National Library of Energy BETA

Sample records for uranium statistics questions

  1. Statistical data of the uranium industry

    SciTech Connect (OSTI)

    1981-01-01

    Data are presented on US uranium reserves, potential resources, exploration, mining, drilling, milling, and other activities of the uranium industry through 1980. The compendium reflects the basic programs of the Grand Junction Office. Statistics are based primarily on information provided by the uranium exploration, mining, and milling companies. Data on commercial U/sub 3/O/sub 8/ sales and purchases are included. Data on non-US uranium production and resources are presented in the appendix. (DMC)

  2. Statistical data of the uranium industry

    SciTech Connect (OSTI)

    1983-01-01

    This report is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1982. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office of the US Department of Energy. Statistical data obtained from surveys conducted by the Energy Information Administration are included in Section IX. The production, reserves, and drilling data are reported in a manner which avoids disclosure of proprietary information.

  3. Statistical design of a uranium corrosion experiment

    SciTech Connect (OSTI)

    Wendelberger, Joanne R; Moore, Leslie M

    2009-01-01

    This work supports an experiment being conducted by Roland Schulze and Mary Ann Hill to study hydride formation, one of the most important forms of corrosion observed in uranium and uranium alloys. The study goals and objectives are described in Schulze and Hill (2008), and the work described here focuses on development of a statistical experiment plan being used for the study. The results of this study will contribute to the development of a uranium hydriding model for use in lifetime prediction models. A parametric study of the effect of hydrogen pressure, gap size and abrasion on hydride initiation and growth is being planned where results can be analyzed statistically to determine individual effects as well as multi-variable interactions. Input to ESC from this experiment will include expected hydride nucleation, size, distribution, and volume on various uranium surface situations (geometry) as a function of age. This study will also address the effect of hydrogen threshold pressure on corrosion nucleation and the effect of oxide abrasion/breach on hydriding processes. Statistical experiment plans provide for efficient collection of data that aids in understanding the impact of specific experiment factors on initiation and growth of corrosion. The experiment planning methods used here also allow for robust data collection accommodating other sources of variation such as the density of inclusions, assumed to vary linearly along the cast rods from which samples are obtained.

  4. Statistical data of the uranium industry

    SciTech Connect (OSTI)

    1980-01-01

    This document is a compilation of historical facts and figures through 1979. These statistics are based primarily on information provided voluntarily by the uranium exploration, mining, and milling companies. The production, reserves, drilling, and production capability information has been reported in a manner which avoids disclosure of proprietary information. Only the totals for the $1.5 reserves are reported. Because of increased interest in higher cost resources for long range planning purposes, a section covering the distribution of $100 per pound reserves statistics has been newly included. A table of mill recovery ranges for the January 1, 1980 reserves has also been added to this year's edition. The section on domestic uranium production capability has been deleted this year but will be included next year. The January 1, 1980 potential resource estimates are unchanged from the January 1, 1979 estimates.

  5. uranium

    National Nuclear Security Administration (NNSA)

    to prepare surplus plutonium for disposition, and readiness to begin the Second Uranium Cycle, to start processing spent nuclear fuel.

    H Canyon is also being...

  6. Uranium industry annual 1997

    SciTech Connect (OSTI)

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  7. Uranium

    SciTech Connect (OSTI)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-10-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U/sub 3/O/sub 8/; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables. (DP)

  8. Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants

    SciTech Connect (OSTI)

    Ladd-Lively, Jennifer L

    2014-01-01

    The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component in the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.

  9. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  10. Determination of the origin of elevated uranium at a Former Air Force Landfill using non-parametric statistics analysis and uranium isotope ratio analysis

    SciTech Connect (OSTI)

    Weismann, J.; Young, C.; Masciulli, S.; Caputo, D.

    2007-07-01

    Lowry Air Force Base (Lowry) was closed in September 1994 as part of the Base Realignment and Closure (BRAC) program and the base was transferred to the Lowry Redevelopment Authority in 1995. As part of the due diligence activities conducted by the Air Force, a series of remedial investigations were conducted across the base. A closed waste landfill, designated Operable Unit 2 (OU 2), was initially assessed in a 1990 Remedial Investigation (RI; [1]). A Supplemental Remedial Investigation was conducted in 1995 [2] and additional studies were conducted in a 1998 Focused Feasibility Study. [3] The three studies indicated that gross alpha, gross beta, and uranium concentrations were consistently above regulatory standards and that there were detections of low concentrations other radionuclides. Results from previous investigations at OU 2 have shown elevated gross alpha, gross beta, and uranium concentrations in groundwater, surface water, and sediments. The US Air Force has sought to understand the provenance of these radionuclides in order to determine if they could be due to leachates from buried radioactive materials within the landfill or whether they are naturally-occurring. The Air Force and regulators agreed to use a one-year monitoring and sampling program to seek to explain the origins of the radionuclides. Over the course of the one-year program, dissolved uranium levels greater than the 30 {mu}g/L Maximum Contaminant Level (MCL) were consistently found in both up-gradient and down-gradient wells at OU 2. Elevated Gross Alpha and Gross Beta measurements that were observed during prior investigations and confirmed during the LTM were found to correlate with high dissolved uranium content in groundwater. If Gross Alpha values are corrected to exclude uranium and radon contributions in accordance with US EPA guidance, then the 15 pCi/L gross alpha level is not exceeded. The large dataset also allowed development of gross alpha to total uranium correlation

  11. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  12. Uranium industry annual 1994

    SciTech Connect (OSTI)

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  13. Uranium industry annual 1998

    SciTech Connect (OSTI)

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  14. Uranium industry annual 1995

    SciTech Connect (OSTI)

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  15. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Table 9. Summary production statistics of the U.S. ...

  16. Phospholipid fatty acid biomarkers in a freshwater periphyton community exposed to uranium: discovery by non-linear statistical learning

    SciTech Connect (OSTI)

    Webb-Robertson, Bobbie-Jo M.; Bunn, Amoret L.; Bailey, Vanessa L.

    2011-01-01

    Phospholipid fatty acids (PLFA) have been widely used to characterize environmental microbial communities, generating community profiles that can distinguish phylogenetic or functional groups within the community. The poor specificity of organism groups with fatty acid biomarkers in the classic PLFA-microorganism associations is a confounding factor in many of the statistical classification/clustering approaches traditionally used to interpret PLFA profiles. In this paper we demonstrate that non-linear statistical learning methods, such as a support vector machine (SVM), can more accurately find patterns related to uranyl nitrate exposure in a freshwater periphyton community than linear methods, such as partial least squares discriminant analysis. In addition, probabilistic models of exposure can be derived from the identified lipid biomarkers to demonstrate the potential model-based approach that could be used in remediation. The SVM probability model separates dose groups at accuracies of ~87.0%, ~71.4%, ~87.5%, and 100% for the four groups; Control (non-amended system), low-dose (amended at 10 µg U L-1), medium dose (amended at 100 µg U L-1), and high dose (500 µg U L-1). The SVM model achieved an overall cross-validated classification accuracy of ~87% in contrast to ~59% for the best linear classifier.

  17. Past Question

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HallPast QuestionsAsk a Scientist Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Unfortunately, we couldn't find that question

  18. Appropriations Questions

    Broader source: Energy.gov [DOE]

    Grantees should review the terms of their award agreement to determine when funds must be expended. If there are questions regarding deadlines within the award agreement, Grantees should consult...

  19. Uranium industry annual, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-09-29

    This report provides current statistical data on the US uranium industry for the Congress, federal and state agencies, the uranium and utility industries, and the public. It utilizes data from the mandatory ''Uranium Industry Annual Survey,'' Form EIA-858; historical data collected by the Energy Information Administration (EIA) and by the Grand Junction (Colorado) Project Office of the Idaho Operations Office of the US Department of Energy (DOE); and other data from federal agencies that preceded the DOE. The data provide a comprehensive statistical characterization of the industry's annual activities and include some information about industry plans and commitments over the next several years. Where these data are presented in aggregate form, care has been taken to protect the confidentiality of company-specific data while still conveying an accurate and complete statistical representation of the industry data.

  20. Past Question

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HallAsk s ScientistPast Questions Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Unfortunately, we couldn't find that category

  1. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    9. Summary production statistics of the U.S. uranium industry, 1993-2015 Year Exploration and development surface drilling (million feet) Exploration and development drilling expenditures 1 (million dollars) Mine production of uranium (million pounds U3O8) Uranium concentrate production (million pounds U3O8) Uranium concentrate shipments (million pounds U3O8) Employment (person-years) 1993 1.1 5.7 2.1 3.1 3.4 871 1994 0.7 1.1 2.5 3.4 6.3 980 1995 1.3 2.6 3.5 6.0 5.5 1,107 1996 3.0 7.2 4.7 6.3

  2. URANIUM ALLOYS

    DOE Patents [OSTI]

    Colbeck, E.W.

    1959-12-29

    A uranium alloy is reported containing from 0.1 to 5 per cent by weight of molybdenum and from 0.1 to 5 per cent by weight of silicon, the balance being uranium.

  3. Priority Questions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    related to DOE Furnace NOPR LCC model and TSD Priority Questions A) It appears that the assignment of base case efficiency for each individual home is chosen based on a random assignment in the Base Case AFUE sheet D12. This ignores the likelihood that there is an economic motive for consumers in selecting condensing vs. non-condensing furnaces. That is, consumers who have good payback economics for condensing furnaces are actually less likely to be affected by a rule than those with poor

  4. URANIUM COMPOSITIONS

    DOE Patents [OSTI]

    Allen, N.P.; Grogan, J.D.

    1959-05-12

    This patent relates to high purity uranium alloys characterized by improved stability to thermal cycling and low thermal neutron absorption. The high purity uranium alloy contains less than 0.1 per cent by weight in total amount of any ore or more of the elements such as aluminum, silicon, phosphorous, tin, lead, bismuth, niobium, and zinc.

  5. Uranium Processing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Uranium Processing Facility

  6. Technical analysis in short-term uranium price forecasting

    SciTech Connect (OSTI)

    Schramm, D.S.

    1990-03-01

    As market participants anticipate the end of the current uranium price decline and its subsequent reversal, increased attention will be focused upon forecasting future price movements. Although uranium is economically similar to other mineral commodities, it is questionable whether methodologies used to forecast price movements of such commodities may be successfully applied to uranium.

  7. JACKETING URANIUM

    DOE Patents [OSTI]

    Saller, H.A.; Keeler, J.R.

    1959-07-14

    The bonding to uranium of sheathing of iron or cobalt, or nickel, or alloys thereof is described. The bonding is accomplished by electro-depositing both surfaces to be joined with a coating of silver and amalgamating or alloying the silver layer with mercury or indium. Then the silver alloy is homogenized by exerting pressure on an assembly of the uranium core and the metal jacket, reducing the area of assembly and heating the assembly to homogenize by diffusion.

  8. Table 4.9 Uranium Exploration and Development Drilling, 1949...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... WValue withheld to avoid disclosure of individual company data. Sources: * 1949-1981U.S. Department of Energy, Grand Junction Office, Statistical Data of the Uranium Industry, ...

  9. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    and Development Drilling","Mine Production of Uranium ","Uranium Concentrate Production ","Uranium Concentrate Shipments ","Employment " "Year","Drilling (million feet)"," ...

  10. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This book presents the GAO's views on the Department of Energy's (DOE) program to develop a new uranium enrichment technology, the atomic vapor laser isotope separation process (AVLIS). Views are drawn from GAO's ongoing review of AVLIS, in which the technical, program, and market issues that need to be addressed before an AVLIS plant is built are examined.

  11. Uranium distribution in relation to sedimentary facies, Kern Lake, California

    SciTech Connect (OSTI)

    Merifield, P.M.; Carlisle, D.; Idiz, E.; Anderhalt, R.; Reed, W.E.; Lamar, D.L.

    1980-04-01

    Kern Lake has served as a sink for drainage from the southern Sierra Nevada and, in lesser amounts, from the southern Temblor Range. Both areas contain significant uranium source rocks. The uranium content in Holocene Kern Lake sediments correlates best with the mud (silt and clay) fraction. It correlates less well with organic carbon. Biotite grains could account for much of the uranium in the sand fraction, and perhaps the silt fraction as well. The data suggest that fixation of uranium by adsorption on mineral grains is a dominant process in this lake system. Further work is required to determine the importance of cation-exchange of uranium on clays and micas and of organically complexed uranium adsorbed to mineral surfaces. These findings also raise the question of whether uranium transport down the Kern River occurs largely as uranium adsorbed to mineral surfaces.

  12. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector.

  13. COPPER COATED URANIUM ARTICLE

    DOE Patents [OSTI]

    Gray, A.G.

    1958-10-01

    Various techniques and methods for obtaining coppercoated uranium are given. Specifically disclosed are a group of complex uranium coatings having successive layers of nickel, copper, lead, and tin.

  14. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2. Maximum anticipated uranium market requirements of owners and operators of U.S. ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  15. Answering Key Fuel Cycle Questions

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

    2003-10-01

    The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we

  16. URANIUM EXTRACTION

    DOE Patents [OSTI]

    Harrington, C.D.; Opie, J.V.

    1958-07-01

    The recovery of uranium values from uranium ore such as pitchblende is described. The ore is first dissolved in nitric acid, and a water soluble nitrate is added as a salting out agent. The resulting feed solution is then contacted with diethyl ether, whereby the bulk of the uranyl nitrate and a portion of the impurities are taken up by the ether. This acid ether extract is then separated from the aqueous raffinate, and contacted with water causing back extractioa of the uranyl nitrate and impurities into the water to form a crude liquor. After separation from the ether extract, this crude liquor is heated to about 118 deg C to obtain molten uranyl nitrate hexahydratc. After being slightly cooled the uranyl nitrate hexahydrate is contacted with acid free diethyl ether whereby the bulk of the uranyl nitrate is dissolved into the ethcr to form a neutral ether solution while most of the impurities remain in the aqueous waste. After separation from the aqueous waste, the resultant ether solution is washed with about l0% of its volume of water to free it of any dissolved impurities and is then contacted with at least one half its volume of water whereby the uranyl nitrate is extracted into the water to form an aqueous product solution.

  17. Last Call for Questions

    Broader source: Energy.gov [DOE]

    Just a quick reminder that the deadline for submitting your home energy efficiency questions directly to Secretary Chu is midnight tonight (10/07). The Secretary will personally respond to some of the questions next week.

  18. Office of Survey Development and Statistical Integration

    U.S. Energy Information Administration (EIA) Indexed Site

    Steve Harvey April 27, 2011 | Washington, D.C. Tough Choices in U.S. EIA's Data Programs Agenda * Office of Oil, Gas, and Coal Supply Statistics * Office of Petroleum and Biofuels Statistics * Office of Electricity, Renewables, and Uranium Statistics * Office of Energy Consumption and Efficiency Statistics * Office of Survey Development and Statistical Integration 2 Presenter name, Presentation location, Presentation date Coal Data Collection Program 3 James Kendell Washington, DC, April 27,

  19. PRODUCTION OF URANIUM TETRACHLORIDE

    DOE Patents [OSTI]

    Calkins, V.P.

    1958-12-16

    A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

  20. PRODUCTION OF URANIUM MONOCARBIDE

    DOE Patents [OSTI]

    Powers, R.M.

    1962-07-24

    A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)

  1. DECONTAMINATION OF URANIUM

    DOE Patents [OSTI]

    Feder, H.M.; Chellew, N.R.

    1958-02-01

    This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.

  2. URANIUM DECONTAMINATION

    DOE Patents [OSTI]

    Buckingham, J.S.; Carroll, J.L.

    1959-12-22

    A process is described for reducing the extractability of ruthenium, zirconium, and niobium values into hexone contained in an aqueous nitric acid uranium-containing solution. The solution is made acid-deficient, heated to between 55 and 70 deg C, and at that temperature a water-soluble inorganic thiosulfate is added. By this, a precipitate is formed which carries the bulk of the ruthenium, and the remainder of the ruthenium as well as the zirconium and niobium are converted to a hexone-nonextractable form. The rutheniumcontaining precipitate can either be removed from the solu tion or it can be dissolved as a hexone-non-extractable compound by the addition of sodium dichromate prior to hexone extraction.

  3. Statistical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Statistical Sciences Applying statistical reasoning and rigor to multidisciplinary scientific investigations Contact Us Group Leader James Gattiker (Acting) Email Deputy Group Leader Geralyn Hemphill (Acting) Email Group Administrator LeeAnn Martinez (505) 667-3308 Email Statistical Sciences Statistical Sciences provides statistical reasoning and rigor to multidisciplinary scientific investigations and development, application, and communication of cutting-edge statistical sciences research.

  4. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Science Questions This experiment seeks to use a

  5. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Related Links SPARTICUS Home AAF Home Deployment Operations Measurements SGP Data Plots NASA Data Plots ARM Data Discovery Browse Data Experiment Planning SPARTICUS Proposal Abstract Science Questions Science and Operations (PDF, 1.01M) SPARTICUS Wiki News News & Press Backgrounder (PDF, 269K) Contacts Gerald Mace, Lead Scientist Science Questions Scatter plot of ice crystal number concentration from two different probes used during TWP-ICE. The differences are significant

  6. Unreviewed Safety Question Requirements

    Office of Environmental Management (EM)

    DOE G 424.1-1, Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements Performance Objective 1: Contractor Program Documentation 1. The USQ ...

  7. Reliability Question Comment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability-Question-Comment Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

  8. Frequently Asked Questions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Frequently asked questions (FAQs) and their corresponding answers regarding industrial distributed energy (DE) and combined heat and power (CHP) are provided below.

  9. Process for electroslag refining of uranium and uranium alloys

    DOE Patents [OSTI]

    Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

    1975-07-22

    A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

  10. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  11. PRODUCTION OF PURIFIED URANIUM

    DOE Patents [OSTI]

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  12. Method of recovering uranium hexafluoride

    DOE Patents [OSTI]

    Schuman, S.

