Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Statistical data of the uranium industry  

SciTech Connect (OSTI)

Statistical Data of the Uranium Industry is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1981. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining, and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office (GJAO) of the US Department of Energy. The production, reserves, and drilling information is reported in a manner which avoids disclosure of proprietary information.

none,

1982-01-01T23:59:59.000Z

2

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

3

Uranium industry annual 1996  

SciTech Connect (OSTI)

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

4

Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants  

SciTech Connect (OSTI)

The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component in the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.

Ladd-Lively, Jennifer L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

5

Uranium Industry Annual, 1992  

SciTech Connect (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

6

Thermal hydraulic limits analysis for the MIT Research Reactor low enrichment uranium core conversion using statistical propagation of parametric uncertainties  

E-Print Network [OSTI]

The MIT Research Reactor (MITR) is evaluating the conversion from highly enriched uranium (HEU) to low enrichment uranium (LEU) fuel. In addition to the fuel element re-design from 15 to 18 plates per element, a reactor ...

Chiang, Keng-Yen

2012-01-01T23:59:59.000Z

7

Uranium industry annual 1994  

SciTech Connect (OSTI)

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

8

QUESTION RESPONSE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

can be mitigated? 2019 was chosen based on DOE's estimation of the impact to the domestic uranium mining, conversion, and enrichment industries from other uranium transactions...

10

Algorithmic Approaches to Statistical Questions  

E-Print Network [OSTI]

is not new; both Alan Turing and R.A. Fisher, the respectivefrom both R.A Fisher, and Alan Turing. In the early 1940’s,the height of WWII, Alan Turing and I.J. Good were working

Valiant, Gregory John

2012-01-01T23:59:59.000Z

11

Algorithmic Approaches to Statistical Questions  

E-Print Network [OSTI]

from a uniform distribution U nif [n] (left column), a Zipfexamples: Example 3.2. Letting U nif (q) denotes the uniformsupported on q elements, R (U nif (m), U nif ( )) = | log m

Valiant, Gregory John

2012-01-01T23:59:59.000Z

12

Uranium Ore Uranium is extracted  

E-Print Network [OSTI]

Milling of Uranium Ore Uranium is extracted from ore with strong acids or bases. The uranium is concentrated in a solid substance called"yellowcake." Chemical Conversion Plants convert the uranium in yellowcake to uranium hexafluoride (UF6 ), a compound that can be made into nuclear fuel. Enrichment

13

2013 Domestic Uranium Production Report  

E-Print Network [OSTI]

Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA.S. Energy Information Administration | 2013 Domestic Uranium Production Report iii Preface The U.S. Energy://www.eia.doe.gov/glossary/. #12;U.S. Energy Information Administration | 2013 Domestic Uranium Production Report iv Contents

14

Questions & Answers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Question: Is the new SOW language the definitive management approach (short of a GOCO) that consolidates responsibility and accountability for the NSE stockpile surety into...

15

Composing questions  

E-Print Network [OSTI]

This dissertation motivates a new syntax and semantics for simplex and multiple wh-questions, concentrating on English and German data. The proposed theory combines Cable's (2007; 2010) Q-based syntax for wh-movement and ...

Kotek, Hadas

2014-01-01T23:59:59.000Z

16

Uranium 2014 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

Organisation for Economic Cooperation and Development. Paris

2014-01-01T23:59:59.000Z

17

Uranium 2005 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

Organisation for Economic Cooperation and Development. Paris

2006-01-01T23:59:59.000Z

18

URANIUM IN ALKALINE ROCKS  

E-Print Network [OSTI]

Greenland," in Uranium Exploration Geology, Int. AtomicOklahoma," 1977 Nure Geology Uranium Symposium, Igneous HostMcNeil, M. , 1977. "Geology of Brazil's Uranium and Thorium

Murphy, M.

2011-01-01T23:59:59.000Z

19

STATISTICAL METHODS STATISTICAL METHODS  

E-Print Network [OSTI]

STATISTICAL METHODS 1 STATISTICAL METHODS Arnaud Delorme, Swartz Center for Computational@salk.edu. Keywords: statistical methods, inference, models, clinical, software, bootstrap, resampling, PCA, ICA Abstract: Statistics represents that body of methods by which characteristics of a population are inferred

Delorme, Arnaud

20

Unreviewed Safety Question Requirements  

Broader source: Energy.gov (indexed) [DOE]

Unreviewed Safety Question Requirements FUNCTIONAL AREA GOAL: A fully compliant Unreviewed Safety Question (USQ) program is implemented and maintained across the site....

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Final Uranium Leasing Program Programmatic Environmental Impact...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing...

22

Answering Key Fuel Cycle Questions  

SciTech Connect (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we plan for? · Should we separate uranium? · If we separate uranium, should we recycle it, store it or dispose of it? · Is it practical to plan to fabricate and handle “hot” fuel? · Which transuranic elements (TRU) should be separated and transmuted? · Of those TRU separated, which should be transmuted together? · Should we separate and/or transmute Cs and Sr isotopes that dominate near-term repository heating? · Should we separate and/or transmute very long-lived Tc and I isotopes? · Which separation technology? · What mix of transmutation technologies? · What fuel technology best supports the above decisions?

Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

2003-10-01T23:59:59.000Z

23

Depleted Uranium Technical Brief  

E-Print Network [OSTI]

Depleted Uranium Technical Brief United States Environmental Protection Agency Office of Air and Radiation Washington, DC 20460 EPA-402-R-06-011 December 2006 #12;#12;Depleted Uranium Technical Brief EPA of Radiation and Indoor Air Radiation Protection Division ii #12;iii #12;FOREWARD The Depleted Uranium

24

Safeguards on uranium ore concentrate? the impact of modern mining and milling process  

SciTech Connect (OSTI)

Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed.

Francis, Stephen [National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington WA3 6AE (United Kingdom)

2013-07-01T23:59:59.000Z

25

Method for converting uranium oxides to uranium metal  

DOE Patents [OSTI]

A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

Duerksen, Walter K. (Norris, TN)

1988-01-01T23:59:59.000Z

26

Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films  

E-Print Network [OSTI]

Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

Hart, Gus

27

Welding of uranium and uranium alloys  

SciTech Connect (OSTI)

The major reported work on joining uranium comes from the USA, Great Britain, France and the USSR. The driving force for producing this technology base stems from the uses of uranium as a nuclear fuel for energy production, compact structures requiring high density, projectiles, radiation shielding, and nuclear weapons. This review examines the state-of-the-art of this technology and presents current welding process and parameter information. The welding metallurgy of uranium and the influence of microstructure on mechanical properties is developed for a number of the more commonly used welding processes.

Mara, G.L.; Murphy, J.L.

1982-03-26T23:59:59.000Z

28

EPA Update: NESHAP Uranium Activities  

E-Print Network [OSTI]

for underground uranium mining operations (Subpart B) EPA regulatory requirements for operating uranium mill for Underground Uranium Mining Operations (Subpart B) #12;5 EPA Regulatory Requirements for Underground Uranium uranium mines include: · Applies to 10,000 tons/yr ore production, or 100,000 tons/mine lifetime · Ambient

29

Uranium hexafluoride public risk  

SciTech Connect (OSTI)

The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

1994-08-01T23:59:59.000Z

30

Uranium Mill Tailings Management  

SciTech Connect (OSTI)

This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements).

Nelson, J.D.

1982-01-01T23:59:59.000Z

31

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents [OSTI]

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

1995-06-06T23:59:59.000Z

32

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents [OSTI]

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

33

Frequently Asked Questions  

Broader source: Energy.gov [DOE]

Frequently asked questions (FAQs) and their corresponding answers regarding industrial distributed energy (DE) and combined heat and power (CHP) are provided below.

34

Preparation of uranium compounds  

DOE Patents [OSTI]

UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

2013-02-19T23:59:59.000Z

35

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS  

E-Print Network [OSTI]

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS Thesis. I have benefitted from conversations with many persons w~ile engaged in this project. I would like

Winfree, Erik

36

Problem of Questioning  

ScienceCinema (OSTI)

Le Prof.Leprince-Ringuet, chercheur sur le plan scientifique, artistique et humain, parle de la remise en question des hommes et la remise en question scientifique fondamentale ou exemplaire- plusieurs personnes prennent la parole p.ex Jeanmairet, Adam, Gregory. Le Prof.Gregory clot la soirée en remerciant le Prof.Leprince-Ringuet

None

2011-04-25T23:59:59.000Z

37

Uranium industry annual 1993  

SciTech Connect (OSTI)

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

38

CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS  

E-Print Network [OSTI]

CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

Hart, Gus

39

Uranium dioxide electrolysis  

DOE Patents [OSTI]

This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

2009-12-29T23:59:59.000Z

40

Decommissioning of U.S. uranium production facilities  

SciTech Connect (OSTI)

From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

Not Available

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Statistics Overall Statistics  

E-Print Network [OSTI]

2012 Beaver Computing Challenge Results Sponsor: 1 #12;Statistics Overall Statistics Number.24/6 Glasses: 1.74/4 Text Machine: 5.54/8 Hierarchical Structure: 2.98/6 Bebrocarina: 2.14/4 Beaver Navigation: 5.06/8 Beaver Pyramid: 3.23/6 Change Direction: 1.45/4 Power Generation: 5.56/8 Rotating Puzzle: 5

Czarnecki, Krzysztof

42

WISE Uranium Project - Fact Sheet  

E-Print Network [OSTI]

t in the depleted uranium. For this purpose, we first need to calculate the mass balance of the enrichment process. We then calculate the inhalation doses from the depleted uranium and compare the dose contributions from the nuclides of interest. Mass balance for uranium enrichment at Paducah [DOE_1984, p.35] Feed Product Tails Other Mass [st] 758002 124718 621894 11390 Mass fraction 100.00% 16.45% 82.04% 1.50% Concentration of plutonium in tails (depleted uranium) from enrichment of reprocessed uranium, assuming that all plutonium were transfered to the tails: Concentration of neptunium in tails from enrichment of reprocessed uranium uranium, assuming that all neptunium were transfered to the tails: - 2 - Schematic of historic uranium enrichment process at Paducah [DOE_1999b] - -7 For comparison, we first calculate the inhalation dose from depleted uranium produced from natural uranium. We assume that the short-lived decay products have reached secular equilibrium with th

Hazards From Depleted

43

India's Worsening Uranium Shortage  

SciTech Connect (OSTI)

As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

Curtis, Michael M.

2007-01-15T23:59:59.000Z

44

Geodatabase of the South Texas Uranium District  

E-Print Network [OSTI]

Uranium and its associated trace elements and radionuclides are ubiquitous in the South Texas Tertiary environment. Surface mining of this resource from the 1960s through the early 1980s at over sixty locations has left an extensive anthropological footprint (Fig. 1) in the lower Nueces and San Antonio river basins. Reclamation of mining initiated after 1975 has been under the regulatory authority of the Railroad Commission of Texas (RCT). However, mines that were active before the Texas Surface Mining Act of 1975 was enacted, and never reclaimed, are now considered abandoned. The Abandoned Mine Land Section of the RCT is currently reclaiming these pre-regulation uranium mines with funding from the federal government. The RCT monitors the overall effectiveness of this process through post-reclamation radiation and vegetative cover surveys, water quality testing, slope stability and erosion control monitoring. Presently a number of graduate and postgraduate students are completing research on the watershed and reservoir distribution of trace elements and radionuclides downstream of the South Texas Uranium District. The question remains as to whether the elevated levels of uranium, its associated trace elements and radiation levels in the South Texas environment are due to mining

Mark Beaman; William Wade Mcgee

45

Depleted uranium management alternatives  

SciTech Connect (OSTI)

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

46

Global Statistics  

E-Print Network [OSTI]

of Globalization: Statistics Weiss, L. (1997). "of Globalization: Statistics Milanovic, B. (1999). Truethe focus of global statistics, particularly in relation to

Crow, Ben D

2006-01-01T23:59:59.000Z

47

Method for the recovery of uranium values from uranium tetrafluoride  

DOE Patents [OSTI]

The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

Kreuzmann, Alvin B. (Cincinnati, OH)

1983-01-01T23:59:59.000Z

48

Method for the recovery of uranium values from uranium tetrafluoride  

DOE Patents [OSTI]

The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

Kreuzmann, A.B.

1982-10-27T23:59:59.000Z

49

Some Questions About Neurocognitive  

E-Print Network [OSTI]

Some Questions About Neurocognitive Networks Steven Bressler Center for Complex Systems & Brain is a Brain Network? · A brain network is a large-scale system in the brain consisting of distributed neuronal ­ Dynamic Interdependency #12;Does The Brain Need Networks? · Serial processing, as found in the PNS, is too

Bressler, Steven L.

50

QUESTIONS ABOUT GLOBAL WARMING  

E-Print Network [OSTI]

QUESTIONS ABOUT GLOBAL WARMING ÂĄIS IT REAL? ÂĄIS IT IMPORTANT? ÂĄWHAT IS IT DUE TO? ÂĄHOW MUCH MORE in the atmosphere, giving Earth its temperate climate. Global Atmosphere, Global Warming GLOBAL TEMPERATURE TRENDĂ?t a cure for global warming! Aerosols only last a short while in the atmosphere, they would have

51

Statistical Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Experiments Reliability Bayesian Methods Statistical Computation Statistical Graphics and Visualization Analysis of Measurement Systems Projects Data Analysis System...

52

Uranium Enrichment Decontamination and Decommissioning Fund's...  

Broader source: Energy.gov (indexed) [DOE]

Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit Uranium Enrichment Decontamination and Decommissioning Fund's...

53

Statistical Laboratory & Department of Statistics  

E-Print Network [OSTI]

Statistical Laboratory & Department of Statistics Annual Report July 1, 2005 to December 31, 2006...............................................33 Statistical Computing Section ......................................34 CSSM and statistical methodology in the nutritional sciences. We were also very pleased to secure a permanent lecturer

54

Process for electrolytically preparing uranium metal  

DOE Patents [OSTI]

A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

Haas, Paul A. (Knoxville, TN)

1989-01-01T23:59:59.000Z

55

Controlling uranium reactivity March 18, 2008  

E-Print Network [OSTI]

for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

Meyer, Karsten

56

Global Statistics  

E-Print Network [OSTI]

1996). Globalization in Question: International Economy andGlobalization; Justice; Poverty; Underground Economy; United

Crow, Ben D

2006-01-01T23:59:59.000Z

57

Influence of uranium hydride oxidation on uranium metal behaviour  

SciTech Connect (OSTI)

This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

2013-07-01T23:59:59.000Z

58

Uranium-titanium-niobium alloy  

DOE Patents [OSTI]

A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

Ludtka, Gail M. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

59

Uranium deposits of Brazil  

SciTech Connect (OSTI)

Brazil is a country of vast natural resources, including numerous uranium deposits. In support of the country`s nuclear power program, Brazil has developed the most active uranium industry in South America. Brazil has one operating reactor (Angra 1, a 626-MWe PWR), and two under construction. The country`s economic challenges have slowed the progress of its nuclear program. At present, the Pocos de Caldas district is the only active uranium production. In 1990, the Cercado open-pit mine produced approximately 45 metric tons (MT) U{sub 3}O{sub 8} (100 thousand pounds). Brazil`s state-owned uranium production and processing company, Uranio do Brasil, announced it has decided to begin shifting its production from the high-cost and nearly depleted deposits at Pocos de Caldas, to lower-cost reserves at Lagoa Real. Production at Lagoa Real is schedules to begin by 1993. In addition to these two districts, Brazil has many other known uranium deposits, and as a whole, it is estimated that Brazil has over 275,000 MT U{sub 3}O{sub 8} (600 million pounds U{sub 3}O{sub 8}) in reserves.

NONE

1991-09-01T23:59:59.000Z

60

Uranium hexafluoride handling. Proceedings  

SciTech Connect (OSTI)

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Doing Business Frequently Asked Questions  

Broader source: Energy.gov [DOE]

The following are frequently asked questions about working with in partnership with DOE laboratories.

62

Uranium immobilization and nuclear waste  

SciTech Connect (OSTI)

Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

Duffy, C.J.; Ogard, A.E.

1982-02-01T23:59:59.000Z

63

ARM - Science Questions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience Questions Related Links ISDAC Home AAF Home

64

ARM - Science Questions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience Questions Related Links ISDAC Home AAF

65

ARM - Science Questions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience Questions Related Links ISDAC Home AAFScience

66

ARM - Science Questions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience Questions Related Links ISDAC Home

67

Corrosion-resistant uranium  

DOE Patents [OSTI]

The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

1981-10-21T23:59:59.000Z

68

Corrosion-resistant uranium  

DOE Patents [OSTI]

The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

Hovis, Jr., Victor M. (Kingston, TN); Pullen, William C. (Knoxville, TN); Kollie, Thomas G. (Oak Ridge, TN); Bell, Richard T. (Knoxville, TN)

1983-01-01T23:59:59.000Z

69

Uranium Marketing Annual Report -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium froma. Uranium

70

Statistical identification  

E-Print Network [OSTI]

Statistical identification of critical, dependent and redundant articulators Veena D Singampalli of articulatory roles Evaluation by exhaustive search and trajectory generation Summary Statistical identification, Belgium #12;Statistical identification of critical, dependent and redundant articulators Veena D

Jackson, Philip JB

71

Statistical identification  

E-Print Network [OSTI]

Statistical identification of critical, dependent and redundant articulators Philip Jackson & Veena Statistical identification of critical, dependent and redundant articulators Philip Jackson & Veena Acoustics'08 Paris #12;Statistical identification of critical, dependent and redundant articulators Philip

Jackson, Philip JB

72

32. Statistics 1 32. STATISTICS  

E-Print Network [OSTI]

32. Statistics 1 32. STATISTICS Revised September 2007 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in High Energy Physics. In statistics, we are interested in using's validity or to determine the values of its parameters. There are two main approaches to statistical

Masci, Frank

73

High loading uranium fuel plate  

DOE Patents [OSTI]

Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

1990-01-01T23:59:59.000Z

74

Uranium from seawater  

SciTech Connect (OSTI)

A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

Gregg, D.; Folkendt, M.

1982-09-21T23:59:59.000Z

75

Method of preparation of uranium nitride  

DOE Patents [OSTI]

Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

2013-07-09T23:59:59.000Z

76

URANIUM MILLING ACTIVITIES AT SEQUOYAH FUELS CORPORATION  

E-Print Network [OSTI]

Sequoyah Fuels Corporation (SFC) describes previous operations at its Gore, Oklahoma, uranium conversion facility as: (1) the recovery of uranium by concentration and purification processes; and (2) the conversion of concentrated and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these

unknown authors

77

The Question The Standard Construction  

E-Print Network [OSTI]

The Question The Standard Construction The ZFC construction Bibliography Solution to a Problem Construction The ZFC construction Bibliography Outline 1 The Question 2 The Standard Construction 3 The ZFC construction Dilip Raghavan Solution to a Problem of Van Douwen #12;The Question The Standard Construction

Raghavan, Dilip

78

Method for fabricating uranium foils and uranium alloy foils  

DOE Patents [OSTI]

A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

2006-09-05T23:59:59.000Z

79

Evaluation of integrated data sets: four examples. [Uranium deposits (exploration)  

SciTech Connect (OSTI)

Several large data sets have been integrated and utilized for rapid evaluation on a reconnaissance scale for the Montrose 1/sup 0/ x 2/sup 0/ quadrangle, Colorado. The data sets include Landsat imagery, hydrogeochemical and stream sediment analyses, airborne geophysical data, known mineral occurrences, and a geologic map. All data sets were registered to a 179 x 119 rectangular grid and projected onto Universal Transverse Mercator coordinates. A grid resolution of 1 km was used. All possible combinations of three, for most data sets, were examined for general geologic correlations by utilizing a color microfilm output. In addition, gray-level pictures of statistical output, e.g., factor analysis, have been employed to aid evaluations. Examples for the data sets dysprosium-calcium, lead-copper-zinc, and equivalent uranium-uranium in water-uranium in sediment are described with respect to geologic applications, base-metal regimes, and geochemical associations.

Bolivar, S.L.; Freeman, S.B.; Weaver, T.A.

1982-01-01T23:59:59.000Z

80

Unexpected, Stable Form of Uranium Detected | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unexpected, Stable Form of Uranium Detected Unexpected, Stable Form of Uranium Detected Insights on underappreciated reaction could shed light on environmental cleanup options...

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Conversion of depleted uranium hexafluoride to a solid uranium compound  

DOE Patents [OSTI]

A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2001-01-01T23:59:59.000Z

82

General Questions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Questions Where can I find more information regarding federal and state programs to help weatherize my home? The U.S. Department of Energy (DOE) Weatherization Assistance...

83

QuestionQuestion How does nitrogen deposition affect roadside  

E-Print Network [OSTI]

al. 2004. Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contributionQuestionQuestion How does nitrogen deposition affect roadside plant community composition? 1. Is there a gradient of nitrogen deposition to freeway verges from traffic exhaust? 2. Are there other sources of N

Hall, Sharon J.

