are several secondary issues, the most important uranium resource issue is, ``will there be enough uranium available at a cost which will allow nuclear power to be competitive in the future?`` This paper will attempt to answer this question by discussing uranium supply, demand, and economics from the perspective of the United States. The paper will discuss: how much uranium is available; the sensitivity of nuclear power costs to uranium price; the potential future demand for uranium in the Unites States, some of the options available to reduce this demand, the potential role of the Advanced Liquid Metal Cooled Reactor (ALMR) in reducing uranium demand; and potential alternative uranium sources and technologies.

  12. Statistics

    E-Print Network [OSTI]

    Rubin, Herman [bio] Professor of Statistics and Mathematics PhD: University of Chicago 1948. Office: MATH 550; Phone: +1 765 49-46054; Email: ...

  13. Algorithmic Approaches to Statistical Questions

    E-Print Network [OSTI]

    Valiant, Gregory John

    2012-01-01T23:59:59.000Z

    is not new; both Alan Turing and R.A. Fisher, the respectivefrom both R.A Fisher, and Alan Turing. In the early 1940’s,the height of WWII, Alan Turing and I.J. Good were working

  14. 2013 Domestic Uranium Production Report

    E-Print Network [OSTI]

    Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA.S. Energy Information Administration | 2013 Domestic Uranium Production Report iii Preface The U.S. Energy://www.eia.doe.gov/glossary/. #12;U.S. Energy Information Administration | 2013 Domestic Uranium Production Report iv Contents

  15. Uranium 2011 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01T23:59:59.000Z

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  16. Questions & Answers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Question: Is the new SOW language the definitive management approach (short of a GOCO) that consolidates responsibility and accountability for the NSE stockpile surety into...

  17. Uranium 2014 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  18. Uranium 2005 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2006-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  19. Composing questions

    E-Print Network [OSTI]

    Kotek, Hadas

    2014-01-01T23:59:59.000Z

    This dissertation motivates a new syntax and semantics for simplex and multiple wh-questions, concentrating on English and German data. The proposed theory combines Cable's (2007; 2010) Q-based syntax for wh-movement and ...

  20. Priority Questions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    related to DOE Furnace NOPR LCC model and TSD Priority Questions A) It appears that the assignment of base case efficiency for each individual home is chosen based on a random...

  1. URANIUM IN ALKALINE ROCKS

    E-Print Network [OSTI]

    Murphy, M.

    2011-01-01T23:59:59.000Z

    chemical elements uranium zirconium niobium beryllium rarerare earths, niobium, zirconium, uranium, and thorium.respect, uranium and thorium are niobium in carbonatitcs.

  2. URANIUM IN ALKALINE ROCKS

    E-Print Network [OSTI]

    Murphy, M.

    2011-01-01T23:59:59.000Z

    Greenland," in Uranium Exploration Geology, Int. AtomicMigration of Uranium and Thorium—Exploration Significance,"interesting for future uranium exploration. The c r i t e r

  3. Fingerprinting Uranium | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fingerprinting Uranium Fingerprinting Uranium Researchers show how to use x-rays to identify mobile, stationary forms of atomic pollutant PNNL and University of North Texas...

  4. Depleted Uranium Technical Brief

    E-Print Network [OSTI]

    Depleted Uranium Technical Brief United States Environmental Protection Agency Office of Air and Radiation Washington, DC 20460 EPA-402-R-06-011 December 2006 #12;#12;Depleted Uranium Technical Brief EPA of Radiation and Indoor Air Radiation Protection Division ii #12;iii #12;FOREWARD The Depleted Uranium

  5. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01T23:59:59.000Z

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  6. Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films

    E-Print Network [OSTI]

    Hart, Gus

    Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

  7. Answering Key Fuel Cycle Questions

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

    2003-10-01T23:59:59.000Z

    The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we plan for? · Should we separate uranium? · If we separate uranium, should we recycle it, store it or dispose of it? · Is it practical to plan to fabricate and handle “hot” fuel? · Which transuranic elements (TRU) should be separated and transmuted? · Of those TRU separated, which should be transmuted together? · Should we separate and/or transmute Cs and Sr isotopes that dominate near-term repository heating? · Should we separate and/or transmute very long-lived Tc and I isotopes? · Which separation technology? · What mix of transmutation technologies? · What fuel technology best supports the above decisions?

  8. Uranium hexafluoride public risk

    SciTech Connect (OSTI)

    Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

    1994-08-01T23:59:59.000Z

    The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

  9. Uranium Mill Tailings Management

    SciTech Connect (OSTI)

    Nelson, J.D.

    1982-01-01T23:59:59.000Z

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements).

  10. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06T23:59:59.000Z

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  11. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  12. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19T23:59:59.000Z

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  13. CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS

    E-Print Network [OSTI]

    Hart, Gus

    CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

  14. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

    2009-12-29T23:59:59.000Z

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  15. Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    Frequently asked questions (FAQs) and their corresponding answers regarding industrial distributed energy (DE) and combined heat and power (CHP) are provided below.

  16. EPA Update: NESHAP Uranium Activities

    E-Print Network [OSTI]

    EPA Update: NESHAP Uranium Activities Reid J. Rosnick Environmental Protection Agency Radiation Protection Division (6608J) Washington, DC 20460 NMA/NRC Uranium Recovery Workshop July 2, 2009 #12 for underground uranium mining operations (Subpart B) EPA regulatory requirements for operating uranium mill

  17. Decommissioning of U.S. uranium production facilities

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  18. WISE Uranium Project - Fact Sheet

    E-Print Network [OSTI]

    Hazards From Depleted

    t in the depleted uranium. For this purpose, we first need to calculate the mass balance of the enrichment process. We then calculate the inhalation doses from the depleted uranium and compare the dose contributions from the nuclides of interest. Mass balance for uranium enrichment at Paducah [DOE_1984, p.35] Feed Product Tails Other Mass [st] 758002 124718 621894 11390 Mass fraction 100.00% 16.45% 82.04% 1.50% Concentration of plutonium in tails (depleted uranium) from enrichment of reprocessed uranium, assuming that all plutonium were transfered to the tails: Concentration of neptunium in tails from enrichment of reprocessed uranium uranium, assuming that all neptunium were transfered to the tails: - 2 - Schematic of historic uranium enrichment process at Paducah [DOE_1999b] - -7 For comparison, we first calculate the inhalation dose from depleted uranium produced from natural uranium. We assume that the short-lived decay products have reached secular equilibrium with th

  19. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15T23:59:59.000Z

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  20. Problem of Questioning

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Le Prof.Leprince-Ringuet, chercheur sur le plan scientifique, artistique et humain, parle de la remise en question des hommes et la remise en question scientifique fondamentale ou exemplaire- plusieurs personnes prennent la parole p.ex Jeanmairet, Adam, Gregory. Le Prof.Gregory clot la soirée en remerciant le Prof.Leprince-Ringuet

  1. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01T23:59:59.000Z

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  2. Geodatabase of the South Texas Uranium District

    E-Print Network [OSTI]

    Mark Beaman; William Wade Mcgee

    Uranium and its associated trace elements and radionuclides are ubiquitous in the South Texas Tertiary environment. Surface mining of this resource from the 1960s through the early 1980s at over sixty locations has left an extensive anthropological footprint (Fig. 1) in the lower Nueces and San Antonio river basins. Reclamation of mining initiated after 1975 has been under the regulatory authority of the Railroad Commission of Texas (RCT). However, mines that were active before the Texas Surface Mining Act of 1975 was enacted, and never reclaimed, are now considered abandoned. The Abandoned Mine Land Section of the RCT is currently reclaiming these pre-regulation uranium mines with funding from the federal government. The RCT monitors the overall effectiveness of this process through post-reclamation radiation and vegetative cover surveys, water quality testing, slope stability and erosion control monitoring. Presently a number of graduate and postgraduate students are completing research on the watershed and reservoir distribution of trace elements and radionuclides downstream of the South Texas Uranium District. The question remains as to whether the elevated levels of uranium, its associated trace elements and radiation levels in the South Texas environment are due to mining

  3. 300 AREA URANIUM CONTAMINATION

    SciTech Connect (OSTI)

    BORGHESE JV

    2009-07-02T23:59:59.000Z

    {sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

  4. Theory of laminated turbulence: open questions

    E-Print Network [OSTI]

    E. Kartashova

    2006-11-17T23:59:59.000Z

    Theory of laminated turbulnece includes continuous layer of turbulence (statistical description, kinetic equations, Zakharov-Kolmogorov spectra, etc) AND discrete layer of turbulence (isolated groups of interacting waves, no statisticaldescription). This theory is presented, examples of possible applications are given, important open questions are formulated.

  5. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, Alvin B. (Cincinnati, OH)

    1983-01-01T23:59:59.000Z

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  6. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.

    1982-10-27T23:59:59.000Z

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  7. Frequently Asked Questions

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email:Uranium MarketingAdministration|15on

  8. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments. Abstract: A...

  9. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  10. Controlling uranium reactivity March 18, 2008

    E-Print Network [OSTI]

    Meyer, Karsten

    for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

  11. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01T23:59:59.000Z

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  12. Uranium-titanium-niobium alloy

    DOE Patents [OSTI]

    Ludtka, Gail M. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    1990-01-01T23:59:59.000Z

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  13. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  14. Uranium deposits of Brazil

    SciTech Connect (OSTI)

    NONE

    1991-09-01T23:59:59.000Z

    Brazil is a country of vast natural resources, including numerous uranium deposits. In support of the country`s nuclear power program, Brazil has developed the most active uranium industry in South America. Brazil has one operating reactor (Angra 1, a 626-MWe PWR), and two under construction. The country`s economic challenges have slowed the progress of its nuclear program. At present, the Pocos de Caldas district is the only active uranium production. In 1990, the Cercado open-pit mine produced approximately 45 metric tons (MT) U{sub 3}O{sub 8} (100 thousand pounds). Brazil`s state-owned uranium production and processing company, Uranio do Brasil, announced it has decided to begin shifting its production from the high-cost and nearly depleted deposits at Pocos de Caldas, to lower-cost reserves at Lagoa Real. Production at Lagoa Real is schedules to begin by 1993. In addition to these two districts, Brazil has many other known uranium deposits, and as a whole, it is estimated that Brazil has over 275,000 MT U{sub 3}O{sub 8} (600 million pounds U{sub 3}O{sub 8}) in reserves.

  15. Uranium immobilization and nuclear waste

    SciTech Connect (OSTI)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01T23:59:59.000Z

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  16. Statistics Overall Statistics

    E-Print Network [OSTI]

    Czarnecki, Krzysztof

    2012 Beaver Computing Challenge Results Sponsor: 1 #12;Statistics Overall Statistics Number.24/6 Glasses: 1.74/4 Text Machine: 5.54/8 Hierarchical Structure: 2.98/6 Bebrocarina: 2.14/4 Beaver Navigation: 5.06/8 Beaver Pyramid: 3.23/6 Change Direction: 1.45/4 Power Generation: 5.56/8 Rotating Puzzle: 5

  17. QUESTIONS ABOUT GLOBAL WARMING

    E-Print Network [OSTI]

    QUESTIONS ABOUT GLOBAL WARMING ĄIS IT REAL? ĄIS IT IMPORTANT? ĄWHAT IS IT DUE TO? ĄHOW MUCH MORE in the atmosphere, giving Earth its temperate climate. Global Atmosphere, Global Warming GLOBAL TEMPERATURE TREND IS THIS CARBON DIOXIDE COMING FROM? Other sources are home heating and electric power production. WE ARE ALL

  18. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21T23:59:59.000Z

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  19. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

    1990-01-01T23:59:59.000Z

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  20. Draft RFP - Questions and Answers

    National Nuclear Security Administration (NNSA)

    "Environmental Program Services" Acquisition Questions and Answers 1. Question: NNS-F-2001 CONTRACT PERFORMANCE PERIOD (OCT 2013) (page F 24 of 75). Please explain the rationale...

  1. Questions and Responses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITYResponses: Question 1: Would the Government

  2. Uranium from seawater

    SciTech Connect (OSTI)

    Gregg, D.; Folkendt, M.

    1982-09-21T23:59:59.000Z

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  3. Statistical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Experiments Reliability Bayesian Methods Statistical Computation Statistical Graphics and Visualization Analysis of Measurement Systems Projects Data Analysis System...

  4. Doing Business Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    The following are frequently asked questions about working with in partnership with DOE laboratories.

  5. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09T23:59:59.000Z

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  6. URANIUM MILLING ACTIVITIES AT SEQUOYAH FUELS CORPORATION

    E-Print Network [OSTI]

    unknown authors

    Sequoyah Fuels Corporation (SFC) describes previous operations at its Gore, Oklahoma, uranium conversion facility as: (1) the recovery of uranium by concentration and purification processes; and (2) the conversion of concentrated and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these

  7. Statistical Laboratory & Department of Statistics

    E-Print Network [OSTI]

    Statistical Laboratory & Department of Statistics Annual Report July 1, 2005 to December 31, 2006...............................................33 Statistical Computing Section ......................................34 CSSM and statistical methodology in the nutritional sciences. We were also very pleased to secure a permanent lecturer

  8. Analysis of uranium urinalysis and in vivo measurement results from eleven participating uranium mills

    SciTech Connect (OSTI)

    Spitz, H.B.; Simpson, J.C.; Aldridge, T.L.

    1984-05-01T23:59:59.000Z

    Uranium urinalysis and in vivo examination results obtained from workers at eleven uranium mills between 1978 and 1980 were evaluated. The main purpose was to determine the degree of the mills' compliance with bioassay monitoring recommendations given in the draft NRC Regulatory Guide 8.22 (USNRC 1978). The effect of anticipated changes in the draft regulatory guidance, as expressed to PNL in May 1982, was also studied. Statistical analyses of the data showed that the bioassay results did not reliably meet the limited performance criteria given in the draft regulatory guide. Furthermore, quality control measurements of uranium in urine indicated that detection limits at ..cap alpha.. = ..beta.. = 0.05 ranged from 13 ..mu..g/l to 29 ..mu..g/l, whereas the draft regulatory guidance suggests 5 ..mu..g/l as the detection limit. Recommendations for monitoring frequencies given in the draft guide were not followed consistently from mill to mill. The results of these statistical analyses indicate a need to include performance criteria for accuracy, precision, and confidence in revisions of the draft Regulatory Guide 8.22. Revised guidance should also emphasize the need for each mill to continually test the laboratory performing urinalyses by submitting quality control samples (i.e., blank and spiked urine samples as open and blind test) to insure that the performance criteria are being met. Recommendations for a bioassay audit program are also given. 25 references, 15 figures, 17 tables.

  9. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentralScience Questions Related Links

  10. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentralScience Questions Related

  11. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentralScience Questions RelatedScience

  12. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentralScience Questions

  13. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentralScience QuestionsScience

  14. ARM - Comments and Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are70ARMComments and Questions About

  15. Frequently Asked Questions

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia CorporationNuclearQuestions What are the

  16. Global Statistics

    E-Print Network [OSTI]

    Crow, Ben D

    2006-01-01T23:59:59.000Z

    1996). Globalization in Question: International Economy andGlobalization; Justice; Poverty; Underground Economy; United

  17. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

    2006-09-05T23:59:59.000Z

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  18. Recovery of uranium from seawater

    SciTech Connect (OSTI)

    Sugasaka, K. (Government Industrial Research Inst., Shikoku, Japan); Katoh, S.; Takai, N.; Takahashi, H.; Umezawa, Y.

    1981-01-01T23:59:59.000Z

    Seawater contains various elements in solution. Deuterium, lithium, and uranium are the important ingredients for energy application at present and in the future. This paper deals with the recovery of uranium from seawater, with emphasis on the development of an adsorbent with high selectivity and rate of adsorption for uranium. Polyacrylamidoxime chelating resins were synthesized from various co-polymers of acrylonitrile and cross-linking agents. The resulting resins with the chelating amidoxime group showed selective adsorption for uranium in seawater. The amount of uranium adsorbed from seawater at room temperature reached 3.2 mg/g resin after 180 days. Polyacrylamidoxime fiber, which was prepared from polyacrylonitrile fiber and hydroxylamine, showed a high rate of adsorption for uranium. The polyacrylamidoxime fiber conditioned with 1 M HC1 and 1 M NaOH adsorbed 4 mg U/g fiber from seawater in ten days. 9 figures, 6 tables.

  19. Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov (indexed) [DOE]

    four alternatives that would eliminate the weapons-usability of HEU by blending it with depleted uranium, natural uranium, or low-enriched uranium (LEU) to create LEU, either as...

  20. Uranium in prehistoric Indian pottery

    E-Print Network [OSTI]

    Filberth, Ernest William

    1976-01-01T23:59:59.000Z

    URANIUM IN PREHISTORIC INDIAN POTTERY A Thesis by ERNEST WILLIAM FILBERTH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1976 Major Subject...: Chemistry URANIUM IN PREHISTORIC INDIAN POTTERY A Thesis by ERNEST WILLIAM FILBERTH Approved as to style and content by: (Chairman of Committee) (Head of Department) (Member) (Membe (Member) (Member) December 1976 ABSTRACT Uranium in Prehistoric...

  1. anthropogenic uranium enrichments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Flats Plutonium and Uranium Weapons-Grade Plutonium Enriched Uranium Depleted Uranium Plutonium-238 0.01 - 0.05% Uranium-234 0.1 - 1.02% Uranium-234...

  2. Evaluation of integrated data sets: four examples. [Uranium deposits (exploration)

    SciTech Connect (OSTI)

    Bolivar, S.L.; Freeman, S.B.; Weaver, T.A.

    1982-01-01T23:59:59.000Z

    Several large data sets have been integrated and utilized for rapid evaluation on a reconnaissance scale for the Montrose 1/sup 0/ x 2/sup 0/ quadrangle, Colorado. The data sets include Landsat imagery, hydrogeochemical and stream sediment analyses, airborne geophysical data, known mineral occurrences, and a geologic map. All data sets were registered to a 179 x 119 rectangular grid and projected onto Universal Transverse Mercator coordinates. A grid resolution of 1 km was used. All possible combinations of three, for most data sets, were examined for general geologic correlations by utilizing a color microfilm output. In addition, gray-level pictures of statistical output, e.g., factor analysis, have been employed to aid evaluations. Examples for the data sets dysprosium-calcium, lead-copper-zinc, and equivalent uranium-uranium in water-uranium in sediment are described with respect to geologic applications, base-metal regimes, and geochemical associations.

  3. Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov (indexed) [DOE]

    of Surplus Highly Enriched Uranium Environmental Impact Statement kternationd Atomic Energy Agency Idaho Nationrd Engineering Laborato low-enriched uranium low-level waste...

  4. Uranium Processing Facility Site Readiness Subproject Completed...

    National Nuclear Security Administration (NNSA)

    Field Offices Welcome to the NNSA Production Office NPO News Releases Uranium Processing Facility Site Readiness Subproject Completed ... Uranium Processing Facility Site...

  5. Unexpected, Stable Form of Uranium Detected | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected, Stable Form of Uranium Detected Unexpected, Stable Form of Uranium Detected Insights on underappreciated reaction could shed light on environmental cleanup options...

  6. Uranium Weapons Components Successfully Dismantled | National...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully...

  7. Adsorptive Stripping Voltammetric Measurements of Trace Uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adsorptive Stripping Voltammetric Measurements of Trace Uranium at the Bismuth Film Electrode. Adsorptive Stripping Voltammetric Measurements of Trace Uranium at the Bismuth Film...

  8. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Environmental Management (EM)

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  9. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOE Patents [OSTI]

    Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

    2001-01-01T23:59:59.000Z

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  10. Draft RFP - Questions and Answers

    National Nuclear Security Administration (NNSA)

    Note: Question 37 has been updated to reflect the correct website. 1. Question: NNS-F-2001 CONTRACT PERFORMANCE PERIOD (OCT 2013) (page F 24 of 75). Please explain the rationale...

  11. Draft RFP - Questions and Answers

    National Nuclear Security Administration (NNSA)

    and Answers Questions 1 - 152: Released on December 19, 2013. 1. Question: NNS-F-2001 CONTRACT PERFORMANCE PERIOD (OCT 2013) (page F 24 of 75). Please explain the rationale...

  12. Ultrasonic thickness sampling plan for the depleted uranium hexafluoride program

    SciTech Connect (OSTI)

    Lyon, B.F.; Lykins, M.L.

    1996-07-01T23:59:59.000Z

    The United States Department of Energy (DOE) currently manages depleted uranium hexafluoride that is stored in approximately 50,000 carbon steel cylinders located at three DOE sites. The disposition of any particular cylinder for storage, handling, and transfer is based on the condition of the cylinder, where condition is ultimately reflected by the minimum wall thickness of a cylinder. Currently, the wall thickness of a cylinder may be measured using either a hand-held ultrasonic transducers or an automated scanner. At the Portsmouth site, the cylinder program is currently committed to a sampling plan that requires sampling 10% of the cylinders moved during the cylinder relocation efforts. The purpose of this report is to present a statistically-based sampling plan to be considered for use within the three site cylinder management program. This plan is designed to meet the following objectives: (1) allow determination of the current condition of the cylinder populations within the accuracy and confidence specified by cylinder program management, and (2) be sufficient for the models to be used for modeling purposes. The first objective does not require modeling in the sense of making assumptions about the corrosion process for the populations involved. By avoiding such additional assumptions, this may result in stronger statements to be made about the populations in question. Assumptions must be made regarding corrosion of the cylinders through time. The second objective depends on the particular model used. In this report, two basic methods are used in determining sample sizes. The sample sizes are intended to be conservative because it may be that other models are developed for use within the Program.