    1975-12-01

    A method of recovering uranium hexafluoride from gaseous mixtures which comprises adsorbing said uranium hexafluoride on activated carbon is described.

  13. Problem of Questioning

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le Prof.Leprince-Ringuet, chercheur sur le plan scientifique, artistique et humain, parle de la remise en question des hommes et la remise en question scientifique fondamentale ou exemplaire- plusieurs personnes prennent la parole p.ex Jeanmairet, Adam, Gregory. Le Prof.Gregory clot la soirée en remerciant le Prof.Leprince-Ringuet

  14. Table 9.3 Uranium Overview, 1949-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    ... See "Nominal Dollars" in Glossary. Sources: * 1949-1966U.S. Department of Energy, Grand Junction Office, Statistical Data of the Uranium Industry, Report No. GJO-100, annual ...

  15. NICKEL COATED URANIUM ARTICLE

    DOE Patents [OSTI]

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  16. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. Shipments of uranium feed by owners and operators of U.S. civilian nuclear power ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  17. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    Inventories of uranium by owner as of end of year, 2011-15 thousand pounds U3O8 equivalent Inventories at the end of the year Owner of uranium inventory 2011 2012 2013 2014 P2015 ...

  18. Uranium Marketing Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2013-15 2013 2014 2015 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. AREVA ...

  19. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0. Contracted purchases of uranium from suppliers by owners and operators of U.S. civilian ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  20. Uranium Marketing Annual Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a. Foreign purchases, foreign sales, and uranium inventories owned by U.S. suppliers and ... Foreign sales U.S. supplier owned uranium inventories Owners and operators of U.S. ...

  1. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors by year, 2011-15 thousand pounds U3O8 equivalent Origin of uranium 2011 2012 2013 2014 P2015 ...

  2. METHOD FOR PURIFYING URANIUM

    DOE Patents [OSTI]

    Knighton, J.B.; Feder, H.M.

    1960-04-26

    A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

  3. PROCESS OF PURIFYING URANIUM

    DOE Patents [OSTI]

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  4. PREPARATION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

    1959-10-01

    A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

  5. Usage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage Statistics Usage Statistics Genepool Cluster Statistics Period: daily weekly monthly quarter yearly 2year Utilization By Group Jobs Pending Last edited: 2013-09-26 18:21:13...

  6. Questions about Cori

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edison Hopper PDSF Genepool Testbeds Retired Systems Storage & File Systems Data & Analytics Connecting to NERSC Queues and Scheduling Job Logs & Statistics Application...

  7. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Discovery Channel Earth Live Blog News & Press RACORO Backgrounder (PDF, 528K) ... the meteorological variability that requires RACORO-type long-term statistics to resolve. ...

  8. PRODUCTION OF URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Shaw, W.E.; Spenceley, R.M.; Teetzel, F.M.

    1959-08-01

    A method is presented for producing uranium tetrafluoride from the gaseous hexafluoride by feeding the hexafluoride into a high temperature zone obtained by the recombination of molecularly dissociated hydrogen. The molal ratio of hydrogen to uranium hexnfluoride is preferably about 3 to 1. Uranium tetrafluoride is obtained in a finely divided, anhydrous state.

  9. Final Uranium Leasing Program Programmatic Environmental Impact...

    Energy Savers [EERE]

    Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing ...

  10. APS Operational Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Downtime Log Yearly Operation Statistics 2016 Statistics 2015 Statistics 2014 Statistics 2013 Statistics 2012 Statistics 2011 Statistics 2010 Statistics 2009 Statistics 2008...

  11. ARM - AMF Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Science Plan (PDF, 4.4M) Rob Wood Website Outreach Backgrounders English Version (PDF, 363K) Portuguese Version (PDF, 327K) AMF Posters, 2009 English Version...

  12. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land

  13. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Related Links ISDAC Home AAF Home AVP Aircraft Instrumentation, October 14-16, 2008 ARM Data Discovery Browse Data Post-Campaign Data Sets Flight Summary Table (PDF, 440K) ISDAC Wiki Mission Summary Journal Deployment Resources NSA Site ARM Data Plots Quick Links Experiment Planning ISDAC Proposal Abstract Full Proposal (pdf, 1,735K) Science Questions Science Overview Document for ISDAC (pdf, 525K) ISDAC Flight Planning Document (PDF, 216K) Collaborations Logistics Measurements

  14. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    Major U.S. Uranium Reserves

  15. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  16. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  17. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  18. PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1958-04-15

    The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.

  19. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  20. Frequently Asked Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions Frequently Asked Questions 1. Does the State of Idaho have a Freedom of Information Act? Yes, it is called the "Public Records - Right to Examine", Idaho State Code 9-338. Please contact the appropriate state agency directly for the records you want. 2. Can I get a fee waiver for my requested document? DOE may determine to waive or reduce fees in cases where furnishing the information primarily benefits the general public by significantly assisting citizens

  1. Safeguards on uranium ore concentrate? the impact of modern mining and milling process

    SciTech Connect (OSTI)

    Francis, Stephen

    2013-07-01

    Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed.

  2. About the Uranium Mine Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Mine Team About the Uranium Mine Team Text coming

  3. Cluster Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics Cluster Statistics Ganglia Ganglia can be used to monitor performance of PDSF nodes... Read More PDSF IO Monitoring This page shows the IO response of the elizas and...

  4. Statistical Association

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kelly named Fellow of the American Statistical Association August 2, 2016 The American Statistical Association (ASA) has honored Elizabeth Kelly of the Lab's Statistical Sciences group with the title of Fellow. The ASA recognized her for providing exemplary statistical leadership of and collaboration on multidisciplinary teams dealing with environmental restoration, weapon quality, and nuclear materials storage to ensure the safety and security of the Nation. She will receive the Fellow award at

  5. The quantitative ion exchange separation of uranium from impurities

    SciTech Connect (OSTI)

    Narayanan, U.I.; Mason, P.B.; Zebrowski, J.P.; Rocca, M.; Frank, I.W.; Smith, M.M.; Johnson, K.D.; Orlowicz, G.J.; Dallmann, E.

    1995-03-01

    Two methods were tested for the quantitative separation of uranium from elemental impurities using commercially available resins. The sorption and elution behavior of uranium and the separation of it from a variety of other elements was studied. The first method utilized an anion exchange resin while the second method employed an extraction resin. The first method, the anion exchange of uranium (VI) in an acid chloride medium, was optimized and statistically tested for quantitative recovery of uranium. This procedure involved adsorption of uranium onto Blo-Rad AG 1-X8 or MP-1 ion exchange resins in 8 M HCl, separation of uncompleted or weakly complexed matrix ions with an 8 M HCI wash, and subsequent elution of uranium with 1 M HCl. Matrix ions more strongly adsorbed than uranium were left on the resin. Uranium recoveries with this procedure averaged greater than 99.9% with a standard deviation of 0.1%. In the second method, recovery of uranium on the extraction resin did not meet the criteria of this study and further examination was terminated.

  6. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  7. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners and operators of U.S. civilian nuclear power reactors, 1994-2015 million pounds U3O8 equivalent million separative work units (SWU) Year Feed deliveries by owners and operators of U.S. civilian nuclear power reactors Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors U.S.-origin enrichment services purchased Foreign-origin enrichment services purchased Total purchased enrichment services

  8. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  9. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  10. Uranium Dispersion & Dosimetry Model.

    Energy Science and Technology Software Center (OSTI)

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  11. Uranium Purchases Report

    Reports and Publications (EIA)

    1996-01-01

    Final issue. This report details natural and enriched uranium purchases as reported by owners and operators of commercial nuclear power plants. 1996 represents the most recent publication year.

  12. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Kaufman, D.

    1958-04-15

    A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.

  13. PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Ruehle, A.E.; Stevenson, J.W.

    1957-11-12

    An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

  14. COATING URANIUM FROM CARBONYLS

    DOE Patents [OSTI]

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  15. highly enriched uranium

    National Nuclear Security Administration (NNSA)

    and radioisotope supply capabilities of MURR and Nordion with General Atomics' selective gas extraction technology-which allows their low-enriched uranium (LEU) targets to remain...

  16. METHOD OF ROLLING URANIUM

    DOE Patents [OSTI]

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  17. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Resources, Inc., dba Cameco Resources Smith Ranch-Highland Operation Converse, Wyoming ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  18. Questions and Responses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Responses: Question 1: Would the Government consider accepting either CMMI-DEV or CMMI-SVC Level 3 or higher since there is majority of process areas are shared between the two constellations and repeatability of processes will not be reduced since both will require Level 3 or higher? Government Response: The Government has determined that CMMI-SVC is a relatively new methodology and is in agreement that there is a considerable overlap of process areas shared between the two constellations. The

  19. Uranium reference materials

    SciTech Connect (OSTI)

    Donivan, S.; Chessmore, R.

    1987-07-01

    The Technical Measurements Center has prepared uranium mill tailings reference materials for use by remedial action contractors and cognizant federal and state agencies. Four materials were prepared with varying concentrations of radionuclides, using three tailings materials and a river-bottom soil diluent. All materials were ground, dried, and blended thoroughly to ensure homogeneity. The analyses on which the recommended values for nuclides in the reference materials are based were performed, using independent methods, by the UNC Geotech (UNC) Chemistry Laboratory, Grand Junction, Colorado, and by C.W. Sill (Sill), Idaho National Engineering Laboratory, Idaho Falls, Idaho. Several statistical tests were performed on the analytical data to characterize the reference materials. Results of these tests reveal that the four reference materials are homogeneous and that no large systematic bias exists between the analytical methods used by Sill and those used by TMC. The average values for radionuclides of the two data sets, representing an unbiased estimate, were used as the recommended values for concentrations of nuclides in the reference materials. The recommended concentrations of radionuclides in the four reference materials are provided. Use of these reference materials will aid in providing uniform standardization among measurements made by remedial action contractors. 11 refs., 9 tabs.

  20. Question and Answer to Procedural Questions on Application for Rehearing :

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order No. 202-05-02 | Department of Energy Question and Answer to Procedural Questions on Application for Rehearing : Order No. 202-05-02 Question and Answer to Procedural Questions on Application for Rehearing : Order No. 202-05-02 Docket No. EO-05-01, Order No. 202-05-02: Question and Answer to Procedural Questions on Application for Rehearing Question and Answer to Procedural Questions on Application for Rehearing : Order No. 202-05-02 (12.25 KB) More Documents & Publications Comments

  1. U.S.Uranium Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Reserves Data for: 2003 Release Date: June 2004 Next Release: Not determined Uranium Reserves Estimates The Energy Information Administration (EIA) has reported the...

  2. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  3. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Minimum ...

  4. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Origin of ...

  5. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  6. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    3 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual ...

  7. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  8. PROCESS FOR MAKING URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Rosen, R.

    1959-07-14

    A process is described for producing uranium hexafluoride by reacting uranium hexachloride with hydrogen fluoride at a temperature below about 150 deg C, under anhydrous conditions.

  9. 2015 Uranium Market Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2015 Uranium Marketing Annual Report 2015 Uranium ... received in 2015 Weighted-average price Number of purchase contracts for ...

  10. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Number of purchasers Quantity with reported price ...

  11. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    data set of uranium reserves that were published in the July 2010 report U.S. Uranium Reserves Estimates at http:www.eia.govcneafnuclearpagereservesures.html. ...

  12. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Number of Holes Feet (thousand) Number of Holes ...

  13. URANIUM LEACHING AND RECOVERY PROCESS

    DOE Patents [OSTI]

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  14. Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as...

  15. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    your question. Sincerely, Judy Jackson, Fermilab Office of Public Affairs Hugh Montgomery, Fermilab D0 Experiment Back to Questions About Physics Main Page last modified 1...

  16. Frequently Asked Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Questions Where do we meet the first day? We will meet at the Los Alamos Research Park (4200 Casa Grande Dr., Los Alamos, NM 87544) Suite 300 at 8:00 on the first day. What is the dress code? Students dress casually at LANL, particularly during the summer. Shorts and T-shirts are fine, but business attire is suggested when giving presentations. When working in the labs, expect to wear closed-toe shoes (no flip-flops). It is not O.K. to go bare foot while on site at the summer school. What will

  17. H. UNREVIEWED SAFETY QUESTIONS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Department of Energy Pt. 835 H. UNREVIEWED SAFETY QUESTIONS 1. The USQ process is an important tool to evaluate whether changes affect the safety basis. A contractor must use the USQ proc- ess to ensure that the safety basis for a DOE nuclear facility is not undermined by changes in the facility, the work performed, the associated hazards, or other factors that support the adequacy of the safety basis. 2. The USQ process permits a contractor to make physical and procedural changes to a nuclear

  18. Town Hall Questions Answered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 CBFO Manager's weekly update to local residents Read Carlsbad Field Office Manager Joe Franco's letter to Eddy and Lea County residents for the week of April 14: at http://1.usa.gov/1mkxm7b Town Hall Questions Answered Q. What is the condition of Panel 7 right now? A. Work teams entering the underground facility as part of ongoing Phase 3 activities are still working to determine the full condition of Panel 7. Initial entries indicate good roof conditions. Q. What's the presumed reason

  19. Question 3: Industry outlook

    SciTech Connect (OSTI)

    Carrigg, J.A.; Crespo, J.R.; Croom, J.H.; Davis, E.B. Jr.; Green, R.C. Jr.; Hale, R.W.; Howard, J.J.; McCormick, W.T. Jr.; Page, T.A.; Ryan, W.F.; Schrader, T.F.; Schuchart, J.A.; Smith, J.F.; Stys, R.D.

    1990-10-25

    This article is a collection of responses from natural gas distribution company representatives to questions on what they believe is the most important problem facing local distribution companies today and how are they positioning their companies to respond to the problem. Topics include remaining competitive in a changing market and business environment, proper pricing of services, procurement and marketing of natural gas, avoiding gas shortages from deliverability problems, coordination with state regulators on relevant issues such as cost recovery and rate structures, diversification of natural gas sources, regulation, service to customers, bypassing of local utilities, unbundling of rates and services at the pipeline level, and nonutility electric generators.

  20. DECONTAMINATION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Butler, T.A.

    1962-05-15

    A process is given for separating fission products from uranium by extracting the former into molten aluminum. Phase isolation can be accomplished by selectively hydriding the uranium at between 200 and 300 deg C and separating the hydride powder from coarse particles of fissionproduct-containing aluminum. (AEC)

  1. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  2. Uranium dioxide electrolysis

    SciTech Connect (OSTI)

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  3. METHOD FOR PURIFYING URANIUM

    DOE Patents [OSTI]

    Kennedy, J.W.; Segre, E.G.

    1958-08-26

    A method is presented for obtaining a compound of uranium in an extremely pure state and in such a condition that it can be used in determinations of the isotopic composition of uranium. Uranium deposited in calutron receivers is removed therefrom by washing with cold nitric acid and the resulting solution, coataining uranium and trace amounts of various impurities, such as Fe, Ag, Zn, Pb, and Ni, is then subjected to various analytical manipulations to obtain an impurity-free uranium containing solution. This solution is then evaporated on a platinum disk and the residue is ignited converting it to U2/sub 3//sub 8/. The platinum disk having such a thin film of pure U/sub 2/O/sub 8/ is suitable for use with isotopic determination techaiques.

  4. URANIUM PRECIPITATION PROCESS

    DOE Patents [OSTI]

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  5. Doing Business Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    The following are frequently asked questions about working with in partnership with DOE laboratories.

  6. Uranium exploration of the Colorado Plateau: interim staff report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    This report is an issue of the original draft copy of the Interim Staff Report on Uranium Exploration on the Colorado Plateau, dated June 1951. The original draft copy was only recently located and is being published at this time because of the interest in the contained historical content. The table of contents of this report lists: history of uranium mining; geology; proposed program for the geologic investigations section; general activities of industry and government; and future exploration of sedimentary uranium deposits and anticipated results. Under the proposed program section are: future of the copper-uranium deposits as a source of uranium; uraniferous asphaltite deposits; and commission exploration and future possibilities. The section on general activities of industry and government includes: exploratory and development drilling; field investigations and mapping; early geologic investigations and investigations by the US geological survey; and geophysical exploration. Tables are also presented on: uranium production by districts; US Geological survey drilling statistics; Colorado Exploration Branch drilling statistics; summary of drilling projects; and comparative yearly core-drill statistics on the Colorado Plateau.

  7. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  8. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  9. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  10. Cluster Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genepool Memory Heatmaps Usage Statistics UGE Scheduler Cycle Time File storage and I/O Data Management Supported Systems FAQ Performance and Optimization Genepool Completed Jobs Genepool Training and Tutorials Websites, databases and cluster services Queues and Scheduling Retired Systems Storage & File Systems Application Performance Data & Analytics Job Logs & Statistics Training & Tutorials Software Policies User Surveys NERSC Users Group Help Staff Blogs Request Repository

  11. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  12. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    4. Deliveries of uranium feed for enrichment by owners and operators of U.S. civilian nuclear power reactors by origin country and delivery year, 2013-15 thousand pounds U3O8 ...

  13. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9. Contracted purchases of uranium by owners and operators of U.S. civilian nuclear power reactors, signed in 2015, by delivery year, 2016-25 thousand pounds U3O8 equivalent Year ...

  14. PURIFICATION OF URANIUM FUELS

    DOE Patents [OSTI]

    Niedrach, L.W.; Glamm, A.C.

    1959-09-01

    An electrolytic process of refining or decontaminating uranium is presented. The impure uranium is made the anode of an electrolytic cell. The molten salt electrolyte of this cell comprises a uranium halide such as UF/sub 4/ or UCl/sub 3/ and an alkaline earth metal halide such as CaCl/sub 2/, BaF/sub 2/, or BaCl/sub 2/. The cathode of the cell is a metal such as Mn, Cr, Co, Fe, or Ni which forms a low melting eutectic with U. The cell is operated at a temperature below the melting point of U. In operation the electrodeposited uranium becomes alloyed with the metal of the cathode, and the low melting alloy thus formed drips from the cathode.