84

Term statistics Zipf's law text statistics  

E-Print Network [OSTI]

Term statistics Zipf's law text statistics October 20, 2014 text statistics 1 / 19 #12;Term statistics Zipf's law Overview 1 Term statistics 2 Zipf's law text statistics 2 / 19 #12;Term statistics Zipf's law Outline 1 Term statistics 2 Zipf's law text statistics 3 / 19 #12;Term statistics Zipf's law Model

Lu, Jianguo

85

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-1410. Uranium

86

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-1410. Uranium9.

87

Uranium Marketing Annual Report -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from U.S.

88

Uranium Marketing Annual Report -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from U.S.2.

89

Uranium Marketing Annual Report -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from U.S.2.3.

90

Uranium Marketing Annual Report -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from U.S.2.3.5.

91

Uranium Marketing Annual Report -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from U.S.2.3.5.3.

92

Uranium Marketing Annual Report -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from

93

Uranium Marketing Annual Report -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium froma. Uraniumb.

94

Uranium Marketing Annual Report -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium froma. Uraniumb.7.

95

Uranium Marketing Annual Report -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium froma.

96

Uranium Marketing Annual Report -  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium froma.9.

97

Fingerprinting Uranium | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office FinalFinancingFingerprinting Uranium

98

Jens Hjorth the Urbino Questions  

E-Print Network [OSTI]

reduce the effects of air pollution to human health and the environment in Europe by 2020. The strategy-DRIVEN SYNTHESIS Answers by the atmospheric chemistry and air pollution research community to questions posed Strategy on Air Pollution 5.06 #12;editors Frank Raes Jens Hjorth Answers to the Urbino Questions ACCENTs

99

APPENDIX J Partition Coefficients For Uranium  

E-Print Network [OSTI]

APPENDIX J Partition Coefficients For Uranium #12;Appendix J Partition Coefficients For Uranium J.1.0 Background The review of uranium Kd values obtained for a number of soils, crushed rock and their effects on uranium adsorption on soils are discussed below. The solution pH was also used as the basis

100

The End of Cheap Uranium  

E-Print Network [OSTI]

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

Michael Dittmar

2011-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Safe Operating Procedure SAFETY PROTOCOL: URANIUM  

E-Print Network [OSTI]

involve the use of natural or depleted uranium. Natural isotopes of uranium are U-238, U-235 and U-234 (see Table 1 for natural abundances). Depleted uranium contains less of the isotopes: U-235 and U-234. The specific activity of depleted uranium (5.0E-7 Ci/g) is less than that of natural uranium (7.1E-7 Ci

Farritor, Shane

102

DEPARTMENT OF ENERGY Excess Uranium Management: Effects of DOE...  

Broader source: Energy.gov (indexed) [DOE]

Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries; Request for Information AGENCY: Office of...

103

TECHNICAL QUESTIONS What Every Parent ...  

Broader source: Energy.gov (indexed) [DOE]

through: & 10 Common Questions About Internet Safety 1. How and why do I check the Web browser history? 2. How and why do I review temporary Internet files? 3. How and why do...

104

Questions  

E-Print Network [OSTI]

N o t e t h a t t h e sam e p h e n o m e n o n o c c u r s w h e n t h e rea l n u m b er s are re ga r de d a s a su bfie ld o f t h e c o m p l e x fi e ld ,. a n d it a l so o ccu ...

CamScanner

2014-06-17T23:59:59.000Z

105

Questions  

E-Print Network [OSTI]

Let fbe a real function de?ned on (a, b). Prove that the set of points at which f has a simple discontinuity is at most countable. Hint: Let E be the set on which.

CamScanner

106

Questions  

E-Print Network [OSTI]

(a) Ian = Ui'=1 Ar, prove that B" = ULI 3,, for n =1, 2, 3, . (b) HR = U'iil A“ prove ... Let Kc R1 consist of 0 and the numbers 1/11, for n = 1, 2, 3, ... . Prove that K lS.

CamScanner

107

Rainbow statistics  

E-Print Network [OSTI]

Non-commutative quantum field theories and their global quantum group symmetries provide an intriguing attempt to go beyond the realm of standard local quantum field theory. A common feature of these models is that the quantum group symmetry of their Hilbert spaces induces additional structure in the multiparticle states which reflects a non-trivial momentum-dependent statistics. We investigate the properties of this "rainbow statistics" in the particular context of $\\kappa$-quantum fields and discuss the analogies/differences with models with twisted statistics.

Michele Arzano; Dario Benedetti

2008-09-04T23:59:59.000Z

108

Engineering Statistics From "Engineering Statistics" , Top &  

E-Print Network [OSTI]

Engineering Statistics From "Engineering Statistics" , Top & Wiley, Prapaisri & Pongchanun 2 From "Engineering Statistics" , Top & Wiley, Prapaisri & Pongchanun 3 " "(Sample) (Sampling) ""(Population) " "(Statistics) ""(Parameter) From "Engineering Statistics" , Top & Wiley, Prapaisri

Kovintavewat, Piya

109

Laser induced phosphorescence uranium analysis  

DOE Patents [OSTI]

A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

Bushaw, Bruce A. (Kennewick, WA)

1986-01-01T23:59:59.000Z

110

Laser induced phosphorescence uranium analysis  

DOE Patents [OSTI]

A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

Bushaw, B.A.

1983-06-10T23:59:59.000Z

111

Some open questions in hydrodynamics  

E-Print Network [OSTI]

When speaking of unsolved problems in physics, this is surprising at first glance to discuss the case of fluid mechanics. However, there are many deep open questions that come with the theory of fluid mechanics. In this paper, we discuss some of them that we classify in two categories, the long term behavior of solutions of equations of hydrodynamics and the definition of initial (boundary) conditions. The first set of questions come with the non-relativistic theory based on the Navier-Stokes equations. Starting from smooth initial conditions, the purpose is to understand if solutions of Navier-Stokes equations remain smooth with the time evolution. Existence for just a finite time would imply the evolution of finite time singularities, which would have a major influence on the development of turbulent phenomena. The second set of questions come with the relativistic theory of hydrodynamics. There is an accumulating evidence that this theory may be relevant for the description of the medium created in high energy heavy-ion collisions. However, this is not clear that the fundamental hypotheses of hydrodynamics are valid in this context. Also, the determination of initial conditions remains questionable. The purpose of this paper is to explore some ideas related to these questions, both in the non-relativistic and relativistic limits of fluid mechanics. We believe that these ideas do not concern only the theory side but can also be useful for interpreting results from experimental measurements.

Mateusz Dyndal; Laurent Schoeffel

2014-12-16T23:59:59.000Z

112

Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration  

E-Print Network [OSTI]

Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

113

Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications  

E-Print Network [OSTI]

The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding...

Helmreich, Grant

2012-02-14T23:59:59.000Z

114

Evaluation of Background Concentrations of Contaminants in an Unusual Desert Arroyo Near a Uranium Mill Tailings Disposal Cell - 12260  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages 27 sites that have groundwater containing uranium concentrations above background levels. The distal portions of the plumes merge into background groundwater that can have 50 ?g/L or more uranium. Distinguishing background from site-related uranium is often problematic, but it is critical to determining if remediation is warranted, establishing appropriate remediation goals, and evaluating disposal cell performance. In particular, groundwater at disposal cells located on the upper Cretaceous Mancos Shale may have relatively high background concentrations of uranium. Elevated concentrations of nitrate, selenium, and sulfate accompany the uranium. LM used geologic analogs and uranium isotopic signatures to distinguish background groundwater from groundwater contaminated by a former uranium processing site. The same suite of contaminants is present in groundwater near former uranium processing sites and in groundwater seeps emanating from the Mancos Shale over a broad area. The concentrations of these contaminants in Many Devils Wash, located near LM's Shiprock disposal cell, are similar to those in samples collected from many Mancos seeps, including two analog sites that are 8 to 11 km from the disposal cell. Samples collected from Many Devils Wash and the analog sites have high AR values (about 2.0)-in contrast, groundwater samples collected near the tailings disposal cell have AR values near 1.0. These chemical signatures raise questions about the origin of the contamination seeping into Many Devils Wash. (authors)

Bush, Richard P. [U.S. Department of Energy Office of Legacy Management (United States); Morrison, Stan J. [S.M. Stoller Corporation (United States)

2012-07-01T23:59:59.000Z

115

Measurements of /sup 234/U, /sup 238/U and /sup 230/Th in excreta of uranium-mill crushermen  

SciTech Connect (OSTI)

Uranium and thorium levels in excreta of uranium mill crushermen who are routinely exposed to airborne uranium ore dust were measured. The purpose was to determine whether /sup 230/Th was preferentially retained over either /sup 234/U or /sup 238/U in the body. Urine and fecal samples were obtained from fourteen active crushermen with long histories of exposure to uranium ore dust, plus four retired crushermen and three control individuals for comparison. Radiochemical procedures were used to separate out the uranium and thorium fractions, which were then electroplated on stainless steel discs and assayed by alpha spectrometry. Significantly greater activity levels of /sup 234/U and /sup 238/U were measured in both urine and fecal samples obtained from uranium mill crushermen, indicating that uranium in the inhaled ore dust was cleared from the body with a shorter biological half-time than the daughter product /sup 230/Th. The measurements also indicated that uranium and thorium separate in vivo and have distinctly different metabolic pathways and transfer rates in the body. The appropriateness of current ICRP retention and clearance parameters for /sup 230/Th in ore dust is questioned.

Fisher, D.R.; Jackson, P.O.; Brodacynski, G.G.; Scherpelz, R.I.

1982-07-01T23:59:59.000Z

116

QUESTIONS & ANSWERS ABOUT LUNG CANCER  

E-Print Network [OSTI]

QUESTIONS & ANSWERS ABOUT LUNG CANCER Q: What are the early signs of lung cancer? How would I know I have it? A: Some of the early warning signs of lung cancer are: · A cough that doesn't go away what may be causing these symptoms. Q: How is lung cancer diagnosed? A: Your doctor may do one or more

117

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China  

E-Print Network [OSTI]

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern Available online 25 January 2005 Abstract We show evidence that the primary uranium minerals, uraninite-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically

Fayek, Mostafa

118

Inherently safe in situ uranium recovery  

DOE Patents [OSTI]

An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

Krumhansl, James L; Brady, Patrick V

2014-04-29T23:59:59.000Z

119

Uranium Acquisition | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Interest (EOI) to acquire up to 6,800 metric tons of Uranium (MTU) of high purity depleted uranium metal (DU) and related material and services. This request for EOI does...

120

The End of Cheap Uranium  

E-Print Network [OSTI]

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

Dittmar, Michael

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

10 CFR 707 Frequently Asked Questions  

Broader source: Energy.gov [DOE]

NOTE: The Questions on this site were compiled from questions asked during the four DOE complex wide tele-videos, as well as, questions submitted by e-mail and telephone. The answers provided are...

122

Statistics and the Sciences  

E-Print Network [OSTI]

with Real Data ? Annals Statistics, of 5:1055-1098, 1977.The Foundations of Statistics - Are There Any ? Synthese, [Statistics and the Sciences Jan de Leeuw UCLA Statistics

Jan de Leeuw

2011-01-01T23:59:59.000Z

123

Frequently Asked Questions | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

& Forms Frequently Asked Questions Frequently Asked Questions U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards...

124

Cybersecurity Capability Maturity Model - Frequently Asked Questions...  

Broader source: Energy.gov (indexed) [DOE]

- Frequently Asked Questions (February 2014) Cybersecurity Capability Maturity Model - Frequently Asked Questions (February 2014) The Cybersecurity Capability Maturity Model (C2M2)...

125

High strength uranium-tungsten alloys  

DOE Patents [OSTI]

Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

126

High strength uranium-tungsten alloy process  

DOE Patents [OSTI]

Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

127

Clean Air Act Requirements: Uranium Mill Tailings  

E-Print Network [OSTI]

EPA'S Clean Air Act Requirements: Uranium Mill Tailings Radon Emissions Rulemaking Reid J. Rosnick requirements for operating uranium mill tailings (Subpart W) Status update on Subpart W activities Outreach/Communications #12;3 EPA Regulatory Requirements for Operating Uranium Mill Tailings (Clean Air Act) · 40 CFR 61

128

URANIUM MILL TAILINGS RADON FLUX CALCULATIONS  

E-Print Network [OSTI]

URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIĂ?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Inc. (Golder) was commissioned by EFRC to evaluate the operations of the uranium mill tailings storage in this report were conducted using the WISE Uranium Mill Tailings Radon Flux Calculator, as updated on November

129

Remediation and Recovery of Uranium from Contaminated  

E-Print Network [OSTI]

Remediation and Recovery of Uranium from Contaminated Subsurface Environments with Electrodes K E L that Geobacter species can effectively remove uranium from contaminated groundwater by reducing soluble U was stably precipitated until reoxidized in the presence of oxygen. When an electrode was placed in uranium

Lovley, Derek

130

Uranium Watch REGULATORY CONFUSION: FEDERALAND STATE  

E-Print Network [OSTI]

Uranium Watch Report REGULATORY CONFUSION: FEDERALAND STATE ENFORCEMENT OF 40 C.F.R. PART 61 SUBPART W INTRODUCTION 1. This Uranium Watch Report, Regulatory Confusion: Federal and State Enforcement at the White Mesa Uranium Mill, San Juan County, Utah. 2. The DAQ, a Division of the Utah Department

131

D Riso-R-429 Automated Uranium  

E-Print Network [OSTI]

routinely used analytical techniques for uranium determina- tions in geological samples, fissionCM i D Riso-R-429 Automated Uranium Analysis by Delayed-Neutron Counting H. Kunzendorf, L. Løvborg AUTOMATED URANIUM ANALYSIS BY DELAYED-NEUTRON COUNTING H. Kunzendorf, L. Løvborg and E.M. Christiansen

132

Y-12 Uranium Exposure Study  

SciTech Connect (OSTI)

Following the recent restart of operations at the Y-12 Plant, the Radiological Control Organization (RCO) observed that the enriched uranium exposures appeared to involve insoluble rather than soluble uranium that presumably characterized most earlier Y-12 operations. These observations necessitated changes in the bioassay program, particularly the need for routine fecal sampling. In addition, it was not reasonable to interpret the bioassay data using metabolic parameter values established during earlier Y-12 operations. Thus, the recent urinary and fecal bioassay data were interpreted using the default guidance in Publication 54 of the International Commission on Radiological Protection (ICRP); that is, inhalation of Class Y uranium with an activity median aerodynamic diameter (AMAD) of 1 {micro}m. Faced with apparently new workplace conditions, these actions were appropriate and ensured a cautionary approach to worker protection. As additional bioassay data were accumulated, it became apparent that the data were not consistent with Publication 54. Therefore, this study was undertaken to examine the situation.

Eckerman, K.F.; Kerr, G.D.

1999-08-05T23:59:59.000Z

133

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is comparable to the apparent age of the earth. The 3 natural series are headed by Thorium 232 (half-life 1.4 E10 years) called the thorium series, Uranium 238 (half-life ...

134

Electron Backscatter Diffraction (EBSD) Characterization of Uranium and Uranium Alloys  

SciTech Connect (OSTI)

Electron backscatter diffraction (EBSD) was used to examine the microstructures of unalloyed uranium, U-6Nb, U-10Mo, and U-0.75Ti. For unalloyed uranium, we used EBSD to examine the effects of various processes on microstructures including casting, rolling and forming, recrystallization, welding, and quasi-static and shock deformation. For U-6Nb we used EBSD to examine the microstructural evolution during shape memory loading. EBSD was used to study chemical homogenization in U-10Mo, and for U-0.75Ti, we used EBSD to study the microstructure and texture evolution during thermal cycling and deformation. The studied uranium alloys have significant microstructural and chemical differences and each of these alloys presents unique preparation challenges. Each of the alloys is prepared by a sequence of mechanical grinding and polishing followed by electropolishing with subtle differences between the alloys. U-6Nb and U-0.75Ti both have martensitic microstructures and both require special care in order to avoid mechanical polishing artifacts. Unalloyed uranium has a tendency to rapidly oxidize when exposed to air and a two-step electropolish is employed, the first step to remove the damaged surface layer resulting from the mechanical preparation and the second step to passivate the surface. All of the alloying additions provide a level of surface passivation and different one and two step electropolishes are employed to create good EBSD surfaces. Because of its low symmetry crystal structure, uranium exhibits complex deformation behavior including operation of multiple deformation twinning modes. EBSD was used to observe and quantify twinning contributions to deformation and to examine the fracture behavior. Figure 1 shows a cross section of two mating fracture surfaces in cast uranium showing the propensity of deformation twinning and intergranular fracture largely between dissimilarly oriented grains. Deformation of U-6Nb in the shape memory regime occurs by the motion of twin boundaries formed during the martensitic transformation. Deformation actually results in a coarsening of the microstructure making EBSD more practical following a limited amount of strain. Figure 2 shows the microstructure resulting from 6% compression. Casting of U-10Mo results in considerable chemical segregation as is apparent in Figure 2a. The segregation subsists through rolling and heat treatment processes as shown in Figure 2b. EBSD was used to study the effects of homogenization time and temperature on chemical heterogeneity. It was found that times and temperatures that result in a chemically homogeneous microstructure also result in a significant increase in grain size. U-0.75Ti forms an acicular martinsite as shown in Figure 4. This microstructure prevails through cycling into the higher temperature solid uranium phases.

McCabe, Rodney J. [Los Alamos National Laboratory; Kelly, Ann Marie [Los Alamos National Laboratory; Clarke, Amy J. [Los Alamos National Laboratory; Field, Robert D. [Los Alamos National Laboratory; Wenk, H. R. [University of California, Berkeley

2012-07-25T23:59:59.000Z

135

Process for alloying uranium and niobium  

DOE Patents [OSTI]

Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

Holcombe, Cressie E. (Farragut, TN); Northcutt, Jr., Walter G. (Oak Ridge, TN); Masters, David R. (Knoxville, TN); Chapman, Lloyd R. (Knoxville, TN)

1991-01-01T23:59:59.000Z

136

General Questions | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuelDepartment ofGeneral Questions

137

Inquiring Minds - Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilab Paving the wayPowerQuestion on

138

Inquiring Minds - Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilab Paving the wayPowerQuestion

139

Inquiring Minds - Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilab Paving the wayPowerQuestionThe

140

Inquiring Minds - Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilab Paving theIsBigQuestion: From

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Inquiring Minds - Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilab Paving theIsBigQuestion:

142

Inquiring Minds - Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilabWhich AtomsHow do YouQuestion on

143

Inquiring Minds - Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilabWhich AtomsHow do YouQuestion

144

CHARACTERIZATION OF H CANYON CONDUCTIVITY METER INDICATIONS WITH ELEVATED URANIUM IN NITRIC ACID  

SciTech Connect (OSTI)

Solution conductivity data from the 1CU conductivity meter in H-Canyon shows that uranium concentration in the 0 to 30 gram per liter (g/L) range has no statistically significant effect on the calibration of free nitric acid measurement. Based on these results, no additional actions are needed on the 1CU Conductivity Meter prior to or during the processing of uranium solutions in the 0 to 30 g/L range. A model based only on free nitric acid concentration is shown to be appropriate for explaining the data. Data uncertainties for the free acid measurement of uranium-bearing solutions are 8.5% or less at 95% confidence. The analytical uncertainty for calibrating solutions is an order of magnitude smaller only when uranium is not present, allowing use of a more accurate analytical procedure. Literature work shows that at a free nitric acid level of 0.33 M, uranium concentration of 30 g/L and 25 C, solution conductivity is 96.4% of that of a uranium-free solution. The level of uncertainties in the literature data and its fitting equation do not justify calibration changes based on this small depression in solution conductivity. This work supports preparation of H-Canyon processing of Super Kukla fuel; however, the results will be applicable to the processing of any similar concentration uranium and nitric acid solution. Super Kukla fuel processing will increase the uranium concentration above the nominal zero to 10 g/L level, though not above 30 g/L. This work examined free nitric acid levels ranging from 0.18 to 0.52 molar. Temperature ranged from 27.9 to 28.3 C during conductivity testing. The data indicates that sequential order of measurement is not a significant factor. The conductivity meter was thus flushed effectively between measurements as desired.

Nash, C

2007-10-31T23:59:59.000Z

145

Spike statistics  

E-Print Network [OSTI]

In this paper we explore stochastical and statistical properties of so-called recurring spike induced Kasner sequences. Such sequences arise in recurring spike formation, which is needed together with the more familiar BKL scenario to yield a complete description of generic spacelike singularities. In particular we derive a probability distribution for recurring spike induced Kasner sequences, complementing similar available BKL results, which makes comparisons possible. As examples of applications, we derive results for so-called large and small curvature phases and the Hubble-normalized Weyl scalar.

