Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

The initial uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

2

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. Forward-Cost Uranium Reserves by Mining Method, Year-End 2008 Mining Method 50 per pound 100 per pound Ore (million tons) Gradea (percent U3O8) U3O8 (million pounds) Ore...

3

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

1. U.S. Forward-Cost Uranium Reserves by State, Year-End 2008 State 50lb 100lb Ore (million tons) Gradea (%) U3O8 (million lbs) Ore (million tons) Gradea (%) U3O8 (million lbs)...

4

U.S. Uranium Reserves Estimates - Energy Information Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U3O8, and three-quarters of the reserves available at less than 50 per pound U3O8. By mining method, uranium reserves in underground mines constituted just under half of the...

5

U.S.Uranium Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

conditions. The uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

6

U.S. Forward-Cost Uranium Reserves by Mining Method, 2003  

Gasoline and Diesel Fuel Update (EIA)

Home > Nuclear > U.S. Uranium Reserves > Major U.S. Uranium Reserve Areas Major U.S. Uranium Reserve Areas. Having trouble? Call 202 586-8800 for help....

7

Estimation of resources and reserves  

E-Print Network [OSTI]

This report analyzes the economics of resource and reserve estimation. Current concern about energy problems has focused attention on how we measure available energy resources. One reads that we have an eight-year oil ...

Massachusetts Institute of Technology. Energy Laboratory.

1982-01-01T23:59:59.000Z

8

Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Underground - Minable Coal Surface - Minable Coal Total Coal-Resource State Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base

9

Reservation Price Estimation by Adaptive Conjoint Analysis  

E-Print Network [OSTI]

Reservation Price Estimation by Adaptive Conjoint Analysis Christoph Breidert1 , Michael Hahsler1 applied the eco- nomic definition of reservation price in combination with a conjoint study on product pricing. In this paper we present a novel approach to estimate the economic reser- vation price using

Schmidt-Thieme, Lars

10

Utah Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

11

Ohio Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Ohio Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

12

2012 Proved Reserves Estimation Methodology  

U.S. Energy Information Administration (EIA) Indexed Site

-366 11,933 Estimated 818 124 759 0 0 19 0 0 236 1,693 1,658 Imputation for nonresponse Unit and item nonresponse on the EIA-23 is imputed for using the same ratio function that is...

13

file://\\\\fs-f1\\shared\\uranium\\uranium.html  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

The initial uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

14

Estimating terrestrial uranium and thorium by antineutrino flux measurements  

E-Print Network [OSTI]

of uranium and thorium concentrations in geological reservoirs relies largely on geochemi- cal modelEstimating terrestrial uranium and thorium by antineutrino flux measurements Stephen T. Dye, and approved November 16, 2007 (received for review July 11, 2007) Uranium and thorium within the Earth produce

Mcdonough, William F.

15

,"New York Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2012...

16

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

10. Uranium reserve estimates at the end of 2012 10. Uranium reserve estimates at the end of 2012 million pounds U3O8 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 1 Sixteen respondents reported reserve estimates on 71 mines and properties. These uranium reserve estimates cannot be compared with the much larger historical data set of uranium reserves that were published in the July 2010 report U.S. Uranium Reserves Estimates at http://www.eia.gov/cneaf/nuclear/page/reserves/ures.html. Reserves, as reported here, do not necessarily imply compliance with U.S. or Canadian government definitions for purposes of investment disclosure.

17

Uranium industry annual 1996  

SciTech Connect (OSTI)

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

18

Some methods of oil and gas reserve estimation in Azerbaijan  

SciTech Connect (OSTI)

This article deals with the scientific and practical problems related to estimating oil and gas reserves in terrigenous reservoirs of the Productive Series of middle Pliocene and in Upper Cretaceous volcanic and sedimentary rocks. The deposits in question are spread over onshore Azerbaijan and adjacent offshore areas in the Caspian Sea and are approximately 6.5 km deep. This article presents lithologic, stratigraphic, and petrophysical criteria used for selecting prospects for reserve estimation. Also presented are information on structure of rocks and estimation of their lithologic and physical properties. New methods for the interpretation and application of petrophysical and logging data, as well as statistical estimation of reserves, in complex volcaniclastic reservoir rocks, are also discussed.

Abasov, M.T.; Buryakovsky, L.A.; Kondrushkin, Y.M.; Dzhevanshir, R.D.; Bagarov, T.Y. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Chilingar, G.V. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Civil and Environmental Engineering

1997-08-01T23:59:59.000Z

19

Estimated gas reserves and availability of the Viking-Kinsella Field, Alberta, Canada  

E-Print Network [OSTI]

-KINSELVL FEEI' . ~. . . . . . . . . . ~ ~ ~ - ~ 3 '3 CIASSIF ICATION of RESERVES Proved Reserves Probable Reserves Possible Reserves 5 6 6 6 FUTURE AVAIIJBXLITY of PIPELINE GAS. . . . . . . . . . . . . . . . 6 Estimation of' Projected Peri...'ormance of Free Gas . . . . . . . 7 Estimated Projected Performance of' the Viking-Kinaella Field . 9 CONCWS ION ACKNOWLZDGEbEN1'S REFERENCES 13 TABUIAT I 0 NS I - Estimated Natnral Gas Reserves--viking sand IX - Projected Perf'ormance--Viking Sand 15...

Meyer, Lawrence Joffre

1952-01-01T23:59:59.000Z

20

Uranium industry annual 1998  

SciTech Connect (OSTI)

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1,099 1,149 1980's 1,064 1,086 942 799 856 843 628 728 731 760 1990's 887 1,013 1,143 1,337 1,362 1,397 1,423 1,547 1,449 1,539 2000's 1,508 1,536 1,524 1,415 1,527 1,493 1,426 1,349 1,349 1,350 2010's 1,220 1,170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves Dry Natural Gas Estimated Production

22

Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production Oklahoma Dry Natural Gas Proved Reserves

23

Uranium industry annual 1995  

SciTech Connect (OSTI)

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

24

Uranium industry annual 1994  

SciTech Connect (OSTI)

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

25

Reserves  

Gasoline and Diesel Fuel Update (EIA)

1993 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 165,015 162,415 163,837 165,146 166,474 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 275,414 282,152 291,773 298,541 301,811 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 16,164,874 16,691,139 17,351,060 17,282,032 17,680,777 From Oil Wells ........................................... 5,967,376 6,034,504 6,229,645 6,461,596 6,370,888 Total.............................................................. 22,132,249 22,725,642 23,580,706 23,743,628 24,051,665 Repressuring ................................................ -2,972,552 -3,103,014 -3,230,667 -3,565,023 -3,510,330

26

Refinement in the ultrasonic velocity data and estimation of the critical parameters for molten uranium dioxide  

E-Print Network [OSTI]

the reactor and its vicinity. A reliable equation of state for the nuclear fuel, therefore, necessitates, reliable data on the sound prop- agation velocity in molten uranium dioxide have been obtained. An equation reserved. 1. Introduction The analysis of hypothetical and undesirable yet highly improbable accidents

Azad, Abdul-Majeed

27

Estimation of uranium GI absorption fractions for children and adults  

Science Journals Connector (OSTI)

......the ratios of energy expenditures...microg l1. This average concentration...percentage of homes on private well...percentage of homes changed from...the daily water consumption and the uranium...determined from the average value of uranium...Canada. Tap water consumption in Canada......

J. Chen; D. Lariviere; R. Timmins; K. Verdecchia

2011-03-01T23:59:59.000Z

28

Estimates of central Appalachian coal reserves by cost of production and sulfur content  

SciTech Connect (OSTI)

This study provides information on the quantity, quality, and production costs for all minable coal reserves in the major coal-producing counties of central Appalachia, a region that contains the large majority of low-sulfur and compliance coal reserves in the eastern US. Presently, the best source of detailed reserve information in the Appalachian region is the estimates produced by the mining and land holding companies that control the reserves. The authors have been able to obtain overall reserve estimates based on the detailed geological and engineering studies conducted by these companies. In areas where this information does not exist, the authors have relied on published estimates of reserves and modified these estimates based on known conditions on surrounding properties. This reserve information has been combined with data on coal quality and mining costs to produce cost curves for all minable coal reserves by sulfur content. Results to date indicate that most of the major coal-producing counties in central Appalachia will be able to increase production levels significantly on a sustainable basis for at least the next 20 years, without major real increases in coal prices.

Watkins, J.

1988-08-01T23:59:59.000Z

29

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

10. Uranium reserve estimates at the end of 2012" 10. Uranium reserve estimates at the end of 2012" "million pounds U3O8" "Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s)","Forward Cost 2" ,"$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound" "Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work","W","W",101.956759 "Properties Under Development for Production","W","W","W" "Mines in Production","W",21.40601,"W" "Mines Closed Temporarily and Closed Permanently","W","W",133.139239 "In-Situ Leach Mining","W","W",128.576534

30

A critical review of methods used in the estimation of natural gas reserves  

E-Print Network [OSTI]

for the de- gree of PROFESSIONAL ENGINEER MA JOR SU% JEGT: PETROLEUM ENGINEERING itay f956 A GR1TLGAL REVXE? 0$' METHODS gSED THE ESTIMATION op NATURAL GAS RESERVES 8y Henry J. Gruy Approved as to style and content by Ghairman of C, ommittee hiay... Reserves 21 Refereaces 22 CO LA CA 4J CO 2'79098 TASLE OF ILLUSTRATIONS A CRITICAL REVIEW Ol' METHODS USED IN THE ESTIMATION QF NATURAL GAS RESERVE Curves Curve No. Curves Showing Change in the Compres- sibility Factor with Depth and Gomposf...

Gruy, Henry Jones

1956-01-01T23:59:59.000Z

31

Estimated dose to man from uranium milling via the terrestrial food-chain pathway  

SciTech Connect (OSTI)

One of the major pathways of radiological exposure to man from uranium milling operations is through the terrestrial food chain. Studies by various investigators have shown the extent of uptake and distribution of U-238, U-234, Th-230, Ra-226, Pb-210, and Po-210 in plants and animals. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. Data from these investigations are used to estimate the dose to man from consumption of beef and milk contaminated by the tailings. This dose estimate from this technologically enhanced source is compared with that from average normal dietary intake of these radionuclides from natural sources.

Rayno, D.R.

1982-01-01T23:59:59.000Z

32

Determination of uncertainty in reserves estimate from analysis of production decline data  

E-Print Network [OSTI]

.2 Challeges in Probabilistic Reserves Estimation............................4 CHAPTER III METHODOLOGY……………………………… .............................10 3.1 Modified Bootstap and Block Resampling.................................10 3.2 Backward Analysis Scheme.... ....................................................................11 3.2 Modified bootstrap sequence. ...........................................................................11 3.3 Original data for conventional bootstrap example............................................12 3.4 Synthetic data set 1...

Wang, Yuhong

2007-09-17T23:59:59.000Z

33

Reserve estimates in western basins: Unita Basin. Final report, Part III  

SciTech Connect (OSTI)

This study characterizes an extremely large gas resource located in low permeability, sandstone reservoirs of the Mesaverde group and Wasatch formation in the Uinta Basin, Utah. Total in-place resource is estimated at 395.5 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 3.8 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Two plays were included in this study and each was separately analyzed in terms of its tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources; in other words, to convert those resources to economically recoverable reserves. About 82.1% of the total evaluated resource is contained within sandstones that have extremely poor reservoir properties with permeabilities considered too low for commerciality using current frac technology.

NONE

1995-10-01T23:59:59.000Z

34

A critical review of methods used in the estimation of natural gas reserves: Natural gas reserves in the state of Texas. Some educational prerequisites in the field of petroleum economics and evaluation.  

E-Print Network [OSTI]

-Associated Gas Reserves Volumetr ic Method Discussion of the Factors in tne Volumetri. Formula The Decline Curve Method 7 7 12 Ie Methods of Estimating Associated Gas Reserves Methods of Estimatmg Dissolved Gas Reserves Water Drive Constant Voluxne... Bibliography 58 TABLE of ILLUSTRATIONS ~Pa e A CRITICAI REVIEW OF METHODS USED IN THE ESTIMATION OF NATURAL GAS RESERVES Curves Curve No Curves Showing Change in the Compressi- bility Factor with Depth and Composition of the Wet Gas. Z4-A Curve No...

Crichton, John Alston

2012-06-07T23:59:59.000Z

35

Statistical data of the uranium industry  

SciTech Connect (OSTI)

This document is a compilation of historical facts and figures through 1979. These statistics are based primarily on information provided voluntarily by the uranium exploration, mining, and milling companies. The production, reserves, drilling, and production capability information has been reported in a manner which avoids disclosure of proprietary information. Only the totals for the $1.5 reserves are reported. Because of increased interest in higher cost resources for long range planning purposes, a section covering the distribution of $100 per pound reserves statistics has been newly included. A table of mill recovery ranges for the January 1, 1980 reserves has also been added to this year's edition. The section on domestic uranium production capability has been deleted this year but will be included next year. The January 1, 1980 potential resource estimates are unchanged from the January 1, 1979 estimates.

none,

1980-01-01T23:59:59.000Z

36

Application of the Continuous EUR Method to Estimate Reserves in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Reservoirs 19. Cheng et al. (2007) Decline Curve Analysis for Multilayered Tight Gas Reservoirs 20. Blasingame and Rushing Method for Gas-in-Place and Reserves Estimation (2005) 21. Clarkson et al. (2007) Production Data Analysis for Coalbed-Methane... Wells 22. Clarkson et al. (2008) Production Data Analysis for Coalbed-Methane Wells 23. Rushing et al. (2008) Production Data Analysis for Coalbed-Methane Wells 24. Lewis and Hughes (2008) Production Data Analysis for Shale Gas Wells 25. Mattar et al...

Currie, Stephanie M.

2010-10-12T23:59:59.000Z

37

Estimation of lignite reserve in the Kalburcayiri field, Kangal basin, Sivas, Turkey  

Science Journals Connector (OSTI)

This paper addresses a case study on global estimation of lignite reserve in the Kalburcayiri field from the Sivas–Kangal basin, which is one of the most productive lignite basins in eastern Anatolia, Turkey. The two lignite seams, which were developed in a fresh-water lacustrine depositional environment during the Pliocene time, are currently being exploited in the Kalburcayiri open-cast mine for feed coal to a power plant with 300-MW capacity. Tonnage, thickness and quality parameters (ash yield, total sulphur content, and calorific value) of the lignite are variables considered in this study. The global estimates of these variables together with 95% confidence limits are obtained using the approximation principle of global estimation. A random stratified grid is fitted to available boreholes; the variograms for thickness and lignite quality parameters are estimated and modeled. The models are used in calculating estimation error variances that will later be used in constructing 95% confidence intervals for the true values.

A.Erhan Tercan; Ali Ihsan Karayigit

2001-01-01T23:59:59.000Z

38

Using Decline Curve Analysis, Volumetric Analysis, and Bayesian Methodology to Quantify Uncertainty in Shale Gas Reserve Estimates  

E-Print Network [OSTI]

Probabilistic decline curve analysis (PDCA) methods have been developed to quantify uncertainty in production forecasts and reserves estimates. However, the application of PDCA in shale gas reservoirs is relatively new. Limited work has been done...

Gonzalez Jimenez, Raul 1988-

2012-11-30T23:59:59.000Z

39

Cost estimate report for the long-term management of depleted uranium hexafluoride : storage of depleted uranium metal.  

SciTech Connect (OSTI)

This report contains a cost analysis of the long-term storage of depleted uranium in the form of uranium metal. Three options are considered for storage of the depleted uranium. These options are aboveground buildings, partly underground vaults, and mined cavities. Three cases are presented. In the first case, all the depleted uranium metal that would be produced from the conversion of depleted uranium hexafluoride (UF{sub 6}) generated by the US Department of Energy (DOE) prior to July 1993 would be stored at the storage facility (100% Case). In the second case, half the depleted uranium metal would be stored at this storage facility (50% Case). In the third case, one-quarter of the depleted uranium metal would be stored at the storage facility (25% Case). The technical basis for the cost analysis presented in this report is principally found in the companion report, ANL/EAD/TM-100, ''Engineering Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride: Storage of Depleted Uranium Metal'', prepared by Argonne National Laboratory.

Folga, S.M.; Kier, P.H.; Thimmapuram, P.R.

2001-01-24T23:59:59.000Z

40

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......Society. The Health Hazards of Depleted Uranium Munitions-Part...Carpenter D. O. Depleted uranium contamination...implications for health assessment...Sunder S. Depleted uranium dust from fired...properties. Health Phys (2004......

Marcelo Valdés

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......from exposure to aerosols of depleted uranium Marcelo Valdes * * Corresponding...Following exposure to aerosols of depleted uranium (DU), biological samples...uranyl phosphates. INTRODUCTION Depleted uranium (DU) is a waste product of......

Marcelo Valdés

2009-02-01T23:59:59.000Z

42

Review of the NURE Assessment of the U.S. Gulf Coast Uranium Province  

SciTech Connect (OSTI)

Historic exploration and development were used to evaluate the reliability of domestic uranium reserves and potential resources estimated by the U.S. Department of Energy national uranium resource evaluation (NURE) program in the U.S. Gulf Coast Uranium Province. NURE estimated 87 million pounds of reserves in the $30/lb U{sub 3}O{sub 8} cost category in the Coast Plain uranium resource region, most in the Gulf Coast Uranium Province. Since NURE, 40 million pounds of reserves have been mined, and 38 million pounds are estimated to remain in place as of 2012, accounting for all but 9 million pounds of U{sub 3}O{sub 8} in the reserve or production categories in the NURE estimate. Considering the complexities and uncertainties of the analysis, this study indicates that the NURE reserve estimates for the province were accurate. An unconditional potential resource of 1.4 billion pounds of U{sub 3}O{sub 8}, 600 million pounds of U{sub 3}O{sub 8} in the forward cost category of $30/lb U{sub 3}O{sub 8} (1980 prices), was estimated in 106 favorable areas by the NURE program in the province. Removing potential resources from the non-productive Houston embayment, and those reserves estimated below historic and current mining depths reduces the unconditional potential resource 33% to about 930 million pounds of U{sub 3}O{sub 8}, and that in the $30/lb cost category 34% to 399 million pounds of U{sub 3}O{sub 8}. Based on production records and reserve estimates tabulated for the region, most of the production since 1980 is likely from the reserves identified by NURE. The potential resource predicted by NURE has not been developed, likely due to a variety of factors related to the low uranium prices that have prevailed since 1980.

Hall, Susan M., E-mail: SusanHall@usgs.gov [Central Energy Resources Science Center, U.S. Geological Survey (United States)

2013-09-15T23:59:59.000Z

43

Nuclear & Uranium - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Find statistics on nuclear operable units, nuclear electricity net Find statistics on nuclear operable units, nuclear electricity net generation, nuclear share of electricity net generation, and capacity factor. + EXPAND ALL Summary Additional Formats Nuclear Overview: PDF CSV XLS Monthly statistics on nuclear operable units, nuclear electricity net generation, nuclear share of electricity net generation, and capacity factor. PDFXLS Annual statistics on nuclear generating units, power plants operations, and uranium. › Nuclear Generating Units, 1955-2010 › PDF XLS Nuclear Power Plant Operations, 1957-2010 › PDF XLS Uranium Overview, 1949-2010 › PDF XLS Uranium & Nuclear Fuel Additional Formats U.S. Uranium Reserves Estimates › Release Date: July 2010 The U.S. Energy Information Administration (EIA) has updated its estimates of uranium reserves for year-end 2008. This represents the first revision of the estimates since 2004. PDF

44

Uranium Industry Annual, 1992  

SciTech Connect (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

45

Content of uranium in urine of uranium miners as a tool for estimation of intakes of long-lived alpha radionuclides  

Science Journals Connector (OSTI)

......238U and 230Th in excreta of uranium mill crushermen. Health Phys. (1983) 45(3...Measurement of daily urinary uranium excretion in German peacekeeping...assess potential intakes of depleted uranium(DU). Sci. Total Environ......

I. Malátová; V. Becková; L. Tomásek; J. Hulka

2011-11-01T23:59:59.000Z

46

Content of uranium in urine of uranium miners as a tool for estimation of intakes of long-lived alpha radionuclides  

Science Journals Connector (OSTI)

......modelling. In: Quantification of cancer and non-cancer risks associated with multiple...distribution in the air of the uranium mine, Rozna, Czech Republic...assess potential intakes of depleted uranium(DU). Sci. Total Environ......

I. Malátová; V. Becková; L. Tomásek; J. Hulka

2011-11-01T23:59:59.000Z

47

Estimation of internal exposure to uranium with uncertainty from urinalysis data using the InDEP computer code  

Science Journals Connector (OSTI)

......assumed specific activity of uranium from depleted (0.2 wt.% 235U) to low...Natural Uranium (Bq d1) Depleted Uranium (Bq d1) Enriched Uranium...calculated assuming exposure to depleted uranium and exposure to 2.0 % enriched......

Jeri L. Anderson; A. Iulian Apostoaei; Brian A. Thomas

2013-01-01T23:59:59.000Z

48

Estimation of internal exposure to uranium with uncertainty from urinalysis data using the InDEP computer code  

Science Journals Connector (OSTI)

......Uranium (Bq d1) Depleted Uranium (Bq d1) Enriched...the current NIOSH uranium mortality study...industrial hygiene, and health physics. A single chronic exposure to uranium over the course...facility varied between depleted and less than 2-wt......