  15. ANODIC TREATMENT OF URANIUM

    DOE Patents [OSTI]

    Kolodney, M.

    1959-02-01

    A method is presented for effecting eloctrolytic dissolution of a metallic uranium article at a uniform rate. The uranium is made the anode in an aqueous phosphoric acid solution containing nitrate ions furnished by either ammonium nitrate, lithium nitrate, sodium nitrate, or potassium nitrate. A stainless steel cathode is employed and electrolysls carried out at a current density of about 0.1 to 1 ampere per square inch.

  16. URANIUM EXTRACTION PROCESS

    DOE Patents [OSTI]

    Baldwin, W.H.; Higgins, C.E.

    1958-12-16

    A process is described for recovering uranium values from acidic aqueous solutions containing hexavalent uranium by contacting the solution with an organic solution comprised of a substantially water-immiscible organlc diluent and an organic phosphate to extract the uranlum values into the organic phase. Carbon tetrachloride and a petroleum hydrocarbon fraction, such as kerosene, are sultable diluents to be used in combination with organlc phosphates such as dibutyl butylphosphonate, trlbutyl phosphine oxide, and tributyl phosphate.

  17. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, Alvin B.

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  18. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  19. Nuclear Fuel Facts: Uranium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing

  20. Uranium Processing Facility Team Signs Partnering Agreement ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Facility ... Uranium Processing Facility Team Signs Partnering Agreement ... Nuclear Security, LLC; John Eschenberg, Uranium Processing Facility Project Office; Brian ...

  1. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  2. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  3. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  4. PRODUCTION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-08-27

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

  5. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  6. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  7. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2015 Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 thousand pounds U 3 O 8 equivalent Year Maximum ...

  8. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Marketing Annual Report 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 2014 2015 2014 2015 2014 2015 Weighted-average price ...

  9. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Figure 3. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2011-15 Figure 4. Weighted-average price of uranium ...

  10. 2015 Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 ...

  11. Uranium-titanium-niobium alloy

    DOE Patents [OSTI]

    Ludtka, Gail M.; Ludtka, Gerard M.

    1990-01-01

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  12. METHOD OF SINTERING URANIUM DIOXIDE

    DOE Patents [OSTI]

    Henderson, C.M.; Stavrolakis, J.A.

    1963-04-30

    This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

  13. Excess Uranium Inventory Management Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective management of the Energy Department’s surplus uranium inventory in support of meeting its critical...

  14. Storage Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting I/O Resources for Scientific Applications at NERSC Optimizing I/O performance on the Lustre file system I/O Formats Science Databases Sharing Data Transferring Data Unix Groups at NERSC Unix File Permissions Application Performance Data & Analytics Job Logs & Statistics Training & Tutorials Software Policies User Surveys NERSC Users Group Help Staff Blogs Request Repository Mailing List Home » For Users

  15. uranium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    uranium Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Last week, NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited the Y-12 National Security Complex to check on the status of ongoing projects like the Uranium Processing Facility as well as the site's continuing uranium operations. He also met with the Region 2 volunteers of the Radiogical... NNSA Announces Arrival of Plutonium and Uranium from Japan's Fast Critical Assembly at

  16. EXTRACTION OF URANIUM

    DOE Patents [OSTI]

    Kesler, R.D.; Rabb, D.D.

    1959-07-28

    An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.

  17. Process for recovering uranium

    DOE Patents [OSTI]

    MacWood, G. E.; Wilder, C. D.; Altman, D.

    1959-03-24

    A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.

  18. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    . Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by supplier and delivery year, 2011-15 thousand pounds U3O8 equivalent, dollars per pound U3O8 equivalent Deliveries 2011 2012 2013 2014 2015 Purchased from U.S. producers Purchases of U.S.-origin and foreign-origin uranium 550 W W W 1,455 Weighted-average price 58.12 W W W 52.35 Purchased from U.S. brokers and traders Purchases of U.S.-origin and foreign-origin uranium 14,778 11,545 12,835 17,111 13,852

  19. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    . Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2011-15 thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries 2011 2012 2013 2014 2015 U.S.-Origin Uranium Purchases 5,205 9,807 9,484 3,316 3,419 Weighted-Average Price 52.12 59.44 56.37 48.11 43.86 Foreign-Origin Uranium Purchases 49,626 47,713 47,919 50,033 53,106 Weighted-Average Price 55.98 54.07 51.13 46.03 44.14 Total Purchases 54,831 57,520 57,403

  20. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    0. U.S. broker and trader purchases of uranium by origin, supplier, and delivery year, 2011-15 thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries 2011 2012 2013 2014 2015 Received U.S.-origin uranium Purchases 1,668 1,194 W 410 2,702 Weighted-average price 54.85 51.78 W 33.55 35.04 Received foreign-origin uranium Purchases 24,695 24,606 W 28,743 33,014 Weighted-average price 49.69 47.75 W 38.42 39.58 Total received by U.S. brokers and traders Purchases 26,363 25,800

  1. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    1. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2011-15 thousands pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries to foreign suppliers and utilities 2011 2012 2013 2014 2015 U.S.-origin uranium Foreign sales 4,387 4,798 4,148 4,210 4,258 Weighted-average price 53.08 47.53 43.10 32.91 37.85 Foreign-origin uranium Foreign sales 12,297 13,185 14,717 15,794 21,465 Weighted-Average Price

  2. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    3. U.S. uranium concentrate production, shipments, and sales, 2003-15 Activity at U.S. mills and In-Situ-Leach plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Estimated contained U3O8 (thousand pounds) Ore from Mines and Stockpiles Fed to Mills1 0 W W W 0 W W W W W W W 0 Other Feed Materials 2 W W W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W W W Uranium Concentrate

  3. PROCESS FOR RECOVERING URANIUM

    DOE Patents [OSTI]

    MacWood, G.E.; Wilder, C.D.; Altman, D.

    1959-03-24

    A process is described for recovering uranium from deposits on stainless steel liner surfaces of calutrons. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickels copper, and iron is treated with excess of ammonium hydroxide to precipitatc the uranium, irons and chromium and convert thc nickel and copper to soluble ammonia complexions. The precipitated material is removed, dried, and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/sub 4/, UCl/sub 5/, FeCl/ sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temprrature of about 300 to400 deg C.

  4. Microsoft Word - General-questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    questions for operating facilities and on-going programs (1) What major scientific accomplishments and discoveries have occurred in your research area or at your facility since the...

  5. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centripedal Forces Plus Relativity You wrote: Hello, I'm not sure if this address is the right one to write to asking a physics question. But I saw a list of questions and answers at the page with this address. Therefore, I would be very grateful if you could forward this question to someone who answers it. Question: I have some problems understanding centripetal and centrifugal force. As I see it, these are a result of a type of acceleration. I'm quite sure, in space these forces also

  6. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How many neutrons? Dear Mrs. Pordes, Hello. My name is Andrew Schmidt. I am writing to you concerning a question I have. I am in your daughters science class and it would be greatly appreciated if you could help me. My question is: What happens when you vary he number of neutrons in an element? Any assistence you could give me to help answer this question would be great. Thanks. andrew s. Dear Mr. Schmidt, The simple answer to your question is to say that you make "isotopes" of the

  7. Uranium immobilization and nuclear waste

    SciTech Connect (OSTI)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  8. PROCESS OF PREPARING URANIUM CARBIDE

    DOE Patents [OSTI]

    Miller, W.E.; Stethers, H.L.; Johnson, T.R.

    1964-03-24

    A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

  9. Uranium Transport Modeling

    SciTech Connect (OSTI)

    Bostick, William D.

    2008-01-15

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO{sub 2}{sup 2+}) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range {approx} 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to

  10. METHOD OF ELECTROPOLISHING URANIUM

    DOE Patents [OSTI]

    Walker, D.E.; Noland, R.A.

    1959-07-14

    A method of electropolishing the surface of uranium articles is presented. The process of this invention is carried out by immersing the uranium anticle into an electrolyte which contains from 35 to 65% by volume sulfuric acid, 1 to 20% by volume glycerine and 25 to 50% by volume of water. The article is made the anode in the cell and polished by electrolyzing at a voltage of from 10 to 15 volts. Discontinuing the electrolysis by intermittently withdrawing the anode from the electrolyte and removing any polarized film formed therein results in an especially bright surface.

  11. TREATMENT OF URANIUM SURFACES

    DOE Patents [OSTI]

    Slunder, C.J.

    1959-02-01

    An improved process is presented for prcparation of uranium surfaces prior to electroplating. The surfacc of the uranium to be electroplated is anodized in a bath comprising a solution of approximately 20 to 602 by weight of phosphoric acid which contains about 20 cc per liter of concentrated hydrochloric acid. Anodization is carried out for approximately 20 minutes at a current density of about 0.5 amperes per square inch at a temperature of about 35 to 45 C. The oxidic film produced by anodization is removed by dipping in strong nitric acid, followed by rinsing with water just prior to electroplating.

  12. PREPARATION OF URANIUM TRIOXIDE

    DOE Patents [OSTI]

    Buckingham, J.S.

    1959-09-01

    The production of uranium trioxide from aqueous solutions of uranyl nitrate is discussed. The uranium trioxide is produced by adding sulfur or a sulfur-containing compound, such as thiourea, sulfamic acid, sulfuric acid, and ammonium sulfate, to the uranyl solution in an amount of about 0.5% by weight of the uranyl nitrate hexahydrate, evaporating the solution to dryness, and calcining the dry residue. The trioxide obtained by this method furnished a dioxide with a considerably higher reactivity with hydrogen fluoride than a trioxide prepared without the sulfur additive.

  13. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    b. Weighted-average price of uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2015 dollars per pound U3O8 equivalent Delivery year Total purchased (weighted-average price) Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007)1 Purchased from foreign suppliers U.S.-origin uranium (weighted-average price)

  14. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2011-15 Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) Operating status at end of the year 2011 2012 2013 2014 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EPR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating- Processing

  15. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    10. Uranium reserve estimates at the end of 2014 and 2015 million pounds U3O8 End of 2014 End of 2015 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 154.6 24.3 W 151.6 Properties Under Development for Production and Development

  16. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Price, T.D.; Jeung, N.M.

    1958-06-17

    An improved precipitation method is described for the recovery of uranium from aqueous solutions. After removal of all but small amounts of Ni or Cu, and after complexing any iron present, the uranium is separated as the peroxide by adding H/sub 2/O/sub 2/. The improvement lies in the fact that the addition of H/sub 2/O/sub 2/ and consequent precipitation are carried out at a temperature below the freezing; point of the solution, so that minute crystals of solvent are present as seed crystals for the precipitation.

  17. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  18. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  19. Uranium Lease and Take-Back | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Uranium Lease and Take-Back

  20. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  1. RECOVERY OF URANIUM FROM PITCHBLENDE

    DOE Patents [OSTI]

    Ruehle, A.E.

    1958-06-24

    The decontamination of uranium from molybdenum is described. When acid solutions containing uranyl nitrate are contacted with ether for the purpose of extracting the uranium values, complex molybdenum compounds are coextracted with the uranium and also again back-extracted from the ether with the uranium. This invention provides a process for extracting uranium in which coextraction of molybdenum is avoided. It has been found that polyhydric alcohols form complexes with molybdenum which are preferentially water-soluble are taken up by the ether extractant to only a very minor degree. The preferred embodiment of the process uses mannitol, sorbitol or a mixture of the two as the complexing agent.

  2. STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS

    DOE Patents [OSTI]

    Crouse, D.J. Jr.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)

  3. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  4. Uranium Reduction by Clostridia

    SciTech Connect (OSTI)

    Francis, A.J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    2006-04-05

    The FRC groundwater and sediment contain significant concentrations of U and Tc and are dominated by low pH, and high nitrate and Al concentrations where dissimilatory metal reducing bacterial activity may be limited. The presence of Clostridia in Area 3 at the FRC site has been confirmed and their ability to reduce uranium under site conditions will be determined. Although the phenomenon of uranium reduction by Clostridia has been firmly established, the molecular mechanisms underlying such a reaction are not very clear. The authors are exploring the hypothesis that U(VI) reduction occurs through hydrogenases and other enzymes (Matin and Francis). Fundamental knowledge of metal reduction using Clostridia will allow us to exploit naturally occurring processes to attenuate radionuclide and metal contaminants in situ in the subsurface. The outline for this report are as follows: (1) Growth of Clostridium sp. under normal culture conditions; (2) Fate of metals and radionuclides in the presence of Clostridia; (3) Bioreduction of uranium associated with nitrate, citrate, and lepidocrocite; and (4) Utilization of Clostridium sp. for immobilization of uranium at the FRC Area 3 site.

  5. Uranium Isotopic Assay Instrument

    SciTech Connect (OSTI)

    Anheier, Norman C.; Wojcik, Michael D.; Bushaw, Bruce A.

    2006-12-01

    The isotopic assay instrument under development at Pacific Northwest National Laboratory (PNNL) is capable of rapid prescreening to detect small and rare particles containing high concentrations of uranium in a heterogeneous sample. The isotopic measurement concept is based on laser vaporization of solid samples followed with sensitive isotope specific detection using either uranium atomic fluorescence emission or uranium atomic absorbance. Both isotopes are measured concurrently, following a single ablation laser pulse, using two external-cavity violet diode lasers. The simultaneous measurement of both isotopes enables the correlation of the fluorescence and absorbance signals on a shot-to-shot basis. This measurement approach demonstrated negligible channel crosstalk between isotopes. Rapid sample scanning provides high spatial resolution isotopic fluorescence and absorbance sample imagery of heterogeneous samples. Laser ablation combined with measurements of laser-induced fluorescence (LALIF) and through-plume laser absorbance (LAPLA) was applied to measure gadolinium isotope ratios in solid samples. Gadolinium has excitation wavelengths very close to the transitions of interest in uranium. Gadolinium has seven stable isotopes, and the natural 152Gd:160Gd ratio of 0.009 is in the range of what will be encountered for 235U:238U isotopic ratios. LAPLA measurements were demonstrated clearly using 152Gd (0.2% isotopic abundance) with a good signal-to-noise ratio. The ability to measure gadolinium abundances at this level indicates that measurements of 235U/238U isotopic ratios for natural (0.72%), depleted (0.25%), and low enriched uranium samples will be feasible.

  6. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotation of Black Holes Hello Alyssa -- The questions you sent to Fermilab about physics didn't get lost, they just got routed to a couple of lazy postdocs. That's why it took so long to get back to you. Anyway, we thought that these were such good questions that _two_ of us decided to take a crack at answering them! Below are your questions and answers from me and from my colleague Andrew Sornborger. You'll notice that sometimes we say almost exactly the same thing, and sometimes we give

  7. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro-magnet Dear Sir, I have been set a physics assignment and I need to find out why the current effects the strength of an electro-magnet. If you know the answer I would really appreciate it if you could send it to me. That would be awesome. Thanks Luke Luke - Hello. I am a scientist here at Fermilab and your question got forwarded to me. In some sense it is a question with an easy answer, but like most science, you can keep probing the answer until you reach a question that can't be

  8. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light from a fast car I hope you have the time to answer this question. It's been an on-going dispute between my friends and [me]. Theorhetical Question: If a vehicle was traveling at the speed of light and a light source was emitted from the vehicle would there be a visible beam of light? Please help me. Thanks. "Opinions expressed are mine and not those of Rohm and Haas Company" The most likely reason for the dispute is that the question is not especially well-posed. By

  9. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Question on Red Shift Dear Fermilab: I have a question, but first, thank you for the terrific new web site. You did a fantastic job. Question: Where does present theory say the energy of a red shifted photon goes? The idea that universal expansion is responsible for the red shift of intergalactic light would seem correct if light were a continuous wave. However, since a photon is a quantum of energy, and since the entire photon is presumably captured, the photon should still have the same amount

  10. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOE Patents [OSTI]

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  11. Draft RFP - Questions and Answers

    National Nuclear Security Administration (NNSA)

    DE-SOL-0005982 175. Question: Attachment 1, Performance Work Statement: For UGTA drilling activities, there is no mention of whether the contractor of or the M&O...

  12. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation from particle annihilation How much energy is created when the particle-antiparticle annihilate? Does it release a large amount of radiation? If so, about how many rads? Heather Dear Heather, I am Don Cossairt, a physicist, and I am also the Associate Head for Radiation Protection in Fermilab's Environment, Safety, and Health Section. The Fermilab Public Affairs Office forwarded to me your question about particle-antiparticle annihilation that I am happy to try to answer your question

  13. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Programming in Particle Detectors Question: Is it possible to use software programing in particle detectors to develop a program that can interpert data of passive radar? Answer: Thanks for sending your question. The answer greatly depends on the type of data the radar is creating and the signal you are looking for. The particle physics software is used to identify tracks of particles, that is, the imaginary lines that particles leave behind inside a set of detectors. Similar to bullets

  14. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  15. file://\\fs-f1\shared\uranium\uranium.html

    U.S. Energy Information Administration (EIA) Indexed Site

    Glossary Home > Nuclear > U.S. Uranium Reserves Estimates U.S. Uranium Reserves Estimates Data for: 2008 Report Released: July 2010 Next Release Date: 2012 Summary The U.S. Energy Information Administration (EIA) has updated its estimates of uranium reserves for year-end 2008. This represents the first revision of the estimates since 2004. The update is based on analysis of company annual reports, any additional information reported by companies at conferences and in news releases,

  16. Method of preparing uranium nitride or uranium carbonitride bodies

    DOE Patents [OSTI]

    Wilhelm, Harley A.; McClusky, James K.

    1976-04-27

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U.sub.3 O.sub.8 and carbon by varying the weight ratio of carbon to U.sub.3 O.sub.8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies.

  17. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    DOE Patents [OSTI]

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  18. PREPARATION OF DENSE URANIUM DIOXIDE PARTICLES FROM URANIUM HEXAFLUORI...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... A fluid-bed method was developed for the direct preparation from uranium hexafluoride of ...

  19. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L.; Meyer, Mitchell K.; Knighton, Gaven C.; Clark, Curtis R.