J. Mark Heinzle; Claes Uggla

2012-12-21T23:59:59.000Z

146

Statistical Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4 ByWatchingState ofDr. Donald6 Statistical

147

Statistical Digest No. 70 Fishery Statistics of  

E-Print Network [OSTI]

. These statistics include data on the volume and value of landed catches, employment, quantity of gear operatedStatistical Digest No. 70 Statistics of the United States 1976 Washington National Marine Fisheries Service #12;#12;Statistical Digest No. 70 Fishery Statistics of the United States

148

Evaluation of kinetic phosphorescence analysis for the determination of uranium  

SciTech Connect (OSTI)

In the past, New Brunswick Laboratory (NBL) has used a fluorometric method for the determination of sub-microgram quantities of uranium. In its continuing effort to upgrade and improve measurement technology, NBL has evaluated the commercially-available KPA-11 kinetic phosphorescence analyzer (Chemchek, Richland, WA). The Chemchek KPA-11 is a bench-top instrument which performs single-measurement, quench-corrected analyses for trace uranium. It incorporates patented kinetic phosphorimetry techniques to measure and analyze sample phosphorescence as a function of time. With laser excitation and time-corrected photon counting, the KPA-11 has a lower detection limit than conventional fluorometric methods. Operated with a personal computer, the state-of-the-art KPA-11 offers extensive time resolution and phosphorescence lifetime capabilities for additional specificity. Interferences are thereby avoided while obtaining precise measurements. Routine analyses can be easily and effectively accomplished, with the accuracy and precision equivalent to the pulsed-laser fluorometric method presently performed at NBL, without the need for internal standards. Applications of kinetic phosphorimetry at NBL include the measurement of trace level uranium in retention tank, waste samples, and low-level samples. It has also been used to support other experimental activities at NBL by the measuring of nanogram amounts of uranium contamination (in blanks) in isotopic sample preparations, and the determining of elution curves of different ion exchange resins used for uranium purification. In many cases, no pretreatment of samples was necessary except to fume them with nitric acid, and then to redissolve and dilute them to an appropriate concentration with 1 M HNO{sub 3} before measurement. Concentrations were determined on a mass basis ({micro}g U/g of solution), but no density corrections were needed since all the samples (including the samples used for calibration) were in the same density matrix (1 M HNO{sub 3}). A statistical evaluation of the determination of uranium using kinetic phosphorimetry is described in this report, along with a discussion of the method, and an evaluation of the use of plastic versus quartz cuvettes. Measurement with a precision of {+-} 3--4% relative standard deviation (RSD) and an accuracy of better than {+-} 2% relative difference (RD) are obtained in the 0.0006 to 5 {micro}g U/g-solution range. The instrument detection limit is 0.04 ppb (4 x 10{sup {minus}5} {micro}g U/g solution) using quartz cells, and 0.11 ppb (11 x 10{sup {minus}5} {micro}g U/g solution) using disposable methacrylate cuvettes.

Croatto, P.V.; Frank, I.W.; Johnson, K.D.; Mason, P.B.; Smith, M.M.

1997-12-01T23:59:59.000Z

149

Reports on investigations of uranium anomalies. National Uranium Resource Evaluation  

SciTech Connect (OSTI)

During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1/sup 0/ x 2/sup 0/ quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed.

Goodknight, C.S.; Burger, J.A. (comps.) [comps.

1982-10-01T23:59:59.000Z

150

Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs  

E-Print Network [OSTI]

An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

Matthews, Isaac A

2010-01-01T23:59:59.000Z

151

Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths  

E-Print Network [OSTI]

problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactive

Hwang, Chiachi

2009-01-01T23:59:59.000Z

152

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

153

Uranium Metal Analysis via Selective Dissolution  

SciTech Connect (OSTI)

Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

2008-09-10T23:59:59.000Z

154

Depleted uranium disposal options evaluation  

SciTech Connect (OSTI)

The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

1994-05-01T23:59:59.000Z

155

L'URANIUM ET LES ARMES L'URANIUM APPAUVRI. Pierre Roussel*  

E-Print Network [OSTI]

L'URANIUM ET LES ARMES � L'URANIUM APPAUVRI. Pierre Roussel* Institut de Physique Nucléaire, CNRS massivement dans la guerre du Golfe, des obus anti- chars ont été utilisés, avec des "charges d'uranium, avec une charge de 300 g d'uranium et tiré par des avions, l'autre de 120 mm de diamètre avec une

Boyer, Edmond

156

A Web-based Question Answering System  

E-Print Network [OSTI]

The Web is apparently an ideal source of answers to a large variety of questions, due to the tremendous amount of information available online. This paper describes a Web-based question answering system LAMP, which is ...

Zhang, Dell

157

On the interpretation of concealed questions  

E-Print Network [OSTI]

Determiner phrases have the ability to act as "concealed questions" (CQs), embedded questions in sentences like John knows the time (i.e., John knows what time it is). The fact that know and wonder differ in their ability ...

Nathan, Lance Edward

2006-01-01T23:59:59.000Z

158

Attn Technology Transfer Questions.txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Attn Technology Transfer Questions.txt From: eschaput esandc@prodigy.net Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have...

159

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using an accelerator to create a new element Hello, My name is Andrew and I was wondering if this is the right email forum for my question. I am only 11 so my question is as...

160

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hello, I am so happy to visited your site It was full of answers to my questions So, I have a question about thermal Energy...We have some kind of energy in the world. electric...

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centripedal Forces Plus Relativity You wrote: Hello, I'm not sure if this address is the right one to write to asking a physics question. But I saw a list of questions and answers...

162

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

have a question, but first, thank you for the terrific new web site. You did a fantastic job. Question: Where does present theory say the energy of a red shifted photon goes? The...

163

Dry process fluorination of uranium dioxide using ammonium bifluoride  

E-Print Network [OSTI]

An experimental study was conducted to determine the practicality of various unit operations for fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double salts from uranium dioxide and ...

Yeamans, Charles Burnett, 1978-

2003-01-01T23:59:59.000Z

164

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network [OSTI]

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

165

Review of uranium bioassay techniques  

SciTech Connect (OSTI)

A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

Bogard, J.S.

1996-04-01T23:59:59.000Z

166

Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium(III)  

E-Print Network [OSTI]

, we are currently investigating the coordina- tion chemistry of uranium metal centers with classicalUranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium, and Karsten Meyer* Contribution from the Department of Chemistry and Biochemistry, UniVersity of California

Meyer, Karsten

167

A Question of Prosperity Poverty in Saskatchewan  

E-Print Network [OSTI]

JUNE 2008 A Question of Prosperity Poverty in Saskatchewan Garson Hunter and Fiona Douglas with Sarah Pedersen #12;A Question of Prosperity: Poverty in Saskatchewan June 2008 Hunter, G. F. Douglas & S. Pedersen. "A Question of Prosperity: Poverty in Saskatchewan." Poverty Profiles 1, 2008. Regina

Argerami, Martin

168

Adsorptive Stripping Voltammetric Measurements of Trace Uranium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurements of Trace Uranium at the Bismuth Film Electrode. Abstract: Bismuth-coated carbon-fiber electrodes have been successfully applied for adsorptive-stripping...

169

Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A...

170

Colorimetric detection of uranium in water  

DOE Patents [OSTI]

Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

DeVol, Timothy A. (Clemson, SC); Hixon, Amy E. (Piedmont, SC); DiPrete, David P. (Evans, GA)

2012-03-13T23:59:59.000Z

171

Uranium Weapons Components Successfully Dismantled | National...  

National Nuclear Security Administration (NNSA)

Successfully Dismantled March 20, 2007 Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons...

172

Review The Toxicity of Depleted Uranium  

E-Print Network [OSTI]

Abstract: Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

Wayne Briner

173

High strength and density tungsten-uranium alloys  

DOE Patents [OSTI]

Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

Sheinberg, Haskell (Los Alamos, NM)

1993-01-01T23:59:59.000Z

174

Distribution of uranium-bearing phases in soils from Fernald  

SciTech Connect (OSTI)

Electron beam techniques have been used to characterize uranium-contaminated soils and the Fernald Site, Ohio. Uranium particulates have been deposited on the soil through chemical spills and from the operation of an incinerator plant on the site. The major uranium phases have been identified by electron microscopy as uraninite, autunite, and uranium phosphite [U(PO{sub 3}){sub 4}]. Some of the uranium has undergone weathering resulting in the redistribution of uranium within the soil.

Buck, E.C.; Brown, N.R.; Dietz, N.L.

1993-12-31T23:59:59.000Z

175

Introduction Statistical Tests  

E-Print Network [OSTI]

Introduction Statistical Tests Experiment Summary Statistical Significance Testing Machine Learning Lab, ASU Surendra Singhi April 29, 2005 Surendra Singhi Statistical Significance Testing #12;Introduction Statistical Tests Experiment Summary Outline 1 Introduction Preliminary Stuff Sources of Variation

Liu, Huan

176

President Truman Increases Production of Uranium and Plutonium...  

National Nuclear Security Administration (NNSA)

Increases Production of Uranium and Plutonium October 09, 1950 President Truman Increases Production of Uranium and Plutonium Washington, DC President Truman approves a 1.4...

177

Atomistic Simulations of Uranium Incorporation into Iron (Hydr...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Uranium Incorporation into Iron (Hydr)Oxides. Atomistic Simulations of Uranium Incorporation into Iron (Hydr)Oxides. Abstract: Atomistic simulations were carried out to...

178

Toxic Substances Control Act Uranium Enrichment Federal Facility...  

Office of Environmental Management (EM)

Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

179

Geochemical Controls on Contaminant Uranium in Vadose Hanford...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controls on Contaminant Uranium in Vadose Hanford Formation Sediments at the 200 Area and 300 Area, Hanford Site, Geochemical Controls on Contaminant Uranium in Vadose Hanford...

180

Microbial Reduction of Uranium under Iron- and Sulfate-reducing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranium under Iron- and Sulfate-reducing Conditions: Effect of Amended Goethite on Microbial Community Microbial Reduction of Uranium under Iron- and Sulfate-reducing Conditions:...

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Uncertainty analysis of multi-rate kinetics of uranium desorption...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Abstract: A...

182

Legacy Management Work Progresses on Defense-Related Uranium...  

Broader source: Energy.gov (indexed) [DOE]

Most recently, LM visited 84 defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global...

183

Highly Enriched Uranium Materials Facility, Major Design Changes...  

Energy Savers [EERE]

Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

184

Record of Decision for the Uranium Leasing Program Programmatic...  

Energy Savers [EERE]

Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact...

185

DOE Extends Public Comment Period for the Draft Uranium Leasing...  

Office of Environmental Management (EM)

Extends Public Comment Period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement DOE Extends Public Comment Period for the Draft Uranium Leasing...

186

Sequestering Uranium from Seawater: Binding Strength and Modes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl...

187

Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...  

Office of Environmental Management (EM)

Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

188

Spatial Scan Statistics on the GPGPU Stephen G. Larew, Ross Maciejewski, Member, IEEE, Insoo Woo, and David S. Ebert, Fellow, IEEE  

E-Print Network [OSTI]

with applications in fields such as epidemiology, data mining, astron- omy, bio-surveillance, forestry, and uranium mining among others. Amongst the many methods for discovering hotspots, the spatial scan statistic [7

Maciejewski, Ross

189

The University of Chicago Department of Statistics  

E-Print Network [OSTI]

Department of Statistics The University of Chicago Biofuel FeedStock Commodity Pricing FRIDAY, May 13, 2011. We empirically test models using biofuel feedstock commodity futures data traded in CBOT: corn estimation. We answered the questions: whether the prices for biofuel feedstock commodities (corn and soybean

Stephens, Matthew

190

Bioremediation of uranium contaminated soils and wastes  

SciTech Connect (OSTI)

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

Francis, A.J.

1998-12-31T23:59:59.000Z

191

Uranium Management - Preservation of a National Asset  

SciTech Connect (OSTI)

The Uranium Management Group (UMG) was established at the Department of Energy's (DOE's) Oak Ridge Operations in 1999 as a mechanism to expedite the de-inventory of surplus uranium from the Fernald Environmental Management Project site. This successful initial venture has broadened into providing uranium material de-inventory and consolidation support to the Hanford site as well as retrieving uranium materials that the Department had previously provided to universities under the loan/lease program. As of December 31, 2001, {approx} 4,300 metric tons of uranium (MTU) have been consolidated into a more cost effective interim storage location at the Portsmouth site near Piketon, OH. The UMG continues to uphold its corporate support mission by promoting the Nuclear Materials Stewardship Initiative (NMSI) and the twenty-five (25) action items of the Integrated Nuclear Materials Management Plan (1). Before additional consolidation efforts may commence to remove excess inventory from Environmental Management closure sites and universities, a Programmatic Environmental Assessment (PEA) must be completed. Two (2) noteworthy efforts currently being pursued involve the investigation of re-use opportunities for surplus uranium materials and the recovery of usable uranium from the shutdown Portsmouth cascade. In summary, the UMG is available as a DOE complex-wide technical resource to promote the responsible management of surplus uranium.

Jackson, J. D.; Stroud, J. C.

2002-02-27T23:59:59.000Z

192

IPNS enriched uranium booster target  

SciTech Connect (OSTI)

Since startup in 1981, IPNS has operated on a fully depleted /sup 238/U target. With the booster as in the present system, high energy protons accelerated to 450 MeV by the Rapid Cycling Synchrotron are directed at the target and by mechanisms of spallation and fission of the uranium, produce fast neutrons. The neutrons from the target pass into adjacent moderator where they slow down to energies useful for spectroscopy. The target cooling systems and monitoring systems have operated very reliably and safely during this period. To provide higher neutron intensity, we have developed plans for an enriched uranium (booster) target. HETC-VIM calculations indicate that the target will produce approx.90 kW of heat, with a nominal x5 gain (k/sub eff/ = 0.80). The neutron beam intensity gain will be a factor of approx.3. Thermal-hydraulic and heat transport calculations indicate that approx.1/2 in. thick /sup 235/U discs are subject to about the same temperatures as the present /sup 238/U 1 in. thick discs. The coolant will be light demineralized water (H/sub 2/O) and the coolant flow rate must be doubled. The broadening of the fast neutron pulse width should not seriously affect the neutron scattering experiments. Delayed neutrons will appear at a level about 3% of the total (currently approx.0.5%). This may affect backgrounds in some experiments, so that we are assessing measures to control and correct for this (e.g., beam tube choppers). Safety analyses and neutronic calculations are nearing completion. Construction of the /sup 235/U discs at the ORNL Y-12 facility is scheduled to begin late 1985. The completion of the booster target and operation are scheduled for late 1986. No enriched uranium target assembly operating at the projected power level now exists in the world. This effort thus represents an important technological experiment as well as being a ''flux enhancer''.

Schulke, A.W. Jr.

1985-01-01T23:59:59.000Z

193

Molten-Salt Depleted-Uranium Reactor  

E-Print Network [OSTI]

The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

Dong, Bao-Guo; Gu, Ji-Yuan

2015-01-01T23:59:59.000Z

194

Method for fabricating laminated uranium composites  

DOE Patents [OSTI]

The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

Chapman, L.R.

1983-08-03T23:59:59.000Z

195

Scrap uranium recycling via electron beam melting  

SciTech Connect (OSTI)

A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

McKoon, R.

1993-11-01T23:59:59.000Z

196

National Uranium Resource Evaluation, Tonopah quadrangle, Nevada  

SciTech Connect (OSTI)

The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas.

Hurley, B W; Parker, D P

1982-04-01T23:59:59.000Z

197

Uranium in prehistoric Indian pottery  

E-Print Network [OSTI]

present in the sample, and the cross l section of the process (the measure of the probability of a neutron interacting with an uranium atom), In general, a daughter product 235 of U fission is analyzed on a detector which counts either gamma rays... for quantitative analysis of various elements on archaeological artifacts, Manganese has been determined in Mesoamerican pot sherds (Bennyhoff and Heizer 1965). A Pu-Be radioisotope neutron source with a flux of 4 x 10 4 -2 -1 neutrons cm sec was used...

Filberth, Ernest William

2012-06-07T23:59:59.000Z

198

2013 Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ec 1827190List of Tables3 Uranium

199

2013 Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ec 1827190List of Tables3 Uranium11

200

2013 Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ec 1827190List of6,2009Uranium

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

2013 Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ec 1827190List of6,2009UraniumNext

202

2013 Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ec 1827190List of6,2009UraniumNext

203

U.S.Uranium Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18BiomassThree-Dimensional SeismicUranium

204

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S.Feed6a. Uranium

205

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S.Feed6a.4. Uranium

206

Page 1 of 24 Question & Answers  

E-Print Network [OSTI]

Page 1 of 24 Question & Answers Pilot-Scale and Commercial-Scale Advanced Biofuels with the California Energy Commission on biofuel production facilities important to California objectives

207

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Question About Splitting Molecules "Can you use particle accelerators to break up molecules into their elements?" The short answer is yes. The long answer is more complicated. You...

208

Program Evaluation Topics and Questions Library  

Broader source: Energy.gov [DOE]

Menu of initial questions for a program administrator to use in developing a real-time evaluation survey to collect qualitative data from program contractors.

209

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Direction Hello, What is the direction of radiation emitted from an atom ? Thanks, Bob Patton Bob, Your question has always been an area of research whenever new...

210

Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration  

SciTech Connect (OSTI)

To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

Francis, C. W.

1993-09-01T23:59:59.000Z

211

Recovery of uranium by using new microorganisms isolated from North American uranium deposits  

SciTech Connect (OSTI)

Some attempts were made to remove uranium that may be present in refining effluents, mine tailings by using new microorganisms isolated from uranium deposits and peculiar natural environments. To screen microorganisms isolated from uranium deposits and peculiar natural environments in North America and Japan for maximal accumulation of uranium, hundreds of microorganisms were examined. Some microorganisms can accumulate about 500 mg (4.2 mEq) of uranium per gram of Microbial cells within 1 h. The uranium accumulation capacity of the cells exceeds that of commercially available chelating agents (2-3 mEq/g adsorbent). We attempted to recover uranium from uranium refining waste water by using new microorganisms. As a result, these microbial cells can recover trace amounts of uranium from uranium waste water with high efficiency. These strains also have a high accumulating ability for thorium. Thus, these new microorganisms can be used as an adsorbing agent for the removal of nuclear elements may be present in metallurgical effluents, mine tailings and other waste sources.

Sakaguchi, T.; Nakajima, A.; Tsuruta, T. [Miyazaki Medical College (Japan)

1995-12-31T23:59:59.000Z

212

FISHERY STATISTICS UNITED STATES  

E-Print Network [OSTI]

FISHERY STATISTICS OF THE UNITED STATES 1973 STATISTICAL DIGEST NO. 67 Prepared by STATISTICS a review of the fishery statistics for the year 1973 . These statistics include data on the volume and value of landings of fishery products, employment 1n the fish- eries, quantity of gear operated, number

213

FISHERY STATISTICS UNITED STATES  

E-Print Network [OSTI]

FISHERY STATISTICS OF THE UNITED STATES 1971 STATISTICAL DIGEST NO. 65 Prepared by STATISTICS ry statistics for the year 1971 . These statistics include data on the volume and value of landings of fishery products, employment in the fishe ries, quantity of gear operated, number of fishing craft e

214

Uranium Cluster Chemistry DOI: 10.1002/anie.200906605  

E-Print Network [OSTI]

Uranium Cluster Chemistry DOI: 10.1002/anie.200906605 Tetranuclear Uranium Clusters by Reductive in the coordination chemistry and small-molecule reactivity of uranium. Among the intriguing reactivity patterns of tetravalent uranium with 3,5-dimethylpyrazolate (Me2PzĂ? ) led to forma- tion of an unprecedented homoleptic

215

Statistical Abstract 2013  

E-Print Network [OSTI]

Kansas Statistical Abstract 2013 published exclusively online by Institute for Policy & Social,chapters,or the full Kansas Statistical Abstract are permitted on the condition that sources are cited. Kansas Statistical Abstract 2013 2 #12;Table of Contents Foreword

216

Statistical Laboratory established 1933  

E-Print Network [OSTI]

Statistical Laboratory established 1933 Biennial Report July 1, 1997 to June 30, 1999 #12;Index 50 years of statistics ....................... 1 Self study & external review .......... 2 Social sciences statistics ................ 3 On the lighter side........................... 6 Publications 1997

217

Technical Basis for Assessing Uranium Bioremediation Performance  

SciTech Connect (OSTI)

In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

2008-04-01T23:59:59.000Z

218

Questions and Answers March 9, 2012  

E-Print Network [OSTI]

-602 Alternative Fuels Infrastructure: Electric, Natural Gas, Propane, E85 & Diesel Substitutes Terminals 5Questions and Answers March 9, 2012 for PON-11-602 Alternative Fuels Infrastructure: Electric, Natural Gas, Propane, E85 & Diesel Substitutes Terminals General Definitions/Clarification 1. QUESTION

219

Rangeland ecology: Key global research issues & questions  

E-Print Network [OSTI]

1 Rangeland ecology: Key global research issues & questions Robin Reid1 and Maria Fernandez Ecology Lab 2Associate Professor Colorado State University, Fort Collins, Colorado, USA Global Issues and Questions in Rangeland Ecology · Despite the focus here on global issues, we need to recognize that Mongolia

220

Aqueous-stream uranium-removal technology cost/benefit and market analysis  

SciTech Connect (OSTI)

The primary purpose of this report is to present information that was gathered by Kapline Enterprises, Inc. (KEI) in order to help the Department of Energy (DOE) determine the merit of continued biosorption research funding. However, in the event that funding is continued, it is also intended to help the researchers in their efforts to develop a better uranium-removal process. This report (1) provides a comparison of DOE sites that may utilize aqueous-stream, uranium-removal biosorption technology, (2) presents a comparison of the biosorption and ion exchange processes, and (3) establishes performance criteria by which the project can be measured. It also attempts to provide focus for biosorbent ground-water-remediation research and to ask questions that need to be answered. This report is primarily a study of the US market for technologies that remove uranium from aqueous streams, but it also addresses the international market-particularly for Germany. Because KEI`s access to international market information is extremely limited, the material presented in this report represents a best effort to obtain this data. Although uranium-contaminated aqueous streams are a problem in other countries as well, the scope of this report is primarily limited to the US and Germany for two reasons: (1) Germany is the country of the biosorbent-CRADA partner and (2) time constraints.