  13. Department of Statistics STATISTICS COLLOQUIUM

    E-Print Network [OSTI]

    Department of Statistics STATISTICS COLLOQUIUM ERIC KOLACZYK Department of Statistics Boston University Statistical Analysis of Network Data: (Re)visiting the Foundations MONDAY, October 13, 2014, at 4, statistical methods and modeling have been central to these efforts. But how well do we truly understand

  14. 32. Statistics 1 32. STATISTICS

    E-Print Network [OSTI]

    Masci, Frank

    32. Statistics 1 32. STATISTICS Revised September 2007 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in High Energy Physics. In statistics, we are interested in using's validity or to determine the values of its parameters. There are two main approaches to statistical

  15. Statistical Laboratory & Department of Statistics

    E-Print Network [OSTI]

    by the American Statistical Association. Dean Isaacson and Mark Kaiser were instrumental in garnering a NationalStatistical Laboratory & Department of Statistics Annual Report July 1, 2002 to June 30, 2003 IOWA Chair of the Department of Statistics and Director of the Statistical Laboratory in November, 2002. Dean

  16. The Question The Standard Construction

    E-Print Network [OSTI]

    Raghavan, Dilip

    The Question The Standard Construction The ZFC construction Bibliography Solution to a Problem Construction The ZFC construction Bibliography Outline 1 The Question 2 The Standard Construction 3 The ZFC construction Dilip Raghavan Solution to a Problem of Van Douwen #12;The Question The Standard Construction

  17. Isotope Ratio Triangulation: A Method for Determining Uranium Isotope Ratios and Application to the Search for Uranium Isotope Anomalies in the Mineral Titanite 

    E-Print Network [OSTI]

    Hill, Joseph Roger

    2014-11-10T23:59:59.000Z

    -evaluation of the isotope ratio of “natural” uranium value used in geochronology has called into question both this value and its constancy in U-bearing minerals, most notably titanite, formed in high-temperature magmatic and metamorphic settings. A 233U-236U spike may...

  18. Uranium Marketing Annual Report -

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea:Mnt(N)3. Deliveries of uranium

  19. Uranium Marketing Annual Report -

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea:Mnt(N)3. Deliveries of uranium4.

  20. Uranium Marketing Annual Report -

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea:Mnt(N)3. Deliveries2.5.3. Uranium

  1. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C

  2. APPENDIX J Partition Coefficients For Uranium

    E-Print Network [OSTI]

    APPENDIX J Partition Coefficients For Uranium #12;Appendix J Partition Coefficients For Uranium J.1.0 Background The review of uranium Kd values obtained for a number of soils, crushed rock and their effects on uranium adsorption on soils are discussed below. The solution pH was also used as the basis

  3. The End of Cheap Uranium

    E-Print Network [OSTI]

    Michael Dittmar

    2011-06-21T23:59:59.000Z

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

  4. Safe Operating Procedure SAFETY PROTOCOL: URANIUM

    E-Print Network [OSTI]

    Farritor, Shane

    involve the use of natural or depleted uranium. Natural isotopes of uranium are U-238, U-235 and U-234 (see Table 1 for natural abundances). Depleted uranium contains less of the isotopes: U-235 and U-234. The specific activity of depleted uranium (5.0E-7 Ci/g) is less than that of natural uranium (7.1E-7 Ci

  5. DEPARTMENT OF ENERGY Excess Uranium Management: Effects of DOE...

    Broader source: Energy.gov (indexed) [DOE]

    Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries; Request for Information AGENCY: Office of...

  6. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium(VI) Diffusion in Low-Permeability Subsurface Materials. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials. Abstract: Uranium(VI) diffusion was investigated in...

  7. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation

    E-Print Network [OSTI]

    Wilkins, M.J.

    2010-01-01T23:59:59.000Z

    Phillips.  1992.  Bioremediation of  uranium contamination in situ uranium bioremediation.  Microbial Biotechnology 2:genes during in situ bioremediation of uranium?contaminated 

  8. adepleted uranium hexafluoride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 15...

  9. active uranium americium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 5...

  10. anthropogenic uranium concentration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 12...

  11. abandoned uranium mill: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 3...

  12. anaconda uranium mill: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 3...

  13. THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01T23:59:59.000Z

    1979) in "Uranium Enrichment", S. Villani, Ed. , Springer-E. (1973) "Uranium Enrichment by Gas Centrifuge" Mills andTHE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

  14. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A. (Kennewick, WA)

    1986-01-01T23:59:59.000Z

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  15. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10T23:59:59.000Z

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  16. Beneficial Uses of Depleted Uranium

    SciTech Connect (OSTI)

    Brown, C. [U.S. Department of Energy, Germantown, MD (United States); Croff, A.G.; Haire, M. J. [Oak Ridge National Lab., TN (United States)

    1997-08-01T23:59:59.000Z

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  17. Term statistics Zipf's law text statistics

    E-Print Network [OSTI]

    Lu, Jianguo

    Term statistics Zipf's law text statistics October 20, 2014 text statistics 1 / 19 #12;Term statistics Zipf's law Overview 1 Term statistics 2 Zipf's law text statistics 2 / 19 #12;Term statistics Zipf's law Outline 1 Term statistics 2 Zipf's law text statistics 3 / 19 #12;Term statistics Zipf's law Model

  18. Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01T23:59:59.000Z

    Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration

  19. Process for alloying uranium and niobium

    SciTech Connect (OSTI)

    Holcombe, C.E.; Northcutt, W.G.; Masters, D.R.; Chapman, L.R.

    1990-12-31T23:59:59.000Z

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uranium sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  20. Process for alloying uranium and niobium

    SciTech Connect (OSTI)

    Holcombe, C.E.; Northcutt, W.G.; Masters, D.R.; Chapman, L.R.

    1991-04-09T23:59:59.000Z

    This patent describes alloys such as U-6Nb prepared by forming a stacked sandwich array of uranium sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  1. Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications 

    E-Print Network [OSTI]

    Helmreich, Grant

    2012-02-14T23:59:59.000Z

    The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding...

  2. Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications

    E-Print Network [OSTI]

    Helmreich, Grant

    2012-02-14T23:59:59.000Z

    The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding...

  3. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  4. Uranium and other heavy metals in soil and vegetation from the Hanford environs

    SciTech Connect (OSTI)

    Price, K.R.; Kinnison, R.R.

    1982-11-01T23:59:59.000Z

    Strong winds that could transport contaminated dust and other materials offsite from the Hanford 300 Area typically blow from the west or southwest. Samples were collected from an offsite study area located across the Columbia River and downwind from the 300 Area to estimate the concentrations of uranium and other heavy metals in soils and vegetation. Results were compared to similar measurements collected at control sites located both on and off the Hanford Site. These comparisons were used to test hypotheses that uranium and other heavy metals had been transported offsite by wind-blown dust or other materials. The conclusion from this study was that operations at the 300 Area have not resulted in a detectable impact on the offsite environs across the river. The concentration of uranium in soil samples from the study area was statistically greater than comparable samples from control sites, but there was no evidence that the uranium in the study-area samples was other than naturally occurring. There was no statistical difference in the concentration of lead, silver, zinc or copper in soil samples from the study area as compared to the control sites. No statistically significant differences in uranium or other heavy metals were noted among vegetation samples from the various sampling sites.

  5. Evaluation of Background Concentrations of Contaminants in an Unusual Desert Arroyo Near a Uranium Mill Tailings Disposal Cell - 12260

    SciTech Connect (OSTI)

    Bush, Richard P. [U.S. Department of Energy Office of Legacy Management (United States); Morrison, Stan J. [S.M. Stoller Corporation (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages 27 sites that have groundwater containing uranium concentrations above background levels. The distal portions of the plumes merge into background groundwater that can have 50 ?g/L or more uranium. Distinguishing background from site-related uranium is often problematic, but it is critical to determining if remediation is warranted, establishing appropriate remediation goals, and evaluating disposal cell performance. In particular, groundwater at disposal cells located on the upper Cretaceous Mancos Shale may have relatively high background concentrations of uranium. Elevated concentrations of nitrate, selenium, and sulfate accompany the uranium. LM used geologic analogs and uranium isotopic signatures to distinguish background groundwater from groundwater contaminated by a former uranium processing site. The same suite of contaminants is present in groundwater near former uranium processing sites and in groundwater seeps emanating from the Mancos Shale over a broad area. The concentrations of these contaminants in Many Devils Wash, located near LM's Shiprock disposal cell, are similar to those in samples collected from many Mancos seeps, including two analog sites that are 8 to 11 km from the disposal cell. Samples collected from Many Devils Wash and the analog sites have high AR values (about 2.0)-in contrast, groundwater samples collected near the tailings disposal cell have AR values near 1.0. These chemical signatures raise questions about the origin of the contamination seeping into Many Devils Wash. (authors)

  6. TECHNICAL QUESTIONS What Every Parent ...

    Broader source: Energy.gov (indexed) [DOE]

    through: & 10 Common Questions About Internet Safety 1. How and why do I check the Web browser history? 2. How and why do I review temporary Internet files? 3. How and why do...

  7. Standard practice for removal of uranium or plutonium, or both, for impurity assay in uranium or plutonium materials

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    Standard practice for removal of uranium or plutonium, or both, for impurity assay in uranium or plutonium materials

  8. Depleted uranium disposal options.

    SciTech Connect (OSTI)

    Biwer, B. M.; Ranek, N. L.; Goldberg, M.; Avci, H. I.

    2000-04-01T23:59:59.000Z

    Depleted uranium hexafluoride (UF{sub 6}) has been produced in the United States since the 1940s as part of both the military program and the civilian nuclear energy program. The U.S. Department of Energy (DOE) is the agency responsible for managing most of the depleted UF{sub 6} that has been produced in the United States. The total quantity of depleted UF{sub 6} that DOE has to or will have to manage is approximately 700,000 Mg. Studies have been conducted to evaluate the various alternatives for managing this material. This paper evaluates and summarizes the alternative of disposal as low-level waste (LLW). Results of the analysis indicate that UF{sub 6} needs to be converted to a more stable form, such as U{sub 3}O{sub 8}, before disposal as LLW. Estimates of the environmental impacts of disposal in a dry environment are within the currently applicable standards and regulations. Of the currently operating LLW disposal facilities, available information indicates that either of two DOE facilities--the Hanford Site or the Nevada Test Site--or a commercial facility--Envirocare of Utah--would be able to dispose of up to the entire DOE inventory of depleted UF{sub 6}.

  9. Questions

    E-Print Network [OSTI]

    CamScanner

    2014-06-17T23:59:59.000Z

    N o t e t h a t t h e sam e p h e n o m e n o n o c c u r s w h e n t h e rea l n u m b er s are re ga r de d a s a su bfie ld o f t h e c o m p l e x fi e ld ,. a n d it a l so o ccu ...

  10. Questions

    E-Print Network [OSTI]

    CamScanner

    Let fbe a real function de?ned on (a, b). Prove that the set of points at which f has a simple discontinuity is at most countable. Hint: Let E be the set on which.

  11. Uranium 2007 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01T23:59:59.000Z

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  12. A uranium-titanium-niobium alloy

    SciTech Connect (OSTI)

    Ludtka, G.M.; Ludtka, G.M.

    1990-02-23T23:59:59.000Z

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  13. Inherently safe in situ uranium recovery

    DOE Patents [OSTI]

    Krumhansl, James L; Brady, Patrick V

    2014-04-29T23:59:59.000Z

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  14. Uranium Acquisition | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Interest (EOI) to acquire up to 6,800 metric tons of Uranium (MTU) of high purity depleted uranium metal (DU) and related material and services. This request for EOI does...

  15. Chapter 1 The Nature of Probability and Statistics

    E-Print Network [OSTI]

    Hong, Don

    Chapter 1 The Nature of Probability and Statistics 1.1 Introduction Definition. Statistics based on probability theory. This chapter introduces the basic concepts of probability and statistics by answering questions like: · what are the branches of statistics · what are data · how are samples selected 1

  16. D Riso-R-429 Automated Uranium

    E-Print Network [OSTI]

    -induced delayed-neutron coun- ting is applied preferably in large geochemical exploration pro- grammes. UraniumCM i D Riso-R-429 Automated Uranium Analysis by Delayed-Neutron Counting H. Kunzendorf, L. Lřvborg AUTOMATED URANIUM ANALYSIS BY DELAYED-NEUTRON COUNTING H. Kunzendorf, L. Lřvborg and E.M. Christiansen

  17. Remediation and Recovery of Uranium from Contaminated

    E-Print Network [OSTI]

    Lovley, Derek

    that Geobacter species can effectively remove uranium from contaminated groundwater by reducing soluble U emplaced in flow- through columns of uranium-contaminated sediments readily removed U(VI) from the groundwater, and 87% of the uranium that had been removed was recovered from the electrode surface after

  18. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  19. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  20. Uranium Watch REGULATORY CONFUSION: FEDERALAND STATE

    E-Print Network [OSTI]

    Uranium Watch Report REGULATORY CONFUSION: FEDERALAND STATE ENFORCEMENT OF 40 C.F.R. PART 61 SUBPART W INTRODUCTION 1. This Uranium Watch Report, Regulatory Confusion: Federal and State Enforcement at the White Mesa Uranium Mill, San Juan County, Utah. 2. The DAQ, a Division of the Utah Department

  1. Clean Air Act Requirements: Uranium Mill Tailings

    E-Print Network [OSTI]

    EPA'S Clean Air Act Requirements: Uranium Mill Tailings Radon Emissions Rulemaking Reid J. Rosnick requirements for operating uranium mill tailings (Subpart W) Status update on Subpart W activities Outreach/Communications #12;3 EPA Regulatory Requirements for Operating Uranium Mill Tailings (Clean Air Act) · 40 CFR 61

  2. URANIUM MILL TAILINGS RADON FLUX CALCULATIONS

    E-Print Network [OSTI]

    URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIĂ?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Inc. (Golder) was commissioned by EFRC to evaluate the operations of the uranium mill tailings storage in this report were conducted using the WISE Uranium Mill Tailings Radon Flux Calculator, as updated on November

  3. Uranium mill tailings and radon

    SciTech Connect (OSTI)

    Hanchey, L A

    1981-01-01T23:59:59.000Z

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  4. Physical and mechanical metallurgy of uranium and uranium alloys

    SciTech Connect (OSTI)

    Eckelmeyer, K.H. [Sandia National Labs. (United States)

    1998-12-31T23:59:59.000Z

    Engineering disadvantages of unalloyed uranium include relatively low strength, low ductility, and poor oxidation and corrosion resistance. As-cast uranium typically exhibits very large grains that cause nonuniform deformation and low tensile ductility. Uranium is often alloyed to improve its corrosion resistance and mechanical properties. Titanium is most commonly used to increase strength; niobium and molybdenum, to increase oxidation and corrosion resistance; and vanadium, to refine alpha grain size in castings. Under equilibrium conditions these elements are extensively soluble in the high-temperature gamma phase, slightly soluble in the intermediate temperature beta phase, and essentially insoluble in the low-temperature alpha phase. Uranium alloys are vacuum solution heat treated in the gamma range to dissolve the alloying elements and remove hydrogen. The subsequent microstructures and properties are determined by the cooling rate from the solution treatment temperature. Oxidation and corrosion resistance increases with increasing the amount of alloy in solid solution. As a result, alloys such as U-6%Nb and U-10%Mo are often used in applications requiring good corrosion resistance.

  5. Electron Backscatter Diffraction (EBSD) Characterization of Uranium and Uranium Alloys

    SciTech Connect (OSTI)

    McCabe, Rodney J. [Los Alamos National Laboratory; Kelly, Ann Marie [Los Alamos National Laboratory; Clarke, Amy J. [Los Alamos National Laboratory; Field, Robert D. [Los Alamos National Laboratory; Wenk, H. R. [University of California, Berkeley

    2012-07-25T23:59:59.000Z

    Electron backscatter diffraction (EBSD) was used to examine the microstructures of unalloyed uranium, U-6Nb, U-10Mo, and U-0.75Ti. For unalloyed uranium, we used EBSD to examine the effects of various processes on microstructures including casting, rolling and forming, recrystallization, welding, and quasi-static and shock deformation. For U-6Nb we used EBSD to examine the microstructural evolution during shape memory loading. EBSD was used to study chemical homogenization in U-10Mo, and for U-0.75Ti, we used EBSD to study the microstructure and texture evolution during thermal cycling and deformation. The studied uranium alloys have significant microstructural and chemical differences and each of these alloys presents unique preparation challenges. Each of the alloys is prepared by a sequence of mechanical grinding and polishing followed by electropolishing with subtle differences between the alloys. U-6Nb and U-0.75Ti both have martensitic microstructures and both require special care in order to avoid mechanical polishing artifacts. Unalloyed uranium has a tendency to rapidly oxidize when exposed to air and a two-step electropolish is employed, the first step to remove the damaged surface layer resulting from the mechanical preparation and the second step to passivate the surface. All of the alloying additions provide a level of surface passivation and different one and two step electropolishes are employed to create good EBSD surfaces. Because of its low symmetry crystal structure, uranium exhibits complex deformation behavior including operation of multiple deformation twinning modes. EBSD was used to observe and quantify twinning contributions to deformation and to examine the fracture behavior. Figure 1 shows a cross section of two mating fracture surfaces in cast uranium showing the propensity of deformation twinning and intergranular fracture largely between dissimilarly oriented grains. Deformation of U-6Nb in the shape memory regime occurs by the motion of twin boundaries formed during the martensitic transformation. Deformation actually results in a coarsening of the microstructure making EBSD more practical following a limited amount of strain. Figure 2 shows the microstructure resulting from 6% compression. Casting of U-10Mo results in considerable chemical segregation as is apparent in Figure 2a. The segregation subsists through rolling and heat treatment processes as shown in Figure 2b. EBSD was used to study the effects of homogenization time and temperature on chemical heterogeneity. It was found that times and temperatures that result in a chemically homogeneous microstructure also result in a significant increase in grain size. U-0.75Ti forms an acicular martinsite as shown in Figure 4. This microstructure prevails through cycling into the higher temperature solid uranium phases.

  6. Removal of uranium from aqueous HF solutions

    DOE Patents [OSTI]

    Pulley, Howard (West Paducah, KY); Seltzer, Steven F. (Paducah, KY)

    1980-01-01T23:59:59.000Z

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  7. Process for alloying uranium and niobium

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Northcutt, Jr., Walter G. (Oak Ridge, TN); Masters, David R. (Knoxville, TN); Chapman, Lloyd R. (Knoxville, TN)

    1991-01-01T23:59:59.000Z

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  8. QUESTIONS & ANSWERS ABOUT LUNG CANCER

    E-Print Network [OSTI]

    QUESTIONS & ANSWERS ABOUT LUNG CANCER Q: What are the early signs of lung cancer? How would I know I have it? A: Some of the early warning signs of lung cancer are: · A cough that doesn't go away what may be causing these symptoms. Q: How is lung cancer diagnosed? A: Your doctor may do one or more

  9. 10 CFR 707 Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    NOTE: The Questions on this site were compiled from questions asked during the four DOE complex wide tele-videos, as well as, questions submitted by e-mail and telephone. The answers provided are...

  10. University Of Missouri: Sample Interview Questions Creating Interview Questions

    E-Print Network [OSTI]

    Taylor, Jerry

    did you modify your plans/actions? What was the outcome? 2. Give an example of a time when you had two to the needs of you rco-workers or manager. ANALYSIS 1. What steps do you take to analyze a problem before used tools such as survey data, research or statistics to define or solve a problem. 5. Tell me about

  11. Cool Roofs: Your Questions Answered

    Broader source: Energy.gov [DOE]

    When Secretary Chu announced that the Department of Energy had installed a “cool roof” atop the west building of our Washington, DC headquarters, it elicited a fair number of questions from his Facebook fans. We decided to reach out to the people behind the project for their insight on the specific benefits of switching to a cool roof, and the process that went into making that choice.

  12. Evaluation of kinetic phosphorescence analysis for the determination of uranium

    SciTech Connect (OSTI)

    Croatto, P.V.; Frank, I.W.; Johnson, K.D.; Mason, P.B.; Smith, M.M.

    1997-12-01T23:59:59.000Z

    In the past, New Brunswick Laboratory (NBL) has used a fluorometric method for the determination of sub-microgram quantities of uranium. In its continuing effort to upgrade and improve measurement technology, NBL has evaluated the commercially-available KPA-11 kinetic phosphorescence analyzer (Chemchek, Richland, WA). The Chemchek KPA-11 is a bench-top instrument which performs single-measurement, quench-corrected analyses for trace uranium. It incorporates patented kinetic phosphorimetry techniques to measure and analyze sample phosphorescence as a function of time. With laser excitation and time-corrected photon counting, the KPA-11 has a lower detection limit than conventional fluorometric methods. Operated with a personal computer, the state-of-the-art KPA-11 offers extensive time resolution and phosphorescence lifetime capabilities for additional specificity. Interferences are thereby avoided while obtaining precise measurements. Routine analyses can be easily and effectively accomplished, with the accuracy and precision equivalent to the pulsed-laser fluorometric method presently performed at NBL, without the need for internal standards. Applications of kinetic phosphorimetry at NBL include the measurement of trace level uranium in retention tank, waste samples, and low-level samples. It has also been used to support other experimental activities at NBL by the measuring of nanogram amounts of uranium contamination (in blanks) in isotopic sample preparations, and the determining of elution curves of different ion exchange resins used for uranium purification. In many cases, no pretreatment of samples was necessary except to fume them with nitric acid, and then to redissolve and dilute them to an appropriate concentration with 1 M HNO{sub 3} before measurement. Concentrations were determined on a mass basis ({micro}g U/g of solution), but no density corrections were needed since all the samples (including the samples used for calibration) were in the same density matrix (1 M HNO{sub 3}). A statistical evaluation of the determination of uranium using kinetic phosphorimetry is described in this report, along with a discussion of the method, and an evaluation of the use of plastic versus quartz cuvettes. Measurement with a precision of {+-} 3--4% relative standard deviation (RSD) and an accuracy of better than {+-} 2% relative difference (RD) are obtained in the 0.0006 to 5 {micro}g U/g-solution range. The instrument detection limit is 0.04 ppb (4 x 10{sup {minus}5} {micro}g U/g solution) using quartz cells, and 0.11 ppb (11 x 10{sup {minus}5} {micro}g U/g solution) using disposable methacrylate cuvettes.

