Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Summary Production Statistics of the U.S. Uranium Industry ...  

U.S. Energy Information Administration (EIA)

Domestic Uranium Production Report presents information Operating Status of U.S. Uranium Expenditures, 2003-2005. ... Mine Production of Uranium

2

Uranium industry annual 1996  

SciTech Connect

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

3

Uranium Industry Annual, 1992  

Science Conference Proceedings (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

4

Uranium industry annual 1998  

SciTech Connect

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

5

Uranium industry annual 1994  

SciTech Connect

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

6

Uranium industry annual 1995  

SciTech Connect

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

7

Uranium industry annual 1997  

SciTech Connect

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

8

Uranium industry annual 1993  

SciTech Connect

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

9

U.S. uranium production industry employment, 1993-2011  

Gasoline and Diesel Fuel Update (EIA)

Nuclear & Uranium - U.S. Energy Information Administration (EIA) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent...

10

Domestic Uranium Production Report  

Annual Energy Outlook 2012 (EIA)

6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

11

Status of domestic uranium industry  

Science Conference Proceedings (OSTI)

The domestic uranium industry continues to operate at a reduced level, due to low prices and increased foreign competition. For four years (1984-1987) the Secretary of Energy declared the industry to be nonviable. A similar declaration is expected for 1988. Exploration and development drilling, at the rate of 2 million ft/year, continue in areas of producing mines and recent discoveries, especially in northwestern Arizona, northwestern Nebraska, south Texas, Wyoming, and the Paradox basin of Colorado and Utah. Production of uranium concentrate continues at a rate of 13 to 15 million lb of uranium oxide (U{sub 3}O{sub 8}) per year. Conventional mining in New Mexico, Arizona, Utah, Colorado, Wyoming, and Texas accounts for approximately 55% of the production. The remaining 45% comes from solution (in situ) mining, from mine water recovery, and as by-products from copper production and the manufacture of phosphoric acid. Solution mining is an important technique in Wyoming, Nebraska, and Texas. By-product production comes from phosphate plants in Florida and Louisiana and a copper mine in Utah. Unmined deposits in areas such as the Grants, New Mexico, district are being investigated for their application to solution mining technology. The discovered uranium resources in the US are quite large, and the potential to discover additional resources is excellent. However, higher prices and a strong market will be necessary for their exploitation.

Chenoweth, W.L.

1989-09-01T23:59:59.000Z

12

Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA)

Home > Nuclear > Domestic Uranium Production Report Domestic Uranium Production Report Data for: 2005 Release Date: May 15, 2006 Next Release: May 15, 2007

13

PRODUCTION OF URANIUM TETRACHLORIDE  

DOE Patents (OSTI)

A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

Calkins, V.P.

1958-12-16T23:59:59.000Z

14

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

9. Summary production statistics of the U.S. uranium industry, 1993-2012 9. Summary production statistics of the U.S. uranium industry, 1993-2012 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Exploration and Development Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars)1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 Mine Production of Uranium (million pounds U3O8) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 Uranium Concentrate Production (million pounds U3O8) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1

15

PRODUCTION OF PURIFIED URANIUM  

DOE Patents (OSTI)

A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

1960-01-26T23:59:59.000Z

16

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report"...

17

PRODUCTION OF URANIUM  

DOE Patents (OSTI)

The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.

Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

1958-04-15T23:59:59.000Z

18

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA)

udrilling 2012 Domestic Uranium Production Report Next Release Date: May 2014 Table 1. U.S. uranium drilling activities, 2003-2012 Year Exploration Drilling

19

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Wyoming 134 139 181 195 245 301 308 348 424 512 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W California, Montana, North Dakota, Oklahoma, Oregon, and Virginia 0 0 0 0 9 17 W W W W Total 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 7. Employment in the U.S. uranium production industry by state, 2003-2012 person-years

20

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9. Summary production statistics of the U.S. uranium industry, 1993-2012" 9. Summary production statistics of the U.S. uranium industry, 1993-2012" "Item",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,"E2003",2004,2005,2006,2007,2008,2009,2010,2011,2012 "Exploration and Development" "Surface Drilling (million feet)",1.1,0.7,1.3,3,4.9,4.6,2.5,1,0.7,"W","W",1.2,1.7,2.7,5.1,5.1,3.7,4.9,6.3,7.2 "Drilling Expenditures (million dollars)1",5.7,1.1,2.6,7.2,20,18.1,7.9,5.6,2.7,"W","W",10.6,18.1,40.1,67.5,81.9,35.4,44.6,53.6,66.6 "Mine Production of Uranium" "(million pounds U3O8)",2.1,2.5,3.5,4.7,4.7,4.8,4.5,3.1,2.6,2.4,2.2,2.5,3,4.7,4.5,3.9,4.1,4.2,4.1,4.3 "Uranium Concentrate Production" "(million pounds U3O8)",3.1,3.4,6,6.3,5.6,4.7,4.6,4,2.6,2.3,2,2.3,2.7,4.1,4.5,3.9,3.7,4.2,4,4.1

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7. Employment in the U.S. uranium production industry by state, 2003-2012" 7. Employment in the U.S. uranium production industry by state, 2003-2012" "person-years" "State(s)",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Wyoming",134,139,181,195,245,301,308,348,424,512 "Colorado and Texas",48,140,269,263,557,696,340,292,331,248 "Nebraska and New Mexico",92,102,123,160,149,160,159,134,127,"W" "Arizona, Utah, and Washington",47,40,75,120,245,360,273,281,"W","W" "Alaska, Michigan, Nevada, and South Dakota",0,0,0,16,25,30,"W","W","W","W" "California, Montana, North Dakota, Oklahoma, Oregon, and Virginia",0,0,0,0,9,17,"W","W","W","W"

22

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

10. Uranium reserve estimates at the end of 2012 10. Uranium reserve estimates at the end of 2012 million pounds U3O8 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 1 Sixteen respondents reported reserve estimates on 71 mines and properties. These uranium reserve estimates cannot be compared with the much larger historical data set of uranium reserves that were published in the July 2010 report U.S. Uranium Reserves Estimates at http://www.eia.gov/cneaf/nuclear/page/reserves/ures.html. Reserves, as reported here, do not necessarily imply compliance with U.S. or Canadian government definitions for purposes of investment disclosure.

23

PRODUCTION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

Fowler, R.D.

1957-08-27T23:59:59.000Z

24

The US uranium industry: Regulatory and policy impediments  

SciTech Connect

The Energy Policy Act of 1992 required the DOE to develop recommendations and implement government programs to assist the domestic uranium industry in increasing export opportunities. In 1993, as part of that effort, the Office of Nuclear Energy identified several key factors that could (or have) significantly impact(ed) export opportunities for domestic uranium. This report addresses one of these factors: regulatory and policy impediments to the flow of uranium products between the US and other countries. It speaks primarily to the uranium market for civil nuclear power. Changes in the world political and economic order have changed US national security requirements, and the US uranium industry has found itself without the protected market it once enjoyed. An unlevel playing field for US uranium producers has resulted from a combination of geology, history, and a general US political philosophy of nonintervention that precludes the type of industrial policy practiced in other uranium-exporting countries. The US has also been hampered in its efforts to support the domestic uranium-producing industry by its own commitment to free and open global markets and by international agreements such as GATT and NAFTA. Several US policies, including the imposition of NRC fees and licensing costs and Harbor Maintenance fees, directly harm the competitiveness of the domestic uranium industry. Finally, requirements under US law, such as those in the 1979 Nuclear Nonproliferation Act, place very strict limits on the use of US-origin uranium, limitations not imposed by other uranium-producing countries. Export promotion and coordination are two areas in which the US can help the domestic uranium industry without violating existing trade agreements or other legal or policy constraints.

Drennen, T.E.; Glicken, J.

1995-06-01T23:59:59.000Z

25

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. 0 200 400 600 800 1,000 1,200 1,400 1,600 2004 2005 2006 2007 2008

26

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

8. U.S. uranium expenditures, 2003-2012 8. U.S. uranium expenditures, 2003-2012 million dollars Year Drilling Production Land and Other Total Expenditures Total Land and Other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Drilling: All expenditures directly associated with exploration and development drilling. Production: All expenditures for mining, milling, processing of uranium, and facility expense.

27

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. uranium mine production and number of mines and sources, 2003-2012 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W Total Mine Production (thousand pounds U3O8) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Number of Operating Mines Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources1 1 1 2 1 1 1 2 1 1 1

28

PRODUCTION OF URANIUM MONOCARBIDE  

DOE Patents (OSTI)

A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)

Powers, R.M.

1962-07-24T23:59:59.000Z

29

PRODUCTION OF URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

A method is presented for producing uranium tetrafluoride from the gaseous hexafluoride by feeding the hexafluoride into a high temperature zone obtained by the recombination of molecularly dissociated hydrogen. The molal ratio of hydrogen to uranium hexnfluoride is preferably about 3 to 1. Uranium tetrafluoride is obtained in a finely divided, anhydrous state.

Shaw, W.E.; Spenceley, R.M.; Teetzel, F.M.

1959-08-01T23:59:59.000Z

30

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources,Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

31

ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

Lofthouse, E.

1954-08-31T23:59:59.000Z

32

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

1. U.S. uranium drilling activities, 2003-2012 Exploration Drilling Development Drilling Exploration and Development Drilling Year Number of Holes Feet (thousand) Number of Holes...

33

PRODUCTION OF URANIUM  

DOE Patents (OSTI)

An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

Ruehle, A.E.; Stevenson, J.W.

1957-11-12T23:59:59.000Z

34

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents (OSTI)

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

1995-06-06T23:59:59.000Z

35

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents (OSTI)

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

36

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3. U.S. uranium concentrate production, shipments, and sales, 2003-2012" "Activity at U.S. Mills and In-Situ-Leach Plants",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012...

37

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 Mill Owner Mill Name County, State (existing and planned locations) Milling Capacity (short tons of ore per day) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished Denison White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby

38

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Milling Capacity (short tons of ore per day) 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby Uranium One Americas, Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Changing License To Operational Standby

39

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Domestic Uranium Production Report June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2012 Domestic Uranium Production Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

40

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Lost Creek ISR LLC Lost Creek Project Sweetwater, Wyoming 2,000,000 Developing

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report"

42

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

10. Uranium reserve estimates at the end of 2012" 10. Uranium reserve estimates at the end of 2012" "million pounds U3O8" "Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s)","Forward Cost 2" ,"$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound" "Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work","W","W",101.956759 "Properties Under Development for Production","W","W","W" "Mines in Production","W",21.40601,"W" "Mines Closed Temporarily and Closed Permanently","W","W",133.139239 "In-Situ Leach Mining","W","W",128.576534

43

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904 2011 5,441 3,322 5,156 3,003 10,597 6,325 2012 5,112 3,447 5,970 3,709 11,082 7,156 NA = Not available. W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-

44

PROCESS FOR PRODUCTION OF URANIUM  

DOE Patents (OSTI)

A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.

Crawford, J.W.C.

1959-09-29T23:59:59.000Z

45

Table 9. Summary production statistics of the U.S. uranium ...  

U.S. Energy Information Administration (EIA)

Mine Production of Uranium (million pounds U 3O 8) ... 1993-2002-Uranium Industry Annual 2002 (May 2003), Table H1 and Table 2. 2003-2010-Form ...

46

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2. U.S. uranium mine production and number of mines and sources, 2003-2012" 2. U.S. uranium mine production and number of mines and sources, 2003-2012" "Production / Mining Method",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Underground" "(estimated contained thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W" "Open Pit" "(estimated contained thousand pounds U3O8)",0,0,0,0,0,0,0,0,0,0 "In-Situ Leaching" "(thousand pounds U3O8)","W","W",2681,4259,"W","W","W","W","W","W" "Other1" "(thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W"

47

PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS  

DOE Patents (OSTI)

The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.

Spedding, F.H.; Butler, T.A.; Johns, I.B.

1959-03-10T23:59:59.000Z

48

Domestic Uranium Production Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report - Annual Domestic Uranium Production Report - Annual With Data for 2012 | Release Date: June 06, 2013 | Next Release Date: May 2014 |full report Previous domestic uranium production reports Year: 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Figure 1. U.S. Uranium drilling by number of holes, 2004-2012 U.S. uranium exploration drilling was 5,112 holes covering 3.4 million feet in 2012. Development drilling was 5,970 holes and 3.7 million feet. Combined, total uranium drilling was 11,082 holes covering 7.2 million feet, 5 percent more holes than in 2011. Expenditures for uranium drilling in the United States were $67 million in 2012, an increase of 24 percent compared with 2011. Mining, production, shipments, and sales U.S. uranium mines produced 4.3 million pounds U3O8 in 2012, 5 percent more

49

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources 1 1 1 2 1 1 1 2 1 1 1 Total Mines and Sources 4 6 10 11 12 17 20 9 11 12 Other 1 Number of Operating Mines Table 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Underground Open Pit In-Situ Leaching Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012).

50

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2008,2009,2010,2011,2012 "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

51

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Activity at U.S. Mills and In-Situ-Leach Plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Ore from Underground Mines and Stockpiles Fed to Mills 1 0 W W W 0 W W W W W Other Feed Materials 2 W W W W W W W W W W Total Mill Feed W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,000 2,282 2,689 4,106 4,534 3,902 3,708 4,228 3,991 4,146 (thousand pounds U 3 O 8 ) E1,600 2,280 2,702 3,838 4,050 4,130 3,620 5,137 4,000 3,911 Deliveries (thousand pounds U 3 O 8 ) W W W 3,786 3,602 3,656 2,044 2,684 2,870 3,630 Weighted-Average Price (dollars per pound U 3 O 8 ) W W W 28.98 42.11 43.81 36.61 37.59 52.36 49.63 Notes: The 2003 annual amounts were estimated by rounding to the nearest 200,000 pounds to avoid disclosure of individual company data. Totals may not equal sum of components

52

US uranium mining industry: background information on economics and emissions  

SciTech Connect

A review of the US uranium mining industry has revealed a generally depressed industry situation. The 1982 U/sub 3/O/sub 8/ production from both open-pit and underground mines declined to 3800 and 6300 tons respectively with the underground portion representing 46% of total production. US exploration and development has continued downward in 1982. Employment in the mining and milling sectors has dropped 31% and 17% respectively in 1982. Representative forecasts were developed for reactor fuel demand and U/sub 3/O/sub 8/ production for the years 1983 and 1990. Reactor fuel demand is estimated to increase from 15,900 tons to 21,300 tons U/sub 3/O/sub 8/ respectively. U/sub 3/O/sub 8/ production, however, is estimated to decrease from 10,600 tons to 9600 tons respectively. A field examination was conducted of 29 selected underground uranium mines that represent 84% of the 1982 underground production. Data was gathered regarding population, land ownership and private property valuation. An analysis of the increased cost to production resulting from the installation of 20-meter high exhaust borehole vent stacks was conducted. An assessment was made of the current and future /sup 222/Rn emission levels for a group of 27 uranium mines. It is shown that /sup 222/Rn emission rates are increasing from 10 individual operating mines through 1990 by 1.2 to 3.8 times. But for the group of 27 mines as a whole, a reduction of total /sup 222/Rn emissions is predicted due to 17 of the mines being shutdown and sealed. The estimated total /sup 222/Rn emission rate for this group of mines will be 105 Ci/yr by year end 1983 or 70% of the 1978-79 measured rate and 124 Ci/yr by year end 1990 or 83% of the 1978-79 measured rate.

Bruno, G.A.; Dirks, J.A.; Jackson, P.O.; Young, J.K.

1984-03-01T23:59:59.000Z

53

Industrial Oil Products Division  

Science Conference Proceedings (OSTI)

A forum for professionals involved in research, development, engineering, marketing, and testing of industrial products and co-products from fats and oils, including fuels, lubricants, coatings, polymers, paints, inks, cosmetics, dielectric fluids, and ad

54

Decommissioning of U.S. uranium production facilities  

SciTech Connect

From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

Not Available

1995-02-01T23:59:59.000Z

55

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars) 1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 (million pounds U 3 O 8 ) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 (million pounds U 3 O 8 ) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1 (million pounds U 3 O 8 ) 3.4 6.3 5.5 6.0 5.8 4.9 5.5 3.2 2.2 3.8 1.6 2.3 2.7 3.8 4.0 4.1 3.6 5.1 4.0 3.9 (person-years) 871 980 1,107 1,118 1,097 1,120 848 627 423 426 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196

56

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

11 11 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Total Land and Other 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Notes: Expenditures are in nominal U.S. dollars. Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Reclamation Drilling: All expenditures directly associated with exploration and development drilling.

57

SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS  

DOE Patents (OSTI)

The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

Nicholls, C.M.; Wells, I.; Spence, R.

1959-10-13T23:59:59.000Z

58

Decommissioning of U.S. Uranium Production Facilities  

Reports and Publications (EIA)

This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

Information Center

1995-02-01T23:59:59.000Z

59

Domestic Uranium Production Report - Quarterly - Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

All Nuclear Reports All Nuclear Reports Domestic Uranium Production Report - Quarterly Data for 3rd Quarter 2013 | Release Date: October 31, 2013 | Next Release Date: February 2014 | full report Previous Issues Year: 2013-Q2 2013-Q1 2012-Q4 2012-Q3 2012-Q2 2012-Q1 2011-Q4 2011-Q3 2011-Q2 2011-Q1 2010-Q4 2010-Q3 2010-Q2 2010-Q1 2009-Q4 2009-Q3 2009-Q2 2009-Q1 2008-Q4 2008-Q3 2008-Q2 2008-Q1 Go 3rd Quarter 2013 U.S. production of uranium concentrate in the third quarter 2013 was 1,171,278 pounds U3O8, down 16 percent from the previous quarter and up 12 percent from the third quarter 2012. Third quarter 2013 uranium production is at its highest level since 1999. During the third quarter 2013, U.S. uranium was produced at six U.S. uranium facilities. U.S. Uranium Mill in Production (State)

60

Industrial Oil Products Newsletter April 2013  

Science Conference Proceedings (OSTI)

Read the Industrial Oil Products Newsletter April 2013. Industrial Oil Products Newsletter April 2013 Industrial Oil Products Newsletter April 2013 ...

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" "Mill Owner","Mill Name","County, State (existing and planned locations)","Milling Capacity","Operating Status at End of the Year" ,,,"(short tons of ore per day)",2008,2009,2010,2011,2012 "Cotter Corporation","Canon City Mill","Fremont, Colorado",0,"Standby","Standby","Standby","Reclamation","Demolished" "EFR White Mesa LLC","White Mesa Mill","San Juan, Utah",2000,"Operating","Operating","Operating","Operating","Operating"

62

2nd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

nd Quarter 2013 Domestic Uranium Production Report 2nd Quarter 2013 Domestic Uranium Production Report Release Date: August 7, 2013 Next Release Date: November 2013 0 500,000...

63

SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM  

DOE Patents (OSTI)

A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)

Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.

1962-11-13T23:59:59.000Z

64

Domestic Uranium Production Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, ... with currently proven mining and processing technology and under current law and regulations.

65

Domestic Uranium Production Report 2004 -2011  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections ...

66

PRODUCTION OF URANIUM METAL BY CARBON REDUCTION  

DOE Patents (OSTI)

The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

Holden, R.B.; Powers, R.M.; Blaber, O.J.

1959-09-22T23:59:59.000Z

67

Domestic Uranium Production Report - Quarterly - Energy ...  

U.S. Energy Information Administration (EIA)

Total anticipated uranium market requirements at U.S. civilian nuclear power reactors are 50 million pounds for 2013. 2. 1 2012 Uranium Marketing ...

68

Proceedings of Workshop on Uranium Production Environmental Restoration: An exchange between the United States and Germany  

SciTech Connect

Scientists, engineers, elected officials, and industry regulators from the United, States and Germany met in Albuquerque, New Mexico, August 16--20, 1993, in the first joint international workshop to discuss uranium tailings remediation. Entitled ``Workshop on Uranium Production Environmental Restoration: An Exchange between the US and Germany,`` the meeting was hosted by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The goal of the workshop was to further understanding and communication on the uranium tailings cleanup projects in the US and Germany. Many communities around the world are faced with an environmental legacy -- enormous quantities of hazardous and low-level radioactive materials from the production of uranium used for energy and nuclear weapons. In 1978, the US Congress passed the Uranium Mill Tailings Radiation Control Act. Title I of the law established a program to assess the tailings at inactive uranium processing sites and provide a means for joint federal and state funding of the cleanup efforts at sites where all or substantially all of the uranium was produced for sale to a federal agency. The UMTRA Project is responsible for the cleanup of 24 sites in 10 states. Germany is facing nearly identical uranium cleanup problems and has established a cleanup project. At the workshop, participants had an opportunity to interact with a broad cross section of the environmental restoration and waste disposal community, discuss common concerns and problems, and develop a broader understanding of the issues. Abstracts are catalogued individually for the data base.