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  20. METHOD OF PRODUCING URANIUM

    DOE Patents [OSTI]

    Foster, L.S.; Magel, T.T.

    1958-05-13

    A modified process is described for the production of uranium metal by means of a bomb reduction of UF/sub 4/. Difficulty is sometimes experienced in obtaining complete separation of the uranium from the slag when the process is carried out on a snnall scale, i.e., for the production of 10 grams of U or less. Complete separation may be obtained by incorporating in the reaction mixture a quantity of MnCl/sub 2/, so that this compound is reduced along with the UF/sub 4/ . As a result a U--Mn alloy is formed which has a melting point lower than that of pure U, and consequently the metal remains molten for a longer period allowing more complete separation from the slag.

  1. MOU Frequently Asked Questions | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOU Frequently Asked Questions Coming Soon Return to FAQ's

  2. ELECTROLYSIS OF THORIUM AND URANIUM

    DOE Patents [OSTI]

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  3. PROCESS FOR PRODUCING URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Harvey, B.G.

    1954-09-14

    >This patent relates to improvements in the method for producing uranium tetrafluoride by treating an aqueous solutlon of a uranyl salt at an elevated temperature with a reducing agent effective in acld solutlon in the presence of hydrofluoric acid. Uranium tetrafluoride produced this way frequentiy contains impurities in the raw material serving as the source of uranium. Uranium tetrafluoride much less contaminated with impurities than when prepared by the above method can be prepared from materials containing such impurities by first adding a small proportion of reducing agent so as to cause a small fraction, for example 1 to 5% of the uranium tetrafluoride to be precipitated, rejecting such precipitate, and then precipitating and recovering the remainder of the uranium tetrafluoride.

  4. WELDED JACKETED URANIUM BODY

    DOE Patents [OSTI]

    Gurinsky, D.H.

    1958-08-26

    A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

  5. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2013-15 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries in 2013 Deliveries in 2014 Deliveries in 2015 Distribution of purchasers Number of purchasers Quantity with reported price Weighted-average price Number of purchasers Quantity with reported price Weighted-average price Number of purchasers Quantity with reported price

  6. Unreviewed Safety Question (USQ) Process Rev

    Office of Environmental Management (EM)

    Unreviewed Safety Question (USQ) Process Rev . 0 USQ Determination Worksheet "'-'-, Los Alamos * ... .. t .:. , :; - .. .. . 1 UNREVIEWED SAFETY QUESTION DETERMINATION ...

  7. METHOD OF DISSOLVING URANIUM METAL

    DOE Patents [OSTI]

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  8. PROCESS FOR PREPARING URANIUM METAL

    DOE Patents [OSTI]

    Prescott, C.H. Jr.; Reynolds, F.L.

    1959-01-13

    A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

  9. Prices dip, activity increases in unrestricted uranium market. [Uranium market overview

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    April's activity in the restricted uranium market fluctuated in the same range as that observed in March. At the same time, NUKEM detects a weakening of prices in the unrestricted market to $7.45-$7.65. Unrestricted buyers seem to have detected lower prices as well; much of the new demand noted this month emerged in the unrestricted segment of the market. With this issue, NUKEM inaugurates a new market statistic. To better follow developments in the conversion market, we will report a spot price range for conversion services. This price measure will be derived in a manner analogous to NUKEM's other spot market price ranges. We will continue to publish the current NUKEM price range for new contracts for a few months. If you wish to retain the old conversion contract price range in future editions, please contact our US office. Four deals for near term delivery occurred in the uranium market in April, resulting in spot market transaction volume of 2.5 million lbs U3O8 equivalent. In the first week, a US non-utility purchased a small quantity of enriched uranium product from an intermediary in a spot transaction representing about 75,000 lbs U3O8. The second week saw the stealthy purchase of Portland General Electric's inventory of natural and enriched uranium. The buyer of PGE's 1.1 million lbs U3O8 equivalent has achieved an unusual degree of anonymity. Also during the second week, a US utility bought a small quantity of enriched uranium containing less than 25,000 lbs natural U3O8 equivalent.

  10. VANE Uranium One JV | Open Energy Information

    Open Energy Info (EERE)

    VANE Uranium One JV Jump to: navigation, search Name: VANE-Uranium One JV Place: London, England, United Kingdom Zip: EC4V 6DX Product: JV between VANE Minerals Plc & Uranium One....

  11. SEPARATION OF THORIUM FROM URANIUM

    DOE Patents [OSTI]

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  12. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  13. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    By law, EIA's data, analyses, and forecasts are independent ... on information reported on Form EIA-858, "Uranium Marketing ... nuclear power reactors by contract type and material type, ...

  14. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  15. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    3 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Quantity with reported price Weighted-average price Quantity with reported price ...

  16. 2015 Uranium Market Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    received in 2015","Weighted-average price","Number of purchase contracts for ... Administration, Form EIA-858 ""Uranium Marketing Annual Survey"" (2015)." "16 ...

  17. 2015 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    5 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Quantity with reported price Weighted-average price Quantity with reported price ...

  18. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  19. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Power Resources Inc., dba Cameco Resources Smith Ranch-Highland Operation Converse, ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  20. Domestic Uranium Production Report - Quarterly

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Resources, Inc. dba Cameco Resources Smith Ranch-Highland Operation Converse, Wyoming ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  1. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Resources Inc., dba Cameco Resources","Smith Ranch-Highland Operation","Converse, ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  2. METHOD FOR RECOVERING URANIUM FROM OILS

    DOE Patents [OSTI]

    Gooch, L.H.

    1959-07-14

    A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

  3. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antihydrogen Sir, My name is Josh Epstein. I am a high School Student at Paola High School in Kansas. I was viewing your page on Antihydrogen and I had a few questions. If you are not qualified to answer these questions, please refer this E-Mail to one wyho can. What is the next logical step in the development of antihydrogen as a power source. Would the same relative makeup of a compound have to be duplicated in the "antii-sense" to make it susceptible to m/am annihalation? I.E. To

  4. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Question on Antimatter I am an undergraduate student at the University of Minnesota at Duluth. I am doing a research paper on the need to increase alternative/new energy R&D funding. I would appreciate it if you could answer a couple of questions for me. Steven, My name is Glenn Blanford. In addition to working with Fermilab's Public Affairs Office, I am a researcher on the Antihydrogen Production experiment, E862, a small group (8) who have started to observe antihydrogen atoms (at

  5. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You Wrote: Hi my question is what is the number of atoms in the world and why don't scientist agree on one number for them. Thank you. Hi, the answer to your question by its very nature can not be terribly accurate. However, when I pull down my copy of a college physics book, I find that it lists the mass of the earth as (6 x 10^24 kg). The mass of a proton or neutron is (1.67 x 10^-27 kg). Consequently, you can say to mediocre accuracy that the number of protons or neutrons in the earth is

  6. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Question: From smaller than atoms to larger than galaxies structures spin and in doing so the centrifugal force throws things outward. Might not the Universe as a whole be spinning on an axis and what we currently ascribe to a mysterious repulsive force be a centrifugal force throwing things outward? Thrown out rather than pushed or drawn? Dan Answer: Hi Dan, You ask an interesting question and I know the straight forward answer which is: If the universe was rotating, it would be rotating about

  7. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centripetal or Centrifugal Force? You Wrote: A recent debate ended in a total draw. It was concverning centrifugal force, or its lack there of. Both sides of the argument stand for and against this common rule of physics. Centripital force was the only force affecting rotating objects, one litigator announced. My question for you is, is there such a thing as centrifugal force, or has it proven to be non-existent? Thank You very much A mediating Scientist Hi, thanks for your question, you are

  8. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Color of Atoms Mr. Pordes- I have a question for science. As you probably know, we have been studying all about particles and the particle model of matter and John Dalton and everything like that. My question is though, are all atoms the same color? And if so, or even if not, how do you know?! Since they are so small, how can you see what color they are. Or do you not know? Thank you so much for your time! If you could write back with an answer, I would appreciate it! Thanks! Sincerely, Kelly

  9. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Movement of the Electron Around the Nucleus Question: It is very enlightening to read your research and very delightfull to explore our world. Why does the electron have to move around the Nucleus? Why does it not loose energy moving around it? If you say that they move in fixed energy orbits why the electron still have to rotate? Lastly what decides the energy orbits? Thanks so much. -Arvind Answer: Dear Arvind, You raise some really good questions: Why does the electron have to move around the

  10. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Which Atoms Can Give Electrons to Other Atoms? Dear Miss Alonso, This is a very good question, and the answer is rather complex. The first question is "how do scientists know which atoms can give electrons to other atoms?" We know from experiments on substances and from basic scientific calculations on the structure of an atom. If you have a sample of sodium and a sample of chlorine, you can measure how easily these substances combine. In this case, the combine very easily and release

  11. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Question about Radioactive Decay Dear Webmaster, What is the actual 'event' that causes an unstable isotope (Ex: C(14)) to decay? I know that a neutron splits into an electron and a proton during radioactive decay, but what causes this to happen? Is it a roll of the dice, or some nuclear force gone astray? Thanks for your help! Dave Morris Dear Dave, The answer to both your questions is YES ! Sort of. The decay is random, but the probability of it taking place depends on the nuclear force (but

  12. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is gravity a particle or a wave? You Wrote: Is gravity a particle or a wave? Is the concept of gravity the same as the subatomic Graviton? Can it be a particle or a wave? Or both? Thanks, T.K. Dear T.K., Your questions struck right at the center of one of the hottest and most challenging research topics in physics. So far, physicists don't know the full answers to all your questions. Although gravity is well understood at the macroscopic (every-day-life) scale, scientists are far from

  13. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stretched By a Black Hole? You Wrote: Thank you for a very satisfactory answer to a question I asked at the end of January. I have another question. Is there a way to figure out the rate of change of acceleration, a, as one moves away from a body? At the surface of Earth a is approximately equal to 9.8 m/s2, what would a be at .5 au or any other distance to any other bodies of different masses? I am a retired person, non university type, with a keen interest in science, particularly in the

  14. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boson Elisabeth, You asked: Could you help me with the following question. Is there any evidense for the existence of the Higgs bosson or Higgs field? According to the New Scientist magazine Cerns LEP should have had enough energy to create the Higgs particles but it was not detected. Thankyou very much Elisabeth Hi Elisabeth, You asked a good question. Yes, over the last ten years the evidence for the Higgs boson (or something like it) has been mounting. The many kinds of measurements we make

  15. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motion in the Universe Question: I am interested in the concept of absolute 'still' vs. all the speed references we have. I have been attempting to calculate the speed at which an individual is traveling through the universe when standing 'still'. i.e., the rotation speed of the earth, the speed of the orbit of the earth around the sun, the solar system withing our galaxy, the galaxy...etc. The odd question that struck me was that given all the relativity applications and explainations, is there

  16. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Negative pressure in the universe Dear Mr. Miller, I am in the theoretical astrophysics group at Fermilab. You recently sent a question to Glenn Blanford about negative pressure in the universe. Here is an attempt at an answer: I recently read the article in Fermi News entitled Depatment of (Missing) Energy ( see FermiNews98-05-15.pdf). In the article a property called "negative presure" was discused. My question is: Is this negative pressure the result of a particle that would be the

  17. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using an accelerator to create a new element Hello, My name is Andrew and I was wondering if this is the right email forum for my question. I am only 11 so my question is as follows: I am thinking of creating a new element and I need a particle accelerator to do it, so I was wondering if I could use yours. I also have some others ideas. Please contact me A.S.A.P. Thank you for reading this e-mail. Sincerely, Andrew Dear Andrew, Thank you for your email. I'm glad to hear from a young person who

  18. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Barriers Hi. Is it possible to experimentally prove my following question AND my following analogous question? Does a particle really go through a wall or through a potential barrier, or is it possible that a) a particle hits the wall, and the energy is transferred (just like those balls on the double strings that tranfer energy to the last ball) until the other side of the wall emits it's own electron? Perhaps the tranfer of energy has identical velocity as the particle, or b) that

  19. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Direction Hello, What is the direction of radiation emitted from an atom ? Thanks, Bob Patton Bob, Your question has always been an area of research whenever new processes are found and is a very valid one. The answer depends on the specific process in question. For one thing, a coordinate system must be chosen. If the atom is moving, then you, might use the momentum vector of the atom as the direction of reference. Usually with atoms though, the problem is solved in the rest frame. If

  20. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonances Dear J. Oldendick, Your questions were forwarded to me. I hope you find these answers helpful. You were right that the answers to the questions about resonances and atomic levels are related, and that the uncertainty principle is involved. Let me get back to them. First you ask, "Why is the cross section for compound nucleus formation not zero between resonances?" In case you are asking this because you've seen a plot of nuclear cross sections, let me point out that the

  1. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hello, I am so happy to visited your site It was full of answers to my questions!! So, I have a question about thermal Energy...We have some kind of energy in the world. electric energy, electromagnetic energy, gravity energy and thermal energy and we know that other energies are combination of these energies. So, we can suppose these energies depended on a fields.for example electric energy is created by electric field and we can divergence from this field becouse it is vector field but for

  2. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacuum You wrote: I'm Stephen and I moderate a theoretical physics forum at physicsforums.com. Is it possible to increase the probability that virtual particles will appear in a vacuum? I was posed this question from a member and i do not have a definite answer in my reference materials. I would greatly appreciate any response as to how/why if the question has a yes answer. Thank you for your time. Regards, Stephen J Hall, Theoretical Physics moderator PS. if you are ever browsing the net and

  3. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  4. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  5. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting Apparatus, systems, and methods for...

  6. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting You are accessing a document from...

  7. Uranium Resources Inc URI | Open Energy Information

    Open Energy Info (EERE)

    exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References: Uranium Resources, Inc. (URI)1 This article...

  8. Uranium Biomineralization By Natural Microbial Phosphatase Activities...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface Citation Details In-Document Search Title: Uranium Biomineralization By ...

  9. PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES

    DOE Patents [OSTI]

    Hamilton, N.E.

    1957-12-01

    A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

  10. Structural Sequestration of Uranium in Bacteriogenic Manganese...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestration of Uranium in Bacteriogenic Manganese Oxides Samuel M. Webb (Stanford ... Uranium is a key contaminant of concern at US DOE sites and shuttered mining and ore ...

  11. Uranium Processing Facility team signs partnering agreement ...

    National Nuclear Security Administration (NNSA)

    Uranium Processing Facility team signs partnering agreement Thursday, July 24, 2014 - 9:40am Officials from NNSA's Uranium Processing Facility Project Office and Consolidated ...

  12. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOE Patents [OSTI]

    Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  13. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    SciTech Connect (OSTI)

    Hull, L.C.; Grossman, C.; Fjeld, R.A.; Coates, J.T.; Elzerman, A.W.

    2002-05-10

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth.

  14. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    SciTech Connect (OSTI)

    Hull, Laurence Charles; Grossman, Christopher; Fjeld, R. A.; Coates, C.J.; Elzerman, A.

    2002-08-01

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth.

  15. SOLVENT EXTRACTION OF URANIUM VALUES

    DOE Patents [OSTI]

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  16. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOE Patents [OSTI]

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  17. ELECTRODEPOSITION OF NICKEL ON URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1958-08-26

    A method is described for preparing uranium objects prior to nickel electroplating. The process consiats in treating the surface of the uranium with molten ferric chloride hexahydrate, at a slightiy elevated temperature. This treatment etches the metal surface providing a structure suitable for the application of adherent electrodeposits and at the same time plates the surface with a thin protective film of iron.

  18. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    3. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin country and delivery year, 2011-15 thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries in 2011 Deliveries in 2012 Deliveries in 2013 Deliveries in 2014 Deliveries in 2015 Origin country Purchases Weighted-average price Purchases Weighted-average price Purchases Weighted-average price Purchases Weighted-average price Purchases Weighted-average price Australia 6,001 57.47 6,724

  19. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    5. Average price and quantity for uranium purchased by owners and operators of U.S. civilian nuclear power reactors by pricing mechanisms and delivery year, 2014-15 dollars per pound U3O8 equivalent; thousand pounds U3O8 equivalent Pricing mechanisms Domestic purchases1 Foreign purchases2 Total purchases 2014 2015 2014 2015 2014 2015 Contract-specified (fixed and base-escalated) pricing Weighted-average price 41.87 40.34 49.87 44.93 45.47 42.88 Quantity with reported price 15,711 13,862 12,815

  20. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2013-15 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries in 2013 Deliveries in 2014 Deliveries in 2015 Quantity 1 distribution Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price First 7,175 34.34 6,665 30.26 6,807 29.68

  1. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2015 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Spot 1 Contracts Long-Term Contracts 2 Total Material Type Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price U3O8 6,175 36.40 24,107 45.76 30,282 43.85 Natural UF6 3,879 38.52 12,292 48.13

  2. METHOD OF ELECTROPLATING ON URANIUM

    DOE Patents [OSTI]

    Rebol, E.W.; Wehrmann, R.F.

    1959-04-28

    This patent relates to a preparation of metallic uranium surfaces for receiving coatings, particularly in order to secure adherent electroplated coatings upon uranium metal. In accordance with the invention the uranium surface is pretreated by degreasing in trichloroethylene, followed by immersion in 25 to 50% nitric acid for several minutes, and then rinsed with running water, prior to pickling in trichloroacetic acid. The last treatment is best accomplished by making the uranium the anode in an aqueous solution of 50 per cent by weight trichloroacetic acid until work-distorted crystals or oxide present on the metal surface have been removed and the basic crystalline structure of the base metal has been exposed. Following these initial steps the metallic uranium is rinsed in dilute nitric acid and then electroplated with nickel. Adnerent firmly-bonded coatings of nickel are obtained.