  13. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Goodknight, C.S.; Burger, J.A. (comps.) [comps.

    1982-10-01T23:59:59.000Z

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1/sup 0/ x 2/sup 0/ quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed.

  14. Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs

    E-Print Network [OSTI]

    Matthews, Isaac A

    2010-01-01T23:59:59.000Z

    An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

  15. Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths

    E-Print Network [OSTI]

    Hwang, Chiachi

    2009-01-01T23:59:59.000Z

    problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactive

  16. Potpourri of deposition and resuspension questions

    SciTech Connect (OSTI)

    Slinn, W.G.N.

    1983-01-01T23:59:59.000Z

    Twenty questions and answers are listed dealing with particulate deposition, resuspension, and precipitation scavenging.

  17. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01T23:59:59.000Z

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  18. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01T23:59:59.000Z

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  19. L'URANIUM ET LES ARMES L'URANIUM APPAUVRI. Pierre Roussel*

    E-Print Network [OSTI]

    Boyer, Edmond

    L'URANIUM ET LES ARMES � L'URANIUM APPAUVRI. Pierre Roussel* Institut de Physique Nucléaire, CNRS massivement dans la guerre du Golfe, des obus anti- chars ont été utilisés, avec des "charges d'uranium, avec une charge de 300 g d'uranium et tiré par des avions, l'autre de 120 mm de diamètre avec une

  20. Uranium in prehistoric Indian pottery 

    E-Print Network [OSTI]

    Filberth, Ernest William

    1976-01-01T23:59:59.000Z

    . 2 to 25 ppm (Katz 1951). From thermal equilibrium calculations on the earth's core, mantle, and crust, and through actual analysis of samples, uranium was found to be concentrated in the earth's crust. According to modern geological thought..., as the uniformly molten earth cooled, its matter became separated into one vapor phase and three concentric condensed phases: the siderosphere (the earth's core, probably primarily molten iron), the chalcosphere forming the intermediate shell (the mantle...

  1. Dry process fluorination of uranium dioxide using ammonium bifluoride

    E-Print Network [OSTI]

    Yeamans, Charles Burnett, 1978-

    2003-01-01T23:59:59.000Z

    An experimental study was conducted to determine the practicality of various unit operations for fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double salts from uranium dioxide and ...

  2. albarrana uranium ores: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 7 A...

  3. Review of uranium bioassay techniques

    SciTech Connect (OSTI)

    Bogard, J.S.

    1996-04-01T23:59:59.000Z

    A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

  4. Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium(III)

    E-Print Network [OSTI]

    Meyer, Karsten

    , we are currently investigating the coordina- tion chemistry of uranium metal centers with classicalUranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium, and Karsten Meyer* Contribution from the Department of Chemistry and Biochemistry, UniVersity of California

  5. Draft RFP - Questions and Answers

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 ChgQuestions and Answers

  6. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News linkThermalInnerHowAuraWhich Atoms CanYouQuestion

  7. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin and Frame ofHow strong isQuestion: Do you

  8. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin and Frame ofHow strong isQuestion: Do youWhat

  9. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin and Frame ofHow strong isQuestion: Do

  10. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin and Frame ofHow strong isQuestion: DoCharged

  11. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin and Frame ofHow strong isQuestion:

  12. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin and Frame ofHow strong isQuestion:Can an audio

  13. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin and Frame ofHow strong isQuestion:Can an

  14. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin and Frame ofHow strong isQuestion:Can anYou

  15. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin and Frame ofHow strong isQuestion:Can

  16. Four Faculty Positions Applied Statistics & Computational Statistics

    E-Print Network [OSTI]

    Shepp, Larry

    Four Faculty Positions Applied Statistics & Computational Statistics The Department of Statistics at the Assistant Professor rank. Two positions are open in the area of Applied Statistics, with a focus on the development of statistical methodology and statistical consulting. The other two positions are open

  17. Colorimetric detection of uranium in water

    DOE Patents [OSTI]

    DeVol, Timothy A. (Clemson, SC); Hixon, Amy E. (Piedmont, SC); DiPrete, David P. (Evans, GA)

    2012-03-13T23:59:59.000Z

    Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

  18. Final Uranium Leasing Program Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores. ULP PEIS...

  19. Review The Toxicity of Depleted Uranium

    E-Print Network [OSTI]

    Wayne Briner

    Abstract: Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  20. Distribution of uranium-bearing phases in soils from Fernald

    SciTech Connect (OSTI)

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1993-12-31T23:59:59.000Z

    Electron beam techniques have been used to characterize uranium-contaminated soils and the Fernald Site, Ohio. Uranium particulates have been deposited on the soil through chemical spills and from the operation of an incinerator plant on the site. The major uranium phases have been identified by electron microscopy as uraninite, autunite, and uranium phosphite [U(PO{sub 3}){sub 4}]. Some of the uranium has undergone weathering resulting in the redistribution of uranium within the soil.

  1. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1993-01-01T23:59:59.000Z

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  2. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Environmental Management (EM)

    Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

  3. Legacy Management Work Progresses on Defense-Related Uranium...

    Office of Environmental Management (EM)

    LM visited 84 defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global positioning...

  4. Uncertainty analysis of multi-rate kinetics of uranium desorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Abstract: A...

  5. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers [EERE]

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  6. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6...

    Energy Savers [EERE]

    Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and...

  7. Geochemical Controls on Contaminant Uranium in Vadose Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls on Contaminant Uranium in Vadose Hanford Formation Sediments at the 200 Area and 300 Area, Hanford Site, Geochemical Controls on Contaminant Uranium in Vadose Hanford...

  8. Microbial Reduction of Uranium under Iron- and Sulfate-reducing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium under Iron- and Sulfate-reducing Conditions: Effect of Amended Goethite on Microbial Community Microbial Reduction of Uranium under Iron- and Sulfate-reducing Conditions:...

  9. Microscopic Reactive Diffusion of Uranium in the Contaminated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactive Diffusion of Uranium in the Contaminated Sediments at Hanford, United States. Microscopic Reactive Diffusion of Uranium in the Contaminated Sediments at Hanford, United...

  10. Y-12 uranium storage facility?a Ťdream come true?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ranks and actually provides the first impedance for the just finished highly enriched uranium storage facility. Recently the Highly Enriched Uranium Material Facility was...

  11. Composition, stability, and measurement of reduced uranium phases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition, stability, and measurement of reduced uranium phases for groundwater bioremediation at Old Rifle, CO. Composition, stability, and measurement of reduced uranium phases...

  12. Record of Decision for the Uranium Leasing Program Programmatic...

    Energy Savers [EERE]

    Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact...

  13. Sequestering Uranium from Seawater: Binding Strength and Modes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl...

  14. alloyed uranium transformation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding... Helmreich, Grant...

  15. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

  16. acute uranium intoxication: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consists of replacing the water with 20 Garland Jr., Theodore 8 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging...

  17. alloyed uranium sicral: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding... Helmreich, Grant...

  18. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

    Office of Environmental Management (EM)

    Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

  19. STATISTICAL MECHANICS PRACTICE EXAM 2005

    E-Print Network [OSTI]

    Dorlas, Teunis C.

    STATISTICAL MECHANICS PRACTICE EXAM 2005 Time allotted: 3 hours for 5 questions. 1. (i) Give density of a system of independent spins si = ±1 with energy levels given by E(s1, . . . , sN ) = -H N i=1 si. 2. (i) Derive the expression f() = - 1 ln eJ cosh H + e2J sinh2 H + e-2J for the free energy

  20. Statistical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulateEmissions Targetson6 Statistical

  1. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    Coordination Chemistry of Uranium………………………………….11 1.4researchers from uranium chemistry. Fortunately, despiteclassical coordination chemistry of uranium has flourished

  2. Uranium Management - Preservation of a National Asset

    SciTech Connect (OSTI)

    Jackson, J. D.; Stroud, J. C.

    2002-02-27T23:59:59.000Z

    The Uranium Management Group (UMG) was established at the Department of Energy's (DOE's) Oak Ridge Operations in 1999 as a mechanism to expedite the de-inventory of surplus uranium from the Fernald Environmental Management Project site. This successful initial venture has broadened into providing uranium material de-inventory and consolidation support to the Hanford site as well as retrieving uranium materials that the Department had previously provided to universities under the loan/lease program. As of December 31, 2001, {approx} 4,300 metric tons of uranium (MTU) have been consolidated into a more cost effective interim storage location at the Portsmouth site near Piketon, OH. The UMG continues to uphold its corporate support mission by promoting the Nuclear Materials Stewardship Initiative (NMSI) and the twenty-five (25) action items of the Integrated Nuclear Materials Management Plan (1). Before additional consolidation efforts may commence to remove excess inventory from Environmental Management closure sites and universities, a Programmatic Environmental Assessment (PEA) must be completed. Two (2) noteworthy efforts currently being pursued involve the investigation of re-use opportunities for surplus uranium materials and the recovery of usable uranium from the shutdown Portsmouth cascade. In summary, the UMG is available as a DOE complex-wide technical resource to promote the responsible management of surplus uranium.

  3. Bioremediation of uranium contaminated soils and wastes

    SciTech Connect (OSTI)

    Francis, A.J.

    1998-12-31T23:59:59.000Z

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  4. Attn Technology Transfer Questions.txt - Notepad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Attn Technology Transfer Questions.txt From: eschaput esandc@prodigy.net Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have...

  5. Molten-Salt Depleted-Uranium Reactor

    E-Print Network [OSTI]

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01T23:59:59.000Z

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  6. Recovery of uranium by immobilized polyhydroxyanthraquinone

    SciTech Connect (OSTI)

    Sakaguchi, T.; Nakajima, A.

    1986-01-01T23:59:59.000Z

    Nine species of polyhydroxyanthraquinone and two of polyhydroxynaphthoquinone were screened to determine which have the greatest ability to accumulate uranium. 1,2-Dihydroxyanthraquinone and 3-amino-1,2-dihydroxyanthraquinone have extremely high accumulation abilities. To improve the adsorbing characteristics of these compounds, the authors tried to immobilize these compounds by coupling with diazotized aminopolystyrene. The immobilized 1,2-dihydroxyanthraquinone has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. This adsorbent can recover uranium almost quantitatively from natural seawater. Almost all uranium adsorbed is desorbed with a solution of 1 N HCl. Thus, immobilized 1,2-dihydroxyanthraquinone can be used repeatedly in the adsorption-desorption process.

  7. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01T23:59:59.000Z

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  8. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03T23:59:59.000Z

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  9. Thermodynamic data for uranium fluorides

    SciTech Connect (OSTI)

    Leitnaker, J.M.

    1983-03-01T23:59:59.000Z

    Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF/sub 4/ and UF/sub 6/, including UF/sub 4/ (solid and gas), U/sub 4/F/sub 17/ (solid), U/sub 2/F/sub 9/ (solid), UF/sub 5/ (solid and gas), U/sub 2/F/sub 10/ (gas), and UF/sub 6/ (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior.

  10. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium Production

  11. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium

  12. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9 2014

  13. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9

  14. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium911 2014

  15. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium911

  16. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9117 2014

  17. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9117 20145

  18. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9117

  19. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomesticDomestic Uranium

  20. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi" ,"Plant","Primary1. TotalRevenueTotal97.10. Uranium

  1. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi" ,"Plant","Primary1. TotalRevenueTotal97.10. Uranium9.

  2. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4Residential17. Purchases of6a. Uranium

  3. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4Residential17. Purchases4. Uranium

  4. 2014 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4Residential17. Purchases4. Uranium57.

  5. Spike statistics

    E-Print Network [OSTI]

    J. Mark Heinzle; Claes Uggla

    2012-12-21T23:59:59.000Z

    In this paper we explore stochastical and statistical properties of so-called recurring spike induced Kasner sequences. Such sequences arise in recurring spike formation, which is needed together with the more familiar BKL scenario to yield a complete description of generic spacelike singularities. In particular we derive a probability distribution for recurring spike induced Kasner sequences, complementing similar available BKL results, which makes comparisons possible. As examples of applications, we derive results for so-called large and small curvature phases and the Hubble-normalized Weyl scalar.

  6. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    SciTech Connect (OSTI)

    Francis, C. W.

    1993-09-01T23:59:59.000Z

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  7. Recovery of uranium by using new microorganisms isolated from North American uranium deposits

    SciTech Connect (OSTI)

    Sakaguchi, T.; Nakajima, A.; Tsuruta, T. [Miyazaki Medical College (Japan)

    1995-12-31T23:59:59.000Z

    Some attempts were made to remove uranium that may be present in refining effluents, mine tailings by using new microorganisms isolated from uranium deposits and peculiar natural environments. To screen microorganisms isolated from uranium deposits and peculiar natural environments in North America and Japan for maximal accumulation of uranium, hundreds of microorganisms were examined. Some microorganisms can accumulate about 500 mg (4.2 mEq) of uranium per gram of Microbial cells within 1 h. The uranium accumulation capacity of the cells exceeds that of commercially available chelating agents (2-3 mEq/g adsorbent). We attempted to recover uranium from uranium refining waste water by using new microorganisms. As a result, these microbial cells can recover trace amounts of uranium from uranium waste water with high efficiency. These strains also have a high accumulating ability for thorium. Thus, these new microorganisms can be used as an adsorbing agent for the removal of nuclear elements may be present in metallurgical effluents, mine tailings and other waste sources.

  8. A Geostatistical Study of the Uranium Deposit at Kvanefjeld,

    E-Print Network [OSTI]

    are identified by the discriminating effect of the individual variable. INIS descriptors; URANIUM ORES? RESERVES

  9. Uranium Cluster Chemistry DOI: 10.1002/anie.200906605

    E-Print Network [OSTI]

    Uranium Cluster Chemistry DOI: 10.1002/anie.200906605 Tetranuclear Uranium Clusters by Reductive in the coordination chemistry and small-molecule reactivity of uranium. Among the intriguing reactivity patterns of tetravalent uranium with 3,5-dimethylpyrazolate (Me2PzŔ ) led to forma- tion of an unprecedented homoleptic

  10. Generalizations of quantum statistics

    E-Print Network [OSTI]

    O. W. Greenberg

    2008-05-02T23:59:59.000Z

    We review generalizations of quantum statistics, including parabose, parafermi, and quon statistics, but not including anyon statistics, which is special to two dimensions.

  11. Technical Basis for Assessing Uranium Bioremediation Performance

    SciTech Connect (OSTI)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01T23:59:59.000Z

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  12. Electrochemistry, Spectroscopy, and Reactivity of Uranium Complexes Supported by Ferrocene Diamide Ligands

    E-Print Network [OSTI]

    Duhovic, Selma

    2012-01-01T23:59:59.000Z

    J. L. , Pentavalent Uranium Chemistry-Synthetic Pursuit of afor Trivalent Uranium Chemistry. Inorg. Chem. 1989, 28, (and High-Valent Uranium Chemistry. Organometallics 2011,

  13. Recent International R&D Activities in the Extraction of Uranium from Seawater

    E-Print Network [OSTI]

    Rao, Linfeng

    2011-01-01T23:59:59.000Z

    Uranium and Rare Earth Elements Using Biomass of Algae, Bioinorganic ChemistryRecovery of uranium from sea water. Chemistry & Industry (uranium recovery from seawater. Industrial & Engineering Chemistry

  14. Decolonizing cartographies : sovereignty, territoriality, and maps of meaning in the uranium landscape

    E-Print Network [OSTI]

    Voyles, Traci Brynne

    2010-01-01T23:59:59.000Z

    continued mining and uranium exploration on and near theand thereby open to uranium exploration, claims-staking, andbe used for uranium mining or exploration. One Hispano

  15. Recent International R&D Activities in the Extraction of Uranium from Seawater

    E-Print Network [OSTI]

    Rao, Linfeng

    2011-01-01T23:59:59.000Z

    for extracting uranium from seawater. Brit. (1978), 3 pp.Ger. ). Recovery of uranium from seawater. Ger. Offen. (Ger. ). Recovery of uranium from seawater. Ger. Offen. (

  16. Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime

    E-Print Network [OSTI]

    Tian, Guoxin

    2013-01-01T23:59:59.000Z

    Sequestering uranium from seawater: binding strength andin sequestering uranium from seawater, forms strongExtraction of uranium from seawater is very challenging, not

  17. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    E-Print Network [OSTI]

    Williams, K.H.

    2010-01-01T23:59:59.000Z

    2008), Sustained Removal of Uranium From ContaminatedR. T. Anderson (2007), Uranium removal from groundwater viasulfide and the removal of uranium from groundwater. The

  18. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation

    E-Print Network [OSTI]

    Druhan, J.L.

    2009-01-01T23:59:59.000Z

    sulfate reduction and uranium removal. The samples for thisanism of Sulfate and Uranium Removal. In M-23, low acetatethe highest rates of uranium removal were observed at redox

  19. Field-based detection and monitoring of uranium in contaminated groundwater using two immunosensors

    E-Print Network [OSTI]

    Melton, S.J.

    2010-01-01T23:59:59.000Z

    an in situ uranium bioremediation field site. Appl. Environ.undergoing uranium bioremediation. Int. J. Systematicstimulated uranium bioremediation. Appl. Environ. Microbiol.

  20. Electrochemistry, Spectroscopy, and Reactivity of Uranium Complexes Supported by Ferrocene Diamide Ligands

    E-Print Network [OSTI]

    Duhovic, Selma

    2012-01-01T23:59:59.000Z

    J. L. , Pentavalent Uranium Chemistry-Synthetic Pursuit of aand High-Valent Uranium Chemistry. Organometallics 2011,for Trivalent Uranium Chemistry. Inorg. Chem. 1989, 28, (

  1. Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths

    E-Print Network [OSTI]

    Hwang, Chiachi

    2009-01-01T23:59:59.000Z

    problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactiveMB. (2004). Depleted and natural uranium: chemistry and

  2. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect (OSTI)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19T23:59:59.000Z

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  3. Electrolytic process for preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  4. STAT 100, Section 1 Sample Mid-term Examination I Spring, 2005 The following 50 questions are similar to the types of questions you will see on the

    E-Print Network [OSTI]

    Hunter, David

    cannot be collected. (C) All people in the United States. (D) The people or objects studied in the sample survey. Question 3. In a statistical study, the sample is: (A) A subset of people in the United States, 490,000 subjects were asked about their drinking habits. Researchers tracked subjects' death rates

  5. STAT 100, Section 2 Sample Mid-term Examination I Spring, 2004 The following 50 questions are similar to the types of questions you will see on the

    E-Print Network [OSTI]

    Hunter, David

    be collected. (C) All people in the United States. (D) The people or objects studied in the sample survey. Question 4. In a statistical study, the sample is: (A) A subset of people in the United States. (B their drinking habits. Researchers tracked subjects' death rates until 1991, and found that adults who regularly

  6. Aqueous-stream uranium-removal technology cost/benefit and market analysis

    SciTech Connect (OSTI)

    NONE

    1994-03-01T23:59:59.000Z

    The primary purpose of this report is to present information that was gathered by Kapline Enterprises, Inc. (KEI) in order to help the Department of Energy (DOE) determine the merit of continued biosorption research funding. However, in the event that funding is continued, it is also intended to help the researchers in their efforts to develop a better uranium-removal process. This report (1) provides a comparison of DOE sites that may utilize aqueous-stream, uranium-removal biosorption technology, (2) presents a comparison of the biosorption and ion exchange processes, and (3) establishes performance criteria by which the project can be measured. It also attempts to provide focus for biosorbent ground-water-remediation research and to ask questions that need to be answered. This report is primarily a study of the US market for technologies that remove uranium from aqueous streams, but it also addresses the international market-particularly for Germany. Because KEI`s access to international market information is extremely limited, the material presented in this report represents a best effort to obtain this data. Although uranium-contaminated aqueous streams are a problem in other countries as well, the scope of this report is primarily limited to the US and Germany for two reasons: (1) Germany is the country of the biosorbent-CRADA partner and (2) time constraints.

  7. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    SciTech Connect (OSTI)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01T23:59:59.000Z

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 {+-} 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 {+-} 0.0006 wt. % {sup 234}U, 19.8336 {+-} 0.0059 wt. % {sup 235}U, 0.1337 {+-} 0.0006 wt. % {sup 236}U, and 79.9171 {+-} 0.0057 wt. % {sup 238}U.

  8. Biomarker monitoring of a population residing near uranium mining activities

    SciTech Connect (OSTI)

    Au, W.W.; Legator, M.S.; Whorton, E.B.; Wilkinson, G.S.; Gabehart, G.J.; Lane, R.G. [Univ. of Texas Medical Branch, Galveston, TX (United States)

    1995-05-01T23:59:59.000Z

    We investigated whether residents residing near uranium mining operations (target population), who are potentially exposed to toxicants from mining waste, have increased genotoxic effects compared with people residing elsewhere (reference population). Population surveys were conducted, and 24 target and 24 reference residents were selected. The selected subjects and controls were matched on age and gender and they were nonsmokers. Blood samples were collected for laboratory studies. The standard cytogenetic assay was used to determine chromosome aberration frequencies, and the challenge assay was used to investigate DNA repair responses. We found that individuals who resided near uranium mining operations had a higher mean frequency of cells with chromosome aberrations and higher deletion frequency but lower dicentric frequency than the reference group, although the difference was not statistically significant. After cells were challenged by exposure to {gamma}-rays, the target population had a significantly higher frequency of cells with chromosome aberrations and deletion frequency than the reference group. The latter observation is indicative of abnormal DNA repair response in the target population. 22 refs., 3 tabs.

  9. Uranium potential of southwestern New Mexico (southern Hidalgo County), including observations on crystallization history of lavas and ash tuffs and the release of uranium from them. Final report

    SciTech Connect (OSTI)

    Walton, A.W.; Salter, T.L.; Zetterlund, D.