Jeri L. Anderson; A. Iulian Apostoaei; Brian A. Thomas

2013-01-01T23:59:59.000Z

49

Table 7: Crude oil proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Crude oil proved reserves, reserves changes, and production, 2011" : Crude oil proved reserves, reserves changes, and production, 2011" "million barrels" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

50

Table 17. Coalbed methane proved reserves, reserves changes, and production, 201  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011" Coalbed methane proved reserves, reserves changes, and production, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

51

Stretched Exponential Decline Model as a Probabilistic and Deterministic Tool for Production Forecasting and Reserve Estimation in Oil and Gas Shales  

E-Print Network [OSTI]

in the United States. Estimation of P50 and P10 reserves that meet SPE/WPC/AAPG/SPEE Petroleum Resources Management System (PRMS) criteria is important for internal resource inventories for most companies. In this work a systematic methodology was developed...

Akbarnejad Nesheli, Babak

2012-07-16T23:59:59.000Z

52

Estimating Potential Carbon Sequestration in Conservation Reserve Program (Crp) Tracts in the Central High Plains of the United States.  

E-Print Network [OSTI]

??The main goal of this research is to examine long term trends in carbon sequestration in Conservation Reserve Program (CRP) tracts in the Central High… (more)

Dung, Elisha Jasper

2012-01-01T23:59:59.000Z

53

High grade uranium resources in the United States : an overview  

E-Print Network [OSTI]

A time analysis of uranium exploration, production and known reserves in the United States is employed to reveal industry trends. The

Graves, Richard E.

1974-01-01T23:59:59.000Z

54

Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

55

Statistical data of the uranium industry  

SciTech Connect (OSTI)

Data are presented on US uranium reserves, potential resources, exploration, mining, drilling, milling, and other activities of the uranium industry through 1980. The compendium reflects the basic programs of the Grand Junction Office. Statistics are based primarily on information provided by the uranium exploration, mining, and milling companies. Data on commercial U/sub 3/O/sub 8/ sales and purchases are included. Data on non-US uranium production and resources are presented in the appendix. (DMC)

none,

1981-01-01T23:59:59.000Z

56

Uranium industry annual 1993  

SciTech Connect (OSTI)

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

57

Statistical data of the uranium industry  

SciTech Connect (OSTI)

Statistical Data of the Uranium Industry is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1981. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining, and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office (GJAO) of the US Department of Energy. The production, reserves, and drilling information is reported in a manner which avoids disclosure of proprietary information.

none,

1982-01-01T23:59:59.000Z

58

Estimation of distribution coefficient of natural radionuclides in soil around uranium mines and its effect with ionic strength of water  

Science Journals Connector (OSTI)

......which may contaminate the soil and ground water around uranium mining areas, have been considered. Soil and ground water samples were collected from a...release, accidental, disposal or remediation scenarios requires the availability......

S. Mishra; S. Maity; G. G. Pandit

2012-11-01T23:59:59.000Z

59

Table 13: Associated-dissolved natural gas proved reserves, reserves changes, an  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

60

Table 15: Shale natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Table 10: Total natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in reserves during 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

62

Table 6: Crude oil and lease condensate proved reserves, reserves changes, and p  

U.S. Energy Information Administration (EIA) Indexed Site

: Crude oil and lease condensate proved reserves, reserves changes, and production, 2011" : Crude oil and lease condensate proved reserves, reserves changes, and production, 2011" "million barrels" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

63

Table 12: Nonassociated natural gas proved reserves, reserves changes, and produ  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 " : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 " "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

64

Uranium hexafluoride public risk  

SciTech Connect (OSTI)

The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

1994-08-01T23:59:59.000Z

65

Depleted uranium management alternatives  

SciTech Connect (OSTI)

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

66

Statistical data of the uranium industry  

SciTech Connect (OSTI)

This report is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1982. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office of the US Department of Energy. Statistical data obtained from surveys conducted by the Energy Information Administration are included in Section IX. The production, reserves, and drilling data are reported in a manner which avoids disclosure of proprietary information.

none,

1983-01-01T23:59:59.000Z

67

Mississippi Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

68

California Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

69

Pennsylvania Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Pennsylvania Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

70

Proved reserves  

Science Journals Connector (OSTI)

Proved reserves are the working stocks of the energy industries on which they have to rely for the supply of energy in the near term. The major proved reserves on a world scale are restricted to those from the...

D. C. Ion

1980-01-01T23:59:59.000Z

71

Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area  

SciTech Connect (OSTI)

This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow and transport modeling and illustrate the benefits of the methodology I providing better estimates of predictive uncertiay8, quantitative results for use in assessing risk, and an improved understanding of the system behavior and the limitations of the models.

Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P.; Cantrell, Kirk J.

2007-07-30T23:59:59.000Z

72

A Bayesian analysis of uncertainties on lung doses resulting from occupational exposures to uranium  

Science Journals Connector (OSTI)

......lung dose and lung cancer incidence resulting...occupational exposures to uranium. These calculations...from inhalation of uranium ignore significant...estimates of lung cancer are based on PEs...from inhalation of depleted uranium. Health Phys......

M. Puncher; A. Birchall; R. K. Bull

2013-09-01T23:59:59.000Z

73

Louisiana - North Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana - North Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

74

Texas - RRC District 10 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 10 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

75

U.S. Federal Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

76

Nebraska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Nebraska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

77

Texas - RRC District 7B Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 7B Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

78

Florida Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Florida Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

79

Texas - RRC District 6 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 6 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

80

Alabama Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Louisiana State Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

82

Louisiana - South Onshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana - South Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

83

Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

84

New Mexico - West Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

85

Texas - RRC District 7C Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 7C Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

86

Texas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

87

Wyoming Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

88

Indiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

89

Arkansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Arkansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

90

Kansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Kansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

91

Alaska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

92

California State Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

93

New Mexico - East Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

94

Colorado Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Colorado Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

95

California Federal Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

96

Miscellaneous States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Miscellaneous States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

97

Oklahoma Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Oklahoma Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

98

Texas State Offshore Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

99

Louisiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

100

Texas - RRC District 8A Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 8A Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Texas - RRC District 9 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 9 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

102

Michigan Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Michigan Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

103

New Mexico Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

104

Montana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Montana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

105

Illinois Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Illinois Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

106

Lower 48 States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Lower 48 States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

107

Texas - RRC District 8 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 8 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

108

North Dakota Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) North Dakota Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

109

Texas - RRC District 1 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 1 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

110

Texas - RRC District 5 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 5 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

111

West Virginia Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) West Virginia Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

112

Geology and recognition criteria for uranium deposits of the quartz-pebble conglomerate type. Final report  

SciTech Connect (OSTI)

This report is concerned with Precambrian uraniferous conglomerates. This class of deposit has been estimated to contain between approximately 16 and 35 percent of the global uranium reserve in two rather small areas, one in Canada, the other in South Africa. Similar conglomerates, which are often gold-bearing, are, however, rather widespread, being found in parts of most Precambrian shield areas. Data have been synthesized on the geologic habitat and character of this deposit type. The primary objective has been to provide the most relevant geologic observations in a structural fashion to allow resource studies and exploration to focus on the most prospective targets in the shortest possible time.

Button, A.; Adams, S.S.

1981-03-01T23:59:59.000Z

113

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

114

URANIUM IN ALKALINE ROCKS  

E-Print Network [OSTI]

Greenland," in Uranium Exploration Geology, Int. AtomicOklahoma," 1977 Nure Geology Uranium Symposium, Igneous HostMcNeil, M. , 1977. "Geology of Brazil's Uranium and Thorium

Murphy, M.

2011-01-01T23:59:59.000Z

115

The spatial distribution of the lignite qualitative parameters and variant estimates of coal reserves: the Czech Part of the Vienna Basin  

Science Journals Connector (OSTI)

...The aim of this article is to inform about the spatial distribution of the lignite qualitative parameters and total lignite reserves in the Czech Part of the Vienna Basin—The South Moravian Lignite Coalfield (...

Jan Jelínek; František Stan?k; Lukáš Vebr…

2014-06-01T23:59:59.000Z

116

Uranium 2014 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

Organisation for Economic Cooperation and Development. Paris

2014-01-01T23:59:59.000Z

117

Depleted uranium  

Science Journals Connector (OSTI)

The potential health effects arising from exposure to depleted uranium have been much in the news of late. Naturally occurring uranium contains the radioisotopes 238U (which dominates, at a current molar proportion of 99.3%), 235U and a small amount of 234U. Depleted uranium has an isotopic concentration of 235U that is below the 0.7% found naturally. This is either because the uranium has passed through a nuclear reactor which uses up some of the fissile 235U that fuels the fission chain-reaction, or because it is the uranium that remains when enriched uranium with an elevated concentration of 235U is produced in an enrichment plant, or because of a combination of these two processes. Depleted uranium has a lower specific activity than naturally occurring uranium because of the lower concentrations of the more radioactive isotopes 235U and 234U, but account must be taken of any contaminating radionuclides or exotic radioisotopes of uranium if the uranium has been irradiated. Uranium is a particularly dense element (about twice as dense as lead), and this property makes it useful in certain military applications, such as armour-piercing munitions. Depleted uranium, rather than natural uranium, is used because of its availability and, since the demise of the fast breeder reactor programme, the lack of alternative use. Depleted uranium weapons were used in the Gulf War of 1990 and also, to a lesser extent, more recently in the Balkans. This has led to speculation that depleted uranium may be associated with `Gulf War Syndrome', or other health effects that have been reported by military and civilian personnel involved in these conflicts and their aftermath. Although, on the basis of present scientific knowledge, it seems most unlikely that exposure to depleted uranium at the levels concerned could produce a detectable excess of adverse health effects, and in such a short timescale, the issue has become one of general concern and contention. As a consequence, any investigation needs to be thorough to produce sufficiently comprehensive evidence to stand up to close scrutiny and gain the support of the public, whatever the conclusions. Unfortunately, it is the nature of such inquiries that they take time, which is frustrating for some. In the UK, the Royal Society has instigated an independent investigation into the health effects of depleted uranium by a working group chaired by Professor Brian Spratt. This inquiry has been underway since the beginning of 2000. The working group's findings will be reviewed by a panel appointed by the Council of the Royal Society, and it is anticipated that the final report will be published in the summer of 2001. Further details can be found at www.royalsoc.ac.uk/templates/press/showpresspage.cfm?file=2001010801.txt. Nick Priest has summarised current knowledge on the toxicity (both radiological and chemical) of depleted uranium in a commentary in The Lancet (27 January 2001, 357 244-6). For those wanting to read a comprehensive review of the literature, in 1999 RAND published `A Review of the Scientific Literature as it Pertains to Gulf War Illnesses, Volume 7: Depleted Uranium' by Naomi Harley and her colleagues, which can be found at www.rand.org/publications/MR/MR1018.7/MR1018.7.html. An interesting article by Jan Olof Snihs and Gustav Akerblom entitled `Use of depleted uranium in military conflicts and possible impact on health and environment' was published in the December 2000 issue of SSI News (pp 1-8), and can be found at the website of the Swedish Radiation Protection Institute: www.ssi.se/tidningar/PDF/lockSSIn/SSI-news2000.pdf. Last year, a paper was published in the June issue of this Journal that is of some relevance to depleted uranium. McGeoghegan and Binks (2000 J. Radiol. Prot. 20 111-37) reported the results of their epidemiological study of the health of workers at the Springfields uranium production facility near Preston during 1946-95. This study included almost 14 000 radiation workers. Although organ-specific doses due to uranium are not yet available for these worker

Richard Wakeford

2001-01-01T23:59:59.000Z

118

What is Depleted Uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is Uranium? What is Uranium? Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects What is Uranium? Physical and chemical properties, origin, and uses of uranium. Properties of Uranium Uranium is a radioactive element that occurs naturally in varying but small amounts in soil, rocks, water, plants, animals and all human beings. It is the heaviest naturally occurring element, with an atomic number of 92. In its pure form, uranium is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes, which are identified by the total number of protons and neutrons in the nucleus: uranium-238, uranium-235, and uranium-234. (Isotopes of an element have the

119

4 - Coal resources and reserves  

Science Journals Connector (OSTI)

Abstract: Coal resources still make up a significant proportion of the world’s energy supplies. Coal resources are estimated to be 860 billion tonnes. These resources are geographically well distributed and current production provides fuel for 29% of the world’s primary energy consumption. The classification of coal resources and reserves has been redefined in recent years, with the standards and codes of practice adopted by the principal coal-producing countries being equated on a global basis. Details of the principal classifications are given, together with their international equivalents. Reporting of resources and reserves plus methods of calculation are also given, together with recent assessments of global coal reserves.

L.P. Thomas

2013-01-01T23:59:59.000Z

120

Uranium Mining and Enrichment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Presentation » Uranium Mining and Enrichment Overview Presentation » Uranium Mining and Enrichment Uranium Mining and Enrichment Uranium is a radioactive element that occurs naturally in the earth's surface. Uranium is used as a fuel for nuclear reactors. Uranium-bearing ores are mined, and the uranium is processed to make reactor fuel. In nature, uranium atoms exist in several forms called isotopes - primarily uranium-238, or U-238, and uranium-235, or U-235. In a typical sample of natural uranium, most of the mass (99.3%) would consist of atoms of U-238, and a very small portion of the total mass (0.7%) would consist of atoms of U-235. Uranium Isotopes Isotopes of Uranium Using uranium as a fuel in the types of nuclear reactors common in the United States requires that the uranium be enriched so that the percentage of U-235 is increased, typically to 3 to 5%.

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"California Lease Condensate Proved Reserves, Reserve Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2012,...

122

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

123

,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

124

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

125

,"Montana Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

126

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

127

,"Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

128

,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

129

,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

130

,"Alabama Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

131

Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System  

E-Print Network [OSTI]

Uranium present in low concentration in ocean water has the potential to greatly augment the current fuel reserve for nuclear power generation, but the challenge of extracting it economically remains. Two new designs of ...

Wu, You

132

Depleted Uranium Health Effects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

133

Neurotoxicity of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a byproduct of the enrichment process of uranium for its more radioactive isotopes to be ... neurotoxicity of DU. This review reports on uranium uses and its published health effects, wit...

George C. -T. Jiang; Michael Aschiner

2006-04-01T23:59:59.000Z

134

Excess Uranium Management  

Broader source: Energy.gov [DOE]

The Department is issuing a Request for Information on the effects of DOE transfers of excess uranium on domestic uranium mining, conversion, and enrichment industries.

135

Oil Reserves and Production  

Science Journals Connector (OSTI)

...research-article Oil Reserves and Production Eric Drake The growth of world energy requirements over the last...remaining proved recoverable reserves will probably decline continuously...to grow. The declining reserves will be insufficient to...

1974-01-01T23:59:59.000Z

136

Estimation of 235U concentration in some depleted uranium samples by high resolution gamma-ray spectrometry using 185 keV and 1001 keV gamma-energies of 235U and 234mPa  

Science Journals Connector (OSTI)

The identification of isotopic composition of depleted uranium obtained after the reprocessing of spent fuel...235U in the reprocessed uranium will be lower and their depletion depends ... of the reactor and burn...

S. Anilkumar; A. K. Deepa; K. Narayani…

2007-10-01T23:59:59.000Z

137

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. uranium mine production and number of mines and sources, 2003-2012 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W Total Mine Production (thousand pounds U3O8) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Number of Operating Mines Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources1 1 1 2 1 1 1 2 1 1 1

138

Loan Loss Reserve Agreement  

Broader source: Energy.gov [DOE]

Loan Loss Reserve Agreement, from the Tool Kit Framework: Small Town University Energy Program (STEP).

139

US coal reserves: A review and update  

SciTech Connect (OSTI)

This report is the third in series of ``U.S. Coal Reserves`` reports. As part of the Administration of the Energy Information Administration (EIA) program to provide information on coal, it presents detailed estimates of domestic coal reserves, which are basic to the analysis and forecasting of future coal supply. It also describes the data, methods, and assumptions used to develop such estimates and explain terminology related to recent data programs. In addition, the report provides technical documentation for specific revisions and adjustments to the demonstrated reserve base (DRB) of coal in the United States and for coal quality and reserve allocations. It makes the resulting data available for general use by the public. This report includes data on recoverable coal reserves located at active mines and on the estimated distribution of rank and sulfur content in those reserves. An analysis of the projected demand and depletion in recoverable reserves at active mines is used to evaluate the areas and magnitude of anticipated investment in new mining capacity.

NONE

1996-08-01T23:59:59.000Z

140

8 - Uranium  

Science Journals Connector (OSTI)

Release of uranium (U) to the environment is mainly through the nuclear fuel cycle. In oxic waters, U(VI) is the predominant redox state, while U(IV) is likely to be encountered in anoxic waters. The free uranyl ion ( UO 2 2 + ) dominates dissolved U speciation at low pH while complexes with hydroxides and carbonates prevail in neutral and alkaline conditions. Whether the toxicity of U(VI) to fish can be predicted based on its free ion concentration remains to be demonstrated but a strong influence of pH has been shown. In the field, U accumulates in bone, liver, and kidney, but does not biomagnify. There is certainly potential for uptake of U via the gill based on laboratory studies; however, diet and/or sediment may be the major route of uptake, and may vary with feeding strategy. Uranium toxicity is low relative to many other metals, and is further reduced by increased calcium, magnesium, carbonates, phosphate, and dissolved organic matter in the water. Inside fish, U produces reactive oxygen species and causes oxidative damage at the cellular level. The radiotoxicity of enriched U has been compared with chemical toxicity and it has been postulated that both may work through a mechanism of production of reactive oxygen species. In practical terms, the potential for chemotoxicity of U outweighs the potential for radiotoxicity. The toxicokinetics and toxicodynamics of U are well understood in mammals, where bone is a stable repository and the kidney the target organ for toxic effects from high exposure concentrations. Much less is known about fish, but overall, U is one of the less toxic metals.

Richard R. Goulet; Claude Fortin; Douglas J. Spry

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Uranium Hexafluoride (UF6)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hexafluoride (UF6) Hexafluoride (UF6) Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Uranium Hexafluoride (UF6) Physical and chemical properties of UF6, and its use in uranium processing. Uranium Hexafluoride and Its Properties Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. UF6 crystals in a glass vial image UF6 crystals in a glass vial. Uranium hexafluoride does not react with oxygen, nitrogen, carbon dioxide, or dry air, but it does react with water or water vapor. For this reason,

142

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

143

Energy: world needs and reserves  

Science Journals Connector (OSTI)

Energy: world needs and reserves ... Lippencott takes stock of the world energy reserves and the demand the US places on these reserves. ...

W. T. Lippincott

1974-01-01T23:59:59.000Z

144

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2. U.S. uranium mine production and number of mines and sources, 2003-2012" 2. U.S. uranium mine production and number of mines and sources, 2003-2012" "Production / Mining Method",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Underground" "(estimated contained thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W" "Open Pit" "(estimated contained thousand pounds U3O8)",0,0,0,0,0,0,0,0,0,0 "In-Situ Leaching" "(thousand pounds U3O8)","W","W",2681,4259,"W","W","W","W","W","W" "Other1" "(thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W"

145

Modernization of Ohio's coal reserves, Phase 1  

SciTech Connect (OSTI)

The objectives of this project were to determine state-level totals of the estimated economic resource, minable reserve base, and recoverable coal in Ohio, allocated to specified ranges of sulfur and heat content. In addition, resources and reserves were to be categorized by mining methods (surface and underground). Land use and environmental restrictions, needed to determine remaining minable reserves, were to be delineated and percentages of restricted coal calculated. In context of a Phase 1, one-year project, the objectives of this project were to update Ohio's coal reserves and resources for as many counties as time allowed, and to deplete production tonnages to January 1, 1991, on the remaining coal-producing counties. For the depleted counties, only estimated economic resources were required or possible with the data available. 24 refs., 9 figs., 3 tabs.

Carlton, R.W.

1991-09-27T23:59:59.000Z

146

Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. [474 references  

SciTech Connect (OSTI)

This bibliography, a compilation of 474 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) geochemistry, (2) exploration, (3) mineralogy, (4) genesis of deposits, (5) geology of deposits, (6) uranium industry, (7) geology of potential uranium-bearing areas, and (8) reserves and resources. The references are indexed by author, geographic location, quadrangle name, geoformational feature, and keyword.

Thomas, J.M.; Garland, P.A.; White, M.B.; Daniel, E.W.

1980-09-01T23:59:59.000Z

147

Uranium resources and their implications for fission breeder and fusion hybrid development  

SciTech Connect (OSTI)

Present estimates of uranium resources and reserves in the US and the non-Communist world are reviewed. The resulting implications are considered for two proposed breeder technologies: the liquid metal fast breeder reactor (LMFBR) and the fusion hybrid reactor. Using both simple arguments and detailed scenarios from the published literature, conditions are explored under which the LMFBR and fusion hybrid could respectively have the most impact, considering both fuel-supply and economic factors. The conclusions emphasize strong potential advantages of the fusion hybrid, due to its inherently large breeding rate. A discussion is presented of proposed US development strategies for the fusion hybrid, which at present is far behind the LMFBR in its practical application and maturity.

Max, C.E.

1984-05-15T23:59:59.000Z

148

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Broader source: Energy.gov (indexed) [DOE]

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

149

Depleted Uranium Technical Brief  

E-Print Network [OSTI]

and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological healthDepleted Uranium Technical Brief United States Environmental Protection Agency Office of Air

150

EIA-23L Reserves Information Gathering System (RIGS)  

Gasoline and Diesel Fuel Update (EIA)

EIA-23L Reserves Information Gathering System (RIGS) EIA-23L Reserves Information Gathering System (RIGS) Released: April 16, 2013 Background The Form EIA-23L, "Annual Survey of Domestic Oil and Gas Reserves, " is used to collect data on reserves of crude oil, natural gas, and natural gas liquids. These data are used to develop national and regional estimates of proved reserves of domestic crude oil, natural gas, and natural gas liquids, and to facilitate national energy policy decisions. Reporting on the Form EIA-23L is mandatory. Reserves Information Gathering System The Form EIA-23L Reserves Information Gathering System (RIGS), provides respondents with an efficient and effective means for filing the form using a personal computer (PC). Hardware / Software Requirements The minimum hardware requirements needed to install and use RIGS are:

151

Data Sheet No. 140 - World Energy Reserves and Depletion Policy  

Science Journals Connector (OSTI)

Publisher Summary This chapter focuses on world energy reserves and depletion policy. Viewed in the long term, it is extremely difficult to obtain an accurate view of the total energy reserves of the world. Even small, very well-explored countries such as the United Kingdom and Holland have discovered new reserves in the past 20 years. Solar power and wave power are available in vast quantities, but the percentage that can be recovered is debatable. The percentage recovery of oil and gas is open to improvement, and it may be that much smaller percentage recoveries of coal will be contemplated in the future when undersea mining or extraction without miners is contemplated. Nuclear power, using thermal reactors, does not extract all the power within the uranium or any of the power available from reserves of thorium. The coal industry will have to double its output and even greater demands may be made on it to provide liquid fuels for the transport industry.