  3. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Empty Universe You wrote: Madam/sir, Is it true that a completely empty universe, without any object, without any particle, a mere void, would be twodimensional? Jod Dear Jod, According to Einstein's general relativity, a completely empty universe could have any number of spatial dimensions. String theory would say that an empty universe should have 10 spatial dimensions. I hope this is helpful. Fermilab Physicist Back to Questions About Physics Main Page last modified 11/15

  4. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Impact of the Accelerator on the Environment Question: Some cubic thermodynamical equations of state predict negative pressures, have negative pressures any physical meaning? Could they be related to negative mass? Silvia, Mexico Answer: Dear Silvia, The short answer is that a system with negative pressure must be unstable, and thus, there are no thermodynamic states of a system with negative pressure. The reason for this is simple: The second law of thermodynamics tells us that all

  5. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You wrote: What are the products from an encounter between a neutrino and an anti-neutrino? Dear Mr. Moore: The question of a neutrino and anti-neutrino encounter is interesting. First of all, the strength of the neutrino interaction is very weak, even neutrino interactions with protons or neutrons are very rare but we do measure them in experiments at Fermilab. The probability of a neutrino - antineutrino interaction is so small that it has never been directly observed. Such interactions to

  6. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Question: Do you think it is possible that the velocity of an object in space determines the force of the vacuum it travels through? - Donald E. Sterling Answer: Dear Mr. Sterling, The faster a particle travels through vacuum, the more likely it is that the particle will interact with virtual particles contained in the vacuum. (At a quantum level, a vacuum is far from being empty.) Based on this quantum phenomena, scientists have predicted a maximum energy with which particles can travel long

  7. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What are the virtual particles? You Wrote: What are the virtual particles? What does it mean - "virtual"? Sincerely, Anthony Petrov. Hi, you ask another very good question. "Virtual particles" are real -- they exist in that they can be detected and can interact. But they are fleeting -- they are soon gone with no trace of their existence. This phenomenon is related to the Heisenberg uncertainty principle of quantum physics. Uncertainty in time multiplied by uncertainty in

  8. Multifamily Weatherization Frequently Asked Questions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Weatherization Frequently Asked Questions 1. How do Grantees define a multifamily building? It depends. There is not one all-encompassing definition for multifamily buildings and how they are addressed within WAP. There are nuances related to multifamily eligibility, multifamily auditing, and multifamily reporting that each carry their own definitions. ď‚· Eligibility: In order to be eligible for WAP funding, one of the following must be true: o At least 50% of the residential units

  9. THE RECOVERY OF URANIUM FROM GAS MIXTURE

    DOE Patents [OSTI]

    Jury, S.H.

    1964-03-17

    A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)

  10. Process for removing carbon from uranium

    DOE Patents [OSTI]

    Powell, George L.; Holcombe, Jr., Cressie E.

    1976-01-01

    Carbon contamination is removed from uranium and uranium alloys by heating in inert atmosphere to 700.degree.-1900.degree.C in effective contact with yttrium to cause carbon in the uranium to react with the yttrium. The yttrium is either in direct contact with the contaminated uranium or in indirect contact by means of an intermediate transport medium.

  11. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  12. 10 CFR 707 Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    NOTE: The Questions on this site were compiled from questions asked during the four DOE complex wide tele-videos, as well as, questions submitted by e-mail and telephone. The answers provided are...

  13. Comments/Questions? | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comments/Questions? Name (optional): Email Address (optional): Comment/Question: * CAPTCHA This question is for testing whether or not you are a human visitor and to prevent automated spam submissions. Submit

  14. Appendix C: Examples of review questions

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    This set of review questions was pulled from a number of EERE evaluations by the PEER Review Task Force and organized to show how questions for assessing a program differ from questions for assessing projects that make up that program.

  15. Frequently Asked Questions (FAQs) | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions (FAQs) Welcome to the Frequently Asked Questions page. We hope that your questions are easily answered in this section. If not, please contact us. Non-Disclosure Agreements Partnering Mechanisms: CRADA/SPP/TSA MOU - Coming Soon MTA - Coming Soon Invention Disclosure and Patents Scientific and Technical Information Publications Office of Research Opportunities - Coming Soon Detailed Questions If you have a detailed question(s) that our FAQs do not answer, please contact

  16. ELUTION OF URANIUM FROM RESIN

    DOE Patents [OSTI]

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  17. NPDES Questions & Answers | Open Energy Information

    Open Energy Info (EERE)

    Questions & Answers: SWRCB State NPDES Permit Information, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation NPDES Questions &...

  18. Policy Questions on Energy Storage Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Questions on Energy Storage Technologies Policy Questions on Energy Storage Technologies Memorandum from the Electricity Advisory Committee to Secretary Chu and Assistant ...

  19. LED Frequently Asked Questions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequently Asked Questions LED Frequently Asked Questions EERE Solid-State Lighting LED Factsheet PDF icon ledbasics.pdf More Documents & Publications LED Frequently Asked ...

  20. Digital Data Management Frequently Asked Questions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequently Asked Questions Digital Data Management Frequently Asked Questions Submitting a Data Management Plan 1. I am submitting an applicationproposal for research funding in ...

  1. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of the Accelerator on the Environment Question: How many studies have been done to figure out what escapes from the accelerators into the environment and how much of it escapes? I heard from a tour guide that there was no environmental impact, but I don't believe it. How can something dealing with so much energy and traveling so fast not have some of that energy escape into the environment? Have you done research on things like insect life, water life and plant growth in the areas near

  2. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power of the Tevatron Question: How powerful is Fermilab's accelerator in volts, amperes and watts? Aaron Nelson Answer: Dear Aaron, Fermilab's most powerful accelerator, the Tevatron, accelerates protons to an energy of 1,000 gigaelectronvolts(1,000 GeV), or 1,000 billion electronvolts. This energy corresponds to each proton traversing a voltage of 1,000 billion volts. In practical terms, the protons achieve this energy by traveling in a circle and passing an electric field 47,000 times per

  3. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ana Kata Dimension You Wrote: One day I was sitting in my living room, reading a book on physics, an idea occurred to me. (This idea probably may be unscientific and unreasonable, but read the rest of this letter anyway.) This is, specifically, a question about dimensional physics (that's probably not the real term for this branch of physics). From now-on, I will refer to the ana/kata dimension (the fourth spatial) dimension as the fourth dimension rather than the fifth dimension, even though

  4. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Bang & Bosons Glenn, I guess what I want to ask you is a stupid question. But since I am a lay person with a lot of curiousity let me be bold enough to ask it. I understand the the standard particle theory says that large masses indicated by boson masses can only be created by lots power in accelerators. That is why the supercollider would have been great. But how does this relate if the Big Bang theory is correct? What does the current trend in elementary particle physics have to do to

  5. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blackholes Dear Juan, You asked: according to scientists,inside a black hole's event horizon nothing is able to come out, even light. also it is believed that gravity is produced by gravitrons, just like the strong force is produced by gluons,right?ok here is my question.If the gravitrons act like the gluons,how do they come out of the event horizon to atrract bodies floating outside the black hole's event horizon. or do they atract bodies just by circling at the edge of the event horizon Juan

  6. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hello, At least some contemporary big bang theories begin with the entire universe packed into a very small, atom sized volume. Since black hole densities can be achieved by compressing the earth to the size of a marble; it seems that the early universe would have been dense enough to be a black hole and would have never expanded. Are the theories of the big bang and black holes at odds? Thanks, Doug McAllister Tulsa Hello Doug, That is a very good question. The big bang theory and the existence

  7. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bosons and Antiparticles You asked: hi, i am an undergraduate student. I have a question on anti-particle. Is there negative energy state for the boson in the relativistic quantum mechanic? Then how the anti-particle of bosons can be understood with the comparision to the existance of the positron by the Dirac's negative sea (since boson do not obey the exclusion principle)? Thank You for your help There is no negative energy state for the bosons. The bosons do not have anti-particles! In fact

  8. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cosmic rays You asked: Hi, I had just a couple of questions 1) What are cosmic rays made of? If it is not known, what do the early reports say on the compostition of cosmic rays? 2)Will this add/ refine/ or refute the Standard Model? Thanks Goonjan Shah Goonjan: The composition of cosmic rays appears to change with energy. At energies of about 10**18 eV and higher the composition begins to become lighter. That is, the composition changes from heavier nuclei (up to iron) to light nuclei, mostly

  9. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How does an electron on a 2p orbital cross the node of nucleus? To Fermilab, I have a question that needs answering for my chemistry class. In an atom, how does an electron on a 2p (bell shaped) orbital cross the node of the nucleus (a region of zero probability)? Does it have something to do with the wave properties of an electron? I cannot find the answer on the internet or in my chemistry book. Thank you very much. Danny Hi Danny, It does have something to do with the wave properties of the

  10. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Early Universe Question Greetings Well, you most likely receive a billion messages a day from nuts like me, but here's another one for you. Before the big bang, when there was just random endergy fluctuations in this empty void. At this point, before the particle that blew up, is it possible that there could have been one dimension raining supreme, a dimension which, when seperated, become the four distinct dimensions we now live in? What I'm trying to say is, when the universe was formed,

  11. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Fields You asked: I have a question about electric fields. I have seen in many texbooks that show that for a negative charge, the electric field goes into itself or inwards, and it shows arrows that go into the core of the negative charge. And for the positive charge, the field goes outwards and has arrows that go outwards. But this doesn't explain how the two charges attract. Who is doing the attracting. You could say, that the positive charge is moving towards the negative charge

  12. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You Wrote: What is in the area between sub atomic particles? Does this area when accelerated give off more light or does it get darker? If you were to accelerate a flashlight would the electron flow through the filament slow down? Can we determine how fast something is traveling by the amount of light it releases? How does acceleration produce light? Thank You Tom Dear Tom, Wow, that's an interesting set of questions on the topic of "light emitted by particles." I tried to reorder your

  13. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle vs. Wave, etc. You Wrote: Thank you for writing back. Please try to answer as many questions as you can. Thanks:) Are quarks particles are waves? What about photons, I have heard from a friend experiments conducted proved it both a particle and a wave? Do quarks have spin? How can you tell? What in an atom is waves? Do protons spin in the same direction as electrons? When you say color do you really mean as you can see a color on a quark or is it just a simplified method of combining?

  14. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What is in the future for physics? You wrote: We are constantly preoccupied with the next steps in our sciences. I would be interested to know, in your opinion, what the next fifteen steps are likely to be in physics in the 21st Century. With thanks for your time Stephanie G. Dear Stephanie: Your question regarding the far distant goals/discoveries of physics is obviously very difficult to answer. In particular, physics is such a vast field that it is already difficult for me to do justice to

  15. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graviton Question I am a sophomore in high school writing a reaserch paper for my honors chemistry class. While gathering information from the local libraries one book mentioned a theoretical boson called a graviton that would be responsible for the force of gravity. Could such a particle exist or is there any evidence that it might exist? If so, are there any efforts under way to try to discover it? I haven't been able to find very much information about this subject, or maybe im just looking

  16. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Frequency Beams Hi, I'm a physics student and I love the work you are doing at Fermilab. I've been watching closely your progress and I believe some of the best mind are working there. My question is about high frequency beams. I'd like to know what are the highest frequencies (in Hz) you have been using at Fermilab and in what kind of research. What is the theoretical limit for frequencies and how far are we from it? I'd really apreciate your answer. Thank you very much. Best regards,

  17. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photons and the Higgs field You asked: If all particles except photons and gluons acquire "mass" by theoretically interacting with the Higgs field and mass is felt by the gravitation field. Then why do photons curve around large bodies and can not leave a black hole? Don Dear Don: It is true that photons and gluons are massless, and that to the best of our theoretical knowledge, the other particles acquire mass by interacting with the Higgs field. But to answer your question, we need

  18. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home made particle detector Question: Would it be possible for me to build a small particle detector at home? I would like to observe some of the cosmic ray particles that hit earth. Tom Dear Tom: Yes, absolutely. All you need is a container with vapor, and charged particles zipping through will leave a trail similar to the trails left by air planes in the sky. This type of detector is called a cloud chamber. Instead of writing down all the details, I refer you to a Scientific American website.

  19. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How do you make protons and antiprotons? You Wrote: In my physical science class we watched a video about how they make quarks. Our teacher told us that for extra credit we could write to you and fund the answer to these two questions: 1. How do they make the protons and antiprotons that are used in quarks? 2. How do they make the electron scanning needle? If you could e-mail me back as soon as possible with the answers I would greatly appreciate it. This extra credit could help my grade a lot.

  20. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You Wrote: I'm doing a paper on quarks and I'm investigating the discovery of top quark. I have a question on the matter. When you talk about of "jets" of particles, what are you meaning? Lots of particles? Probably is an idiomatic problem because english it is not my mother tongue. Thank you. Alejandro Nieto González ETSIT- Universidad Politécnica de Madrid. Spain. Hi Alejandro, When two particles for example a proton and an antiproton collide at high energies many particles are

  1. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Kepler's law? You Wrote: I have this homework question, my physics teacher said that you can prove Kepler's second law with one quantity of measurement. He hinted us with Mass and that is all he gave....Can you help me on what measurement it is that I need to prove Kepler's second law. thanx a million mark Mark, Greetings, Kepler's second law is that a planet travelling in an elliptical orbit around the sun sweeps out equal areas in equal times. This is basically a statement of

  2. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You Wrote: Hi...my name is Amy. I'm a high school student in Indonesia. I want to know whether lightning could be an electricity power source, such as water electricity, nuclear electricity, etc. Please reply to my Email because I am doing a paper about lightning electricity. Thank You. Amy, Thank you for your question on lightning electricity. The answer below is from one of Fermilab's utility experts and may be more information than you need for your report. The challenge with electricity in

  3. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You asked: Why is the top quark so massive? Dear High School Senior: Well, that actually is a question that all physicists would like to be able to answer. The top quark is as heavy as a gold atom--yet it is an elementary particle that, to our present knowledge, cannot be split into subunits. (Be aware that until about 100 years ago, scientists didn't think they could split atoms into smaller subunits.) How does the top quark gets its mass? Like all other particles, the top quark receives its

  4. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The particle model of matter You Wrote: I am a junior high student that has ben assigned to ask the people at Fermi Lab these questions. I would be grateful if you or someone else could send me some reply info. Thank you. 1. do you think the particle model of matter is true? Why? 2. If all matter is made up of particles, then what are particles made up of? Hi Madeline, My name is Andrew Green and I am one of the experimenters at Fermilab. I am actually a graduate student here. I am pleased to

  5. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why can radio waves pass through a wall but light cannot? Hello, My name is Mike P. and this is my question. If radio & light waves are both properties of the electromagnetic spectrum then why can radio waves pass through walls but light cannot? Thank You Hello Mike P., PART 1. Let me first make sure the terminology we use is right. The words "electromagnetic spectrum" are used to name a group of waves. Not any kind of waves, ( not acoustic, not mechanical waves) but

  6. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particles from Batavia to Soudan Tom, You asked: I have been reading various pages on the Fermi website and I'm unclear how the particles to be tested get from Batavia to Soudan. Is there a physical connection like a pipeline or is this something that just happens through the earth? Sorry for what's probably a very basic question but I couldn't quite understand that point. Are there articles that explain how this happens? Thanks! Tom Hi Tom, I am a physicist working on the NuMI/MINOS project

  7. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Mass Measurement I don't know weather you can help me but one thing that i have been interested in for the past several years is how the mass of a particle so small can be measured and i was hopeing you might be able to help me. thank you, jeff kirkwood Dear Jeff, A very interesting question. Obviously, we can't just put a subatomic particle on a balance and weigh it. Actually R.A.Millikan did an experiment early in the century where the electric charge to mass ratio of an electron was

  8. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting particles for the accelerator Hi I am 11 and my name is Joshua Pevitz. When I grow up I want to work at Fermilab. I was wondering if you could explain to me about how you let only one atom in the accelerator, if everything is made out of atoms? Your admirer, Joshua Pevitz Dear Joshua, Thanks for your interesting question! Let me give you the simple answer first, and then I will explain. We do not let only one atom at a time into the accelerator. Instead we have more than 10 trillion

  9. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particles and Their Properties Question: I was hoping that you could help me learn how to figure out the number of protons, the number of neutrons, and the number of electrons of a particular atom. For example, oxygen is 8 O 16, I'm not sure how to figure this out. Thanks in advance for your assistance. - D Answer: Dear D: The key properties of an atom (like oxygen) are described by the Atomic Number (which is 8 for Oxygen) and the total number of nucleons (which is 16 for Oxygen). The atomic

  10. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Question: I just wish someone could explain it to me (talking vveerryyy ssllloooowwwlllyyly) so that I can have at least a clue why atoms appear to be little perpetual motion machines that are somehow unaffected by gravity, friction etc. and just keep on going and going (like that bunny). Don't other moving things in this world quickly come to a stop when force is no longer externally applied. Doesn't there HAVE to be an external force or some sort that's being applied (more or less evenly) to

  11. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How do you define momentum for a photon with no mass? What is symmetry? You asked: Photons are said to have no mass but how is that. The momentum equation is m=velocity*mass so therefore the photon would have no momentum and therefore could not repel the two negatively charged electrons. Was my information right? -What exactly is symmetry laws and gauge symmetry? Dear David: Thank you for your questions. No. The equation momentum=velocity*mass only applies for massive particles. For massless

  12. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Speculations on getting an Instant Cold Drink You wrote: I remember a few years ago reading about a new idea of making it possible for that when you open a can of pop that it will instantly turn cold. For some reason I remember them as saying that it will be out in a few years. I was wondering if you knew how they could do this and as to if it is true and if so, when it will come out - tim Tim, How to create an instant cold drink an interesting question. There are probably engineers in the

  13. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pure Antineutron Beams Hello, I am a physics student in Germany. I haven't had particle physics yet, so I'd be glad if you answered me one question: How do you create more or less pure anti-neutron beams in your accelerator?? I'm sure it's possible somehow but I just don't know the way to relize that. The "options" I got to know by now: collision of anti-protons with carbon nuclei can result in anti-neutrons decay of lambda-particles (how would you create them?) I guess the main

  14. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You asked: What happens if you take 2 quantum entangled particles, and untangle them and put one of these particles in a blackhole? The other should demonstrate what is going on inside a blackhole; according to Einstien's "spooky action at a distance", right? Wouldn't this violate the principle that no light, or information, escapes a blackhole? Dear Stew, This is an interesting question; it sounds like a variation of the original Einstein-Podolsky-Rosen "paradox". I'm far

  15. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isolating quarks Ben, You asked: my name is ben thompson and i am student teaching at downers grove north high school. we are doing a unit in electromagnetism and somehow came upon the concept of the quark. i did some web research only to find out a tiny bit about quarks and leptons. the question that one of my students stumped me with was whether or not the scientists at fermi lab have isolated any quarks yet. i do not know, and we have decided to allow you (the knowledgeable) to help us out.