    1980-08-01T23:59:59.000Z

    Geological environments present in southwestern New Mexico include thick sequences of sedimentary rock including limestone, conglomerates, sandstone, and shale: igneous intrusions with associated metal deposits; caldera centers, margins, and outflow facies; and basins with marginal faults and thick late Cenozoic sedimentary fillings. Predominant rock types are Paleozoic carbonates, Mesozoic terrigeneous rocks and carbonates, and Cenozoic volcanic rocks and basin-filling terrigeneous rocks. Consideration of information available in Preliminary Reconnaissance Reports and in Hydrogeochemical and Stream Reconnaissance Reports together with 347 new whole rock chemical analyses points to three areas of anomalous uranium abundance in Hidalgo County, New Mexico. The area has experienced three major periods of igneous activity in Phanerozoic time: one associated with the Laramide cycle of the Late Cretaceous and early Tertiary, mid-Tertiary cycle of silicic volcanism with abundant calderas, and a late Tertiary cycle of mafic volcanism. Silicic volcanic rocks are the most common exposed rock type in the area, and the most enriched in uranium (range, 0.4 to 19 ppM). The most likely source for any uranium ore-forming solutions lies with this cycle of volcanism. Solutions might have been introduced during volcanism or formed later by groundwater leaching of cooled volcanic rocks. Results indicate that groundwater leaching of cooled volcanic rocks was not an effective means of mobilizing uranium in the area. Study of several rhyolite lava flows indicates that they were emplaced in supercooled condition and may have crystallized completely at temperatures well below their liquids, or they may have warmed as crystallization released latent heat. Statistical comparison of the uranium concentration revealed no differences between vitrophyres and associated felsites.

  10. Mica Surfaces Stabilize Pentavalent Uranium. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ilton ES, A Haiduc, CL Cahill, and AR Felmy.2005."Mica Surfaces Stabilize Pentavalent Uranium."Inorganic Chemistry 44(9):2986-2988. Authors: ES Ilton A Haiduc CL Cahill AR...

  11. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, Gifford G. (Cincinnatti, OH); Kato, Takeo R. (Cincinnatti, OH); Schonegg, Edward (Cleves, OH)

    1986-01-01T23:59:59.000Z

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  12. Desorption of uranium from amidoxime fiber adsorbent

    SciTech Connect (OSTI)

    Goto, Akira; Morooka, Shigeharu; Fukamachi, Masakazu; Kusakabe, Katsuki (Kyushu Univ., Fukuoka (Japan)); Kago, Tokihiro (Towa Univ., Fukuoka (Japan))

    1993-10-01T23:59:59.000Z

    An amidoxime fibrous adsorbent is contacted with uranium-enriched seawater (10 ppm); about 10 mg uranium is loaded per 1 g dry fiber. Then the rate and yield of uranium desorption from the fiber are determined with various eluents. Acid solutions are superior to alkali carbonate solutions as eluents. With a 0.1 mol[center dot]L[sup [minus]1] HCl solution, desorption is completed in 2 hours regardless of the presence of uranium in the leaching solution up to 15 ppm ([approx]6 [times] 10[sup [minus]5]mol[center dot]L[sup [minus]1]). Serial operation of the adsorption-desorption cycle four times does not affect desorption efficiency, but the addition of heavy metal ions to the eluent at a level of 1.8 [times] 10[sup [minus]3]mol[center dot]L[sup [minus]1] significantly decreases desorption efficiency. 13 refs., 5 figs., 1 tab.

  13. Investigation of Trace Uranium in Biological Matrices

    E-Print Network [OSTI]

    Miller, James Christopher

    2013-05-31T23:59:59.000Z

    U.S. Department of Energy synthetic urine quality assurance standards from an inter-laboratory exercise in 2012. The separation apparatus was able to consistently separate uranium from the synthetic urine solutions with a consistent recovery between...

  14. Innovative design of uranium startup fast reactors

    E-Print Network [OSTI]

    Fei, Tingzhou

    2012-01-01T23:59:59.000Z

    Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

  15. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  16. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

  17. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11T23:59:59.000Z

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  18. Questioned, Unresolved, and Potentially Unallowable Costs Incurred...

    Broader source: Energy.gov (indexed) [DOE]

    Special Report Questioned, Unresolved and Potentially Unallowable Costs Incurred by Los Alamos National Laboratory during Fiscal Years 2008 and 2009 OAS-L-12-04 April 2012...

  19. Energy Savings Performance Contracts: Frequently Asked Questions...

    Office of Environmental Management (EM)

    answers frequently asked questions about energy savings performance contracts (ESPCs). espcfaqs.pdf More Documents & Publications Introduction to Measurement & Verification for...

  20. Program Evaluation Topics and Questions Library

    Broader source: Energy.gov [DOE]

    Menu of initial questions for a program administrator to use in developing a real-time evaluation survey to collect qualitative data from program contractors.

  1. Page 1 of 24 Question & Answers

    E-Print Network [OSTI]

    Page 1 of 24 Question & Answers Pilot-Scale and Commercial-Scale Advanced Biofuels with the California Energy Commission on biofuel production facilities important to California objectives

  2. The University of Chicago Department of Statistics

    E-Print Network [OSTI]

    Stephens, Matthew

    Department of Statistics The University of Chicago Biofuel FeedStock Commodity Pricing FRIDAY, May 13, 2011. We empirically test models using biofuel feedstock commodity futures data traded in CBOT: corn estimation. We answered the questions: whether the prices for biofuel feedstock commodities (corn and soybean

  3. Depleted uranium: A DOE management guide

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

  4. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  5. Investigation of Trace Uranium in Biological Matrices 

    E-Print Network [OSTI]

    Miller, James Christopher

    2013-05-31T23:59:59.000Z

    . This monitoring is often multi-faceted and typically involves an air sampling and biological sampling regime. The regime depends on the potential for exposures, the materials and chemical compounds being used, and the facility history. Specifically... Y-12 led the early US uranium enrichment programs, it also pioneered early uranium bioassay.[8] Likewise, the 5 Savannah River Site (SRS) pioneered plutonium bioassay techniques.[9] From these programs, techniques were developed to detect...

  6. BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.

    SciTech Connect (OSTI)

    FRANCIS,A.J.

    1998-09-17T23:59:59.000Z

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  7. Material property correlations for uranium mononitride

    E-Print Network [OSTI]

    Hayes, Steven Lowe

    1989-01-01T23:59:59.000Z

    . 1 1770 - 2083 20. 7 - 34. 4 158, 1773 13-54 Test Environment Fuel Manafact- uring Route Test conducted in vaccuum (10~-5 ton) Cold pressed and sintered. Test conducted in 200 torr nitrogen atmosphere Isostatically Hot Pressed. Test... conductivity, high uranium density, stable irradiation behavior and compatibility with liquid metal coolants and refractory metal structural materials all combine to make uranium mononitride (UN) a very attractive nuclear fuel for use in high temperature...

  8. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Hayden, H. Wayne (Oakridge, TN)

    1995-01-01T23:59:59.000Z

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  9. Characterization of uranium(VI) in seawater

    SciTech Connect (OSTI)

    Djogic, R.; Sipos, L.; Branica, M.

    1986-09-01T23:59:59.000Z

    The physicochemical characterization of uranium(VI) in seawater is described on the basis of species distribution calculations and experiments using polarography and spectrophotometry in artificial seawater at elevated uranium concentrations. Various dissolved uranium(VI) species are identified under different conditions of pH and carbonate concentration. Below pH 4, the hydrated uranyl ion is present in the free state (forming labile complexes). Above pH 4, a stepwise coordination of uranyl by the carbonate ion occurs. The monocarbonate complex is formed in the pH range 4-5, the bicarbonate uranyl complex between 5 and 6. Above pH 8, uranium is present predominately as the tricarbonate and to a smaller extent as a trihydroxide complex. There is satisfactory agreement between our experiments and the theoretically computed distribution of uranium(VI) in seawater based on published stability constants. The experiments done at higher concentrations are justified by theoretical distributions showing that there is no great difference in species distribution between the uranium at concentrations of 10/sup -4/ and /sup -8/ mol dm/sup -3/.

  10. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  11. Effects of various uranium leaching procedures on soil: Short-term vegetation growth and physiology. Progress report, April 1994

    SciTech Connect (OSTI)

    Edwards, N.T.

    1994-08-01T23:59:59.000Z

    Significant volumes of soil containing elevated levels of uranium exist in the eastern United States. The contamination resulted from the development of the nuclear industry in the United States requiring a large variety of uranium products. The contaminated soil poses a collection and disposal problem of a magnitude that justifies the development of decontamination methods. Consequently, the Department of Energy (DOE) Office of Technology Development formed the Uranium Soils Integrated Demonstration (USID) program to address the problem. The fundamental goal of the USID task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than what can be done using current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics and without generating waste that is difficult to manage and/or dispose of. However, procedures developed for removing uranium from contaminated soil have involved harsh chemical treatments that affect the physicochemical properties of the soil. The questions are (1) are the changes in soil properties severe enough to destroy the soil`s capacity to support and sustain vegetation growth and survival? and (2) what amendments might be made to the leached soil to return it to a reasonable vegetation production capacity? This study examines the vegetation-support capacity of soil that had been chemically leached to remove uranium. The approach is to conduct short-term germination and phytotoxicity tests for evaluating soils after they are subjected to various leaching procedures followed by longer term pot studies on successfully leached soils that show the greatest capacity to support plant growth. This report details the results from germination and short-term phytotoxicity testing of soils that underwent a variety of leaching procedures at the bench scale at ORNL and at the pilot plant at Fernald.

  12. Method of removing niobium from uranium-niobium alloy

    SciTech Connect (OSTI)

    Pollock, E.N.; Schlier, D.S.; Shinopulos, G.

    1992-01-28T23:59:59.000Z

    This patent describes a method of removing niobium from a uranium-niobium alloy. It comprises dissolving the uranium-niobium alloy metal pieces in a first aqueous solution containing an acid selected from the group consisting of hydrochloric acid and sulfuric acid and fluoboric acid as a catalyst to provide a second aqueous solution, which includes uranium (U{sup +4}), acid radical ions, the acids insolubles including uranium oxides and niobium oxides; adding nitric acid to the insolubles to oxidize the niobium oxides to yield niobic acid and to complete the solubilization of any residual uranium; and separating the niobic acid from the nitric acid and solubilized uranium.

  13. Rangeland ecology: Key global research issues & questions

    E-Print Network [OSTI]

    1 Rangeland ecology: Key global research issues & questions Robin Reid1 and Maria Fernandez Ecology Lab 2Associate Professor Colorado State University, Fort Collins, Colorado, USA Global Issues and Questions in Rangeland Ecology · Despite the focus here on global issues, we need to recognize that Mongolia

  14. Your Unanswered Questions…. Answered- Batch 2

    Broader source: Energy.gov [DOE]

    Secretary Chu hosted an online town hall to discuss President Obama's clean energy innovation agenda -- and while he was able to answer about 10 questions submitted online during the event, we received more than 200! Here is our second batch of questions and answers.

  15. Field-based detection and monitoring of uranium in contaminated groundwater using two immunosensors

    E-Print Network [OSTI]

    Melton, S.J.

    2010-01-01T23:59:59.000Z

    D. R. , Sustained removal of uranium from contaminated9. 18. Brina, R. , Uranium removal from contaminated water

  16. Detection of hexavalent uranium with inline and field-portable immunosensors

    E-Print Network [OSTI]

    Melton, Scott J.

    2009-01-01T23:59:59.000Z

    were able detect the removal of uranium from the groundwaterDR (2008) Sustained removal of uranium from contaminated

  17. Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer

    E-Print Network [OSTI]

    N'Guessan, L.A.

    2010-01-01T23:59:59.000Z

    DR (2008). Sustained Removal of Uranium From ContaminatedKomlos J et al (2007). Uranium removal from groundwater via

  18. Questions and Answers for the Smart Grid Investment Grant Program...

    Energy Savers [EERE]

    Questions and Answers for the Smart Grid Investment Grant Program: Buy American Questions and Answers for the Smart Grid Investment Grant Program: Buy American Additional questions...

  19. Questions and Answers for the Smart Grid Investment Grant Program...

    Office of Environmental Management (EM)

    Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked Questions Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked...

  20. Questions and Answers about National Environmental Policy Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Questions and Answers about National Environmental Policy Act (NEPA) Compliance Questions and Answers about National Environmental Policy Act (NEPA) Compliance Questions and...

  1. FISHERY STATISTICS UNITED STATES

    E-Print Network [OSTI]

    FISHERY STATISTICS OF THE UNITED STATES 1972 STATISTICAL DIGEST NO. 66 Prepared by STATISTICS;ACKNOWLEDGMENTS The data in this edition of "Fishery Statistics of the United States" were collected in co- operation with the various States and tabulated by the staff of the Statistics and Market News Division

  2. Uranium transformations in static microcosms.

    SciTech Connect (OSTI)

    Kelly, S. D.; Wu, W.; Yang, F.; Criddle, C.; Marsh, T. L.; O'Loughlin, E. J.; Ravel, B.; Watson, D.; Jardine, P. M.; Kemner, K. M.; Stanford Univ.; Michigan State Univ.; ORNL; BNL; EXAFS Analysis

    2010-01-01T23:59:59.000Z

    Elucidation of complex biogeochemical processes and their effects on speciation of U in the subsurface is critical for developing remediation strategies with an understanding of stability. We have developed static microcosms that are similar to bioreduction process studies in situ under laminar flow conditions or in sediment pores. Uranium L{sub 3}-edge X-ray absorption near-edge spectroscopy analysis with depth in the microcosms indicated that transformation of U{sup VI} to U{sup IV} occurred by at least two distinct processes. Extended X-ray absorption fine structure (EXAFS) analysis indicated that initial U{sup VI} species associated with C- and P-containing ligands were transformed to U{sup IV} in the form of uraninite and U associated with Fe-bound ligands. Microbial community analysis identified putative Fe{sup III} and sulfate reducers at two different depths in the microcosms. The slow reduction of U{sup VI} to U{sup IV} may contribute the stability of U{sup IV} within microcosms at 11 months after a decrease in bioreducing conditions due to limited electron donors.

  3. Prospects for the recovery of uranium from seawater

    E-Print Network [OSTI]

    Best, F. R.

    1980-01-01T23:59:59.000Z

    A computer program entitled URPE (Uranium Recovery Performance and Economics) has been developed to simulate the engineering performance and provide an economic analysis O of a plant recovering uranium from seawater. The ...

  4. EA-1290: Disposition of Russian Federation Titled Natural Uranium

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United...

  5. Assessments of long-term uranium supply availability

    E-Print Network [OSTI]

    Zaterman, Daniel R

    2009-01-01T23:59:59.000Z

    The future viability of nuclear power will depend on the long-term availability of uranium. A two-form uranium supply model was used to estimate the date at which peak production will occur. The model assumes a constant ...

  6. Y-12 and the Ťsuper enriched Uranium 235?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "super enriched Uranium 235" Ken Bernander called me to say that he had read in the newspaper about the 100 milligrams of uranium oxide that is 99.999% U-235. He was chuckling when...

  7. Fabrication and Characterization of Uranium-based High Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication...

  8. RESOLUTION OF URANIUM ISOTOPES WITH KINETIC PHOSPHORESCENCE ANALYSIS

    SciTech Connect (OSTI)

    Miley, Sarah M.; Hylden, Anne T.; Friese, Judah I.

    2013-04-01T23:59:59.000Z

    This study was conducted to test the ability of the Chemchek™ Kinetic Phosphorescence Analyzer Model KPA-11 with an auto-sampler to resolve the difference in phosphorescent decay rates of several different uranium isotopes, and therefore identify the uranium isotope ratios present in a sample. Kinetic phosphorescence analysis (KPA) is a technique that provides rapid, accurate, and precise determination of uranium concentration in aqueous solutions. Utilizing a pulsed-laser source to excite an aqueous solution of uranium, this technique measures the phosphorescent emission intensity over time to determine the phosphorescence decay profile. The phosphorescence intensity at the onset of decay is proportional to the uranium concentration in the sample. Calibration with uranium standards results in the accurate determination of actual concentration of the sample. Different isotopes of uranium, however, have unique properties which should result in different phosphorescence decay rates seen via KPA. Results show that a KPA is capable of resolving uranium isotopes.

  9. abandoned uranium mines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    residents. 3.1.1 On-Site Recreation Since most uranium locations are on federal lands 91 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  10. Demonstration of jackhammer incorporating depleted uranium

    SciTech Connect (OSTI)

    Fischer, L E; Hoard, R W; Carter, D L; Saculla, M D; Wilson, G V

    2000-04-01T23:59:59.000Z

    The United States Government currently has an abundance of depleted uranium (DU). This surplus of about 1 billion pounds is the result of an enrichment process using gaseous diffusion to produce enriched and depleted uranium. The enriched uranium has been used primarily for either nuclear weapons for the military or nuclear fuel for the commercial power industry. Most of the depleted uranium remains at the enrichment process plants in the form of depleted uranium hexafluoride (DUF{sub 6}). The Department of Energy (DOE) recently began a study to identify possible commercial applications for the surplus material. One of these potential applications is to use the DU in high-density strikers/hammers in pneumatically driven tools, such as jack hammers and piledrivers to improve their impulse performance. The use of DU could potentially increase tunneling velocity and excavation into target materials with improved efficiency. This report describes the efforts undertaken to analyze the particulars of using DU in two specific striking applications: the jackhammer and chipper tool.

  11. Frequently Asked Questions Form EIA-23L

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email:Uranium

  12. Frequently Asked Questions Form EIA-857

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email:UraniumNatural Gas Survey Forms FAQ

  13. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes

    SciTech Connect (OSTI)

    Marsh, Terence L.

    2013-07-30T23:59:59.000Z

    Our contribution to the larger project (ANL) was the phylogenetic analysis of evolved communities capable of reducing metals including uranium.

  14. The radioactive Substances (Uranium and Thorium) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01T23:59:59.000Z

    STATUTORY INSTRUMENTS 1962 No.2710 ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES The Radioactive Substances (Uranium and Thorium) Exemption Order 1962...

  15. Modeling Uranium-Proton Ion Exchange in Biosorption

    E-Print Network [OSTI]

    Volesky, Bohumil

    seaweed biomass was used to remove the heavy metal uranium from the aqueous solution. Uranium biosorptionModeling Uranium-Proton Ion Exchange in Biosorption J I N B A I Y A N G A N D B O H U M I L V O L E, Quebec, Canada H3A 2B2 Biosorption of uranium metal ions by a nonliving protonated Sargassum fluitans

  16. Depleted Uranium in Kosovo Post-Conflict Environmental Assessment

    E-Print Network [OSTI]

    Unep Scientific; Mission Kosovo

    2.1 UNEP’s role in post-conflict environmental assessment................................................9 2.2 Depleted uranium............................................................10

  17. Solar Instructor Training Network Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    These frequently asked questions (FAQs) relate to the solar instructor training network. This project was launched by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP or...

  18. Fermilab | Science | Inquiring Minds | Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You asked a good question. Yes, over the last ten years the evidence for the Higgs boson (or something like it) has been mounting. The many kinds of measurements we make in...

  19. Cybersecurity Capability Maturity Model - Frequently Asked Questions...

    Broader source: Energy.gov (indexed) [DOE]

    of the nation's electric grid and reducing the risk of energy disruptions due to cyber attack, visit the Cybersecurity page. C2M2 Frequently Asked Questions More Documents &...

  20. Navy RFP Frequently Asked Questions and Answers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Navy RFP Frequently Asked Questions and Answers 1. The press release states that the cost of the project must be at or below the Department of Navy's (DON) current cost of power in...

  1. Response to Questions on Presentation to NAS

    SciTech Connect (OSTI)

    Meier, W R

    2011-03-17T23:59:59.000Z

    Response to questions on the presentation 'Overview to Chamber and Power Plant Designs for IFE' made at the 1/29-31 meeting of the National Academies Committee on the Prospects for Inertial Confinement Fusion Energy Systems.

  2. Edgar_Answers to student questions 414.pdf Student questions: Lauren Edgar colloquium on "Martian Sedimentology as Revealed by the

    E-Print Network [OSTI]

    Rhoads, James

    Edgar_Answers to student questions 414.pdf 1 Student questions: Lauren Edgar colloquium on "Martian;Edgar_Answers to student questions 414.pdf 2 Question 1: Is the sinusoidal varaition in pressure

  3. Ten questions and answers about superconductivity

    E-Print Network [OSTI]

    Tian De Cao

    2012-11-13T23:59:59.000Z

    This work answers the basic questions of superconductivity in a question-and-answer format. We extend a basic hypothesis to various superconductors. This hypothesis is that superconductivity requires that the pairing gap locates around the Fermi level. On the basis of this hypothesis our calculations give the so-called three factor theory with which some key problems of the high temperature superconductivity are explained.

  4. Tables des principaux minerais d'uranium et de thorium

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    233 Tables des principaux minerais d'uranium et de thorium Par B. SZILARD [Faculté des Sciences de minerais d'uranium et de thorium avec leurs données les plus importantes, telles que la com- position, la teneur en uranium et en thorium, la provenance et quelques indications générales. La liste ne prétend pas

  5. Estimating terrestrial uranium and thorium by antineutrino flux measurements

    E-Print Network [OSTI]

    Mcdonough, William F.

    Estimating terrestrial uranium and thorium by antineutrino flux measurements Stephen T. Dye, and approved November 16, 2007 (received for review July 11, 2007) Uranium and thorium within the Earth produce of uranium and thorium concentrations in geological reservoirs relies largely on geochemi- cal model

  6. Microbial Janitors: Enabling natural microbes to clean up uranium contamination

    E-Print Network [OSTI]

    of Energy's Environmental Remediation Sciences Program. Q: How can uranium be removed or neutralized so in the contaminated subsurface and engineering the subsurface environment to stimulate nitrate removal and uraniumMicrobial Janitors: Enabling natural microbes to clean up uranium contamination Oak Ridge

  7. Appendix IV. Risks Associated with Conventional Uranium Milling Introduction

    E-Print Network [OSTI]

    ", uranium is removed from the processed ore with sulfuric acid. Sodium chlorate is also addedAppendix IV. Risks Associated with Conventional Uranium Milling Operations Introduction Although uranium mill tailings are considered byproduct materials under the AEA and not TENORM, EPA's Science

  8. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, J.P.