Wilfrid Francis; Martin C. Peters

1980-01-01T23:59:59.000Z

152

Measurements of uranium in soils and small mammals  

SciTech Connect (OSTI)

The objective of this study was to evaluate the bioavailability of uranium to a single species of small mammal, Peromyscus maniculatus rufinus (Merriam), white-footed deer mouse, from two different source terms: a Los Alamos National Laboratory dynamic weapons testing site in north central New Mexico, where an estimated 70,000 kg of uranium have been expended over a 31-y period; and an inactive uranium mill tailings pile located in west central New Mexico near Grants, which received wastes over a 5-y period from the milling of 2.7 x 10/sup 9/ kg of uranium ore.

Miera, F.R. Jr.

1980-12-01T23:59:59.000Z

153

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources 1 1 1 2 1 1 1 2 1 1 1 Total Mines and Sources 4 6 10 11 12 17 20 9 11 12 Other 1 Number of Operating Mines Table 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Underground Open Pit In-Situ Leaching Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012).

154

Uranium contamination of the Aral Sea  

Science Journals Connector (OSTI)

Located in an endorrheic basin, the Aral Sea is mainly fed by water from two large rivers, the Syrdarya and the Amudarya. As a result, contaminants in dissolved and suspended form discharged by the rivers are accumulating in the lake. The northern Small Aral water contained 37 µg l? 1uranium and water in the western basin of the Large Aral up to 141 µg l? 1uranium in 2002, 2004 and 2006. The present day uranium concentrations in Aral Sea water mainly originate from the Syrdarya River due to uranium mining and tailings in the river watershed, and have been elevated up to 5 times compared to the pre-desiccation times by the ongoing desiccation in the western basin of the Large Aral. Current data indicate that groundwater does not seem to contribute much to the uranium budget. The uranium concentration in the lake is controlled by internal lake processes. Due to the high ionic strength of the Aral Sea water uranium is kept soluble. 238U/Cl?mass ratios range from 5.88 to 6.15 µg g? 1in the Small Aral and from 3.00 to 3.32 µg g? 1in the Large Aral. Based on the238U/Cl?mass ratios, a removal rate of 8% uranium from the water column inventory to the sediments has been estimated for anoxic waters, and it ranges between 2% and 5% in oxic waters, over periods of time without mixing. Most of the uranium removal seems to occur by co-precipitation with calcite and gypsum both in anoxic and oxic waters. According to simulations with PHREEQC, uraninite precipitation contributes little to the removal from anoxic Aral Sea water. In most of the sampled locations, water column removal of uranium matches the sediment inventory. Based on budget calculations, the future development of uranium load in the Aral Sea has been estimated for different scenarios. If the Syrdarya River discharge is below or in balance with the loss by evaporation, the uranium concentration in the Small Aral will increase from 37 µg l–1to 55 µg l? 1in 20 years time. When the river discharge is larger than loss by evaporation, present-day uranium concentration in the lake may be kept at the current level or even decrease slightly. From the ecotoxicological point of view, an increase in Syrdarya River discharge as the major water source will be crucial for the water quality of the Small Aral, despite its high uranium load. However, as it is intended to restore fishery in the Small Aral, accumulation of uranium in fish has to be monitored. Since the western basin of the Large Aral received no Syrdarya River water since 2005, and may become disconnected from the eastern basin, the slightly higher observed uranium removal from anoxic waters may result in a decrease in uranium concentrations in the western basin by 20% in 20 years time.

Jana Friedrich

2009-01-01T23:59:59.000Z

155

Welding of uranium and uranium alloys  

SciTech Connect (OSTI)

The major reported work on joining uranium comes from the USA, Great Britain, France and the USSR. The driving force for producing this technology base stems from the uses of uranium as a nuclear fuel for energy production, compact structures requiring high density, projectiles, radiation shielding, and nuclear weapons. This review examines the state-of-the-art of this technology and presents current welding process and parameter information. The welding metallurgy of uranium and the influence of microstructure on mechanical properties is developed for a number of the more commonly used welding processes.

Mara, G.L.; Murphy, J.L.

1982-03-26T23:59:59.000Z

156

FAQ 1-What is uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is uranium? What is uranium? What is uranium? Uranium is a radioactive element that occurs naturally in low concentrations (a few parts per million) in soil, rock, and surface and groundwater. It is the heaviest naturally occurring element, with an atomic number of 92. Uranium in its pure form is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes: primarily uranium-238, uranium-235, and a very small amount of uranium-234. (Isotopes are different forms of an element that have the same number of protons in the nucleus, but a different number of neutrons.) In a typical sample of natural uranium, most of the mass (99.27%) consists of atoms of uranium-238. About 0.72% of the mass consists of atoms of uranium-235, and a very small amount (0.0055% by mass) is uranium-234.

157

EPA Update: NESHAP Uranium Activities  

E-Print Network [OSTI]

for underground uranium mining operations (Subpart B) EPA regulatory requirements for operating uranium mill for Underground Uranium Mining Operations (Subpart B) #12;5 EPA Regulatory Requirements for Underground Uranium uranium mines include: · Applies to 10,000 tons/yr ore production, or 100,000 tons/mine lifetime · Ambient

158

Nuclear power fleets and uranium resources recovered from phosphates  

SciTech Connect (OSTI)

Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

2013-07-01T23:59:59.000Z

159

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. (was Uranium Asset Management) Advance Uranium Asset Management Ltd. (was Uranium Asset Management) AREVA NC, Inc. (was COGEMA, Inc.) American Fuel Resources, LLC American Fuel Resources, LLC BHP Billiton Olympic Dam Corporation Pty Ltd AREVA NC, Inc. AREVA NC, Inc. CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd BHP Billiton Olympic Dam Corporation Pty Ltd ConverDyn CAMECO CAMECO Denison Mines Corp. ConverDyn ConverDyn Energy Resources of Australia Ltd. Denison Mines Corp. Energy Fuels Resources Energy USA, Inc. Effective Energy N.V. Energy Resources of Australia Ltd.

160

Uranium purchases report 1992  

SciTech Connect (OSTI)

Data reported by domestic nuclear utility companies in their responses to the 1991 and 1992 ``Uranium Industry Annual Survey,`` Form EIA-858, Schedule B ``Uranium Marketing Activities,are provided in response to the requirements in the Energy Policy Act 1992. Data on utility uranium purchases and imports are shown on Table 1. Utility enrichment feed deliveries and secondary market acquisitions of uranium equivalent of US DOE separative work units are shown on Table 2. Appendix A contains a listing of firms that sold uranium to US utilities during 1992 under new domestic purchase contracts. Appendix B contains a similar listing of firms that sold uranium to US utilities during 1992 under new import purchase contracts. Appendix C contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data.

Not Available

1993-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Depleted uranium: A DOE management guide  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

162

Imminence of peak in US coal production and overestimation of reserves  

E-Print Network [OSTI]

. The estimated energy ultimate recoverable reserves (URR) from the logistic model is 2750 quadrillion BTU (2900, coal reserves, coal production forecast, peak coal, USA energy, non- linear fitting #12;3 1 reported coal reserves of any nation, containing approximately 28% of the world

Khare, Sanjay V.

163

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents [OSTI]

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

1995-06-06T23:59:59.000Z

164

Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report  

SciTech Connect (OSTI)

This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demand when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from ORGDP and PGDP are believed to have been returned to the shipping site or disposed of as waste on the Oak Ridge Reservation. No evidence of Y-12 Complex processing of this material was identified in the historical records reviewed by the Project Team.

NONE

2000-12-01T23:59:59.000Z

165

,"California Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release Date:","410...

166

Strategic Petroleum Reserve  

Energy Savers [EERE]

of petroleum products from the Reserve." Due to significant changes in domestic crude oil production, increased imports of Canadian crude oil, and changes to crude oil...

167

2013 Uranium Marketing Annual Survey  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for inflation. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2013). UF 6 is uranium hexafluoride. The natural UF 6 and enriched...

168

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS  

E-Print Network [OSTI]

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS Thesis. I have benefitted from conversations with many persons w~ile engaged in this project. I would like

Winfree, Erik

169

,"New Mexico Lease Condensate Proved Reserves, Reserve Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2012,"6...

170

,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6...

171

,"Louisiana Shale Gas Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

172

,"North Louisiana Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

173

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"630...

174

,"Kansas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

175

,"NM, West Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

176

,"West Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

177

,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

178

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

179

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

180

,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

,"NM, East Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

182

,"Texas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

183

,"Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6302007"...

184

,"West Virginia Shale Gas Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6302007"...

185

,"New York Lease Condensate Proved Reserves, Reserve Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Lease Condensate Proved Reserves, Reserve Changes, and Production",2,"Annual",1985,"6...

186

Petroleum Reserves | Department of Energy  

Office of Environmental Management (EM)

of gasoline for consumers in the northeastern United States. Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserve (NPOSR) has a storied history...

187

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2 W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W Uranium Concentrate...

188

Uranium and nuclear power: The role of exploration information in framing public policy  

Science Journals Connector (OSTI)

Abstract As the importance of addressing climate change increases the future global role for nuclear power, the demand for uranium will increase. Expanded uranium reserves will be needed to meet this increased demand, highlighting the importance of future exploratory efforts. To shed light on the social desirability of future exploration levels I analyze a past expansionary period in the U.S. uranium industry. I find exploration levels were smaller than socially efficient during this period, resulting from a deviation between the private and social values of information. Looking forward, public policies can encourage optimal exploration levels by addressing this deviation.

Charles F. Mason

2014-01-01T23:59:59.000Z

189

Exploiting heavy oil reserves  

E-Print Network [OSTI]

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen the potential of heavy oil 8/9 Taking the legal lessons learned in the north Sea to a global audience 10 potential Exploiting heavy oil reserves Aberdeen: A community of science AT WORK FOR THE ENERGY SECTOR ISSUE

Levi, Ran

190

Polyethylene Encapsulated Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

191

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

Uranium Marketing Uranium Marketing Annual Report May 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2010 Uranium Marketing Annual Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity, Renewables, and Uranium Statistics. Questions about the preparation and content of this report may be directed to Michele Simmons, Team Leader,

192

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

193

Dry Natural Gas Reserves Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 Federal Offshore U.S. 2,775 2,731 2,250 2,377 2,154 1,660 1990-2011 Pacific (California) 37 40 36 37 28 31 1977-2011 Louisiana & Alabama 1,973 2,066 1,752 1,886 1,717 1,311 1981-2011 Texas 765 625 462 454 409 318 1981-2011 Alaska 408 388 354 358 317 327 1977-2011 Lower 48 States 18,137 19,078 20,169 21,236 21,922 23,228 1977-2011 Alabama 287 274 257 254 223 218 1977-2011 Arkansas 188 269 456 698 951 1,079 1977-2011 California 255 253 237 239 243 311 1977-2011 Coastal Region Onshore 9 12 11 12 12 11 1977-2011 Los Angeles Basin Onshore 8 8 6 7 6 6 1977-2011 San Joaquin Basin Onshore 232 227 217 214 220 289 1977-2011 State Offshore 6 6 3 6 5 5 1977-2011

194

Customized forecasting tool improves reserves estimation  

SciTech Connect (OSTI)

Unique producing characteristics of the Teapot sandstone formation, Powder River basin, Wyoming, necessitated the creation of individualized production forecasting methods for wells producing from this reservoir. The development and use of a set of production type curves and correlations for Teapot wells are described herein.

Mian, M.A.

1986-04-01T23:59:59.000Z

195

Dry Natural Gas Reserves Estimated Production  

U.S. Energy Information Administration (EIA) Indexed Site

8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 Federal Offshore U.S. 2,775 2,731 2,250 2,377 2,154 1,660 1990-2011 Pacific (California) 37 40 36 37 28 31 1977-2011 Louisiana & Alabama 1,973 2,066 1,752 1,886 1,717 1,311 1981-2011 Texas 765 625 462 454 409 318 1981-2011 Alaska 408 388 354 358 317 327 1977-2011 Lower 48 States 18,137 19,078 20,169 21,236 21,922 23,228 1977-2011 Alabama 287 274 257 254 223 218 1977-2011 Arkansas 188 269 456 698 951 1,079 1977-2011 California 255 253 237 239 243 311 1977-2011 Coastal Region Onshore 9 12 11 12 12 11 1977-2011 Los Angeles Basin Onshore 8 8 6 7 6 6 1977-2011 San Joaquin Basin Onshore 232 227 217 214 220 289 1977-2011 State Offshore 6 6 3 6 5 5 1977-2011

196

,"Alabama Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

L2R9911SAL1","RNGR9908SAL1","RNGR9909SAL1","RNGR9910SAL1" "Date","Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Alabama (with...

197

,"Alaska Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

RL2R9911SAK1","RNGR9908SAK1","RNGR9909SAK1","RNGR9910SAK1" "Date","Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Alaska (with...

198

Resources to reserves  

Science Journals Connector (OSTI)

The resource bases and resources of the various energy forms of natural resources have been discussed. It is now opportune to consider the transformation of resources to reserves. This is effected by explorati...

D. C. Ion

1980-01-01T23:59:59.000Z

199

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 Mill Owner Mill Name County, State (existing and planned locations) Milling Capacity (short tons of ore per day) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished Denison White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby

200

Domestic Uranium Production Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

6. Employment in the U.S. uranium production industry by category, 2003-13 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Uranium Marketing Annual Report -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2009-13 thousands pounds U3O8...

202

Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2013 million pounds U3O8 equivalent Delivery year Total purchased Purchased from U.S....

203

Uranium Marketing Annual Report -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9. Contracted purchases of uranium by owners and operators of U.S. civilian nuclear power reactors, signed in 2013, by delivery year, 2014-23 thousand pounds U3O8 equivalent Year...

204

Uranium purchases report 1993  

SciTech Connect (OSTI)

Data reported by domestic nuclear utility companies in their responses to the 1991 through 1993 ``Uranium Industry Annual Survey,`` Form EIA-858, Schedule B,`` Uranium Marketing Activities,`` are provided in response to the requirements in the Energy Policy Act 1992. Appendix A contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data. Additional information published in this report not included in Uranium Purchases Report 1992, includes a new data table. Presented in Table 1 are US utility purchases of uranium and enrichment services by origin country. Also, this report contains additional purchase information covering average price and contract duration. Table 2 is an update of Table 1 and Table 3 is an update of Table 2 from the previous year`s report. The report contains a glossary of terms.

Not Available

1994-08-10T23:59:59.000Z

205

Table 15. Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Shale natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old FieldsProduction Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 97,449 1,584 25,993 23,455 22,694 27,038 32,764 232 699 7,994 131,616 Alabama 0 0 0 0 0 0 0 0 0 0 0 Arkansas 12,526 655 502 141 6,087 6,220 2,073 0 0 940 14,808 California 0 1 912 0 0 0 43 0 0 101 855 Colorado 4 0 4 0 0 0 5 0 0 3 10 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 0 0 0 0 0 0 0 0 0 0 0 Kentucky 10 0 44 11 45 45 2 0 0 4 41 Louisiana 20,070 -172 2,002 3,882 3,782 4,291 5,367 0 140 2,084 21,950 North Onshore 20,070 -172 2,002 3,882 3,782 4,291 5,367

206

Table 10. Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 8,917 -2 938 207 36 222 4 0 3 328 9,511 Lower 48 States 308,730 2,717 55,077 55,920 44,539 47,651 47,631 987 1,257 24,293 339,298 Alabama 2,724 -45 472 163 595 398 3 2 0 226 2,570 Arkansas 14,181 729 631 324 6,762 6,882 2,094 0 23 1,080 16,374 California 2,785 917 1,542 1,959 49 55 75 0 0 324 3,042 Coastal Region Onshore 180 15 21 32 0 0 1 0 0 12 173 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 2,447 895 1,498

207

Table 11. Dry natural gas proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Dry natural gas proved reserves, reserves changes, and production, 2011 : Dry natural gas proved reserves, reserves changes, and production, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 8,838 -1 928 206 36 221 4 0 3 327 9,424 Lower 48 States 295,787 1,732 52,673 53,267 43,150 46,020 45,905 947 1,224 23,228 324,643 Alabama 2,629 -49 455 157 573 383 3 2 0 218 2,475 Arkansas 14,178 728 631 324 6,760 6,880 2,093 0 23 1,079 16,370 California 2,647 923 1,486 1,889 47 52 73 0 0 311 2,934 Coastal Region Onshore 173 13 20 31 0 0 1 0 0 11 165 Los Angeles Basin Onshore 87 7 11 4 0 2 0 0 0 6 97 San Joaquin Basin Onshore 2,321 902 1,444 1,854 45 42 69 0 0 289 2,590 State Offshore

208

Table 12. Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Nonassociated natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases SalesAcquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 1,021 -1 95 128 34 171 1 0 3 152 976 Lower 48 States 280,880 2,326 47,832 50,046 43,203 45,818 41,677 376 1,097 21,747 305,010 Alabama 2,686 -48 470 163 586 378 3 0 0 218 2,522 Arkansas 14,152 705 581 311 6,724 6,882 2,094 0 23 1,074 16,328 California 503 -12 118 32 48 44 1 0 0 64 510 Coastal Region Onshore 2 0 0 1 0 0 0 0 0 0 1 Los Angeles Basin Onshore 0 0 0 0 0 0 0 0 0 0 0 San Joaquin Basin Onshore 498 -12 116 31 47 44 1 0 0 63 506 State Offshore

209

Table 8. Lease condensate proved reserves , reserves changes, and prodction, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Lease condensate proved reserves, reserves changes, and production, 2011 Lease condensate proved reserves, reserves changes, and production, 2011 million barrels Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 1 55 0 0 0 0 0 0 20 36 Lower 48 States 1,914 7 486 452 216 273 536 4 29 211 2,370 Alabama 18 3 1 1 0 0 0 0 0 2 19 Arkansas 2 0 0 0 0 0 0 0 0 0 2 California 1 0 3 0 0 0 0 0 0 0 4 Coastal Region Onshore 0 0 0 0 0 0 0 0 0 0 0 Los Angeles Basin Onshore 0 0 0 0 0 0 0 0 0 0 0 San Joaquin Basin Onshore 1 0 0 0 0 0 0 0 0 0 1 State Offshore 0 0 3 0 0 0 0 0 0 0 3 Colorado 115 -1 34 8 10 3 7 0 0 8 132 Florida 1 -1 0 0 0 0 0 0 0 0 0 Kansas 7 0 2 1 0 0 0 0 0 1 7 Kentucky 1 1 4 1 3 3 0 0 0 0 5 Louisiana 106 -6 30 14 20 17 7 1 1 14 108 North 27 -1 12 2 7 7 0 0 0 3 33

210

Lower 48 States Natural Gas Liquids Lease Condensate, Reserves Based  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Reserves Based Production (Million Barrels) Lower 48 States Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 147 1980's 159 161 157 157 179 168 169 162 162 165 1990's 158 153 147 153 157 145 162 174 178 199 2000's 208 215 207 191 182 174 182 181 173 178 2010's 224 211 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Estimated Production Lower 48 States Lease Condensate Proved Reserves, Reserve Changes, and Production Lease Condensate

211

Uranium purchases report 1994  

SciTech Connect (OSTI)

US utilities are required to report to the Secretary of Energy annually the country of origin and the seller of any uranium or enriched uranium purchased or imported into the US, as well as the country of origin and seller of any enrichment services purchased by the utility. This report compiles these data and also contains a glossary of terms and additional purchase information covering average price and contract duration. 3 tabs.

NONE

1995-07-01T23:59:59.000Z

212

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Activity at U.S. Mills and In-Situ-Leach Plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Ore from Underground Mines and Stockpiles Fed to Mills 1 0 W W W 0 W W W W W Other Feed Materials 2 W W W W W W W W W W Total Mill Feed W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,000 2,282 2,689 4,106 4,534 3,902 3,708 4,228 3,991 4,146 (thousand pounds U 3 O 8 ) E1,600 2,280 2,702 3,838 4,050 4,130 3,620 5,137 4,000 3,911 Deliveries (thousand pounds U 3 O 8 ) W W W 3,786 3,602 3,656 2,044 2,684 2,870 3,630 Weighted-Average Price (dollars per pound U 3 O 8 ) W W W 28.98 42.11 43.81 36.61 37.59 52.36 49.63 Notes: The 2003 annual amounts were estimated by rounding to the nearest 200,000 pounds to avoid disclosure of individual company data. Totals may not equal sum of components

213

FAQ 5-Is uranium radioactive?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Is uranium radioactive? Is uranium radioactive? Is uranium radioactive? All isotopes of uranium are radioactive, with most having extremely long half-lives. Half-life is a measure of the time it takes for one half of the atoms of a particular radionuclide to disintegrate (or decay) into another nuclear form. Each radionuclide has a characteristic half-life. Half-lives vary from millionths of a second to billions of years. Because radioactivity is a measure of the rate at which a radionuclide decays (for example, decays per second), the longer the half-life of a radionuclide, the less radioactive it is for a given mass. The half-life of uranium-238 is about 4.5 billion years, uranium-235 about 700 million years, and uranium-234 about 25 thousand years. Uranium atoms decay into other atoms, or radionuclides, that are also radioactive and commonly called "decay products." Uranium and its decay products primarily emit alpha radiation, however, lower levels of both beta and gamma radiation are also emitted. The total activity level of uranium depends on the isotopic composition and processing history. A sample of natural uranium (as mined) is composed of 99.3% uranium-238, 0.7% uranium-235, and a negligible amount of uranium-234 (by weight), as well as a number of radioactive decay products.