Not Available

1993-12-31T23:59:59.000Z

69

President Truman Increases Production of Uranium and Plutonium | National  

National Nuclear Security Administration (NNSA)

Increases Production of Uranium and Plutonium | National Increases Production of Uranium and Plutonium | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Truman Increases Production of Uranium and Plutonium President Truman Increases Production of Uranium and Plutonium October 09, 1950

70

President Truman Increases Production of Uranium and Plutonium...  

NLE Websites -- All DOE Office Websites (Extended Search)

content Facebook Flickr RSS Twitter YouTube President Truman Increases Production of Uranium and Plutonium | National Nuclear Security Administration Our Mission Managing the...

71

2nd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Information Administration: Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" "4 U.S. Energy Information Administration 2nd Quarter 2013 Domestic...

72

President Truman Increases Production of Uranium and Plutonium...  

National Nuclear Security Administration (NNSA)

Increases Production of Uranium and Plutonium | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

73

3rd Quarter 2011 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA)

3rd Quarter 2011 Domestic Uranium Production Report Subject: U.S ... drilling, employment, exploration, in situ leach, inventory, mill, mine, nuclear, ...

74

Domestic Uranium Production Report - Quarterly - Energy ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. ... Privacy/Security Copyright & Reuse Accessibility. Related Sites U.S. ...

75

PROCESS FOR PRODUCTION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for the manufacture of uranium bexafluoride which consists in contacting an oxide of uranium simultaneously with elemental carbon and elemental fluorine at an elevated temperature, using a proportion of the carbon to the oxide about 50% in excess of that theoretically required to combine with f the oxygen as C0/.sub 2/. The process has the advantage that the uranium oxide is reduced by tbe carbon aad converted to the hexafluoride in a single operation.

Fowler, R.D.

1958-11-01T23:59:59.000Z

76

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3rd Quarter 2013 Domestic Uranium Production Report 3rd Quarter 2013 Domestic Uranium Production Report 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 Capacity (short tons of ore per day) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Permitted And Licensed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725 - Undeveloped Undeveloped Undeveloped Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000

77

Domestic Uranium Production Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual Energy Outlook ... The EIA data covered approximately 200 uranium properties with reserve estimates, collected from 1984 through ...

78

PRODUCTION OF URANIUM AND THORIUM COMPOUNDS  

DOE Patents (OSTI)

Compounds of Th and U are extracted with an organic solvent in the presence of an adsorbent substance which has greater retentivity for impurities present than for the uranium and/or thorium. The preferred adsorbent material is noted as being cellulose. The uranium and thoriumcontaining substances treated are preferably in the form of dissolved nitrates, and the preferred organic solvent is diethyl ether.

Arden, T.V.; Burstall, F.H.; Linstead, R.P.; Wells, R.A.

1955-12-27T23:59:59.000Z

79

Industrial Oil Products Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryIndustrial Oil Products Division2013 Members241 Members as of July 1, 2013Abend, SvenKolb Distribution LtdHedingen, SwitzerlandAbraham, TimothyCargill IncHopkins, MN, USAAkinrinade, FrancisNational Open University, Niger

80

The utilization of uranium industry technology and relevant chemistry to leach uranium from mixed-waste solids  

SciTech Connect

Methods for the chemical extraction of uranium from a number of refractory uranium-containing minerals found in nature have been in place and employed by the uranium mining and milling industry for nearly half a century. These same methods, in conjunction with the principles of relevant uranium chemistry, have been employed at the Oak Ridge National Laboratory (ORNL) to chemically leach depleted uranium from mixed-waste sludge and soil. The removal of uranium from what is now classified as mixed waste may result in the reclassification of the waste as hazardous, which may then be delisted. The delisted waste might eventually be disposed of in commercial landfill sites. This paper generally discusses the application of chemical extractive methods to remove depleted uranium from a biodenitrification sludge and a storm sewer soil sediment from the Y-12 weapons plant in Oak Ridge. Some select data obtained from scoping leach tests on these materials are presented along with associated limitations and observations which might be useful to others performing such test work. 6 refs., 2 tabs.

Mattus, A.J.; Farr, L.L.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

1. Total production of uranium concentrate in the United States, 1996 - 2nd Quarter 2013 pounds U3O8 Calendar-Year Quarter 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter...

82

Industrial Ecology and Metal Production - TMS  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... Topic Title: Powerpoint: Industrial Ecology and Metal Production Topic Summary: Metal extraction is on the the most Earth-intrusive industrial...

83

SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS  

DOE Patents (OSTI)

A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

1958-10-01T23:59:59.000Z

84

Production and Handling Slide 21: Melting Points of Uranium and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Points of Uranium and Uranium Compounds Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Melting Points of Uranium and Uranium...

85

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 Mills - conventional milling 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 Mills - other operations 2 2 3 2 2 2 1 1 0 0 1 1 1 0 1 0 0 0 1 In-Situ-Leach Plants 3 5 6 6 4 3 3 2 2 3 3 5 5 6 3 4 5 5 5 Byproduct Recovery Plants 4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 9 11 9 7 6 4 3 2 3 4 6 6 7 4 5 6 6 6 End of 2005 End of 2006 End of 2007 End of 2008 End of 2009 3 Not including in-situ-leach plants that only produced uranium concentrate from restoration. 4 Uranium concentrate as a byproduct from phosphate production. Source: U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q, "Domestic Uranium Production Report." End of 2010 End of 2011 End of 2012 End of 3rd Quarter 2013 1 Milling uranium-bearing ore. 2 Not milling ore, but producing uranium concentrate from other (non-ore) materials.

86

IRON COATED URANIUM AND ITS PRODUCTION  

DOE Patents (OSTI)

A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

Gray, A.G.

1960-03-15T23:59:59.000Z

87

Domestic Uranium Production Report 3rd Quarter 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Domestic Uranium Production Report 3rd Quarter 2013 October 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | 3rd Quarter 2013 Domestic Uranium Production Report ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. October 2013

88

Method for the production of uranium chloride salt  

DOE Patents (OSTI)

A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

Westphal, Brian R.; Mariani, Robert D.

2013-07-02T23:59:59.000Z

89

Method for Making a Uranium Chloride Salt Product  

DOE Patents (OSTI)

The subject apparatus provides a means to produce UCl3, in large quantities without incurring corrosion of the containment vessel or associated apparatus. Gaseous Cl is injected into a lower layer of Cd where CdCl2 is formed. Due to is lower density, the CdCl2 rises through the Cd layer into a layer of molten LiCl-KCL salt where a rotatable basket containing uranium ingots is suspended. The CdCl2 reacts with the uranium to form UCl, and Cd. Due to density differences, the Cd sinks down to the liquid Cd layer and is reused. The UCl3 combines with the molten salt. During production the temperature is maintained at about 600 degrees C. while after the uranium has been depleted the salt temperature is lowered, the molten salt is pressure siphoned from the vessel, and the salt product LiCl-KCl-30 mol% UCl3 is solidified.

Miller, William F.; Tomczuk, Zygmunt

2004-10-05T23:59:59.000Z

90

SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY ADSORPTION  

DOE Patents (OSTI)

A method is presented for the separation of plutonium from solutions containing that element in a valence state not higher than 41 together with uranium ions and fission products. This separation is accomplished by contacting the solutions with diatomaceous earth which preferentially adsorbs the plutonium present. Also mentioned as effective for this adsorbtive separation are silica gel, filler's earth and alumina.

Seaborg, G.T.; Willard, J.E.

1958-01-01T23:59:59.000Z

91

Production and Handling Slide 43: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentation Table of Contents The Uranium Fuel Cycle Refer to caption below for image description Enriched uranium hexafluoride, generally containing 3 to 5% uranium-235, is sent...

92

PROCESS FOR SEGREGATING URANIUM FROM PLUTONIUM AND FISSION-PRODUCT CONTAMINATION  

DOE Patents (OSTI)

An aqueous nitric acid solution containing uranium, plutonium, and fission product values is contacted with an organic extractant comprised of a trialkyl phosphate and an organic diluent. The relative amounts of trialkyl phosphate and uranium values are controlled to achieve a concentration of uranium values in the organic extractant of at least 0.35 moles uranium per mole of trialkyl phosphate, thereby preferentially extracting uranium values into the organic extractant.

Ellison, C.V.; Runion, T.C.

1961-06-27T23:59:59.000Z

93

Industrial service and product providers | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

94

U.S. mine production of uranium, 1993-2011  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... Privacy/Security Copyright & Reuse Accessibility. Related Sites ...

95

Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

96

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration / 3rd Quarter 2013 Domestic Uranium Production Report 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 Table 1. Total production of uranium concentrate in the United States, 1996 - 3rd Quarter 2013 pounds U 3 O 8 Calendar-Year Quarter 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Calendar-Year Total 1996 1,734,427 1,460,058 1,691,796 1,434,425 6,320,706 1997 1,149,050 1,321,079 1,631,384 1,541,052 5,642,565 1998 1,151,587 1,143,942 1,203,042 1,206,003 4,704,574 1999 1,196,225 1,132,566 1,204,984 1,076,897 4,610,672 2000 1,018,683 983,330 981,948 973,585 3,975,545 2001 709,177 748,298 628,720 553,060 2,639,256 2002 620,952 643,432 579,723 E500,000 E2,344,107 2003 E400,000 E600,000 E400,000 E600,000

97

Production and Handling Slide 23: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentation Table of Contents The Uranium Fuel Cycle Refer to caption below for image description The fourth major step in the uranium fuel cycle is uranium enrichment. Slide 23...

98

Method for making a uranium chloride salt product  

DOE Patents (OSTI)

The subject apparatus provides a means to produce UCl.sub.3 in large quantities without incurring corrosion of the containment vessel or associated apparatus. Gaseous Cl is injected into a lower layer of Cd where CdCl.sub.2 is formed. Due to is lower density, the CdCl.sub.2 rises through the Cd layer into a layer of molten LiCl--KCL salt where a rotatable basket containing uranium ingots is suspended. The CdCl.sub.2 reacts with the uranium to form UCl.sub.3 and Cd. Due to density differences, the Cd sinks down to the liquid Cd layer and is reused. The UCl.sub.3 combines with the molten salt. During production the temperature is maintained at about 600.degree. C. while after the uranium has been depleted the salt temperature is lowered, the molten salt is pressure siphoned from the vessel, and the salt product LiCl--KCl-30 mol % UCl.sub.3 is solidified.

Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

2004-10-05T23:59:59.000Z

99

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status 4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status Operating Status at the End of In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

100

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status" 4. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of" ,,,,2012,"1st Quarter 2013","2nd Quarter 2013","3rd Quarter 2013" "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SEPARATION OF PLUTONIUM VALUES FROM URANIUM AND FISSION PRODUCT VALUES  

DOE Patents (OSTI)

Separation of plutonium present in small amounts from neutron irradiated uranium by making use of the phenomenon of chemisorption is described. Plutonium in the tetravalent state is chemically absorbed on a fluoride in solid form. The steps for the separation comprise dissolving the irradiated uranium in nitric acid, oxidizing the plutonium in the resulting solution to the hexavalent state, adding to the solution a soluble calcium salt which by the common ion effect inhibits dissolution of the fluoride by the solution, passing the solution through a bed or column of subdivided calcium fluoride which has been sintered to about 8OO deg C to remove the chemisorbable fission products, reducing the plutonium in the solution thus obtained to the tetravalent state, and again passing the solution through a similar bed or column of calcium fluoride to selectively absorb the plutonium, which may then be recovered by treating the calcium fluoride with a solution of ammonium oxalate.

Maddock, A.G.; Booth, A.H.

1960-09-13T23:59:59.000Z

102

Production and Handling Slide 37: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Contents The Uranium Fuel Cycle Refer to caption below for image description The enrichment process generates two streams of uranium hexafluoride, one enriched in...

103

Production and Handling Slide 1: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

and Handling The Uranium Fuel Cycle Skip Presentation Navigation Next Slide Last Presentation Table of Contents The Uranium Fuel Cycle Refer to caption below for image...

104

Production and Handling Slide 5: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Refer to caption below for image description The third step in the uranium fuel cycle involves the conversion of "yellowcake" to uranium hexafluoride (UF6), the chemical form...

105

Production and Handling Slide 2: Natural Uranium and its Ores...  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium and its Ores* Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Natural Uranium and its Ores* Refer to caption below...

106

Architecting automotive product lines: industrial practice  

Science Conference Proceedings (OSTI)

This paper presents an in-depth view of how architects work with maintaining product line architectures in the automotive industry. The study has been performed at two internationally well-known companies, one car manufacture and one commercial vehicle ... Keywords: architecting, automotive industry, case study, process

Hkan Gustavsson; Ulrik Eklund

2010-09-01T23:59:59.000Z

107

Industrial Oil Products Division Student Award  

Science Conference Proceedings (OSTI)

Awarded to a graduate student for travel to AOCS Annual Meeting & Expo to present a paper. Industrial Oil Products Division Student Award Divisions achievement agricultural analytical application award awards biotechnology detergents distinguished

108

PROCESS FOR THE PRODUCTION OF URANIUM TETRAFLUORIDE FROM URANIUM RAW MATERIAL  

SciTech Connect

This process consists oi the following steps: dissolving and leaching uranium raw material with sulfuric acid, adding a tetravalent uranium solution obtained by electrolytic reduction to the leach, subjecting the leach exuded by suifuric acid to an extraction with an organic solvent to refine and concentrate uranium, converting the extract to a tetravalent uranous solution by electrolytic reduction, and reacting hydrogen fluoride with the uranous solution to produce uranium tetrafluoride. (R.J.S.)

Ito, C.; Okuda, T.; Hamabe, N.

1962-11-20T23:59:59.000Z

109

TrendSetter Solar Products Inc aka Trendsetter Industries formerly...  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name TrendSetter Solar Products Inc (aka Trendsetter Industries,...

110

Uranium production in Eastern Europe and its environmental impact: A literature survey  

SciTech Connect

A survey of the unclassified literature was made to determine the location, technology, throughput, and environmental status of the uranium mines and mills that have historically made up uranium production capability in Eastern Europe. Included in that survey were the following countries: the former German Democratic Republic (GDR), now part of a reunited Germany, Czechoslovakia, Romania, Bulgaria, Hungary, and Poland. Until recently, uranium was being produced in five of these six countries (Poland stopped production 20 years ago). The production began directly after World War II in support of weapons production in the Soviet Union. Eastern Europe has produced about two-thirds of the total Soviet uranium inventory historically, or about 330,000 metric tonnes of uranium (NM) [730 million pounds of uranium (MlbU)l out of a total of about 490,000 MTU (1090 NlbU).

Norman, R.E.

1993-04-01T23:59:59.000Z

111

Production and Handling Slide 3: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

First Slide Previous Slide Next Slide Last Presentation Table of Contents The Uranium Fuel Cycle See caption below for image description The second step in the uranium fuel cycle...

112

Forest Products Industry of the Future  

SciTech Connect

Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

Los Alamos Technical Associates, Inc

2002-05-01T23:59:59.000Z

113

High grade uranium resources in the United States : an overview  

E-Print Network (OSTI)

A time analysis of uranium exploration, production and known reserves in the United States is employed to reveal industry trends. The

Graves, Richard E.

1974-01-01T23:59:59.000Z

114

PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE  

DOE Patents (OSTI)

This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.

Ellis, A.S.; Mooney, R.B.

1953-08-25T23:59:59.000Z

115

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Lost Creek ISR, LLC, a subsidiary of Ur- Energy USA Inc. Lost Creek Project Sweetwater, Wyoming 2,000,000 Under Construction Under Construction

116

SELECTIVE SEPARATION OF URANIUM FROM THORIUM, PROTACTINIUM AND FISSION PRODUCTS BY PEROXIDE DISSOLUTION METHOD  

DOE Patents (OSTI)

A method is described for separating U/sup 233/ from thorium and fission products. The separation is effected by forming a thorium-nitric acid solution of about 3 pH, adding hydrogen peroxide to precipitate uranium and thorium peroxide, treating the peroxides with sodium hydroxide to selectively precipitate the uranium peroxide, and reacting the separated solution with nitric acid to re- precipitate the uranium peroxide.

Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

1959-08-18T23:59:59.000Z

117

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the 60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride

118

URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

A process is described wherein an anionic exchange technique is employed to separate uramium from a large variety of impurities. Very efficient and economical purification of contamimated uranium can be achieved by treatment of the contaminated uranium to produce a solution containing a high concentration of chloride. Under these conditions the uranium exists as an aniomic chloride complex. Then the uranium chloride complex is adsorbed from the solution on an aniomic exchange resin, whereby a portion of the impurities remain in the solution and others are retained with the uramium by the resin. The adsorbed impurities are then removed by washing the resin with pure concentrated hydrochloric acid, after which operation the uranium is eluted with pure water yielding an acidic uranyl chloride solution of high purity.

Bailes, R.H.; Long, R.S.; Grinstead, R.R.

1957-09-17T23:59:59.000Z

119

Industrial production index forecast: Methods comparison  

Science Conference Proceedings (OSTI)

The purpose of this work is to investigate the suitability of different methods as short term forecast tools. It is studied and compared the application of the Kalman filter method with other forecasting methods when applied to a set of qualitative and quantitative information. The work data set is made of qualitative surveys of conjunture and the industrial production index (IPI). The objective is the attainment of short term forecast models for the Portuguese IPI of the transforming industry. After the previous treatment of the data

M. Filomena Teodoro

2012-01-01T23:59:59.000Z

120

UF/sub 6//sup -/ production from surface reactions of uranium and fluorine  

SciTech Connect

The production of UF/sub 6//sup -/ by reaction of a collimated stream of fluorine gas with a resistively heated uranium wire was studied at temperatures from 870 to 1020/sup 0/C and pressures less than 10/sup -3/ torr. At these temperatures below the uranium melting point, the formation of UF/sub 3/ intermediate on the uranium surface resulted in low UF/sub 6//sup -/ yields. The kinetic energy of the UF/sub 6//sup -/ ion was on the order of thermal energies. The work function of uranium was measured to be 4.20 +- 0.14 eV.

McLean, J.E.; Dillon, J.J.; Talbert, C.M.

1978-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Uranium concentrate production in the United States, 2004 -2011  

Annual Energy Outlook 2012 (EIA)

Nuclear & Uranium - U.S. Energy Information Administration (EIA) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent...

122

Uranium concentrate production in the United States, 2004 - 2011  

Annual Energy Outlook 2012 (EIA)

Nuclear & Uranium - U.S. Energy Information Administration (EIA) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent...

123

Standard specification for uranium metal enriched to more than 15 % and less Than 20 % 235U  

E-Print Network (OSTI)

1.1 This specification covers nuclear grade uranium metal that has either been processed through an enrichment plant, or has been produced by the blending of highly enriched uranium with other uranium, to obtain uranium of any 235U concentration below 20 % (and greater than 15 %) and that is intended for research reactor fuel fabrication. The scope of this specification includes specifications for enriched uranium metal derived from commercial natural uranium, recovered uranium, or highly enriched uranium. Commercial natural uranium, recovered uranium and highly enriched uranium are defined in Section 3. The objectives of this specification are to define the impurity and uranium isotope limits for commercial grade enriched uranium metal. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched uranium metal which is to be used in the production of research reactor fuel. In addition to this specification, the parties concerned may agree to other appropriate conditions. ...

American Society for Testing and Materials. Philadelphia

2000-01-01T23:59:59.000Z

124

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2. Number of uranium mills and plants producing uranium concentrate in the United States" 2. Number of uranium mills and plants producing uranium concentrate in the United States" "Uranium Concentrate Processing Facilities","End of 1996","End of 1997","End of 1998","End of 1999","End of 2000","End of 2001","End of 2002","End of 2003","End of 2004","End of 2005","End of 2006","End of 2007","End of 2008","End of 2009","End of 2010","End of 2011","End of 2012","End of 3rd Quarter 2013" "Mills - conventional milling 1",0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,1,1,0 "Mills - other operations 2",2,3,2,2,2,1,1,0,0,1,1,1,0,1,0,0,0,1 "In-Situ-Leach Plants 3",5,6,6,4,3,3,2,2,3,3,5,5,6,3,4,5,5,5

125

EIA Energy Efficiency-Table 4f. Industrial Production Indexes...  