NONE

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electrochemistry, Spectroscopy, and Reactivity of Uranium Complexes Supported by Ferrocene Diamide Ligands  

E-Print Network [OSTI]

J. L. , Pentavalent Uranium Chemistry-Synthetic Pursuit of afor Trivalent Uranium Chemistry. Inorg. Chem. 1989, 28, (and High-Valent Uranium Chemistry. Organometallics 2011,

Duhovic, Selma

2012-01-01T23:59:59.000Z

222

Recent International R&D Activities in the Extraction of Uranium from Seawater  

E-Print Network [OSTI]

Uranium and Rare Earth Elements Using Biomass of Algae, Bioinorganic ChemistryRecovery of uranium from sea water. Chemistry & Industry (uranium recovery from seawater. Industrial & Engineering Chemistry

Rao, Linfeng

2011-01-01T23:59:59.000Z

223

Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths  

E-Print Network [OSTI]

problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactiveMB. (2004). Depleted and natural uranium: chemistry and

Hwang, Chiachi

2009-01-01T23:59:59.000Z

224

48C Qualifying Advanced Energy Project Credit Questions | Department...  

Broader source: Energy.gov (indexed) [DOE]

48C Qualifying Advanced Energy Project Credit Questions 48C Qualifying Advanced Energy Project Credit Questions 48C Qualifying Advanced Energy Project Credit Questions More...

225

Questions and Answers for the Smart Grid Investment Grant Program...  

Energy Savers [EERE]

Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked Questions Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked...

226

Questions and Answers for the Smart Grid Investment Grant Program...  

Energy Savers [EERE]

Questions and Answers for the Smart Grid Investment Grant Program: Buy American Questions and Answers for the Smart Grid Investment Grant Program: Buy American Additional questions...

227

Electrolytic process for preparing uranium metal  

DOE Patents [OSTI]

An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

Haas, Paul A. (Knoxville, TN)

1990-01-01T23:59:59.000Z

228

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect (OSTI)

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

229

Crystal Chemistry of Early Actinides (Thorium, Uranium, and Neptunium) and Uranium Mesoporous Materials.  

E-Print Network [OSTI]

??Despite their considerable global importance, the structural chemistry of actinides remains understudied. Thorium and uranium fuel cycles are used in commercial nuclear reactors in India… (more)

Sigmon, Ginger E.

2010-01-01T23:59:59.000Z

230

Prokaryotic microorganisms in uranium mining waste piles and their interactions with uranium and other heavy metals.  

E-Print Network [OSTI]

??The influence of uranyl and sodium nitrate under aerobic and anaerobic conditions on the microbial community structure of a soil sample from the uranium mining… (more)

Geißler, Andrea

2007-01-01T23:59:59.000Z

231

Biomarker monitoring of a population residing near uranium mining activities  

SciTech Connect (OSTI)

We investigated whether residents residing near uranium mining operations (target population), who are potentially exposed to toxicants from mining waste, have increased genotoxic effects compared with people residing elsewhere (reference population). Population surveys were conducted, and 24 target and 24 reference residents were selected. The selected subjects and controls were matched on age and gender and they were nonsmokers. Blood samples were collected for laboratory studies. The standard cytogenetic assay was used to determine chromosome aberration frequencies, and the challenge assay was used to investigate DNA repair responses. We found that individuals who resided near uranium mining operations had a higher mean frequency of cells with chromosome aberrations and higher deletion frequency but lower dicentric frequency than the reference group, although the difference was not statistically significant. After cells were challenged by exposure to {gamma}-rays, the target population had a significantly higher frequency of cells with chromosome aberrations and deletion frequency than the reference group. The latter observation is indicative of abnormal DNA repair response in the target population. 22 refs., 3 tabs.

Au, W.W.; Legator, M.S.; Whorton, E.B.; Wilkinson, G.S.; Gabehart, G.J.; Lane, R.G. [Univ. of Texas Medical Branch, Galveston, TX (United States)

1995-05-01T23:59:59.000Z

232

Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy  

E-Print Network [OSTI]

Questioning the questions that have been asked about the infant brain using near-infrared, University of Rochester, Rochester, NY, USA Near-infrared spectroscopy (NIRS) is a noninvasive diffuse; Near-infrared spectroscopy. "Sheddinglight"onascientificquestiontookonnew meaning when

Aslin, Richard N.

233

Uranium potential of southwestern New Mexico (southern Hidalgo County), including observations on crystallization history of lavas and ash tuffs and the release of uranium from them. Final report  

SciTech Connect (OSTI)

Geological environments present in southwestern New Mexico include thick sequences of sedimentary rock including limestone, conglomerates, sandstone, and shale: igneous intrusions with associated metal deposits; caldera centers, margins, and outflow facies; and basins with marginal faults and thick late Cenozoic sedimentary fillings. Predominant rock types are Paleozoic carbonates, Mesozoic terrigeneous rocks and carbonates, and Cenozoic volcanic rocks and basin-filling terrigeneous rocks. Consideration of information available in Preliminary Reconnaissance Reports and in Hydrogeochemical and Stream Reconnaissance Reports together with 347 new whole rock chemical analyses points to three areas of anomalous uranium abundance in Hidalgo County, New Mexico. The area has experienced three major periods of igneous activity in Phanerozoic time: one associated with the Laramide cycle of the Late Cretaceous and early Tertiary, mid-Tertiary cycle of silicic volcanism with abundant calderas, and a late Tertiary cycle of mafic volcanism. Silicic volcanic rocks are the most common exposed rock type in the area, and the most enriched in uranium (range, 0.4 to 19 ppM). The most likely source for any uranium ore-forming solutions lies with this cycle of volcanism. Solutions might have been introduced during volcanism or formed later by groundwater leaching of cooled volcanic rocks. Results indicate that groundwater leaching of cooled volcanic rocks was not an effective means of mobilizing uranium in the area. Study of several rhyolite lava flows indicates that they were emplaced in supercooled condition and may have crystallized completely at temperatures well below their liquids, or they may have warmed as crystallization released latent heat. Statistical comparison of the uranium concentration revealed no differences between vitrophyres and associated felsites.

Walton, A.W.; Salter, T.L.; Zetterlund, D.

1980-08-01T23:59:59.000Z

234

Depleted uranium disposition study -- Supplement, Revision 1  

SciTech Connect (OSTI)

The Department of Energy Office of Weapons and Materials Planning has requested a supplemental study to update the recent Depleted Uranium Disposition report. This supplemental study addresses new disposition alternatives and changes in status.

Becker, G.W.

1993-11-01T23:59:59.000Z

235

In situ remediation of uranium contaminated groundwater  

SciTech Connect (OSTI)

In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

236

In situ remediation of uranium contaminated groundwater  

SciTech Connect (OSTI)

In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

Dwyer, B.P.; Marozas, D.C.

1997-02-01T23:59:59.000Z

237

Process for reducing beta activity in uranium  

DOE Patents [OSTI]

This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

Briggs, Gifford G. (Cincinnatti, OH); Kato, Takeo R. (Cincinnatti, OH); Schonegg, Edward (Cleves, OH)

1986-01-01T23:59:59.000Z

238

Method of recovering uranium from aqueous solution  

SciTech Connect (OSTI)

Anion exchange resin derived from insoluble crosslinked polymers of vinyl benzyl chloride which are prepared by polymerizing vinyl benzyl chloride and a crosslinking monomer are particularly suitable in the treatment of uranium bearing leach liquors.

Albright, R.L.

1980-01-22T23:59:59.000Z

239

Innovative design of uranium startup fast reactors  

E-Print Network [OSTI]

Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

Fei, Tingzhou

2012-01-01T23:59:59.000Z

240

Process for reducing beta activity in uranium  

DOE Patents [OSTI]

This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

Briggs, G.G.; Kato, T.R.; Schonegg, E.

1985-04-11T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Department of Statistical Science  

E-Print Network [OSTI]

Joslin Diabetes Center LG Electronics Monsanto Risk Management Solutions Samsung Insurance (3) Statistics

Keinan, Alon

242

Depleted uranium: A DOE management guide  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

243

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

244

BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.  

SciTech Connect (OSTI)

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

FRANCIS,A.J.

1998-09-17T23:59:59.000Z

245

Material property correlations for uranium mononitride  

E-Print Network [OSTI]

MATERIAL PROPERTY CORRELATIONS FOR URANIUM MONONITRIDE A Thesis by STEVEN LOWE HAYES Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1989 Major Subject: Nuclear Engineering MATERIAL PROPERTY CORRELATIONS FOR URANIUM MONONITRIDE A Thesis by STEVEN LOWE HAYES Approved as to style and content by: K. L. Peddicord (Chair of Committee) R. R. Hart (Member) C. P. Burger (Member...

Hayes, Steven Lowe

2012-06-07T23:59:59.000Z

246

Electrochemical method of producing eutectic uranium alloy and apparatus  

DOE Patents [OSTI]

An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

Horton, James A. (Livermore, CA); Hayden, H. Wayne (Oakridge, TN)

1995-01-01T23:59:59.000Z

247

Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1  

SciTech Connect (OSTI)

This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

NONE

1995-07-05T23:59:59.000Z

248

Effects of various uranium leaching procedures on soil: Short-term vegetation growth and physiology. Progress report, April 1994  

SciTech Connect (OSTI)

Significant volumes of soil containing elevated levels of uranium exist in the eastern United States. The contamination resulted from the development of the nuclear industry in the United States requiring a large variety of uranium products. The contaminated soil poses a collection and disposal problem of a magnitude that justifies the development of decontamination methods. Consequently, the Department of Energy (DOE) Office of Technology Development formed the Uranium Soils Integrated Demonstration (USID) program to address the problem. The fundamental goal of the USID task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than what can be done using current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics and without generating waste that is difficult to manage and/or dispose of. However, procedures developed for removing uranium from contaminated soil have involved harsh chemical treatments that affect the physicochemical properties of the soil. The questions are (1) are the changes in soil properties severe enough to destroy the soil`s capacity to support and sustain vegetation growth and survival? and (2) what amendments might be made to the leached soil to return it to a reasonable vegetation production capacity? This study examines the vegetation-support capacity of soil that had been chemically leached to remove uranium. The approach is to conduct short-term germination and phytotoxicity tests for evaluating soils after they are subjected to various leaching procedures followed by longer term pot studies on successfully leached soils that show the greatest capacity to support plant growth. This report details the results from germination and short-term phytotoxicity testing of soils that underwent a variety of leaching procedures at the bench scale at ORNL and at the pilot plant at Fernald.

Edwards, N.T.

1994-08-01T23:59:59.000Z

249

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Color of Atoms Mr. Pordes- I have a question for science. As you probably know, we have been studying all about particles and the particle model of matter and John Dalton and...

250

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pure Antineutron Beams Hello, I am a physics student in Germany. I haven't had particle physics yet, so I'd be glad if you answered me one question: How do you create more or less...

251

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Question: How many studies have been done to figure out what escapes from the accelerators into the environment and how much of it escapes? I heard from a tour guide that...

252

Questions about Groundwater Conservation Districts in Texas  

E-Print Network [OSTI]

Groundwater conservation districts (GCDs) are being created in many parts of Texas to allow local citizens to manage and protect their groundwater. This publication answers frequently asked questions about groundwater and GCDs....

Lesikar, Bruce J.; Silvy, Valeen

2008-09-22T23:59:59.000Z

253

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rfien@campbellap.com Sent: Monday, January 26, 2009 5:34 PM To: GC-62 Subject: TECHNOLOGY TRANSFER QUESTIONS. Sensitivity: Confidential To Whom It May Concern, Campbell Applied...

254

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Higgs boson Elisabeth, You asked: Could you help me with the following question. Is there any evidense for the existence of the Higgs bosson or Higgs field? According to the New...

255

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rotation of Black Holes Hello Alyssa -- The questions you sent to Fermilab about physics didn't get lost, they just got routed to a couple of lazy postdocs. That's why it took so...

256

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How many neutrons? Dear Mrs. Pordes, Hello. My name is Andrew Schmidt. I am writing to you concerning a question I have. I am in your daughters science class and it would be...

257

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

be quite right. Thank you for the opportunity to ask this question. Regards, Bob Dowe Hello Bob, Let us start from the beginning. First I have to tell you that there are usually...

258

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

appreciate it if you could send it to me. That would be awesome. Thanks Luke Luke - Hello. I am a scientist here at Fermilab and your question got forwarded to me. In some...

259

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charged Objects and Virtual Photons Hello, I am fascinated by the universe of physics, and I have a few questions. Actually, I was wondering about photons. I have come to...

260

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why can radio waves pass through a wall but light cannot? Hello, My name is Mike P. and this is my question. If radio & light waves are both properties of the electromagnetic...

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fermilab | Science | Inquiring Minds | Questions About Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

proton and an anti electron (a positron, i do not know the anti particle of proton). Hello Killian, thanks for your very interesting question. When you talk about particles, the...

262

The Big Questions For Biodiversity Informatics  

E-Print Network [OSTI]

of biodiversity information. This emerging field of biodiversity informatics has been growing quickly, but without overarching scientific questions to guide its development; the result has been developments that have no connection to genuine insight and forward...

Peterson, A. Townsend; Knapp, Sandra; Guralnick, Robert P.; Soberó n, Jorge; Holder, Mark T.

2010-01-01T23:59:59.000Z

263

Solar Instructor Training Network Frequently Asked Questions  

Broader source: Energy.gov [DOE]

These frequently asked questions (FAQs) relate to the solar instructor training network. This project was launched by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP or...

264

AGREE-DISAGREE QUESTIONS: PROBLEMS AND SOME  

E-Print Network [OSTI]

AGREE-DISAGREE QUESTIONS: PROBLEMS AND SOME SOLUTIONS Allyson L. Holbrook Associate Professor that established a woman's right to an abortion?" #12;EXAMPLE SCALES: HANDBOOK OF MARKETING SCALES (2010) Ten

Illinois at Chicago, University of

265

Ten questions and answers about superconductivity  

E-Print Network [OSTI]

This work answers the basic questions of superconductivity in a question-and-answer format. We extend a basic hypothesis to various superconductors. This hypothesis is that superconductivity requires that the pairing gap locates around the Fermi level. On the basis of this hypothesis our calculations give the so-called three factor theory with which some key problems of the high temperature superconductivity are explained.

Tian De Cao

2012-11-13T23:59:59.000Z

266

From Question Answering to Visual Exploration  

SciTech Connect (OSTI)

Research in Question Answering has focused on the quality of information retrieval or extraction using the metrics of precision and recall to judge success; these metrics drive toward finding the specific best answer(s) and are best supportive of a lookup type of search. These do not address the opportunity that users? natural language questions present for exploratory interactions. In this paper, we present an integrated Question Answering environment that combines a visual analytics tool for unstructured text and a state-of-the-art query expansion tool designed to compliment the cognitive processes associated with an information analysts work flow. Analysts are seldom looking for factoid answers to simple questions; their information needs are much more complex in that they may be interested in patterns of answers over time, conflicting information, and even related non-answer data may be critical to learning about a problem or reaching prudent conclusions. In our visual analytics tool, questions result in a comprehensive answer space that allows users to explore the variety within the answers and spot related information in the rest of the data. The exploratory nature of the dialog between the user and this system requires tailored evaluation methods that better address the evolving user goals and counter cognitive biases inherent to exploratory search tasks.

McColgin, Dave W.; Gregory, Michelle L.; Hetzler, Elizabeth G.; Turner, Alan E.

2006-08-11T23:59:59.000Z

267

EA-1290: Disposition of Russian Federation Titled Natural Uranium  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United...

268

Fabrication and Characterization of Uranium-based High Temperature...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication...

269

Assessments of long-term uranium supply availability  

E-Print Network [OSTI]

The future viability of nuclear power will depend on the long-term availability of uranium. A two-form uranium supply model was used to estimate the date at which peak production will occur. The model assumes a constant ...

Zaterman, Daniel R

2009-01-01T23:59:59.000Z

270

Prospects for the recovery of uranium from seawater  

E-Print Network [OSTI]

A computer program entitled URPE (Uranium Recovery Performance and Economics) has been developed to simulate the engineering performance and provide an economic analysis O of a plant recovering uranium from seawater. The ...

Best, F. R.

1980-01-01T23:59:59.000Z

271

METROPOLITAN STATISTICAL AREA  

E-Print Network [OSTI]

METROPOLITAN STATISTICAL AREA OUTLOOK MORGANTOWN COLLEGE OF BUSINESS AND ECONOMICS Bureau to be repeated over the next five years. The Morgantown Metropolitan Statistical Area (MSA) had an average annual

Mohaghegh, Shahab

272

Interpreting Accident Statistics  

E-Print Network [OSTI]

Accident statistics have often been used to support the argument that an abnormally small proportion of drivers account for a large proportion of the accidents. This paper compares statistics developed from six-year data ...

Ferreira, Joseph Jr.

273

Statistical Hot Channel Analysis for the NBSR  

SciTech Connect (OSTI)

A statistical analysis of thermal limits has been carried out for the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The objective of this analysis was to update the uncertainties of the hot channel factors with respect to previous analysis for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuels. Although uncertainties in key parameters which enter into the analysis are not yet known for the LEU core, the current analysis uses reasonable approximations instead of conservative estimates based on HEU values. Cumulative distribution functions (CDFs) were obtained for critical heat flux ratio (CHFR), and onset of flow instability ratio (OFIR). As was done previously, the Sudo-Kaminaga correlation was used for CHF and the Saha-Zuber correlation was used for OFI. Results were obtained for probability levels of 90%, 95%, and 99.9%. As an example of the analysis, the results for both the existing reactor with HEU fuel and the LEU core show that CHFR would have to be above 1.39 to assure with 95% probability that there is no CHF. For the OFIR, the results show that the ratio should be above 1.40 to assure with a 95% probability that OFI is not reached.

Cuadra A.; Baek J.

2014-05-27T23:59:59.000Z

274

Ian Hinchliffe Answers Your Higgs Boson Questions  

SciTech Connect (OSTI)

contingent with the ATLAS experiment at CERN, answers many of your questions about the Higgs boson. Ian invited viewers to send in questions about the Higgs via email, Twitter, Facebook, or YouTube in an "Ask a Scientist" video posted July 3: http://youtu.be/xhuA3wCg06s CERN's July 4 announcement that the ATLAS and CMS experiments at the Large Hadron Collider have discovered a particle "consistent with the Higgs boson" has raised questions about what scientists have found and what still remains to be found -- and what it all means. If you have suggestions for future "Ask a Scientist" videos, post them below or send ideas to askascientist@lbl.gov

Hinchliffe, Ian

2012-01-01T23:59:59.000Z

275

Ian Hinchliffe Answers Your Higgs Boson Questions  

ScienceCinema (OSTI)

contingent with the ATLAS experiment at CERN, answers many of your questions about the Higgs boson. Ian invited viewers to send in questions about the Higgs via email, Twitter, Facebook, or YouTube in an "Ask a Scientist" video posted July 3: http://youtu.be/xhuA3wCg06s CERN's July 4 announcement that the ATLAS and CMS experiments at the Large Hadron Collider have discovered a particle "consistent with the Higgs boson" has raised questions about what scientists have found and what still remains to be found -- and what it all means. If you have suggestions for future "Ask a Scientist" videos, post them below or send ideas to askascientist@lbl.gov

Hinchliffe, Ian

2013-05-29T23:59:59.000Z

276

Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes  

SciTech Connect (OSTI)

Our contribution to the larger project (ANL) was the phylogenetic analysis of evolved communities capable of reducing metals including uranium.

Marsh, Terence L.