214

Federal Offshore California Coalbed Methane Proved Reserves ...  

Gasoline and Diesel Fuel Update (EIA)

12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Pacific (California) Coalbed Methane Proved Reserves, Reserves Changes, and...

215

Petroleum Reserves | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services » Petroleum Reserves Services » Petroleum Reserves Petroleum Reserves Strategic Petroleum Reserve The SPR is the largest stockpile of government-owned emergency crude oil in the world. Read more Northeast Home Heating Oil Reserve The existence of the NEHHOR provides an important safety cushion for millions of Americans. Read more Naval Petroleum Reserves The only remaining naval petroleum reserve managed by DOE is the Teapot Dome field (NPR-3) in Casper, Wyoming. Read more Strategic Petroleum Reserve With a capacity of 727-million-barrels, the U.S. Strategic Petroleum Reserve is the largest stockpile of government-owned emergency crude oil in the world. Established in the aftermath of the 1973-74 oil embargo, the SPR provides the President with a powerful response option should a disruption

216

Controlling uranium reactivity March 18, 2008  

E-Print Network [OSTI]

for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

Meyer, Karsten

217

Influence of uranium hydride oxidation on uranium metal behaviour  

SciTech Connect (OSTI)

This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

2013-07-01T23:59:59.000Z

218

Uranium hexafluoride handling. Proceedings  

SciTech Connect (OSTI)

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

219

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

year, 2009-13 Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2009-13). Table 19. Foreign purchases of uranium by U.S. suppliers...

220

2013 CA. All rights reserved. 2013 CA. All rights reserved.  

E-Print Network [OSTI]

© 2013 CA. All rights reserved. © 2013 CA. All rights reserved. Applying Data Analytics to Address Fraud Risk Vikas Dutta Abbasali Tavawala November 9, 2013 #12;2 2 © 2013 CA. All rights reserved. CA auditing tools developed by Internal Audit Joint Effort with Rutgers CA Account Payable Exception

Lin, Xiaodong

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Compute Reservation Request Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Queue Look Queue Wait Times Hopper Queues and Policies Edison Queues and Policies Carver Queues and Policies Dirac Queues and Policies Compute Reservation Request Form Job Logs & Analytics Training & Tutorials Software Accounts & Allocations Policies Data Analytics & Visualization Data Management Policies Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » Queues and Scheduling » Compute Reservation Request Form Compute Reservation Request Form

222

Reserve's Deputy Assistant Secretary  

Broader source: Energy.gov (indexed) [DOE]

5, First Quarter, 2012 5, First Quarter, 2012 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 Energy Security for the Nation A Column from the Strategic Petroleum Reserve's Deputy Assistant Secretary 3 SPR Completes Drawdown An Inside Look at the Strategic Petroleum Reserve's Operations 6 International Efforts in Clean Energy Fossil Energy Staff Participate in International Organizations to Share Energy Efforts 7 Methane Hydrate Technology Tested International Efforts to Test Technologies in Alaska's North Slope 8 Secretary of Energy Achievement Awards Two NETL Teams Recognized for Significant Environmental Efforts Researchers at the National Energy Technology Laboratory (NETL) are em- ploying conventional technology normally associated with medical proce-

223

Strategic Petroleum Reserve quarterly report  

SciTech Connect (OSTI)

The Strategic Petroleum Reserve Quarterly Report is submitted in accordance with section 165(b) of the Energy Policy and Conservation Act, as amended, which requires that the Secretary of Energy submit quarterly reports to Congress on Activities undertaken with respect to the Strategic Petroleum Reserve. This August 15, 1990, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1990, through June 30, 1990. 3 tabs.

Not Available

1990-08-15T23:59:59.000Z

224

Corrosion-resistant uranium  

DOE Patents [OSTI]

The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

Hovis, Jr., Victor M. (Kingston, TN); Pullen, William C. (Knoxville, TN); Kollie, Thomas G. (Oak Ridge, TN); Bell, Richard T. (Knoxville, TN)

1983-01-01T23:59:59.000Z

225

Corrosion-resistant uranium  

DOE Patents [OSTI]

The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

1981-10-21T23:59:59.000Z

226

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

227

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

228

Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

Oak Ridge Reservation Annual Site Environmental Report DOE/ORO/2445 2012 #12;Cover Image Jeff Riggs Logistical Services Design Creative Media Communications Oak Ridge National Laboratory Oak Ridge Reservation Annual Site Environmental Report 2012 #12;DOE/ORO/2445 Oak Ridge Reservation Annual Site Environmental

Pennycook, Steve

229

Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

Oak Ridge Reservation Annual Site Environmental Report DOE/ORO-2473 2013 #12;Cover Image & Design Creative Media Communications Oak Ridge National Laboratory Oak Ridge Reservation Annual Site Environmental Report 2013 #12;DOE/ORO/2473 Oak Ridge Reservation Annual Site Environmental Report for 2013 on the World

Pennycook, Steve

230

Dissolution rates of uranium compounds in simulated lung fluid  

SciTech Connect (OSTI)

Maximum dissolution rates of uranium into simulated lung fluid from a variety of materials were measured at 37/sup 0/in the where f/sub i/ is in order to estimate clearance rates from the deep lung. A batch procedure was utilized in which samples containing as little as 10 ..mu..g of natural uranium could be tested. The materials included: products of uranium mining, milling and refining operations, coal fly ash, an environmental sample from a site exposed to multiple uranium sources, and purified samples of (NH/sub 4/)/sub 2/U/sub 2/O/sub 7/ U/sub 3/O/sub 8/, UO/sub 2/, and UF/sub 4/. Dissolution of uranium from several materials indicated the presence of more than one type of uranium compound; but in all cases, the fraction F of uranium remaining undissolved at any time t could be represented by the sum of up to three terms in the series: F = ..sigma../sub i/f/sub i/ exp (-0.693t/UPSILON/sub i/), where f/sub i/ is the initial fraction of component i with dissolution half-time epsilon/sub i/. Values of epsilon/sub i/ varied from 0.01 day to several thousand days depending on the physical and chemical form of the uranium. Dissolution occurred predominantly by formation of the (UO/sub 2/(CO/sub 3/)/sub 3/)/sup 4 -/ ion; and as a result, tetravalent uranium compounds dissolved slowly. Dissolution rates of size-separated yellow-cake aerosols were found to be more closely correlated with specific surface area than with aerodynamic diameter.

Kalkwarf, D.R.

1981-01-01T23:59:59.000Z

231

Illinois coal reserve assessment and database development. Final report  

SciTech Connect (OSTI)

The new demonstrated reserve base estimate of coal of Illinois is 105 billion short tons. This estimate is an increase from the 78 billion tons in the Energy Information Administration`s demonstrated reserve base of coal, as of January 1, 1994. The new estimate arises from revised resource calculations based on recent mapping in a number of countries, as well as significant adjustments for depletion due to past mining. The new estimate for identified resources is 199 billion tons, a revision of the previous estimate of 181 billion tons. The new estimates incorporate the available analyses of sulfur, heat content, and rank group appropriate for characterizing the remaining coal resources in Illinois. Coal-quality data were examined in conjunction with coal resource mapping. Analyses of samples from exploration drill holes, channel samples from mines and outcrops, and geologic trends were compiled and mapped to allocate coal resource quantities to ranges of sulfur, heat content, and rank group. The new allocations place almost 1% of the demonstrated reserve base of Illinois in the two lowest sulfur categories, in contrast to none in the previous allocation used by the Energy Information Administration (EIA). The new allocations also place 89% of the demonstrated reserve base in the highest sulfur category, in contrast to the previous allocation of 69% in the highest category.

Treworgy, C.G.; Prussen, E.I.; Justice, M.A.; Chenoweth, C.A. [and others

1997-11-01T23:59:59.000Z

232

Northeast Home Heating Oil Reserve  

Gasoline and Diesel Fuel Update (EIA)

Northeast Home Heating Oil Reserve Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy Information Administration publications, such as the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve Terminal Operator Location (Thousand Barrels) Hess Corp. Groton, CT 500*

233

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Rats after Implantation with Depleted Uranium Fragments Guoying Zhu 1 * Mingguang...and distribution of uranium in depleted uranium (DU) implanted rats. Materials...of chronic exposure to DU. Depleted uranium|Bone|Kidney|Distribution......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

234

Engineering assessment of inactive uranium mill tailings  

SciTech Connect (OSTI)

The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

Not Available

1981-07-01T23:59:59.000Z

235

Nuclear Fuel Facts: Uranium | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Uranium Management and Uranium Management and Policy » Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite. Uranium ore can be mined from open pits or underground excavations. The ore can then be crushed and treated at a mill to separate the valuable uranium from the ore. Uranium may also be dissolved directly from the ore deposits

236

Effectiveness of marine reserve networks in representing biodiversity and minimizing impact to fishermen: a comparison  

E-Print Network [OSTI]

LETTER Effectiveness of marine reserve networks in representing biodiversity and minimizing impact of California's Marine Life Protection Act Initiative at represent- ing biodiversity and minimizing estimated to design marine reserve networks that meet biodiversity targets efficiently (Kirkpatrick 1983; Leslie et al

Queensland, University of

237

Table 17. Coalbed methane proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011 Coalbed methane proved reserves, reserves changes, and production, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 17,508 -15 2,071 1,668 1,775 1,710 736 0 13 1,763 16,817 Alabama 1,298 -45 23 86 104 219 3 0 0 98 1,210 Arkansas 28 0 0 3 0 0 0 0 0 4 21 California 0 0 0 0 0 0 0 0 0 0 0 Colorado 6,485 73 698 367 1,034 1,021 220 0 0 516 6,580 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 258 -6 24 14 0 0 3 0 0 37 228 Kentucky 0 0 0 0 0 0 0 0 0 0 0 Louisiana 0 0 0 0 0 0 0 0 0 0 0 North Onshore 0 0 0 0 0 0 0 0 0 0 0 South Onshore 0 0 0 0 0 0 0 0 0 0 0 State Offshore 0 0 0 0 0 0 0 0 0 0 0 Michigan 0 0 0 0 0 0 0 0 0 0 0 Mississippi 0 0 0 0 0 0 0 0 0

238

FE Petroleum Reserves News  

Broader source: Energy.gov (indexed) [DOE]

petroleum-reserves-news Office of Fossil Energy petroleum-reserves-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en President Requests $638.0 Million for Fossil Energy Programs http://energy.gov/fe/articles/president-requests-6380-million-fossil-energy-programs President Requests $638.0 Million for Fossil Energy Programs

239

Strategic Petroleum Reserve quarterly report  

SciTech Connect (OSTI)

This August 15, 1991, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1991, through June 30, 1991. The Strategic Petroleum Reserve storage facilities development program is proceeding on schedule. The Reserve's capacity is currently 726 million barrels. A total of 5.5 million barrels of new gross cavern volume was developed at Big Hill and Bayou Choctaw during the quarter. There were no crude oil deliveries to the Strategic Petroleum Reserve during the calendar quarter ending June 30, 1991. Acquisition of crude oil for the Reserve has been suspended since August 2, 1990, following the invasion of Kuwait by Iraq. As of June 30, 1991, the Strategic Petroleum Reserve inventory was 568.5 million barrels. The reorganization of the Office of the Strategic Petroleum Reserve became effective June 28, 1991. Under the new organization, the Strategic Petroleum Reserve Project Management Office in Louisiana will report to the Strategic Petroleum Reserve Program Office in Washington rather than the Oak Ridge Field Office in Tennessee. 2 tabs.

Not Available

1991-08-15T23:59:59.000Z

240

Method for fabricating uranium foils and uranium alloy foils  

DOE Patents [OSTI]

A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

2006-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy  

SciTech Connect (OSTI)

For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

none,

2013-07-01T23:59:59.000Z

242

Inhalation class for depleted uranium at a major uranium applications facility  

SciTech Connect (OSTI)

A primary concern in determining internal dose from inhalation of radioactive material is the half-time of the material within the human body. Inhalation classes have been established by the ICRP for radioactive materials with half-times of a few days (Class D), several weeks (Class W), or periods up to one year (Class Y). Bioassay data at a facility using large quantities of depleted uranium have been collected for several years. These data have been analyzed to estimate the first order decay constant. From the decay constant, the half-time for retention (biological half-life) is determined. This half-time is used to identify the inhalation class for depleted uranium and its oxides. The data presented demonstrate that the retention half-time for depleted uranium and its oxides ranges from about 7 d to about 6 wk, depending on the quantity of material inhaled and the subject`s metabolism. This shows that the correct inhalation class for depleted uranium is Class W.

Barg, D.C.; Grewing, H.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1996-06-01T23:59:59.000Z

243

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

9. Summary production statistics of the U.S. uranium industry, 1993-2012 9. Summary production statistics of the U.S. uranium industry, 1993-2012 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Exploration and Development Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars)1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 Mine Production of Uranium (million pounds U3O8) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 Uranium Concentrate Production (million pounds U3O8) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1

244

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

8. U.S. uranium expenditures, 2003-2012 8. U.S. uranium expenditures, 2003-2012 million dollars Year Drilling Production Land and Other Total Expenditures Total Land and Other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Drilling: All expenditures directly associated with exploration and development drilling. Production: All expenditures for mining, milling, processing of uranium, and facility expense.

245

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......ingestion of natural uranium in food and drink, and...for the measurement of uranium in urine samples, DU...respect to potential health hazards can be detected...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Höllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

246

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......Article Assessment of exposure to depleted uranium P. Roth V. Hollriegl E. Werner...for determining the amount of depleted uranium (DU) incorporated. The problems...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Höllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

247

Depleted uranium residual radiological risk assessment for Kosovo sites  

Science Journals Connector (OSTI)

During the recent conflict in Yugoslavia, depleted uranium rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of areas in Kosovo with depleted uranium penetrators and dust. Although chemical toxicity is the most significant health risk related to uranium, radiation exposure has been allegedly related to cancers among veterans of the Balkan conflict. Uranium munitions are considered to be a source of radiological contamination of the environment. Based on measurements and estimates from the recent Balkan Task Force UNEP mission in Kosovo, we have estimated effective doses to resident populations using a well-established food-web mathematical model (RESRAD code). The UNEP mission did not find any evidence of widespread contamination in Kosovo. Rather than the actual measurements, we elected to use a desk assessment scenario (Reference Case) proposed by the UNEP group as the source term for computer simulations. Specific applications to two Kosovo sites (Planeja village and Vranovac hill) are described. Results of the simulations suggest that radiation doses from water-independent pathways are negligible (annual doses below 30 ?Sv). A small radiological risk is expected from contamination of the groundwater in conditions of effective leaching and low distribution coefficient of uranium metal. Under the assumptions of the Reference Case, significant radiological doses (>1 mSv/year) might be achieved after many years from the conflict through water-dependent pathways. Even in this worst-case scenario, DU radiological risk would be far overshadowed by its chemical toxicity.

Marco Durante; Mariagabriella Pugliese

2003-01-01T23:59:59.000Z

248

The distribution of depleted uranium contamination in Colonie, NY, USA  

Science Journals Connector (OSTI)

Uranium oxide particles were dispersed into the environment from a factory in Colonie (NY, USA) by prevailing winds during the 1960s and '70s. Uranium concentrations and isotope ratios from bulk soil samples have been accurately measured using inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) without the need for analyte separation chemistry. The natural range of uranium concentrations in the Colonie soils has been estimated as 0.7–2.1 ?g g? 1, with a weighted geometric mean of 1.05 ?g g? 1; the contaminated soil samples comprise uranium up to 500 ± 40 ?g g? 1. A plot of 236U/238U against 235U/238U isotope ratios describes a mixing line between natural uranium and depleted uranium (DU) in bulk soil samples; scatter from this line can be accounted for by heterogeneity in the DU particulate. The end-member of DU compositions aggregated in these bulk samples comprises (2.05 ± 0.06) × 10? 3 235U/238U, (3.2 ± 0.1) × 10? 5 236U/238U, and (7.1 ± 0.3) × 10? 6 234U/238U. The analytical method is sensitive to as little as 50 ng g? 1 DU mixed with the natural uranium occurring in these soils. The contamination footprint has been mapped northward from site, and at least one third of the uranium in a soil sample from the surface 5 cm, collected 5.1 km NNW of the site, is DU. The distribution of contamination within the surface soil horizon follows a trend of exponential decrease with depth, which can be approximated by a simple diffusion model. Bioturbation by earthworms can account for dispersal of contaminant from the soil surface, in the form of primary uranium oxide particulates, and uranyl species that are adsorbed to organic matter. Considering this distribution, the total mass of uranium contamination emitted from the factory is estimated to be c. 4.8 tonnes.

N.S. Lloyd; S.R.N. Chenery; R.R. Parrish

2009-01-01T23:59:59.000Z

249

2013 Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

accounted for 32%. The remaining 16% originated from Brazil, China, Czech Republic, Germany, Hungary, Malawi, Namibia, Niger, Portugal, and South Africa. COOs purchased uranium...

250

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2013)....

251

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 10, 11 and 16. 2003-2013-Form EIA-858, "Uranium Marketing Annual Survey". million pounds U 3 O 8 equivalent 1 Includes purchases between...

252

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

253

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

254

Uncertainty clouds uranium enrichment corporation's plans  

SciTech Connect (OSTI)

An expected windfall to the US Treasury from the sale of the Energy Dept.'s commercial fuel enrichment facilities may evaporate in the next few weeks when the Clinton administration submits its fiscal 1994 budget proposal to Congress, according to congressional and administration officials. Under the Energy Policy Act of 1992, DOE is required to lease two uranium enrichment facilities, Portsmouth, Ohio, and Paducah, KY., to the government-owned US Enrichment Corp. (USEC) by July 1. Estimates by OMB and Treasury indicate a potential yearly payoff of $300 million from the government-owned company's sale of fuel for commercial reactors. Those two facilities use a process of gaseous diffusion to enrich uranium to about 3 percent for use as fuel in commercial power plants. DOE has contracts through at least 1996 to provide about 12 million separative work units (SWUs) yearly to US utilities and others world-wide. But under an agreement signed between the US and Russia last August, at least 10 metric tons, or 1.5 million SWUs, of low-enriched uranium (LEU) blended down from Russia warheads is expected to be delivered to the US starting in 1994. It could be sold at $50 to $60 per SWU, far below what DOE currently charges for its SWUs - $135 per SWU for 70 percent of the contract price and $90 per SWU for the remaining 30 percent.

Lane, E.

1993-03-24T23:59:59.000Z

255

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Crude Oil and Natural Gas Proved Reserves U.S. Crude Oil and Natural Gas Proved Reserves With Data for 2011 | Release Date: August 1, 2013 | Next Release Date: Early 2014 | full report Previous Issues: Year: 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 Go Summary In 2011, oil and gas exploration and production companies operating in the United States added almost 3.8 billion barrels of crude oil and lease condensate proved reserves, an increase of 15 percent, and the greatest volume increase since the U.S. Energy Information Administration (EIA) began publishing proved reserves estimates in 1977 (Table 1). Proved reserves of crude oil and lease condensate increased by 2.9 billion barrels in 2010, the previous record. Proved reserves of U.S. wet natural gas1 rose

256

,"New York Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Proved Nonproducing Reserves",5,"Annual",2013,"6301996" ,"Release Date:","1242014"...

257

,"New Mexico Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release Date:","4102014"...

258

,"New York Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release Date:","4102014"...

259

Loan Loss Reserve Funds Webinars  

Broader source: Energy.gov [DOE]

Provides a listing of past L loan loss reserve fund webinars and associated files. Author: U. S. Department of Energy, Energy Efficiency & Renewable Energy

260

Marathon/Vitro to seek uranium  

Science Journals Connector (OSTI)

Marathon/Vitro to seek uranium ... Last week, Marathon Oil agreed with Vitro Corp. of America to explore jointly for uranium in North America. ...

1967-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Final Uranium Leasing Program Programmatic Environmental Impact...  

Broader source: Energy.gov (indexed) [DOE]

for DOE's Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium...

262

Conversion of depleted uranium hexafluoride to a solid uranium compound  

DOE Patents [OSTI]

A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2001-01-01T23:59:59.000Z

263

Characteristics of North Sea oil reserve appreciation  

E-Print Network [OSTI]

In many petroleum basins, and especially in more mature areas, most reserve additions consist of the growth over time of prior discoveries, a phenomenon termed reserve appreciation. This paper concerns crude oil reserve ...

Watkins, G. C.

2000-01-01T23:59:59.000Z

264

Towards a desalination initiative using cogeneration with an advanced reactor type and uranium recovered from Moroccan phosphoric acid production  

Science Journals Connector (OSTI)

Morocco is known to be among the first few countries to produce phosphate and phosphoric acid. Moroccan phosphate contains substantial amounts of uranium. This uranium can be recovered from the phosphate ore as a by-product during the production of phosphoric acid. Uranium extraction processes linked with phosphoric acid fabrication have been used industrially in some countries. This is done mainly by solvent extraction. Although, the present price of uranium is low in the international market, such uranium recovery could be considered as a side product of phosphoric acid production. The price of uranium has a very small impact on the cost of nuclear energy obtained from it. This paper focuses on the extraction of uranium salt from phosphate rock. If uranium is recovered in Morocco in the proposed manner, it could serve as feed for a number of nuclear power plants. The natural uranium product would have to be either enriched or blended as mixed-oxide fuel to manufacture adequate nuclear fuel. Part of this fuel would feed a desalination initiative using a high temperature reactor of the new generation, chosen for its intrinsic safety, sturdiness, ease of maintenance, thermodynamic characteristics and long fuel life between reloads, that is, good economy. ?n international cooperation based on commercial contract schemes would concern: the general project and uranium extraction; uranium enrichment and fuel fabrication services; the nuclear power plant; and the desalination plant. This paper presents the overall feasibility of the general project with some quantitative preliminary figures and cost estimates.