Annual Energy Outlook 2012 (EIA)

f Page Last Modified: May 2010 Table 4f. Industrial Production Indexes by Selected Industries, 1998, 2002, and 2006 (2000 100) MECS Survey Years NAICS Subsector and Industry 1998...

126

ARSENATE CARRIER PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM NEUTRON IRRADIATED URANIUM AND RADIOACTIVE FISSION PRODUCTS  

DOE Patents (OSTI)

A process is described for precipitating Pu from an aqueous solution as the arsenate, either per se or on a bismuth arsenate carrier, whereby a separation from uranium and fission products, if present in solution, is accomplished.

Thompson, S.G.; Miller, D.R.; James, R.A.

1961-06-20T23:59:59.000Z

127

India's Fertilizer Industry: Productivity and Energy Efficiency  

Science Conference Proceedings (OSTI)

Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

Schumacher, K.; Sathaye, J.

1999-07-01T23:59:59.000Z

128

Critical Nanotechnology Needs in the Forest Products Industry ...  

Science Conference Proceedings (OSTI)

... in the Forest Products Industry White Paper ... allow substitution of sustainable light weight materials ... wood based composites, paper and paperboard ...

2011-08-02T23:59:59.000Z

129

Neutron-Rich Isotope Production Using a Uranium Carbide Carbon Nanotubes SPES Target Prototype  

SciTech Connect

The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

Corradetti, Stefano [ORNL; Biasetto, Lisa [INFN, Laboratori Nazionali di Legnaro, Italy; Manzolaro, Mattia [INFN, Laboratori Nazionali di Legnaro, Italy; Scarpa, Daniele [ORNL; Carturan, S. [INFN, Laboratori Nazionali di Legnaro, Italy; Andrighetto, Alberto [INFN, Laboratori Nazionali di Legnaro, Italy; Prete, Gianfranco [ORNL; Vasquez, Jose L [ORNL; Zanonato, P. [Dipartimento di Scienze Chimiche, Padova, Italy; Colombo, P. [Dipartimento di Ingegneria Meccanica, Padova, Italy; Jost, Carola [University of Tennessee, Knoxville (UTK); Stracener, Daniel W [ORNL

2013-01-01T23:59:59.000Z

130

Karlsruhe Institute for Industrial Production | Open Energy Information  

Open Energy Info (EERE)

Karlsruhe Institute for Industrial Production Karlsruhe Institute for Industrial Production Jump to: navigation, search Name Karlsruhe Institute for Industrial Production Place Karlsruhe, Germany Zip 76187 Product String representation "Karlsruhe-based ... tment concepts." is too long. References Karlsruhe Institute for Industrial Production[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Karlsruhe Institute for Industrial Production is a company located in Karlsruhe, Germany . References ↑ "Karlsruhe Institute for Industrial Production" Retrieved from "http://en.openei.org/w/index.php?title=Karlsruhe_Institute_for_Industrial_Production&oldid=347948" Categories: Clean Energy Organizations

131

Institute for Industrial Productivity (IIP) | Open Energy Information  

Open Energy Info (EERE)

Industrial Productivity (IIP) Industrial Productivity (IIP) Jump to: navigation, search Logo: Institute for Industrial Productivity (IIP) Name Institute for Industrial Productivity (IIP) Address 200 Pennsylvania Avenue, N.W. 4th Floor, East Tower Place Washington, DC Zip 20037-1701 Website http://www.iipnetwork.org References www.iipnetwork.org No information has been entered for this organization. Add Organization The Institute for Industrial Productivity provides companies and governments with the best energy efficiency practices to reduce energy costs in industry and prepare for a low carbon future. Our global team and independent experts offer advice on technology, policy and financing of industrial energy efficiency. References Retrieved from "http://en.openei.org/w/index.php?title=Institute_for_Industrial_Productivity_(IIP)&oldid=657859"

132

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

of the iron and steel industry in the US. This examinationin the US iron and steel industry. Finally, we discuss thefrom the iron and steel industry. Fig. 1. Conservation

Worrell, Ernst

2011-01-01T23:59:59.000Z

133

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

2. Number of uranium mills and plants producing uranium concentrate in the United States 2. Number of uranium mills and plants producing uranium concentrate in the United States Uranium Concentrate Processing Facilities End of 1996 End of 1997 End of 1998 End of 1999 End of 2000 End of 2001 End of 2002 End of 2003 End of 2004 End of 2005 End of 2006 End of 2007 End of 2008 End of 2009 End of 2010 End of 2011 End of 2012 End of 3rd Quarter 2013 Mills - conventional milling1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 Mills - other operators2 2 3 2 2 2 1 1 0 0 1 1 1 0 1 0 0 0 1 In-Situ-Leach Plants3 5 6 6 4 3 3 2 2 3 3 5 5 6 3 4 5 5 5 Byproduct Recovery Plants4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 9 11 9 7 6 4 3 2 3 4 6 6 7 4 5 6 6 6

134

Safeguards by design - industry engagement for new uranium enrichment facilities in the United States  

Science Conference Proceedings (OSTI)

The United States Department of Energy's (DOE's) Office of Nonproliferation and International Security (NA-24) has initiated a Safeguards by Design (SBD) effort to encourage the incorporation of international (IAEA) safeguards features early in the design phase of a new nuclear facility in order to avoid the need to redesign or retrofit the facility at a later date. The main goals of Safeguards by Design are to (1) make the implementation of international safeguards at new civil nuclear facilities more effective and efficient, (2) avoid costly and time-consuming re-design work or retrofits at such facilities and (3) design such facilities in a way that makes proliferation as technically difficult, as time-consuming, and as detectable as possible. The U.S. Nuclear Regulatory Commission (NRC) has recently hosted efforts to facilitate the use of Safeguards by Design for new uranium enrichment facilities currently being planned for construction in the U.S. While SBD is not a NRC requirement, the NRC is aiding the implementation of SBD by coordinating discussions between DOE's NA-24 and industry's facility design teams. More specifically, during their normal course of licensing discussions the NRC has offered industry the opportunity to engage with NA-24 regarding SBD.

Demuth, Scott F [Los Alamos National Laboratory; Grice, Thomas [NRC; Lockwood, Dunbar [DOE/NA-243

2010-01-01T23:59:59.000Z

135

Chemical production from industrial by-product gases: Final report  

DOE Green Energy (OSTI)

The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

Lyke, S.E.; Moore, R.H.

1981-04-01T23:59:59.000Z

136

Industry requested exploration/production environmental regulation  

Science Conference Proceedings (OSTI)

California State Review by the Interstate Oil and Gas Compact Commission recommends state and regional water boards issue requirements to all pits subject to basin plans and chapter 15. Resources shortfalls have kept production pits from being Water Board priorities. Threat of United States EPA designation of crude oil as hazardous waste and subsequent land use conflicts of buried pits in developing areas have led to the call for full implementation of State regulations. Recommended state improvements include (1) interagency communication, cross training, computer database, and inspections; (2) development of guidance documents and consistency in pit closure policy, permitting, water quality in DOG pit rules, land spreading, road spreading, and minimum construction and operation requirements and; (3) administratively finding additional resources to fully implement requirements, increase records retention time, consider compliance history, revise Water Board/DOG Memorandum of Understanding and adjust DOG financial assurance program to provide incentive for proper and timely well plugging and site reclamation. Industry/Regulatory Agency cooperation can significantly reduce the burden of regulation implementation, Industry willingness to pay appropriate regulatory fees can facilitate regulation execution. Field drilling crew education can minimize regulatory implementation costs. Mud pit Resource Conservation and Recovery Act exemption can be maintained if hazardous substances (e.g., pipe dope and solvents) are kept out of the pit.

Blanck, L. (California Regional Water Quality Control Board, San Luis Obispo, CA (United States))

1994-04-01T23:59:59.000Z

137

Evaluating and benchmarking productive performances of six industries in Taiwan Hsin Chu Industrial Science Park  

Science Conference Proceedings (OSTI)

Science Park provides a unique environment for accelerating technological innovation. The purpose of this paper is to analyze efficiency and productivity growth of six industries in Taiwan Hsin Chu Industrial Science Park for the period 2000-2006. From ... Keywords: DEA, Hsin Chu Industrial Science Park, Malmquist Productivity Indexes, Window analysis

Chia Chi Sun

2011-03-01T23:59:59.000Z

138

Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applications  

E-Print Network (OSTI)

The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy alpha phase sintering experiment where the Mg is a surrogate for Pu and Am. The powder production system utilized the uranium hydrogen interaction in order to break down larger pieces of uranium into fine powder. After several iterations, a successful reusable system was built. The nominal size of the powder product was on the order of 1 to 3 mm. The resulting uranium powder was pressed into pellets of various compositions (DU, DU-10Zr, DU-Mg, DU-10Zr-Mg) and heated to approximately 650?C, just below the alphabeta phase transition of uranium. The dimensions of the pellets were measured before and after heating and in situ dimension changes were measured using a linear variable differential transducer (LVDT). Post experiment measurement of the pellets proved to be an unreliable indicator of sintering do the cracking of the pellets during cool down. The cracking caused increases in the diameter and height of the samples. The cracks occurred in greater frequency along the edges of the pellets. All of the pellets, except the DU-10Zr-Mg pellet, were slightly conical in shape. This is believed to be an artifact of the powder pressing procedure. A greater density occurs on one end of the pellet during pressing and thus leads to gradient in the sinter rate of the pellet. The LVDT measurements proved to be extremely sensitive to outside vibration, making a subset of the data inappropriate for analysis. The pellets were also analyzed using electron microscopy. All pellets showed signs of sintering and an increase in density. The pellets will the greatest densification and lowest porosity were the DU-Mg and DU-10Zr-Mg. The DU-Mg pellet had a porosity of 14 +or- 2.%. The DU-10Zr-Mg porosity could not be conclusively determined due to lack of clearly visible pores in the image, however there were very few pores indicating a high degree of sintering. In the DU-10Zr-Mg alloy, large grains of DU were surrounded by Zr. This phenomena was not present in the DU-10Zr pellet where the Zr and DU stayed segregated. There was no indication of alloying between the Zr and DU in pellets.

Garnetti, David J.

2009-12-01T23:59:59.000Z

139

Continuing investigations for technology assessment of /sup 99/Mo production from LEU (low enriched Uranium) targets  

SciTech Connect

Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from /sup 99/Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of /sup 99/Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product /sup 99/Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent /sup 99/Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved.

Vandergrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

1987-01-01T23:59:59.000Z

140

Supply chain network optimization : low volume industrial chemical product  

E-Print Network (OSTI)

The chemical industry is a highly competitive and low margin industry. Chemical transportation faces stringent safety regulations meaning that Cost-To-Serve (C2S), costs associated with products net flow from manufacturers ...

Dacha, Fred (Frederick Omondi)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Deployment of an AEC industry sector product model  

Science Conference Proceedings (OSTI)

CIMsteel Integration Standard, Version 2 (CIS/2) is an industry-developed product model based on ISO-STEP technology that has been widely adopted within the steel construction industry. CIS/2 is an early success story of broad use of a product model ... Keywords: Building model, Product model, STEP

C. Eastman; F. Wang; S. -J. You; D. Yang

2005-10-01T23:59:59.000Z

142

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status 3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating Status at the End of Owner Mill and Heap Leach1 Facility Name County, State (existing and planned locations) Capacity (short tons of ore per day) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Permitted and Licensed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725 - Undeveloped Undeveloped Undeveloped

143

Determining Levels of Productivity and Efficiency in the Electricity Industry  

Science Conference Proceedings (OSTI)

A few major themes run fairly consistently through the history of productivity and efficiency analysis of the electricity industry: environmental controls, economies of scale, and private versus government.

Abbott, Malcolm

2005-11-01T23:59:59.000Z

144

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

of costs and benefits of industrial energy efficiencyof the annual costs of an energy efficiency measure, therebyof cost- effectiveness of energy- efficiency improvement

Worrell, Ernst

2011-01-01T23:59:59.000Z

145

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

energy savings are related to energy price changes through1997 dollars. All energy prices and savings were evaluatedthe relationship of energy prices to industry-wide energy

Worrell, Ernst

2011-01-01T23:59:59.000Z

146

Forest products industry of the future: Building a sustainable technology advantage for America`s forest products industry  

Science Conference Proceedings (OSTI)

The US forest, wood, and paper industry ranks as one of the most competitive forest products industries in the world. With annual shipments valued at nearly $267 billion, it employs over 1.3 million people and is currently among the top 10 manufacturing employers in 46 out of 50 states. Retaining this leadership position will depend largely on the industry`s success in developing and using advanced technologies. These technologies will enable manufacturing plants and forestry enterprises to maximize energy and materials efficiency and reduce waste and emissions, while producing high-quality, competitively priced wood and paper products. In a unique partnership, leaders in the forest products industry have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to encourage cooperative research efforts that will help position the US forest products industry for continuing prosperity while advancing national energy efficiency and environmental goals.

NONE

1999-02-01T23:59:59.000Z

147

Bailey's Industrial Oil and Fat Products, Volume 2  

Science Conference Proceedings (OSTI)

Edible Oils Bailey's Industrial Oil and Fat Products, Volume 2 Processing Hardback Books Processing John Wiley & Sons, Inc. Edible Oil and Fat Products: Edible Oils 978-0-471-38551-6 Fereidoon Shahidi John Wiley & Sons, Inc.

148

Biocatalysis and Biotechnology for Functional Foods and Industrial Products  

Science Conference Proceedings (OSTI)

Divided into two sections, this book covers the latest applications for enzyme catalysis, biotransformation, bioconversion, fermentation, genetic engineering, and product recove Biocatalysis and Biotechnology for Functional Foods and Industrial Products H

149

Global product development in semiconductor industry : Intel -- Tick-Tock product development cadence  

E-Print Network (OSTI)

This thesis investigates on changes in semiconductor industry's product development methodology by following Intel's product development from year 2000. Intel was challenged by customer's preference change, competitors new ...

Park, Cheolmin, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

150

Uranium Oxide Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

of semiconductors, it would consume the annual production rate of depleted uranium from uranium enrichment facilities. For more information: PDF Semiconductive Properties of...

151

Uranium hexafluoride handling. Proceedings  

SciTech Connect

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

152

Data mining to improve industrial standards and enhance production and marketing: An empirical study in apparel industry  

Science Conference Proceedings (OSTI)

Apparel production is a high value-added industry in the global textile manufacturing chain. Standard size charts are crucial industrial standards for high-tech apparel industries to maintain competitive advantages in knowledge economy era. However, ... Keywords: Apparel industry, Cluster analysis, Data mining, Industrial standards, Production management and marketing

Chih-Hung Hsu

2009-04-01T23:59:59.000Z

153

Colorado uranium production forecast for 1981 to 1990. [Monograph  

SciTech Connect

A decline in demand for yellowcake, a single-use commodity of which Colorado is the fourth largest producer, is influenced by several interrelated factors. The revised forecasts for 1990 assume that electric-power capacity will be lower than previous forecasts and that domestic production will supply 80% of the yellowcake. Production will be lower until inventory depletion allows a balanced market. Production rates will begin increasing after 1987. An appendix summarizes the factors influencing production rates. 10 references, 3 tables.

Morse, J.G.

1980-01-01T23:59:59.000Z

154

Microsoft PowerPoint - Marsden - IPRC 2012- Uranium Product Purity.29 Aug 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Purity Purity of Uranium Product from Electrochemical Recycling of Used Metallic Fuel K.C. Marsden B.R. Westphal M.N. Patterson B. Pesic 2012 IPRC August 26-29, 2012 Contents  Materials and Fuels Complex (MFC) of the INL  Fuel Conditioning Facility  Processing at the Fuel Conditioning Facility  Value of Uranium Product Purity  Inputs - FFTF Fuel and ER Salt  Dendrite Samples  Final Product Samples  Future Studies 2 Materials and Fuels Complex (MFC) of the INL  ~ 45 km west of Idaho Falls, ~800 employees  Location of former EBR-II reactor  Two hot cell facilities and multiple laboratories for research with irradiated materials - Irradiated Material Characterization Laboratory (IMCL) - Electron Microscopy Laboratory (EML) - Hot Fuel Examination Facility (HFEF) - Fuel Conditioning Facility (FCF) 3 Fuel Conditioning Facility (FCF)  Rectangular

155

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

the linkage between energy efficiency and productivity.and increased energy efficiency in integrated paper andand Office of Energy Efficiency and Renewable Energy, 1997.

Worrell, Ernst

2011-01-01T23:59:59.000Z

156

Segregation of Fission Products to Dislocations in Uranium Dioxide  

Science Conference Proceedings (OSTI)

Abstract Scope, Irradiation of nuclear fuel leads to the formation of extended ... very important to understand the interaction of fission products with dislocations.

157

Industrial service and product provider directory | ENERGY STAR...  

NLE Websites -- All DOE Office Websites (Extended Search)

develops teaming profiles to showcase the value Partners find by working with ENERGY STAR industrial Service and Product Providers (iSPPs). These profiles are co-authored by the...

158

Dupoly process for treatment of depleted uranium and production of beneficial end products  

DOE Patents (OSTI)

The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

Kalb, Paul D. (Wading River, NY); Adams, Jay W. (Stony Brook, NY); Lageraaen, Paul R. (Seaford, NY); Cooley, Carl R. (Gaithersburg, MD)

2000-02-29T23:59:59.000Z

159

Energy productivity in the industrial sector: an econometric analysis  

SciTech Connect

Energy productivity and energy intensity within the industrial sector of the economy are examined. Results suggest that relative prices and other economic factors can explain much of the variation in both energy productivity and energy intensity for manufacturing and mining and for the industrial sector as a whole. Cyclical factors, seasonal factors and trend variables are also useful in explaining variation in these data, both for annual and monthly time series. Of the variables examined, it appears that the relative price of energy is a highly significant factor in accounting for the difference between actual industrial energy intensity and that which might have been expected had pre-1973 trends continued.

Roop, J.M.

1983-01-01T23:59:59.000Z

160

Industrial and Agricultural Production Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial and Agricultural Production Efficiency Program Industrial and Agricultural Production Efficiency Program Industrial and Agricultural Production Efficiency Program < Back Eligibility Agricultural Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Manufacturing Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Maximum Rebate Custom capital projects: $0.25/kWh, up to 50% of cost; $2/Therm, up to 50% of project cost Custom operation and maintenance projects: $0.08/kWh or $0.40/Therm, up to 50% of project cost Lighting projects: custom lighting incentives get 35% of project cost; prescriptive incentives also available. Total incentive capped at

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wisconsins Forest Products Industry Business Climate Status Report  

E-Print Network (OSTI)

Wisconsins Center for Technology Transfer (CTT) is a non-profit, non-stock corporation with a mission of accelerating investments in energy efficient, environmentally friendly technologies into Wisconsin industry clusters. CTT was awarded its mission in February of 2002 by the Focus on Energy program, which identified the energy intensive, economically important industry clusters whose needs for advanced technology transfer could be served by the CTT. These clusters are Forest Products, Metal Casting, Food Processing, Printing, Glass, Biobased Products & Energy, Water & Wastewater, and Utilities. Technology roadmaps had been developed for each industry cluster through U.S. Department of Energy grants and by Focus on Energy. However, a more in-depth understanding of critical issues facing industry clusters was still needed. CTT, in a joint effort with the U.S. Forest Products Laboratory (FPL) in Madison, initiated issue scoping sessions for the Forest Products cluster. One-on-one meetings with senior executives of Wisconsin forest products companies were conducted to assess the current state and future potentials of the industry group. The findings of these sessions document a litany of challenges facing the industry and are summarized at the end of this report. Many of these challenges and the potential for investments in new technologies were

unknown authors

2004-01-01T23:59:59.000Z

162

METHOD OF SEPARATING URANIUM, PLUTONIUM AND FISSION PRODUCTS BY BROMINATION AND DISTILLATION  

DOE Patents (OSTI)

The method for separation of plutonium from uranium and radioactive fission products obtained by neutron irradiation of uranlum consists of reacting the lrradiated material with either bromine, hydrogen bromide, alumlnum bromide, or sulfur and bromine at an elevated temperature to form the bromides of all the elements, then recovering substantlally pure plutonium bromide by dlstillatlon in combinatlon with selective condensatlon at prescribed temperature and pressure.

Jaffey, A.H.; Seaborg, G.T.