    1992-03-17T23:59:59.000Z

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  9. EPA Uranium Program Update Loren W. Setlow and

    E-Print Network [OSTI]

    EPA Uranium Program Update Loren W. Setlow and Reid J. Rosnick Environmental Protection Agency Office of Radiation and Indoor Air (6608J) Washington, DC 20460 NMA/NRC Uranium Recovery Workshop April 30, 2008 #12;2 Overview EPA Radiation protection program Uranium reports and abandoned mine lands

  10. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL)

    1992-01-01T23:59:59.000Z

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  11. Standard Review Plan for In Situ Leach Uranium

    E-Print Network [OSTI]

    NUREG-1569 Standard Review Plan for In Situ Leach Uranium Extraction License Applications Final Washington, DC 20555-0001 #12;NUREG-1569 Standard Review Plan for In Situ Leach Uranium Extraction License OF A STANDARD REVIEW PLAN (NUREG­1569) FOR STAFF REVIEWS FOR IN SITU LEACH URANIUM EXTRACTION LICENSE

  12. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  13. Bioremediation of Uranium Plumes with Nano-scale

    E-Print Network [OSTI]

    Fay, Noah

    (IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - MobilizationBioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from

  14. Composition of the U.S. DOE Depleted Uranium Inventory

    E-Print Network [OSTI]

    Concentration Of Less

    about 2.75 wt% U-235. For further enrichment, the material was shipped to the Oak Ridge and Portsmouth plants. In addition to natural uranium, also uranium recycled from spent fuel was fed into the Paducah enrichment cascade (Table 2 and Fig. 2). The recycled uranium introduced various isotopes not found in natural uranium into the cascade: fission products, such as Technetium-99; transuranics, such as Neptunium-237 and Plutonium-239; and the artificial uranium isotope of Uranium-236. The spent fuel, from which uranium was recycled, originated from the Hanford and Savannah River military plutonium production reactors. This uranium was recycled, although its assay of U-235 was somewhat lower than in natural uranium (Table 2). This obviously must be seen in the context of the Cold War era, when uranium was a scarce resource. Due to the low burn-up of the military reactors, concentrations of artificial U-236 are comparatively low in this recycled uranium. The recycled uranium represents

  15. Depleted uranium hexafluoride: Waste or resource?

    SciTech Connect (OSTI)

    Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

    1995-07-01T23:59:59.000Z

    the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

  16. Depleted uranium plasma reduction system study

    SciTech Connect (OSTI)

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01T23:59:59.000Z

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

  17. Method for fluorination of uranium oxide

    DOE Patents [OSTI]

    Petit, George S. (Oak Ridge, TN)

    1987-01-01T23:59:59.000Z

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  18. Measurement of enriched uranium and uranium-aluminum fuel materials with the AWCC

    SciTech Connect (OSTI)

    Krick, M.S.; Menlove, H.O.; Zick, J.; Ikonomou, P.

    1985-05-01T23:59:59.000Z

    The active well coincidence counter (AWCC) was calibrated at the Chalk River Nuclear Laboratories (CRNL) for the assay of 93%-enriched fuel materials in three categories: (1) uranium-aluminum billets, (2) uranium-aluminum fuel elements, and (3) uranium metal pieces. The AWCC was a standard instrument supplied to the International Atomic Energy Agency under the International Safeguards Project Office Task A.51. Excellent agreement was obtained between the CRNL measurements and previous Los Alamos National Laboratory measurements on similar mockup fuel material. Calibration curves were obtained for each sample category. 2 refs., 8 figs., 15 tabs.

  19. U. S. forms uranium enrichment corporation

    SciTech Connect (OSTI)

    Seltzer, R.

    1993-07-12T23:59:59.000Z

    After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business. On July 1, the Department of Energy turned over to a new government-owned entity--the US Enrichment Corp. (USEC)--both the DOE enrichment plants at Paducah, Ky., and Portsmouth, Ohio, and domestic and international marketing of enriched uranium from them. Pushed by the inability of DOE's enrichment operations to meet foreign competition, Congress established USEC under the National Energy Policy Act of 1992, envisioning the new corporation as the first step to full privatization. With gross revenues of $1.5 billion in fiscal 1992, USEC would rank 275th on the Fortune 500 list of top US companies. USEC will lease from DOE the Paducah and Portsmouth facilities, built in the early 1950s, which use the gaseous diffusion process for uranium enrichment. USEC's stock is held by the US Treasury, to which it will pay annual dividends. Martin Marietta Energy Systems, which has operated Paducah since 1984 and Portsmouth since 1986 for DOE, will continue to operate both plants for USEC. Closing one of the two facilities will be studied, especially in light of a 40% world surplus of capacity over demand. USEC also will consider other nuclear-fuel-related ventures. USEC will produce only low-enriched uranium, not weapons-grade material. Indeed, USEC will implement a contract now being completed under which the US will purchase weapons-grade uranium from dismantled Russian nuclear weapons and convert it into low-enriched uranium for power reactor fuel.

  20. Thematic Questions about Chemical Elements Nature of the chemical elements

    E-Print Network [OSTI]

    Polly, David

    Environment Element Synthesis: Exploration of Chemical Fundamentals Element Synthesis and Isotopes · Elemental thorium uranium Relativeabundance(Si=106)Relative Abundance in the Sun · non-uniform trend G302.protons 90 234Th 145 #12;5 Alpha Decay - Loss of He Atom · Decay of Uranium-238 to Thorium-234 G302

  1. Verification of the MCU precision code and ROSFOND neutron data in application to the calculations of criticality of fast reactors with highly enriched uranium

    SciTech Connect (OSTI)

    Alekseev, N. I.; Kalugin, M. A.; Kulakov, A. S.; Novosel’tsev, A. P.; Sergeev, G. S.; Shkarovskiy, D. A.; Yudkevich, M. S., E-mail: umark@adis.vver.kiae.ru [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    Calculation of 335 critical assemblies (benchmark experiments) with the core of highly enriched uranium and reflectors of various materials is performed. The statistical analysis of the results shows that, for all 16 materials studied, the absolute value of the most probable deviation of the calculated value of K{sub eff} from the experimental one does not exceed 0.005.

  2. Validation of SCALE 4. 0 -- CSAS25 module and the 27-group ENDF/B-IV cross-section library for low-enriched uranium systems

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01T23:59:59.000Z

    A version of KENO V.a and the 27-group library in SCALE-4.0 were validated for use in evaluating the nuclear criticality safety of low-enriched uranium systems. A total of 59 critical systems were analyzed. A statistical analysis of the results was performed, and subcritical acceptanced criteria are established.

  3. Validation of SCALE 4.0 -- CSAS25 module and the 27-group ENDF/B-IV cross-section library for low-enriched uranium systems

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01T23:59:59.000Z

    A version of KENO V.a and the 27-group library in SCALE-4.0 were validated for use in evaluating the nuclear criticality safety of low-enriched uranium systems. A total of 59 critical systems were analyzed. A statistical analysis of the results was performed, and subcritical acceptanced criteria are established.

  4. Floating plant can get uranium from seawater

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    A floating plant has been designed to extract uranium from seawater using solid adsorbents. Ore is removed from the adsorbent material by means of a solvent and concentrated in ion exchangers. Seawater is supplied to the adsorbent inside by wave energy and is based on the principle that waves will rush up a sloping plane that is partly submerged and fill a reservoir to a level higher than the still water level in the sea. The company projects that an offshore plant for recovering 600 tons of uranium/yr would comprise 22 floating concrete units, each measuring 430 x 75 meters.

  5. Decarburization of uranium via electron beam processing

    SciTech Connect (OSTI)

    McKoon, R H

    1998-10-23T23:59:59.000Z

    For many commercial and military applications, the successive Vacuum Induction Melting of uranium metal in graphite crucibles results in a product which is out of specification in carbon. The current recovery method involves dissolution of the metal in acid and chemical purification. This is both expensive and generates mixed waste. A study was undertaken at Lawrence Livermore National Laboratory to investigate the feasibility of reducing the carbon content of uranium metal using electron beam techniques. Results will be presented on the rate and extent of carbon removal as a function of various operating parameters.

  6. Progress toward uranium scrap recycling via EBCHR

    SciTech Connect (OSTI)

    McKoon, R.H.

    1994-11-01T23:59:59.000Z

    A 250 kW electron beam cold hearth refining (EBCHR) melt furnace at Lawrence Livermore National Laboratory (LLNL) has been in operation for over a year producing 5.5 in.-diameter ingots of various uranium alloys. Production of in-specification uranium-6%-niobium (U-6Nb) alloy ingots has been demonstrated using virgin feedstock. A vibratory scrap feeder has been installed on the system and the ability to recycle chopped U-6Nb scrap has been established. A preliminary comparison of vacuum arc remelted (VAR) and electron beam (EB) melted product is presented.

  7. Simplifying strong electronic correlations in uranium: Localized uranium heavy-fermion UM2Zn20 (M=Co,Rh) compounds

    E-Print Network [OSTI]

    Lawrence, Jon

    Simplifying strong electronic correlations in uranium: Localized uranium heavy-fermion UM2Zn20 (M Atómica, 8400 Bariloche, Argentina 6 Department of Chemistry and Biochemistry, University of Delaware-field effects corroborate an ionic-like uranium electronic configura- tion in UM2Zn20. DOI: 10.1103/PhysRevB.78

  8. Recovery of uranium from seawater. 7; Concentration and separation of uranium in acidic eluate

    SciTech Connect (OSTI)

    Egawa, H.; Nonaka, T. (Dept. of Applied Chemistry, Faculty of Engineering, Kumamoto Univ., Kurokami 2-39-1, Kumamoto 860 (JP)); Nakayama, M. (Faculty of Pharmaceutical Sciences, Kumamoto Univ., Oe-Honmachi 5-1, Kumamoto 862 (JP))

    1990-11-01T23:59:59.000Z

    This paper reports on macroporous chelating resins (RSP, RSPO, RCSP, and RCSPO) containing dihydroxphosphino and/or -phosphono groups were examined for the concentration and separation of uranium from acidic eluates of macroporous chelating resin containing amidoxime groups. RSP and RSPO had a high adsorption capacity for uranium even in 0.25-0.50 mol {center dot} dm{sup {minus}3} H{sub 2}SO{sub 4}. Uranium adsorbed on the resins was eluted easily as a uranyl carbonate complex by use of 0.25 mol {center dot} dm{sup {minus}3} Na{sub 2}CO{sub 3}. In this effluent, other metal ions were hardly present. The use of RSP and RSPO was very effective in concentrating uranium from seawater and separating it from most other elements.

  9. From Question Answering to Visual Exploration

    SciTech Connect (OSTI)

    McColgin, Dave W.; Gregory, Michelle L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2006-08-11T23:59:59.000Z

    Research in Question Answering has focused on the quality of information retrieval or extraction using the metrics of precision and recall to judge success; these metrics drive toward finding the specific best answer(s) and are best supportive of a lookup type of search. These do not address the opportunity that users? natural language questions present for exploratory interactions. In this paper, we present an integrated Question Answering environment that combines a visual analytics tool for unstructured text and a state-of-the-art query expansion tool designed to compliment the cognitive processes associated with an information analysts work flow. Analysts are seldom looking for factoid answers to simple questions; their information needs are much more complex in that they may be interested in patterns of answers over time, conflicting information, and even related non-answer data may be critical to learning about a problem or reaching prudent conclusions. In our visual analytics tool, questions result in a comprehensive answer space that allows users to explore the variety within the answers and spot related information in the rest of the data. The exploratory nature of the dialog between the user and this system requires tailored evaluation methods that better address the evolving user goals and counter cognitive biases inherent to exploratory search tasks.

  10. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  11. Extraction of uranium from seawater using magnetic adsorbents

    SciTech Connect (OSTI)

    Yamashita, H. (Hitachi Research Lab., Japan); Fujita, K.; Nakajima, F.; Ozawa, Y.; Murata, T.

    1981-01-01T23:59:59.000Z

    A new process for the extraction of uranium from seawater was developed. In the process, uranium adsorption is effected using powdered magnetic adsorbents; the adsorbents are then separated from seawater using magnetic separation technology. This process is superior to a column method using a granulated hydrous titanium oxide adsorber bed in the following ways: (1) a higher rate of adsorption is realized because smaller particles are used in the uranium adsorption; and (2) blocking, which is inevitable in an adsorber bed, is eliminated. The composite hydrous titanium-iron oxide as a magnetic adsorbent having high uranium adsorption capacity and magnetization can be prepared by adding urea to a mixed solution of titanium sulfate and ferrous sulfate. Adsorption and desoprtion of uranium and the removal of the adsorbent using a small-scale uranium extraction plant (about 15 m/sup 3//d) is reported, and the feasibility of uranium extraction from seawater by this process is demonstrated. 10 figures.

  12. On the explanation for quantum statistics

    E-Print Network [OSTI]

    Simon Saunders

    2005-11-15T23:59:59.000Z

    The concept of classical indistinguishability is analyzed and defended against a number of well-known criticisms, with particular attention to the Gibbs' paradox. Granted that it is as much at home in classical as in quantum statistical mechanics, the question arises as to why indistinguishability, in quantum mechanics but not in classical mechanics, forces a change in statistics. The answer, illustrated with simple examples, is that the equilibrium measure on classical phase space is continuous, whilst on Hilbert space it is discrete. The relevance of names, or equivalently, properties stable in time that can be used as names, is also discussed.

  13. New aspects of uranium recovery from seawater

    SciTech Connect (OSTI)

    Hetkamp, D.; Wagener, K.

    1982-10-01T23:59:59.000Z

    The properties of various adsorbents for uranium extraction from seawater are measured under standardized experimental conditions. It turns out that fractionated humic acids have exceptionally fast loading kinetics. This property leads to a substantial reduction of capital investments in conventional adsorbent bed techniques as well as in a procedure designed to avoid large adsorbent bed constructions by using carrier bodies in the open sea.

  14. Phosphate Barriers for Immobilization of Uranium Plumes

    SciTech Connect (OSTI)

    Burns, Peter C.

    2004-12-01T23:59:59.000Z

    Uranium contamination of the subsurface remains a persistent problem plaguing remedial design at sites across the U.S. that were involved with production, handling, storage, milling, and reprocessing of uranium for both civilian and defense related purposes. Remediation efforts to date have relied upon excavation, pump-and-treat, or passive remediation barriers (PRB?s) to remove or attenuate uranium mobility. Documented cases convincingly demonstrate that excavation and pump-and-treat methods are ineffective for a number of highly contaminated sites. There is growing concern that use of conventional PRB?s, such as zero-valent iron, may be a temporary solution to a problem that will persist for thousands of years. Alternatives to the standard treatment methods are therefore warranted. The core objective of our research is to demonstrate that a phosphorus amendment strategy will result in a reduction of dissolved uranium to below the proposed drinking water standard. Our hypothesis is that long-chain sodium polyphosphate compounds forestall precipitation of sparingly soluble uranyl phosphate compounds, which is paramount to preventing fouling of wells at the point of injection.

  15. The Uranium Institute 24th Annual Symposium

    E-Print Network [OSTI]

    Laughlin, Robert B.

    -239 for use in subsequent reactors. A fast neutron reactor is capable of producing more plutonium fuel than the uranium fuel it burns, leading to a breeder reactor. In addition, if the reactor is a fast with half lives of 30 years or less. The fast neutron reactor of preference was to be cooled with liquid

  16. The multiphoton ionization of uranium hexafluoride

    SciTech Connect (OSTI)

    Armstrong, D.P. (Oak Ridge K-25 Site, TN (United States). UEO Enrichment Technical Operations Div.)

    1992-05-01T23:59:59.000Z

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

  17. The Quest for the Heaviest Uranium Isotope

    E-Print Network [OSTI]

    S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

    2012-01-17T23:59:59.000Z

    We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

  18. Ian Hinchliffe Answers Your Higgs Boson Questions

    ScienceCinema (OSTI)

    Hinchliffe, Ian

    2013-05-29T23:59:59.000Z

    contingent with the ATLAS experiment at CERN, answers many of your questions about the Higgs boson. Ian invited viewers to send in questions about the Higgs via email, Twitter, Facebook, or YouTube in an "Ask a Scientist" video posted July 3: http://youtu.be/xhuA3wCg06s CERN's July 4 announcement that the ATLAS and CMS experiments at the Large Hadron Collider have discovered a particle "consistent with the Higgs boson" has raised questions about what scientists have found and what still remains to be found -- and what it all means. If you have suggestions for future "Ask a Scientist" videos, post them below or send ideas to askascientist@lbl.gov

  19. Ian Hinchliffe Answers Your Higgs Boson Questions

    SciTech Connect (OSTI)

    Hinchliffe, Ian

    2012-01-01T23:59:59.000Z

    contingent with the ATLAS experiment at CERN, answers many of your questions about the Higgs boson. Ian invited viewers to send in questions about the Higgs via email, Twitter, Facebook, or YouTube in an "Ask a Scientist" video posted July 3: http://youtu.be/xhuA3wCg06s CERN's July 4 announcement that the ATLAS and CMS experiments at the Large Hadron Collider have discovered a particle "consistent with the Higgs boson" has raised questions about what scientists have found and what still remains to be found -- and what it all means. If you have suggestions for future "Ask a Scientist" videos, post them below or send ideas to askascientist@lbl.gov

  20. Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils

    SciTech Connect (OSTI)

    Jerden, James L. Jr. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439 (United States)

    2007-07-01T23:59:59.000Z

    A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group minerals react to form U(VI)- bearing aluminum phosphates. (author)

  1. Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01T23:59:59.000Z

    Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)

  2. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    researchers from uranium chemistry. Fortunately, despitescarce in uranium coordination chemistry. A more detailedligands for uranium coordination chemistry. Figure 4-2.

  3. Statistical Hot Channel Analysis for the NBSR

    SciTech Connect (OSTI)

    Cuadra A.; Baek J.

    2014-05-27T23:59:59.000Z

    A statistical analysis of thermal limits has been carried out for the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The objective of this analysis was to update the uncertainties of the hot channel factors with respect to previous analysis for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuels. Although uncertainties in key parameters which enter into the analysis are not yet known for the LEU core, the current analysis uses reasonable approximations instead of conservative estimates based on HEU values. Cumulative distribution functions (CDFs) were obtained for critical heat flux ratio (CHFR), and onset of flow instability ratio (OFIR). As was done previously, the Sudo-Kaminaga correlation was used for CHF and the Saha-Zuber correlation was used for OFI. Results were obtained for probability levels of 90%, 95%, and 99.9%. As an example of the analysis, the results for both the existing reactor with HEU fuel and the LEU core show that CHFR would have to be above 1.39 to assure with 95% probability that there is no CHF. For the OFIR, the results show that the ratio should be above 1.40 to assure with a 95% probability that OFI is not reached.

  4. Chemical Equilibrium of the Dissolved Uranium in Groundwaters From a Spanish Uranium-Ore Deposit

    SciTech Connect (OSTI)

    Garralon, Antonio; Gomez, Paloma; Turrero, Maria Jesus; Buil, Belen; Sanchez, Lorenzo [Departamento de Medio Ambiente, CIEMAT, Avda. Complutense 22. Edificio 19, Madrid, 28040 (Spain)

    2007-07-01T23:59:59.000Z

    The main objectives of this work are to determine the hydrogeochemical evolution of an uranium ore and identify the main water/rock interaction processes that control the dissolved uranium content. The Mina Fe uranium-ore deposit is the most important and biggest mine worked in Spain. Sageras area is located at the north part of the Mina Fe, over the same ore deposit. The uranium deposit was not mined in Sageras and was only perturbed by the exploration activities performed 20 years ago. The studied area is located 10 Km northeast of Ciudad Rodrigo (Salamanca) at an altitude over 650 m.a.s.l. The uranium mineralization is related to faults affecting the metasediments of the Upper Proterozoic to Lower Cambrian schist-graywacke complex (CEG), located in the Centro-Iberian Zone of the Hesperian Massif . The primary uranium minerals are uraninite and coffinite but numerous secondary uranium minerals have been formed as a result of the weathering processes: yellow gummite, autunite, meta-autunite, torbernite, saleeite, uranotile, ianthinite and uranopilite. The water flow at regional scale is controlled by the topography. Recharge takes place mainly in the surrounding mountains (Sierra Pena de Francia) and discharge at fluvial courses, mainly Agueda and Yeltes rivers, boundaries S-NW and NE of the area, respectively. Deep flows (lower than 100 m depth) should be upwards due to the river vicinity, with flow directions towards the W, NW or N. In Sageras-Mina Fe there are more than 100 boreholes drilled to investigate the mineral resources of the deposit. 35 boreholes were selected in order to analyze the chemical composition of groundwaters based on their depth and situation around the uranium ore. Groundwater samples come from 50 to 150 m depth. The waters are classified as calcium-bicarbonate type waters, with a redox potential that indicates they are slightly reduced (values vary between 50 to -350 mV). The TOC varies between <0.1 and 4.0 mgC/L and the dissolved uranium has a maximum value of 7.7 mg/L. According the analytical data of dissolved uranium, the mineral closest to equilibrium seems to be UO{sub 2}(am). The tritium contents in the groundwaters vary between 1.5 and 7.3 T.U. Considering that the mean value of tritium in rainwater from the studied area has a value of 4 T.U., it can be concluded that the residence times of the groundwaters are relatively short, not longer than 50 years in the oldest case. (authors)

  5. Validity of Hansen-Roach cross sections in low-enriched uranium systems

    SciTech Connect (OSTI)

    Busch, R.D. (New Mexico Univ., Albuquerque, NM (United States)); O'Dell, R.D. (Los Alamos National Lab., NM (United States))

    1991-01-01T23:59:59.000Z

    Within the nuclear criticality safety community, the Hansen-Roach 16 group cross section set has been the standard'' for use in k{sub eff} calculations over the past 30 years. Yet even with its widespread acceptance, there are still questions about its validity and adequacy, about the proper procedure for calculating the potential scattering cross section, {sigma}{sub p}, for uranium and plutonium, and about the concept of resonance self shielding and its impact on cross sections. This paper attempts to address these questions. It provides a brief background on the Hansen-Roach cross sections. Next is presented a review of resonances in cross sections, self shielding of these resonances, and the use of {sigma}{sub p} to characterize resonance self shielding. Three prescriptions for calculating {sigma}{sub p} are given. Finally, results of several calculations of k{sub eff} on low-enriched uranium systems are provided to confirm the validity of the Hansen-Roach cross sections when applied to such systems.