Michel Lung; Abdelaali Kossir; Driss Msatef

2005-01-01T23:59:59.000Z

265

Table 13. Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 : Associated-dissolved natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 7,896 -1 843 79 2 51 3 0 0 176 8,535 Lower 48 States 27,850 391 7,245 5,874 1,336 1,833 5,954 611 160 2,546 34,288 Alabama 38 3 2 0 9 20 0 2 0 8 48 Arkansas 29 24 50 13 38 0 0 0 0 6 46 California 2,282 929 1,424 1,927 1 11 74 0 0 260 2,532 Coastal Region Onshore 178 15 21 31 0 0 1 0 0 12 172 Los Angeles Basin Onshore 92 6 12 4 0 3 0 0 0 7 102 San Joaquin Basin Onshore 1,949 907 1,382 1,892 0 0 70 0 0 237 2,179 State Offshore 63 1 9 0 1 8 3 0 0 4 79

266

NORTHEAST REGIONAL REFINED PETROLEUM PRODUCT RESERVE | Department...  

Broader source: Energy.gov (indexed) [DOE]

NORTHEAST REGIONAL REFINED PETROLEUM PRODUCT RESERVE NORTHEAST REGIONAL REFINED PETROLEUM PRODUCT RESERVE The Northeast region of the U.S. is particularly vulnerable to gasoline...

267

Oak Ridge Reservation's emergency sectors change | Department...  

Broader source: Energy.gov (indexed) [DOE]

Reservation's emergency sectors change Oak Ridge Reservation's emergency sectors change March 11, 2014 - 11:30am Addthis On March 12, the Tennessee Emergency Management Agency...

268

Teanaway Solar Reserve | Open Energy Information  

Open Energy Info (EERE)

Sector: Solar Product: Washington State-based privately-held developer of the Teanaway Solar Reserve PV plant project. References: Teanaway Solar Reserve1 This article is a...

269

,"Federal Offshore California Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2012,...

270

Operating Reserves and Variable Generation  

SciTech Connect (OSTI)

This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

Ela, E.; Milligan, M.; Kirby, B.

2011-08-01T23:59:59.000Z

271

Fossil Fuel Reserves Versus Consumption  

Science Journals Connector (OSTI)

In Table 2.1 of Chapter 2, data are presented which reveal that the U.S.’s known and recoverable reserves of petroleum are about 22.5 billion ... 2.2 percent of the known and recoverable reserves of the world. In...

Wendell H. Wiser

2000-01-01T23:59:59.000Z

272

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Milling Capacity (short tons of ore per day) 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby Uranium One Americas, Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Changing License To Operational Standby

273

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources,Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

274

FAQ 7-How is depleted uranium produced?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

275

Uranyl Protoporphyrin: a New Uranium Complex  

Science Journals Connector (OSTI)

...received 3 times the LD50 of uranium as uranyl protoporphyrin...nitrate, had showed livers depleted of glycogen and kidneys...destruc-tion typical of uranium poisoning. The uranium-damaged...T. Godwin et al., Cancer 8, 601 (1954). 5...excretion of hexavalent uranium in man," in Proc...

ROBERT E. BASES

1957-07-26T23:59:59.000Z

276

Uranium: Environmental Pollution and Health Effects  

Science Journals Connector (OSTI)

Uranium is found ubiquitously in nature in low concentrations in soil, rock, and water. Naturally occurring uranium contains three isotopes, namely 238U, 235U, and 234U. All uranium isotopes have the same chemical properties, but they have different radiological properties. The main civilian use of uranium is to fuel nuclear power plants, whereas high enriched (in 235U) uranium is used in the military sector as nuclear explosives and depleted uranium (DU) as penetrators or tank shielding. Exposure to uranium may cause health problems due to its radiological (uranium is predominantly emitting alpha-particles) and chemical actions (heavy metal toxicity). Uranium uptake may occur by ingestion, inhalation, contaminated wounds, and embedded fragments especially for soldiers. Inhalation of dust is considered the major pathway for uranium uptake in workplaces. Soluble uranium compounds tend to quickly pass through the body, whereas insoluble uranium compounds pose a more serious inhalation exposure hazard. The kidney is the most sensitive organ for uranium chemotoxicity. An important indirect radiological effect of uranium is the increased risk of lung cancers from inhalation of the daughter products of radon, a noble gas in the uranium decay chains that transports uranium-derived radioactivity from soil into the indoor environment. No direct evidence about the carcinogenic effect of DU in humans is available yet.

D. Melo; W. Burkart

2011-01-01T23:59:59.000Z

277

Quantification of uranium transport away from firing sites at Los Alamos National Laboratory: A mass balance approach  

SciTech Connect (OSTI)

Investigations were conducted at Los Alamos National Laboratory to quantify the extent of migration of depleted uranium away from firing sites. Extensive sampling of air particles, soil, sediment, and water was conducted to establish the magnitude of uranium contamination throughout one watershed. The uranium source term was estimated, and mass balance calculations were performed to compare the percentage of migrated uranium with original expenditures. Mass balance calculations can be powerful in identification of the extent of waste migration and used as an aid in planning future waste investigations.

Becker, N.M.

1992-01-01T23:59:59.000Z

278

Quantification of uranium transport away from firing sites at Los Alamos National Laboratory: A mass balance approach  

SciTech Connect (OSTI)

Investigations were conducted at Los Alamos National Laboratory to quantify the extent of migration of depleted uranium away from firing sites. Extensive sampling of air particles, soil, sediment, and water was conducted to establish the magnitude of uranium contamination throughout one watershed. The uranium source term was estimated, and mass balance calculations were performed to compare the percentage of migrated uranium with original expenditures. Mass balance calculations can be powerful in identification of the extent of waste migration and used as an aid in planning future waste investigations.

Becker, N.M.

1992-02-01T23:59:59.000Z

279

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

SciTech Connect (OSTI)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

280

The End of Cheap Uranium  

E-Print Network [OSTI]

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

Michael Dittmar

2011-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Proved Reserves as of 12/31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of 12/31 Adjustments (+,-) Revision Increases (+) Revision Decreases (-) Sales (-) Acquisitions (+) Extensions (+) New Field Discoveries (+) New Reservoir Discoveries in Old Fields (+) Estimated Production (-) Period: Data Series: Proved Reserves as of 12/31 Adjustments (+,-) Revision Increases (+) Revision Decreases (-) Sales (-) Acquisitions (+) Extensions (+) New Field Discoveries (+) New Reservoir Discoveries in Old Fields (+) Estimated Production (-) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. Total 20,972 21,317 19,121 20,682 23,267 26,544 1899-2011 Lower 48 States 17,093 17,154 15,614 17,116 19,545 22,728 1977-2011 Federal Offshore 4,096 3,905 3,903 4,129 4,496 4,976 1980-2011 Pacific (California) 441 441 357 348 361 350 1977-2011 Gulf of Mexico (Louisiana) 3,500 3,320 3,388 3,570 3,914 4,438 1981-2011

282

Safe Operating Procedure SAFETY PROTOCOL: URANIUM  

E-Print Network [OSTI]

involve the use of natural or depleted uranium. Natural isotopes of uranium are U-238, U-235 and U-234 (see Table 1 for natural abundances). Depleted uranium contains less of the isotopes: U-235 and U-234. The specific activity of depleted uranium (5.0E-7 Ci/g) is less than that of natural uranium (7.1E-7 Ci

Farritor, Shane

283

Naval Petroleum Reserves: assessment of alternative operating strategies beyond 1982  

SciTech Connect (OSTI)

Legislation authorizing production from two Naval Petroleum Reserves, i.e., NPR-1 (Elk Hills, California) and NPR-3 (Teapot Dome, Wyoming), expires in 1982. This paper presents an assessment of the trade-offs of extending production or returning to a shut-in status. Strategic, economic, and energy factors at the national, regional, and local levels are considered. The results of the study indicate that the only major local impact of shut-in will be on small refineries near NPR-1. At the national level, shut-in increases the size of the national petroleum reserve system. However, economic losses as measured by changes in the present value of real GNP also occur. The estimate of the increase in the size of the national petroleum reserve with shut-in of the NPRs was found to be most sensitive to the assumed length of future import interruptions.

Gsellman, L.R.; Mendis, M.S.; Rosenberg, J.I.

1981-08-01T23:59:59.000Z

284

A review of uranium economics  

Science Journals Connector (OSTI)

The recent increase in the demand for power for commercial use, the challenges facing fossil fuel use and the prospective of cheap nuclear power motivate different countries to plan for the use of nuclear power. This paper reviews many aspects of uranium economics, which includes the advantages and disadvantages of nuclear power, comparisons with other sources of power, nuclear power production and requirements, the uranium market, uranium pricing, spot price and long-term price indicators, and the cost of building a nuclear power facility.

A.K. Mazher

2009-01-01T23:59:59.000Z

285

Uranium Mining Life-Cycle Energy Cost vs. Uranium Resources  

Science Journals Connector (OSTI)

The long-term viability of nuclear energy systems depends on the availability of uranium and on the question, whether the overall energy balance of the fuel cycle is positive, taking into account the full life-cy...

W. Eberhard Falck

2012-01-01T23:59:59.000Z

286

Library Reserved Room Policy All Meeting Spaces  

E-Print Network [OSTI]

Library Reserved Room Policy All Meeting Spaces Room reservation To make a reservation for any Library meeting space, complete the room reservation form at http://library.syr.edu/services/space/form-findroom.php. In order to provide equitable access to library spaces, the Library may impose limitations on frequency

Mather, Patrick T.

287

Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

5 2006 2007 2008 2009 2010 View History Proved Reserves as of Dec. 31 0 1 1 1 0 0 2005-2010 Adjustments 0 0 2009-2010 Revision Increases 0 0 2009-2010 Revision Decreases 1 0...

288

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Environmental and health consequences of depleted uranium use in the 1991 Gulf...Properties, use and health effects of depleted uranium (DU): a general...J. (2002). Health effects of embedded depleted uranium. Mil Med. 167......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

289

Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy  

Science Journals Connector (OSTI)

...Molecular design for uranium neutron-capture therapy (cancer/immunotherapy...methodology for cancer therapy. Boron...system using uranium, as described...800 to =400 uranium atoms per apoferritin...uranyl ions were depleted, and loading...

J F Hainfeld

1992-01-01T23:59:59.000Z

290

Characterization of uranium isotopic abundances in depleted uranium metal assay standard 115  

Science Journals Connector (OSTI)

Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a ... TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. T...

K. J. Mathew; G. L. Singleton; R. M. Essex…

2013-04-01T23:59:59.000Z

291

Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity  

SciTech Connect (OSTI)

Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

2011-07-27T23:59:59.000Z

292

Depleted Uranium Hexafluoride Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

293

Disposition of uranium-233  

SciTech Connect (OSTI)

The US is developing a strategy for the disposition of surplus weapons-usable uranium-233 ({sup 233}U). The strategy (1) identifies the requirements for the disposition of surplus {sup 233}U; (2) identifies potential disposition options, including key issues to be resolved with each option; and (3) defines a road map that identifies future key decisions and actions. The disposition of weapons-usable fissile materials is part of a US international arms-control program for reduction of the number of nuclear weapons and the quantities of nuclear-weapons-usable materials worldwide. The disposition options ultimately lead to waste forms requiring some type of geological disposal. Major options are described herein.

Tousley, D.R. [Dept. of Energy, Washington, DC (United States). Office of Fissile Materials Disposition; Forsberg, C.W.; Krichinsky, A.M. [Oak Ridge National Lab., TN (United States)

1997-10-16T23:59:59.000Z

294

Experimental Plan: Uranium Stabilization Through Polyphosphate Injection 300 Area Uranium Plume Treatability Demonstration Project  

SciTech Connect (OSTI)

This Test Plan describes a laboratory-testing program to be performed at Pacific Northwest National Laboratory (PNNL) in support of the 300-FF-5 Feasibility Study (FS). The objective of the proposed treatability test is to evaluate the efficacy of using polyphosphate injections to treat uranium contaminated groundwater in situ. This study will be used to: (1) Develop implementation cost estimates; (2) Identify implementation challenges; and (3) Investigate the technology's ability to meet remedial objectives These activities will be conducted in parallel with a limited field investigation, which is currently underway to more accurately define the vertical extent of uranium in the vadose zone, and in the capillary fringe zone laterally throughout the plume. The treatability test will establish the viability of the method and, along with characterization data from the limited field investigation, will provide the means for determining how best to implement the technology in the field. By conducting the treatability work in parallel with the ongoing Limited Field Investigation, the resulting Feasibility Study (FS) will provide proven, site-specific information for evaluating polyphosphate addition and selecting a suitable remediation strategy for the uranium plume within the FS time frame at an overall cost savings.

Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vince R.

2006-09-20T23:59:59.000Z

295

Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride  

SciTech Connect (OSTI)

The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

1995-12-01T23:59:59.000Z

296

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Domestic Uranium Production Report June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2012 Domestic Uranium Production Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

297

2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Uranium Marketing Annual Report May 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report ii

298

Uranium Enrichment's $7-Billion Uncertainty  

Science Journals Connector (OSTI)

...229 : 1407 ( 1985 ). Uranium...claims John R. Longenecker, who heads...because it be-John Longenecker '"ou have...based on gas centrifuges Finally...research on the centrifuge technology...21 June 1985, p. 1407...

COLIN NORMAN

1986-04-18T23:59:59.000Z

299

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 28, 29, 30 and 31. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". Notes: Totals may not equal sum of components because of independent...

300

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 10, 11 and 16. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". dollars per pound U 3 O 8 equivalent dollars per pound U 3 O 8...

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 28, 29, 30 and 31. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". million pounds U 3 O 8 equivalent million pounds U 3 O 8 equivalent...

302

2013 Uranium Marketing Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Annual, Tables 22, 23, 25, and 27. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". - No data reported. 0 10 20 30 40 50 60 70 1994 1995 1996 1997...

303

2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3. U.S. uranium concentrate production, shipments, and sales, 2003-13" "Activity at U.S. Mills and In-Situ-Leach Plants",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013...

304

Thermal Properties of Uranium-Molybdenum Alloys: Phase Decomposition Effects of Heat Treatments  

E-Print Network [OSTI]

to generate computational estimates of the alloys specific heat and thermal conductivity. Section 2 describes the technical background in which this thesis is based, including uranium metal alloy theory and properties. Section 3 describes the experimental... the phases and distorted phases that occur during phase decomposition. The authors conducted numerous experiments involving uranium, plutonium, and neptunium, as well as alloys with other metals. In the a0 = 3.4808 ! 0.00314 xMo !" Mox ? 10 case...

Creasy, John Thomas

2012-02-14T23:59:59.000Z

305

Uranium Resources Inc URI | Open Energy Information  

Open Energy Info (EERE)

Uranium Resources Inc URI Uranium Resources Inc URI Jump to: navigation, search Name Uranium Resources, Inc. (URI) Place Lewisville, Texas Zip 75067 Product Uranium Resources, Inc. (URI) is primarily engaged in the business of acquiring, exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References Uranium Resources, Inc. (URI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Uranium Resources, Inc. (URI) is a company located in Lewisville, Texas . References ↑ "Uranium Resources, Inc. (URI)" Retrieved from "http://en.openei.org/w/index.php?title=Uranium_Resources_Inc_URI&oldid=352580" Categories: Clean Energy Organizations

306

U.S. oil reserves highest since 1975, natural gas reserves set...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. oil reserves highest since 1975, natural gas reserves set new record U.S. proved oil reserves have topped 36 billion barrels for the first time in nearly four decades, while...

307

Strategic Petroleum Reserve Test Sale 2014 Report | Department...  

Energy Savers [EERE]

Strategic Petroleum Reserve Test Sale 2014 Report Strategic Petroleum Reserve Test Sale 2014 Report Strategic Petroleum Reserve Test Sale 2014 Report to Congress 2014 SPR Test Sale...

308

Strategic Petroleum Reserve B-Roll Video | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Strategic Petroleum Reserve B-Roll Video Strategic Petroleum Reserve B-Roll Video The footage of the Strategic Petroleum Reserve is provided for use by broadcast news...

309

Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

310

Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

311

Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore Texas Coalbed Methane Proved Reserves, Reserves Changes, and Production...

312

California--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production...

313

Florida Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

2014 Next Release Date: 12312015 Referring Pages: New Field Discoveries of Dry Natural Gas Reserves Florida Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves New...

314

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Broader source: Energy.gov (indexed) [DOE]

Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation...

315

Inositol hexaphosphate: a potential chelating agent for uranium  

Science Journals Connector (OSTI)

......and staining pigments. Depleted uranium, a by-product of uranium...177-193. 2 World Health Organization (WHO). Uranium in drinking-water...the lethal effect of oral uranium poisoning. Health Phys. (2000) 78(6......

D. Cebrian; A. Tapia; A. Real; M. A. Morcillo

2007-11-01T23:59:59.000Z

316

Coalbed Methane Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History U.S. 18,743 18,390 19,892 19,620 21,874 20,798 1989-2008 Alabama 1,665 1,900 1,773 2,068 2,126 1,727 1989-2008 Alaska 0 0 2007-2008 Arkansas 31 31 2007-2008 California 0 0 2007-2008 Colorado 6,473 5,787 6,772 6,344 7,869 8,238 1989-2008 Florida 0 0 2007-2008 Kansas 340 301 2007-2008 Kentucky 0 0 2007-2008 Louisiana 7 9 2007-2008 North 7 9 2007-2008 South Onshore 0 0 2007-2008 South Offshore 0 0 2007-2008 Michigan 0 0 2007-2008 Mississippi 0 0 2007-2008 Montana 66 75 2007-2008 New Mexico 4,396 5,166 5,249 4,894 4,169 3,991 1989-2008

317

,"U.S. Total Crude Oil Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil Proved Reserves",1,"Annual",2013,"6301899" ,"Data 2","Changes in Reserves During...

318

Definition: Spinning Reserve | Open Energy Information  

Open Energy Info (EERE)

Spinning Reserve Spinning Reserve Jump to: navigation, search Dictionary.png Spinning Reserve Unloaded generation that is synchronized and ready to serve additional demand.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the largest generator plus a fraction of the peak load. The operating reserve is made up of the spinning reserve as well as the non-spinning or supplemental reserve: The spinning reserve is the extra generating capacity

319

Variations of the Isotopic Ratios of Uranium in Environmental Samples Containing Traces of Depleted Uranium: Theoretical and Experimental Aspects  

Science Journals Connector (OSTI)

......Samples Containing Traces of Depleted Uranium: Theoretical and Experimental...for the detection of traces of depleted uranium (DU) in environmental samples...percentage composition is about 20% depleted uranium and 80% natural uranium, for......

M. Magnoni; S. Bertino; B. Bellotto; M. Campi

2001-12-01T23:59:59.000Z

320

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......after parenteral injections of depleted uranium S. Fukuda 1 * M. Ikeda 1 M...intramuscular (i.m.) injections of depleted uranium (DU) was examined and the...with uranium. INTRODUCTION Depleted uranium (DU) can affect human health......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Reserves and potential supply of low-sulfur Appalachian coal. Final report  

SciTech Connect (OSTI)

This project has two objectives. The first is to develop and test a methodology for determining economically mineable reserves of low-sulfur Appalachian coal. The second is to appraise the potential supply response to a very large increase in demand for low-sulfur Appalachian coal. The reserve determination procedure developed in the project applies criteria similar to those employed by mining engineers in assessing the commercial feasibility of mining properties. The procedure is relatively easy to apply, could be used to develop reserve estimates for a large sample of mining blocks for under $500,000, and produces reserve estimates very different from those produced from the criteria that have been used by the United States Bureau of Mines: with the more rigorous method developed in this project surface mineable reserves are much larger and deep mineable reserves are less than with the Bureau of Mines method. The appraisal of potential low-sulfur coal supply response assessed excess capacity, coal mining company outlook on reserves, and coal quality requirements. The appraisal concluded that ample coal meeting most buyers' requirements will probably be available in the near or long term at a price under $45 in 1984 dollars. However, coal quality requirements may prove a constraint for some buyers, and an upward surge in prices would probably occur in the event of legislation imposing requirements leading to greatly increased low-sulfur coal demand. 14 refs., 24 figs., 15 tabs.

Hughes, W.R.

1986-09-01T23:59:59.000Z

322

Spectrophotometric determination of tantalum in boron, uranium, zirconium, and uranium-Zircaloy-2 alloy with malachite green  

Science Journals Connector (OSTI)

Spectrophotometric determination of tantalum in boron, uranium, zirconium, and uranium-Zircaloy-2 alloy with malachite green ...