  16. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Length of Particle Accelerators I have six questions. 1. How long is a particle accelerator? 2. Is it true that there are weapons 40 times stronger than the fatman and little boy atomic bombs used in World War II? 3. What does E=mc2 mean? 4. Does electricity in general move at the speed of light? How was fusion discovered? 5. Is it true that the sun is a ball of hydrogen that is in a fusion chain reaction? 6. How can you become a scientific worker at Fermilab? Dear Mr. Bond, I am glad you are

  17. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Question About Splitting Molecules "Can you use particle accelerators to break up molecules into their elements?" The short answer is yes. The long answer is more complicated. You can think of molecules as wads of warm taffy with marbles in it (where the marbles are the atoms, and the warm taffy is what keeps them together). If you look at a marble (atom), you find that it has BB's inside, but they're held together with cold taffy (meaning they are held more firmly). If you continue to

  18. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How strong is the strong force? You Wrote: How strong is the strong force? I bet you think you asked a simple question. The simple answer is that the strength depends on the range over which it is acting. At short distances the strong force is weak and at long distances it is strong. That is completely different from the other three forces and arises because the forces transmitters, called gluons, are massless and carry strong force charge. I hope that you are still interested in the more

  19. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Density of the Universe Dear Quincy, Thanks for your great questions on the future of the Universe. They made me think a bit. It turns out that I am an experimental physicist at Fermilab who is presently involved with an experiment to detect the dark matter, which you also asked about. You asked: It is known that if the universe's average density is less than a critical value, it will expand forever. If the density is higher than it, the expansion will stop at sometime and the universe will

  20. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Photon Question Brian, X-URL: http://www.fnal.gov/pub/hep_descript.html Dear Fermilab (or to whom this may be going to), Hi. I am 14 years old and I happen to be reading a physics book when I came across something called Virtual Photons and the uncertianty principle. The book does not explain what Virtual Photons are to well, and all I know about Photons is that they could be a wave or matter. If you could help me about what Virtual Photons are and Photons, that would be a great help.

  1. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charged Objects and Virtual Photons Hello, I am fascinated by the universe of physics, and I have a few questions. Actually, I was wondering about photons. I have come to understand that photons are the force carrying particles for the electromagnetic force. I also understand that they have no mass and can therefore travel at the speed of light. What I was wondering was this: When two electrons come near, why are real photons said to be emitted, but virtual photons are said to be the actual

  2. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can an audio wave be combined with a radio wave? You Wrote: What is the wave called when you combine an audio wave with a radio wave? Bruce Dear Bruce, It is not quite clear to me what definitions you may use for your "audio wave" and "radio wave." So let me state how I interpret your question. Audio wave: I assume you refer to a sound wave, a wave that is being transmitted through the air at the speed of sound. This wave is being transmitted through gas/liquid/matter by the

  3. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Color of the Sky You asked: I was wondering what color the sky is? I know that it looks blue but what is it actually? Dear Nathalie, This is really an excellent question with a difficult answer. I had a long discussion with one of my colleagues about this topic. I'm still not sure how best to explain the science, but let me give it a try. First of all, think about all the things that can happen when light encounters an object. The light could be absorbed by the object. It might be reflected

  4. Appendix 12: Frequently Asked Questions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12: Frequently Asked Questions Q1: If a Recipient's grant is closed out, do they have to continue to report? A1: Yes. As long as the funds remain in a Financing Program, they retain their federal character, and the Recipient must continue to report. Q2: A Recipient determines that there is no longer demand for their residential RLF for energy efficiency upgrades. The Recipient would like to repurpose the funds for an energy audit and lighting upgrade of City Hall. What are the responsibilities

  5. SEPARATION OF URANIUM FROM THORIUM

    DOE Patents [OSTI]

    Hellman, N.N.

    1959-07-01

    A process is presented for separating uranium from thorium wherein the ratio of thorium to uranium is between 100 to 10,000. According to the invention the thoriumuranium mixture is dissolved in nitric acid, and the solution is prepared so as to obtain the desired concentration within a critical range of from 4 to 8 N with regard to the total nitrate due to thorium nitrate, with or without nitric acid or any nitrate salting out agent. The solution is then contacted with an ether, such as diethyl ether, whereby uranium is extracted into ihe organic phase while thorium remains in the aqueous phase.

  6. URANIUM RECOVERY FROM NUCLEAR FUEL

    DOE Patents [OSTI]

    Vogel, R.C.; Rodger, W.A.

    1962-04-24

    A process of recovering uranium from a UF/sub 4/-NaFZrF/sub 4/ mixture by spraying the molten mixture at about 200 deg C in nitrogen of super- atmospheric pressure into droplets not larger than 100 microns, and contacting the molten droplets with fluorine at about 200 deg C for 0.01 to 10 seconds in a container the walls of which have a temperature below the melting point of the mixture is described. Uranium hexafluoride is formed and volatilized and the uranium-free salt is solidified. (AEC)

  7. Excess Uranium Inventory Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective...

  8. FLUX COMPOSITION AND METHOD FOR TREATING URANIUM-CONTAINING METAL

    DOE Patents [OSTI]

    Foote, F.

    1958-08-26

    A flux composition is preseated for use with molten uranium and uranium alloys. It consists of about 60% calcium fluoride, 30% calcium chloride and 10% uranium tetrafluoride.

  9. Uranium Processing Facility | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly,...

  10. DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity...

    Energy Savers [EERE]

    DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report DOE Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report DOE Uranium Leasing ...

  11. Researchers use light to create rare uranium molecule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare uranium molecule Researchers use light to create rare uranium molecule Uranium nitride materials show promise as advanced nuclear fuels due to their high density, high ...

  12. URANIUM PURIFICATION PROCESS

    DOE Patents [OSTI]

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  13. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    3. Deliveries of uranium feed by owners and operators of U.S. civilian nuclear power reactors by enrichment country and delivery year, 2013-15 thousand pounds U3O8 equivalent Feed deliveries in 2013 Feed deliveries in 2014 Feed deliveries in 2015 Enrichment country U.S.-origin Foreign-origin Total U.S.-origin Foreign-origin Total U.S.-origin Foreign-origin Total China 0 W W W W W 0 W W France 0 1,606 1,606 0 3,055 3,055 W W 3,299 Germany W W W W W 2,140 W W W Netherlands 1,058 2,773 3,831 0

  14. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    9. Foreign purchases of uranium by U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by delivery year, 2011-15 thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries 2011 2012 2013 2014 2015 U.S. suppliers Foreign purchases 19,318 20,196 23,233 24,199 27,233 Weighted-average price 48.80 46.80 43.25 39.13 40.68 Owners and operators of U.S. civilian nuclear power reactors Foreign purchases 35,071 36,037 34,095 34,404 36,912 Weighted-average

  15. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    1. U.S. uranium drilling activities, 2003-15 Exploration drilling Development drilling Exploration and development drilling Year Number of holes Feet (thousand) Number of holes Feet (thousand) Number of holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904

  16. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    6. Employment in the U.S. uranium production industry by category, 2003-15 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 2013 149 392 W W 199 1,156 2014 86 246 W W 161 787 2015 58 251 W W 116

  17. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    7. Employment in the U.S. uranium production industry by state, 2003-15 person-years State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Wyoming 134 139 181 195 245 301 308 348 424 512 531 416 343 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 198 105 79 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W W W W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W W W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W W 0 0

  18. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    2. U.S. uranium mine production and number of mines and sources, 2003-15 Production / Mining method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W W W W Total Mine Production (thousand pounds U3O8)

  19. Uranium hexafluoride bibliography

    SciTech Connect (OSTI)

    Burnham, S.L.

    1988-01-01

    This bibliography is a compilation of reports written about the transportation, handling, safety, and processing of uranium hexafluoride. An on-line literature search was executed using the DOE Energy files and the Nuclear Science Abstracts file to identify pertinent reports. The DOE Energy files contain unclassified information that is processed at the Office of Scientific and Technical Information of the US Department of Energy. The reports selected from these files were published between 1974 and 1983. Nuclear Science Abstracts contains unclassified international nuclear science and technology literature published from 1948 to 1976. In addition, scientific and technical reports published by the US Atomic Energy Commission and the US Energy Research and Development Administration, as well as those published by other agencies, universities, and industrial and research organizations, are included in the Nuclear Science Abstracts file. An alphabetical listing of the acronyms used to denote the corporate sponsors follows the bibliography.

  20. Answering Key Fuel Cycle Questions

    SciTech Connect (OSTI)

    Piet, S.J.; Dixon, B.W.; Bennett, R.G.; Smith, J.D.; Hill, R.N.

    2004-10-03

    Given the range of fuel cycle goals and criteria, and the wide range of fuel cycle options, how can the set of options eventually be narrowed in a transparent and justifiable fashion? It is impractical to develop all options. We suggest an approach that starts by considering a range of goals for the Advanced Fuel Cycle Initiative (AFCI) and then posits seven questions, such as whether Cs and Sr isotopes should be separated from spent fuel and, if so, what should be done with them. For each question, we consider which of the goals may be relevant to eventually providing answers. The AFCI program has both ''outcome'' and ''process'' goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geologic repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are rea diness to proceed and adaptability and robustness in the face of uncertainties.

  1. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  2. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Activity at U.S. Mills and In-Situ-Leach Plants 2003 2004 2005 2006 2007 2008 2009 2010 ... Total Uranium Concentrate Shipped from U.S. Mills and In-Situ-Leach Plants Table 3. U.S. ...

  3. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    The natural UF 6 and enriched UF 6 weighted-average price represent only the U 3 O 8 equivalent uranium-component price specified in the contract for each delivery of natural UF 6 ...

  4. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Concentrate Sales by U.S. Producers 3" "Deliveries (thousand pounds U3O8)","W","W","W",3786,3602,3656,2044,2684,2870,3630,4447,4746,3634 "Weighted-Average Price ...

  5. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Deliveries 2011 2012 2013 2014 2015 Purchases 1,668 1,194 W 410 2,702 Weighted-average price ...

  6. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May 2017 Table S3b. Weighted-average price of foreign purchases and foreign sales by U.S. ...

  7. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2013-15 deliveries" "thousand pounds U3O8 ...

  8. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Forward costs are neither the full costs of production nor the market price at which the uranium, when produced, might be sold." "Note: Totals may not equal sum of components ...

  9. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    6a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2013-15 deliveries" "thousand pounds U3O8 ...

  10. 2015 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    and enriched UF6 weighted-average price represent only the U3O8 equivalent uranium-component price specified in the contract for each delivery of natural UF6 and enriched UF6, ...

  11. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2013-15" 2013,2014,2015 "American Fuel Resources, LLC","Advance Uranium Asset Management Ltd.","AREVA AREVA NC, Inc." "AREVA NC, Inc.","AREVA AREVA NC, Inc.","ARMZ ...

  12. 2015 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Next Release Date: May 2017 2013 2014 2015 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. AREVA AREVA NC, Inc. AREVA NC, Inc. AREVA AREVA NC, Inc. ARMZ ...

  13. 2015 Uranium Marketing Annual Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Uranium purchased by owners and operators of U.S. civilian nuclear power reactors, ... Purchased from other owners and operators of U.S. civilian nuclear power reactors, other ...

  14. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    5 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Production Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 ...

  15. 2015 Uranium Marketing Annual Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    owners and operators of U.S. civilian nuclear power reactors, 1994-2015 Year Feed deliveries by owners and operators of U.S. civilian nuclear power reactors Uranium in fuel ...

  16. 2015 Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Capacity (short tons of ore per day) 2011 2012 2013 2014 2015 Anfield Resources ...

  17. 2015 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    9 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 ...

  18. Y-12 and uranium history

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    did happen six days after he was given the assignment. The history of uranium at Y-12 began with that decision, which will be commemorated on September 19, 2012, at...

  19. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    May 5, 2016" "Next Release Date: May 2017" "Table 4. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status at end of the year, 2011-15" ...

  20. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Employment in the U.S. uranium production industry by state, 2003-15" "person-years" "State(s)",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015 ...

  1. Frequently Asked Questions (FAQs) | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions (FAQs) Concur Travel FAQs Rental Car FAQs TSA FAQs

  2. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  3. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOE Patents [OSTI]

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  4. MELTING AND PURIFICATION OF URANIUM

    DOE Patents [OSTI]

    Spedding, F.H.; Gray, C.F.

    1958-09-16

    A process is described for treating uranium ingots having inner metal portions and an outer oxide skin. The method consists in partially supporting such an ingot on the surface of a grid or pierced plate. A sufficient weight of uranium is provided so that when the mass becomes molten, the oxide skin bursts at the unsupported portions of its bottom surface, allowing molten urantum to flow through the burst skin and into a container provided below.

  5. SURFACE TREATMENT OF METALLIC URANIUM

    DOE Patents [OSTI]

    Gray, A.G.; Schweikher, E.W.

    1958-05-27

    The treatment of metallic uranium to provide a surface to which adherent electroplates can be applied is described. Metallic uranium is subjected to an etchant treatment in aqueous concentrated hydrochloric acid, and the etched metal is then treated to dissolve the resulting black oxide and/or chloride film without destroying the etched metal surface. The oxide or chloride removal is effected by means of moderately concentrated nitric acid in 3 to 20 seconds.

  6. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A.

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  7. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You Wrote: Hi, My name is Ian. I am a 12 year old student. I am in the 7th grade. My question is: If a one pound block of ice (-2 degrees C) is placed in an insulated closed room that was 2 feet by 2 feet by 4 feet, set at 5 degrees C, 1.) How long would it take to melt the ice ? 2.) How many Btu's would it take to melt the ice ? 3.) Would the room temperature drop or stay at 5 deg. C ? 4.) If electricity was used to cool the room to 5 deg. C and cost 11 cents per kWh, how much would it cost to

  8. PROCESS FOR PRODUCING URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-10-22

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ convented to UF/sub 6/ by reaction with a fluorinating agent. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reaction chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. The oven is then swept clean of hydrogen and the water vapor formed by means of nitrogen and then while continuing to maintain the temperature between 400 and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion to uranium tetrafluoride, the temperature of the reaction chamber is lowered to ahout 400 deg C, and elemental fluorine is used as the fluorinating agent for the conversion of UF/sub 4/ into UF/sub 6/. The fluorine gas is passed into the chamber, and the UF/sub 6/ formed passes out and is delivered to a condenser.

  9. Beneficial Uses of Depleted Uranium

    SciTech Connect (OSTI)

    Brown, C.; Croff, A.G.; Haire, M. J.

    1997-08-01

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  10. Rescuing a Treasure Uranium-233

    SciTech Connect (OSTI)

    Krichinsky, Alan M; Goldberg, Dr. Steven A.; Hutcheon, Dr. Ian D.

    2011-01-01

    Uranium-233 (233U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium (232Th). At high purities, this synthetic isotope serves as a crucial reference for accurately quantifying and characterizing natural uranium isotopes for domestic and international safeguards. Separated 233U is stored in vaults at Oak Ridge National Laboratory. These materials represent a broad spectrum of 233U from the standpoint isotopic purity the purest being crucial for precise analyses in safeguarding uranium. All 233U at ORNL currently is scheduled to be down blended with depleted uranium beginning in 2015. Such down blending will permanently destroy the potential value of pure 233U samples as certified reference material for use in uranium analyses. Furthermore, no replacement 233U stocks are expected to be produced in the future due to a lack of operating production capability and the high cost of returning to operation this currently shut down capability. This paper will describe the efforts to rescue the purest of the 233U materials arguably national treasures from their destruction by down blending.

  11. Frequently Asked Questions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequently Asked Questions Frequently Asked Questions This section is meant to cover the most common questions regarding the EERE Postdoctoral Research Awards. The Frequently Asked Questions (FAQs) are divided into several broad categories: general information, applications, eligibility, selection process, stipend and benefits, taxes, conditions and requirements, and travel. If you have questions about information not covered in this FAQ, please email: DOE-RPP@orau.org. General Information What

  12. LED Frequently Asked Questions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequently Asked Questions LED Frequently Asked Questions This document provides answers to LED frequently asked questions for plant-wide improvements, such as "Are LEDs ready for general lighting?" LED Frequently Asked Questions (May 2011) (344.41 KB) More Documents & Publications LED Frequently Asked Questions Lighting Designer Roundtable on Solid-State Lighting SSL R&D Multi-Year Program Plan

  13. ARM - Facility Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARMFacility Statistics 2015 Quarterly Reports First Quarter (PDF) Second Quarter (PDF) Third Quarter (PDF) Fourth Quarter (PDF) Historical Statistics Field Campaigns Operational...

  14. Web Analytics and Statistics

    Office of Energy Efficiency and Renewable Energy (EERE)

    EERE uses Google Analytics to capture statistics on its websites. These statistics help website managers measure and report on users, sessions, most visited pages, and more.