2013-07-30T23:59:59.000Z

277

Depleted Uranium in Kosovo Post-Conflict Environmental Assessment  

E-Print Network [OSTI]

2.1 UNEP’s role in post-conflict environmental assessment................................................9 2.2 Depleted uranium............................................................10

Unep Scientific; Mission Kosovo

278

Statistics Statistique Canada Canada  

E-Print Network [OSTI]

Statistics Statistique Canada Canada Human Resources and Ressources humaines et Skills Development Canada Développement des compétences Canada Culture,Tourism and the Centre for Education Statistics about this product or the wide range of services and data available from Statistics Canada, visit our

Sinnamon, Gordon J.

279

Statistical Parsing Inside Algorithm  

E-Print Network [OSTI]

Parsing · Review · Statistical Parsing · SCFG · Inside Algorithm · Outside Algorithm NLP statistical parsing 1 · Outside Algorithm · Viterbi Algorithm · Learning models · SCFG extensions · Other NLP statistical parsing 2 language and is often viewed as an important prerequisite for building

Ageno, Alicia

280

STATISTICAL DESCRIPTION OF THE  

E-Print Network [OSTI]

STATISTICAL DESCRIPTION OF THE CHIRIKOV-TAYLOR MODEL IN THE PRESENCE OF NOISE A. B. RECHESTER that the presence of noise makes the statistical description of this system unique. Theform of the diffusion, and statistical averaging, performed ana- lytically with thepath-integral method, are the same. Some

Karney, Charles

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

POSITION OPENING APPLIED STATISTICS  

E-Print Network [OSTI]

: Assistant or Associate Professor of Applied Statistics. Employment Beginning: September 16, 2012 DescriptionPOSITION OPENING APPLIED STATISTICS Department of Decision Sciences Charles H. Lundquist College at the University of Oregon is seeking to fill one tenure-track faculty position in Applied Statistics. Rank

Shepp, Larry

282

Statistical Scientist / Senior Statistical Scientist Biomathematics & Statistics Scotland (BioSS)  

E-Print Network [OSTI]

------------------------------------------------------------------------------- Statistical Scientist / Senior Statistical Scientist ÂŁ26,610 Biomathematics & Statistics Scotland (BioSS) statistically minded, individual to help address the range of statistical, bioinformatics and modelling problems

Edinburgh, University of

283

Statistical Convergence and Convergence in Statistics  

E-Print Network [OSTI]

Statistical convergence was introduced in connection with problems of series summation. The main idea of the statistical convergence of a sequence l is that the majority of elements from l converge and we do not care what is going on with other elements. We show (Section 2) that being mathematically formalized the concept of statistical convergence is directly connected to convergence of such statistical characteristics as the mean and standard deviation. At the same time, it known that sequences that come from real life sources, such as measurement and computation, do not allow, in a general case, to test whether they converge or statistically converge in the strict mathematical sense. To overcome limitations induced by vagueness and uncertainty of real life data, neoclassical analysis has been developed. It extends the scope and results of the classical mathematical analysis by applying fuzzy logic to conventional mathematical objects, such as functions, sequences, and series. The goal of this work is the further development of neoclassical analysis. This allows us to reflect and model vagueness and uncertainty of our knowledge, which results from imprecision of measurement and inaccuracy of computation. In the context on the theory of fuzzy limits, we develop the structure of statistical fuzzy convergence and study its properties.

Mark Burgin; Oktay Duman

2006-12-07T23:59:59.000Z

284

Uranium Mill Tailings Remedial Action Project surface project management plan  

SciTech Connect (OSTI)

This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

Not Available

1994-09-01T23:59:59.000Z

285

Microbial Janitors: Enabling natural microbes to clean up uranium contamination  

E-Print Network [OSTI]

Microbial Janitors: Enabling natural microbes to clean up uranium contamination Oak Ridge to the development of the atomic bomb. Uranium enrichment activities on the Oak Ridge Reservation in the 1940s until then the uranium and nitrate contamination has spread through the ground and now covers an area of about 7 km

286

Plutonium recovery from spent reactor fuel by uranium displacement  

DOE Patents [OSTI]

A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, John P. (Downers Grove, IL)

1992-01-01T23:59:59.000Z

287

Standard Review Plan for In Situ Leach Uranium  

E-Print Network [OSTI]

NUREG-1569 Standard Review Plan for In Situ Leach Uranium Extraction License Applications Final Washington, DC 20555-0001 #12;NUREG-1569 Standard Review Plan for In Situ Leach Uranium Extraction License OF A STANDARD REVIEW PLAN (NUREG­1569) FOR STAFF REVIEWS FOR IN SITU LEACH URANIUM EXTRACTION LICENSE

288

Bioremediation of Uranium Plumes with Nano-scale  

E-Print Network [OSTI]

(IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - MobilizationBioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from

Fay, Noah

289

EPA Uranium Program Update Loren W. Setlow and  

E-Print Network [OSTI]

30, 2008 #12;2 Overview EPA Radiation protection program Uranium reports and abandoned mine lands and Liability Act #12;4 Uranium Reports and Abandoned Mine Lands Program ·Technologically Enhanced Naturally Occurring Radioactive Materials from Uranium Mining, Volume I: Mining and Reclamation Background (Revised

290

Soil to plant transfer of 238 Th on a uranium  

E-Print Network [OSTI]

Soil to plant transfer of 238 U, 226 Ra and 232 Th on a uranium mining-impacted soil from species grown in soils from southeastern China contaminated with uranium mine tailings were analyzed The radioactive waste (e.g. tailings) produced by uranium mining activities contains a series of long

Hu, Qinhong "Max"

291

Plutonium recovery from spent reactor fuel by uranium displacement  

DOE Patents [OSTI]

A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, J.P.

1992-03-17T23:59:59.000Z

292

Composition of the U.S. DOE Depleted Uranium Inventory  

E-Print Network [OSTI]

about 2.75 wt% U-235. For further enrichment, the material was shipped to the Oak Ridge and Portsmouth plants. In addition to natural uranium, also uranium recycled from spent fuel was fed into the Paducah enrichment cascade (Table 2 and Fig. 2). The recycled uranium introduced various isotopes not found in natural uranium into the cascade: fission products, such as Technetium-99; transuranics, such as Neptunium-237 and Plutonium-239; and the artificial uranium isotope of Uranium-236. The spent fuel, from which uranium was recycled, originated from the Hanford and Savannah River military plutonium production reactors. This uranium was recycled, although its assay of U-235 was somewhat lower than in natural uranium (Table 2). This obviously must be seen in the context of the Cold War era, when uranium was a scarce resource. Due to the low burn-up of the military reactors, concentrations of artificial U-236 are comparatively low in this recycled uranium. The recycled uranium represents

Concentration Of Less

293

Modeling Uranium-Proton Ion Exchange in Biosorption  

E-Print Network [OSTI]

threatening heavy metals because of its high toxicity and some radioactivity. Excessive amounts of uranium seaweed biomass was used to remove the heavy metal uranium from the aqueous solution. Uranium biosorption the heavy metal uptake performance of different biosorbents.LangmuirandFreundlichmodelsoftengenerally fit

Volesky, Bohumil

294

Estimating terrestrial uranium and thorium by antineutrino flux measurements  

E-Print Network [OSTI]

of uranium and thorium concentrations in geological reservoirs relies largely on geochemi- cal modelEstimating terrestrial uranium and thorium by antineutrino flux measurements Stephen T. Dye, and approved November 16, 2007 (received for review July 11, 2007) Uranium and thorium within the Earth produce

Mcdonough, William F.

295

A Geostatistical Study of the Uranium Deposit at Kvanefjeld,  

E-Print Network [OSTI]

with the geology. It is also shown that, although anisotropy exists, the uranium variation has a secondRisa-R-468 A Geostatistical Study of the Uranium Deposit at Kvanefjeld, The Ilimaussaq Intrusion A GEOSTATISTICAL STUDY OF THE URANIUM DEPOSIT AT KVANEFJELD, THE ILIMAUSSAQ INTRUSION, SOUTH GREENLAND Flemming

296

Depleted uranium plasma reduction system study  

SciTech Connect (OSTI)

A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

1994-12-01T23:59:59.000Z

297

Depleted uranium hexafluoride: Waste or resource?  

SciTech Connect (OSTI)

the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

1995-07-01T23:59:59.000Z

298

Method for fluorination of uranium oxide  

DOE Patents [OSTI]

Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

Petit, George S. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

299

Verification of the MCU precision code and ROSFOND neutron data in application to the calculations of criticality of fast reactors with highly enriched uranium  

SciTech Connect (OSTI)

Calculation of 335 critical assemblies (benchmark experiments) with the core of highly enriched uranium and reflectors of various materials is performed. The statistical analysis of the results shows that, for all 16 materials studied, the absolute value of the most probable deviation of the calculated value of K{sub eff} from the experimental one does not exceed 0.005.

Alekseev, N. I.; Kalugin, M. A.; Kulakov, A. S.; Novosel’tsev, A. P.; Sergeev, G. S.; Shkarovskiy, D. A.; Yudkevich, M. S., E-mail: umark@adis.vver.kiae.ru [National Research Center Kurchatov Institute (Russian Federation)

2014-12-15T23:59:59.000Z

300

Validation of SCALE 4. 0 -- CSAS25 module and the 27-group ENDF/B-IV cross-section library for low-enriched uranium systems  

SciTech Connect (OSTI)

A version of KENO V.a and the 27-group library in SCALE-4.0 were validated for use in evaluating the nuclear criticality safety of low-enriched uranium systems. A total of 59 critical systems were analyzed. A statistical analysis of the results was performed, and subcritical acceptanced criteria are established.

Jordan, W.C.

1993-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Validation of SCALE 4.0 -- CSAS25 module and the 27-group ENDF/B-IV cross-section library for low-enriched uranium systems  

SciTech Connect (OSTI)

A version of KENO V.a and the 27-group library in SCALE-4.0 were validated for use in evaluating the nuclear criticality safety of low-enriched uranium systems. A total of 59 critical systems were analyzed. A statistical analysis of the results was performed, and subcritical acceptanced criteria are established.

Jordan, W.C.

1993-02-01T23:59:59.000Z

302

Questions in Cuban and CaribbeanQuestions in Cuban and Caribbean Archaeology:Archaeology  

E-Print Network [OSTI]

Questions in Cuban and CaribbeanQuestions in Cuban and Caribbean Archaeology:Archaeology: Across was not only the biggest language in the Caribbean, but was also used as lingua franca throughout the region evidence about their language, only place names · Theory: the only non-Arawak language in the Caribbean Sea

Martin, Jeff

303

Fish and Wildlife Management Questions and RM&E Strategies Key Management Questions  

E-Print Network [OSTI]

1 Fish and Wildlife Management Questions and RM&E Strategies Key Management Questions 1. Are we meeting biological and programmatic performance objectives established within the Columbia Basin Fish implemented and accomplished as proposed? Strategic Category: Fish Population Status Monitoring The following

304

Got a Question? We Have an Answer!  

Broader source: Energy.gov [DOE]

Editor's Note: This entry has been cross-posted from energysavers.gov. Ever had a question -- maybe about energy efficiency, renewable energy, the Department of Energy or the like -- and not had any idea where to find the answer? The EERE Information Center might be able to help.

305

Background Material Important Questions about Magnetism  

E-Print Network [OSTI]

Background Material Important Questions about Magnetism: 1) What is Magnetism?Magnetism is a force or repulsion due to charge is called the electric force. But what about magnetism, is there a fundamental property of some matter that makes things magnetic? The answer is: "sort of." Electric current

Mojzsis, Stephen J.

306

Student Learning Commons Questions & Answers for Faculty  

E-Print Network [OSTI]

Student Learning Commons Questions & Answers for Faculty What is the SFU Student Learning Commons? The Student Learning Commons (SLC), is an academic learning centre which provides peer-based assistance with library reference, computer assistance, and other student academic support services. SLC programs

307

CRAD, Facility Safety- Unreviewed Safety Question Requirements  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Unreviewed Safety Question (USQ) process.

308

Common Questions Why should I soil test?  

E-Print Network [OSTI]

Common Questions Why should I soil test? Soil testing is an important diagnostic tool to evaluate nutrient imbalances and understand plant growth. The most important reason to soil test is to have a basis for intelligent application of fertilizer and lime. Testing also allows for growers and homeowners to maintain

Isaacs, Rufus

309

Frequently Asked Questions 1. Technology Transfer  

E-Print Network [OSTI]

Frequently Asked Questions 1. Technology Transfer 2. Patent 3. Requirements for obtaining a patent is not addressed, please contact Colleen Michael at 631-344 -4919. #12;What is Technology Transfer? Technology Transfer is the process of developing practical applications for the results of scientific research

310

Physics 321 Exam 1 Sample Questions  

E-Print Network [OSTI]

of motion. Briefly explain the meaning of each law. 4. Describe one case where Newton's third law does .T At what frequency is the response a maximum? What does FWHM mean? What is the expression we usePhysics 321 Exam 1 Sample Questions 1. Write the second order differential equation as two first

Hart, Gus

311

Rangeland ecology: Key global research issues & questions  

E-Print Network [OSTI]

1 Rangeland ecology: Key global research issues & questions Robin Reid and Maria Fernandez-Gimenez This paper discusses developments in our understanding about rangeland ecology and rangeland dynamics in the last 20 years. Before the late 1980's, the mainstream view in range ecology was that livestock

312

Question and Answers Alternative Fuel Readiness Plans  

E-Print Network [OSTI]

Question and Answers Alternative Fuel Readiness Plans PON-13-603 September 3, 2013 Eligibility Q1 to readiness plans? A1 This solicitation is limited to readiness planning only for alternative fuels. Q2 In regards to PON-13-603 - Alternative Fuel Readiness Plans, is electricity used for transportation

313

Extracting Simplified Statements for Factual Question Generation  

E-Print Network [OSTI]

Minister Vladimir V. Putin, the country's paramount leader, cut short a trip to Siberia, returning to Moscow to oversee the federal response. Mr. Putin built his reputation in part on his success set of questions:3 (2) Prime Minister Vladimir V. Putin is the country's paramount leader. (3) Prime

Eskenazi, Maxine

314

Mining an Ocean of Data: Application of modern statistical methods for addressing biological oceanography questions  

E-Print Network [OSTI]

in our understanding of global ocean circulation, heat and energy transport associated with mesoscale methods of optimizing data analysis and interpretation for maximizing data use. As part of this proposal of their potential to store heat, sequester atmospheric carbon dioxide and influence major atmospheric weather events

Columbia University

315

Evaporation of Enriched Uranium Solutions Containing Organophosphates  

SciTech Connect (OSTI)

The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The preliminary SRTC data, in conjunction with information in the literature, is promising. However, very few experiments have been run, and none of the results have been confirmed with repeat tests. As a result, it is believed that insufficient data exists at this time to warrant Separations making any process or program changes based on the information contained in this report. When this data is confirmed in future testing, recommendations will be presented.

Pierce, R.A.

1999-03-18T23:59:59.000Z

316

Decarburization of uranium via electron beam processing  

SciTech Connect (OSTI)

For many commercial and military applications, the successive Vacuum Induction Melting of uranium metal in graphite crucibles results in a product which is out of specification in carbon. The current recovery method involves dissolution of the metal in acid and chemical purification. This is both expensive and generates mixed waste. A study was undertaken at Lawrence Livermore National Laboratory to investigate the feasibility of reducing the carbon content of uranium metal using electron beam techniques. Results will be presented on the rate and extent of carbon removal as a function of various operating parameters.

McKoon, R H

1998-10-23T23:59:59.000Z

317

Progress toward uranium scrap recycling via EBCHR  

SciTech Connect (OSTI)

A 250 kW electron beam cold hearth refining (EBCHR) melt furnace at Lawrence Livermore National Laboratory (LLNL) has been in operation for over a year producing 5.5 in.-diameter ingots of various uranium alloys. Production of in-specification uranium-6%-niobium (U-6Nb) alloy ingots has been demonstrated using virgin feedstock. A vibratory scrap feeder has been installed on the system and the ability to recycle chopped U-6Nb scrap has been established. A preliminary comparison of vacuum arc remelted (VAR) and electron beam (EB) melted product is presented.

McKoon, R.H.

1994-11-01T23:59:59.000Z

318

Simplifying strong electronic correlations in uranium: Localized uranium heavy-fermion UM2Zn20 (M=Co,Rh) compounds  

E-Print Network [OSTI]

Simplifying strong electronic correlations in uranium: Localized uranium heavy-fermion UM2Zn20 (M AtĂłmica, 8400 Bariloche, Argentina 6 Department of Chemistry and Biochemistry, University of Delaware-field effects corroborate an ionic-like uranium electronic configura- tion in UM2Zn20. DOI: 10.1103/PhysRevB.78

Lawrence, Jon

319

#AskEnergySaver: Answering Your Home Heating Questions | Department...  

Broader source: Energy.gov (indexed) [DOE]

AskEnergySaver: Answering Your Home Heating Questions AskEnergySaver: Answering Your Home Heating Questions October 16, 2014 - 4:05pm Q&A Have questions about renewable energy...

320

Statistics and the Modern Student  

E-Print Network [OSTI]

Technology Innovations in Statistics Education, 3(1). Wild,the "wider view" of statistics, The American Statistician,a History of Teaching Statistics, Edinburgh: John Bibby (

Robert Gould

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Statistics and the Modern Student  

E-Print Network [OSTI]

Technology Innovations in Statistics Education, 3(1). Wild,the "wider view" of statistics, The American Statistician,a History of Teaching Statistics, Edinburgh: John Bibby (

Gould, Robert

2010-01-01T23:59:59.000Z

322

BS in STATISTICS: Statistical Science Emphasis (695220) MAP Sheet Department of Statistics  

E-Print Network [OSTI]

BS in STATISTICS: Statistical Science Emphasis (695220) MAP Sheet Department of Statistics the following: Stat 121 Principles of Statistics Stat 151 Introduction to Bayesian Statistics Stat 201 Statistics for Engineers & Scientists Stat 301 Statistics & Probability for Sec Ed Note: Students who have

Olsen Jr., Dan R.

323

Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1  

SciTech Connect (OSTI)

The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

324

University of California Response to DOE Questions Regarding...  

Broader source: Energy.gov (indexed) [DOE]

University of California Response to DOE Questions Regarding Price-Anderson Renewal University of California Response to DOE Questions Regarding Price-Anderson Renewal Comments...

325

DOE response to questions from AHAM on the supplemental proposed...  

Energy Savers [EERE]

response to questions from AHAM on the supplemental proposed test procedure for residential clothes washers DOE response to questions from AHAM on the supplemental proposed test...

326

Forty Most Asked Questions Concerning CEQ's National Environmental...  

Energy Savers [EERE]

Forty Most Asked Questions Concerning CEQ's National Environmental Policy Act Regulations Forty Most Asked Questions Concerning CEQ's National Environmental Policy Act Regulations...

327

The Quest for the Heaviest Uranium Isotope  

E-Print Network [OSTI]

We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

2012-01-17T23:59:59.000Z

328

The multiphoton ionization of uranium hexafluoride  

SciTech Connect (OSTI)

Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

Armstrong, D.P. (Oak Ridge K-25 Site, TN (United States). UEO Enrichment Technical Operations Div.)

1992-05-01T23:59:59.000Z

329

Radiological health aspects of uranium milling  

SciTech Connect (OSTI)

This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

Fisher, D.R.; Stoetzel, G.A.

1983-05-01T23:59:59.000Z

330

Investigation of Trace Uranium in Biological Matrices  

E-Print Network [OSTI]

complex. As a result, the data varies in its breadth and quality due to the variety of sources.[41-44] Additional studies have been undertaken to understand the effects of using depleted uranium munitions in war and the accompanying exposures.[45...

Miller, James Christopher

2013-05-31T23:59:59.000Z

331

Statistics in the Landscape of Intersecting Brane Models  

E-Print Network [OSTI]

An approach towards a statistical survey of four dimensional supersymmetric vacua in the string theory landscape is described and illustrated with three examples of ensembles of intersecting D-brane models. The question whether it is conceivable to make predictions based on statistical distributions is discussed. Especially interesting in this context are possible correlations between low energy observables. As an example we look at correlations between properties of the gauge sector of intersecting D-brane models and Gepner model constructions.

Florian Gmeiner

2008-03-24T23:59:59.000Z

332

1 Statistics Statistics plays an important role throughout society, providing  

E-Print Network [OSTI]

1 Statistics STATISTICS Statistics plays an important role throughout society, providing data. They also explore how those skills can be applied to develop new initiatives. Statistics is one. UNDERGRADUATE Bachelor's program · Bachelor of Science with a major in statistics (http:// bulletin.gwu.edu/arts-sciences/statistics

Vertes, Akos

333

Discordances ontologiques et questions d'interoprabilit  

E-Print Network [OSTI]

liens, et en quoi elles sont pertinentes pour les sciences sociales. Mots clés : Epistémologie, ontologie, interopérabilité, intégration de schémas, homologie structurale Summary : Beyond the search terrain d'étude ethnologique. Après avoir quelque peu précisé ces deux questions, ainsi que les liens qu

Boyer, Edmond

334

Twenty-five questions for string theorists  

SciTech Connect (OSTI)

In an effort to promote communication between the formal and phenomenological branches of the high-energy theory community, we provide a description of some important issues in supersymmetric and string phenomenology. We describe each within the context of string constructions, illustrating them with specific examples where applicable. Each topic culminates in a set of questions that we believe are amenable to direct consideration by string theorists, and whose answers we think could help connect string theory and phenomenology.