Allan R. Eberle; Morris W. Lerner

1967-01-01T23:59:59.000Z

323

The Intricate Puzzle of Oil and Gas Reserves Growth  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Natural Gas Monthly July 1997 Energy Information Administration / Natural Gas Monthly July 1997 The Intricate Puzzle of Oil and Gas "Reserves Growth" by David F. Morehouse Developing the Nation's discovered oil and gas resources This article begins with a background discussion of the for production is a complex process that is often methods used to estimate proved oil and gas reserves characterized by initial uncertainty as regards the and ultimate recovery, which is followed by a discussion ultimate size or productive potential of the involved of the factors that affect the ultimate recovery estimates reservoirs and fields. Because the geological and of a field or reservoir. Efforts starting in 1960 to analyze hydrological characteristics of the subsurface cannot - and project ultimate resource appreciation are then

324

Dung survey bias and elephant population estimates in southern Mozambique  

E-Print Network [OSTI]

Dung survey bias and elephant population estimates in southern Mozambique Pieter I. Olivier, Sam M and extracted an age structure from boli diameters for the elephants living in the Maputo Elephant Reserve. Our,672 dung piles encountered on 204 line-transects. The reserve had at least 311 (95% CI: 198­490) elephants

Pretoria, University of

325

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China  

E-Print Network [OSTI]

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern Available online 25 January 2005 Abstract We show evidence that the primary uranium minerals, uraninite-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically

Fayek, Mostafa

326

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Wyoming 134 139 181 195 245 301 308 348 424 512 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W California, Montana, North Dakota, Oklahoma, Oregon, and Virginia 0 0 0 0 9 17 W W W W Total 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 7. Employment in the U.S. uranium production industry by state, 2003-2012 person-years

327

The End of Cheap Uranium  

E-Print Network [OSTI]

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

Dittmar, Michael

2011-01-01T23:59:59.000Z

328

Uranium Metal: Potential for Discovering Commercial Uses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranium Metal Uranium Metal Potential for Discovering Commercial Uses Steven M. Baker, Ph.D. Knoxville Tn 5 August 1998 Summary Uranium Metal is a Valuable Resource 3 Large Inventory of "Depleted Uranium" 3 Need Commercial Uses for Inventory  Avoid Disposal Cost  Real Added Value to Society 3 Uranium Metal Has Valuable Properties  Density  Strength 3 Market will Come if Story is Told Background The Nature of Uranium Background 3 Natural Uranium: 99.3% U238; 0.7% U 235 3 U235 Fissile  Nuclear Weapons  Nuclear Reactors 3 U238 Fertile  Neutron Irradiation of U238 Produces Pu239  Neutrons Come From U235 Fission  Pu239 is Fissile (Weapons, Reactors, etc.) Post World War II Legacy Background 3 "Enriched" Uranium Product  Weapons Program 

329

Domestic Uranium Production Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report - Annual Domestic Uranium Production Report - Annual With Data for 2012 | Release Date: June 06, 2013 | Next Release Date: May 2014 |full report Previous domestic uranium production reports Year: 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Figure 1. U.S. Uranium drilling by number of holes, 2004-2012 U.S. uranium exploration drilling was 5,112 holes covering 3.4 million feet in 2012. Development drilling was 5,970 holes and 3.7 million feet. Combined, total uranium drilling was 11,082 holes covering 7.2 million feet, 5 percent more holes than in 2011. Expenditures for uranium drilling in the United States were $67 million in 2012, an increase of 24 percent compared with 2011. Mining, production, shipments, and sales U.S. uranium mines produced 4.3 million pounds U3O8 in 2012, 5 percent more

330

Polyethylene Encapsulation of Depleted Uranium Trioxide  

Science Journals Connector (OSTI)

Depleted uranium, in the form of uranium trioxide (UO3) powder, was encapsulated in molten polyethylene forming a stable, dense composite henceforth known as DUPoly (patent pending). Materials were fed by calibra...

J. W. Adams; P. R. Lageraaen; P. D. Kalb…

2002-01-01T23:59:59.000Z

331

An investigation on recycling the recovered uranium from electro-refining process in a CANDU reactor  

Science Journals Connector (OSTI)

Feasibility studies for recycling the recovered uranium from electro-refining process of pyroprocessing into a Canada Deuterium Uranium (CANDU) reactor have been carried out with a source term analysis code ORIGEN-S, a reactor lattice analysis code WIMS-AECL, and a Monte Carlo analysis code MCNPX. The uranium metal can be recovered in a solid cathode during an electro-refining process and has a form of a dendrite phase with about 99.99% expecting recovery purity. Considering some impurities of transuranic (TRU) elements and fission products in the recovered uranium, sensitivity calculations were also performed for the compositions of impurities. For a typical spent PWR fuel of 3.0 wt.% of uranium enrichment, 30 GWD/tU burnup and 10 years cooling, the recovered uranium exhibited an extended burnup up to 14 GWD/tU. And among the several safety parameters, the void reactivity at the equilibrium state was estimated 15 mk. Additionally, a simple sphere model was constructed to analyze surface dose rates with the Monte Carlo calculations. It was found that the recovered uranium from the spent PWR fuel by electro-refining process has a significant radioactivity depending on the impurities such as fission products.

Chang Je Park; Kweon Ho Kang; Jung Won Lee; Ki Seog Seo

2011-01-01T23:59:59.000Z

332

Y-12 Uranium Exposure Study  

SciTech Connect (OSTI)

Following the recent restart of operations at the Y-12 Plant, the Radiological Control Organization (RCO) observed that the enriched uranium exposures appeared to involve insoluble rather than soluble uranium that presumably characterized most earlier Y-12 operations. These observations necessitated changes in the bioassay program, particularly the need for routine fecal sampling. In addition, it was not reasonable to interpret the bioassay data using metabolic parameter values established during earlier Y-12 operations. Thus, the recent urinary and fecal bioassay data were interpreted using the default guidance in Publication 54 of the International Commission on Radiological Protection (ICRP); that is, inhalation of Class Y uranium with an activity median aerodynamic diameter (AMAD) of 1 {micro}m. Faced with apparently new workplace conditions, these actions were appropriate and ensured a cautionary approach to worker protection. As additional bioassay data were accumulated, it became apparent that the data were not consistent with Publication 54. Therefore, this study was undertaken to examine the situation.

Eckerman, K.F.; Kerr, G.D.

1999-08-05T23:59:59.000Z

333

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Lost Creek ISR LLC Lost Creek Project Sweetwater, Wyoming 2,000,000 Developing

334

The Uranium Institute 24th Annual Symposium  

E-Print Network [OSTI]

the waste U-238 into Pu-239 for burning. By this means 100 times as much energy can be obtained from it to extract the uranium, enriching the natural uranium in the fissile isotope U-235, burning the U-235 than the uranium fuel it burns, leading to a breeder reactor. In addition, if the reactor is a fast

Laughlin, Robert B.

335

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...least some of the uranium had been irradiated...not represent a health threat,” says Danesi...VISAR KRYEZIU/AP Depleted uranium is what's left...not represent a health threat, says...VISAR KRYEZIU/AP Depleted uranium is what's left...

Richard Stone

2002-09-13T23:59:59.000Z

336

D Riso-R-429 Automated Uranium  

E-Print Network [OSTI]

routinely used analytical techniques for uranium determina- tions in geological samples, fissionCM i D Riso-R-429 Automated Uranium Analysis by Delayed-Neutron Counting H. Kunzendorf, L. Løvborg AUTOMATED URANIUM ANALYSIS BY DELAYED-NEUTRON COUNTING H. Kunzendorf, L. Løvborg and E.M. Christiansen

337

Sustainable growth and valuation of mineral reserves  

E-Print Network [OSTI]

The annual change in the value of an in-ground mineral is equal to the increase or decrease of inventories ("reserves"), multiplied by the market value of a reserve unit. The limited shrinking resource base does not exist. ...

Adelman, Morris Albert

1994-01-01T23:59:59.000Z

338

Naval Petroleum Reserves | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Naval Petroleum Reserves For much of the 20th century, the Naval Petroleum and Oil Shale Reserves served as a contingency source of fuel for the Nation's military. All that...

339

Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

340

Strategic Petroleum Reserve | Department of Energy  

Office of Environmental Management (EM)

Strategic Petroleum Reserve Strategic Petroleum Reserve Crude oil pipes at SPR Bryan Mound site near Freeport, TX. Crude oil pipes at SPR Bryan Mound site near Freeport, TX. The...

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation  

E-Print Network [OSTI]

Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation, soil, groundwater, surface water, or other environmental media. Update This section will discuss the EM Reservation 3-2 Environmental Management and Reservation Activities The following sections highlight some

Pennycook, Steve

342

U.S. Coal Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Data - U.S. Energy Information Administration (EIA) Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

343

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" "Mill Owner","Mill Name","County, State (existing and planned locations)","Milling Capacity","Operating Status at End of the Year" ,,,"(short tons of ore per day)",2008,2009,2010,2011,2012 "Cotter Corporation","Canon City Mill","Fremont, Colorado",0,"Standby","Standby","Standby","Reclamation","Demolished" "EFR White Mesa LLC","White Mesa Mill","San Juan, Utah",2000,"Operating","Operating","Operating","Operating","Operating"

344

Gorilla diet in the Lopé Reserve, Gabon:  

Science Journals Connector (OSTI)

The results of an analysis of gorilla diet in the Lopé Reserve, Gabon are presented. Samples were assayed for nutrients...

M. Elizabeth Rogers; Fiona Maisels; Elizabeth A. Williamson; Michel Fernandez…

345

Group Study Room Policy and Reservation Form  

E-Print Network [OSTI]

to the Group Study Reservation Form. Fill out the web form and click "Send" to submit the request. A confirming

Reynolds, Albert C.

346

EIS-0034: Strategic Petroleum Reserve, Expansion of Reserve, Supplemental  

Broader source: Energy.gov [DOE]

The Strategic Petroleum Reserve (SPR) developed this SEIS to address the environmental impacts of expanding the SPR to store 1,000 million barrels of oil. The final programmatic EIS (FEA-FES-76-2), addressed the environmental impacts of storing 500 million barrels of oil.

347

New Mexico Lease Condensate Proved Reserves, Reserve Changes...  

Gasoline and Diesel Fuel Update (EIA)

2008 2009 2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 78 80 99 94 104 106 1979-2013 Adjustments 2 8 -9 -1 4 2009-2013 Revision Increases 12 16 19 26 28 2009-2013...

348

Uranium geochemistry in soil and groundwater at the F and H seepage basins  

SciTech Connect (OSTI)

For 33 years, low activity liquid wastes from the chemical separation areas at the U.S. Department of Energy`s Savannah River Site were disposed of in unlined seepage basins. Soil and associated pore water samples of widely varying groundwater chemistries and contaminant concentrations were collected from the region downgradient of these basins using cone penetrometer technology. Analysis of samples using inductively coupled plasma - mass spectrometry has allowed the investigation of uranium partitioning between the aqueous phase and soil surfaces at this site. The distribution of uranium was examined with respect to the solution and soil chemistry (e.g., pH, redox potential, cation and contaminant concentration) and aqueous-phase chemical speciation modeling. The uranium soil source term at the F- and H-Area Seepage Basins (FHSB) is much smaller than has been used in previous modeling efforts. This should result in a much shorter remediation time and a greater effectiveness of a pump-and-treat design than previously predicted. Distribution coefficients at the (FHSB) were found to vary between 1.2 to 34,000 1 kg{sup {minus}1} for uranium. Differences in sorption of these elements can be explained primarily by changes in aqueous pH and the associated change in soil surface charge. Sorption models were fit directly to sorption isotherms from field samples. All models underestimated the fraction of uranium bound at low aqueous uranium concentrations. Linear models overestimated bound uranium at locations where the aqueous concentration was greater than 500 ppb. Mechanistic models provided a much better estimate of the bound uranium concentrations, especially at high aqueous concentrations. Since a large fraction of the uranium at the site is associated with the low-pH portion of the plume, consideration should be given to pumping water from the lowest pH portions of the plume in the F-Area.

Serkiz, S.M.; Johnson, W.H.

1994-09-01T23:59:59.000Z

349

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report"

350

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904 2011 5,441 3,322 5,156 3,003 10,597 6,325 2012 5,112 3,447 5,970 3,709 11,082 7,156 NA = Not available. W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-

351

Uranium: Prices, rise, then fall  

SciTech Connect (OSTI)

Uranium prices hit eight-year highs in both market tiers, $16.60/lb U{sub 3}O{sub 8} for non-former Soviet Union (FSU) origin and $15.50 for FSU origin during mid 1996. However, they declined to $14.70 and $13.90, respectively, by the end of the year. Increased uranium prices continue to encourage new production and restarts of production facilities presently on standby. Australia scrapped its {open_quotes}three-mine{close_quotes} policy following the ouster of the Labor party in a March election. The move opens the way for increasing competition with Canada`s low-cost producers. Other events in the industry during 1996 that have current or potential impacts on the market include: approval of legislation outlining the ground rules for privatization of the US Enrichment Corp. (USEC) and the subsequent sales of converted Russian highly enriched uranium (HEU) from its nuclear weapons program, announcement of sales plans for converted US HEU and other surplus material through either the Department of Energy or USEC, and continuation of quotas for uranium from the FSU in the United States and Europe. In Canada, permitting activities continued on the Cigar Lake and McArthur River projects; and construction commenced on the McClean Lake mill.

Pool, T.C.

1997-03-01T23:59:59.000Z

352

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9. Summary production statistics of the U.S. uranium industry, 1993-2012" 9. Summary production statistics of the U.S. uranium industry, 1993-2012" "Item",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,"E2003",2004,2005,2006,2007,2008,2009,2010,2011,2012 "Exploration and Development" "Surface Drilling (million feet)",1.1,0.7,1.3,3,4.9,4.6,2.5,1,0.7,"W","W",1.2,1.7,2.7,5.1,5.1,3.7,4.9,6.3,7.2 "Drilling Expenditures (million dollars)1",5.7,1.1,2.6,7.2,20,18.1,7.9,5.6,2.7,"W","W",10.6,18.1,40.1,67.5,81.9,35.4,44.6,53.6,66.6 "Mine Production of Uranium" "(million pounds U3O8)",2.1,2.5,3.5,4.7,4.7,4.8,4.5,3.1,2.6,2.4,2.2,2.5,3,4.7,4.5,3.9,4.1,4.2,4.1,4.3 "Uranium Concentrate Production" "(million pounds U3O8)",3.1,3.4,6,6.3,5.6,4.7,4.6,4,2.6,2.3,2,2.3,2.7,4.1,4.5,3.9,3.7,4.2,4,4.1

353

Systematic Comparison of Operating Reserve Methodologies: Preprint  

SciTech Connect (OSTI)

Operating reserve requirements are a key component of modern power systems, and they contribute to maintaining reliable operations with minimum economic impact. No universal method exists for determining reserve requirements, thus there is a need for a thorough study and performance comparison of the different existing methodologies. Increasing penetrations of variable generation (VG) on electric power systems are posed to increase system uncertainty and variability, thus the need for additional reserve also increases. This paper presents background information on operating reserve and its relationship to VG. A consistent comparison of three methodologies to calculate regulating and flexibility reserve in systems with VG is performed.

Ibanez, E.; Krad, I.; Ela, E.

2014-04-01T23:59:59.000Z

354

SolarReserve | Open Energy Information  

Open Energy Info (EERE)

SolarReserve SolarReserve Jump to: navigation, search Name SolarReserve Place Santa Monica, California Zip 90404 Sector Renewable Energy Product A joint venture between United Technologies (NYSE: UTX) subsidiary Hamilton Sundstrand and project developer US Renewables Group (USRG) for developing STEG projects using molten salt thermal storage. References SolarReserve[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarReserve is a company located in Santa Monica, California . References ↑ "SolarReserve" Retrieved from "http://en.openei.org/w/index.php?title=SolarReserve&oldid=351420" Categories: Clean Energy Organizations Companies Organizations Stubs

355

Definition: Operating Reserve | Open Energy Information  

Open Energy Info (EERE)

Operating Reserve Operating Reserve Jump to: navigation, search Dictionary.png Operating Reserve That capability above firm system demand required to provide for regulation, load forecasting error, equipment forced and scheduled outages and local area protection. It consists of spinning and non-spinning reserve.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the largest generator plus a fraction of the peak load. The operating reserve

356

Categorical Exclusion Determinations: Strategic Petroleum Reserve Field  

Broader source: Energy.gov (indexed) [DOE]

Strategic Petroleum Reserve Strategic Petroleum Reserve Field Office Categorical Exclusion Determinations: Strategic Petroleum Reserve Field Office Categorical Exclusion Determinations issued by Strategic Petroleum Reserve Field Office. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 2013 CX-010876: Categorical Exclusion Determination Smart and Calibrated Pig Surveys of Strategic Petroleum Reserve Raw Water/Crude Oil Pipelines CX(s) Applied: B1.3 Date: 08/22/2013 Location(s): Texas, Louisiana Offices(s): Strategic Petroleum Reserve Field Office August 19, 2013 CX-010877: Categorical Exclusion Determination Clean and Inspect West Hackberry T-15 Brine Tank CX(s) Applied: B1.3 Date: 08/19/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office August 8, 2013 CX-010878: Categorical Exclusion Determination

357

Direct estimation of gas reserves using production data  

E-Print Network [OSTI]

Virginia Well A (Fetkovich, et al.8): qg versus t ............................................................ 36 4.2 West Virginia Well A (Fetkovich, et al.8): qg versus t and pwf versus t ? Production History Plot... ................................................................................... 36 4.3 West Virginia Well A (Fetkovich, et al.8): Gp versus t ........................................................... 37 4.4 West Virginia Well A (Fetkovich, et al.8): qg versus Gp ......................................................... 38...

Buba, Ibrahim Muhammad

2004-09-30T23:59:59.000Z

358

An evaluation of risk simulation models for reserve estimates  

E-Print Network [OSTI]

. Typically, economic factors such as net present worth are calculated with great accuracy, then risk is assessed simply with an adjective. This intuitive approach to decision making was acceptable in the past because the level of risk was low.... Typically, economic factors such as net present worth are calculated with great accuracy, then risk is assessed simply with an adjective. This intuitive approach to decision making was acceptable in the past because the level of risk was low...

Judah, Janeen Sue

2012-06-07T23:59:59.000Z

359

Estimating Methods  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Based on the project's scope, the purpose of the estimate, and the availability of estimating resources, the estimator can choose one or a combination of techniques when estimating an activity or project. Estimating methods, estimating indirect and direct costs, and other estimating considerations are discussed in this chapter.

1997-03-28T23:59:59.000Z

360

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6/30/1989" ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","ng_enr_coalbed_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_enr_coalbed_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida  

SciTech Connect (OSTI)

Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

1995-05-01T23:59:59.000Z

362

Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs  

E-Print Network [OSTI]

An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

Matthews, Isaac A

2010-01-01T23:59:59.000Z

363

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

364

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

365

Potential Uses of Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

366

Semiconductive Properties of Uranium Oxides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SEMICONDUCTIVE PROPERTIES OF URANIUM OXIDES SEMICONDUCTIVE PROPERTIES OF URANIUM OXIDES Thomas Meek Materials Science Engineering Department University of Tennessee Knoxville, TN 37931 Michael Hu and M. Jonathan Haire Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6179 August 2000 For the Waste Management 2001 Symposium Tucson, Arizona February 25-March 1, 2001 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________ * Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy

367

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7. Employment in the U.S. uranium production industry by state, 2003-2012" 7. Employment in the U.S. uranium production industry by state, 2003-2012" "person-years" "State(s)",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Wyoming",134,139,181,195,245,301,308,348,424,512 "Colorado and Texas",48,140,269,263,557,696,340,292,331,248 "Nebraska and New Mexico",92,102,123,160,149,160,159,134,127,"W" "Arizona, Utah, and Washington",47,40,75,120,245,360,273,281,"W","W" "Alaska, Michigan, Nevada, and South Dakota",0,0,0,16,25,30,"W","W","W","W" "California, Montana, North Dakota, Oklahoma, Oregon, and Virginia",0,0,0,0,9,17,"W","W","W","W"

368

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2008,2009,2010,2011,2012 "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

369

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 1  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation. These Appendices contain the Federal Register Notice, comments on evaluation factors, independent technical reviewers resumes, independent technical reviewers manual, and technology information packages.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

370

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 2  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

371

Depleted Uranium (DU) Cermet Waste Package  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

372

Depleted Uranium Uses Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DU Uses DU Uses Depleted Uranium Uses Research & Development A Depleted Uranium Uses Research and Development Program was initiated to explore beneficial uses of depleted uranium (DU) and other materials resulting from conversion of depleted UF6. A Depleted Uranium Uses Research and Development Program was initiated to explore the safe, beneficial use of depleted uranium and other materials resulting from conversion of depleted UF6 (e.g., fluorine and empty carbon steel cylinders) for the purposes of resource conservation and cost savings compared with disposal. This program explored the risks and benefits of several depleted uranium uses, including uses as a radiation shielding material, a catalyst, and a semi-conductor material in electronic devices.

373

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

374

Review of uranium bioassay techniques  

SciTech Connect (OSTI)

A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

Bogard, J.S.

1996-04-01T23:59:59.000Z

375

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. 0 200 400 600 800 1,000 1,200 1,400 1,600 2004 2005 2006 2007 2008

376

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network [OSTI]

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

377

Depleted uranium exposure and health effects in Gulf War veterans  

Science Journals Connector (OSTI)

...2006 research-article Depleted uranium exposure and health effects in Gulf War...Medicine) Gulf War and health. In Depleted uranium, pyridostigmine bromide...McDiarmid, M.A , Health effects of depleted uranium on exposed Gulf War...

2006-01-01T23:59:59.000Z

378

Excretion of depleted uranium by Gulf war veterans  

Science Journals Connector (OSTI)

......Dosimetry Article Excretion of depleted uranium by Gulf war veterans R. E...personnel had potential intakes of depleted uranium (DU), including shrapnel...excretion rate. Excretion of depleted uranium by Gulf War veterans. | During......

R. E. Toohey

2003-07-01T23:59:59.000Z

379

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

380

Uranium Pollution of Meat in Tien-Shan  

Science Journals Connector (OSTI)

Uranium in water, soil, fodder and food products (especially meat) was studied in areas of former Soviet uranium industry in Tien-Shan 1950–1970. Uranium environment migration was very intensive in Tien-Shan, due...