1958-12-23T23:59:59.000Z

163

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

500000,2344107 500000,2344107 2003,400000,600000,400000,600000,2000000 2004,600000,400000,588738,600000,2282406 2005,709600,630053,663068,686456,2689178 2006,931065,894268,1083808,1196485,4105626 2007,1162737,1119536,1075460,1175845,4533578 2008,810189,1073315,980933,1037946,3902383 2009,880036,982760,956657,888905,3708358 2010,876084,1055102,1150725,1146281,4228192 2011,1063047,1189083,846624,892013,3990767 2012,1078404,1061289,1048018,957936,4145647 "P2013",1147031,1394232,1171278,"NA","--" "E = Estimated data." "P = Preliminary data." "NA = Not available." "-- = Not applicable." "Notes: The reported 4th quarter 2002 production amount was adjusted by rounding to the nearest 100,000 pounds to avoid disclosure of individual company data. This also affects the 2002 annual production. The reported 2003 and 1st, 2nd, and 4th quarter 2004 production amounts were adjusted by rounding to the nearest 200,000 pounds to avoid disclosure of individual company data. The reported 2004 total is the actual production for 2004. Totals may not equal sum of components because of independent rounding."

164

Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This Draft Supplement Analysis .............................. 1 1.2 Background ....................................................................................................... 3 1.3 Proposed Actions Considered in this Draft Supplement Analysis.................... 4

165

Uranium from phosphate ores  

SciTech Connect

The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant.

Hurst, F.J.

1983-01-01T23:59:59.000Z

166

Economical Recovery of By-products in the Mining Industry  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) Office of Industrial Technologies, Mining Industry of the Future Program, works with the mining industry to further the industry's advances toward environmental and economic goals. Two of these goals are (1) responsible emission and by-product management and (2) low-cost and efficient production (DOE 1998). DOE formed an alliance with the National Mining Association (NMA) to strengthen the basis for research projects conducted to benefit the mining industry. NMA and industry representatives actively participate in this alliance by evaluating project proposals and by recommending research project selection to DOE. Similarly, the National Research Council (NRC) has recently and independently recommended research and technology development opportunities in the mining industry (NRC 2001). The Oak Ridge National Laboratory (ORNL) and Colorado School of Mines engineers conducted one such project for DOE regarding by -product recovery from mining process residue. The results of this project include this report on mining industry process residue and waste with opportunity for by-product recovery. The U.S. mineral processing industry produces over 30,000,000 metric tons per year of process residue and waste that may contain hazardous species as well as valuable by-products. This study evaluates the copper, lead, and zinc commodity sectors which generate between 23,300,000 and 24,000,000 metric tons per year. The distribution of residual elements in process residues and wastes varies over wide ranges* because of variations in the original ore content as it is extracted from the earth's crust. In the earth's crust, the elements of interest to mining fall into two general geochemical classifications, lithophiles and chalcophiles** (Cox 1997). Groups of elements are almost always present together in a given geochemical classification, but the relative amounts of each element are unique to a particular ore body. This paper generally describes copper, lead, and zinc mining operations and their associated process wastes and residues. This description can serve as a basis for identifying those process residues and waste that contain both impurities and products which currently cannot be economically recovered. This information could be used to develop a market-based approach to by-product recovery by evaluating potential revenue generated from the sale of by-products along with innovative recovery techniques.

Berry, J.B.

2001-12-05T23:59:59.000Z

167

METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION  

DOE Patents (OSTI)

The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

Brown, H.S.; Seaborg, G.T.

1959-02-24T23:59:59.000Z

168

Production design for plate products in the steel industry  

E-Print Network (OSTI)

The problem we solve yields a production design (or plan) for rectangular plate ...... (the CD width exploration phase), and then later with the slabs restricted to...

169

Production design for plate products in the steel industry  

E-Print Network (OSTI)

Apr 5, 2007 ... Abstract: We describe an optimization tool for a multistage production process for rectangular steel plates. The problem we solve yields a...

170

PROJECT RULISON A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O  

Office of Legacy Management (LM)

A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O N S T I M U L A T I O N EXPERIMENT U S I N G A NUCLEAR EXPLOSIVE Issued By PROJECT RULISON JOINT OFFICE OF INFORMATION U. S. ATOMIC ENERGY COMMISSION - AUSTRAL OIL COMPANY, INCORPORATED THE DEPARTMENT OF THE INTERIOR - CER GEONUCLEAR CORPORATION May 1, 1969 OBSERVATION AREA J SURFACE GROUND ZERO AREA S C A L E - I inch e q u a l s approximatly I 2 m i l e s Project Rulison Area Map PROJECT RULISON A N INDUSTRY-GOVERNMENT NATURAL GAS PRODUCT1 ON STIMULATION EXPERIMENT USING A NUCLEAR EXPLOSIVE I. INTRODUCTION Project Rulison is o joint experiment sponsored by Austral O i l Company, Incorporated, of Houston, Texas, the U. S. Atomic Energy Commission and the Department o f the Interior, w i t h the Program Management provided b y CER Geonuclear Corporotion of L

171

DECONTAMINATION OF URANIUM  

DOE Patents (OSTI)

This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.

Feder, H.M.; Chellew, N.R.

1958-02-01T23:59:59.000Z

172

Uranium Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

Enrichment Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Uranium Enrichment A description of the uranium enrichment process, including gaseous...

173

Abstract Deployment of an AEC industry sector product model  

E-Print Network (OSTI)

widely adopted within the steel construction industry. CIS/2 is an early success story of broad use of a product model for both data exchange and improving the productivity of those companies taking advantage of its capabilities. Here, we review the history of CIS/2, the methods and issues arising from its deployment, the benefits it has thus far realized and the research issues these activities have identified.

C. Eastman; F. Wang; S. -j. You; D. Yang

2004-01-01T23:59:59.000Z

174

Experimental Measurements of Short-Lived Fission Products from Uranium, Neptunium, Plutonium and Americium  

SciTech Connect

Fission yields are especially well characterized for long-lived fission products. Modeling techniques incorporate numerous assumptions and can be used to deduce information about the distribution of short-lived fission products. This work is an attempt to gather experimental (model-independent) data on the short-lived fission products. Fissile isotopes of uranium, neptunium, plutonium and americium were irradiated under pulse conditions at the Washington State University 1 MW TRIGA reactor to achieve ~108 fissions. The samples were placed on a HPGe (high purity germanium) detector to begin counting in less than 3 minutes post irradiation. The samples were counted for various time intervals ranging from 5 minutes to 1 hour. The data was then analyzed to determine which radionuclides could be quantified and compared to the published fission yield data.

Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.

2009-11-01T23:59:59.000Z

175

Uranium Compounds and Other Natural Radioactivities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Science Division XSD Groups Industry Argonne Home Advanced Photon Source Uranium Compounds and Other Natural Radioactivities Uranium containing compounds and other...

176

SOLDERING OF URANIUM  

SciTech Connect

One of Its Monograph Series, The Industrial Atom.'' The joining of uranium to uranium has been done successfully using a number of commercial soft solders and fusible alloys. Soldering by using an ultrasonic soldering iron has proved the best method for making sound soldered joints of uranium to uranium and of uranium to other metals, such as stainless steel. Other method of soldering have shown some promise but did not give reliable joints all the time. The soldering characteristics of uranium may best be compared to those of aluminum. (auth)

Hanks, G.S.; Doll, D.T.; Taub, J.M.; Brundige, E.L.

1957-01-01T23:59:59.000Z

177

Mineral Sequestration Utilizing Industrial By-Products, Residues, and Minerals  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Fauth and Yee Soong J. Fauth and Yee Soong U.S. Department of Energy National Energy Technology Laboratory Pittsburgh PA, 15236-0940 Mineral Sequestration Workshop National Energy Technology Laboratory August 8, 2001 Mineral Sequestration Utilizing Industrial By-Products, Residues, and Minerals Mineral Sequestration Workshop, U.S. Department of Energy, NETL, August 8, 2001 Overview * Introduction - Objective - Goals - NETL Facilities * Effect of Solution Chemistry on Carbonation Efficiency - Buffered Solution + NaCl - Buffered Solution + MEA * Effect of Pretreatment on Carbonation Efficiency - Thermal Treatments - Chemical Treatments * Carbonation Reaction with Ultramafic Minerals - Serpentine - Olivine Mineral Sequestration Workshop, U.S. Department of Energy, NETL, August 8, 2001 Overview * Carbonation Reaction with Industrial By-products

178

N2: Fabrication of Uranium Dispersion Targets for Mo-99 Production  

Science Conference Proceedings (OSTI)

Uranium metal powder was fabricated by a centrifugal atomization technique. Uranium content of the dispersion targets was controlled to be 3, 6 and 9 g-U/ cm2...

179

New techniques and products solve industry problems. [New technology available for the natural gas pipeline industry  

SciTech Connect

Recently introduced technology advances in data handling, manipulation and delivery; new gas and storage marketing products; a nonintrusive pipe-crack arrester; and responsive pipe-coating mill construction show promise for cutting industry costs by increasing efficiency in pipe line construction, repair, rehabilitation, and operations. The products, services and methods described in this new technology survey include: a PC-compatible dataserver that requires no user programming; flexible, responsive gas transportation scheme; evaluation of possible further uses on brittle transmission lines for fiberglass-reinforced resin composite; new multilayer epoxy PE coating mill in Corinth, Greece, near areas where large pipe line construction and rehabilitation projects are contemplated.

Bullion, L.

1993-09-01T23:59:59.000Z

180

Converting {sup 99}Mo production from high- to low-enriched uranium  

SciTech Connect

This paper discusses efforts towards LEU substitution in two HEU targets. One type is the Cintichem target, a closed cylinder with a thin coating of uranium dioxide electroplated ion the inside wall. To successfully increase the amount of uranium per target, we are developing a target that uses LEU metal foil. Uranium surface preparation is discussed.

Vandegrift, G.F.; Conner, C.J.; Sedlet, J.; Wygmans, D.G.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EXTRACTION METHOD FOR SEPARATING URANIUM, PLUTONIUM, AND FISSION PRODUCTS FROM COMPOSITIONS CONTAINING SAME  

DOE Patents (OSTI)

Methods for separating plutonium from the fission products present in masses of neutron irradiated uranium are reported. The neutron irradiated uranium is first dissolved in an aqueous solution of nitric acid. The plutonium in this solution is present as plutonous nitrate. The aqueous solution is then agitated with an organic solvent, which is not miscible with water, such as diethyl ether. The ether extracts 90% of the uraryl nitrate leaving, substantially all of the plutonium in the aqueous phase. The aqueous solution of plutonous nitrate is then oxidized to the hexavalent state, and agitated with diethyl ether again. In the ether phase there is then obtained 90% of plutonium as a solution of plutonyl nitrate. The ether solution of plutonyl nitrate is then agitated with water containing a reducing agent such as sulfur dioxide, and the plutonium dissolves in the water and is reduced to the plutonous state. The uranyl nitrate remains in the ether. The plutonous nitrate in the water may be recovered by precipitation.

Seaborg, G.T.

1957-10-29T23:59:59.000Z

182

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

183

Method for converting uranium oxides to uranium metal  

DOE Green Energy (OSTI)

A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

Duerksen, Walter K. (Norris, TN)

1988-01-01T23:59:59.000Z

184

Method for converting uranium oxides to uranium metal  

DOE Patents (OSTI)

A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixtures is then cooled to a temperature less than -100/sup 0/C in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

Duerksen, W.K.

1987-01-01T23:59:59.000Z

185

A Process for Reducing the Licensing Burden for New Products Containing Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

3-01 3-01 A Process for Reducing the Licensing Burden for New Products Containing Depleted Uranium Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by The University of Chicago under contract W-31-109-Eng-38. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes

186

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

187

THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.  

E-Print Network (OSTI)

Products in Irradiated Uranium Dioxide," UKAEA Report AERE-OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa Lu Yang (Chemical State of Irradiated Uranium- Plutonium Oxide Fuel

Yang, Rosa Lu.

2010-01-01T23:59:59.000Z

188

THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.  

E-Print Network (OSTI)

State of Irradiated Uranium- Plutonium Oxide Fuel Pins,"Ingots Formed in Uranium-Plutonium Oxide Irradiated in EBR-Roake, "Fission Products and Plutonium Migration in Uranium-

Yang, Rosa Lu.

2010-01-01T23:59:59.000Z

189

Decolonizing cartographies : sovereignty, territoriality, and maps of meaning in the uranium landscape  

E-Print Network (OSTI)

Figure 8 Colorado Plateau uranium district, Life magazine in146! Figure 12 Navajo Nation and uranium industry162! Figure 14 An undated poster protesting uranium

Voyles, Traci Brynne

2010-01-01T23:59:59.000Z

190

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

191

U.S. uranium concentrate production and shipments, 1993-2011  

Annual Energy Outlook 2012 (EIA)

Nuclear & Uranium - U.S. Energy Information Administration (EIA) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent...

192

U.S. Uranium Expenditures, 2003-2010  

U.S. Energy Information Administration (EIA)

Domestic Uranium Production Report presents information Operating Status of U.S. Uranium Expenditures, 2003-2005

193

SOLVENT EXTRACTION PROCESS FOR THE SEPARATION OF URANIUM AND THORIUM FROM PROTACTINIUM AND FISSION PRODUCTS  

DOE Patents (OSTI)

A liquid-liquid extraction process was developed for recovering thorium and uranium values from a neutron irradiated thorium composition. They are separated from a solvent extraction system comprising a first end extraction stage for introducing an aqueous feed containing thorium and uranium into the system consisting of a plurality of intermediate extractiorr stages and a second end extractron stage for introducing an aqueous immiscible selective organic solvent for thorium and uranium in countercurrent contact therein with the aqueous feed. A nitrate iondeficient aqueous feed solution containing thorium and uranium was introduced into the first end extraction stage in countercurrent contact with the organic solvent entering the system from the second end extraction stage while intro ducing an aqueous solution of salting nitric acid into any one of the intermediate extraction stages of the system. The resultant thorium and uranium-laden organic solvent was removed at a point preceding the first end extraction stage of the system. (AEC)

Rainey, R.H.; Moore, J.G.

1962-08-14T23:59:59.000Z

194

Energy production from food industry wastewaters using bioelectrochemical cells  

Science Conference Proceedings (OSTI)

Conversion of waste and renewable resources to energy using microbial fuel cells (MFCs) is an upcoming technology for enabling a cleaner and sustainable environment. This paper assesses the energy production potential from the US food industry wastewater resource. It also reports on an experimental study investigating conversion of wastewater from a local milk dairy plant to electricity. An MFC anode biocatalyst enriched on model sugar and organic acid substrates was used as the inoculum for the dairy wastewater MFC. The tests were conducted using a two-chamber MFC with a porous three dimensional anode and a Pt/C air-cathode. Power densities up to 690 mW/m2 (54 W/m3) were obtained. Analysis of the food industry wastewater resource indicated that MFCs can potentially recover 2 to 260 kWh/ton of food processed from wastewaters generated during food processing, depending on the biological oxygen demand and volume of water used in the process. A total of 1960 MW of power can potentially be produced from US milk industry wastewaters alone. Hydrogen is an alternate form of energy that can be produced using bioelectrochemical cells. Approximately 2 to 270 m3 of hydrogen can be generated per ton of the food processed. Application of MFCs for treatment of food processing wastewaters requires further investigations into electrode design, materials, liquid flow management, proton transfer, organic loading and scale-up to enable high power densities at the larger scale. Potential for water recycle also exists, but requires careful consideration of the microbiological safety and regulatory aspects and the economic feasibility of the process.

Hamilton, Choo Yieng [ORNL

2009-01-01T23:59:59.000Z

195

Preliminary investigations for technology assessment of /sup 99/Mo production from LEU (low enriched uranium) targets. [For production of /sup 99m/Tc; by different methods  

SciTech Connect

This paper presents the results of preliminary studies on the effects of substituting low enriched uranium (LEU) for highly enriched uranium (HEU) in targets for the production of fission product /sup 99/Mo. Issues that were addressed are: (1) purity and yield of the /sup 99/Mo//sup 99m/Tc product, (2) fabrication of LEU targets and related concerns, and (3) radioactive waste. Laboratory experimentation was part of the efforts for issues (1) and (2); thus far, radioactive waste disposal has only been addressed in a paper study. Although the reported results are still preliminary, there is reason to be optimistic about the feasibility of utilizing LEU targets for /sup 99/Mo production. 37 refs., 1 fig., 5 tabs.

Vandegrift, G.F.; Chaiko, D.J.; Heinrich, R.R.; Kucera, E.T.; Jensen, K.J.; Poa, D.S.; Varma, R.; Vissers, D.R.

1986-11-01T23:59:59.000Z

196

Production of Biogas from Wastewaters of Food Processing Industries  

E-Print Network (OSTI)

An Upflow Anaerobic Sludge Blanket Process used in converting biodegradable, soluble, organic pollutants in industrial wastewaters to a directly-burnable biogas composed mainly of methane has been developed, tested, and commercially applied in Holland. Operations on wastewater from the processing of sugar beets have shown hydraulic retention times of less than 10 hours with reactor loadings of at least 10 Kg COD per m3 digester volume per day and purification efficiencies exceeding 90%. Biogas production is at a rate of about 1 therm (100000 BTU) per 10 Kg COD treated. A moderately sized (1000 m3) wastewater treatment plant processing the order of 10000 Kg COD per day will, therefore, produce the order of 1000 therms of energy per day while, at the same time, reducing the COD level in the effluent by an order of magnitude. The set of conditions required for efficient operation of this anaerobic process will be discussed. The process is unique in its mixed sludge bed approach allowing for tolerance of swings in Ph (6-8) at relatively low temperatures (32 C - 38 C) which can be readily achieved from most wastewater streams with little expenditure of additional energy. Sludge production is remarkably low, only about 5% of the COD loading, greatly alleviating disposal problems. These characteristics are conducive for the use of the anaerobic process to recover energy from a variety of wastewaters rich in carbohydrate-type substances as produced routinely as a by product of many types of food processing activities.

Sax, R. I.; Holtz, M.; Pette, K. C.

1980-01-01T23:59:59.000Z

197

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lankas opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

198

Managing novelty at the interfaces between concept and product : case studies for the automotive industry  

E-Print Network (OSTI)

Appearance of the product is a discerning factor for the consumers purchase decisions. Time from concept to product creation is a critical factor in the competitive automotive industry. The period to develop a product is ...

Zarewych, Lara Daniv, 1972-

2005-01-01T23:59:59.000Z

199

Canola: Chemistry, Production, Processing and UtilizationChapter 11 Industry Trade and Economics  

Science Conference Proceedings (OSTI)

Canola: Chemistry, Production, Processing and Utilization Chapter 11 Industry Trade and Economics Processing eChapters Processing Downloadable pdf of Chapter 11 Industry Trade and Economics, from the book ...

200

Technology strategy of competing with industrial design in markets of high-tech consumer products  

E-Print Network (OSTI)

This thesis explores the role of industrial design in the formulation of technology strategy for certain firms that compete in markets of high-tech consumer products. The initial intuition is that the role of industrial ...

Mak, Arthur T

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Selling green power in California: Product, industry, and market trends  

SciTech Connect

As one of the first US stages to open its doors to retail electric competition, California offers an important opportunity to assess the effectiveness of green power marketing as a mechanism for supporting renewable energy. This report is an interim assessment of key green power product, industry, and market trends in California. The report identifies and analyzes: the potential size of the green power market in California; the companies participating in the green power market; the green power products being offered and their prices; the impact of the green market on renewable generators and the environment; and the influence of several public policies and non-governmental programs on the market for green power. Data used in this paper have been collected, in large part, from surveys and interviews with green power marketers that took place between December 1997 and April 1998. There remain legitimate concerns over the viability of green power marketing to support significant quantities of renewable energy and provide large environmental gains, and it is far too early to assess the overall strength of customer demand for renewable energy. A critical finding of this report is that, because of the high cost of acquiring and servicing residential customers and the low utility default service price, green power marketing affords new energy service providers one of the only viable entrees to California`s residential marketplace.

Wiser, R.H.; Pickle, S.J.

1998-05-01T23:59:59.000Z

202

Method for the recovery of uranium values from uranium tetrafluoride  

DOE Patents (OSTI)

The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

Kreuzmann, A.B.

1982-10-27T23:59:59.000Z

203

Method for the recovery of uranium values from uranium tetrafluoride  

DOE Patents (OSTI)

The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

Kreuzmann, Alvin B. (Cincinnati, OH)

1983-01-01T23:59:59.000Z

204

Aggregate Production Planning for Process Industries under Competition  

E-Print Network (OSTI)

producers unit production costs) and market parameters (We are given: v ij : production cost per unit of product jincreases, and when production costs, capacity requirements

Karmarkar, U. S.; Rajaram, K.