Binetruy, Pierre; /Orsay, LPT; Kane, G.L.; /Michigan U., MCTP; Lykken, Joseph D.; /Fermilab; Nelson, Brent D.; /Pennsylvania U.

2005-09-01T23:59:59.000Z

335

Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)  

E-Print Network [OSTI]

Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

336

Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes  

E-Print Network [OSTI]

researchers from uranium chemistry. Fortunately, despitescarce in uranium coordination chemistry. A more detailedligands for uranium coordination chemistry. Figure 4-2.

Lam, Oanh Phi

2010-01-01T23:59:59.000Z

337

Part I STATISTICAL PHYSICS 1 Statistical Physics  

E-Print Network [OSTI]

In this first part of the book we shall study aspects of classical statistical physics that every physicist should know, but are not usually treated in elementary thermodynamics courses. Our study will lay the microphysical (particle-scale) foundations for the continuum physics of Parts II—VI. As a central feature of our approach, we shall emphasize the intimate connections between the relativistic formulation of statistical physics and its nonrelativistic limit, and between quantum statistical physics and the classical theory. Throughout, we shall presume that the reader is familiar with elementary thermodynamics, but not with other aspects of statistical physics. In Chap. 2 we will study kinetic theory — the simplest of all formalisms for analyzing systems of huge numbers of particles (e.g., molecules of air, or neutrons diffusing through a nuclear reactor, or photons produced in the big-bang origin of the Universe). In kinetic theory the key concept is the “distribution function ” or “number density of particles in phase space”, N; i.e., the number of particles per unit 3-dimensional volume of ordinary space and per unit 3-dimensional volume of momentum space. Despite first appearances, N turns out to be a geometric, frame-independent entity. This N and the frame-independent laws it

unknown authors

338

Part I STATISTICAL PHYSICS 1 Statistical Physics  

E-Print Network [OSTI]

In this first part of the book we shall study aspects of classical statistical physics that every physicist should know, but are not usually treated in elementary thermodynamics courses. Our study will lay the microphysical (particle-scale) foundations for the continuum physics of Parts II—VI. As a central feature of our approach, we shall emphasize the intimate connections between the relativistic formulation of statistical physics and its nonrelativistic limit, and between quantum statistical physics and the classical theory. Throughout, we shall presume that the reader is familiar with elementary thermodynamics, but not with other aspects of statistical physics. In Chap. 2 we will study kinetic theory — the simplest of all formalisms for analyzing systems of huge numbers of particles (e.g., molecules of air, or neutrons diffusing through a nuclear reactor, or photons produced in the big-bang origin of the Universe). In kinetic theory the key concept is the “distribution function ” or “number density of particles in phase space”, N; i.e., the number of particles per unit 3-dimensional volume of ordinary space and per unit 3-dimensional volume of momentum space. Despite first appearances, N turns out to be a geometric, frame-independent entity. This N and the frame-independent laws it

unknown authors

2004-01-01T23:59:59.000Z

339

Part I STATISTICAL PHYSICS 1 Statistical Physics  

E-Print Network [OSTI]

In this first part of the book we shall study aspects of classical statistical physics that every physicist should know but are not usually treated in elementary thermodynamics courses. This study will lay the microphysical (particle-scale) foundations for the continuum physics of Parts II—VI. Throughout, we shall presume that the reader is familiar with elementary thermodynamics, but not with other aspects of statistical physics. As a central feature of our approach, we shall emphasize the intimate connections between the relativistic formulation of statistical physics and its nonrelativistic limit, and between quantum statistical physics and the classical theory. Chapter 2 will deal with kinetic theory, which is the simplest of all formalisms for studying systems of huge numbers of particles (e.g., molecules of air, or neutrons diffusing through a nuclear reactor, or photons produced in the big-bang origin of the Universe). In kinetic theory the key concept is the “distribution function ” or “number density of particles in phase space”, N; i.e., the number of particles per unit 3-dimensional volume of ordinary space and per unit 3-dimensional volume of momentum space. Despite first appearances, N turns out to be a geometric, frame-independent entity. This N and the laws it obeys provide

unknown authors

340

Validity of Hansen-Roach cross sections in low-enriched uranium systems  

SciTech Connect (OSTI)

Within the nuclear criticality safety community, the Hansen-Roach 16 group cross section set has been the standard'' for use in k{sub eff} calculations over the past 30 years. Yet even with its widespread acceptance, there are still questions about its validity and adequacy, about the proper procedure for calculating the potential scattering cross section, {sigma}{sub p}, for uranium and plutonium, and about the concept of resonance self shielding and its impact on cross sections. This paper attempts to address these questions. It provides a brief background on the Hansen-Roach cross sections. Next is presented a review of resonances in cross sections, self shielding of these resonances, and the use of {sigma}{sub p} to characterize resonance self shielding. Three prescriptions for calculating {sigma}{sub p} are given. Finally, results of several calculations of k{sub eff} on low-enriched uranium systems are provided to confirm the validity of the Hansen-Roach cross sections when applied to such systems.

Busch, R.D. (New Mexico Univ., Albuquerque, NM (United States)); O'Dell, R.D. (Los Alamos National Lab., NM (United States))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Questions for IIT Waste Diversion RFP Question: What are the recycling/waste goals of IIT?  

E-Print Network [OSTI]

for commercial weights? We cannot provide exact weights by location for commercial cans due to rear load trucks expected to haul the Black outside Hawk bins? Answer: No, this is handled by our staff. Question: Have you

Heller, Barbara

342

2013 Better Buildings Federal Award Frequently Asked Questions  

Broader source: Energy.gov [DOE]

Document answers frequently asked questions for the Federal Energy Management Program's 2013 Better Buildings Federal Award.

343

Statistical Hadronization and Holography  

E-Print Network [OSTI]

In this paper we consider some issues about the statistical model of the hadronization in a holographic approach. We introduce a Rindler like horizon in the bulk and we understand the string breaking as a tunneling event under this horizon. We calculate the hadron spectrum and we get a thermal, and so statistical, shape for it.

Jacopo Bechi

2009-12-17T23:59:59.000Z

344

Transportation Statistics Annual Report 1997  

SciTech Connect (OSTI)

This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

Fenn, M.

1997-01-01T23:59:59.000Z

345

Frequently Asked Questions | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours,Frequently Asked Questions

346

Fermilab | Science | Questions for the Universe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxialtransatlantic networkHomelandWorkforceQuestions for

347

Frequently Asked Questions | DOE Data Explorer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlantFreedom ofFrequently Asked Questions

348

Advanced Statistical Mechanics: CHEM 646 Problem Set 1  

E-Print Network [OSTI]

is a function of position, show that dI() d = d r I() ( r) ( r). Inverting the question, suppose weAdvanced Statistical Mechanics: CHEM 646 Problem Set 1 1. At low densities, the generic pair distribution function can be approximated as (2) ( r1, r2) = 2 e- u12(r12) , where u12 is the pair potential

Ronis, David M.

349

Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094  

SciTech Connect (OSTI)

Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly and the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)

Camper, Larry W.; Michalak, Paul; Cohen, Stephen; Carter, Ted [Nuclear Regulatory Commission (United States)

2012-07-01T23:59:59.000Z

350

Design and performance of a scalable, parallel statistics toolkit.  

SciTech Connect (OSTI)

Most statistical software packages implement a broad range of techniques but do so in an ad hoc fashion, leaving users who do not have a broad knowledge of statistics at a disadvantage since they may not understand all the implications of a given analysis or how to test the validity of results. These packages are also largely serial in nature, or target multicore architectures instead of distributed-memory systems, or provide only a small number of statistics in parallel. This paper surveys a collection of parallel implementations of statistics algorithm developed as part of a common framework over the last 3 years. The framework strategically groups modeling techniques with associated verification and validation techniques to make the underlying assumptions of the statistics more clear. Furthermore it employs a design pattern specifically targeted for distributed-memory parallelism, where architectural advances in large-scale high-performance computing have been focused. Moment-based statistics (which include descriptive, correlative, and multicorrelative statistics, principal component analysis (PCA), and k-means statistics) scale nearly linearly with the data set size and number of processes. Entropy-based statistics (which include order and contingency statistics) do not scale well when the data in question is continuous or quasi-diffuse but do scale well when the data is discrete and compact. We confirm and extend our earlier results by now establishing near-optimal scalability with up to 10,000 processes.

Thompson, David C.; Bennett, Janine Camille; Pebay, Philippe Pierre

2010-11-01T23:59:59.000Z

351

Evaluation of depleted uranium in the environment at Aberdeen Proving Grounds, Maryland and Yuma Proving Grounds, Arizona. Final report  

SciTech Connect (OSTI)

This report represents an evaluation of depleted uranium (DU) introduced into the environment at the Aberdeen Proving Grounds (APG), Maryland and Yuma Proving Grounds (YPG) Arizona. This was a cooperative project between the Environmental Sciences and Statistical Analyses Groups at LANL and with the Department of Fishery and Wildlife Biology at Colorado State University. The project represents a unique approach to assessing the environmental impact of DU in two dissimilar ecosystems. Ecological exposure models were created for each ecosystem and sensitivity/uncertainty analyses were conducted to identify exposure pathways which were most influential in the fate and transport of DU in the environment. Research included field sampling, field exposure experiment, and laboratory experiments. The first section addresses DU at the APG site. Chapter topics include bioenergetics-based food web model; field exposure experiments; bioconcentration by phytoplankton and the toxicity of U to zooplankton; physical processes governing the desorption of uranium from sediment to water; transfer of uranium from sediment to benthic invertebrates; spead of adsorpion by benthic invertebrates; uptake of uranium by fish. The final section of the report addresses DU at the YPG site. Chapters include the following information: Du transport processes and pathway model; field studies of performance of exposure model; uptake and elimination rates for kangaroo rates; chemical toxicity in kangaroo rat kidneys.

Kennedy, P.L.; Clements, W.H.; Myers, O.B.; Bestgen, H.T.; Jenkins, D.G. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

1995-01-01T23:59:59.000Z

352

Uranium and other heavy metals in the plant-animal-human food chain near abandoned mining sites and structures in an American Indian community in northwestern New Mexico  

E-Print Network [OSTI]

comparable to National Uranium Resource Evaluation (NURE)comparable to National Uranium Resource Evaluation (NURE)

Samuel-Nakamura, Christine

2013-01-01T23:59:59.000Z

353

The uranium cylinder assay system for enrichment plant safeguards  

SciTech Connect (OSTI)

Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Rael, Carlos D [Los Alamos National Laboratory; Iwamoto, Tomonori [JNFL; Tamura, Takayuki [JNFL; Aiuchi, Syun [JNFL

2010-01-01T23:59:59.000Z

354

In-line assay monitor for uranium hexafluoride  

DOE Patents [OSTI]

An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.

Wallace, S.A.

1980-03-21T23:59:59.000Z

355

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect (OSTI)

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

356

Uranium Oxide Aerosol Transport in Porous Graphite  

SciTech Connect (OSTI)

The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

2012-01-23T23:59:59.000Z

357

Statistics: Part 1 1. Why bother with statistics?  

E-Print Network [OSTI]

Statistics: Part 1 1. Why bother with statistics? Why is statistics so necessary for observational. But your data just don't seem to back up their claim. Statistics allows you to determine how confidently) practical introduction to those bits of statistics most vital to observational astronomy. 2. What

Francis, Paul

358

Statistics 36-756: Advanced Statistics II Syllabus: Fall, 2006  

E-Print Network [OSTI]

Statistics 36-756: Advanced Statistics II Syllabus: Fall, 2006 Instructor: Stephen E. Fienberg 132G: · To consider major topics from statistical theory and the foundations of inference not covered in Statistics 36-756: Advanced Statistics I, such as exchangeability, the axiomatic foundation of subjective probability

Fienberg, Stephen E.

359

Pearson's Goodness of Fit Statistic as a Score Test Statistic  

E-Print Network [OSTI]

Pearson's Goodness of Fit Statistic as a Score Test Statistic Gordon K. Smyth Abstract For any generalized linear model, the Pearson goodness of fit statistic is the score test statistic for testing the current model against the saturated model. The re- lationship between the Pearson statistic

Smyth, Gordon K.

360

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy balance for uranium recovery from seawater  

SciTech Connect (OSTI)

The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

Schneider, E.; Lindner, H. [The University of Texas, 1 University Station C2200, Austin, TX 78712 (United States)

2013-07-01T23:59:59.000Z

362

Uranium enrichment export control guide: Gaseous diffusion  

SciTech Connect (OSTI)

This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

Not Available

1989-09-01T23:59:59.000Z

363

Uranio impoverito: perché? (Depleted uranium: why?)  

E-Print Network [OSTI]

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of understanding the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

Germano D'Abramo

2003-06-05T23:59:59.000Z

364

Engineering assessment of inactive uranium mill tailings  

SciTech Connect (OSTI)

The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

Not Available

1981-07-01T23:59:59.000Z

365

Measurement of uranium enrichment by gamma spectroscopy: result of an experimental design  

E-Print Network [OSTI]

, Gamma Spectrometry, uranium enrichment #12;PAPER Measurement of uranium enrichment by gamma spectroscopy: result of an experimental design Gamma spectroscopy is commonly used in nuclear safeguards to measure uranium enrichment. An experimental

366

Magnetic Exchange Coupling and Single-Molecule Magnetism in Uranium Complexes  

E-Print Network [OSTI]

in molecular uranium cluster chemistry. 13 Compound 2 ischemistry and small-molecule reactivity of uranium. AmongUranium Complexes by Jeffrey Dennis Rinehart Doctor of Philosophy in Chemistry

Rinehart, Jeffrey Dennis

2010-01-01T23:59:59.000Z

367

E-Print Network 3.0 - active uranium americium Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

<< < 1 2 3 4 5 > >> 21 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

368

E-Print Network 3.0 - alkaline-earth metal uranium Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In metamorphic rocks uranium and rare earth metals can form minerals. An example... Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

369

E-Print Network 3.0 - arlit uranium mines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mathematics 5 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

370

E-Print Network 3.0 - area uranium plume Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 4 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

371

E-Print Network 3.0 - abandoned uranium mill Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 17 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

372

E-Print Network 3.0 - anaconda uranium mill Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 7 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

373

E-Print Network 3.0 - anthropogenic uranium enrichments Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology ; Engineering 99 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

374

E-Print Network 3.0 - acute uranium intoxication Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Medicine 19 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

375

E-Print Network 3.0 - atomized uranium silicide Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science 11 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

376

E-Print Network 3.0 - abandoned uranium mines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 15 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

377

E-Print Network 3.0 - ash doped uranium Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 2 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

378

E-Print Network 3.0 - adepleted uranium hexafluoride Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mathematics 15 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

379

E-Print Network 3.0 - alloyed uranium sicral Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 33 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

380

The geochemistry of uranium in the Orca Basin  

E-Print Network [OSTI]

no uranium enrichment, with concentrations ranging from 2. 1 to 4. gppm, reflective of normal Gulf of Mexico sediments. This is the result of two dominant processes operating within the basin. First, the sharp pycnocline at the brine/seawater interface... . . . . . . . . , . . . , 37 xi Figure Page 16 Ores Basin Seismic Reflection Profile A 40 17 Ores Basin Seismic Reflection Profile B 42 18 Proposed Mechanism of Uranium Uptake in the Atlantis II Deep 59 INTRODUCTION Economic Status of Uranium in the United States...

Weber, Frederick Fewell

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tables des principaux minerais d'uranium et de thorium  

E-Print Network [OSTI]

233 Tables des principaux minerais d'uranium et de thorium Par B. SZILARD [Faculté des Sciences de minerais d'uranium et de thorium avec leurs données les plus importantes, telles que la com- position, la teneur en uranium et en thorium, la provenance et quelques indications générales. La liste ne prétend pas

Paris-Sud XI, Université de

382

Uncertainty clouds uranium enrichment corporation's plans  

SciTech Connect (OSTI)

An expected windfall to the US Treasury from the sale of the Energy Dept.'s commercial fuel enrichment facilities may evaporate in the next few weeks when the Clinton administration submits its fiscal 1994 budget proposal to Congress, according to congressional and administration officials. Under the Energy Policy Act of 1992, DOE is required to lease two uranium enrichment facilities, Portsmouth, Ohio, and Paducah, KY., to the government-owned US Enrichment Corp. (USEC) by July 1. Estimates by OMB and Treasury indicate a potential yearly payoff of $300 million from the government-owned company's sale of fuel for commercial reactors. Those two facilities use a process of gaseous diffusion to enrich uranium to about 3 percent for use as fuel in commercial power plants. DOE has contracts through at least 1996 to provide about 12 million separative work units (SWUs) yearly to US utilities and others world-wide. But under an agreement signed between the US and Russia last August, at least 10 metric tons, or 1.5 million SWUs, of low-enriched uranium (LEU) blended down from Russia warheads is expected to be delivered to the US starting in 1994. It could be sold at $50 to $60 per SWU, far below what DOE currently charges for its SWUs - $135 per SWU for 70 percent of the contract price and $90 per SWU for the remaining 30 percent.

Lane, E.

1993-03-24T23:59:59.000Z

383

Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined in a wide variety of rocks, including sandstone, carbonates1  

E-Print Network [OSTI]

3-1 Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined conventional mining, solution extraction, and milling of uranium, a principal focus of this report is TENORM, or which may need future reclamation. When uranium mining first started, most of the ores were recovered

384

Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy  

SciTech Connect (OSTI)

For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

none,

2013-07-01T23:59:59.000Z

385

Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes  

E-Print Network [OSTI]

coordination chemistry is depleted uranium, a by-product innuclear reactors. Depleted uranium Figure 1-1. The periodic

Lam, Oanh Phi

2010-01-01T23:59:59.000Z

386

Uranium in Framboidal Pyrite from a Naturally Bioreduced Alluvial...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Framboidal Pyrite from a Naturally Bioreduced Alluvial Sediment . Uranium in Framboidal Pyrite from a Naturally Bioreduced Alluvial Sediment . Abstract: Samples of a naturally...

387

Microscopic Reactive Diffusion of Uranium in the Contaminated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

States. Abstract: Microscopic and spectroscopic analysis of uranium-contaminated sediment cores beneath the BX waste tank farm at the US Department of Energy (DOE) Hanford...

388

NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...  

National Nuclear Security Administration (NNSA)

Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

389

Method of fabricating a uranium-bearing foil  

DOE Patents [OSTI]

Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

Gooch, Jackie G. (Seymour, TN); DeMint, Amy L. (Kingston, TN)

2012-04-24T23:59:59.000Z

390

Uranium Leasing Program Draft PEIS Public Comment Period Extended...  

Broader source: Energy.gov (indexed) [DOE]

Uranium Leasing Program Draft PEIS Public Comment Period Extended to May 31, 2013 Draft ULPEIS comment extension community notification041813 (3).pdf More Documents & Publications...

391

Uranium immobilization by sulfate-reducing biofilms grown on...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

immobilization by sulfate-reducing biofilms grown on hematite, dolomite, and calcite. Uranium immobilization by sulfate-reducing biofilms grown on hematite, dolomite, and calcite....

392

Electrochemical method of producing eutectic uranium alloy and apparatus  

DOE Patents [OSTI]

An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

Horton, J.A.; Hayden, H.W.

1995-01-10T23:59:59.000Z

393

Uranium-contaminated soils: Ultramicrotomy and electron beam analysis  

SciTech Connect (OSTI)

Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

1994-04-01T23:59:59.000Z

394

High grade uranium resources in the United States : an overview  

E-Print Network [OSTI]

A time analysis of uranium exploration, production and known reserves in the United States is employed to reveal industry trends. The

Graves, Richard E.

1974-01-01T23:59:59.000Z

395

Uranium and Strontium Batch Sorption and Diffusion Kinetics into...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranium and Strontium Batch Sorption and Diffusion Kinetics into Mesoporous Silica Friday, February 27, 2015 Figure 1 Figure 1. Transmission electron microscopy images of (A)...

396

Basic characterization of highly enriched uranium by gamma spectrometry  

E-Print Network [OSTI]

Gamma-spectrometric methods suitable for the characterization of highly enriched uranium samples encountered in illicit trafficking of nuclear materials are presented. In particular, procedures for determining the 234U, 235U, 238U, 232U and 236U contents and the age of highly enriched uranium are described. Consequently, the total uranium content and isotopic composition can be calculated. For determining the 238U and 232U contents a low background chamber was used. In addition, age dating of uranium was also performed using low-background spectrometry.