Rustam Tuhvatshin; Igor Hadjamberdiev…

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EPA Review of Standards for Uranium and Thorium Milling Facilities @ 40 CFR Parts 61 and 192.  

E-Print Network [OSTI]

will address the following seven questions: 1. Are the existing radiation dose limits in the regulations and results in estimating doses to the public from uranium recovery facilities? 6. What is known about, Part 4) *NOTE: a millirem is a unit of effective radiation dose. It is related to the amount of energy

382

Investigation of Uranium Polymorphs  

SciTech Connect (OSTI)

The UO3-water system is complex and has not been fully characterized, even though these species are common throughout the nuclear fuel cycle. As an example, most production schemes for UO3 result in a mixture of up to six or more different polymorphic phases, and small differences in these conditions will affect phase genesis that ultimately result in measureable changes to the end product. As a result, this feature of the UO3-water system may be useful as a means for determining process history. This research effort attempts to better characterize the UO3-water system with a variety of optical techniques for the purpose of developing some predictive capability for estimating process history in polymorphic phases of unknown origin. Three commercially relevant preparation methods for the production of UO3 were explored. Previously unreported low temperature routes to ?- and ?-UO3 were discovered. Raman and fluorescence spectroscopic libraries were established for pure and mixed polymorphic forms of UO3 in addition to the common hydrolysis products of UO3. An advantage of the sensitivity of optical fluorescence microscopy over XRD has been demonstrated. Preliminary aging studies of the ? and ? forms of UO3 have been conducted. In addition, development of a 3-D phase field model used to predict phase genesis of the system was initiated. Thermodynamic and structural constants that will feed the model have been gathered from the literature for most of the UO3 polymorphic phases.

Sweet, Lucas E.; Henager, Charles H.; Hu, Shenyang Y.; Johnson, Timothy J.; Meier, David E.; Peper, Shane M.; Schwantes, Jon M.

2011-08-01T23:59:59.000Z

383

Definition: Operating Reserve - Spinning | Open Energy Information  

Open Energy Info (EERE)

Reserve - Spinning Reserve - Spinning Jump to: navigation, search Dictionary.png Operating Reserve - Spinning The portion of Operating Reserve consisting of: Generation synchronized to the system and fully available to serve load within the Disturbance Recovery Period following the contingency event; or, Load fully removable from the system within the Disturbance Recovery Period following the contingency event.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the

384

FE Petroleum Reserves News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Petroleum Reserves News Petroleum Reserves News FE Petroleum Reserves News RSS March 14, 2011 DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. February 10, 2011 DOE Completes Sale of Northeast Home Heating Oil Stocks The U.S. Department of Energy today has awarded contracts to four companies who successfully bid for the purchase of 1,000,000 barrels of heating oil from the Northeast Home Heating Oil Reserve storage sites in Groton and New Haven, CT. February 3, 2011 DOE Accepts Bids for Northeast Home Heating Oil Stocks The U.S. Department of Energy (DOE) today has awarded contracts to three

385

Structural Sequestration of Uranium in Bacteriogenic Manganese...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of metal-contaminated waters (in engineered remediation technologies, for example)?" Uranium is a key contaminant of concern at US DOE sites and shuttered mining and ore...

386

Uranium Weapons Components Successfully Dismantled | National...  

National Nuclear Security Administration (NNSA)

Successfully Dismantled March 20, 2007 Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons...

387

Colorimetric detection of uranium in water  

DOE Patents [OSTI]

Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

DeVol, Timothy A. (Clemson, SC); Hixon, Amy E. (Piedmont, SC); DiPrete, David P. (Evans, GA)

2012-03-13T23:59:59.000Z

388

Adsorptive Stripping Voltammetric Measurements of Trace Uranium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurements of Trace Uranium at the Bismuth Film Electrode. Abstract: Bismuth-coated carbon-fiber electrodes have been successfully applied for adsorptive-stripping...

389

Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A...

390

US uranium mining industry: background information on economics and emissions  

SciTech Connect (OSTI)

A review of the US uranium mining industry has revealed a generally depressed industry situation. The 1982 U/sub 3/O/sub 8/ production from both open-pit and underground mines declined to 3800 and 6300 tons respectively with the underground portion representing 46% of total production. US exploration and development has continued downward in 1982. Employment in the mining and milling sectors has dropped 31% and 17% respectively in 1982. Representative forecasts were developed for reactor fuel demand and U/sub 3/O/sub 8/ production for the years 1983 and 1990. Reactor fuel demand is estimated to increase from 15,900 tons to 21,300 tons U/sub 3/O/sub 8/ respectively. U/sub 3/O/sub 8/ production, however, is estimated to decrease from 10,600 tons to 9600 tons respectively. A field examination was conducted of 29 selected underground uranium mines that represent 84% of the 1982 underground production. Data was gathered regarding population, land ownership and private property valuation. An analysis of the increased cost to production resulting from the installation of 20-meter high exhaust borehole vent stacks was conducted. An assessment was made of the current and future /sup 222/Rn emission levels for a group of 27 uranium mines. It is shown that /sup 222/Rn emission rates are increasing from 10 individual operating mines through 1990 by 1.2 to 3.8 times. But for the group of 27 mines as a whole, a reduction of total /sup 222/Rn emissions is predicted due to 17 of the mines being shutdown and sealed. The estimated total /sup 222/Rn emission rate for this group of mines will be 105 Ci/yr by year end 1983 or 70% of the 1978-79 measured rate and 124 Ci/yr by year end 1990 or 83% of the 1978-79 measured rate.

Bruno, G.A.; Dirks, J.A.; Jackson, P.O.; Young, J.K.

1984-03-01T23:59:59.000Z

391

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......chemical forms of the uranium in the body after intake...REFERENCES 1 Mould R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J...Abou-Donia M. B. Depleted and natural uranium: chemistry and toxicological......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

392

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......contaminated accidentally with uranium. INTRODUCTION Depleted uranium (DU) can affect human health via chemical and radiation...B. Teratogenicity of depleted uranium aerosols: a review from...perspective. Environ. Health (2005) 4:17-35......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

393

SRP Scientific Meeting: Depleted Uranium  

Science Journals Connector (OSTI)

London, January 2002 The meeting was organised by the SRP to review current research and discuss the use, dispersion into the environment and radiological impact of depleted uranium (DU) by the UK and US in recent military conflicts. Brian Spratt chaired the morning session of the meeting and stressed the need to gauge the actual risks involved in using DU and to balance professional opinions with public mistrust of scientists and government bodies. He asked whether more could be done by the radiation protection profession to improve communication with the media, pressure groups and the public in general. Ron Brown, of the MOD Dstl Radiological Protection Services, gave a thorough overview of the origins and properties of DU, focusing on munitions, in the UK and abroad and public concerns arising from its use in the 1991 Gulf War. He gave a brief overview of past DU munitions studies by the UK and US governments and contrasted this with the lack of hard data used to back up claims made by pressure groups. He compared the known risks of DU with other battlefield risks, e.g. biological agents, chemical attacks and vaccines, and questioned whether peacetime dose limits should apply to soldiers on the battlefield. Barry Smith, of the British Geological Survey, spoke on DU transport, pathways and exposure routes focusing on groundwater as an important example in the Former Yugoslav Republic of Kosovo. He discussed the large amount of work that has already been done on natural uranium in groundwater, with particular emphasis on its mobility within the soil and rock profile being strongly dependent on precipitation and the local geochemical conditions. Therefore, generic risk assessments will not be sufficient in gauging risks to local populations after the introduction of DU into their environment; local geochemical conditions must be taken into account. However, experiments are required to fully appreciate the extent to which DU, particularly DU:Ti alloys used in munitions, disperses into the environment in a variety of soil types. Barry outlined recent computer modelling work investigating the time taken for DU to migrate from a buried munition to a borehole in three different scenarios. The modelling revealed times from 30 years to 5 ? 109 years depending on the local geochemical environment and the depth of the DU penetrator in the soil profile. This suggests the real possibility of borehole contamination within a human lifetime in wet conditions similar to those found in Kosovo. Nick Priest, of Middlesex University, discussed methods of biological monitoring for natural and depleted uranium. The preferred method of detection is by 24 h urine sampling, with measurement of the total mass or isotopic ratios of uranium using mass spectroscopy (ICPMS). This is because uranium is only deposited in new areas of bone growth, a slow process in healthy adults, the remainder is filtered by the kidneys and excreted in urine, giving a non-invasive and rapid sample collection method. Nick also described a rapid assessment technique to look for total uranium and DU in a sample, using a multi-collector ICPMS, specifically looking at the 235U:238U ratio with 236U as a tracer to determine the total mass of uranium present and its source. The MC-ICPMS method was applied in a BBC Scotland funded study of uptakes of uranium in three populations in the Balkans during March 2001. Variable levels of DU were found in each population. The age of the subject was found to influence the excretion of natural uranium and DU to the same degree, increasing age leading to increased excretion. Overall, the levels of DU were extremely small (tens of µg), but DU was found to be present in each population investigated. The MC-ICPMS method is capable of detecting  1% DU in natural uranium and Nick intends to extend the study to include ground and drinking water samples and food in the same populations. Neil Stradling gave a talk on the contribution of the NRPB to the WHO report on DU published in April 2001. It addressed the biokinetics of inhaled uranium

David Kestell

2002-01-01T23:59:59.000Z

394

Strategic Petroleum Reserve Receives Prestigious Environmental Award |  

Broader source: Energy.gov (indexed) [DOE]

Strategic Petroleum Reserve Receives Prestigious Environmental Strategic Petroleum Reserve Receives Prestigious Environmental Award Strategic Petroleum Reserve Receives Prestigious Environmental Award September 22, 2009 - 1:00pm Addthis Washington, DC - The Department of Energy's Office of Fossil Energy (FE) announced today that the Strategic Petroleum Reserve (SPR) has received the Most Valuable Pollution Prevention Project (MVP2) award from the National Pollution Prevention Roundtable for lowering potential greenhouse gas emissions. This is the first time the SPR has captured the award for its commitment to pollution prevention, focusing on innovation, measurable results, transferability, commitment, and optimization of available project resources. "This is another example of the hard work and dedication by employees at

395

Strategic Petroleum Reserve Receives Prestigious Environmental Award |  

Broader source: Energy.gov (indexed) [DOE]

Strategic Petroleum Reserve Receives Prestigious Environmental Strategic Petroleum Reserve Receives Prestigious Environmental Award Strategic Petroleum Reserve Receives Prestigious Environmental Award September 22, 2009 - 1:00pm Addthis Washington, DC - The Department of Energy's Office of Fossil Energy (FE) announced today that the Strategic Petroleum Reserve (SPR) has received the Most Valuable Pollution Prevention Project (MVP2) award from the National Pollution Prevention Roundtable for lowering potential greenhouse gas emissions. This is the first time the SPR has captured the award for its commitment to pollution prevention, focusing on innovation, measurable results, transferability, commitment, and optimization of available project resources. "This is another example of the hard work and dedication by employees at

396

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2012,"6301979" ,"Release...

397

,"New York Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Proved Reserves",10,"Annual",2013,"6301977" ,"Release Date:","124...

398

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2013,"6301979" ,"Release...

399

,"New Mexico Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301977" ,"Release Date:","410...

400

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013...

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"California State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release...

402

,"California Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301977" ,"Release Date:","4...

403

Miscellaneous States Coalbed Methane Proved Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Decreases (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

404

,"Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

405

,"Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

406

,"California - Coastal Region Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

407

,"New York Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301977" ,"Release Date:","410...

408

Loan Loss Reserve Fund Program Development  

Broader source: Energy.gov [DOE]

Typically, grantees will work with interested parties or partners to develop a clean energy loan and a loan loss reserve fund program that involves the following steps:

409

Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on...

410

Legacy Management Work Progresses on Defense-Related Uranium...  

Broader source: Energy.gov (indexed) [DOE]

Most recently, LM visited 84 defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global...

411

Secretarial Determination for the Sale or Transfer of Uranium...  

Broader source: Energy.gov (indexed) [DOE]

of Uranium.pdf More Documents & Publications Secretarial Determination Pursuant to USEC Privatization Act for the Sale or Transfer of Low-Enriched Uranium Secretarial...

412

Secretarial Determination of No Adverse Material Impact for Uranium...  

Energy Savers [EERE]

5-15-14.pdf More Documents & Publications Excess Uranium Inventory Management Plan 2008 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the...

413

President Truman Increases Production of Uranium and Plutonium...  

National Nuclear Security Administration (NNSA)

Uranium and Plutonium Washington, DC President Truman approves a 1.4 billion expansion of Atomic Energy Commission facilities to produce uranium and plutonium for nuclear weapons...

414

Editorial - Depleted Uranium: A Problem of Perception rather than Reality  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Editorial Editorial - Depleted Uranium: A Problem of Perception rather than Reality R. L. Kathren Depleted uranium: a problem of perception rather than reality......

R. L. Kathren

2001-05-01T23:59:59.000Z

415

Modeling of Depleted Uranium Transport in Subsurface Systems  

Science Journals Connector (OSTI)

Groundwater and soil contamination with depleted uranium (DU) isan important public concern because ... four extremecases of climate and existing conditions of uranium penetrator fragments. The simulations demons...

J. Paul Chen; Sotira Yiacoumi

2002-10-01T23:59:59.000Z

416

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

417

3rd Quarter 2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " U.S. Energy Information Administration 3rd Quarter 2014 Domestic Uranium Production Report...

418

Microbial Reduction of Uranium under Iron- and Sulfate-reducing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranium under Iron- and Sulfate-reducing Conditions: Effect of Amended Goethite on Microbial Community Microbial Reduction of Uranium under Iron- and Sulfate-reducing Conditions:...

419

Radon attenuation handbook for uranium mill tailings cover design  

SciTech Connect (OSTI)

This handbook has been prepared to facilitate the design of earthen covers to control radon emission from uranium mill tailings. Radon emissions from bare and covered uranium mill tailings can be estimated from equations based on diffusion theory. Basic equations are presented for calculating surface radon fluxes from covered tailings, or alternately, the cover thicknesses required to satisfy a given radon flux criterion. Also described is a computer code, RAECOM, for calculating cover thicknesses and surface fluxes. Methods are also described for measuring diffusion coefficients for radon, or for estimating them from empirical correlations. Since long-term soil moisture content is a critical parameter in determining the value of the diffusion coefficient, methods are given for estimating the long-term moisture contents of soils. The effects of cover defects or advection are also discussed and guidelines are given for determining if they are significant. For most practical cases, advection and cover defect effects on radon flux can be neglected. Several examples are given to demonstrate cover design calculations, and an extensive list of references is included. 63 references, 18 figures, 6 tables.

Rogers, V.C.; Nielson, K.K.; Kalkwarf, D.R.

1984-04-01T23:59:59.000Z

420

Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation  

E-Print Network [OSTI]

1 Introduction to the Oak Ridge Reservation 1-1 1. Introduction to the Oak Ridge Reservation The Oak Ridge Reservation (ORR) is a 13,560 ha (33,508-acre) federally owned site located in the counties components, the Oak Ridge National Laboratory (ORNL) and the Y-12 National Security Complex (Y-12 Complex

Pennycook, Steve

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Disposition of excess highly enriched uranium status and update  

SciTech Connect (OSTI)

This paper presents the status of the US DOE program charged with the disposition of excess highly enriched uranium (HEU). Approximately 174 metric tonnes of HEU, with varying assays above 20 percent, has been declared excess from US nuclear weapons. A progress report on the identification and characterization of specific batches of excess HEU is provided, and plans for processing it into commercial nuclear fuel or low-level radioactive waste are described. The resultant quantities of low enriched fuel material expected from processing are given, as well as the estimated schedule for introducing the material into the commercial reactor fuel market. 2 figs., 3 tabs.

Williams, C.K. III; Arbital, J.G.

1997-09-01T23:59:59.000Z

422

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect (OSTI)

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

423

An example of realization of Gis ecological maps derived from Ellenberg indicators in the Biological Reserve of Doñana National Park (Spain)  

Science Journals Connector (OSTI)

This study is focussed on the Biological Reserve of Doñana (Spain) where a first application of Ellenberg’s indicators has been attempted on dune vegetation. Ellenberg indicators have been estimated for specie...

Anna Testi; Elisabetta Cara; Giuliano Fanelli

2007-03-01T23:59:59.000Z

424

Design, production, and evaluation of a zircaloy-clad uranium target for an intense pulsed neutron source application  

SciTech Connect (OSTI)

The design of a Zircaloy-2-clad uranium alloy (450 ppm carbon, 250 ppm iron, 350 ppm silicon) target that can function as a pulsed spallation neutron source on interaction of a pulsed 500-MeV proton beam with the uranium nuclei is determined by consideration of irradiation damage, energy deposition, and thermal cycling effects in the target. The designed target is comprised of eight watercooled Zircaloy-2-clad uranium alloy disks, 10 cm in diameter and 2.7 cm thick operating at a maximum uranium alloy centerline temperature of 330/sup 0/C. The production of the Zircaloy-2-clad uranium alloy disks involves remelting of the cast uranium alloy by the consumable electrode technique and bonding of the Zircaloy-2 to the uranium alloy by subjecting the composite to an isostatic-helium pressure at 840/sup 0/C. The lifetime of the disks in the target before cracking of the Zircaloy-2 cladding owing to lowfrequency thermal cycling fatigue is estimated from stress calculations to be about 500 days. The results of thermal cycling tests on a disk tend to confirm the results of the stress calculations.

Loomis, B.A.; Fogle, G.L.; Gerber, S.B.; Thresh, H.R.

1981-12-01T23:59:59.000Z

425

Energy Information Administration survey of national oil and gas reserves  

SciTech Connect (OSTI)

A description is given of the reserves estimation program of the Energy Information Administration (EIA). EIA sends survey forms to the top 500 operators in the United States and to about 750 small operators who account for significant amounts of production within selected states. An 8% random sample is taken of the remaining small operators. Data are presented which compare the findings of EIA with those of the American Petroleum Institute and the American Gas Association for 1977, 1978, and 1979. 21 figures. (JMT)

Boyd, E.R.

1981-06-01T23:59:59.000Z

426

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...poses virtually no cancer risk. Moreover, Danesi's...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...

Richard Stone

2002-09-13T23:59:59.000Z

427

IPNS enriched uranium booster target  

SciTech Connect (OSTI)

Since startup in 1981, IPNS has operated on a fully depleted /sup 238/U target. With the booster as in the present system, high energy protons accelerated to 450 MeV by the Rapid Cycling Synchrotron are directed at the target and by mechanisms of spallation and fission of the uranium, produce fast neutrons. The neutrons from the target pass into adjacent moderator where they slow down to energies useful for spectroscopy. The target cooling systems and monitoring systems have operated very reliably and safely during this period. To provide higher neutron intensity, we have developed plans for an enriched uranium (booster) target. HETC-VIM calculations indicate that the target will produce approx.90 kW of heat, with a nominal x5 gain (k/sub eff/ = 0.80). The neutron beam intensity gain will be a factor of approx.3. Thermal-hydraulic and heat transport calculations indicate that approx.1/2 in. thick /sup 235/U discs are subject to about the same temperatures as the present /sup 238/U 1 in. thick discs. The coolant will be light demineralized water (H/sub 2/O) and the coolant flow rate must be doubled. The broadening of the fast neutron pulse width should not seriously affect the neutron scattering experiments. Delayed neutrons will appear at a level about 3% of the total (currently approx.0.5%). This may affect backgrounds in some experiments, so that we are assessing measures to control and correct for this (e.g., beam tube choppers). Safety analyses and neutronic calculations are nearing completion. Construction of the /sup 235/U discs at the ORNL Y-12 facility is scheduled to begin late 1985. The completion of the booster target and operation are scheduled for late 1986. No enriched uranium target assembly operating at the projected power level now exists in the world. This effort thus represents an important technological experiment as well as being a ''flux enhancer''.

Schulke, A.W. Jr.

1985-01-01T23:59:59.000Z

428

Uranium in prehistoric Indian pottery  

E-Print Network [OSTI]

present in the sample, and the cross l section of the process (the measure of the probability of a neutron interacting with an uranium atom), In general, a daughter product 235 of U fission is analyzed on a detector which counts either gamma rays... for quantitative analysis of various elements on archaeological artifacts, Manganese has been determined in Mesoamerican pot sherds (Bennyhoff and Heizer 1965). A Pu-Be radioisotope neutron source with a flux of 4 x 10 4 -2 -1 neutrons cm sec was used...

Filberth, Ernest William

2012-06-07T23:59:59.000Z

429

Price Competitive Sale of Strategic Petroleum Reserve Petroleum...  

Energy Savers [EERE]

Price Competitive Sale of Strategic Petroleum Reserve Petroleum; Standard Sales Provisions; Final Rule Price Competitive Sale of Strategic Petroleum Reserve Petroleum; Standard...

430

2013 Annual Planning Summary for the Strategic Petroleum Reserve  

Broader source: Energy.gov [DOE]

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Strategic Petroleum Reserve. The Strategic Petroleum Reserve's APS was...

431

Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

432

Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves in Nonproducing Reservoirs (Million Barrels) Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

433

Colorado Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Colorado Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

434

Oak Ridge Reservation Emergency Sectors Changing | Y-12 National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oak Ridge Reservation ... Oak Ridge Reservation Emergency Sectors Changing Posted: March 11, 2014 - 12:23pm OAK RIDGE, Tenn. - On March 12, the Tennessee Emergency Management...

435

Recommendation 208 : Use White Paper on Oak Ridge Reservation...  