  6. Fish and Wildlife Management Questions and RM&E Strategies Key Management Questions

    E-Print Network [OSTI]

    1 Fish and Wildlife Management Questions and RM&E Strategies Key Management Questions 1. Are we meeting biological and programmatic performance objectives established within the Columbia Basin Fish implemented and accomplished as proposed? Strategic Category: Fish Population Status Monitoring The following

  7. Questions in Cuban and CaribbeanQuestions in Cuban and Caribbean Archaeology:Archaeology

    E-Print Network [OSTI]

    Martin, Jeff

    Questions in Cuban and CaribbeanQuestions in Cuban and Caribbean Archaeology:Archaeology: Across was not only the biggest language in the Caribbean, but was also used as lingua franca throughout the region evidence about their language, only place names · Theory: the only non-Arawak language in the Caribbean Sea

  8. The carbon question Debate The carbon question Comment/Q&A he key to climate change

    E-Print Network [OSTI]

    The carbon question Debate The carbon question Comment/Q&A T he key to climate change mitigation arguing incessantly about the details of carbon trading, we should befocusingonpublicpoliciestospeedthe research, development, demonstration, and diffusion of low-emission technolo- gies. Carbon capture

  9. FOUR QUESTIONS ON BIRKHOFF POLYTOPE Igor Pak

    E-Print Network [OSTI]

    Pak, Igor

    of the simplex method, and the mixing of random walks Pn. Introduction In this article we consider in a symmetric group Sn. ______________ Key words and phrases. Birkhoff polytope, simplex method, random walk is also known (see [G1,P* *P]). Question 2. Does the simplex method work fast on Pn ? Let us

  10. BOMB THREAT CHECKLIST QUESTIONS TO ASK

    E-Print Network [OSTI]

    Cui, Yan

    BOMB THREAT CHECKLIST QUESTIONS TO ASK: 1. When is the bomb going to explode? 2. Where is it right ___Clearing Throat ___Laughter ___Deep Breathing __Crying ___Cracking voice __Normal ___Disguised THREAT __Foul ___Taped __Message read by threat maker __Irrational If voice is familiar, who did it sound like

  11. Common Questions Why should I soil test?

    E-Print Network [OSTI]

    Isaacs, Rufus

    Common Questions Why should I soil test? Soil testing is an important diagnostic tool to evaluate nutrient imbalances and understand plant growth. The most important reason to soil test is to have a basis for intelligent application of fertilizer and lime. Testing also allows for growers and homeowners to maintain

  12. Got a Question? We Have an Answer!

    Broader source: Energy.gov [DOE]

    Editor's Note: This entry has been cross-posted from energysavers.gov. Ever had a question -- maybe about energy efficiency, renewable energy, the Department of Energy or the like -- and not had any idea where to find the answer? The EERE Information Center might be able to help.

  13. Rangeland ecology: Key global research issues & questions

    E-Print Network [OSTI]

    1 Rangeland ecology: Key global research issues & questions Robin Reid and Maria Fernandez-Gimenez This paper discusses developments in our understanding about rangeland ecology and rangeland dynamics in the last 20 years. Before the late 1980's, the mainstream view in range ecology was that livestock

  14. Background Material Important Questions about Magnetism

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Background Material Important Questions about Magnetism: 1) What is Magnetism?Magnetism is a force or repulsion due to charge is called the electric force. But what about magnetism, is there a fundamental property of some matter that makes things magnetic? The answer is: "sort of." Electric current

  15. Addendum to Questions, Answers and Clarifications

    E-Print Network [OSTI]

    hydrogen fueling stations to serve the current population of fuel cell vehicles (FCVs) and to accommodate-606 Alternative and Renewable Fuel and Vehicle Technology Program California Energy Commission Q.1 EligibleAddendum to Questions, Answers and Clarifications Hydrogen Fuel Infrastructure Solicitation PON-12

  16. Job Interview: Disability-Related Questions

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Job Interview: Disability-Related Questions (What IS and IS NOT ok to ask in a job interview for the job (such as education, training, experience, skills, or licenses) and perform the essential functions of the job. But how can the employer find this out without violating the sometimes confusing rules of the ADA

  17. Assessing the environmental availability of uranium in soils and sediments

    SciTech Connect (OSTI)

    Amonette, J.E.; Holdren, G.R. Jr.; Krupa, K.M.; Lindenmeier, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1994-06-01T23:59:59.000Z

    Soils and sediments contaminated with uranium pose certain environmental and ecological risks. At low to moderate levels of contamination, the magnitude of these risks depends not only on the absolute concentrations of uranium in the material but also on the availability of the uranium to drinking water supplies, plants, or higher organisms. Rational approaches for regulating the clean-up of sites contaminated with uranium, therefore, should consider the value of assessing the environmental availability of uranium at the site before making decisions regarding remediation. The purpose of this work is to review existing approaches and procedures to determine their potential applicability for assessing the environmental availability of uranium in bulk soils or sediments. In addition to making the recommendations regarding methodology, the authors have tabulated data from the literature on the aqueous complexes of uranium and major uranium minerals, examined the possibility of predicting environmental availability of uranium based on thermodynamic solubility data, and compiled a representative list of analytical laboratories capable of performing environmental analyses of uranium in soils and sediments.

  18. Use of social network sites for question and answer behavior

    E-Print Network [OSTI]

    Panovich, Katrina (Katrina Marie)

    2011-01-01T23:59:59.000Z

    In this thesis, we look at the behavior of posting questions as status updates on popular social network sites like Twitter and Facebook. This question asking behavior is similar to the use of search engines, question and ...

  19. Statistical Language Modelling 

    E-Print Network [OSTI]

    Gotoh, Yoshihiko; Renals, Steve

    2003-01-01T23:59:59.000Z

    the underlying models from large amounts of data. Importantly, such statistical approaches often produce useful results. Statistical approaches seem especially well-suited to spoken language which is often spontaneous or conversational and not readily amenable...

  20. Interpreting Accident Statistics

    E-Print Network [OSTI]

    Ferreira, Joseph Jr.

    Accident statistics have often been used to support the argument that an abnormally small proportion of drivers account for a large proportion of the accidents. This paper compares statistics developed from six-year data ...

  1. Statistics 36-756: Advanced Statistics II Syllabus: Fall, 2006

    E-Print Network [OSTI]

    Fienberg, Stephen E.

    , Journal of the American Statistical Association, Journal of the Royal Statistical Society, StatisticalStatistics 36-756: Advanced Statistics II Syllabus: Fall, 2006 Instructor: Stephen E. Fienberg 132G: · To consider major topics from statistical theory and the foundations of inference not covered in Statistics 36

  2. Statistics Statistique Canada Canada

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    Statistics Statistique Canada Canada Human Resources and Ressources humaines et Skills Development Canada Développement des compétences Canada Culture,Tourism and the Centre for Education Statistics about this product or the wide range of services and data available from Statistics Canada, visit our

  3. STATISTICAL COMPUTING AND GRAPHICS

    E-Print Network [OSTI]

    Masci, Frank

    Marron for a helpful comment. @ 1997 American Statistical Association bin width should be chosen soSTATISTICAL COMPUTING AND GRAPHICS Data-Based Choice of Histogram Bin Width The most important of the "optimal" bin width. Default bin widths in most common statistical packages are, at least for large samples

  4. Mining an Ocean of Data: Application of modern statistical methods for addressing biological oceanography questions

    E-Print Network [OSTI]

    Columbia University

    in our understanding of global ocean circulation, heat and energy transport associated with mesoscale processes occurring at different spatial and time scales (e.g., mixing, mesoscale eddies, water mass

  5. Commercial Building Energy Asset Score Frequently Asked Questions...

    Broader source: Energy.gov (indexed) [DOE]

    Frequently Asked Questions Commercial Building Energy Asset Score Frequently Asked Questions The U.S. Department of Energy's (DOE) Commercial Building Energy Asset Score program...

  6. Electric Vehicle Deployment: Policy Questions and Impacts to...

    Office of Environmental Management (EM)

    Vehicle Deployment: Policy Questions and Impacts to the U.S. Electric Grid - EAC Recommendations (November 2011) Electric Vehicle Deployment: Policy Questions and Impacts to the...

  7. DOE response to questions from AHAM on the supplemental proposed...

    Energy Savers [EERE]

    response to questions from AHAM on the supplemental proposed test procedure for residential clothes washers DOE response to questions from AHAM on the supplemental proposed test...

  8. Forty Most Asked Questions Concerning CEQ's National Environmental...

    Energy Savers [EERE]

    Forty Most Asked Questions Concerning CEQ's National Environmental Policy Act Regulations Forty Most Asked Questions Concerning CEQ's National Environmental Policy Act Regulations...

  9. Statistical Convergence and Convergence in Statistics

    E-Print Network [OSTI]

    Mark Burgin; Oktay Duman

    2006-12-07T23:59:59.000Z

    Statistical convergence was introduced in connection with problems of series summation. The main idea of the statistical convergence of a sequence l is that the majority of elements from l converge and we do not care what is going on with other elements. We show (Section 2) that being mathematically formalized the concept of statistical convergence is directly connected to convergence of such statistical characteristics as the mean and standard deviation. At the same time, it known that sequences that come from real life sources, such as measurement and computation, do not allow, in a general case, to test whether they converge or statistically converge in the strict mathematical sense. To overcome limitations induced by vagueness and uncertainty of real life data, neoclassical analysis has been developed. It extends the scope and results of the classical mathematical analysis by applying fuzzy logic to conventional mathematical objects, such as functions, sequences, and series. The goal of this work is the further development of neoclassical analysis. This allows us to reflect and model vagueness and uncertainty of our knowledge, which results from imprecision of measurement and inaccuracy of computation. In the context on the theory of fuzzy limits, we develop the structure of statistical fuzzy convergence and study its properties.

  10. Evaluation of depleted uranium in the environment at Aberdeen Proving Grounds, Maryland and Yuma Proving Grounds, Arizona. Final report

    SciTech Connect (OSTI)

    Kennedy, P.L.; Clements, W.H.; Myers, O.B.; Bestgen, H.T.; Jenkins, D.G. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

    1995-01-01T23:59:59.000Z

    This report represents an evaluation of depleted uranium (DU) introduced into the environment at the Aberdeen Proving Grounds (APG), Maryland and Yuma Proving Grounds (YPG) Arizona. This was a cooperative project between the Environmental Sciences and Statistical Analyses Groups at LANL and with the Department of Fishery and Wildlife Biology at Colorado State University. The project represents a unique approach to assessing the environmental impact of DU in two dissimilar ecosystems. Ecological exposure models were created for each ecosystem and sensitivity/uncertainty analyses were conducted to identify exposure pathways which were most influential in the fate and transport of DU in the environment. Research included field sampling, field exposure experiment, and laboratory experiments. The first section addresses DU at the APG site. Chapter topics include bioenergetics-based food web model; field exposure experiments; bioconcentration by phytoplankton and the toxicity of U to zooplankton; physical processes governing the desorption of uranium from sediment to water; transfer of uranium from sediment to benthic invertebrates; spead of adsorpion by benthic invertebrates; uptake of uranium by fish. The final section of the report addresses DU at the YPG site. Chapters include the following information: Du transport processes and pathway model; field studies of performance of exposure model; uptake and elimination rates for kangaroo rates; chemical toxicity in kangaroo rat kidneys.

  11. The uranium cylinder assay system for enrichment plant safeguards

    SciTech Connect (OSTI)

    Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Rael, Carlos D [Los Alamos National Laboratory; Iwamoto, Tomonori [JNFL; Tamura, Takayuki [JNFL; Aiuchi, Syun [JNFL

    2010-01-01T23:59:59.000Z

    Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

  12. Recovery of uranium from seawater by immobilized tannin

    SciTech Connect (OSTI)

    Sakaguchi, T.; Nakajima, A.

    1987-06-01T23:59:59.000Z

    Tannin compounds having multiple adjacent hydroxy groups have an extremely high affinity for uranium. To prevent the leaching of tannins into water and to improve the adsorbing characteristics of these compounds, the authors tried to immobilize tannins. The immobilized tannin has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. The immobilized tannin can recover uranium from natural seawater with high efficiency. About 2530 ..mu..g uranium is adsorbed per gram of this adsorbent within 22 h. Depending on the concentration in seawater, an enrichment of up to 766,000-fold within the adsorbent is possible. Almost all uranium adsorbed is easily desorbed with a very dilute acid. Thus, the immobilized tannin can be used repeatedly in the adsorption-desorption process.

  13. In-line assay monitor for uranium hexafluoride

    DOE Patents [OSTI]

    Wallace, S.A.

    1980-03-21T23:59:59.000Z

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.

  14. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01T23:59:59.000Z

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  15. Uranium Oxide Aerosol Transport in Porous Graphite

    SciTech Connect (OSTI)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23T23:59:59.000Z

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  16. Uranium enrichment export control guide: Gaseous diffusion

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

  17. Energy balance for uranium recovery from seawater

    SciTech Connect (OSTI)

    Schneider, E.; Lindner, H. [The University of Texas, 1 University Station C2200, Austin, TX 78712 (United States)

    2013-07-01T23:59:59.000Z

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

  18. Uranium recovery from seawater by adsorption

    SciTech Connect (OSTI)

    Koske, P.H.; Ohlrogge, K.; Peinemann, K.V.

    1988-10-01T23:59:59.000Z

    Results are presented of a 10 weeks field experiment producing uranium from seawater by the so-called adsorber-loop-concept. For the adsorption process polyamidoxin (PAO) granulate has been used with grain sizes between 0.3 - 1.2 mm diameter. The performance of the adsorber and the efficiency of the adsorption process - especially with regard to high volume flows of seawater - are presented.

  19. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

  20. Phosphate Barriers for Immobilization of Uranium Plumes

    SciTech Connect (OSTI)

    Burns, Peter C.

    2005-06-01T23:59:59.000Z

    Uranium contamination of the subsurface has remained a persistent problem plaguing remedial design at sites across the U.S. that were involved with production, handling, storage, milling, and reprocessing of fissile uranium for both civilian and defense related purposes. Remediation efforts to date have relied upon excavation, pump-and-treat, or passive remediation barriers (PRB?s) to remove or attenuate uranium mobility. Documented cases convincingly demonstrate that excavation and pump-and-treat methods are ineffective for a number of highly contaminated sites. There is growing concern that use of conventional PRB?s, such as zero-valent iron, are a temporary solution to a problem that will persist for thousands of years. Alternatives to the standard treatment methods are therefore warranted. The core objective of our research is to demonstrate that a phosphorous amendment strategy will result in a reduction of dissolved uranium to below the proposed drinking water standard. Our hypothesis is that long-chain polyphosphate compounds forestall precipitation of sparingly soluble uranyl phosphate compounds, which is key to preventing fouling of wells at the point of injection. Our other fundamental objective is to synthesize and correctly characterize the uranyl phosphate phases that form in the geochemical conditions under consideration. This report summarizes work conducted at the University of Notre Dame through November of 2003 under DOE grant DE-FG07-02ER63489, which has been funded since September, 2002. The objectives at Notre Dame are development of synthesis techniques for uranyl phosphate phases, together with detailed structural and chemical characterization of the myriad of uranyl phosphate phases that may form under geochemical conditions under consideration.

  1. Material property correlations for uranium mononitride 

    E-Print Network [OSTI]

    Hayes, Steven Lowe

    1989-01-01T23:59:59.000Z

    who have provided technical support for this project throughout its duration. I also express my sincere appreciation and thanks to the U. S. Department of Energy and Oak Ridge Associated Universities whose Nuclear Engineering and Health Physics... space nuclear reactors. Uranium mononitride is currently the reference fuel for the SP-100 space reactor system and will likely be considered for application in future multimegawatt space power systems as well. Although fuel modeling efforts have...

  2. Uranio impoverito: perché? (Depleted uranium: why?)

    E-Print Network [OSTI]

    Germano D'Abramo

    2003-06-05T23:59:59.000Z

    In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of understanding the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

  3. Plutonium Uranium Extraction Facility Documented Safety Analysis

    SciTech Connect (OSTI)

    DODD, E.N.

    2003-10-08T23:59:59.000Z

    This document provides the documented safety analysis (DSA) and Central Plateau Remediation Project (CP) requirements that apply to surveillance and maintenance (S&M) activities at the Plutonium-Uranium Extraction (PUREX) facility. This DSA was developed in accordance with DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities''. Upon approval and implementation of this document, the current safety basis documents will be retired.

  4. Measurement of uranium enrichment by gamma spectroscopy: result of an experimental design

    E-Print Network [OSTI]

    , Gamma Spectrometry, uranium enrichment #12;PAPER Measurement of uranium enrichment by gamma spectroscopy: result of an experimental design Gamma spectroscopy is commonly used in nuclear safeguards to measure uranium enrichment. An experimental

  5. Uranium Recovery from Seawater: Development of Fiber Adsorbents Prepared via Atom-Transfer Radical Polymerization

    SciTech Connect (OSTI)

    Saito, Tomonori; Brown, Suree; Chatterjee, Sabornie; Kim, Jungseung; Tsouris, Constantinos; Mayes, Richard; Kuo, Li-Jung; Gill, Gary A.; Oyola, Yatsandra; Janke, C.; Dai, Sheng

    2014-07-09T23:59:59.000Z

    Uranium exists uniformly at a concentration of ~3.3 ppb in seawater. The extraction of uranium from seawater presents a very attractive alternative source of uranium for nuclear fuel needs.

  6. Magnetic Exchange Coupling and Single-Molecule Magnetism in Uranium Complexes

    E-Print Network [OSTI]

    Rinehart, Jeffrey Dennis

    2010-01-01T23:59:59.000Z

    in molecular uranium cluster chemistry. 13 Compound 2 ischemistry and small-molecule reactivity of uranium. AmongUranium Complexes by Jeffrey Dennis Rinehart Doctor of Philosophy in Chemistry

  7. Recent International R&D Activities in the Extraction of Uranium from Seawater

    E-Print Network [OSTI]

    Rao, Linfeng

    2011-01-01T23:59:59.000Z

    Uranium and Rare Earth Elements Using Biomass of Algae, Bioinorganic Chemistry andRecovery of uranium from sea water. Chemistry & Industry (of uranium from seawater. Turkish Journal of Chemistry, 17 (

  8. The geochemistry of uranium in the Orca Basin

    E-Print Network [OSTI]

    Weber, Frederick Fewell

    1979-01-01T23:59:59.000Z

    . , 1974). Substantial uranium enrichments have been reported by many investigators for samples taken from aroxic environments (Strom, 1948; Starik et al. , '1961; Swanson, 1961; Sackett and Cook, 1969; Kolodny and Kaplan, 1969; Bertine et al. , 1970...) ~ Degens et al. , (1977) report concentrations of uranium as high as 60ppm, more than an order of magnitude enrich- meut, for Black Sea sediments. If marine reducing environments are found with uranium concentrations apuroaching 100ppm, they will begin...

  9. The geochemistry of uranium in the Orca Basin 

    E-Print Network [OSTI]

    Weber, Frederick Fewell

    1979-01-01T23:59:59.000Z

    as uranium concentrations dzop to an average of 2. dppm, indicative of relatively low uranium bearing pelagic particle deposition. Furthermore, the 13 C values become heavier in this region, lacking a large terrest. rial component. This evidence suggests... 39 the basin walls. It may be possible that these particles at the brine/seawater interface incorporate any uranium reduced in this zone and carry it to the brine perimeter where it is deposited. Unfortunately, attempts to accurately core...

  10. National Uranium Resource Evaluation: Salina Quadrangle, Utah

    SciTech Connect (OSTI)

    Lupe, R.D.; Campbell, J.A.; Franczyk, K.J.; Luft, S.J.; Peterson, F.; Robinson, K.

    1982-09-01T23:59:59.000Z

    Two stratigraphic units, the Late Jurassic Salt Wash Member of the Morrison Formation and the Triassic Chinle Formation, were determined to be favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the US Department of Energy in the Salina 1 x 2/sup 0/ Quadrangle, Utah. Three areas judged favorable for the Salt Wash Member are the Tidwell and Notom districts, and the Henry Mountains mineral belt. The criteria used to establish favorability were the presence of: (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Four favorable areas have been outlined for the Chinle Formation. These are the San Rafael Swell, Inter River, and the Orange Cliffs subareas and the Capitol Reef area. The criteria used to establish these areas are: the sandstone-to-mudstone ratios and the geographic distribution of the Petrified Forest Member of the Chinle Formation which is considered as the probable source for the uranium.

  11. Uncertainty clouds uranium enrichment corporation's plans

    SciTech Connect (OSTI)

    Lane, E.

    1993-03-24T23:59:59.000Z

    An expected windfall to the US Treasury from the sale of the Energy Dept.'s commercial fuel enrichment facilities may evaporate in the next few weeks when the Clinton administration submits its fiscal 1994 budget proposal to Congress, according to congressional and administration officials. Under the Energy Policy Act of 1992, DOE is required to lease two uranium enrichment facilities, Portsmouth, Ohio, and Paducah, KY., to the government-owned US Enrichment Corp. (USEC) by July 1. Estimates by OMB and Treasury indicate a potential yearly payoff of $300 million from the government-owned company's sale of fuel for commercial reactors. Those two facilities use a process of gaseous diffusion to enrich uranium to about 3 percent for use as fuel in commercial power plants. DOE has contracts through at least 1996 to provide about 12 million separative work units (SWUs) yearly to US utilities and others world-wide. But under an agreement signed between the US and Russia last August, at least 10 metric tons, or 1.5 million SWUs, of low-enriched uranium (LEU) blended down from Russia warheads is expected to be delivered to the US starting in 1994. It could be sold at $50 to $60 per SWU, far below what DOE currently charges for its SWUs - $135 per SWU for 70 percent of the contract price and $90 per SWU for the remaining 30 percent.