Cong Tam Nguyen; Jozsef Zsigrai

2005-08-25T23:59:59.000Z

397

Basic characterization of highly enriched uranium by gamma spectrometry  

E-Print Network [OSTI]

Gamma-spectrometric methods suitable for the characterization of highly enriched uranium samples encountered in illicit trafficking of nuclear materials are presented. In particular, procedures for determining the 234U, 235U, 238U, 232U and 236U contents and the age of highly enriched uranium are described. Consequently, the total uranium content and isotopic composition can be calculated. For determining the 238U and 232U contents a low background chamber was used. In addition, age dating of uranium was also performed using low-background spectrometry.

Nguyen, C T

2006-01-01T23:59:59.000Z

398

Measurements of uranium in soils and small mammals  

SciTech Connect (OSTI)

The objective of this study was to evaluate the bioavailability of uranium to a single species of small mammal, Peromyscus maniculatus rufinus (Merriam), white-footed deer mouse, from two different source terms: a Los Alamos National Laboratory dynamic weapons testing site in north central New Mexico, where an estimated 70,000 kg of uranium have been expended over a 31-y period; and an inactive uranium mill tailings pile located in west central New Mexico near Grants, which received wastes over a 5-y period from the milling of 2.7 x 10/sup 9/ kg of uranium ore.

Miera, F.R. Jr.

1980-12-01T23:59:59.000Z

399

EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel...  

Broader source: Energy.gov (indexed) [DOE]

Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado March 15, 2013 EIS-0472: DOE Notice of Availability of a Draft Programmatic Environmental Impact...

400

Uranium biokinetics in gavaged young adult female rats.  

E-Print Network [OSTI]

??Blood, liver, kidney, femur, and ovaries were assayed from female Wistar rats following oral administration of uranyl nitrate. Three uranium concentrations were studied for six… (more)

Keizer, Philip John

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Assessment of Controlling Processes for Field-Scale Uranium Reactive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore...

402

americium plutonium uranium: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a fascinating ele- ment. Last year, we learned that some com- pounds of plutonium superconduct at sur- prisingly Steinberger, Bernhard 110 Standard specification for uranium...

403

Secretarial Determination of No Adverse Material Impact for Uranium...  

Energy Savers [EERE]

set forth in the 2012 Secretarial Determination and the Department's Excess Uranium Inventory Management Plan released in July 2013. Secretarial Determination 5-15-14.pdf More...

404

Collaboration and Communication: DOE and Navajo Nation Tour Uranium...  

Broader source: Energy.gov (indexed) [DOE]

site managers, along with Navajo Nation technical staff, visited five reclaimed uranium-mine sites on tribal lands to share expertise in the use of technical approaches...

405

Financial Assurance for In Situ Uranium Facilities (Texas)  

Broader source: Energy.gov [DOE]

Owners or operators are required to provide financial assurance for in situ uranium sites. This money is required for: decommissioning, decontamination, demolition, and waste disposal for buildings...

406

Selective leaching of uranium from uranium-contaminated soils: Progress report 1  

SciTech Connect (OSTI)

Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

1993-02-01T23:59:59.000Z

407

Selective leaching of uranium from uranium-contaminated soils: Progress report 1  

SciTech Connect (OSTI)

Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

1993-02-01T23:59:59.000Z

408

Mathematical and Statistical Opportunities in Cyber Security  

SciTech Connect (OSTI)

The role of mathematics in a complex system such as the Internet has yet to be deeply explored. In this paper, we summarize some of the important and pressing problems in cyber security from the viewpoint of open science environments. We start by posing the question 'What fundamental problems exist within cyber security research that can be helped by advanced mathematics and statistics'? Our first and most important assumption is that access to real-world data is necessary to understand large and complex systems like the Internet. Our second assumption is that many proposed cyber security solutions could critically damage both the openness and the productivity of scientific research. After examining a range of cyber security problems, we come to the conclusion that the field of cyber security poses a rich set of new and exciting research opportunities for the mathematical and statistical sciences.

Meza, Juan; Campbell, Scott; Bailey, David

2009-03-23T23:59:59.000Z

409

FISHERY STATISTICS E UNITED STATES  

E-Print Network [OSTI]

SH 11 .A443X FISH FISHERY STATISTICS E UNITED STATES ^ 1951 &ch 3. \\§^ ^/'· m:^ STATISTICAL DIGEST. Farley, Director Statistical Digest 30 FISHERY STATISTICS OF THE UNITED STATES 1951 BY A. W. ANDERSON;Fishery Statistics of the United States and Alaska are compiled and published annually to make available

410

Competing retention pathways of uranium upon reaction with Fe(II)  

SciTech Connect (OSTI)

Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3•nH2O) to goethite (?-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway’s contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation state of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ~7, [U(VI)] from 1 to 170 ?M, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM) coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended x-ray absorption fine structure (EXAFS) spectroscopy, x-ray powder diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14 to 89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ? 50 ?M when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64 to 89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.

Massey, Michael S.; Lezama Pacheco, Juan S.; Jones, Morris; Ilton, Eugene S.; Cerrato, Jose M.; Bargar, John R.; Fendorf, Scott

2014-10-01T23:59:59.000Z

411

Corrosion Evaluation of RERTR Uranium Molybdenum Fuel  

SciTech Connect (OSTI)

As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.

A K Wertsching

2012-09-01T23:59:59.000Z

412

Decolonizing cartographies : sovereignty, territoriality, and maps of meaning in the uranium landscape  

E-Print Network [OSTI]

the open-pit mining employed elsewhere in uranium landscape.as open-pit and underground uranium mining. Local residents,

Voyles, Traci Brynne

2010-01-01T23:59:59.000Z

413

EA-1172: Sale of Surplus Natural and Low Enriched Uranium, Piketon, Ohio  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to sell uranium for subsequent enrichment and fabrication into commercial nuclear power reactor fuel.  The uranium is currently stored...

414

Novel Transformations using Uranium and Group 5 Metal Complexes Supported by 1,1'-diamidoferrocene Ligands  

E-Print Network [OSTI]

Chemistry by Michael Joseph Lopez ABSTRACT OF THE THESIS Novel Transformations using Uranium andchemistry has grown significantly in the past decade. 1 Uranium

Lopez, Michael Joseph

2013-01-01T23:59:59.000Z

415

CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTIS (BIS(TRIMETHYLSILYL)AMIDO]URANIUM(IV)  

E-Print Network [OSTI]

Chemistry CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTRIS[BIS(TRIMETHYLSILYL)AMIDO]URANIUM(Chemistry University of California Berkeley, California 94720 New hydride derivatives of thorium (IV) and uranium (

Andersen, Richard A.

2012-01-01T23:59:59.000Z

416

DOE Announces Transfer of Depleted Uranium to Advance the U.S...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transfer of Depleted Uranium to Advance the U.S. National Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant DOE Announces Transfer of Depleted Uranium to...

417

E-Print Network 3.0 - aqueuous uranium complexes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12;Breccia complex deposits: This is a type of uranium formations that occur near... Uranium geology and mining Ranger ... Source: Uppsala Universitet, Department of...

418

E-Print Network 3.0 - adsorbing uranium compounds Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

compound, davidite-brannerite-absite type of uranium titanates and the euxenite... Uranium geology and mining Ranger 1 ... Source: Uppsala Universitet, Department of...

419

E-Print Network 3.0 - alloyed uranium transformation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the sink term in the governing mass balance equation and the transformation from average uranium... Mathematical Geology, Vol. 33, No. 1, 2001 Modeling Uranium Transport in ......

420

Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Pena Blanca, Chihuahua, Mexico  

E-Print Network [OSTI]

P.C. , 1981, Geology of the Peńa Blanca uranium deposits,uranium mineralizations in the Sierra Peńa Blanca district, Chihuahua, Mexico: Three genetic models: Economic Geology,

Dobson, P.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Stability of uranium incorporated into Fe(hydr)oxides under fluctuating redox conditions  

E-Print Network [OSTI]

uranium budgets and behavior along a Hawaiian chronosequence. Chemical GeologyUranium isotopic evidence for the origin of the Bahariya iron deposits, Egypt. Ore Geology

Stewart, B.D.

2009-01-01T23:59:59.000Z

422

Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors  

DOE Patents [OSTI]

The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

1982-06-29T23:59:59.000Z

423

Statistical Mechanics and Quantum Cosmology  

E-Print Network [OSTI]

Statistical mechanical concepts and processes such as decoherence, correlation, and dissipation can prove to be of basic importance to understanding some fundamental issues of quantum cosmology and theoretical physics such as the choice of initial states, quantum to classical transition and the emergence of time. Here we summarize our effort in 1) constructing a unified theoretical framework using techniques in interacting quantum field theory such as influence functional and coarse-grained effective action to discuss the interplay of noise, fluctuation, dissipation and decoherence; and 2) illustrating how these concepts when applied to quantum cosmology can alter the conventional views on some basic issues. Two questions we address are 1) the validity of minisuperspace truncation, which is usually assumed without proof in most discussions, and 2) the relevance of specific initial conditions, which is the prevailing view of the past decade. We also mention how some current ideas in chaotic dynamics, dissipative collective dynamics and complexity can alter our view of the quantum nature of the universe.

B. L. Hu

1995-11-29T23:59:59.000Z

424

Role of global warming on the statistics of record-breaking temperatures S. Redner1,  

E-Print Network [OSTI]

Role of global warming on the statistics of record-breaking temperatures S. Redner1, * and Mark R in Philadelphia, as a function of the number of years of observation. We then consider the case of global warming question arises: is global warming the cause of such heat waves or are they merely statistical fluctuations

Redner, Sidney

425

Statistical Mechanics with focus on  

E-Print Network [OSTI]

Statistical Mechanics with focus on Liquids, Solutions and Colloidal Systems Course contents A. Foundations of statistical mechanics Classical dynamics ­ Hamilton's and Liouville's equations The concept statistics. Ideal fermion or boson gases. ­ Bose-Einstein condensation. The relationship between

Johannesson, Henrik

426

School of Mathematics and Statistics  

E-Print Network [OSTI]

School of Mathematics and Statistics Faculties of Arts Economics, Education, Engineering and Science INTERMEDIATE MATHEMATICS and STATISTICS 2012 THE UNIVERSITY OF SYDNEY #12;Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 STAT2911 Probability and Statistical Models (Advanced) . . . . . . . . . . . 16 STAT2912

Du, Jie

427

Guide to Inferential Statistics (Hypothesis Testing Statistics) Statistic What does it measure? Null Hypothesis What you  

E-Print Network [OSTI]

Guide to Inferential Statistics (Hypothesis Testing Statistics) Statistic What does it measure of the variable from the 2 groups p-value less than .05 If p statistically different (reject null) If p > .05, there is no statistical difference in the mean values of groups (accept null) t

Brown, Gregory G.

428

Statistics applied to safeguards  

SciTech Connect (OSTI)

Statistical methods are central to safeguards work. Measurements forming the basis of much materials accountancy are not perfect - ``perfect`` in the sense of being error free. Other sessions in this course address the destructive and nondestructive measurement of nuclear material, together with the inherent limitations in those measurements. The bottom line is that measurement errors are a fact of life and, since we can`t eliminate them, we have to find a rational way to deal with them. Which leads to the world of statistics. Beyond dealing with measurement errors, another area of statistical application involves the sampling of items for verification. Inspectors from the IAEA and domestic regulatory agencies periodically visit operating facilities and make measurements of selected items. By comparing their own measured values to those declared by the facilities, increased confidence is obtained. If verification measurements were not expensive, time consuming, and disruptive to operations, perhaps verification of 100% of the inventories would be desirable. In reality, many constraints lead to inspection of only a portion of those inventories. Drawing inferences about a larger ``population`` of declared items in a facility based on verification information obtained from a sample of those items is a statistical problem. There are few texts on statistics in safeguards. The lengthy exposition ``IAEA Safeguards: Statistical Concepts and Techniques`` and the US NRC book edited by Bowen and Bennet are two good sources of general information. In the next section, the subject of measurement quality is addressed. The third section covers the evaluation of MUFs, and discusses the related subjects of error propagation and sequential analysis. The final section covers verification, inspection sample size calculations, and the D statistic. The text is written at an elementary level, with references to the safeguards literature for more detailed treatment.

Picard, R.R.

1993-05-01T23:59:59.000Z

429

Statistics applied to safeguards  

SciTech Connect (OSTI)

Statistical methods are central to safeguards work. Measurements forming the basis of much materials accountancy are not perfect - perfect'' in the sense of being error free. Other sessions in this course address the destructive and nondestructive measurement of nuclear material, together with the inherent limitations in those measurements. The bottom line is that measurement errors are a fact of life and, since we can't eliminate them, we have to find a rational way to deal with them. Which leads to the world of statistics. Beyond dealing with measurement errors, another area of statistical application involves the sampling of items for verification. Inspectors from the IAEA and domestic regulatory agencies periodically visit operating facilities and make measurements of selected items. By comparing their own measured values to those declared by the facilities, increased confidence is obtained. If verification measurements were not expensive, time consuming, and disruptive to operations, perhaps verification of 100% of the inventories would be desirable. In reality, many constraints lead to inspection of only a portion of those inventories. Drawing inferences about a larger population'' of declared items in a facility based on verification information obtained from a sample of those items is a statistical problem. There are few texts on statistics in safeguards. The lengthy exposition IAEA Safeguards: Statistical Concepts and Techniques'' and the US NRC book edited by Bowen and Bennet are two good sources of general information. In the next section, the subject of measurement quality is addressed. The third section covers the evaluation of MUFs, and discusses the related subjects of error propagation and sequential analysis. The final section covers verification, inspection sample size calculations, and the D statistic. The text is written at an elementary level, with references to the safeguards literature for more detailed treatment.

Picard, R.R.

1993-01-01T23:59:59.000Z

430

Development of Novel Sorbents for Uranium Extraction from Seawater  

SciTech Connect (OSTI)

As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

Lin, Wenbin; Taylor-Pashow, Kathryn

2014-01-08T23:59:59.000Z

431

Have a Question About Energy Efficiency or Renewable Energy?...  

Broader source: Energy.gov (indexed) [DOE]

Have a Question About Energy Efficiency or Renewable Energy? Ask Ener-Gee Whiz Have a Question About Energy Efficiency or Renewable Energy? Ask Ener-Gee Whiz May 26, 2009 -...

432

Nano Lect 1 Questions and Keypoints Key Points  

E-Print Network [OSTI]

Nano Lect 1 ­ Questions and Keypoints Key Points 1. What is nano technology: a. Very small technology with device in the 1nm to 100nm lots of useful properties Questions 1. Define nanotechnology. Is an nano

Smy, Tom

433

2015 Federal Energy and Water Management Awards: Frequently Asked Questions  

Broader source: Energy.gov [DOE]

Document answers frequently asked questions about the 2015 Federal Energy and Water Management Awards' guidelines and criteria for nominations.

434

Frequently Asked Questions: About Federal Fleet Management (Brochure)  

SciTech Connect (OSTI)

Answers to frequently asked questions about Federal fleet management, Federal requirements, reporting, advanced vehicles, and alternative fuels.

Not Available

2009-10-01T23:59:59.000Z

435

Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer  

SciTech Connect (OSTI)

Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.

Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla; Peacock, Aaron D.; Lesher, E.; Williams, Kenneth H.; Bargar, John R.; Wilkins, Michael J.; Figueroa, Linda A.; Ranville, James; Davis, James; Long, Philip E.

2012-05-23T23:59:59.000Z

436

Questions about? Needing help wards? Worried about? Who can  

E-Print Network [OSTI]

Questions about? Needing help wards? Worried about? Who can bout? Needing help with? Headi can help? Questio g towards? Worrie elp? Questions about? Needing he bout? Needing help with? Headi ed about? Who can help? Quest ng help with? Heading towards? W an help? Questions about? Needin ng towards? Worried

Netoff, Theoden

437

Improved Answer Ranking in Social Question-Answering Portals  

E-Print Network [OSTI]

@cl.uni-heidelberg.de ABSTRACT Community QA portals provide an important resource for non-factoid question; Community question answering; Query expansion 1. INTRODUCTION Community Question-Answering (QA) portals can more recent work deploys Yahoo! Answers data for complete QA [24, 25], we focus on the aspect of answer

Riezler, Stefan

438

Mixed uranium dicarbide and uranium dioxide microspheres and process of making same  

DOE Patents [OSTI]

Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.

Stinton, David P. (Knoxville, TN)

1983-01-01T23:59:59.000Z

439

Appendix IV. Risks Associated with Conventional Uranium Milling Introduction  

E-Print Network [OSTI]

by the addition of water/lixiviant is generally collected by air pollution control mechanisms, which return as in situ leaching (ISL) mining operations, to provide a more complete picture of uranium production. While this report focuses on the impacts associated with conventional surface and underground uranium mines

440

Process for recovering niobium from uranium-niobium alloys  

DOE Patents [OSTI]

Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

Wallace, Steven A. (Knoxville, TN); Creech, Edward T. (Oak Ridge, TN); Northcutt, Walter G. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nuclear power fleets and uranium resources recovered from phosphates  

SciTech Connect (OSTI)

Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

2013-07-01T23:59:59.000Z

442

In-line assay monitor for uranium hexafluoride  

DOE Patents [OSTI]

An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.

Wallace, Steven A. (Knoxville, TN)

1981-01-01T23:59:59.000Z

443

Uranium and cesium diffusion in fuel cladding of electrogenerating channel  

SciTech Connect (OSTI)

The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500°C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

Vasil’ev, I. V., E-mail: fnti@mail.ru; Ivanov, A. S.; Churin, V. A. [National Research Center Kurchatov Institute (Russian Federation)

2014-12-15T23:59:59.000Z

444

Uranium in US surface, ground, and domestic waters. Volume 2  

SciTech Connect (OSTI)

The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

1981-04-01T23:59:59.000Z

445

Process for recovering niobium from uranium-niobium alloys  

DOE Patents [OSTI]

Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

1982-09-27T23:59:59.000Z

446

NUREG/CR-6911 Tests of Uranium (VI) Adsorption  

E-Print Network [OSTI]

NUREG/CR-6911 Tests of Uranium (VI) Adsorption Models in a Field Setting U.S. Geological Survey U/CR-6911 Tests of Uranium (VI) Adsorption Models in a Field Setting Manuscript Completed: August 2006 Date Published: August 2006 Prepared by G. P. Curtis, J. A. Davis Water Resources Division U.S. Geological Survey

447

Spectroscopic Evidence for Uranium Bearing Precipitates in Vadose Zone  

E-Print Network [OSTI]

Spectroscopic Evidence for Uranium Bearing Precipitates in Vadose Zone Sediments at the Hanford 300, Advanced Light Source, One Cyclotron Road, Berkeley, California 94720, United States Geological Survey Northwest Laboratory, Richland, Washington 99352 Uranium (U) solid-state speciation in vadose zone sediments

448

Case Study/ Effects of Groundwater Development on Uranium  

E-Print Network [OSTI]

Case Study/ Effects of Groundwater Development on Uranium: Central Valley, California, USA Abstract Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley products sold (U.S. Department of 1Corresponding author: U.S. Geological Survey, California Water Science

449

Electron Microbeam Investigation of Uranium-Contaminated Soils from  

E-Print Network [OSTI]

Research Electron Microbeam Investigation of Uranium-Contaminated Soils from Oak Ridge, TN, USA J O Street, Baltimore, Maryland 21218, Department of Geological Sciences, Indiana University, 1001 East 10th Street, Bloomington, Indiana 47405 Two samples of uranium-contaminated soil from the Department of Energy

Zhu, Chen

450

Preserving Ultra-Pure Uranium-233  

SciTech Connect (OSTI)

Uranium-233 ({sup 233}U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium ({sup 232}Th). At high purities, this synthetic isotope serves as a crucial reference material for accurately quantifying and characterizing uranium-bearing materials assays and isotopic distributions for domestic and international nuclear safeguards. Separated, high purity {sup 233}U is stored in vaults at Oak Ridge National Laboratory (ORNL). These materials represent a broad spectrum of {sup 233}U from the standpoint of isotopic purity - the purest being crucial for precise analyses in safeguarding uranium. All {sup 233}U at ORNL is currently scheduled to be disposed of by down-blending with depleted uranium beginning in 2015. This will reduce safety concerns and security costs associated with storage. Down-blending this material will permanently destroy its potential value as a certified reference material for use in uranium analyses. Furthermore, no credible options exist for replacing {sup 233}U due to the lack of operating production capability and the high cost of restarting currently shut down capabilities. A study was commissioned to determine the need for preserving high-purity {sup 233}U. This study looked at the current supply and the historical and continuing domestic need for this crucial isotope. It examined the gap in supplies and uses to meet domestic needs and extrapolated them in the context of international safeguards and security activities - superimposed on the recognition that existing supplies are being depleted while candidate replacement material is being prepared for disposal. This study found that the total worldwide need by this projection is at least 850 g of certified {sup 233}U reference material over the next 50 years. This amount also includes a strategic reserve. To meet this need, 18 individual items totaling 959 g of {sup 233}U were identified as candidates for establishing a lasting supply of certified reference materials (CRM), all having an isotopic purity of at least 99.4% {sup 233}U and including materials up to 99.996% purity. Current plans include rescuing the purest {sup 233}U materials during a 3-year project beginning in FY 2012 in three phases involving preparations, handling preserved materials, and cleanup. The first year will involve preparations for handling the rescued material for sampling, analysis, distribution, and storage. Such preparations involve modifying or developing work control documents and physical preparations in the laboratory, which include preparing space for new material-handling equipment and procuring and (in some cases) refurbishing equipment needed for handling {sup 233}U or qualifying candidate CRM. Once preparations are complete, an evaluation of readiness will be conducted by independent reviewers to verify that the equipment, work controls, and personnel are ready for operations involving handling radioactive materials with nuclear criticality safety as well as radiological control requirements. The material-handling phase will begin in FY 2013 and be completed early in FY 2014, as currently scheduled. Material handling involves retrieving candidate CRM items from the ORNL storage facility and shipping them to another laboratory at ORNL; receiving and handling rescued items at the laboratory (including any needed initial processing, acquisition and analysis of samples from each item, and preparation for shipment); and shipping bulk material to destination labs or to a yet-to-be-designated storage location. There are seven groups of {sup 233}U identified for handling based on isotopic purity that require the utmost care to prevent cross-contamination. The last phase, cleanup, also will be completed in 2014. It involves cleaning and removing the equipment and material-handling boxes and characterizing, documenting, and disposing of waste. As part of initial planning, the cost of rescuing candidate {sup 233}U items was estimated roughly. The annualized costs were found to be $1,228K in FY 2012, $1,375K in FY 2013,

Krichinsky, Alan M [ORNL; Goldberg, Dr. Steven A. [DOE SC - Chicago Office; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL)

2011-10-01T23:59:59.000Z

451

Experimental Statistics NBS Handbook 91: Experimental Statistics [1] was  

E-Print Network [OSTI]

Experimental Statistics NBS Handbook 91: Experimental Statistics [1] was first published in 1963 as a series of five Army Ordnance Pamphlets OSRDDP 20-110-114. The publication was prepared in the Statistical. Basic Statistical Concepts and Analysis and Inter- pretation of Measurement Data 2. Standard Techniques

452

Statistics and samples 1.1 What is statistics?  