2008-01-01T23:59:59.000Z

205

Uranium control in phosphogypsum. [In wet-process phosphoric acid production  

SciTech Connect

In wet-process phosphoric acid plants, both previous and recent test results show that uranium dissolution from phosphate rock is significantly higher when the rock is acidulated under oxidizing conditions than under reducing conditions. Excess sulfate and excess fluoride further enhance the distribution of uranium to the cake. Apparently the U(IV) present in the crystal lattice of the apatite plus that formed by reduction of U(IV) by FE(II) during acidulation is trapped or carried into the crystal lattice of the calcium sulfate crystals as they form and grow. The amount of uranium that distributes to hemihydrate filter cake is up to seven times higher than the amount that distributes to the dihydrate cake. About 60% of the uranium in hemihydrate cakes can be readily leached after hydration of the cake, but the residual uranium (20 to 30%) is very difficult to remove economically. Much additional research is needed to develop methods for minimizing uranium losses to calcium filter cakes.

Hurst, F.J.; Arnold, W.D.

1980-01-01T23:59:59.000Z

206

Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry  

Science Conference Proceedings (OSTI)

The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PIs group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the educational components addressing the production of bioethanol, biodiesel, and bioplastics provide graduates that can assist American industries in including greater renewable content in feedstocks for materials and fuels. Finally, the collaboration fostered by this grant led to the drafting of a new book entitled, Bioengineering for Sustainability: Materials and Fuels for the 21st Century. This text will be widely available to the public interested in learning more about these important areas of technology.

John R. Dorgan

2005-07-31T23:59:59.000Z

207

Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry  

Science Conference Proceedings (OSTI)

The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. The original project objectives had to be modified as a result of DOE funding cuts, the Biomass Program did not receive adequate funding to fully fund its selected projects. Nonetheless, effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. PI Dorgan taught one of the newly developed classes will in the Fall 2006, after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revisions. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PIs group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the educational components addressing the production of bioethanol, biodiesel, and bioplastics provide graduates that can assist American industries in including greater renewable content in feedstocks for materials and fuels. Finally, the collaboration fostered by this grant led to the drafting of a new book entitled, Bioengineering for Sustainability: Materials and Fuels for the 21st Century. This text will be widely available to the public interested in learning more about these important areas of technology.

John R. Dorgan

2005-09-30T23:59:59.000Z

208

Uranium: Prices, rise, then fall  

SciTech Connect

Uranium prices hit eight-year highs in both market tiers, $16.60/lb U{sub 3}O{sub 8} for non-former Soviet Union (FSU) origin and $15.50 for FSU origin during mid 1996. However, they declined to $14.70 and $13.90, respectively, by the end of the year. Increased uranium prices continue to encourage new production and restarts of production facilities presently on standby. Australia scrapped its {open_quotes}three-mine{close_quotes} policy following the ouster of the Labor party in a March election. The move opens the way for increasing competition with Canada`s low-cost producers. Other events in the industry during 1996 that have current or potential impacts on the market include: approval of legislation outlining the ground rules for privatization of the US Enrichment Corp. (USEC) and the subsequent sales of converted Russian highly enriched uranium (HEU) from its nuclear weapons program, announcement of sales plans for converted US HEU and other surplus material through either the Department of Energy or USEC, and continuation of quotas for uranium from the FSU in the United States and Europe. In Canada, permitting activities continued on the Cigar Lake and McArthur River projects; and construction commenced on the McClean Lake mill.

Pool, T.C.

1997-03-01T23:59:59.000Z

209

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel ... nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections ...

210

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

211

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

212

Aggregate Production Planning for Process Industries under Competition  

E-Print Network (OSTI)

A Linear Programming Approach to Production and EmploymentA.C. 1978. Aggregate Production Planning. Handbook ofH.A. Simon. 1960. Planning Production, Inventories and Work

Karmarkar, U. S.; Rajaram, K.

2008-01-01T23:59:59.000Z

213

Survey of lands held for uranium exploration, development and production in fourteen western states in the six month period ending June 30, 1976  

SciTech Connect

Tabulated data are presented to show the land distribution by ownership, distribution by states, distribution by land category, acres held by uranium industry, and land control by county and state. The states surveyed are Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, North Dakota, Oregon, South Dakota, Texas, Utah, Washington, and Wyoming. (JSR)

1976-01-01T23:59:59.000Z

214

Presentation 2.3: The sustainable forest products industry, carbon and climate change Mikael Hannus  

E-Print Network (OSTI)

consumption within the industry. · To assist in the efforts to reduce society's energy use and greenhouse gas emissions, the forest products industry can - become more energy efficient and increase its share of biomass in energy production; - help supply society with increasing amounts of wood and fibre for use as a raw

215

Cost estimating method of industrial product implemented in WinCOST software system  

Science Conference Proceedings (OSTI)

The paper presents a method for estimating the cost of industrial products and its implementation into a software system named WinCOST. The software is used for calculating the manufacturing time and cost evaluation of industrial products with high level ... Keywords: chip removing process, cold forming processes, cost estimation, cost per hour, software system

Gheorghe Oancea; Lucia Antoneta Chicos; Camil Lancea

2010-07-01T23:59:59.000Z

216

FAQ 5-Is uranium radioactive?  

NLE Websites -- All DOE Office Websites (Extended Search)

Is uranium radioactive? Is uranium radioactive? Is uranium radioactive? All isotopes of uranium are radioactive, with most having extremely long half-lives. Half-life is a measure of the time it takes for one half of the atoms of a particular radionuclide to disintegrate (or decay) into another nuclear form. Each radionuclide has a characteristic half-life. Half-lives vary from millionths of a second to billions of years. Because radioactivity is a measure of the rate at which a radionuclide decays (for example, decays per second), the longer the half-life of a radionuclide, the less radioactive it is for a given mass. The half-life of uranium-238 is about 4.5 billion years, uranium-235 about 700 million years, and uranium-234 about 25 thousand years. Uranium atoms decay into other atoms, or radionuclides, that are also radioactive and commonly called "decay products." Uranium and its decay products primarily emit alpha radiation, however, lower levels of both beta and gamma radiation are also emitted. The total activity level of uranium depends on the isotopic composition and processing history. A sample of natural uranium (as mined) is composed of 99.3% uranium-238, 0.7% uranium-235, and a negligible amount of uranium-234 (by weight), as well as a number of radioactive decay products.

217

Bailey's Industrial Oil and Fat Products, Volume 5  

Science Conference Proceedings (OSTI)

Edible Oils (Volume 5) First published in 1945, Bailey's has become the standard reference on the food chemistry and processing technology related to edible oils and the nonedible byproducts derived from oils. Bailey's Industrial O

218

Bailey's Industrial Oil and Fat Products, Volume 4  

Science Conference Proceedings (OSTI)

Edible Oils (Volume 4) First published in 1945, Bailey's has become the standard reference on the food chemistry and processing technology related to edible oils and the nonedible byproducts derived from oils. Bailey's Industrial O

219

Bailey's Industrial Oil and Fat Products, Volume 3  

Science Conference Proceedings (OSTI)

Edible Oils (Volume 3) First published in 1945, Bailey's has become the standard reference on the food chemistry and processing technology related to edible oils and the nonedible byproducts derived from oils. Bailey's Industrial O

220

Bailey's Industrial Oil and Fat Products, Volume 6  

Science Conference Proceedings (OSTI)

Edible Oils (Volume 6) First published in 1945, Bailey's has become the standard reference on the food chemistry and processing technology related to edible oils and the nonedible byproducts derived from oils. Bailey's Industrial O

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

222

Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors  

DOE Patents (OSTI)

A method is described for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction. 3 figs.

McLean, W. II; Miller, P.E.

1997-12-16T23:59:59.000Z

223

Total factor productivity growth in Uganda's telecommunications industry  

Science Conference Proceedings (OSTI)

The telecommunication sector is usually thought to be characterized by high productivity growth rates arising from increasing returns to scale. The actual productivity patterns in the sector, however, need to be empirically determined. A panel data set ... Keywords: Data envelopment analysis, Malmquist, Telecommunications, Total factor productivity

Eria Hisali; Bruno Yawe

2011-02-01T23:59:59.000Z

224

CALENDAR YEAR 2012 SCHEDULE Workshops to Improve Industrial Productivity by  

E-Print Network (OSTI)

. It covers material in steam generation efficiency, steam distribution system losses, and resource. For complete course information: http://www.eere.energy.gov/industry/bestpractices/pumping_systems.html Steam System Assessment Many facilities can save energy through the installation of more efficient steam

225

Training Needs in Louisiana's Value-Added Forest Products Industry  

E-Print Network (OSTI)

Economic Incentives Industry #12;What is Value-Added? The increased value at each stage of a manufacturingThe increased value at each stage of a manufacturing assembly processassembly process Those activities or steps and necessary Addition of net economic valueAddition of net economic value Value can be added through

226

DECONTAMINATION OF URANIUM  

DOE Patents (OSTI)

A process is given for separating fission products from uranium by extracting the former into molten aluminum. Phase isolation can be accomplished by selectively hydriding the uranium at between 200 and 300 deg C and separating the hydride powder from coarse particles of fissionproduct-containing aluminum. (AEC)

Spedding, F.H.; Butler, T.A.

1962-05-15T23:59:59.000Z

227

Industrial recovery capability. Final report. [Claus alumina catalyst for sulfur production  

SciTech Connect

This report provides an evaluation of the vulnerability - to a nuclear strike, terrorist attack, or natural disaster - of our national capacity to produce chlorine, beryllium, and a particular specialty alumina catalyst required for the production of sulfur. All of these industries are of critical importance to the United States economy. Other industries that were examined and found not to be particularly vulnerable are medicinal drugs and silicon wafers for electronics. Thus, only the three more vulnerable industries are addressed in this report.

Gregg, D.W.

1984-12-01T23:59:59.000Z

228

California`s forest products industry: 1992. Forest Service resource bulletin  

SciTech Connect

The report presents the findings of a survey of primary forest products industries in California for 1992. The survey included the following sectors: Lumber, pulp and board; shake and shingle; export; and post, pole, and piling. Veneer and plywood mills are not included because they could not be presented without disclosng critical details. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of logs consumed, and disposition of mill residence.

Ward, F.R.

1995-03-01T23:59:59.000Z

229

Oregon`s forest products industry: 1992. Forest Service resource bulletin  

SciTech Connect

The report presents the findings of a survey of primary forest products industries in Oregon for 1992. The survey included the following sectors; lumber; veneer and plywood; pulp and board; shake and shingle; export; and post, pole, and piling. Tables presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of logs consumed, and disposition of mill residues.

Ward, F.R.

1995-03-01T23:59:59.000Z

230

Improving productivity in food processing industries using simulation: a case study  

Science Conference Proceedings (OSTI)

Process optimization is a major decision problem when drawing a balance between meeting variable demands and maintaining the quality of products in food processing industries. Simulation is a useful technique to study the effects of system changes in ... Keywords: business process reengineering, food processing, production planning, productivity, simulation models

Seraj Yousef Abed

2008-07-01T23:59:59.000Z

231

Productivity Improvement for Fossil Steam Power Plants: Industry Case Studies  

Science Conference Proceedings (OSTI)

The "Productivity Improvement Handbook for Fossil Steam Plants," now in its third edition, has included many descriptions of successfully applied advanced techniques and products. In the last few years, an increasingly diverse set of plant case studies have been described in some detail on the website of the Productivity Improvement User Group. This report assembles more than sixty of these case studies on subjects spanning the power plant from the boiler and the steam turbine, through plant auxiliaries ...

2003-11-17T23:59:59.000Z

232

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

233

Production of xylanase in transgenic tobacco for industrial use in ...  

Science Conference Proceedings (OSTI)

Apr 7, 2010 ... sion of abundant and renewable cellulosic biomass using ... of the plant cell wall hydrolyzed during biofuel production ...... input energy.

234

Solar production of industrial process steam. Final detail design report  

SciTech Connect

The application of solar energy to produce 110 psig industrial steam for processing laundry and drycleaning for a facility in Pasadena, California, is described. The system uses tracking parabolic trough collectors. The collectors, the detailed process analyses, solar calculations and insolation data, energy reduction analyses, economic analyses, design of the solar system, construction, and costs are presented in detail. Included in appendices are the following: mechanical specifications and calculations, electrical specifications and calculations, and structural specifications and calculations. (MHR)

Eldridge, B.G.

1978-06-15T23:59:59.000Z

235

Industry Strategic Executive Overview: Highlights of the Fabricated Structural Metal Products Industry  

Science Conference Proceedings (OSTI)

The fabricated structural metals industry (SIC 344) is a dynamic marketplace with a wide variety of energy usages and issues that present several opportunities for energy service providers. The segment has been successful in the last decade beyond all forecasts and the growth is predicted to continue. However, this sector faces a wide variety of issues that range from a rapid drive toward automation to increasingly stringent regulatory and environmental controls that make them an enticing target and natu...

2002-02-06T23:59:59.000Z

236

Establishment of a Graduate Certificate Program in Biobased Industrial Products Final Technical Report  

DOE Green Energy (OSTI)

A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented course of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration between KSU and PSU; (3) catalyze involvement of plant geneticists with researchers active in the development and utilization of biobased industrial products; and, (4) promote university/industry collaboration.

John R. Schlup

2005-11-04T23:59:59.000Z

237

Establishment of a Graduate Certificate Program in Biobased Industrial Products Final Technical Report  

SciTech Connect

A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented course of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration between KSU and PSU; (3) catalyze involvement of plant geneticists with researchers active in the development and utilization of biobased industrial products; and, (4) promote university/industry collaboration.

John R. Schlup

2005-11-04T23:59:59.000Z

238

Method for fabricating .sup.99 Mo production targets using low enriched uranium, .sup.99 Mo production targets comprising low enriched uranium  

DOE Patents (OSTI)

A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.

Wiencek, Thomas C. (Orland Park, IL); Matos, James E. (Oak Park, IL); Hofman, Gerard L. (Downers Grove, IL)

1997-01-01T23:59:59.000Z

239

Method for fabricating {sup 99}Mo production targets using low enriched uranium, {sup 99}Mo production targets comprising low enriched uranium  

DOE Patents (OSTI)

A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material (low enriched U) circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.

Wiencek, T.C.; Matos, J.E.; Hofman, G.L.

1993-12-31T23:59:59.000Z

240

Internet Business Opportunities in the Forest Products Industry  

E-Print Network (OSTI)

-Forest Products Marketing Interim Director-Louisiana Forest Products Laboratory School of Renewable Natural KINGDOM 26.0 5% 5 FRANCE 21.8 4% 6 ITALY 17.5 3% 7 CANADA 16.0 3% 8 CHINA 15.9 3% 9 AUSTRALIA 10.6 2% 10

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Production, prices, employment, and trade in northwest forest industries, fourth quarter 1992. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

The report provides current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1993-07-01T23:59:59.000Z

242

Production, prices, employment, and trade in northwest forest industries, second quarter 1994. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

The report provides current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood, volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1995-01-01T23:59:59.000Z

243

Production, prices, employment and trade in northwest forest industries, second quarter 1996. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

The report provides current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1996-11-01T23:59:59.000Z

244

Production, prices, employment, and trade in northwest forest industries, third quarter 1992. Forest Service resource bulletin  

SciTech Connect

The report includes current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1993-03-01T23:59:59.000Z

245

Production, prices, employment, and trade in northwest forest industries, second quarter 1995. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

Provides current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1996-01-01T23:59:59.000Z

246

Production, prices, employment, and trade in northwest forest industries, first quarter 1994. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

The report provides current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood, volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1994-11-01T23:59:59.000Z

247

Production, prices, employment, and trade in northwest forest industries, first quarter 1995. Forest Service resource bulletin  

SciTech Connect

Provides current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood, volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1995-09-01T23:59:59.000Z

248

Production, prices, employment, and trade in northwest forest industries, second quarter 1993. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

The report includes current information on lumber and plywood production and prices, employment in the forest industries; international trade in logs, lumber and plywood; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1994-01-01T23:59:59.000Z

249

Production, prices, employment, and trade in northwest forest industries, first quarter 1996. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

Provides current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood, volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1996-07-01T23:59:59.000Z

250

Production, prices, employment, and trade in northwest forest industries, fourth quarter 1996. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

Provides current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1997-07-01T23:59:59.000Z

251

Production, prices, employment, and trade in northwest forest industries, second quarter 1992. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

The report provides current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1992-01-01T23:59:59.000Z

252

Production, prices, employment, and trade in northwest forest industries, second quarter 1997. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

Provides current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1998-03-01T23:59:59.000Z

253

Production, prices, employment, and trade in northwest forest industries, fourth quarter 1993. Forest Service resource bulletin  

SciTech Connect

The report includes current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood, volume and average prices in stumpage sold by public agencies; and other related items.

Warren, D.D.

1994-05-01T23:59:59.000Z

254

Production, prices, employment, and trade in northwest forest industries, third quarter 1996. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

Provides current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1997-02-01T23:59:59.000Z

255

Production, prices, employment, and trade in northwest forest industries, first quarter 1993. Forest Service resource bulletin  

Science Conference Proceedings (OSTI)

The report includes current information on lumber and plywood production and prices; employment in the forest industries; international trade in logs, lumber, and plywood; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1993-11-01T23:59:59.000Z

256

Palm Oil: Production, Processing, Uses, and CharacterizationChapter 25 Sustainable Development of Palm Oil Industry  

Science Conference Proceedings (OSTI)

Palm Oil: Production, Processing, Uses, and Characterization Chapter 25 Sustainable Development of Palm Oil Industry Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Technology Health - Nutrition - Biochemi

257

Uranium and Its Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

and Its Compounds Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects...

258

Uranium from phosphate ores  

Science Conference Proceedings (OSTI)

Phosphate rock, the major raw material for phosphate fertilizers, contains uranium that can be recovered when the rock is processed. This makes it possible to produce uranium in a country that has no uranium ore deposits. The author briefly describes the way that phosphate fertilizers are made, how uranium is recovered in the phosphate industry, and how to detect uranium recovery operations in a phosphate plant. Uranium recovery from the wet-process phosphoric acid involves three unit operations: (1) pretreatment to prepare the acid; (2) solvent extraction to concentrate the uranium; (3) post treatment to insure that the acid returning to the acid plant will not be harmful downstream. There are 3 extractants that are capable of extracting uranium from phosphoric acid. The pyro or OPPA process uses a pyrophosphoric acid that is prepared on site by reacting an organic alcohol (usually capryl alcohol) with phosphorous pentoxide. The DEPA-TOPO process uses a mixture of di(2-ethylhexyl)phosphoric acid (DEPA) and trioctyl phosphine oxide (TOPO). The components can be bought separately or as a mixture. The OPAP process uses octylphenyl acid phosphate, a commercially available mixture of mono- and dioctylphenyl phosphoric acids. All three extractants are dissolved in kerosene-type diluents for process use.

Hurst, F.J.

1983-01-01T23:59:59.000Z

259

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

260

Sources of the German Productivity Demise* Tracing the Effects of Industry-Level ICT Investment  

E-Print Network (OSTI)

While the US experienced two successive productivity surges in 1995 and 2000, Germanys labor productivity declined dramatically during the same period. We examine the sources of Germanys productivity demise using the ifo productivity database that provides detailed industry-level investment information. While much attention has focused on the reduction in German labor hours, our data show that Information, Communication and Technology (ICT) investment in Germany was deeply lacking in the mid 1990s as compared to the US. The transition to the new economy mitigated the German productivity slowdown, but did not reverse it. After 2000, we find that German Non-ICT investment surged, but TFP contributions collapsed as more than half of the industries, accounting for almost 50 percent of German output, experienced negative TFP growth. This second major difference between the US and German industry performance explains Germanys continued departure from the technological frontier.