  12. Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined in a wide variety of rocks, including sandstone, carbonates1

    E-Print Network [OSTI]

    3-1 Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined conventional mining, solution extraction, and milling of uranium, a principal focus of this report is TENORM, or which may need future reclamation. When uranium mining first started, most of the ores were recovered

  13. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    coordination chemistry is depleted uranium, a by-product innuclear reactors. Depleted uranium Figure 1-1. The periodic

  14. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    SciTech Connect (OSTI)

    none,

    2013-07-01T23:59:59.000Z

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

  15. Uranium immobilization by sulfate-reducing biofilms grown on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of uranium-complexing carbonates. The biofilms were grown in three identically operated fixed bed reactors, filled with three types of minerals: one noncarbonate-bearing...

  16. Assessment of Controlling Processes for Field-Scale Uranium Reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore...

  17. Secretarial Determination of No Adverse Material Impact for Uranium...

    Energy Savers [EERE]

    set forth in the 2012 Secretarial Determination and the Department's Excess Uranium Inventory Management Plan released in July 2013. Secretarial Determination 5-15-14.pdf More...

  18. Assessment of Controlling Processes for Field-Scale Uranium Reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant...

  19. Uranium-contaminated soils: Ultramicrotomy and electron beam analysis

    SciTech Connect (OSTI)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1994-04-01T23:59:59.000Z

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  20. High grade uranium resources in the United States : an overview

    E-Print Network [OSTI]

    Graves, Richard E.

    1974-01-01T23:59:59.000Z

    A time analysis of uranium exploration, production and known reserves in the United States is employed to reveal industry trends. The

  1. The radioactive Substances (Prepared Uranium Thorium Compounds) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01T23:59:59.000Z

    STATUTORY INSTRUMENTS 1962 No. 2711 ATOMIC ENERGY AND RADIOACI1VE SUBSTANCES The Radioactive Substances (prepared Uranium and Thorium Compounds) Exemption Order 1962...

  2. EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores. The cooperating...

  3. Financial Assurance for In Situ Uranium Facilities (Texas)

    Broader source: Energy.gov [DOE]

    Owners or operators are required to provide financial assurance for in situ uranium sites. This money is required for: decommissioning, decontamination, demolition, and waste disposal for buildings...

  4. President Truman Increases Production of Uranium and Plutonium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increases Production of Uranium and Plutonium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  5. NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...

    National Nuclear Security Administration (NNSA)

    Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  6. Uranium Leasing Program Draft PEIS Public Comment Period Extended...

    Broader source: Energy.gov (indexed) [DOE]

    Uranium Leasing Program Draft PEIS Public Comment Period Extended to May 31, 2013 Draft ULPEIS comment extension community notification041813 (3).pdf More Documents & Publications...

  7. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W.

    1995-01-10T23:59:59.000Z

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  8. Basic characterization of highly enriched uranium by gamma spectrometry

    E-Print Network [OSTI]

    Cong Tam Nguyen; Jozsef Zsigrai

    2005-08-25T23:59:59.000Z

    Gamma-spectrometric methods suitable for the characterization of highly enriched uranium samples encountered in illicit trafficking of nuclear materials are presented. In particular, procedures for determining the 234U, 235U, 238U, 232U and 236U contents and the age of highly enriched uranium are described. Consequently, the total uranium content and isotopic composition can be calculated. For determining the 238U and 232U contents a low background chamber was used. In addition, age dating of uranium was also performed using low-background spectrometry.

  9. Basic characterization of highly enriched uranium by gamma spectrometry

    E-Print Network [OSTI]

    Nguyen, C T

    2006-01-01T23:59:59.000Z

    Gamma-spectrometric methods suitable for the characterization of highly enriched uranium samples encountered in illicit trafficking of nuclear materials are presented. In particular, procedures for determining the 234U, 235U, 238U, 232U and 236U contents and the age of highly enriched uranium are described. Consequently, the total uranium content and isotopic composition can be calculated. For determining the 238U and 232U contents a low background chamber was used. In addition, age dating of uranium was also performed using low-background spectrometry.

  10. agricultural crops uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inorganic elements were also identified during 430 Clean Air Act Requirements: Uranium Mill Tailings Environmental Sciences and Ecology Websites Summary: :www.epa.govradiation...

  11. Method of fabricating a uranium-bearing foil

    DOE Patents [OSTI]

    Gooch, Jackie G. (Seymour, TN); DeMint, Amy L. (Kingston, TN)

    2012-04-24T23:59:59.000Z

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  12. US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium...

    National Nuclear Security Administration (NNSA)

    of 36 kilograms (approximately 80 pounds) of highly enriched uranium (HEU) spent fuel from the Institute of Nuclear Physics (INP) in Almaty, Kazakhstan. The HEU was...

  13. americium plutonium uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a fascinating ele- ment. Last year, we learned that some com- pounds of plutonium superconduct at sur- prisingly Steinberger, Bernhard 110 Standard specification for uranium...

  14. arlit uranium mines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration and pre-processing Part 2: Association rule mining Part Christen, Peter 32 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  15. analogue uranium decorporation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which are uniquely quantum mechanical. Daniel Collins; Sandu Popescu 2001-07-16 19 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  16. area uranium plume: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 1974. 57 Coordinate geometry specific to the Babylon... Kelley, Van Alan 2012-06-07 52 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  17. area uranium stabilization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gyroscope which meets the stringent stability requirements for high accuracy Hart, Gus 26 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  18. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah...

    Energy Savers [EERE]

    operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the...

  19. arsenic manganese uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Mn) is enriched in surface soils at the (more) Herndon, Elizabeth 2012-01-01 56 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  20. alaska national uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of the Interior National Park Service Natural Resource Loso, Michael G. 98 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  1. adsorbing uranium compounds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interest in magnetic bioseparations has (more) Willett, Thomas Clifford 2009-01-01 30 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  2. ambrosia lake uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a national priority. The resulting Great Lakes Restoration Initiative (GLRI 27 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  3. antei uranium deposit: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the requirement for the degree of MASTER... Miller, Michael Eugene 1979-01-01 15 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  4. atomized uranium silicide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions on the atomic nucleus surface are discussed as well. R. Tsekov 2014-06-18 38 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  5. aqueuous uranium complexes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods that take into account relevant interactions. Gershenson, Carlos 2011-01-01 11 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  6. actinide doped uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis. A vacuum box system was designed (more) Gostic, Julie Marisa 2009-01-01 25 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  7. A study of uranium in South Texas lignite 

    E-Print Network [OSTI]

    Ilger, Wayne Arthur

    1983-01-01T23:59:59.000Z

    ) to a highly mobile uranium(VI) carbonate anion, such as (U02)(C03)2 . The carbonate anion stabilizes the uranium(VI) species. In 1955 Breger (10) proposed the formation of two uranium- carbonate complexes, sodium uranyl di- and tricarbonates... with the humic acid fract1on of 11gn1te. Others, includ1ng Breger and Moore (5, lB) propose that when a uranyl-carbonate complex encounters the slightly acid1c environment of lignite, the uranium(VI) carbonate complex is chemically altered. These investigators...

  8. Questions for IIT Waste Diversion RFP Question: What are the recycling/waste goals of IIT?

    E-Print Network [OSTI]

    Heller, Barbara

    for commercial weights? We cannot provide exact weights by location for commercial cans due to rear load trucks expected to haul the Black outside Hawk bins? Answer: No, this is handled by our staff. Question: Have you

  9. Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations

    SciTech Connect (OSTI)

    Russell, A.D.; Emerson, S.; Nelson, B.K. (Univ. of Washington, Seattle, WA (United States)); Erez, J. (Univ. of Jerusalem, (Israel)); Lea, D.W. (Univ. of California, Santa Barbara, CA (United States))

    1994-01-01T23:59:59.000Z

    The authors present results of an investigation of uranium/calcium ratios in cleaned foraminiferal calcite as a recorder of seawater uranium concentrations. For accurate reconstruction of past seawater uranium content, shell calcite must incorporate uranium in proportion to seawater concentration and must preserve its original uranium composition over time. Laboratory culture experiments with live benthic (Amphistegina lobifera) and live planktonic (Globigerinell calida) foraminifera show that the U/Ca ratio of cleaned calcite tests is proportional to the concentration of uranium in solution. After correcting results for the presence of initial calcite, the apparent distribution coefficient D = (U/Ca[sub calcite])/(U/Ca)[sub solution] = 10.6 [+-] 0.3 (x10[sup [minus]3]) for A. lobifera and D = 7.9 [+-] 0.1 (x10[sup [minus]3]) for G. calida. U/Ca ratios in planktonic foraminifera from core tops collected above 3900 m in the equatorial Atlantic and above 2100 m in the Pacific Ocean show no significant difference among the species analyzed. D estimated form core top samples ranges from 7.6 [+-] 0.4 (x10[sup [minus]3]) for O. universa to 8.4 [+-] 0.5 (x10[sup [minus]3]) for G. ruber. In benthic species C. wuellerstorfi, D = 7.0 [+-] 0.8 (x10[sup [minus]3]). U/Ca and Mg/Ca in G. tumida and G. sacculifer from core tops taken near and below the regional lysocline decrease with water depth. Smaller decreases in U/Ca and Mg/Ca with depth were observed in C. wuellerstorfi. In the planktonic species, the authors believe that U/CA and Mg/Ca are lower in the more dissolution-resistant fraction of calcite, leading to lower U/Ca in more highly dissolved samples.

  10. Pacific Northwest residential energy survey. Volume 3. Question-by-question results

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    Tabulations are presented of responses to approximately 105 questions. Results are tabulated by 9 geographic regions: the four states of Idaho, Montana, Oregon, and Washington; four climate zones in the region; and a weighted Pacific Northwest total. A description of the tabulated data is given in the Introduction. Tabulated data deal with questions on dwelling characteristics; heating and air-conditioning systems; water heating; appliances; demographic and swelling characteristics; and insulation.

  11. BS in STATISTICS: Statistical Science Emphasis (695220) MAP Sheet Department of Statistics

    E-Print Network [OSTI]

    Olsen Jr., Dan R.

    BS in STATISTICS: Statistical Science Emphasis (695220) MAP Sheet Department of Statistics the following: Stat 121 Principles of Statistics Stat 151 Introduction to Bayesian Statistics Stat 201 Statistics for Engineers & Scientists Stat 301 Statistics & Probability for Sec Ed Note: Students who have

  12. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    SciTech Connect (OSTI)

    A K Wertsching

    2012-09-01T23:59:59.000Z

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.

  13. Statistics 221 Statistical Computing Methods Instructor: Mark Irwin

    E-Print Network [OSTI]

    Irwin, Mark E.

    Linear algebra, Statistics 111, and knowledge of a computer programming language. Statistics 220 (1988). Elements of Statistical Computing: Numerical Computation. CRC Press. Splus / R: Venables WNStatistics 221 ­ Statistical Computing Methods Instructor: Mark Irwin Office: Science Center 235

  14. Novel Transformations using Uranium and Group 5 Metal Complexes Supported by 1,1'-diamidoferrocene Ligands

    E-Print Network [OSTI]

    Lopez, Michael Joseph

    2013-01-01T23:59:59.000Z

    Chemistry by Michael Joseph Lopez ABSTRACT OF THE THESIS Novel Transformations using Uranium andchemistry has grown significantly in the past decade. 1 Uranium

  15. CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTIS (BIS(TRIMETHYLSILYL)AMIDO]URANIUM(IV)

    E-Print Network [OSTI]

    Andersen, Richard A.

    2012-01-01T23:59:59.000Z

    Chemistry CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTRIS[BIS(TRIMETHYLSILYL)AMIDO]URANIUM(Chemistry University of California Berkeley, California 94720 New hydride derivatives of thorium (IV) and uranium (

  16. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity....

  17. Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado

    E-Print Network [OSTI]

    Li, L.

    2009-01-01T23:59:59.000Z

    During Stimulated Bioremediation. Environ. Sci. Technol.H. A. Simulating bioremediation of uranium-contaminatedan in situ uranium bioremediation field site. Appl. Environ.

  18. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    E-Print Network [OSTI]

    Williams, K.H.

    2010-01-01T23:59:59.000Z

    biofilms as monitors of bioremediation, Microbial Ecol. ,an in situ uranium bioremediation field site, Appl. Environ.Pilot-scale in situ bioremediation of uranium in a highly

  19. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation

    E-Print Network [OSTI]

    Druhan, J.L.

    2009-01-01T23:59:59.000Z

    S. Pilot-scale in situ bioremediation of uranium in a highlyassociated with bioremediation of uranium to submicromolarassociated with Cr(VI) bioremediation. Environ. Sci.

  20. CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTIS (BIS(TRIMETHYLSILYL)AMIDO]URANIUM(IV)

    E-Print Network [OSTI]

    Andersen, Richard A.

    2012-01-01T23:59:59.000Z

    Chemistry University of California Berkeley, California 94720 New hydride derivatives of thorium (IV) and uranium (Chemistry CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTRIS[BIS(TRIMETHYLSILYL)AMIDO]URANIUM(

  1. Novel Transformations using Uranium and Group 5 Metal Complexes Supported by 1,1'-diamidoferrocene Ligands

    E-Print Network [OSTI]

    Lopez, Michael Joseph

    2013-01-01T23:59:59.000Z

    chemistry has grown significantly in the past decade. 1 UraniumChemistry by Michael Joseph Lopez ABSTRACT OF THE THESIS Novel Transformations using Uranium

  2. EA-1172: Sale of Surplus Natural and Low Enriched Uranium, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to sell uranium for subsequent enrichment and fabrication into commercial nuclear power reactor fuel.  The uranium is currently stored...

  3. DOE Announces Transfer of Depleted Uranium to Advance the U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer of Depleted Uranium to Advance the U.S. National Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant DOE Announces Transfer of Depleted Uranium to...

  4. Modeling Community Question-Answering Archives Zainab Zolaktaf

    E-Print Network [OSTI]

    Milios, Evangelos E.

    Faculty of Computer Science Dalhousie University eem@cs.dal.ca Abstract Community Question Answering (CQA

  5. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOE Patents [OSTI]

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29T23:59:59.000Z

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  6. Cost estimate report for the long-term management of depleted uranium hexafluoride : storage of depleted uranium metal.

    SciTech Connect (OSTI)

    Folga, S.M.; Kier, P.H.; Thimmapuram, P.R.

    2001-01-24T23:59:59.000Z

    This report contains a cost analysis of the long-term storage of depleted uranium in the form of uranium metal. Three options are considered for storage of the depleted uranium. These options are aboveground buildings, partly underground vaults, and mined cavities. Three cases are presented. In the first case, all the depleted uranium metal that would be produced from the conversion of depleted uranium hexafluoride (UF{sub 6}) generated by the US Department of Energy (DOE) prior to July 1993 would be stored at the storage facility (100% Case). In the second case, half the depleted uranium metal would be stored at this storage facility (50% Case). In the third case, one-quarter of the depleted uranium metal would be stored at the storage facility (25% Case). The technical basis for the cost analysis presented in this report is principally found in the companion report, ANL/EAD/TM-100, ''Engineering Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride: Storage of Depleted Uranium Metal'', prepared by Argonne National Laboratory.

  7. Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed

    SciTech Connect (OSTI)

    Smirnov, A. Yu., E-mail: a.y.smirnoff@rambler.ru; Sulaberidze, G. A. [National Research Nuclear University MEPhI (Russian Federation); Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A., E-mail: neva@dhtp.kiae.ru; Proselkov, V. N.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

    2012-12-15T23:59:59.000Z

    A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.

  8. 1 Statistics Statistics plays an important role throughout society, providing

    E-Print Network [OSTI]

    Vertes, Akos

    1 Statistics STATISTICS Statistics plays an important role throughout society, providing data. They also explore how those skills can be applied to develop new initiatives. Statistics is one. UNDERGRADUATE Bachelor's program · Bachelor of Science with a major in statistics (http:// bulletin.gwu.edu/arts-sciences/statistics

  9. Practical Statistical Thinking Probability: The Language of Statistics

    E-Print Network [OSTI]

    Practical Statistical Thinking Probability: The Language of Statistics Essentials of Statistics and Probability Dhruv Sharma May 22, 2007 Department of Statistics, NC State University dbsharma@ncsu.edu SAMSI Undergrad Workshop Dhruv Sharma Essentials of Statistics and Probability #12;Practical Statistical Thinking

  10. Development of Novel Sorbents for Uranium Extraction from Seawater

    SciTech Connect (OSTI)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08T23:59:59.000Z

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

  11. Edinburgh Research Explorer Statistical Constraints

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer Statistical Constraints Citation for published version: Rossi, R that links statistics and constraint programming. We dis- cuss two novel statistical constraints and some, Prestwich, S & Tarim, SA 2014, 'Statistical Constraints' Paper presented at 21st biennial European

  12. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Elk City NTMS Quadrangle, Idaho/Montana, including concentrations of forty-five additional elements

    SciTech Connect (OSTI)

    Broxton, D.E.; Beyth, M.

    1980-07-01T23:59:59.000Z

    Totals of 1580 water and 1720 sediment samples were collected from 1754 locations in the quadrangle. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters in Appendix I-A and for sediments in Appendix I-B. Uranium/thorium ratios for sediment samples are also included in Appendix I-B. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 parts per billion (ppB) uranium were reanalyzed by delayed-neutron counting (DNC). A supplemental report containing the multielement analyses of water samples will be open filed in the near future. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, selenium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, zinc, and zirconium. Basic statistics for 40 of these elements are presented. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million.

  13. J. A. Hobson and the Machinery Question

    E-Print Network [OSTI]

    Wilson, Daniel C. S.

    2015-04-15T23:59:59.000Z

    small number of automobiles on the roads.25 The history of technology has often had an awkward relation to broader questions in British history and so has remained strangely marginal.26 However, when understood in its fullest context as both knowledge... fellow at CRASSH, University of Cambridge. He is grateful to archival staff at Conway Hall, the LSE, and the Hull History Centre, as well as to Jos Betts, Rowan Boyson, Gregory Claeys, Thomas Dixon, Stuart Jones, Michael Ledger-Lomas, Peter Mandler, Niall...

  14. Answering the Sphinx's Questions on Neutrinos

    E-Print Network [OSTI]

    Hisakazu Minakata

    2000-05-10T23:59:59.000Z

    In answering the difficult questions on neutrinos asked by Sphinx I argue that search for proton decay is the most important experiment in coming 5-10 years. I also emphasize the crucial importance of the neutrinoless double beta decay with sensitivity of \\sim 0.01 eV level as the unique feasible way of directly detecting neutrinos of atmospheric mass scale in laboratories. I point out that, if observed at this level, it means not only that neutrinos are Majorana particle but also that they must obey an inverted mass hierarchy.

  15. Frequently Asked Questions | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, ResearchFrequently Asked Questions

  16. Response to Weatherization Questions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced Dr.Response to Weatherization Questions

  17. Questions and Answers | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell FM&T,DocumentsQuestions and

  18. Frequently Asked Questions | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia CorporationNuclearQuestions What are

  19. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla; Peacock, Aaron D.; Lesher, E.; Williams, Kenneth H.; Bargar, John R.; Wilkins, Michael J.; Figueroa, Linda A.; Ranville, James; Davis, James; Long, Philip E.

    2012-05-23T23:59:59.000Z

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.

  20. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    SciTech Connect (OSTI)

    Black, B.A.

    1980-09-01T23:59:59.000Z

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leads to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.

  1. Part I STATISTICAL PHYSICS 1 Statistical Physics

    E-Print Network [OSTI]

    unknown authors

    In this first part of the book we shall study aspects of classical statistical physics that every physicist should know, but are not usually treated in elementary thermodynamics courses. Our study will lay the microphysical (particle-scale) foundations for the continuum physics of Parts II—VI. As a central feature of our approach, we shall emphasize the intimate connections between the relativistic formulation of statistical physics and its nonrelativistic limit, and between quantum statistical physics and the classical theory. Throughout, we shall presume that the reader is familiar with elementary thermodynamics, but not with other aspects of statistical physics. In Chap. 2 we will study kinetic theory — the simplest of all formalisms for analyzing systems of huge numbers of particles (e.g., molecules of air, or neutrons diffusing through a nuclear reactor, or photons produced in the big-bang origin of the Universe). In kinetic theory the key concept is the “distribution function ” or “number density of particles in phase space”, N; i.e., the number of particles per unit 3-dimensional volume of ordinary space and per unit 3-dimensional volume of momentum space. Despite first appearances, N turns out to be a geometric, frame-independent entity. This N and the frame-independent laws it

  2. Part I STATISTICAL PHYSICS 1 Statistical Physics

    E-Print Network [OSTI]

    unknown authors

    2004-01-01T23:59:59.000Z

    In this first part of the book we shall study aspects of classical statistical physics that every physicist should know, but are not usually treated in elementary thermodynamics courses. Our study will lay the microphysical (particle-scale) foundations for the continuum physics of Parts II—VI. As a central feature of our approach, we shall emphasize the intimate connections between the relativistic formulation of statistical physics and its nonrelativistic limit, and between quantum statistical physics and the classical theory. Throughout, we shall presume that the reader is familiar with elementary thermodynamics, but not with other aspects of statistical physics. In Chap. 2 we will study kinetic theory — the simplest of all formalisms for analyzing systems of huge numbers of particles (e.g., molecules of air, or neutrons diffusing through a nuclear reactor, or photons produced in the big-bang origin of the Universe). In kinetic theory the key concept is the “distribution function ” or “number density of particles in phase space”, N; i.e., the number of particles per unit 3-dimensional volume of ordinary space and per unit 3-dimensional volume of momentum space. Despite first appearances, N turns out to be a geometric, frame-independent entity. This N and the frame-independent laws it

  3. Part I STATISTICAL PHYSICS 1 Statistical Physics

    E-Print Network [OSTI]

    unknown authors

    In this first part of the book we shall study aspects of classical statistical physics that every physicist should know but are not usually treated in elementary thermodynamics courses. This study will lay the microphysical (particle-scale) foundations for the continuum physics of Parts II—VI. Throughout, we shall presume that the reader is familiar with elementary thermodynamics, but not with other aspects of statistical physics. As a central feature of our approach, we shall emphasize the intimate connections between the relativistic formulation of statistical physics and its nonrelativistic limit, and between quantum statistical physics and the classical theory. Chapter 2 will deal with kinetic theory, which is the simplest of all formalisms for studying systems of huge numbers of particles (e.g., molecules of air, or neutrons diffusing through a nuclear reactor, or photons produced in the big-bang origin of the Universe). In kinetic theory the key concept is the “distribution function ” or “number density of particles in phase space”, N; i.e., the number of particles per unit 3-dimensional volume of ordinary space and per unit 3-dimensional volume of momentum space. Despite first appearances, N turns out to be a geometric, frame-independent entity. This N and the laws it obeys provide

  4. Mixed uranium dicarbide and uranium dioxide microspheres and process of making same

    DOE Patents [OSTI]

    Stinton, David P. (Knoxville, TN)

    1983-01-01T23:59:59.000Z

    Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.