  15. Currency Conversion and Energy Projections: Some Questions and Answers

    U.S. Energy Information Administration (EIA) Indexed Site

    Currency Conversion and Energy Projections: Some Questions and Answers Vipin Arora November 2015 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES November 2015 Vipin Arora | U.S. Energy Information

  16. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  17. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOE Patents [OSTI]

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  18. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    8. U.S. uranium expenditures, 2003-15 million dollars Year Drilling1 Production2 Land and other 3 Total expenditures Total land and other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6

  19. Frequently Asked Questions | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Frequently Asked Questions Print Text Size: A A A FeedbackShare Page The Office of Science User Facilities are a unique resource for the Nation's

  20. Uranium Leasing Program Environmental Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Documents Uranium Leasing Program Environmental Documents Uranium Leasing Program 2015 Mitigation Action Plan Activity Summary Report (March 2016) The DOE Uranium Leasing Program's 2015 Mitigation Action Plan Activity Summary fulfills the mitigation plan's requirement to annually notify the public of mitigation activities completed by Uranium Leasing Program lessees. Uranium Leasing Program Mitigation Action Plan for the Final Uranium Leasing Program Programmatic Environmental

  1. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  2. Reducing emissions from uranium dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  3. User Statistics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics By Institution By Project Data Archive User Statistics Collection Practices Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Statistics Print Text Size: A A A FeedbackShare Page The Office of Science

  4. Evaluation of Background Concentrations of Contaminants in an Unusual Desert Arroyo Near a Uranium Mill Tailings Disposal Cell - 12260

    SciTech Connect (OSTI)

    Bush, Richard P.; Morrison, Stan J.

    2012-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages 27 sites that have groundwater containing uranium concentrations above background levels. The distal portions of the plumes merge into background groundwater that can have 50 ÎĽg/L or more uranium. Distinguishing background from site-related uranium is often problematic, but it is critical to determining if remediation is warranted, establishing appropriate remediation goals, and evaluating disposal cell performance. In particular, groundwater at disposal cells located on the upper Cretaceous Mancos Shale may have relatively high background concentrations of uranium. Elevated concentrations of nitrate, selenium, and sulfate accompany the uranium. LM used geologic analogs and uranium isotopic signatures to distinguish background groundwater from groundwater contaminated by a former uranium processing site. The same suite of contaminants is present in groundwater near former uranium processing sites and in groundwater seeps emanating from the Mancos Shale over a broad area. The concentrations of these contaminants in Many Devils Wash, located near LM's Shiprock disposal cell, are similar to those in samples collected from many Mancos seeps, including two analog sites that are 8 to 11 km from the disposal cell. Samples collected from Many Devils Wash and the analog sites have high AR values (about 2.0)-in contrast, groundwater samples collected near the tailings disposal cell have AR values near 1.0. These chemical signatures raise questions about the origin of the contamination seeping into Many Devils Wash. (authors)

  5. Uranium Biomineralization By Natural Microbial Phosphatase Activities...

    Office of Scientific and Technical Information (OSTI)

    Finally, the minerals produced during this process are stable in low pH conditions or ... strategy to uranium bioreduction in low pH uranium-contaminated environments. ...

  6. The Electrolytic Production of Metallic Uranium

    DOE Patents [OSTI]

    Rosen, R.

    1950-08-22

    This patent covers a process for producing metallic uranium by electrolyzing uranium tetrafluoride at an elevated temperature in a fused bath consisting essentially of mixed alkali and alkaline earth halides.

  7. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments [OSTI]

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  8. Uranium Marketing Annual Report - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Uranium purchases and prices Owners and operators of U.S. civilian nuclear power reactors ... Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors during 2015 ...

  9. Inherently safe in situ uranium recovery

    SciTech Connect (OSTI)

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  10. Comments/Questions | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comments/Questions To offer comments on the CMI website or to ask questions, please contact us: CMIdirector@ameslab.gov 515-296-4500 or use this web form for comments. Thanks!

  11. RECOVERY OF URANIUM VALUES FROM URANIUM BEARING RAW MATERIALS

    DOE Patents [OSTI]

    Michal, E.J.; Porter, R.R.

    1959-06-16

    Uranium leaching from ground uranium-bearing raw materials using MnO/sub 2/ in H/sub 2/SO/sub 4/ is described. The MnO/sub 2/ oxidizes U to the leachable hexavalent state. The MnO/sub 2/ does not replace Fe normally added, because the Fe complexes P and catalyzes the MnO/sub 2/ reaction. Three examples of continuous processes are given, but batch operation is also possible. The use of MnO/sub 2/ makes possible recovery of very low U values. (T.R.H.)

  12. Baseballs and Barrels: World Statistics Day

    Broader source: Energy.gov [DOE]

    Statistics don’t just help us answer trivia questions – they also help us make intelligent decisions. For example, if I heat my home with natural gas, I’m probably interested in what natural gas prices are likely to be this winter.

  13. DuraMat Consortium- Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    The answers to these frequently asked questions will help applicants for the DuraMat Consortium call for proposals.

  14. PROCESS FOR THE RECOVERY OF URANIUM

    DOE Patents [OSTI]

    Morris, G.O.

    1955-06-21

    This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.

  15. METHOD OF APPLYING COPPER COATINGS TO URANIUM

    DOE Patents [OSTI]

    Gray, A.G.

    1959-07-14

    A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.

  16. Excess Uranium Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excess Uranium Management Excess Uranium Management Request for Information - July 2016 On July 19, 2016, the Department issued a Request for Information on the effects of DOE transfers of excess uranium on domestic uranium mining, conversion, and enrichment industries. The Request for Information established an August 18, 2016 deadline for the submission of written comments. The Request for Information is available here. On August 1, 2016, the Department extended the comment period to September

  17. Uranium Management and Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Management and Policy Uranium Management and Policy The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United States. The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United

  18. URANIUM BISMUTHIDE DISPERSION IN MOLTEN METAL

    DOE Patents [OSTI]

    Teitel, R.J.

    1959-10-27

    The formation of intermetallic bismuth compounds of thorium or uranium dispersed in a liquid media containing bismuth and lead is described. A bismuthide of uranium dispersed in a liquid metal medium is formed by dissolving uranium in composition of lead and bismuth containing less than 80% lead and lowering the temperature of the composition to a temperature below the point at which the solubility of uranium is exceeded and above the melting point of the composition.

  19. Uranium Downblending and Disposition Project Technology Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment | Department of Energy Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium Downblending and Disposition Project Technology Readiness Assessment Full Document and Summary Versions are available for download Uranium Downblending and Disposition Project Technology Readiness Assessment (1.11 MB) Summary - Uranium233 Downblending and Disposition Project (146.5 KB) More Documents & Publications Compilation of TRA Summaries EA-1574: Final

  20. Questions and Answers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Questions and Answers Questions and Answers Questions and Answers (156.86 KB) More Documents & Publications DOE HR Guidebook 12_15_05.DOC� Operating Guidelines Appendix C D.DOC� Revised OMB Circular A-76 (Revised November 14, 2002)

  1. Continuous reduction of uranium tetrafluoride

    SciTech Connect (OSTI)

    DeMint, A.L.; Maxey, A.W.

    1993-10-21

    Operation of a pilot-scale system for continuous metallothermic reduction of uranium tetrafluoride (UF{sub 4} or green salt) has been initiated. This activity is in support of the development of a cost- effective process to produce uranium-iron (U-Fe) alloy feed for the Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) program. To date, five runs have been made to reduce green salt (UF{sub 4}) with magnesium. During this quarter, three runs were made to perfect the feeding system, examine feed rates, and determine the need for a crust breaker/stirrer. No material was drawn off in any of the runs; both product metal and by-product salt were allowed to accumulate in the reactor.

  2. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update (EIA)

    2. Number of uranium mills and plants producing uranium concentrate in the United States Uranium concentrate processing facilities End of Mills - conventional milling 1 Mills - other operations 2 In-situ-leach plants 3 Byproduct recovery plants 4 Total 1996 0 2 5 2 9 1997 0 3 6 2 11 1998 0 2 6 1 9 1999 1 2 4 0 7 2000 1 2 3 0 6 2001 0 1 3 0 4 2002 0 1 2 0 3 2003 0 0 2 0 2 2004 0 0 3 0 3 2005 0 1 3 0 4 2006 0 1 5 0 6 2007 0 1 5 0 6 2008 1 0 6 0 7 2009 0 1 3 0 4 2010 1 0 4 0 5 2011 1 0 5 0 6 2012 1

  3. Uranium distribution and geology in the Fish Lake surficial uranium deposit, Esmeralda County, Nevada

    SciTech Connect (OSTI)

    Macke, D.L.; Schumann, R.R.; Otton, J.K.

    1990-01-01

    This paper reports on approximately 675 acres of uranium-enriched lacustrine and marsh sediments in Fish Lake Valley, in southern Nevada and California. Uranium concentrations from 253 samples averaged 64.3 ppm uranium, with a range from 6 to 800 ppm. Uranium was supplied to the marsh sediments by ground water derived from Tertiary volcanic rocks of the Silver Peak Range. Reconnaissance sampling in the surrounding areas shows minor enrichment of uranium in other wetland areas.

  4. PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS

    DOE Patents [OSTI]

    Spedding, F.H.; Butler, T.A.; Johns, I.B.

    1959-03-10

    The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.

  5. CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS

    DOE Patents [OSTI]

    Clifford, W.E.

    1962-05-29

    A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

  6. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  7. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  8. Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441

    SciTech Connect (OSTI)

    Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.; Titov, A.V.; Kiselev, S.M.; Seregin, V.A.; Metlyaev, E.G.; Novikova, N.; Khokhlova, E.A.

    2012-07-01

    Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The current Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated from

  9. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update (EIA)

    3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating status at the end of Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) 2015 1st Quarter 2016 2nd quarter 2016 Anfield Resources Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating-Processing Alternate Feed

  10. PROCESS FOR PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Crawford, J.W.C.

    1959-09-29

    A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.

  11. METHOD OF PROTECTIVELY COATING URANIUM

    DOE Patents [OSTI]

    Eubank, L.D.; Boller, E.R.

    1959-02-01

    A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

  12. Electron Backscatter Diffraction (EBSD) Characterization of Uranium and Uranium Alloys

    SciTech Connect (OSTI)

    McCabe, Rodney J.; Kelly, Ann Marie; Clarke, Amy J.; Field, Robert D.; Wenk, H. R.

    2012-07-25

    Electron backscatter diffraction (EBSD) was used to examine the microstructures of unalloyed uranium, U-6Nb, U-10Mo, and U-0.75Ti. For unalloyed uranium, we used EBSD to examine the effects of various processes on microstructures including casting, rolling and forming, recrystallization, welding, and quasi-static and shock deformation. For U-6Nb we used EBSD to examine the microstructural evolution during shape memory loading. EBSD was used to study chemical homogenization in U-10Mo, and for U-0.75Ti, we used EBSD to study the microstructure and texture evolution during thermal cycling and deformation. The studied uranium alloys have significant microstructural and chemical differences and each of these alloys presents unique preparation challenges. Each of the alloys is prepared by a sequence of mechanical grinding and polishing followed by electropolishing with subtle differences between the alloys. U-6Nb and U-0.75Ti both have martensitic microstructures and both require special care in order to avoid mechanical polishing artifacts. Unalloyed uranium has a tendency to rapidly oxidize when exposed to air and a two-step electropolish is employed, the first step to remove the damaged surface layer resulting from the mechanical preparation and the second step to passivate the surface. All of the alloying additions provide a level of surface passivation and different one and two step electropolishes are employed to create good EBSD surfaces. Because of its low symmetry crystal structure, uranium exhibits complex deformation behavior including operation of multiple deformation twinning modes. EBSD was used to observe and quantify twinning contributions to deformation and to examine the fracture behavior. Figure 1 shows a cross section of two mating fracture surfaces in cast uranium showing the propensity of deformation twinning and intergranular fracture largely between dissimilarly oriented grains. Deformation of U-6Nb in the shape memory regime occurs by the motion

  13. Domestic Uranium Production Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report - Annual With Data for 2015 | Release Date: May 5, 2016 | Next Release Date: May 2017 | full report Previous domestic uranium production reports Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Total uranium drilling was 1,518 holes covering 0.9 million feet, 13% fewer holes than in 2015. Expenditures for uranium drilling in the United States were $29 million in 2015, an increase of 2% compared with 2014. Figure 1. U.S. Uranium drilling

  14. Development of pulsed neutron uranium logging instrument

    SciTech Connect (OSTI)

    Wang, Xin-guang; Liu, Dan; Zhang, Feng

    2015-03-15

    This article introduces a development of pulsed neutron uranium logging instrument. By analyzing the temporal distribution of epithermal neutrons generated from the thermal fission of {sup 235}U, we propose a new method with a uranium-bearing index to calculate the uranium content in the formation. An instrument employing a D-T neutron generator and two epithermal neutron detectors has been developed. The logging response is studied using Monte Carlo simulation and experiments in calibration wells. The simulation and experimental results show that the uranium-bearing index is linearly correlated with the uranium content, and the porosity and thermal neutron lifetime of the formation can be acquired simultaneously.

  15. Process for alloying uranium and niobium

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  16. Removal of uranium from aqueous HF solutions

    DOE Patents [OSTI]

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  17. Method for producing uranium atomic beam source

    DOE Patents [OSTI]

    Krikorian, Oscar H.

    1976-06-15

    A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.

  18. AMERICAN STATISTICAL ASSOCIATION

    U.S. Energy Information Administration (EIA) Indexed Site

    ... The t-statistics test significant and those t-statistics are to the actual regression ... on the NEMS, you've got to test this with real live data eventually to see how it's doing. ...

  19. METHOD OF PURIFYING URANIUM METAL

    DOE Patents [OSTI]

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  20. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Deliveries 2011 2012 2013 2014 2015 Purchases of U.S.-origin and foreign-origin uranium 550 W W W 1,455 Weighted-average price 58.12 W W W 52.35 Purchases of U.S.-origin and ...

  1. 2015 Uranium Marketing Annual Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Foreign purchases 19,318 20,196 23,233 24,199 27,233 Weighted-average price 48.80 46.80 ...

  2. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    9 2015 Uranium Marketing Annual Report Release Date: May 24, 2016 Next Release Date: May ... Foreign sales 4,387 4,798 4,148 4,210 4,258 Weighted-average price 53.08 47.53 43.10 32.91 ...

  3. SEPARATION OF PLUTONIUM FROM URANIUM

    DOE Patents [OSTI]

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  4. GRAIN REFINEMENT OF URANIUM BILLETS

    DOE Patents [OSTI]

    Lewis, L.

    1964-02-25

    A method of refining the grain structure of massive uranium billets without resort to forging is described. The method consists in the steps of beta- quenching the billets, annealing the quenched billets in the upper alpha temperature range, and extrusion upset of the billets to an extent sufficient to increase the cross sectional area by at least 5 per cent. (AEC)

  5. 2015 Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    11 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Total Land and Other 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 ...

  6. Reducing Emissions from Uranium Dissolving

    SciTech Connect (OSTI)

    Griffith, W.L.

    1992-01-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. The trays are steam coil heated. The process has operated satisfactorily, with few difficulties, for decades. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. Because NO{sub x} is hazardous, fumes should be suppressed whenever the electric blower system is inoperable. Because the tray dissolving process has worked well for decades, as much of the current capital equipment and operating procedures as possible were preserved. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2}, which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  7. Uranium isotopes fingerprint biotic reduction

    SciTech Connect (OSTI)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  8. Uranium isotopes fingerprint biotic reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  9. Frequently Asked Questions | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Frequently Asked Questions U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System Frequently Asked Questions (FAQs) User Frequently Asked Questions What is the History of NMMSS? What Are the Other Uses of NMMSS? NMMSS is sponsored by the National Nuclear Security Administration's (NNSA) Office of Materials Integration within the U.S. Department of Energy and the U.S. Nuclear Regulatory Commission Learn More Users Frequently

  10. Response to Weatherization Questions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response to Weatherization Questions Response to Weatherization Questions August 30, 2010 - 4:53pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Last week as part of Vice President Biden's announcement of 200,000 homes weatherized under the Recovery act, we asked you to send us your questions and comments about the weatherization process. Today, we're following up with answers experts from the Department's Weatherization and Intergovernmental Program: 1) From

  11. CRAD, Facility Safety - Unreviewed Safety Question Requirements |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Facility Safety - Unreviewed Safety Question Requirements CRAD, Facility Safety - Unreviewed Safety Question Requirements A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Unreviewed Safety Question (USQ) process.. CRADs provide a recommended approach and the types of information to

  12. Program Evaluation Topics and Questions Library

    Broader source: Energy.gov [DOE]

    Menu of initial questions for a program administrator to use in developing a real-time evaluation survey to collect qualitative data from program contractors.

  13. Fermilab | Fermilab Time and Labor | Questions & Answers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HTML-only Interface Questions & Answers Updated 4152014 Q: What's the story on the FTL alternative (HTML) interface? A: The HTML interface to FTLKronos has been around ever...

  14. Frequently Asked Questions | Environmental Management Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions About the Oak Ridge Environmental Management Science Education and Internship Program 1. What kind of program is the OREM Science Education and...

  15. Cool LinksFavorite Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explore » Favorite Science Questions Favorite Science Questions The Bradbury Science Museum's Favorite Questions and Answers How can we fix the ozone layer? You asked a very interesting question about ozone and how can we fix the ozone layer. It is true that lightning creates ozone. Any spark in air will do it. Ozone can also be created by certain forms of radiation. Ozone is a molecule of oxygen that consists of three atoms instead of the usual two. It has peculiar chemical properties, it is

  16. Inherently safe in situ uranium recovery.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  17. The solubility of uranium hexafluoride in perfluoroethers

    SciTech Connect (OSTI)

    Barber, E.J.

    1984-07-15

    The polyperfluoroethers are compatible with uranium hexafluoride (UF/sub 6/) and are suitable for use in diffusion pumps and in mechanical vacuum pumps which rely on oil as both the lubricant and the seal. The UF/sub 6/ is soluble in all fluids with which it is compatible. Because a number of vacuum pumps in the BOP facilities of the GCEP plant employ these perfluoroether oils as the working fluid and have oil chambers which are large, questions have been raised as to the relationships governing the solubility of UF/sub 6/ in these materials and the maximum quantities of UF/sub 6/ which could be dissolved in these oils under credible accident conditions. This report summarizes these solubility relations and the interaction of the UF/sub 6/ solubility and the pumping capability of this type of vacuum pump. It will be shown that, whereas the solubility of UF/sub 6/ in Fomblin Y25 fluoroether fluid under a UF/sub 6/ pressure of 760 torr and at the pump operating temperature of 160/sup 0/F is about 500 g of UF/sub 6/ per liter of oil, the system controls are such as to isolate the system from the pumps before the quantity of UF/sub 6/ dissolved in the perfluoroether exceeds about 10 g of UF/sub 6/ per liter of oil. 13 refs., 7 figs.