Theo S. Eicher; Oliver Roehn

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

THE PREPARATION AND PROPERTIES OF DISPERSION HARDENED URANIUM POWDER PRODUCTS. Quarterly Technical Report for the Perid Ending September 30, 1959  

SciTech Connect

Studies of the effect of UO/sub 2/ dispersions in uranium metal upon properties which exhibit resistance to radiation damage were continued. Procedures were developed for preparing uranium powders of particle size less than 5 mu by hydride decomposition, and methods were developed for controlled oxidation of the powders obtained. Equipment for vacuum hot pressing and/or extrusion of powders was designed and fabricated. Samples of dispersion-hardened uranium, containing 13 to 33 vol.% uranium oxide, were prepared by extrusion in the gamma uranium temperature range. These samples were subjected to thermal cycling tests through the alpha - beta transformation temperature using a total cycle time of 15 to 20 min. Dimensional stability was observed to be superior to thai of wrought, unalloyed uranium. Transverse bending tests revealed the hightemperature strength of the dispersion-hardened compositions to be substantially greater than that of wrought, unalloyed uranium. (For preceding period see NDA-21121.) (C.J.G.)

Arbiter, W.

1959-10-15T23:59:59.000Z

262

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

263

300 AREA URANIUM CONTAMINATION  

SciTech Connect

{sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

BORGHESE JV

2009-07-02T23:59:59.000Z

264

Pulsed CO laser for isotope separation of uranium  

SciTech Connect

This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

Baranov, Igor Y.; Koptev, Andrey V. [Rocket-Space Technics Department, Baltic State Technical University, 1, 1st Krasnoarmeyskaya st.,St. Petersburg, 190005 (Russian Federation)

2012-07-30T23:59:59.000Z

265

Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1  

SciTech Connect

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

1995-07-05T23:59:59.000Z

266

Liberalization policy, production and cost efficiency in Taiwan's telecommunications industry  

Science Conference Proceedings (OSTI)

Many economists, policy-makers, and corporate managers have long believed that the operational performance of private enterprises is much more efficient than that of public utilities. However, some researches on changes in efficiency before and after ... Keywords: Cost efficiency, DEA, Privatization, Productivity, Telecommunication

Chao-Chung Kang

2010-02-01T23:59:59.000Z

267

Scheduling an Industrial Production Facility Eyjolfur Asgeirsson1  

E-Print Network (OSTI)

with the Pantex plan- ning problem. Second, we wanted to experimentally test various ideas, designed originally National Laboratories has developed and implemented the Pantex Process Model (PPM) [7] to support planning activities at Pantex, a US Department of Energy (DOE) production plant in Amarillo, Texas. The plant

Ásgeirsson, Eyjólfur Ingi

268

Innovation and production in the global solar photovoltaic industry  

Science Conference Proceedings (OSTI)

The global development of solar photovoltaic power is seen as a potentially major technology in the pursuit of alternative energy sources. Given its evolutionary nature, in terms of both technology and the market, there is some discernible divergence ... Keywords: Innovation, Patent, Production, Solar photovoltaic (PV) market

Show-Ling Jang; Li-Ju Chen; Jennifer H. Chen; Yu-Chieh Chiu

2013-03-01T23:59:59.000Z

269

An Overview of the Louisiana Secondary Wood Products Industry  

E-Print Network (OSTI)

the State of Louisiana. In addition, because the origin of material purchased from in-state suppliers cannot of the development of buying or manufacturing cooperatives that could create purchasing and sales/marketing leverage Secondary Wood Product Manufacturers Number of Employees by Establishment (Percent of respondent companies

270

A SODIUM COOLED, GRAPHITE MODERATED, LOW ENRICHMENT URANIUM REACTOR FOR THE PRODUCTION OF USEFUL POWER  

SciTech Connect

A design study is presented for a sodium cooled, graphite moderated power reactor utilizing low enrichment uranium fuel. The design is characterized by dependence on existing technology and the use of standard, or nearly standard, components. The reactor has a nominal rating of 167 thermal megawatts, and a plant comprising three such reactors for a total output of 500 thermal megawatts is described. Sodium in a secondary, non-radioactive, circulation system carries the heat to a steam generator at 910 deg F and is returned at 420 deg F. Steam conditions at the turbine throttle are 600 psig and 825 deg F. Cost of the complete reactor power plant, consisting of the three reactors and one 150- megawatt turbogenerator, is estimated to be approximately ,165,000. (auth)

Weisner, E.F. ed.

1954-09-15T23:59:59.000Z

271

The role of ICT in Korea's economic growth: Productivity changes across industries since the 1990s  

Science Conference Proceedings (OSTI)

This paper investigates the hypothesis that technological convergence has been a major driving force for the recent productivity increase in Korea. Based on the dynamic panel data of Korean industries, the direct impact of information and communication ... Keywords: ICT development, Productivity, Regulatory policy, Technological convergence

Hyun-Joon Jung, Kyoung-Youn Na, Chang-Ho Yoon

2013-05-01T23:59:59.000Z

272

Production, prices, employment, and trade in northwest forest industries, third quarter 1995. Forest Service resource bulletin  

SciTech Connect

The report presents current information on the timber situation in Alaska, Washington, Oregon, California, Montana, Idaho, and British Columbia, including data on lumber and plywood production and prices; timber harvest; employment in forest products industries; international trade in logs, pulpwood, chips, lumber, and plywood; log prices in the Pacific Northwest; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1996-03-01T23:59:59.000Z

273

Production, prices, employment, and trade in northwest forest industries, third quarter 1994. Forest Service resource bulletin  

SciTech Connect

The report presents current information on the timber situation in Alaska, Washington, Oregon, California, Montana, Idaho, and British Columbia, including data on lumber and plywood production and prices; timber harvest; employment in forest products industries; international trade in logs, pulpwood, chips, lumber, and plywood; log prices in the Pacific Northwest; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1995-03-01T23:59:59.000Z

274

Production, prices, employment, and trade in northwest forest industries, fourth quarter 1995. Forest Service resource bulletin  

SciTech Connect

This report presents current information on the timber situation in Alaska, Washington, Oregon, California, Montana, Idaho, and British Columbia, including data on lumber and plywood production and prices; timber harvest; employment in forest products industries; international trade in logs, pulpwood, chips, lumber, and plywood; log prices in the Pacific Northwest; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1996-06-01T23:59:59.000Z

275

Production, prices, employment, and trade in northwest forest industries, fourth quarter 1994. Forest Service resource bulletin  

SciTech Connect

The report presents current information on the timber situation in Alaska, Washington, Oregon, California, Montana, Idaho, and British Columbia, including data on lumber and plywood production and prices; timber harvest; employment in forest products industries; international trade in logs, pulpwood, chips, lumber, and plywood; log prices in the Pacific Northwest; volume and average prices of stumpage sold by public agencies; and other related items.

Warren, D.D.

1995-06-01T23:59:59.000Z

276

The Influence of Product Markets on Industrial Relations  

E-Print Network (OSTI)

railways, bus transport, road haulage, telecommunications, docks, vehicle, aircraft and ship manufacture, steel, gas, water, electricity, coal, munitions, airlines, research laboratories, recruitment services, waste disposal, airports, publishing... of market and labor, of merchant and wage-earner, of prices and wages. (op. cit.: 261) Associations of manufacturers are primarily price-regarding. An extension of the product market, to include lower-paying marginal producers, is likely to provoke...

Brown, William

277

India's Worsening Uranium Shortage  

Science Conference Proceedings (OSTI)

As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commissions Mid-Term Appraisal of the countrys current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of Indias uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

Curtis, Michael M.

2007-01-15T23:59:59.000Z

278

Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1  

SciTech Connect

This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

1995-07-05T23:59:59.000Z

279

Representation of Energy Use in the Food Products Industry  

E-Print Network (OSTI)

Traditional representations of energy in the manufacturing sector have tended to represent energy end-uses rather than actual energy service demands. While this representation if quite adequate for understanding how energy is used today, for forecasting future technology choices it is creates a rigid representation of how future energy is used. This representation can restrict the range of technology choices considered, particularly for fuel switching and on-site conversion processes such as combined heat and power (CHP). This paper discusses the differences between energy end-uses and service demands, proposes an approach for approximating service demands and discusses the ramifications of this alternative representation to energy modeling. An example for food products manufacturing (NAICS 311) is provided as an example.

Elliott, N. R.

2007-01-01T23:59:59.000Z

280

Groundwater Monitoring Guidance for the Industry Action Plan on Coal Combustion Product Management  

Science Conference Proceedings (OSTI)

The US Environmental Protection Agency (USEPA) is scheduled to release federal guidelines for management of coal combustion products (CCPs) in 2007. The utility industry has developed a voluntary Action Plan as an alternative to the federal guidelines. In either case, groundwater monitoring will be required. The purpose of this report is to provide guidance for implementing a groundwater-monitoring program at CCP management sites consistent with the Action Plan proposed by the utility industry.

2005-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Analysing firm performance in Chinese IT industry: DEA Malmquist productivity measure  

Science Conference Proceedings (OSTI)

Chinese IT industry has become more important and maturity after development for tens of years and come up quickly in global IT market. They may have huge influence on Chinese IT market or even the world. This paper is concerned with the study on exploring ... Keywords: China, DEA, IT industry, Malmquist productivity index, data envelopment analysis, efficiency, efficiency convergence, firm performance, information technology, performance measurement, technical diffusion

Xiaohong Chen; Xiaoding Wang; Desheng Dash Wu; Zejing Zhang

2011-12-01T23:59:59.000Z

282

Uranium immobilization and nuclear waste  

SciTech Connect

Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

Duffy, C.J.; Ogard, A.E.

1982-02-01T23:59:59.000Z

283

The impact of energy prices on industrial energy efficiency and productivity  

SciTech Connect

Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers.

Boyd, G.A.

1993-11-01T23:59:59.000Z

284

Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes  

E-Print Network (OSTI)

coordination chemistry is depleted uranium, a by-product innuclear reactors. Depleted uranium Figure 1-1. The periodic

Lam, Oanh Phi

2010-01-01T23:59:59.000Z

285

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site  

Science Conference Proceedings (OSTI)

Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

1991-09-01T23:59:59.000Z

286

URANIUM ALLOYS  

DOE Patents (OSTI)

A uranium alloy is reported containing from 0.1 to 5 per cent by weight of molybdenum and from 0.1 to 5 per cent by weight of silicon, the balance being uranium.

Colbeck, E.W.

1959-12-29T23:59:59.000Z

287

Depleted uranium management alternatives  

SciTech Connect

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

288

PRODUCTION OF D$sub 2$O FOR USE IN THE FISSION OF URANIUM  

SciTech Connect

Brief discussions of experimental methods, kinetics, and the catalysts used in the production of D{sub 2}O are presented (J.E.D.)

Urey, H.C.; Grosse, A.V.; Walden, G.

1941-06-23T23:59:59.000Z

289

Production of D{Sub 2}O for Use in the Fission of Uranium  

DOE R&D Accomplishments (OSTI)

Brief discussions of experimental methods, kinetics, and the catalysts used in the production of D{sub2}O are presented. (J.E.D.)

Urey, H. C.; Grosse, A. V.; Walden, G.

1941-06-23T23:59:59.000Z

290

RECENT DEVELOPMENTS IN URANIUM RESOURCES AND PRODUCTION WITH EMPHASIS ON IN SITU LEACH MINING  

E-Print Network (OSTI)

resources and production with emphasis on in situ leach mining Proceedings of a technical meeting organized by the IAEA in co-operation with the

unknown authors

2004-01-01T23:59:59.000Z

291

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

292

Pyrolitic Uranium Compound (PYRUC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Pyrolitic Uranium Compound Pyrolitic Uranium Compound (PYRUC) PYRolitic Uranium Compound (PYRUC) is a shielding material consisting of depleted uranium UO2 or UC in either pellet...

293

Draft Uranium Leasing Program Programmatic Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

five times the uranium concentration; this ratio was selected on the basis of the mining production rate of vanadium versus that of uranium. The RfCs used in the calculation were...

294

Industry  

E-Print Network (OSTI)

of 81 Chapter 7 Final Draft 2030 production (Mt) a A1 B2 GHGpotential and cost in 2030 Notes and sources: a Price etelectrode technology by 2030. g Humphreys and Mahasenan,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

295

Promise or Threat? : The Co-production of Technology and Politics in Uranium Enrichment in Iran.  

E-Print Network (OSTI)

??The thesis point of departure is to recapture the co-production idiom within the field of Science and Technology Studies (STS) when analyzing Irans nuclear energy (more)

Moezzi, Maryam

2010-01-01T23:59:59.000Z

296

Influence of combustion parameters on NOx production in an industrial boiler  

E-Print Network (OSTI)

Influence of combustion parameters on NOx production in an industrial boiler M.A. Habib a,*, M; accepted 14 April 2007 Available online 24 June 2007 Abstract NOx formation during the combustion process occurs mainly through the oxidation of nitrogen in the combustion air (thermal NOx) and through oxidation

Aldajani, Mansour A.

297

Social media in the product development process of the automotive industry: a new approach  

Science Conference Proceedings (OSTI)

This paper introduces a new methodology for implementing social media monitoring into an important stage of the innovation process within the automotive industry -- the prototype stage. The information gathered on social media channels was used for project ... Keywords: electric mobility, electric vehicles, product development, social media monitoring, social networking sites

Andreas Klein, Gtz Spiegel

2013-07-01T23:59:59.000Z

298

Equipment/product classification. [Equipment suppliers for the oil and gas industry  

SciTech Connect

This article contains information about the manufacturers and suppliers of goods for the oil and gas industry, including machines, software, services, and equipment used to build, operate, and maintain energy pipeline systems. The article represents companies around the world and are arranged by product category for ease of use.

Not Available

1994-05-01T23:59:59.000Z

299

Poultry Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. poultry industry and ways in which electric-powered processes and technologies can be used in poultry and egg production and processing. The poultry industry, which consists of poultry production for meat as well as egg production and processing, is one of the fastest growing segments of the U.S. food manufacturing industry. It is also an energy-intensive industry. In fact, a 2010 report by the USDA illustrates ...

2011-03-30T23:59:59.000Z

300

Isotopic ratio method for determining uranium contamination  

SciTech Connect

The presence of high concentrations of uranium in the subsurface can be attributed either to contamination from uranium processing activities or to naturally occurring uranium. A mathematical method has been employed to evaluate the isotope ratios from subsurface soils at the Rocky Flats Nuclear Weapons Plant (RFP) and demonstrates conclusively that the soil contains uranium from a natural source and has not been contaminated with enriched uranium resulting from RFP releases. This paper describes the method used in this determination which has widespread application in site characterizations and can be adapted to other radioisotopes used in manufacturing industries. The determination of radioisotope source can lead to a reduction of the remediation effort.

Miles, R.E.; Sieben, A.K.

1994-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Process for alloying uranium and niobium  

DOE Patents (OSTI)

Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uranium sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

Holcombe, C.E.; Northcutt, W.G.; Masters, D.R.; Chapman, L.R.

1990-12-31T23:59:59.000Z

302

Uranium Resources Inc URI | Open Energy Information  

Open Energy Info (EERE)

Uranium Resources Inc URI Uranium Resources Inc URI Jump to: navigation, search Name Uranium Resources, Inc. (URI) Place Lewisville, Texas Zip 75067 Product Uranium Resources, Inc. (URI) is primarily engaged in the business of acquiring, exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References Uranium Resources, Inc. (URI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Uranium Resources, Inc. (URI) is a company located in Lewisville, Texas . References ↑ "Uranium Resources, Inc. (URI)" Retrieved from "http://en.openei.org/w/index.php?title=Uranium_Resources_Inc_URI&oldid=352580" Categories: Clean Energy Organizations

303

South Dakota timber industry: An assessment of timber product output and use, 1993. Forest Service resource bulletin  

SciTech Connect

Reports findings of a survey of all primary wood-using mills in South Dakota in 1993 and compares those findings with earlier surveys. Reports production and receipts of industrial roundwood by product, species, and county. Also reports the quantity, type, and disposition of wood and bark residues generated by South Dakota`s primary wood-using industry.

Hackett, R.L.; Sowers, R.A.

1996-10-04T23:59:59.000Z

304

Production of precipitated calcium carbonate from industrial by-product slags (Slag2PCC)  

E-Print Network (OSTI)

a commercial carbonate product by mineral carbonation could allow for higher process costs than what the CO2 a commercial calcium carbonate product should contain as little impurities as possible. Solution temperatureC Carbonation at 30 ºC (XCa = 68 %) Thickener Condenser Acetic acid 5.2 kg Gel residue 1.1 kg NaOH, 2.6 kg

Zevenhoven, Ron

305

Shenzhen Prosunpro PengSangPu Solar Industrial Products Corporation | Open  

Open Energy Info (EERE)

Prosunpro PengSangPu Solar Industrial Products Corporation Prosunpro PengSangPu Solar Industrial Products Corporation Jump to: navigation, search Name Shenzhen Prosunpro/ PengSangPu Solar Industrial Products Corporation Place Shenzhen, Guangdong Province, China Zip 518055 Sector Solar Product Shenzhen Prosunpro makes and installs flat panel solar passive energy collectors and engineers central solar hot water systems. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name TrendSetter Solar Products Inc (aka Trendsetter Industries, formerly Six River Solar) Place Fairhaven, California Zip 95564 Sector Solar Product Manufacturer of solar hot water heating and storage systems. Coordinates 41.63548°, -70.903856° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.63548,"lon":-70.903856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Center for Productivity Innovation's Student Project with Industry Program at the University of Tennessee, Department of Industrial and Systems Engineering  

Science Conference Proceedings (OSTI)

A robust graduate engineering education experience requires students to learn the fundamental subject knowledge, to develop their ability to apply what they know to actual projects, and to contribute to the current body of knowledge by writing theses ... Keywords: Student Projects with Industry, engineering education, graduate research and education, industrial engineering, industry-university interaction

Rapinder Sawhney, Sima Maleki, Joseph Wilck, Pedraum Hashemian

2013-01-01T23:59:59.000Z

308

Progress in converting {sup 99}Mo production from high- to low-enriched uranium--1999.  

SciTech Connect

Over this past year, extraordinary progress has been made in executing our charter to assist in converting Mo-99 production worldwide from HEU to LEU. Building on the successful development of the experimental LEU-foil target, we have designed a new, economical irradiation target. We have also successfully demonstrated, in collaboration with BATAN in Indonesia, that LEU can be substituted for HEU in the Cintichem target without loss of product yield or purity; in fact, conversion may make economic sense. We are interacting with a number of commercial producers--we have begun active collaborations with the CNEA and ANSTO; we are working to define the scope of collaborations with MDS Nordion and Mallinckrodt; and IRE has offered its services to irradiate and test a target at the appropriate time. Conversion of the CNEA process is on schedule. Other papers presented at this meeting will present specific results on the demonstration of the LEU-modified Cintichem process, the development of the new target, and progress in converting the CNEA process.

Snelgrove, J. L.; Vandegrift, G. F.; Conner, C.; Wiencek, T. C.; Hofman, G. L.

1999-09-29T23:59:59.000Z

309

ELECTROLYSIS OF THORIUM AND URANIUM  

DOE Patents (OSTI)

An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

Hansen, W.N.

1960-09-01T23:59:59.000Z

310

WATER AND BY-PRODUCT ISSUES IN THE ELECTRIC-UTILITY INDUSTRY  

NLE Websites -- All DOE Office Websites (Extended Search)

and Power Conference in conjunction with 2 and Power Conference in conjunction with 2 nd Joint U.S.-People's Republic of China Conference on Clean Energy, November 17-19, 2003, Washington, DC A DOE R&D RESPONSE TO EMERGING COAL BY-PRODUCT AND WATER ISSUES IN THE ELECTRIC-UTILITY INDUSTRY Thomas J. Feeley, III Technology Manager U.S. Department of Energy - Office of Fossil Energy National Energy Technology Laboratory Pittsburgh, PA ABSTRACT While the regulation and control of air emissions will continue to be of primary concern to the electric-utility industry over the next several decades, other environmental-related issues may also impact the operation of existing and new coal-based power systems. Coal by-products are one such issue. Coal-fired power plants generate nearly 118 million tons of fly ash, flue gas

311

Solar production of industrial process steam for the Lone Star Brewery. Conceptual design report  

DOE Green Energy (OSTI)

The project conceptual design activities are divided into six parts: Industrial Plant, Conceptual System Design, Collector Selection, Heat Transfer Fluid Selection, Site Fabrication, and Engineered Equipment. Included is an overview of the solar steam system and a brief discussion on the environmental impact of the project as well as the safety considerations of the system design. The effect of the solar system on the environment is negligible, and the safety analysis of the system indicates the considerations to be taken to minimize any potential safety hazard due to contamination of the food product or to fire. Both of these potential hazards are discussed in detail. Both the question of product contamination and the question of potential fire hazards will be presented to the industrial partner's safety committee so that the selection of the heat transfer fluid meets with their approval.

Deffenbaugh, D.M.