E-Print Network [OSTI]

1 1 Statistics and samples 1.1 What is statistics? Biologists study the properties of living things to get sam- pled and who did not. Statistics is a technology that describes and measures aspects of nature from samples. Most importantly, statistics lets us quantify the uncertainty of these meas- ures

Irwin, Darren

453

Statistics and Differential Geometry 18-466 Mathematical Statistics  

E-Print Network [OSTI]

Statistics and Differential Geometry 18-466 Mathematical Statistics Jerome Le Ny December 14, 2005 of statistical curvature [Efr75], that most of the main concepts and methods of differ- ential geometry are of substantial interest in connection with the theory of statistical inference. This report describes in simple

Le Ny, Jerome

454

Modeled atmospheric radon concentrations from uranium mines  

SciTech Connect (OSTI)

Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

Droppo, J.G.

1985-04-01T23:59:59.000Z

455

Explore Online: Question-Driven Coral-Reef Monitoring  

E-Print Network [OSTI]

variance, statistical power, survey designs Ambiguities between monitoring protocols and man- agement

Mcilwain, Jenny

456

Production of Mo-99 using low-enriched uranium silicide  

SciTech Connect (OSTI)

Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl{sub x} alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U{sub 3}Si{sub 2} miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed.

Hutter, J. C.; Srinivasan, B.; Vicek, M.; Vandegrift, G. F.

1994-09-01T23:59:59.000Z

457

Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide  

SciTech Connect (OSTI)

Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

2012-07-31T23:59:59.000Z

458

National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico  

SciTech Connect (OSTI)

The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint.

White, D L; Foster, M

1982-05-01T23:59:59.000Z

459

Active neutron multiplicity counting of bulk uranium  

SciTech Connect (OSTI)

This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235 }U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs.

Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C.

1991-01-01T23:59:59.000Z

460

Uranium Management and Policy | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEM with EDAXUpdatedEnergyUranium Management

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Uranium Marketing Annual Report - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version) Themonthly4 Oil(EIA)Uranium

462

SciTech Connect: enriched uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) CawithMicrofluidicJournalWhat is aenriched uranium

463

U.S. Uranium Reserves Estimates  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane,Major U.S. Uranium

464

U.S. Uranium Reserves Estimates  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane,Major U.S. Uranium1. U.S.

465

U.S. Uranium Reserves Estimates  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane,Major U.S. Uranium1.

466

Statistical Learning Theory of Protein Dynamics  

E-Print Network [OSTI]

integrated statistical learning and simulation approach tomolecular simulation, using statistical learning theory tomolecular simulation and statistical learning theory of

Haas, Kevin

2013-01-01T23:59:59.000Z

467

Innovative Elution Processes for Recovering Uranium from Seawater  

SciTech Connect (OSTI)

Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium removal from the sorbent reaches only 80% after 10 hours of leaching. Some information regarding coordination of vanadium with amidoxime molecules and elution of vanadium from amidoxime- based sorbents is also given in the report.

Wai, Chien; Tian, Guoxin; Janke, Christopher

2014-05-29T23:59:59.000Z

468

Indicators: Performance Statistics  

E-Print Network [OSTI]

% Quality Inspections Completed 66% +12% 95% 86% 95% 52% 81% 51% 76% Utilities: Performance Statistics of performance measures and specific color code target values. Trend status color indicators ­ identifies changes from the prior month: Key: - 54% Electric - 0% All Zones Combined Zone Breakdown Steam/Chilled Water 0

Webb, Peter

469

General Indicators: Performance Statistics  

E-Print Network [OSTI]

Bank Central Svcs. Energy Mgmt Admin Preventive Maintenance: Fire/Life/Safety (FLS) 87% -4% 100% 47 Trend Initial Target Steam Chilled Utility Outages 2 +1% 0 0 0 Preventive Maintenance: Fire participation reading will be June 2012 *Budget data FYTD through March 2012 Maintenance: Performance Statistics

Webb, Peter

470

General Indicators: Performance Statistics  

E-Print Network [OSTI]

Bank Central Svcs. Energy Mgmt Admin Preventive Maintenance: Fire/Life/Safety (FLS) 85% -12% 100% 80 Trend Initial Target Steam Chilled Utility Outages 3 -5 0 1 0 Preventive Maintenance: Fire participation reading will be August 2012 *Budget data FYTD through May 2012 Maintenance: Performance Statistics

Webb, Peter

471

General Indicators: Performance Statistics  

E-Print Network [OSTI]

. Energy Mgmt Admin Preventive Maintenance: Fire/Life/Safety (FLS) 97% +10% 100% 96% 93% 99% 98% Non Chilled Utility Outages 8 +6% 0 1 2 Preventive Maintenance: Fire/Life/Safety (FLS) 100% No Change 100 will be June 2012 *Budget data FYTD through April 2012 Maintenance: Performance Statistics Current Month Change

Webb, Peter

472

MATHEMATICS AND STATISTICS  

E-Print Network [OSTI]

MATHEMATICS AND STATISTICS Canterbury The UK's European university Undergraduate study #12;2 ACADEMIC EXCELLENCE AND INSPIRATIONAL TEACHING Much of science is based upon the application of mathematics as for computer science. New discoveries within mathematics affect not only science, but also our general

Banaji,. Murad

473

Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels  

DOE Patents [OSTI]

An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

Ackerman, John P. (Downers Grove, IL); Miller, William E. (Naperville, IL)

1989-01-01T23:59:59.000Z

474

Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel  

SciTech Connect (OSTI)

Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR`s uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ``hot segment`` analysis of narrow axial regions along the plate and ``hot streak`` analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about {minus}7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square ({chi}{sup 2}) test for goodness of fit to normal distributions was not satisfied.

Blumenfeld, P.E.

1995-08-01T23:59:59.000Z

475

Defining Conditions for Maximizing Bioreduction of Uranium  

SciTech Connect (OSTI)

Correlations between modifying electron donor and acceptor accessibility, the in-situ microbial community, and bioreduction of Uranium at the FRC and UMTRA research sites indicated that significant modifications in the rate, amount and by inference the potential stability of immobilized Uranium are feasible in these environments. The in-situ microbial community at these sites was assessed with a combination of lipid and real-time molecular techniques providing quantitative insights of effects of electron donor and manipulations. Increased (9mM in 2003 vs 3mM 2002) donor amendment at the Old Rifle site resulted in the stimulation of anaerobic conditions downgradient of the injection gallery. Biomass within the test plot increased relative to the control well at 17 feet. Q-PCR specific for IRB/SRB showed increased copy numbers within the test plot and was the highest at the injection gallery. Q-PCR specific for Geobacter sp. showed increased copy numbers within the test plot but further downgradient from the injection gallery than the SRB/IRB. DNA and Lipid analysis confirm changes in the microbial community structure due to donor addition. See also the PNNL (Long) and UMASS (Anderson) posters for more information about this site.

David C. White; Aaron D. Peacock; Yun-Juan Chang; Roland Geyer; Philip E. Long; Jonathan D. Istok; Amanda N.; R. Todd Anderson; Dora Ogles

2004-03-17T23:59:59.000Z

476

RIB Production with Photofission of Uranium  

E-Print Network [OSTI]

The process of uranium photofission with electron beams of 20 div 50 MeV is considered in terms of the production of fission fragments. It is shown that in the interaction between an electron beam (25 MeV in energy and 20 mu A in intensity), produced by a compact accelerator of the microtron type, and a uranium target of about 40 g/cm^2 in thickness, an average of 1.5 cdot 10^11 fission events/second is generated. According to the calculations and test experiments, this corresponds to the yield of ^132 Sn and ^142 Xe isotopes of approximately 2 cdot 10^9/s. The results of experiments on the optimal design of the U-target are presented. Problems are discussed connected with the separation of isotopes and isobars for their furher acceleration up to energies of 5-18 MeV/n. The photofission reactions of a heavy nucleus are compared with other methods of RIB production of medium mass nuclei.

Oganessian, Yu T; Kliman, J; Maslov, O D; Starodub, G Ya; Belov, A G; Tretyakova, S P

2002-01-01T23:59:59.000Z

477

Heterogeneous modeling of the uranium in situ recovery: Kinetic versus solubility Jrmy. Nosa,1, 2  

E-Print Network [OSTI]

Heterogeneous modeling of the uranium in situ recovery: Kinetic versus solubility control Jérémy Mines, Tour AREVA, 1 place Jean Millier, 92084 Paris La Défense Cedex, France The uranium in situ, into the deposit to selectively dissolve uranium. The solution enriched in uranium is pumped out and processed

Boyer, Edmond

478

Short Communication Bioreduction and precipitation of uranium in ionic liquid aqueous  

E-Print Network [OSTI]

with uranium from mining and milling operations, radioactive wastes, and from nuclear accidents is a majorShort Communication Bioreduction and precipitation of uranium in ionic liquid aqueous solution t s Uranium forms various complexes with ionic liquids. Uranium bioreduction was affected by the type

Ohta, Shigemi

479

Stability of uranium incorporated into Fe(hydr)oxides under fluctuating redox conditions  

E-Print Network [OSTI]

uranium deposit, Northern Australia - Lessons from the Alligator Rivers analogue project. Physics and Chemistry

Stewart, B.D.

2009-01-01T23:59:59.000Z

480

Complexation of Gluconate with Uranium(VI) in Acidic Solutions: Thermodynamic Study with Structural Analysis  

E-Print Network [OSTI]

uranium is approximately one order of magnitude lower than expected, suggesting that the coordination chemistry

Zhang, Zhicheng

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium statistics questions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector  

E-Print Network [OSTI]

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector

1980-01-01T23:59:59.000Z

482

Uranium Oxide as a Highly Reflective Coating from 150-350 eV  

E-Print Network [OSTI]

of depleted uranium metal (less than 0.2% U-235). After sputtering, the uranium was allowed to oxidize1 Uranium Oxide as a Highly Reflective Coating from 150-350 eV Richard L. Sandberg, David D. Allred.byu.edu ABSTRACT We present the measured reflectances (beamline 6.3.2, ALS at LBNL) of naturally oxidized uranium

Hart, Gus

483

Final Scientific/Technical Report for Project entitled "Mechanism of Uranium Reduction by Shewanella oneidensis"  

SciTech Connect (OSTI)

Final Scientific/Technical Report for Project entitled "Mechanism of Uranium Reduction by Shewanella oneidensis"

DiChristina, Thomas J. [Georgia Tech

2013-04-30T23:59:59.000Z

484

E-Print Network 3.0 - arsenic manganese uranium Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IN-SITU LEACHIN-SITU RECOVERY (ISLISR) SITES Radiation Protection Division Office... .1 Uranium Geology......

485

Statistical sampling method for releasing decontaminated vehicles  

SciTech Connect (OSTI)

Earth moving vehicles (e.g., dump trucks, belly dumps) commonly haul radiologically contaminated materials from a site being remediated to a disposal site. Traditionally, each vehicle must be surveyed before being released. The logistical difficulties of implementing the traditional approach on a large scale demand that an alternative be devised. A statistical method (MIL-STD-105E, {open_quotes}Sampling Procedures and Tables for Inspection by Attributes{close_quotes}) for assessing product quality from a continuous process was adapted to the vehicle decontamination process. This method produced a sampling scheme that automatically compensates and accommodates fluctuating batch sizes and changing conditions without the need to modify or rectify the sampling scheme in the field. Vehicles are randomly selected (sampled) upon completion of the decontamination process to be surveyed for residual radioactive surface contamination. The frequency of sampling is based on the expected number of vehicles passing through the decontamination process in a given period and the confidence level desired. This process has been successfully used for 1 year at the former uranium mill site in Monticello, Utah (a CERCLA regulated clean-up site). The method forces improvement in the quality of the decontamination process and results in a lower likelihood that vehicles exceeding the surface contamination standards are offered for survey. Implementation of this statistical sampling method on Monticello Projects has resulted in more efficient processing of vehicles through decontamination and radiological release, saved hundreds of hours of processing time, provided a high level of confidence that release limits are met, and improved the radiological cleanliness of vehicles leaving the controlled site.

Lively, J.W.; Ware, J.A. [Rust Geotech, Grand Junction, CO (United States)

1996-06-01T23:59:59.000Z

486

Occupational exposures to uranium: processes, hazards, and regulations  

SciTech Connect (OSTI)

The United States Uranium Registry (USUR) was formed in 1978 to investigate potential hazards from occupational exposure to uranium and to assess the need for special health-related studies of uranium workers. This report provides a summary of Registry work done to date. The history of the uranium industry is outlined first, and the current commercial uranium industry (mining, milling, conversion, enrichment, and fuel fabrication) is described. This description includes information on basic processes and areas of greatest potential radiological exposure. In addition, inactive commercial facilities and other uranium operations are discussed. Regulation of the commercial production industry for uranium fuel is reported, including the historic development of regulations and the current regulatory agencies and procedures for each phase of the industry. A review of radiological health practices in the industry - facility monitoring, exposure control, exposure evaluation, and record-keeping - is presented. A discussion of the nonradiological hazards of the industry is provided, and the final section describes the tissue program developed as part of the Registry.

Stoetzel, G.A.; Fisher, D.R.; McCormack, W.D.; Hoenes, G.R.; Marks, S.; Moore, R.H.; Quilici, D.G.; Breitenstein, B.D.

1981-04-01T23:59:59.000Z

487

Statistics and Discoveries at the LHC (2/4)  

ScienceCinema (OSTI)

The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

None

2011-10-06T23:59:59.000Z

488

Statistics and Discoveries at the LHC (4/4)  

ScienceCinema (OSTI)

The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

None

2011-10-06T23:59:59.000Z

489

Statistics and Discoveries at the LHC (3/4)  

ScienceCinema (OSTI)

The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

None

2011-10-06T23:59:59.000Z

490

Statistics and Discoveries at the LHC (1/4)  

ScienceCinema (OSTI)

The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

None

2011-10-06T23:59:59.000Z

491

Dissolution rates of uranium compounds in simulated lung fluid  

SciTech Connect (OSTI)

Maximum dissolution rates of uranium into simulated lung fluid from a variety of materials were measured at 37/sup 0/in the where f/sub i/ is in order to estimate clearance rates from the deep lung. A batch procedure was utilized in which samples containing as little as 10 ..mu..g of natural uranium could be tested. The materials included: products of uranium mining, milling and refining operations, coal fly ash, an environmental sample from a site exposed to multiple uranium sources, and purified samples of (NH/sub 4/)/sub 2/U/sub 2/O/sub 7/ U/sub 3/O/sub 8/, UO/sub 2/, and UF/sub 4/. Dissolution of uranium from several materials indicated the presence of more than one type of uranium compound; but in all cases, the fraction F of uranium remaining undissolved at any time t could be represented by the sum of up to three terms in the series: F = ..sigma../sub i/f/sub i/ exp (-0.693t/UPSILON/sub i/), where f/sub i/ is the initial fraction of component i with dissolution half-time epsilon/sub i/. Values of epsilon/sub i/ varied from 0.01 day to several thousand days depending on the physical and chemical form of the uranium. Dissolution occurred predominantly by formation of the (UO/sub 2/(CO/sub 3/)/sub 3/)/sup 4 -/ ion; and as a result, tetravalent uranium compounds dissolved slowly. Dissolution rates of size-separated yellow-cake aerosols were found to be more closely correlated with specific surface area than with aerodynamic diameter.

Kalkwarf, D.R.

1981-01-01T23:59:59.000Z

492

1979 DOE statistical symposium  

SciTech Connect (OSTI)

The 1979 DOE Statistical Symposium was the fifth in the series of annual symposia designed to bring together statisticians and other interested parties who are actively engaged in helping to solve the nation's energy problems. The program included presentations of technical papers centered around exploration and disposal of nuclear fuel, general energy-related topics, and health-related issues, and workshops on model evaluation, risk analysis, analysis of large data sets, and resource estimation.

Gardiner, D.A.; Truett T. (comps. and eds.)

1980-09-01T23:59:59.000Z

493

DCO Operations Interesting Statistics  

E-Print Network [OSTI]

DCO Operations Interesting Statistics 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 Chart by: HANDS DOWN SOFTWARE, www.handsdownsoftware.com 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0 is annotated with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE

494

Independent Statistics & Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningto FuelIndependent Statistics & Analysis

495

Statistical simulation procedures  

E-Print Network [OSTI]

. Ringer This thesis investicates methods for estimating statistical distribution functions which cannot be easily solved by theoretical techniques. The stratified Ilonte Carlo procedure of Ringer and Suharto [11j is extended to the multivariate case... and applied to two probIems, one practical, the other theoretical. This procedure Is shown to be more precise than simple Monte Carlo simula- t. i on. numerical method proposed by Soserville [12j is also extended to the multivariate case, and compared...

Tremelling, Robert Norman

2012-06-07T23:59:59.000Z

496

Homotopy in statistical physics  

E-Print Network [OSTI]

In condensed matter physics and related areas, topological defects play important roles in phase transitions and critical phenomena. Homotopy theory facilitates the classification of such topological defects. After a pedagogic introduction to the mathematical methods involved in topology and homotopy theory, the role of the latter in a number of mainly low-dimensional statistical-mechanical systems is outlined. Some recent activities in this area are reviewed and some possible future directions are discussed.

Ralph Kenna

2006-04-12T23:59:59.000Z

497

Method of precipitating uranium from an aqueous solution and/or sediment  

DOE Patents [OSTI]

A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

2013-08-20T23:59:59.000Z

498

Heavy Ion Beam in Resolution of the Critical Point Problem for Uranium and Uranium Dioxide  

E-Print Network [OSTI]

Important advantages of heavy ion beam (HIB) irradiation of matter are discussed in comparison with traditional sources - laser heating, electron beam, electrical discharge etc. High penetration length (~ 10 mm) is of primary importance for investigation of dense matter properties. This gives an extraordinary chance to reach the uniform heating regime when HIB irradiation is being used for thermophysical property measurements. Advantages of HIB heating of highly-dispersive samples are claimed for providing free and relatively slow quasi-isobaric heating without fast hydrodynamic expansion of heated sample. Perspective of such HIB application are revised for resolution of long-time thermophysical problems for uranium and uranium-bearing compounds (UO2). The priorities in such HIB development are stressed: preferable energy levels, beam-time duration, beam focusing, deposition of the sample etc.

Igor Iosilevskiy; Victor Gryaznov

2010-05-23T23:59:59.000Z

499

Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1  

SciTech Connect (OSTI)

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

500

Standard guide for the determination of uranium-232 in uranium hexafluoride  

E-Print Network [OSTI]

1.1 This method covers the determination of 232U in uranium hexafluoride by alpha spectrometry. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z