  5. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    SciTech Connect (OSTI)

    Haas, P.A.

    1992-02-01T23:59:59.000Z

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl{sub 4}) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO{sub 2}) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl{sub 4}-UO{sub 2} shows a reaction to form uranium oxychloride (UOCl{sub 2}) that has a good solubility in molten UCl{sub 4}. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl{sub 4}, ZrCl{sub 4}, SiCl{sub 4}, ThCl{sub 4}) by reaction of oxides with chlorine (Cl{sub 2}) and carbon has application to the preparation of UCl{sub 4}.

  6. R for Statistics Rafal Kulik

    E-Print Network [OSTI]

    Kulik, Rafal

    R for Statistics Rafal Kulik Department of Mathematics and Statistics University of Ottawa Statistical Society of Ottawa 23 September 2011 Rafal Kulik #12;R for Statistics SSO meeting Plan Rafal Kulik 1 #12;R for Statistics SSO meeting Plan What is R? Rafal Kulik 1 #12;R for Statistics SSO meeting

  7. Stellar Evolution A Statistical Model

    E-Print Network [OSTI]

    van Dyk, David

    Stellar Evolution A Statistical Model Statistical Computation Analysis of the Hyades Cluster Statistical Analysis of Stellar Evolution David A. van Dyk1 Steven DeGennaro2 Nathan Stein2 William H Statistical Analysis of Stellar Evolution #12;Stellar Evolution A Statistical Model Statistical Computation

  8. Fabrication and Characterization of Uranium-Molybdenum-Zirconium Alloys

    E-Print Network [OSTI]

    Woolum, Connor

    2014-12-12T23:59:59.000Z

    As part of a global effort to convert reactors that require highly enriched uranium to instead operate with low enriched uranium, monolithic fuel plates consisting of a U-Mo fuel meat with a zirconium foil barrier layer and clad in aluminum...

  9. Uranium and cesium diffusion in fuel cladding of electrogenerating channel

    SciTech Connect (OSTI)

    Vasil’ev, I. V., E-mail: fnti@mail.ru; Ivanov, A. S.; Churin, V. A. [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500°C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

  10. NUREG/CR-6911 Tests of Uranium (VI) Adsorption

    E-Print Network [OSTI]

    NUREG/CR-6911 Tests of Uranium (VI) Adsorption Models in a Field Setting U.S. Geological Survey U/CR-6911 Tests of Uranium (VI) Adsorption Models in a Field Setting Manuscript Completed: August 2006 Date observations clearly demonstrated that in aquifers where U(VI) concentrations are controlled by adsorption

  11. Uranium in the oceans: Where it goes and why

    SciTech Connect (OSTI)

    Klinkhammer, G.P. (Oregon State Univ., Corvallis (United States)); Palmer, M.R. (Bristol Univ. (England))

    1991-07-01T23:59:59.000Z

    Uranium is removed from the oceans by diffusion across the sediment-water interface of organic-rich sediments. This pathway is the largest single sink in the global budget of this element. Dissolved uranium is drawn into suboxic sediments along a concentration gradient established by the precipitation of an insoluble phase which forms when U(VI) is reduced to U(IV). This transformation occurs relatively late in the diagenetic sequence, after the microbially mediated dissolution of manganese and iron oxides, and may be induced by the onset of sulfate reduction. Metallo-organics play an important role in the diagenetic behavior of this element as some uranium is released into solution when labile organics are consumed at the sediment-water interface. In contrast, the diagenesis of authigenic Fe- and Mn-oxides exerts negligible influence on the uranium diagenetic cycle. Variations in the uranium concentration of sediment with time are controlled directly by the uranium content of the source material settling from the water column, and indirectly, by the organic content of this material and sedimentation rate. Since diffusion from seawater influences dramatically the short-term burial rate of uranium, down-core distributions of dissolved and solid uranium can provide an estimate of recent sedimentation rates in rapidly accumulating sediments.

  12. Nuclear power fleets and uranium resources recovered from phosphates

    SciTech Connect (OSTI)

    Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

    2013-07-01T23:59:59.000Z

    Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

  13. Process for recovering niobium from uranium-niobium alloys

    SciTech Connect (OSTI)

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1983-11-01T23:59:59.000Z

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  14. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, Steven A. (Knoxville, TN); Creech, Edward T. (Oak Ridge, TN); Northcutt, Walter G. (Oak Ridge, TN)

    1983-01-01T23:59:59.000Z

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  15. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27T23:59:59.000Z

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  16. Case Study/ Effects of Groundwater Development on Uranium

    E-Print Network [OSTI]

    Case Study/ Effects of Groundwater Development on Uranium: Central Valley, California, USA Abstract Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley development during the last 100 years have changed the chemistry and magnitude of groundwater recharge

  17. Spectroscopic Evidence for Uranium Bearing Precipitates in Vadose Zone

    E-Print Network [OSTI]

    Northwest Laboratory, Richland, Washington 99352 Uranium (U) solid-state speciation in vadose zone sediments of past nuclear fuel fabrication processes, uranium (U) has been recognized as one of the most widespreadHanfordsitesthatreceivedU-containingwastesduring its mission of Pu production between 1940 and 1990. Unirradiated fuel rod wastes were disposed

  18. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect (OSTI)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01T23:59:59.000Z

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  19. In-line assay monitor for uranium hexafluoride

    DOE Patents [OSTI]

    Wallace, Steven A. (Knoxville, TN)

    1981-01-01T23:59:59.000Z

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.

  20. Preserving Ultra-Pure Uranium-233

    SciTech Connect (OSTI)

    Krichinsky, Alan M [ORNL; Goldberg, Dr. Steven A. [DOE SC - Chicago Office; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL)

    2011-10-01T23:59:59.000Z

    Uranium-233 ({sup 233}U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium ({sup 232}Th). At high purities, this synthetic isotope serves as a crucial reference material for accurately quantifying and characterizing uranium-bearing materials assays and isotopic distributions for domestic and international nuclear safeguards. Separated, high purity {sup 233}U is stored in vaults at Oak Ridge National Laboratory (ORNL). These materials represent a broad spectrum of {sup 233}U from the standpoint of isotopic purity - the purest being crucial for precise analyses in safeguarding uranium. All {sup 233}U at ORNL is currently scheduled to be disposed of by down-blending with depleted uranium beginning in 2015. This will reduce safety concerns and security costs associated with storage. Down-blending this material will permanently destroy its potential value as a certified reference material for use in uranium analyses. Furthermore, no credible options exist for replacing {sup 233}U due to the lack of operating production capability and the high cost of restarting currently shut down capabilities. A study was commissioned to determine the need for preserving high-purity {sup 233}U. This study looked at the current supply and the historical and continuing domestic need for this crucial isotope. It examined the gap in supplies and uses to meet domestic needs and extrapolated them in the context of international safeguards and security activities - superimposed on the recognition that existing supplies are being depleted while candidate replacement material is being prepared for disposal. This study found that the total worldwide need by this projection is at least 850 g of certified {sup 233}U reference material over the next 50 years. This amount also includes a strategic reserve. To meet this need, 18 individual items totaling 959 g of {sup 233}U were identified as candidates for establishing a lasting supply of certified reference materials (CRM), all having an isotopic purity of at least 99.4% {sup 233}U and including materials up to 99.996% purity. Current plans include rescuing the purest {sup 233}U materials during a 3-year project beginning in FY 2012 in three phases involving preparations, handling preserved materials, and cleanup. The first year will involve preparations for handling the rescued material for sampling, analysis, distribution, and storage. Such preparations involve modifying or developing work control documents and physical preparations in the laboratory, which include preparing space for new material-handling equipment and procuring and (in some cases) refurbishing equipment needed for handling {sup 233}U or qualifying candidate CRM. Once preparations are complete, an evaluation of readiness will be conducted by independent reviewers to verify that the equipment, work controls, and personnel are ready for operations involving handling radioactive materials with nuclear criticality safety as well as radiological control requirements. The material-handling phase will begin in FY 2013 and be completed early in FY 2014, as currently scheduled. Material handling involves retrieving candidate CRM items from the ORNL storage facility and shipping them to another laboratory at ORNL; receiving and handling rescued items at the laboratory (including any needed initial processing, acquisition and analysis of samples from each item, and preparation for shipment); and shipping bulk material to destination labs or to a yet-to-be-designated storage location. There are seven groups of {sup 233}U identified for handling based on isotopic purity that require the utmost care to prevent cross-contamination. The last phase, cleanup, also will be completed in 2014. It involves cleaning and removing the equipment and material-handling boxes and characterizing, documenting, and disposing of waste. As part of initial planning, the cost of rescuing candidate {sup 233}U items was estimated roughly. The annualized costs were found to be $1,228K in FY 2012, $1,375K in FY 2013,

  1. MCNP5 CRITICALITY VALIDATION AND BIAS FOR INTERMEDIATE ENRICHED URANIUM SYSTEMS

    SciTech Connect (OSTI)

    FINFROCK SH

    2009-12-10T23:59:59.000Z

    The purpose of this analysis is to validate the Monte Carlo N-Particle 5 (MCNP5) code Version 1.40 (LA-UR-03-1987, 2005) and its cross-section database for k-code calculations of intermediate enriched uranium systems on INTEL{reg_sign} processor based PC's running any version of the WINDOWS operating system. Configurations with intermediate enriched uranium were modeled with the moderator range of 39 {le} H/Fissile {le} 1438. See Table 2-1 for brief descriptions of selected cases and Table 3-1 for the range of applicability for this validation. A total of 167 input cases were evaluated including bare and reflected systems in a single body or arrays. The 167 cases were taken directly from the previous (Version 4C [Lan 2005]) validation database. Section 2.0 list data used to calculate k-effective (k{sub eff}) for the 167 experimental criticality benchmark cases using the MCNP5 code v1.40 and its cross section database. Appendix B lists the MCNP cross-section database entries validated for use in evaluating the intermediate enriched uranium systems for criticality safety. The dimensions and atom densities for the intermediate enriched uranium experiments were taken from NEA/NSC/DOC(95)03, September 2005, which will be referred to as the benchmark handbook throughout the report. For these input values, the experimental benchmark k{sub eff} is approximately 1.0. The MCNP validation computer runs ran to an accuracy of approximately {+-} 0.001. For the cases where the reported benchmark k{sub eff} was not equal to 1.0000 the MCNP calculational results were normalized. The difference between the MCNP validation computer runs and the experimentally measured k{sub eff} is the MCNP5 v1.40 bias. The USLSTATS code (ORNL 1998) was utilized to perform the statistical analysis and generate an acceptable maximum k{sub eff} limit for calculations of the intermediate enriched uranium type systems.

  2. Modeled atmospheric radon concentrations from uranium mines

    SciTech Connect (OSTI)

    Droppo, J.G.

    1985-04-01T23:59:59.000Z

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  3. Measurements of Low-Enriched Uranium Holdup.

    SciTech Connect (OSTI)

    Belian, A. P. (Anthony P.); Reilly, T. D. (T. Douglas); Russo, P. A. (Phyllis A.); Tobin, S. J. (Stephen J.)

    2005-01-01T23:59:59.000Z

    A recent effort determined uranium holdup at a large fuel fabrication facility abroad where low enriched ({approx} 3%) uranium (LEU) oxide feeds the pellet manufacturing process. Measurements taken with both high- and low-resolution gamma-ray spectrometry systems include extensive data for the ventilation and vacuum systems. Equipment dimensions and the corresponding holdup deposit masses are large for LEU. Because deposits are infinitely thick to the 186 keV gamma ray in many locations in an LEU environment, measurements of both the 186 and 1001 keV gamma-rays were required, and self-attenuation was significant at 1001 keV in many cases. These wide-dynamic-range measruements used short count times, portable scintillator detectors, and portable MCAs. Because equipment is elevated above floor levels, most measurements were made with detectors mounted on extended telescoping poles. One of the main goals of this effort was to demonstrate and validate methods for measurement and quantitative analysis of LEU holdup using low-resolution detectors and the Generalized Geometry Holdup (GGH) techniques. The current GGH approach is applied elsewhere for holdup measurements of plutonium and high-enriched uranium. The recent experience is directly applicable to holdup measruements at LEU facilities such as the Paducah and Portmouth gaseous diffusion enrichment plants and elsewhere, including LEU sites where D and D is active. This report discusses the measurement methodology, calibration of the measurement equipment, measurement control, analysis of the data, and the global and local assay results including random and systematic uncertainties. It includes field-validation exercises (multiple calibrated systems that perform measruements on the same extended equipment) as well as quantitative validation results obtained on reference materials assembled to emulate the deposits in an extended vacuum line that was also measured by these techniques. The paper examines the differences in assay results between the low-resolution system using the GGH method and the high-resolution system utilizing the commercially available ISOCS analysis method.

  4. Enrichment Determination of Uranium in Shielded Configurations

    SciTech Connect (OSTI)

    Crye, Jason Michael [ORNL] [ORNL; Hall, Howard L [ORNL] [ORNL; McConchie, Seth M [ORNL] [ORNL; Mihalczo, John T [ORNL] [ORNL; Pena, Kirsten E [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The determination of the enrichment of uranium is required in many safeguards and security applications. Typical methods of determining the enrichment rely on detecting the 186 keV gamma ray emitted by {sup 235}U. In some applications, the uranium is surrounded by external shields, and removal of the shields is undesirable. In these situations, methods relying on the detection of the 186 keV gamma fail because the gamma ray is shielded easily. Oak Ridge National Laboratory (ORNL) has previously measured the enrichment of shielded uranium metal using active neutron interrogation. The method consists of measuring the time distribution of fast neutrons from induced fissions with large plastic scintillator detectors. To determine the enrichment, the measurements are compared to a calibration surface that is created from Monte Carlo simulations where the enrichment in the models is varied. In previous measurements, the geometry was always known. ORNL is extending this method to situations where the geometry and materials present are not known in advance. In the new method, the interrogating neutrons are both time and directionally tagged, and an array of small plastic scintillators measures the uncollided interrogating neutrons. Therefore, the attenuation through the item along many different paths is known. By applying image reconstruction techniques, an image of the item is created which shows the position-dependent attenuation. The image permits estimating the geometry and materials present, and these estimates are used as input for the Monte Carlo simulations. As before, simulations predict the time distribution of induced fission neutrons for different enrichments. Matching the measured time distribution to the closest prediction from the simulations provides an estimate of the enrichment. This presentation discusses the method and provides results from recent simulations that show the importance of knowing the geometry and materials from the imaging system.

  5. Testing Photons' Bose-Einstein Statistics With Compton Scattering

    E-Print Network [OSTI]

    Brett Altschul

    2010-08-27T23:59:59.000Z

    It is an empirical question whether photons always obey Bose-Einstein statistics, but devising and interpreting experimental tests of photon statistics can be a challenge. The nonrelativistic cross section for Compton scattering illustrates how a small admixture nu of wrong-sign statistics leads to a loss of gauge invariance; there is a large anomalous amplitude for scattering timelike photons. Nevertheless, one can interpret the observed transparency of the solar wind plasma at low frequencies as a bound nu < 10^(-25) if Lorentz symmetry is required. If there is instead a universal preferred frame, the bound is nu < 10^(-14), still strong compared with previous results.

  6. Maintaining the uranium resources data system and assessing the 1989 US uranium potential resources

    SciTech Connect (OSTI)

    McCammon, R.B. (Geological Survey, Reston, VA (USA)); Finch, W.I.; Grundy, W.D.; Pierson, C.T. (Geological Survey, Denver, CO (USA))

    1990-12-31T23:59:59.000Z

    Under the Memorandum of Understanding (MOU) between the EIA, US Department of Energy, and the US Geological Survey (USGS), US Department of the Interior, the USGS develops estimates of uranium endowment for selected geological environments in the United States. New estimates of endowment are used to update the Uranium Resources Assessment Data (URAD) System which, beginning in 1990, is maintained for EIA by the USGS. For 1989, estimates of US undiscovered resources were generated using revised economic index values (current to December 1989) in the URAD system's cost model. The increase in the estimates for the Estimated Additional Resources (EAR) and Speculative Resources (SR) classes resulted primarily from increases in the estimates of uranium endowment for the solution-collapse, breccia-pipe uranium deposit environment in the Colorado Plateau resource region. The mean values for $30-, $50-, and $100-per-pound U{sub 3}O{sub 8} forward-cost categories of EAR increased by about 8, 48, and 32 percent, respectively, as compared to 1988. Estimates of the 1989 undiscovered resources in the SR class also increased in all three forward-cost categories by 10, 5, and 9 percent, respectively. The original cost equations in the URAD System were designed to cover drilling costs related to extensive flat-lying tabular ore bodies. The equations do not adequately treat drilling costs for the smaller areas of vertical breccia pipe uranium deposits in the Colorado Plateau resource region. The development of appropriate cost equations for describing the economics of mining this type of deposit represents a major new task. 12 refs., 4 figs., 5 tabs.

  7. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31T23:59:59.000Z

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

  8. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30T23:59:59.000Z

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

  9. Geology of Superior Ridge uranium deposits, Ventura County, California

    SciTech Connect (OSTI)

    Dickinson, K.A.; Leventhal, J.S.

    1988-03-01T23:59:59.000Z

    Epigenetic uranium deposits with potential commercial value have been found in the lower part of the upper Eocene to lower Miocene Sespe Formation near Ojai, in Ventura County, California. This report describes the geological and geochemical setting of these deposits and postulates a model for their origin. Several uranium deposits are located on Superior Ridge, a topographic high about 3 miles long located just south of White Ledge Peak and 6 to 9 miles west of Ojai (Photo 1). A single uranium deposit on Laguna Ridge is located about 3 miles south of Superior Ridge, and was included with the Superior Ridge deposits in the White Ledge Peak district. A few small deposits are known to exist in other parts of Ventura County. A preliminary model for uranium mineralization in the Sespe Formation postulated that the organic material necessary for concentrating the uranium by chemical reduction or precipitation originated as terrestrial humic acid or humate.

  10. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    SciTech Connect (OSTI)

    White, D L; Foster, M

    1982-05-01T23:59:59.000Z

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint.

  11. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    SciTech Connect (OSTI)

    Myers, Astasia [Stanford University, Stanford, CA 94305, USA and MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

    2011-06-28T23:59:59.000Z

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  12. Advanced Statistical Mechanics: CHEM 646 Problem Set 1

    E-Print Network [OSTI]

    Ronis, David M.

    is a function of position, show that dI() d = d r I() ( r) ( r). Inverting the question, suppose weAdvanced Statistical Mechanics: CHEM 646 Problem Set 1 1. At low densities, the generic pair distribution function can be approximated as (2) ( r1, r2) = 2 e- u12(r12) , where u12 is the pair potential

  13. Active neutron multiplicity counting of bulk uranium

    SciTech Connect (OSTI)

    Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C.

    1991-01-01T23:59:59.000Z

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235 }U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs.

  14. Uranium Mining, Conversion, and Enrichment Industries

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy OfficeFact Sheet Uranium Mill Tailingsi

  15. Uranium Marketing Annual Report - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand expected toall Uranium

  16. Uranium Leasing Program Documents | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter-Japan Joint Nuclear D.C. *ofUranium EnrichmentDocuments

  17. Summary - Uranium233 Downblending and Disposition Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing of AdmiraltheOil and LessOak Ridge,SRSTank

  18. Weakly sufficient quantum statistics

    E-Print Network [OSTI]

    Katarzyna Lubnauer; Andrzej ?uczak; Hanna Pods?dkowska

    2009-11-23T23:59:59.000Z

    Some aspects of weak sufficiency of quantum statistics are investigated. In particular, we give necessary and sufficient conditions for the existence of a weakly sufficient statistic for a given family of vector states, investigate the problem of its minimality, and find the relation between weak sufficiency and other notions of sufficiency employed so far.

  19. Transportation Statistics Annual Report 1997

    SciTech Connect (OSTI)

    Fenn, M.

    1997-01-01T23:59:59.000Z

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

  20. Statistical laws in linguistics

    E-Print Network [OSTI]

    Altmann, Eduardo G

    2015-01-01T23:59:59.000Z

    Zipf's law is just one out of many universal laws proposed to describe statistical regularities in language. Here we review and critically discuss how these laws can be statistically interpreted, fitted, and tested (falsified). The modern availability of large databases of written text allows for tests with an unprecedent statistical accuracy and also a characterization of the fluctuations around the typical behavior. We find that fluctuations are usually much larger than expected based on simplifying statistical assumptions (e.g., independence and lack of correlations between observations).These simplifications appear also in usual statistical tests so that the large fluctuations can be erroneously interpreted as a falsification of the law. Instead, here we argue that linguistic laws are only meaningful (falsifiable) if accompanied by a model for which the fluctuations can be computed (e.g., a generative model of the text). The large fluctuations we report show that the constraints imposed by linguistic laws...