1978-12-29T23:59:59.000Z

312

Biological Air Emissions Control for an Energy Efficient Forest Products Industry of the Future  

Science Conference Proceedings (OSTI)

The U.S. wood products industry is a leader in the production of innovative wood materials. New products are taking shape within a growth industry for fiberboard, plywood, particle board, and other natural material-based energy efficient building materials. However, at the same time, standards for clean air are becoming ever stricter. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) during production of wood products (including methanol, formaldehyde, acetylaldehyde, and mercaptans) must be tightly controlled. Conventional VOC and HAP emission control techniques such as regenerative thermal oxidation (RTO) and regenerative catalytic oxidation (RCO) require significant amounts of energy and generate secondary pollutants such as nitrogen oxides and spent carbon. Biological treatment of air emissions offers a cost-effective and sustainable control technology for industrial facilities facing increasingly stringent air emission standards. A novel biological treatment system that integrates two types of biofilter systems, promises significant energy and cost savings. This novel system uses microorganisms to degrade air toxins without the use of natural gas as fuel or the creation of secondary pollutants. The replacement of conventional thermal oxidizers with biofilters will yield natural gas savings alone in the range of $82,500 to $231,000 per year per unit. Widespread use of biofilters across the entire forest products industry could yield fuel savings up to 5.6 trillion Btu (British thermal units) per year and electricity savings of 2.1 trillion Btu per year. Biological treatment systems can also eliminate the production of NOx, SO2, and CO, and greatly reduce CO2 emissions, when compared to conventional thermal oxidizers. Use of biofilters for VOC and HAP emission control will provide not only the wood products industry but also the pulp and paper industry with a means to cost-effectively control air emissions. The goal of this project was to demonstrate a novel sequential treatment technology that integrates two types of biofilter systems biotrickling filtration and biofiltration for controlling forest product facility air emissions with a water-recycling feature for water conservation. This coupling design maximizes the conditions for microbial degradation of odor causing compounds at specific locations. Water entering the biotrickling filter is collected in a sump, treated, and recycled back to the biotrickling filter. The biofilter serves as a polishing step to remove more complex organic compounds (i.e., terpenes). The gaseous emissions from the hardboard mill presses at lumber plants such as that of the Stimson Lumber Company contain both volatile and condensable organic compounds (VOC and COC, respectively), as well as fine wood and other very small particulate material. In applying bio-oxidation technology to these emissions Texas A&M University-Kingsville (TAMUK) and BioReaction (BRI) evaluated the potential of this equipment to resolve two (2) control issues which are critical to the industry: First, the hazardous air pollutant (HAP) emissions (primarily methanol and formaldehyde) and Second, the fine particulate and COC from the press exhaust which contribute to visual emissions (opacity) from the stack. In a field test in 2006, the biological treatment technology met the HAP and COC control project objectives and demonstrated significantly lower energy use (than regenerative thermal oxidizers (RTOs) or regenerative catalytic oxidizers (RCOs), lower water use (than conventional scrubbers) all the while being less costly than either for maintenance. The project was successfully continued into 2007-2008 to assist the commercial partner in reducing unit size and footprint and cost, through added optimization of water recycle and improved biofilm activity, and demonstration of opacity removal capabilities.

Jones, K; Boswell, J.

2009-05-28T23:59:59.000Z

313

Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

2012-01-15T23:59:59.000Z

314

URANIUM COMPOSITIONS  

DOE Patents (OSTI)

This patent relates to high purity uranium alloys characterized by improved stability to thermal cycling and low thermal neutron absorption. The high purity uranium alloy contains less than 0.1 per cent by weight in total amount of any ore or more of the elements such as aluminum, silicon, phosphorous, tin, lead, bismuth, niobium, and zinc.

Allen, N.P.; Grogan, J.D.

1959-05-12T23:59:59.000Z

315

Progress in developing processes for converting {sup 99}Mo production from high- to low-enriched uranium--1998.  

SciTech Connect

During 1998, the emphasis of our activities was focused mainly on target fabrication. Successful conversion requires a reliable irradiation target; the target being developed uses thin foils of uranium metal, which can be removed from the target hardware for dissolution and processing. This paper describes successes in (1) improving our method for heat-treating the uranium foil to produce a random-small grain structure, (2) improving electrodeposition of zinc and nickel fission-fragment barriers onto the foil, and (3) showing that these fission fragment barriers should be stable during transport of the targets following irradiation. A method was also developed for quantitatively electrodepositing uranium and plutonium contaminants in the {sup 99}Mo. Progress was also made in broadening international cooperation in our development activities.

Conner, C.

1998-10-28T23:59:59.000Z

316

Comparison of conventional and solar-water-heating products and industries report  

DOE Green Energy (OSTI)

President Carter established a goal that would require installation of at least one million solar water heaters by 1985 and 20 million water-heating systems by the year 2000. The goals established require that the solar industry be sufficiently mature to provide cost-effective, reliable designs in the immediate future. The objective of this study was to provide the Department of Energy with quantified data that can be used to assess and redirect, if necessary, the program plans to assure compliance with the President's goals. Results deal with the product, the industry, the market, and the consumer. All issues are examined in the framework of the conventional-hot-water industry. Based on the results of this solar hot water assessment study, there is documented proof that the solar industry is blessed with over 20 good solar hot water systems. A total of eight generic types are currently being produced, but a majority of the systems being sold are included in only five generic types. The good systems are well-packaged for quality, performance and installation ease. These leading systems are sized and designed to fit the requirements of the consumer in every respect. This delivery end also suffers from a lack of understanding of the best methods for selling the product. At the supplier end, there are problems also, including: some design deficiencies, improper materials selection and, occasionally, the improper selection of components and subsystems. These, in total, are not serious problems in the better systems and will be resolved as this industry matures.

Noreen, D; LeChevalier, R; Choi, M; Morehouse, J

1980-07-11T23:59:59.000Z

317

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

318

Depleted Uranium and Uranium Alloys  

Science Conference Proceedings (OSTI)

...Naturally occurring uranium makes up 0.0004% of the crust of the Earth; it is 40 times more plentiful than silver, and 800 times more plentiful than gold. Natural uranium contains approximately 0.7% fissionable U 235 and 99.3%

319

Uranium Metal: Potential for Discovering Commercial Uses  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Metal Uranium Metal Potential for Discovering Commercial Uses Steven M. Baker, Ph.D. Knoxville Tn 5 August 1998 Summary Uranium Metal is a Valuable Resource 3 Large Inventory of "Depleted Uranium" 3 Need Commercial Uses for Inventory  Avoid Disposal Cost  Real Added Value to Society 3 Uranium Metal Has Valuable Properties  Density  Strength 3 Market will Come if Story is Told Background The Nature of Uranium Background 3 Natural Uranium: 99.3% U238; 0.7% U 235 3 U235 Fissile  Nuclear Weapons  Nuclear Reactors 3 U238 Fertile  Neutron Irradiation of U238 Produces Pu239  Neutrons Come From U235 Fission  Pu239 is Fissile (Weapons, Reactors, etc.) Post World War II Legacy Background 3 "Enriched" Uranium Product  Weapons Program 

320

U.S. Energy Information Administration / 2012 Uranium Marketing...  

U.S. Energy Information Administration (EIA) Indexed Site

of independent rounding. Weighted-average prices are not adjusted for inflation. Sources: U.S. Energy Information Administration: 1994-2002-Uranium Industry Annual, Tables 10, 11...

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Green IS for GHG emission reporting on product-level? an action design research project in the meat industry  

Science Conference Proceedings (OSTI)

Greenhouse gas emission reporting gained importance in the last years, due to societal and governmental pressure. However, this task is highly complex, especially in interdependent batch production processes and for reporting on the product-level. Green ... Keywords: GHG emissions, Green IS, PCF, action design research, design science, meat industry, product carbon footprint

Hendrik Hilpert, Christoph Beckers, Lutz M. Kolbe, Matthias Schumann

2013-06-01T23:59:59.000Z

322

The Pacific Northwest National Laboratory delivers financially attractive systems that use biomass to produce industrial and consumer products.  

E-Print Network (OSTI)

biomass to produce industrial and consumer products. While biomass holds potential for a ready supply from biomass--has stymied government and industry alike. The U.S. Department of Energy's Pacific to using biomass. Our research is focused on producing high-value bioproducts, such as chemicals

323

Uranium Exploration Report 2007 Cottonwood District, Utah  

E-Print Network (OSTI)

, undertook several field trips to determine the state of the uranium mining industry in Colorado and Utah. These field trips included active mines, abandoned mines, and active mills. Samples from some of the minesMNGN 599 Uranium Exploration Report 2007 Cottonwood District, Utah Erik Hunter Colorado School

324

Productivity of the U.S. freight rail industry: a review of the past and prospects for the future  

E-Print Network (OSTI)

Productivity growth in the U.S. freight rail industry has slowed in recent years, raising the issue of the sustainability of the significant improvements achieved during the past three decades. Indeed, between 1979 and ...

Kriem, Youssef

2011-01-01T23:59:59.000Z

325

Palm Oil: Production, Processing, Uses, and CharacterizationChapter 23 Waste and Environmental Management in the Malaysian Palm Oil Industry  

Science Conference Proceedings (OSTI)

Palm Oil: Production, Processing, Uses, and Characterization Chapter 23 Waste and Environmental Management in the Malaysian Palm Oil Industry Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Technology Heal

326

Survey of lands held for uranium exploration, development, and production in fourteen western states in the six month period ending June 30, 1979  

SciTech Connect

The statistics set forth for the period covered by this report are based on data gathered from records available to the public. These data were derived from public county records of mining claim locations, from the public reports of state and Federal land offices, from commercial reporting services, and from annual reports to stockholders of land companies. Accordingly, if any fee land has been acquired in a private transaction which has not been entered into a public record or report, that land will not be accounted for in this report. The figures for the acreage controlled at the beginning of the calendar year are those that were published for that date in the publication entitled Statistical Data of the Uranium Industry GJO-100(78).

1980-01-01T23:59:59.000Z

327

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Table 21. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2008-2012

328

Highlights of Industrial Energy Audits with Application in Paper Product Manufacturing  

E-Print Network (OSTI)

Experience in executing comprehensive energy audits in varied industrial plants has resulted in a basic audit methodology and has revealed several interesting energy conservation opportunities applicable to paper products manufacturing. The most difficult and important part of an energy audit is the data collection that is necessary to fully understand the energy flows in the facility. Although many common opportunities exist that can be found in check lists, many opportunities are discovered only by a thorough understanding of the distribution of energy consumption that comes from detailed measurements and data analysis.

Hart, M. N.; Bond, S. K.

1979-01-01T23:59:59.000Z

329

Domestic utility attitudes toward foreign uranium supply  

SciTech Connect

The current embargo on the enrichment of foreign-origin uranium for use in domestic utilization facilities is scheduled to be removed in 1984. The pending removal of this embargo, complicated by a depressed worldwide market for uranium, has prompted consideration of a new or extended embargo within the US Government. As part of its on-going data collection activities, Nuclear Resources International (NRI) has surveyed 50 domestic utility/utility holding companies (representing 60 lead operator-utilities) on their foreign uranium purchase strategies and intentions. The most recent survey was conducted in early May 1981. A number of qualitative observations were made during the course of the survey. The major observations are: domestic utility views toward foreign uranium purchase are dynamic; all but three utilities had some considered foreign purchase strategy; some utilities have problems with buying foreign uranium from particular countries; an inducement is often required by some utilities to buy foreign uranium; opinions varied among utilities concerning the viability of the domestic uranium industry; and many utilities could have foreign uranium fed through their domestic uranium contracts (indirect purchases). The above observations are expanded in the final section of the report. However, it should be noted that two of the observations are particularly important and should be seriously considered in formulation of foreign uranium import restrictions. These important observations are the dynamic nature of the subject matter and the potentially large and imbalanced effect the indirect purchases could have on utility foreign uranium procurement.

1981-06-01T23:59:59.000Z

330

Uranium mill monitoring for natural fission reactors  

SciTech Connect

Isotopic monitoring of the product stream from operating uranium mills is proposed for discovering other possible natural fission reactors; aspects of their occurrence and discovery are considered. Uranium mill operating characteristics are formulated in terms of the total uranium capacity, the uranium throughput, and the dilution half-time of the mill. The requirements for detection of milled reactor-zone uranium are expressed in terms of the dilution half-time and the sampling frequency. Detection of different amounts of reactor ore with varying degrees of /sup 235/U depletion is considered.

Apt, K.E.

1977-12-01T23:59:59.000Z

331

Process for alloying uranium and niobium  

SciTech Connect

Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

Holcombe, Cressie E. (Farragut, TN); Northcutt, Jr., Walter G. (Oak Ridge, TN); Masters, David R. (Knoxville, TN); Chapman, Lloyd R. (Knoxville, TN)

1991-01-01T23:59:59.000Z

332

Removal of uranium from aqueous HF solutions  

DOE Patents (OSTI)

This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

Pulley, Howard (West Paducah, KY); Seltzer, Steven F. (Paducah, KY)

1980-01-01T23:59:59.000Z

333

Removal of uranium from aqueous HF solutions  

Science Conference Proceedings (OSTI)

This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separating the solution from the settled particulates. The CaF2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium without introducing contaminants to the product solution.

Pulley, H.; Seltzer, S.F.

1980-11-18T23:59:59.000Z

334

Illinois mineral industry in 1978, and review of preliminary mineral production data for 1979  

SciTech Connect

This annual report of mineral production in Illinois in 1978 summarizes the output and value of minerals mined, and processed in Illinois, and of mineral products manufactured but not necessarily mined in Illinois. The total value of production in all three categories was $3170.7 million. The total value of mineral materials mined was $1637.0 million, with the mineral fuels-coal, crude oil, and natural gas-contributing 80.7 percent of the total value. Processed mineral materials were valued at $1206.9 million, and mineral products manufactured totaled $326.8 million in 1978. Coal continued to be the leading commodity in terms of value; oil ranked second; stone and sand and gravel, used largely for construction, ranked third and fourth; and fluorspar was fifth. Illinois remained the leading US producer of fluorspar, tripoli, and industrial sand, and ranked third in stone and peat, fifth in bituminous coal, sixth in total sand and gravel. Preliminary data indicate that the value of minerals mined in 1979 reached an all time high of $2131.0 million, from $1637.0 million in 1978. Detailed production summaries and analyses-including maps, tables, and graphs-are given for all mineral commodities.

Samson, I.

1981-02-01T23:59:59.000Z

335

What is Depleted Uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is Uranium? What is Uranium? Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects What is Uranium? Physical and chemical properties, origin, and uses of uranium. Properties of Uranium Uranium is a radioactive element that occurs naturally in varying but small amounts in soil, rocks, water, plants, animals and all human beings. It is the heaviest naturally occurring element, with an atomic number of 92. In its pure form, uranium is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes, which are identified by the total number of protons and neutrons in the nucleus: uranium-238, uranium-235, and uranium-234. (Isotopes of an element have the

336

ELECTROCHEMICAL DECONTAMINATION AND RECOVERY OF URANIUM VALUES  

DOE Patents (OSTI)

An electrochemical process is described for separating uranium from fission products. The method comprises subjecting the mass of uranium to anodic dissolution in an electrolytic cell containing aqueous alkali bicarbonate solution as its electrolyte, thereby promoting a settling from the solution of a solid sludge from about the electrodes and separating the resulting electrolyte solution containing the anodically dissolved uranium from the sludge which contains the rare earth fission products.

McLaren, J.A.; Goode, J.H.

1958-05-13T23:59:59.000Z

337

New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report  

SciTech Connect

This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

Ray, W. Harmon

2002-06-05T23:59:59.000Z

338

URANIUM IN ALKALINE ROCKS  

E-Print Network (OSTI)

combine to indicate uranium enrichment of an alkaline magma.uranium, the Ilfmaussaq intrusion contains an unusually high enrichment

Murphy, M.

2011-01-01T23:59:59.000Z

339

EPA Review of Standards for Uranium and Thorium Milling Facilities @ 40 CFR Parts 61 and 192.  

E-Print Network (OSTI)

diversity in industrial effluent and sewage contaminated soils. 2008, in prep. New test for depleted uranium A new test to detect depleted uranium in Gulf War veterans has unexpectedly uncovered high levels uranium. But depleted uranium showed up in a related study by the team near a former munitions plant

340

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2  

Science Conference Proceedings (OSTI)

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Winton, Shea

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5  

Science Conference Proceedings (OSTI)

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Shea, Winton

2010-12-31T23:59:59.000Z

342

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1  

Science Conference Proceedings (OSTI)

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Winton, Shea

2010-12-31T23:59:59.000Z

343

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3  

Science Conference Proceedings (OSTI)

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Shea, Winton

2010-12-31T23:59:59.000Z

344

An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4  

Science Conference Proceedings (OSTI)

Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

Miller, Bruce; Shea, Winton

2010-12-31T23:59:59.000Z

345

Uranium Mining and Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Presentation » Uranium Mining and Enrichment Overview Presentation » Uranium Mining and Enrichment Uranium Mining and Enrichment Uranium is a radioactive element that occurs naturally in the earth's surface. Uranium is used as a fuel for nuclear reactors. Uranium-bearing ores are mined, and the uranium is processed to make reactor fuel. In nature, uranium atoms exist in several forms called isotopes - primarily uranium-238, or U-238, and uranium-235, or U-235. In a typical sample of natural uranium, most of the mass (99.3%) would consist of atoms of U-238, and a very small portion of the total mass (0.7%) would consist of atoms of U-235. Uranium Isotopes Isotopes of Uranium Using uranium as a fuel in the types of nuclear reactors common in the United States requires that the uranium be enriched so that the percentage of U-235 is increased, typically to 3 to 5%.

346

Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation  

Science Conference Proceedings (OSTI)

Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

Ali, Muhammad Aslam [Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202 (Bangladesh); Lee, Chang Hoon [Functional Cereal Crop Research Division, National Institute of Crop Science, RDA, 1085, Naey-dong, Milyang (Korea, Republic of); Kim, Sang Yoon [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Pil Joo [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)], E-mail: pjkim@gnu.ac.kr

2009-10-15T23:59:59.000Z

347

Solar production of industrial process steam for the Lone Star Brewery. Final report  

DOE Green Energy (OSTI)

This report outlines the detailed design and system analysis of a solar industrial process steam system for the Lone Star Brewery. The industrial plant has an average natural gas usage of 12.7 MMcf per month. The majority of this energy goes to producing process steam of 125 psi and 353/sup 0/F at about 50,000 lb/h, with this load dropping to about 6000 lb/h on the weekends. The maximum steam production of the solar energy system is about 1700 lb/h. The climatic conditions at the industrial site give 50% of the possible amount of sunshine during the winter months and more than 70% during the summer months. The long-term yearly average daily total radiation on a horizontal surface is 1574 Btu/day-ft/sup 2/, the long-term yearly average daytime ambient temperature is 72/sup 0/F, and the percentage of clear day insolation received on the average day of the year is 62%. The solar steam system will consist of 9450 ft/sup 2/ of Solar Kinetics T-700 collectors arranged in fifteen 90-ft long rows through which 67.5 gpm of Therminol T-55 is pumped. This hot Therminol then transfers the heat collected to a Patterson-Kelley Series 380 unfired steam boiler. The solar-produced steam is then metered to the industrial process via a standard check valve. The thermal performance of this system is projected to produce about 3 million lbs of steam during an average weather year, which is approximately 3 billion Btu's. As with any prototype system, this steam system cannot be justified for purely economic reasons. It is estimated, however, that if the cost of the collectors can be reduced to a mass production level of $3 per lb then this type of system would be cost effective in about six years with the current government incentives and a fuel escalation rate of 10%. This period can be shortened by a combination of an increased investment tax credit and an accelerated depreciation.

Deffenbaugh, D.M.; Watkins, P.V.; Hugg, S.B.; Kulesz, J.J.; Decker, H.E.; Powell, R.C.

1979-06-29T23:59:59.000Z

348

Will Model-based Definition replace engineering drawings throughout the product lifecycle? A global perspective from aerospace industry  

Science Conference Proceedings (OSTI)

The Model-based Definition (MBD) approach is gaining popularity in various industries. MBD represents a trend in Computer-aided Design (CAD) that promises reduced time-to-market and improved product quality. Its main goal is to improve and accelerate ... Keywords: CAD, Engineering drawing, MBD, Model-based Definition, Product lifecycle

Virgilio Quintana; Louis Rivest; Robert Pellerin; Frdrick Venne; Fawzi Kheddouci

2010-06-01T23:59:59.000Z

349

Inherently safe in situ uranium recovery.  