  18. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Goodknight, C.S.; Burger, J.A.

    1982-10-01

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1/sup 0/ x 2/sup 0/ quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed.

  19. Evaluation of kinetic phosphorescence analysis for the determination of uranium

    SciTech Connect (OSTI)

    Croatto, P.V.; Frank, I.W.; Johnson, K.D.; Mason, P.B.; Smith, M.M.

    1997-12-01

    density matrix (1 M HNO{sub 3}). A statistical evaluation of the determination of uranium using kinetic phosphorimetry is described in this report, along with a discussion of the method, and an evaluation of the use of plastic versus quartz cuvettes. Measurement with a precision of {+-} 3--4% relative standard deviation (RSD) and an accuracy of better than {+-} 2% relative difference (RD) are obtained in the 0.0006 to 5 {micro}g U/g-solution range. The instrument detection limit is 0.04 ppb (4 x 10{sup {minus}5} {micro}g U/g solution) using quartz cells, and 0.11 ppb (11 x 10{sup {minus}5} {micro}g U/g solution) using disposable methacrylate cuvettes.

  20. International Energy Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Eia.gov BETA - Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum &...

  1. FY 2005 Statistical Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical Table by Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration

  2. ARM - Historical Visitor Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operational Visitors and Accounts Data Archive and Usage (October 1995 - Present) Historical Visitor Statistics As a national user facility, ARM is required to report...

  3. Independent Statistics & Analysis

    U.S. Energy Information Administration (EIA) Indexed Site

    October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 Quarterly Coal Distribution Report April - June 2014 This report was...

  4. Nonlinearity sensing via photon-statistics excitation spectroscopy

    SciTech Connect (OSTI)

    Assmann, Marc; Bayer, Manfred

    2011-11-15

    We propose photon-statistics excitation spectroscopy as an adequate tool to describe the optical response of a nonlinear system. To this end we suggest to use optical excitation with varying photon statistics as another spectroscopic degree of freedom to gather information about the system in question. The responses of several simple model systems to excitation beams with different photon statistics are discussed. Possible spectroscopic applications in terms of identifying lasing operation are pointed out.

  5. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  6. Uranium Metal Analysis via Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  7. PRETREATING URANIUM FOR METAL PLATING

    DOE Patents [OSTI]

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  8. :- : DRILLING URANIUM BILLETS ON A

    Office of Legacy Management (LM)

    'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO -

  9. Statistical Hot Channel Analysis for the NBSR

    SciTech Connect (OSTI)

    Cuadra A.; Baek J.

    2014-05-27

    A statistical analysis of thermal limits has been carried out for the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The objective of this analysis was to update the uncertainties of the hot channel factors with respect to previous analysis for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuels. Although uncertainties in key parameters which enter into the analysis are not yet known for the LEU core, the current analysis uses reasonable approximations instead of conservative estimates based on HEU values. Cumulative distribution functions (CDFs) were obtained for critical heat flux ratio (CHFR), and onset of flow instability ratio (OFIR). As was done previously, the Sudo-Kaminaga correlation was used for CHF and the Saha-Zuber correlation was used for OFI. Results were obtained for probability levels of 90%, 95%, and 99.9%. As an example of the analysis, the results for both the existing reactor with HEU fuel and the LEU core show that CHFR would have to be above 1.39 to assure with 95% probability that there is no CHF. For the OFIR, the results show that the ratio should be above 1.40 to assure with a 95% probability that OFI is not reached.

  10. REMOVAL OF URANIUM FROM ORGANIC LIQUIDS

    DOE Patents [OSTI]

    Vavalides, S.P.

    1959-08-25

    A process is described for recovering small quantities of uranium from organic liquids such as hydrocarbon oils. halogen-substituted hydrocarbons, and alcohols. The organic liquid is contacted with a comminuted alkaline earth hydroxide, calcium hydroxide particularly, and the resulting uranium-bearing solid is separated from the liquid by filtration. Uranium may then be recovered from the solid by means of dissolution in nitric acid and conventional extraction with an organic solvent such as tributyl phosphate.

  11. Uranium Weapons Components Successfully Dismantled | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons stockpile, the National Nuclear Security Administration announced that uranium components from two major nuclear weapons systems formerly deployed on U.S. Air Force missiles and aircraft have been dismantled at the Y-12 National Security Complex in Oak Ridge, TN. Y-12 workers

  12. Uranium Leasing Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Uranium Leasing Program Uranium Leasing Program Reclaimed C-CM-25 Mine Site, Montrose County, Colorado Reclaimed C-CM-25 Mine Site, Montrose County, Colorado LM currently manages the Uranium Leasing Program and continues to administer 31 lease tracts, all located within the Uravan Mineral Belt in southwestern Colorado. Twenty-nine of these lease tracts are actively held under lease and two tracts have been placed in inactive status indefinitely. Administrative duties include ongoing

  13. METHOD FOR THE REDUCTION OF URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Cooke, W.H.; Crawford, J.W.C.

    1959-05-12

    An improved technique of preparing massive metallic uranium by the reaction at elevated temperature between an excess of alkali in alkaline earth metal and a uranium halide, such ss uranium tetrafluoride is presented. The improvement comprises employing a reducing atmosphere of hydrogen or the like, such as coal gas, in the vessel during the reduction stage and then replacing the reducing atmosphere with argon gas prior to cooling to ambient temperature.

  14. ELECTROCHEMICAL DECONTAMINATION AND RECOVERY OF URANIUM VALUES

    DOE Patents [OSTI]

    McLaren, J.A.; Goode, J.H.

    1958-05-13

    An electrochemical process is described for separating uranium from fission products. The method comprises subjecting the mass of uranium to anodic dissolution in an electrolytic cell containing aqueous alkali bicarbonate solution as its electrolyte, thereby promoting a settling from the solution of a solid sludge from about the electrodes and separating the resulting electrolyte solution containing the anodically dissolved uranium from the sludge which contains the rare earth fission products.

  15. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOE Patents [OSTI]

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  16. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    DOE Patents [OSTI]

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  17. Think Uranium. Think Y-12 | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Think Uranium. Think Y-12 Think Uranium. Think Y-12 Posted: July 22, 2013 - 3:12pm | Y-12 Report | Volume 10, Issue 1 | 2013 Uranium fever: Much like the California gold rush of ...

  18. Uranium metal reactions with hydrogen and water vapour and the reactivity of the uranium hydride produced

    SciTech Connect (OSTI)

    Godfrey, H.; Broan, C.; Goddard, D.; Hodge, N.; Woodhouse, G.; Diggle, A.; Orr, R.

    2013-07-01

    Within the nuclear industry, metallic uranium has been used as a fuel. If this metal is stored in a hydrogen rich environment then the uranium metal can react with the hydrogen to form uranium hydride which can be pyrophoric when exposed to air. The UK National Nuclear Laboratory has been carrying out a programme of research for Sellafield Limited to investigate the conditions required for the formation and persistence of uranium hydride and the reactivity of the material formed. The experimental results presented here have described new results characterising uranium hydride formed from bulk uranium at 50 and 160 C. degrees and measurements of the hydrolysis kinetics of these materials in liquid water. It has been shown that there is an increase in the proportion of alpha-uranium hydride in material formed at lower temperatures and that there is an increase in the rate of reaction with water of uranium hydride formed at lower temperatures. This may at least in part be attributable to a difference in the reaction rate between alpha and beta-uranium hydride. A striking observation is the strong dependence of the hydrolysis reaction rate on the temperature of preparation of the uranium hydride. For example, the reaction rate of uranium hydride prepared at 50 C. degrees was over ten times higher than that prepared at 160 C. degrees at 20% extent of reaction. The decrease in reaction rate with the extent of reaction also depended on the temperature of uranium hydride preparation.

  19. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM

    DOE Patents [OSTI]

    Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.

    1962-11-13

    A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)

  20. Potentiometric determination of uranium in organic extracts

    SciTech Connect (OSTI)

    Bodnar, L.Z.

    1980-05-01

    The potentimetric determination of uranium in organic extracts was studied. A mixture of 30% TBP, (tributylphosphate), in carbon tetrachloride was used, with the NBL (New Brunswick Laboratory) titrimetric procedure. Results include a comparative analysis performed on organic extracts of fissium alloys vs those performed on aqueous samples of the same alloys which had been treated to remove interfering elements. Also comparative analyses were performed on sample solutions from a typical scrap recovery operation common in the uranium processing industry. A limited number of residue type materials, calciner products, and presscakes were subjected to analysis by organic extraction. The uranium extraction was not hindered by 30% TBP/CCl/sub 4/. To fully demonstrate the capabilities of the extraction technique and its compatibility with the NBL potentiometric uranium determination, a series of uranium standards was subjected to uranium extraction with 30% TBP/CCl/sub 4/. The uranium was then stripped out of the organic phase with 40 mL of H/sub 3/PO/sub 4/, 15 mL of H/sub 2/0, and 1 mL of 1M FeSO/sub 4/ solution. The uranium was then determined in the aqueous phosphoric phase by the regular NBL potentiometric method, omitting only the addition of another 40 mL of H/sub 3/PO/sub 4/. Uranium determinations ranging from approximately 20 to 150 mg of U were successfully made with the same accuracy and precision normally achieved. 8 tables. (DP)

  1. Colorimetric detection of uranium in water

    DOE Patents [OSTI]

    DeVol, Timothy A.; Hixon, Amy E.; DiPrete, David P.

    2012-03-13

    Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

  2. Assessment of radionuclides (uranium and thorium) atmospheric...

    Office of Scientific and Technical Information (OSTI)

    Title: Assessment of radionuclides (uranium and thorium) atmospheric pollution around Manjung district, Perak using moss as bio-indicator Bio-monitoring method using mosses have ...

  3. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS

    DOE Patents [OSTI]

    Nicholls, C.M.; Wells, I.; Spence, R.

    1959-10-13

    The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

  4. Uranium Processing Facility Site Readiness Subproject Completed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Successfully Establishes Uranium Lease and Takeback Program to Support Critical Medical Isotope Production Apex Gold discussion fosters international cooperation in run-up to ...

  5. Oxidation and crystal field effects in uranium

    SciTech Connect (OSTI)

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  6. SEPARATION OF URANIUM FROM OTHER METALS

    DOE Patents [OSTI]

    Hyman, H.H.

    1959-07-01

    The separation of uranium from other elements, such as ruthenium, zirconium, niobium, cerium, and other rare earth metals is described. According to the invention, this is accomplished by adding hydrazine to an acid aqueous solution containing salts of uranium, preferably hexavalent uranium, and then treating the mixture with a substantially water immiscible ketone, such as hexone. A reaction takes place between the ketone and the hydrazine whereby a complex, a ketazine, is formed; this complex has a greater power of extraction for uranium than the ketone by itself. When contaminating elements are present, they substantially remain in ihe aqueous solution.

  7. Plutonium Uranium Extraction Plant (PUREX) - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities Plutonium Uranium Extraction Plant (PUREX) About Us About ... and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage ...

  8. International Energy Statistics - EIA

    Gasoline and Diesel Fuel Update (EIA)

    International > International Energy Statistics International Energy Statistics Petroleum Production | Annual Monthly/Quarterly Consumption | Annual Monthly/Quarterly Capacity | Bunker Fuels | Stocks | Annual Monthly/Quarterly Reserves | Imports | Annual Monthly/Quarterly Exports | CO2 Emissions | Heat Content Natural Gas All Flows | Production | Consumption | Reserves | Imports | Exports | Carbon Dioxide Emissions | Heat Content Coal All Flows | Production | Consumption | Reserves | Imports

  9. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  10. Notice of Availability of the Remediation of the Moab Uranium...

    Office of Environmental Management (EM)

    ... DEPARTMENT OF ENERGY Remediation of the Moab Uranium Mill Tailings Final Environmental ... the availability of the Remediation of the Moab Uranium Mill Tailings Final Environmental ...

  11. GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM

    Energy Savers [EERE]

    ... source material' means (1) uranium, thorium, or any other material which is ... "source material " means ( 1) uranium, thorium , or any other material which is ...

  12. COULOMETRIC DETERMINATION OF URANIUM WITH A PLATINUM WORKING...

    Office of Scientific and Technical Information (OSTI)

    COULOMETRIC DETERMINATION OF URANIUM WITH A PLATINUM WORKING ELECTRODE. Citation Details In-Document Search Title: COULOMETRIC DETERMINATION OF URANIUM WITH A PLATINUM WORKING ...

  13. Manhattan Project: Early Uranium Research, 1939-1941

    Office of Scientific and Technical Information (OSTI)

    ... Retaining programmatic responsibilities for uranium research in the new organizational setup, the Uranium Committee recommended that all four isotope separation methods and the ...

  14. DOE Extends Contract to Operate Depleted Uranium Hexafluoride...

    Energy Savers [EERE]

    Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - ...

  15. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Environmental Management (EM)

    Toxic Substances Control Act (TSCA) Uranium Enrichment Federal Facility Compliance Agreement establishes a plan to bring DOE's Uranium Enrichment Plants (and support facilities) ...

  16. 2nd Quarter 2016 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Number of uranium mills and plants producing uranium concentrate in the United States" ... - other operations 2","In-situ-leach plants 3","Byproduct recovery plants 4","Total" ...

  17. Secretarial Determination for the Sale or Transfer of Uranium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of ...

  18. Secretarial Determination of No Adverse Material Impact for Uranium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretarial Determination of No Adverse Material Impact for Uranium Transfers Secretarial Determination of No Adverse Material Impact for Uranium Transfers The determination covers ...

  19. Legacy Management Work Progresses on Defense-Related Uranium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global positioning location data were...

  20. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers [EERE]

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  1. Highly Enriched Uranium Materials Facility | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uranium, a vital national security asset. HEUMF is a massive concrete and steel structure that provides maximum security for the highly enriched uranium material that it protects. ...

  2. 1st Quarter 2016 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " U.S. Energy Information Administration Domestic Uranium ...

  3. Uranium Marketing Annual Report - Release Date: May 31, 2011

    Gasoline and Diesel Fuel Update (EIA)

    1. Unfilled uranium market requirements of owners and operators of U.S. civilian nuclear ... Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual ...

  4. Decommissioning of U.S. Uranium Production Facilities

    Reports and Publications (EIA)

    1995-01-01

    This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

  5. President Truman Increases Production of Uranium and Plutonium...

    National Nuclear Security Administration (NNSA)

    Increases Production of Uranium and Plutonium President Truman Increases Production of Uranium and Plutonium Washington, DC President Truman approves a 1.4 billion expansion of ...

  6. Record of Decision for the Uranium Leasing Program Programmatic...

    Office of Environmental Management (EM)

    Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact ...

  7. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings...

    Office of Environmental Management (EM)

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American ... of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. ...

  8. Sequestering Uranium from Seawater: Binding Strength and Modes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl ...

  9. Uranium Sequestration via Phosphate Infiltration/Injection Test...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium Sequestration via Phosphate InfiltrationInjection Test History Supporting the Preferred Alternative 1 300 Area GW Concentrations - Uranium High River Stage - GW ...

  10. Belgium Highly Enriched Uranium and Plutonium Removals | National...

    National Nuclear Security Administration (NNSA)

    Uranium and Plutonium Removals March 24, 2014 Belgium has been a global leader in nonproliferation, working with the United States since 2006 to minimize highly enriched uranium ...

  11. Toxic Substances Control Act Uranium Enrichment Federal Facilities...

    Office of Environmental Management (EM)

    Toxic Substance Control Act Uranium Enrichment Federal Facilities Compliance Agreement ... for bringing DOE's former and active Uranium Enrichment Plants in Paducah, Portsmouth, ...

  12. Speciation of Uranium in Biologically Reduced Sediments in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Speciation of Uranium in Biologically Reduced Sediments in the Old Rifle Aquifer ... Juan S. Lezama Pacheco The speciation and dynamics of Uranium(IV) in naturally and ...

  13. Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence...

    Energy Savers [EERE]

    Uranium-Bearing Evaporite Mineralization Influencing Plume Persistence: Literature Review and DOE-LM Site Surveys Uranium-Bearing Evaporite Mineralization Influencing Plume ...

  14. Uranium and Strontium Batch Sorption and Diffusion Kinetics into...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium and Strontium Batch Sorption and Diffusion Kinetics into Mesoporous Silica Friday, ... and fate of radioactive material such as uranium (U) and strontium (Sr) in the environment ...

  15. EOI: Offsite Depleted Uranium Metalworking | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offsite Depleted ... EOI: Offsite Depleted Uranium Metalworking Consolidated Nuclear ... of Depleted Uranium, for the Y-12 National Security Complex in Oak Ridge, Tennessee. ...

  16. Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern...

    Office of Environmental Management (EM)

    Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on...

  17. Uranium Nitride: Enabling New Applications for TRISO Fuel Particles...

    Office of Scientific and Technical Information (OSTI)

    Uranium Nitride: Enabling New Applications for TRISO Fuel Particles Citation Details In-Document Search Title: Uranium Nitride: Enabling New Applications for TRISO Fuel Particles ...

  18. Solar Instructor Training Network Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    These frequently asked questions (FAQs) relate to the solar instructor training network. This project was launched by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP or...

  19. UESC Frequently Asked Questions Panel Discussion

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers frequently asked questions (FAQs) about utility energy service contracts (UESCs), including term lengths, bonding, and a UESC within a utility's service territory.

  20. Frequently Asked Questions | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    Frequently Asked Questions General What is a demonstration project? What employees are affected by the pay-banding and pay-for-performance demonstration project? When was pay-banding ...