Office of Environmental Management (EM)

8 : Use White Paper on Oak Ridge Reservation Recommendation 208 : Use White Paper on Oak Ridge Reservation The ORSSAB approved the enclosed recommendation suggesting DOE Oak Ridge...

436

Oak Ridge Reservation Needs Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Reservation Needs Assessment Oak Ridge Reservation Needs Assessment December 1997 This Needs Assessment for former Oak Ridge National Laboratory and Y-12 Nuclear Security...

437

Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

438

DOE - Office of Legacy Management -- Naval Oil Shale Reserves...  

Office of Legacy Management (LM)

Oil Shale Reserves Site - 013 FUSRAP Considered Sites Site: Naval Oil Shale Reserves Site (013 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

439

New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade...

440

New Mexico Nonassociated Natural Gas, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) New Mexico Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0...

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

New Mexico Natural Gas Wet After Lease Separation, Reserves in...  

U.S. Energy Information Administration (EIA) Indexed Site

After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) New Mexico Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion...

442

Federal Offshore--California Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

443

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

444

U.S. Crude Oil plus Lease Condensate Proved Reserves  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reserves, Reserves Changes, and Production (Million Barrels) Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL...

445

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

446

Louisiana--State Offshore Crude Oil Reserves in Nonproducing...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

447

Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

448

Federal Offshore--Louisiana and Alabama Crude Oil Reserves in...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade...

449

Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

450

Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

451

California--State Offshore Crude Oil Reserves in Nonproducing...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

452

California State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas Plant Liquids, Proved Reserves (Million Barrels) California State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

453

California--State Offshore Nonassociated Natural Gas, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) California--State Offshore Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet...

454

Florida Dry Natural Gas Reserves Acquisitions (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Dry Natural Gas Reserves Acquisitions Florida Dry Natural Gas Proved Reserves Dry Natural Gas Proved...

455

California (with State off) Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 California Coalbed Methane Proved Reserves,...

456

Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves,...

457

Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Michigan Coalbed Methane Proved Reserves,...

458

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

459

Texas (with State Offshore) Coalbed Methane Proved Reserves ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0...

460

,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Mississippi (with State off) Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Mississippi Coalbed Methane Proved Reserves,...

462

,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

463

,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

464

Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

465

Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

466

California (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

467

Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

468

Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

469

Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

470

Draft "Michigan Saves" Loan Loss Reserve Fund Agreement  

Broader source: Energy.gov [DOE]

A sample loan loss reserve agreement between a state or local government and a financial institution setting the terms and conditions of the loan loss reserve fund.

471

New Approach to Determine the Need for Operating Reserves in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Approach to Determine the Need for Operating Reserves in Electricity Markets with Wind Power New Approach to Determine the Need for Operating Reserves in Electricity Markets...

472

DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition...  

Energy Savers [EERE]

to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 January 2, 2009 -...

473

Filling the Strategic Petroleum Reserve | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Filling the Strategic Petroleum Reserve Established in 1975 in the aftermath of the OPEC oil embargo, the Strategic Petroleum Reserve was originally intended to hold at least 750...

474

Overview of Depleted Uranium Hexafluoride Management Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

475

National Uranium Resource Evaluation, Tonopah quadrangle, Nevada  

SciTech Connect (OSTI)

The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas.

Hurley, B W; Parker, D P

1982-04-01T23:59:59.000Z

476

CONFERENCE ROOMS CONFERENCE ROOMS FOR RESERVATION  

E-Print Network [OSTI]

CONFERENCE M0700 BASEMENT CONFERENCE ROOMS CONFERENCE M0720 HRCMEB CONFERENCE M0390 CONFERENCE ROOMS FOR RESERVATION INFORMAL MEETING SPACE TBRC CLASSROOM SPACE #12;CONFERENCE H1210 CONFERENCE H1320 HRC MEB INFORMAL MEETING SPACE CONFERENCE ROOMS FOR RESERVATION TBRC LOUNGE C1068 LOUNGE C1050 LOUNGE

477

AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions |  

Open Energy Info (EERE)

End-of-Year Reserves and Annual Reserve Additions End-of-Year Reserves and Annual Reserve Additions Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA end-of-year reserves gas oil Data application/vnd.ms-excel icon AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions- Reference Case (xls, 58.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

478

Preliminary screening of contaminants in the off-site surface water environment downstream of the US Department of Energy Oak Ridge Reservation. Environmental Restoration Program  

SciTech Connect (OSTI)

Previously reported concentrations of radionuclides and of inorganic and organic compounds in the surface water environment off-site of the US Department of Energy/Oak Ridge Reservation (DOE/ORR) suggest the presence of a large number of substances of possible concern to the protection of human health and the ecosystem. Screening of these data, as part of the initial scoping phase of the Clinch River Resource Conservation and Recovery Act Facility Investigation, is necessary to develop a field sampling plan for the acquisition of additional data through the identification of potential contaminants of concern for further evaluation and investigation. The results of this report are based on human health risk end points. For the purposes of screening, conservative and nonconservative estimates of potential maximum exposures were used to identify, respectively, definitely low- and definitely high-priority pollutants. Because of relatively high concentrations of contaminants in sediment, the presence of industrial and agricultural wastes not related to DOE/ORR operations, and the use of a lifetime risk for carcinogens of 10{sup {minus}6} as a lower screening criterion, no surface water reach considered in this study was identified as low priority. In contrast to this result, three contaminants, arsenic in water and thallium in fish of McCoy Branch and {sup 137}Cs in the sediment of the White Oak Creek embayment downstream from White Oak Lake, were tentatively identified as definitely high-priority substances. These locations are within the boundaries of ORR. Nonconservative estimates of exposure identified arsenic, antimony, thallium, uranium, polychlorinated biphenyls 1254 and 1260, chlordane, {sup 60}Co, and {sup 234}Pa as potentially high-priority contaminants in at least one or more locations. These are the contaminants that should receive the most scrutiny in future investigations.

Hoffman, F.O.; Blaylock, B.G.; Frank, M.L.; Etnier, E.L.; Talmage, S.S. [Oak Ridge National Lab., TN (United States); Hook, L.A. [Science Applications International Corp., Oak Ridge, TN (United States)

1991-11-01T23:59:59.000Z

479

Preliminary screening of contaminants in the off-site surface water environment downstream of the US Department of Energy Oak Ridge Reservation  

SciTech Connect (OSTI)

Previously reported concentrations of radionuclides and of inorganic and organic compounds in the surface water environment off-site of the US Department of Energy/Oak Ridge Reservation (DOE/ORR) suggest the presence of a large number of substances of possible concern to the protection of human health and the ecosystem. Screening of these data, as part of the initial scoping phase of the Clinch River Resource Conservation and Recovery Act Facility Investigation, is necessary to develop a field sampling plan for the acquisition of additional data through the identification of potential contaminants of concern for further evaluation and investigation. The results of this report are based on human health risk end points. For the purposes of screening, conservative and nonconservative estimates of potential maximum exposures were used to identify, respectively, definitely low- and definitely high-priority pollutants. Because of relatively high concentrations of contaminants in sediment, the presence of industrial and agricultural wastes not related to DOE/ORR operations, and the use of a lifetime risk for carcinogens of 10{sup {minus}6} as a lower screening criterion, no surface water reach considered in this study was identified as low priority. In contrast to this result, three contaminants, arsenic in water and thallium in fish of McCoy Branch and {sup 137}Cs in the sediment of the White Oak Creek embayment downstream from White Oak Lake, were tentatively identified as definitely high-priority substances. These locations are within the boundaries of ORR. Nonconservative estimates of exposure identified arsenic, antimony, thallium, uranium, polychlorinated biphenyls 1254 and 1260, chlordane, {sup 60}Co, and {sup 234}Pa as potentially high-priority contaminants in at least one or more locations. These are the contaminants that should receive the most scrutiny in future investigations.

Hoffman, F.O.; Blaylock, B.G.; Frank, M.L.; Etnier, E.L.; Talmage, S.S. (Oak Ridge National Lab., TN (United States)); Hook, L.A. (Science Applications International Corp., Oak Ridge, TN (United States))

1991-11-01T23:59:59.000Z

480

Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor  

SciTech Connect (OSTI)

An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.

Ilas, Germina [ORNL; Primm, Trent [ORNL

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium reserve estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FE Petroleum Reserves News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Petroleum Reserves News Petroleum Reserves News FE Petroleum Reserves News RSS April 10, 2013 President Requests $638.0 Million for Fossil Energy Programs President Obama's FY 2014 budget seeks $638.0 million for the Office of Fossil Energy (FE) to advance technologies related to the reliable, efficient, affordable and environmentally sound use of fossil fuels as well as manage the Strategic Petroleum Reserve and Northeast Home Heating Oil Reserve to provide strategic and economic security against disruptions in U.S. oil supplies. November 9, 2012 Energy Department Provides Additional Emergency Fuel Loan to Department of Defense as Part of Hurricane Sandy and Nor'easter Recovery As part of the government-wide response and recovery effort for Hurricane Sandy and the Nor'easter, the Energy Department is providing the

482

Massachusetts Military Reservation | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Military Reservation Massachusetts Military Reservation Jump to: navigation, search Name Massachusetts Military Reservation Facility Massachusetts Military Reservation Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Air Force Center for Engineering & the Environment Energy Purchaser Air Force Center for Engineering & the Environment Location Massachusetts Military Reservation MA Coordinates 41.690386°, -70.550108° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.690386,"lon":-70.550108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Definition: Contingency Reserve | Open Energy Information  

Open Energy Info (EERE)

Contingency Reserve Contingency Reserve Jump to: navigation, search Dictionary.png Contingency Reserve The provision of capacity deployed by the Balancing Authority to meet the Disturbance Control Standard (DCS) and other NERC and Regional Reliability Organization contingency requirements.[1] Also Known As replacement reserve Related Terms Disturbance Control Standard, Balancing Authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Contingency_Reserve&oldid=502577" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link

484

Treatment of Uranium and Plutonium Solutions Generated in the Atalante Facility, France - 12004  

SciTech Connect (OSTI)

The Atalante complex operated by the French Alternative Energies and Atomic Energy Commission (CEA) at the Rhone Valley Research Center consolidates research programs on actinide chemistry, especially separation chemistry, processing for recycling spent fuel, and fabrication of actinide targets for innovative concepts in future nuclear systems. The design of future systems (Generation IV reactors, material recycling) will increase the uranium and plutonium flows in the facility, making it important to anticipate the stepped-up activity and provide Atalante with equipment dedicated to processing these solutions to obtain a mixed uranium-plutonium oxide that will be stored pending reuse. Ongoing studies for integral recycling of the actinides have highlighted the need for reserving equipment to produce actinides mixed oxide powder and also minor actinides bearing oxide for R and D purpose. To meet this double objective a new shielded line should be built in the facility and should be operational 6 years after go decision. The main functions of the new unit would be to receive, concentrate and store solutions, purify them, ensure group conversion of actinides and conversion of excess uranium. This new unit will be constructed in a completely refurbished building devoted to subcritical and safe geometry of the process equipments. (author)

Lagrave, Herve [French Alternative Energies and Atomic Energy Commission - CEA, Rhone Valley Research Center, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France)

2012-07-01T23:59:59.000Z

485

DOE hands over uranium enrichment duties to government corporation  

SciTech Connect (OSTI)

In an effort to renew the United States' competitiveness in the world market for uranium enrichment services, the Department of Energy (DOE) is turning over control of its Paducah, KY, and Portsmouth, OH, enrichment facilities to a for-profit organization, the United States Enrichment Corp. (USEC), which was created by last year's Energy Policy Act. William H. Timbers, Jr., a former investment banker who was appointed acting CEO in March, said the Act's mandate will mean more competitive prices for enriched reactor fuel and greater responsiveness to utility customers. As a government corporation, USEC, with current annual revenues estimated at $1.5 billion, will no longer be part of the federal budget appropriations process, but will use business management techniques, set market-based prices for enriched uranium, and pay annual dividends to the US Treasury-its sole stockholder-from earnings. The goal is to finish privatizing the corporation within two years, and to sell its stock to investors for an estimated $1 to $3 billion. USEC's success will depend in part on developing short- and long-term marketing plants to help stanch the flow of enriched-uranium customers to foreign suppliers. (DOE already has received notice from a number of US utilities that they want to be let out of their long-term enrichment contracts as they expire over the next several years).USEC's plans likely will include exploring new joint ventures with other businesses in the nuclear fuel cycle-such as suppliers, fabricators, and converters-and offering a broader range of enrichment services than DOE provided. The corporation will have to be responsive to utilities on an individual basis.

Simpson, J.

1993-07-15T23:59:59.000Z

486

Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration  

SciTech Connect (OSTI)

To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

Francis, C. W.

1993-09-01T23:59:59.000Z

487

Reassessment of individual dosimetry of long-lived alpha radionuclides of uranium miners through experimental determination of urinary excretion of uranium  

Science Journals Connector (OSTI)

......iranium in urine of uranium miners as a tool for...230Th in excreta of uranium mill crushermen. Health Phys. (1983) 45...Measurement of daily urinary uranium excretion in German...potential intakes of depleted uranium(DU). Sci......

I. Malátová; V. Becková; L. Tomásek; M. Slezáková-Marusiaková; J. Hulka

2013-04-01T23:59:59.000Z

488

FAQ 3-What are the common forms of uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are the common forms of uranium? are the common forms of uranium? What are the common forms of uranium? Uranium can take many chemical forms. In nature, uranium is generally found as an oxide, such as in the olive-green-colored mineral pitchblende. Uranium oxide is also the chemical form most often used for nuclear fuel. Uranium-fluorine compounds are also common in uranium processing, with uranium hexafluoride (UF6) and uranium tetrafluoride (UF4) being the two most common. In its pure form, uranium is a silver-colored metal. The most common forms of uranium oxide are U3O8 and UO2. Both oxide forms have low solubility in water and are relatively stable over a wide range of environmental conditions. Triuranium octaoxide (U3O8) is the most stable form of uranium and is the form most commonly found in nature. Uranium dioxide (UO2) is the form in which uranium is most commonly used as a nuclear reactor fuel. At ambient temperatures, UO2 will gradually convert to U3O8. Because of their stability, uranium oxides are generally considered the preferred chemical form for storage or disposal.

489

Spatial analysis techniques applied to uranium prospecting in Chihuahua State, Mexico  

Science Journals Connector (OSTI)

To estimate the distribution of uranium minerals in Chihuahua the advanced statistical model "Maximun Entropy Method" (MaxEnt) was applied. A distinguishing feature of this method is that it can fit more complex models in case of small datasets (x and y data) as is the location of uranium ores in the State of Chihuahua. For georeferencing uranium ores a database from the United States Geological Survey and workgroup of experts in Mexico was used. The main contribution of this paper is the proposal of maximum entropy techniques to obtain the mineral's potential distribution. For this model were used 24 environmental layers like topography gravimetry climate (worldclim) soil properties and others that were useful to project the uranium's distribution across the study area. For the validation of the places predicted by the model comparisons were done with other research of the Mexican Service of Geological Survey with direct exploration of specific areas and by talks with former exploration workers of the enterprise "Uranio de Mexico". Results. New uranium areas predicted by the model were validated finding some relationship between the model predictions and geological faults. Conclusions. Modeling by spatial analysis provides additional information to the energy and mineral resources sectors.

2014-01-01T23:59:59.000Z

490

Final disposal options for mercury/uranium mixed wastes from the Oak Ridge Reservation  

SciTech Connect (OSTI)

Laboratory testing was completed on chemical stabilization and physical encapsulation methods that are applicable (to comply with federal and state regulations) to the final disposal of both hazardous and mixed hazardous elemental mercury waste that is in either of the following categories: (1) waste generated during decontamination and decommissioning (D and D) activities on mercury-contaminated buildings, such as Building 9201-4 at the Oak Ridge Y-12 Plant, or (2) waste stored and regulated under either the Federal Facilities Compliance Agreement or the Federal Facilities Compliance Act. Methods were used that produced copper-mercury, zinc-mercury, and sulfur-mercury materials at room temperature by dry mixing techniques. Toxicity Characteristic Leaching Procedure (TCLP) results for mercury on batches of both the copper-mercury and the sulfur-mercury amalgams consistently produced leachates with less than the 0.2-mg/L Resource Conservation and Recovery Act (RCRA) regulatory limit for mercury. The results clearly showed that the reaction of mercury with sulfur at room temperature produces black mercuric sulfide, a material that is well suited for land disposal. The results also showed that the copper-mercury and zinc-mercury amalgams had major adverse properties that make them undesirable for land disposal. In particular, they reacted readily in air to form oxides and liberate elemental mercury. Another major finding of this study is that sulfur polymer cement is potentially useful as a physical encapsulating agent for mercuric sulfide. This material provides a barrier in addition to the chemical stabilization that further prevents mercury, in the form of mercuric sulfide, from migrating into the environment.

Gorin, A.H.; Leckey, J.H.; Nulf, L.E.

1994-08-29T23:59:59.000Z

491

Shale Natural Gas Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 View History U.S. 23,304 34,428 60,644 97,449 131,616 2007-2011 Alaska 0 0 0 0 0 2007-2011 Lower 48 States 23,304 34,428 60,644 97,449 131,616 2007-2011 Alabama 1 2 0 0 2007-2010 Arkansas 1,460 3,833 9,070 12,526 14,808 2007-2011 California 855 2011-2011 San Joaquin Basin Onshore 855 2011-2011 Colorado 0 0 4 4 10 2007-2011 Kentucky

492

Lease Condensate Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 1,339 1,495 1,433 1,633 1,914 2,406 1979-2011 Federal Offshore U.S. 254 255 227 228 214 195 1981-2011 Pacific (California) 4 4 0 2 2 2 1979-2011 Louisiana & Alabama 185 163 151 134 129 129 1981-2011 Texas 65 88 76 92 83 64 1981-2011 Alaska 0 0 0 0 0 36 1979-2011 Lower 48 States 1,339 1,495 1,433 1,633 1,914 2,370 1979-2011

493

Coalbed Methane Proved Reserves as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 19,620 21,874 20,798 18,578 17,508 16,817 1989-2011 Federal Offshore U.S. 0 0 0 0 0 0 2005-2011 Pacific (California) 0 0 0 0 0 0 2005-2011 Louisiana & Alabama 0 0 0 0 0 0 2005-2011 Texas 0 0 0 0 0 0 2005-2011 Alaska 0 0 0 0 0 0 2005-2011 Lower 48 States 19,620 21,874 20,798 18,578 17,508 16,817 2005-2011

494

Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 29,640 32,668 29,023 33,383 35,746 42,823 1979-2011 Federal Offshore U.S. 4,835 4,780 5,106 5,223 5,204 5,446 1990-2011 Pacific (California) 756 752 702 731 722 711 1979-2011 Louisiana & Alabama 3,701 3,651 3,939 3,863 3,793 4,196 1981-2011 Texas 378 377 465 629 689 539 1981-2011 Alaska 8,886 10,752 6,627 8,093 7,896 8,535 1979-2011

495

Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History U.S. 190,776 215,121 226,012 250,496 281,901 305,986 1979-2011 Federal Offshore U.S. 10,915 10,033 8,786 7,633 6,916 5,374 1990-2011 Pacific (California) 55 53 3 9 3 0 1979-2011 Louisiana & Alabama 8,500 7,807 6,846 5,802 5,457 4,359 1981-2011 Texas 2,360 2,173 1,937 1,822 1,456 1,015 1981-2011 Alaska 1,447 1,270 1,139 1,090 1,021 976 1979-2011

496

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars) 1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 (million pounds U 3 O 8 ) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 (million pounds U 3 O 8 ) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1 (million pounds U 3 O 8 ) 3.4 6.3 5.5 6.0 5.8 4.9 5.5 3.2 2.2 3.8 1.6 2.3 2.7 3.8 4.0 4.1 3.6 5.1 4.0 3.9 (person-years) 871 980 1,107 1,118 1,097 1,120 848 627 423 426 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196

497

Carbonate Leaching of Uranium from Contaminated Soils  

Science Journals Connector (OSTI)

Uranium (U) was successfully removed from contaminated soils from the Fernald Environmental Management Project (FEMP) site near Fernald, Ohio. ... The concentrations of uranium and other metals in the effluent were analyzed using a Varian Liberty 200 inductively coupled plasma atomic emission spectrophotometer (ICP-AES) or a kinetic phosphorescence analyzer (KPA). ... When 30% hydrogen peroxide (H2O2) was added prior to the carbonate solution, no increase in the removal of uranium was detected (data not shown) due to effervescence with heating, liberating carbon dioxide, and thus preventing uniform distribution of H2O2. ...

C. F. V. Mason; W. R. J. R. Turney; B. M. Thomson; N. Lu; P. A. Longmire; C. J. Chisholm-Brause

1997-09-30T23:59:59.000Z

498

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect (OSTI)

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

499

Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths  

E-Print Network [OSTI]

problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactiveMB. (2004). Depleted and natural uranium: chemistry and

Hwang, Chiachi

2009-01-01T23:59:59.000Z

500

Estimating exposure of terrestrial wildlife to contaminants  

SciTech Connect (OSTI)

This report describes generalized models for the estimation of contaminant exposure experienced by wildlife on the Oak Ridge Reservation. The primary exposure pathway considered is oral ingestion, e.g. the consumption of contaminated food, water, or soil. Exposure through dermal absorption and inhalation are special cases and are not considered hereIN. Because wildlife mobile and generally consume diverse diets and because environmental contamination is not spatial homogeneous, factors to account for variation in diet, movement, and contaminant distribution have been incorporated into the models. To facilitate the use and application of the models, life history parameters necessary to estimate exposure are summarized for 15 common wildlife species. Finally, to display the application of the models, exposure estimates were calculated for four species using data from a source operable unit on the Oak Ridge Reservation.

Sample, B.E.; Suter, G.W. II

1994-09-01T23:59:59.000Z