SciTech Connect

Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

2009-05-01T23:59:59.000Z

350

Inherently safe in situ uranium recovery.  

SciTech Connect

Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

2009-05-01T23:59:59.000Z

351

1.0 MAJOR STUDIES SUPPORTING THIS SCOPING RISK The most important period of past U.S. uranium production spanned from approximately 1948  

E-Print Network (OSTI)

of abandoned uranium mines. The major studies supporting this scoping analysis include EPA's 1983 Report plants (U.S. DOE/EIA 2003a, 2003b, 2006). Uranium exploration, mining, and ore processing left a legacy to Congress on the Potential Health and Environmental Hazards of Uranium Mine Wastes (U.S. EPA 1983a, b, c

352

Recycling of the product of thermal inertization of cement-asbestos for various industrial applications  

SciTech Connect

Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 {sup o}C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3}] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO{sub 5}]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.

Gualtieri, Alessandro F., E-mail: alessandro.gualtieri@unimore.it [Dipartimento di Scienze della Terra, Universita di Modena e R.E., Via S. Eufemia 19, I-41100 Modena (Italy); Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele [Dipartimento di Scienze della Terra, Universita di Modena e R.E., Via S. Eufemia 19, I-41100 Modena (Italy); Lassinantti Gualtieri, Magdalena [Dipartimento Ingegneria dei Materiali e dell'Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Lusvardi, Gigliola [Dipartimento di Chimica, Universita degli Studi di Modena e Reggio Emilia, Via G. Campi 183, I-41100 Modena (Italy); Cavenati, Cinzia; Zanatto, Ivano [ZETADI S.r.l., Via dell'Artigianato 10, Ferno (Italy)

2011-01-15T23:59:59.000Z

353

Uranium (U)  

Science Conference Proceedings (OSTI)

Table 63   Properties of unstable uranium isotopes with α-particle emission...Table 63 Properties of unstable uranium isotopes with α-particle emission Isotope Abundance, % Half-life ( t 1/2 ), years Energy, MeV 234 U 0.0055 2.47 ? 10 5 4.77, 4.72, 4.58, 4.47, 235 U 0.720 7.1 ? 10 6 4.40, 4.2 238 U 99.274 4.51 ? 10 9 4.18...

354

URANIUM ALLOY POWDERS BY DIRECT REDUCTION OF OXIDES  

SciTech Connect

A process is outlined for the production of uranium alloy powders by co- reduction of mintures of uranium oxide and alloy element oxides. The reduction of mechanical mintures of the oxides of uranium and alloy element with calcium in a sealed reaction vessel is shown to produce powder wtth a variation in particle composition, although of consistert composition over various size fractions. The particular alloy systems which are considered are uranium--nickel, uranium-- chromium, uranium --molybdenum, and uranium--niobium. The uranium-molybdenum and uranium--niobium powders are single phase (metastable gamma), which is of consequence in the production of dimensionaHy stable nuclear fuels. Potential applications of some of these alloys are discussed. (auth)

Myers, R.H.; Robins, R.G.

1959-10-31T23:59:59.000Z

355

Metal casting industry of the future: An integrated approach to delivering energy efficiency products and services  

SciTech Connect

The Industries of the Future process is driven by industry. Through technology roadmaps, industry participants set technology priorities, assess the progress of R and D, and ultimately lead the way in applying research results. This approach to private-public partnerships ensures the most strategic allocation possible of limited resources for the development of new technologies and the enhancement of industrial processes. Based on industry`s request, OIT`s role is to help facilitate the Industries of the Future strategy and to support the development and deployment of technologies that will shape the future of the metal casting industry. Part of this role is to encourage industry to undertake long-term, sector-wide technology planning and to selectively cost-share with OIT in collaborative R and D activities that match OIT`s mission. OIT metal casting research requires a dollar for dollar industry cost share.

1998-12-01T23:59:59.000Z

356

A PILOT PLANT FOR THE REDUCTION OF URANIUM HEXAFLUORIDE TO URANIUM TETRAFLUORIDE WITH TRICHLOROETHYLENE  

SciTech Connect

Pilot plant experiments are described in which trichloroethylene was used for the reduction of uranium hexafluoride to uranium tetrafluoride. After unsatisfactory preliminary results with liquid phase reduction, satisfactory results were obtained with a vapor phase reduction system. It was found that vapor phase reduction at approximately 450 deg F, produced a low density product which contained only small quantities of uranium(VI); sintering the uranium tetrafluoride in a hydrogen fluoride atmosphere increased the product density to approximately 3 g/cc. The reduction was essentially complete, and the effluent gas contained less than 1 ppm of uranium hexafluoride. The purity of the uranium tetrafluoride produced was equivalent to that of the uranium hexafluoride used as feed. A complete discussion is given of the operation of the various parts of the system. (auth)

Baker, J.E.; Klaus, H.V.; Schmidt, R.A.; Smiley, S.H.

1956-05-31T23:59:59.000Z

357

METHOD OF PRODUCING URANIUM  

DOE Patents (OSTI)

A modified process is described for the production of uranium metal by means of a bomb reduction of UF/sub 4/. Difficulty is sometimes experienced in obtaining complete separation of the uranium from the slag when the process is carried out on a snnall scale, i.e., for the production of 10 grams of U or less. Complete separation may be obtained by incorporating in the reaction mixture a quantity of MnCl/sub 2/, so that this compound is reduced along with the UF/sub 4/ . As a result a U--Mn alloy is formed which has a melting point lower than that of pure U, and consequently the metal remains molten for a longer period allowing more complete separation from the slag.

Foster, L.S.; Magel, T.T.

1958-05-13T23:59:59.000Z

358

URANIUM RECOVERY PROCESS  

DOE Patents (OSTI)

The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

Hyman, H.H.; Dreher, J.L.

1959-07-01T23:59:59.000Z

359

The End of Cheap Uranium  

E-Print Network (OSTI)

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

Michael Dittmar

2011-06-18T23:59:59.000Z

360

Uranium-234  

SciTech Connect

Translation of Uran-234 by J. Sehmorak. The following subjects are discussed: /sup 234/U and other natural radioactive isotopes, fractionation of heavy radioactive elements in nature, fractionation of radioactive isotopes, /sup 234/U in nuclear geochemistry, /sup 234/U in uranium minerals, /sup 234/U in continental waters and in quaternary deposits, and /sup 234/U in the ocean. (LK)

Cherdyntsev, V.V.

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Depleted Uranium Health Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

362

URANIUM METAL POWDER PRODUCTION, PARTICLE DISTRIBUTION ANALYSIS, AND REACTION RATE STUDIES OF A HYDRIDE-DEHYDRIDE PROCESS  

E-Print Network (OSTI)

Work was done to study a hydride-dehydride method for producing uranium metal powder. Particle distribution analysis was conducted using digital microscopy and grayscale image analysis software. The particle size was found to be predominantly in the 40 ?m range, which agreed with previous work. The effects of temperature, pressure, and time on the reaction fraction of powder were measured by taking experimental data. The optimum hydride temperature for the system was found to be 233.4C. Higher gas pressures resulted in higher reaction fractions, over the range studied. For the sample parameters studied, a time of 371 minutes was calculated to achieve complete powderization. System design parameters for commercialization are proposed.

Sames, William

2011-05-01T23:59:59.000Z

363

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Renewable Energy Production .Benefits and Renewable Energy Production One source ofauspicious source of renewable energy production from such

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

364

Product strategy in response to technological innovation in the semiconductor test industry  

E-Print Network (OSTI)

After the market boom of 2000 in the semiconductor industry changed significantly. The changes included stricter limits on capital cost spending, and the increased propensity of the industry to outsource the manufacturing ...

Lin, Robert W. (Robert Wei-Pang), 1976-

2004-01-01T23:59:59.000Z

365

Electrochemical method of producing eutectic uranium alloy and apparatus  

DOE Patents (OSTI)

An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

Horton, James A. (Livermore, CA); Hayden, H. Wayne (Oakridge, TN)

1995-01-01T23:59:59.000Z

366

Recent developments: Industry briefs  

SciTech Connect

This article is the `Industry Briefs` portion of the March 1992 `Recent Developments` section of Nuexco. Specific issues mentioned are: (1) closure of Yankee Rowe, (2) steam-generator tube plugging at Trojan, (3) laser enrichment in South Africa, (4) the US uranium industry, (5) planning for two nuclear units in Taiwan, and (6) the establishment of a Czech/French joint venture.

NONE

1992-03-01T23:59:59.000Z

367

Properties of Uranium Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Triuranium Octaoxide (U3O8) Uranium Dioxide (UO2) Uranium Tetrafluoride (U4) Uranyl Fluoride (UO2F2) The physical properties of the pertinent chemical forms of uranium are...

368

Uranium Quick Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Quick Facts Uranium Quick Facts A collection of facts about uranium, DUF6, and DOEs DUF6 inventory. Over the years, the Department of Energy has received numerous...

369

PREPARATION OF URANIUM MONOSULFIDE  

DOE Patents (OSTI)

A process is given for preparing uranium monosulfide from uranium tetrafluoride dissolved in molten alkali metal chloride. A hydrogen-hydrogen sulfide gas mixture passed through the solution precipitates uranium monosulfide. (AEC)

Yoshioka, K.

1964-01-28T23:59:59.000Z

370

URANIUM IN ALKALINE ROCKS  

E-Print Network (OSTI)

1977. "Geology of Brazil's Uranium and Thorium Occurrences,"A tantalo-niobate of uranium, near pyrochlore. Isometric,niobate and tantalate of uranium, with ferrous iron and rare

Murphy, M.

2011-01-01T23:59:59.000Z

371

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site  

Science Conference Proceedings (OSTI)

In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

Not Available

1991-09-01T23:59:59.000Z

372

Federal Register Vol. 76 No. 44, 12422-12505- Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment (March 7, 2011)  

Energy.gov (U.S. Department of Energy (DOE))

Federal Register Vol. 76 No. 44, 12422-12505 - Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment (March 7, 2011)....

373

Review of Cyclotron Production and Quality Control of High Specific Activity Radionuclides for Biomedical, Biological, Industrial and Environmental Applications at INFN-LASA  

E-Print Network (OSTI)

Review of Cyclotron Production and Quality Control of High Specific Activity Radionuclides for Biomedical, Biological, Industrial and Environmental Applications at INFN-LASA

Birattari, C; Groppi, F; Gini, L

2001-01-01T23:59:59.000Z

374

Derived enriched uranium market  

SciTech Connect

The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market.

Rutkowski, E.

1996-12-01T23:59:59.000Z

375

Appendix IV. Risks Associated with Conventional Uranium Milling Introduction  

E-Print Network (OSTI)

as in situ leaching (ISL) mining operations, to provide a more complete picture of uranium production. While this report focuses on the impacts associated with conventional surface and underground uranium mines Radioactive Materials from Uranium Mining. Volume 1: Mining and Reclamation Background" by U.S. EPA (2006

376

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

OFFICE OF DEPLETED URANIUM HEXAFLUORIDE MANAGEMENT Issuance Of Final Report On Preconceptual Designs For Depleted Uranium Hexafluoride Conversion Plants The Department of Energy...

377

COPPER COATED URANIUM ARTICLE  

DOE Patents (OSTI)

Various techniques and methods for obtaining coppercoated uranium are given. Specifically disclosed are a group of complex uranium coatings having successive layers of nickel, copper, lead, and tin.

Gray, A.G.

1958-10-01T23:59:59.000Z

378

Manhattan Project: Uranium cubes  

Office of Scientific and Technical Information (OSTI)

Cubes of uranium metal, Los Alamos, 1945 Events > Difficult Choices, 1942 > More Uranium Research, 1942 Events > Bringing It All Together, 1942-1945 > Basic Research at Los Alamos,...

379

Rescuing a Treasure Uranium-233  

SciTech Connect

Uranium-233 (233U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium (232Th). At high purities, this synthetic isotope serves as a crucial reference for accurately quantifying and characterizing natural uranium isotopes for domestic and international safeguards. Separated 233U is stored in vaults at Oak Ridge National Laboratory. These materials represent a broad spectrum of 233U from the standpoint isotopic purity the purest being crucial for precise analyses in safeguarding uranium. All 233U at ORNL currently is scheduled to be down blended with depleted uranium beginning in 2015. Such down blending will permanently destroy the potential value of pure 233U samples as certified reference material for use in uranium analyses. Furthermore, no replacement 233U stocks are expected to be produced in the future due to a lack of operating production capability and the high cost of returning to operation this currently shut down capability. This paper will describe the efforts to rescue the purest of the 233U materials arguably national treasures from their destruction by down blending.

Krichinsky, Alan M [ORNL; Goldberg, Dr. Steven A. [DOE SC - Chicago Office; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL)

2011-01-01T23:59:59.000Z

380

PROCESS FOR PRODUCING URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ convented to UF/sub 6/ by reaction with a fluorinating agent. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reaction chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. The oven is then swept clean of hydrogen and the water vapor formed by means of nitrogen and then while continuing to maintain the temperature between 400 and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion to uranium tetrafluoride, the temperature of the reaction chamber is lowered to ahout 400 deg C, and elemental fluorine is used as the fluorinating agent for the conversion of UF/sub 4/ into UF/sub 6/. The fluorine gas is passed into the chamber, and the UF/sub 6/ formed passes out and is delivered to a condenser.

Fowler, R.D.

1957-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

WOSMIP II- Workshop on Signatures of Medical and Industrial Isotope Production  

Science Conference Proceedings (OSTI)

Medical and industrial fadioisotopes are fundamental tools used in science, medicine and industry with an ever expanding usage in medical practice where their availability is vital. Very sensitive environmental radionuclide monitoring networks have been developed for nuclear-security-related monitoring [particularly Comprehensive Test-Ban-Treaty (CTBT) compliance verification] and are now operational.

Matthews, Murray; Achim, Pascal; Auer, M.; Bell, Randy; Bowyer, Ted W.; Braekers, Damien; Bradley, Ed; Briyatmoko, Budi; Berglund, Helena; Camps, Johan; Carranza, Eduardo C.; Carty, Fitz; DeCaire, Richard; Deconninck, Benoit; DeGeer, Lars E.; Druce, Michael; Friese, Judah I.; Hague, Robert; Hoffman, Ian; Khrustalev, Kirill; Lucas, John C.; Mattassi, G.; Mattila, Aleski; Nava, Elisabetta; Nikkinin, Mika; Papastefanou, Constantin; Piefer, Gregory R.; Quintana, Eduardo; Ross, Ole; Rotty, Michel; Sabzian, Mohammad; Saey, Paul R.; Sameh, A. A.; Safari, M.; Schoppner, Michael; Siebert, Petra; Unger, Klaus K.; Vargas, Albert

2011-11-01T23:59:59.000Z

382

Solar production of industrial process steam at Ore-Ida frozen-fried-potato plant  

DOE Green Energy (OSTI)

TRW is designing a system for the demonstration of the Solar Production of Industrial Process Steam. Included, besides the Conceptual Design, is an Environmental Impact Assessment and a System Safety Analysis report. The system as proposed and conceptualized consists of an array of 9520 square feet of parabolic trough concentrating solar energy collectors which generate pressurized hot water. The pressurized water is allowed to flash to steam at 300 psi (417/sup 0/F) and fed directly into the high pressure steam lines of the Ore-Ida Foods, Inc., processing plant in Ontario, Oregon. Steam is normally generated in the factory by fossil-fired boilers and is used by means of a steam-to-oil heat exchanger for the process of frying potatoes in their frozen food processing line. The high pressure steam is also cascaded down to 125 psi for use in other food processing operations. This solar system will generate 2 x 10/sup 6/ Btu/hr during peak periods of insolation. Steam requirements in the plant for frying potatoes are: 43 x 10/sup 6/ Btu/hr at 300 psi and 52 x 10/sup 6/ Btu/hr at the lower temperatures and pressures. The Ontario plant operates on a 24 hr/day schedule six days a week during the potato processing campaigns and five days a week for the remainder of the year. The seventh day and sixth day, respectively, use steam for cleanup operations. An analysis of the steam generated, based on available annual insolation data and energy utilized in the plant, is included.

Cherne, J.M.; Gelb, G.H.; Pinkerton, J.D.; Paige, S.F.

1978-12-29T23:59:59.000Z

383

Nuclear & Uranium - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear & Uranium Nuclear & Uranium Glossary › FAQS › Overview Data Summary Uranium & Nuclear Fuel Nuclear Power Plants Radioactive Waste International All Nuclear Data Reports Analysis & Projections Most Requested Nuclear Plants and Reactors Projections Uranium All Reports EIA's latest Short-Term Energy Outlook for electricity › chart showing U.S. electricity generation by fuel, all sectors Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. Quarterly uranium production data › image chart of Quarterly uranium production as described in linked report Source: U.S. Energy Information Administration, Domestic Uranium Production Report - Quarterly, 3rd Quarter 2013, October 31, 2013. Uprates can increase U.S. nuclear capacity substantially without building

384

Uranium Leasing Program: Program Summary | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Leasing Program » Uranium Leasing Uranium Leasing Program » Uranium Leasing Program: Program Summary Uranium Leasing Program: Program Summary Uranium Leasing Program: Program Summary The Atomic Energy Act and other legislative actions authorized the U.S. Atomic Energy Commission (AEC), predecessor agency to the DOE, to withdraw lands from the public domain and then lease them to private industry for mineral exploration and for development and mining of uranium and vanadium ore. A total of 25,000 acres of land in southwestern Colorado, northern New Mexico, and southeastern Utah was withdrawn from the public domain during the late 1940s and early 1950s. In 1948, AEC included portions of these lands in 48 mineral leases that were negotiated with adjacent mine owners/operators. This early leasing

385

Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells  

Science Conference Proceedings (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organized and hosted two technology transfer meetings; (2) Collaborated with the Pennsylvania Oil and Gas Association (POGAM) to host a Natural Gas Outlook conference in Pittsburgh, PA; (3) Provided a SWC presentation at the Interstate Oil and Gas Compact Commission (IOGCC) meeting in Jackson Hole, WY; and (4) Completed and released a stripper well industry documentary entitled: ''Independent Oil: Rediscovering America's Forgotten Wells''.

Joel Morrison; Sharon Elder

2006-01-24T23:59:59.000Z

386

FAQ 23-How much depleted uranium -- including depleted uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

is stored in the United States? How much depleted uranium -- including depleted uranium hexafluoride -- is stored in the United States? In addition to the depleted uranium stored...

387

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

and animal production; and fossil fuel use in production andas a result of burning fossil fuels for production of feedcrops. 67 Fossil fuel burning and "land-use changes, which

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

388

Molecular Dynamics Study of Voids and Bubbles in BCC Uranium  

Science Conference Proceedings (OSTI)

Many metallic nuclear fuels are body-centered cubic alloys of uranium that swell under fission conditions with the creation of fission product gases such as...

389

Environmental Impacts of Options for Disposal of Depleted Uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

study by Oak Ridge National Laboratory evaluated the acceptability of several depleted uranium conversion products at potential LLW disposal sites to provide a basis for DOE...

390

Bioremediation of uranium contaminated soils and wastes  

SciTech Connect

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

Francis, A.J.

1998-12-31T23:59:59.000Z

391

Supply chain management for fast-moving products in the electronic industry  

E-Print Network (OSTI)

The objective of this Thesis was to strategically redesign and transform the supply chain of a series of detonators in a leading Company serving the oil and gas industry. The scope of the Thesis included data gathering and ...

Zafiriou, Konstantinos F

2006-01-01T23:59:59.000Z

392

An assessment of the radiological doses resulting from accidental uranium aerosol releases and fission product releases from a postulated criticality accident at the Oak Ridge Y-12 Plant  

Science Conference Proceedings (OSTI)

A dose assessment for two separate normalized source terms was conducted for the Oak Ridge Y-12 Plant. The first source term consisted of the noble gas and iodine fission products emanating from a postulated criticality with a magnitude of 10{sup 19} fissions. The second postulated source term was 1 kg of respirable highly enriched uranium. The MELCOR Accident Consequence Code System 2 (MACCS2) (beta test) computer code was used for this assessment. Both fixed weather (e.g., constant weather assumed throughout the accident) and sampled weather cases were performed using MACCS2. The results of the analysis are summarized in terms of the effective dose equivalent as a function of distance along the downwind centerline of the plume. In addition, population doses for the workers and the public are presented. A brief code comparison between the MACCS2 and MESORAD computer codes is also presented. Modeling differences for the cloudshine and groundshine dose pathways are discussed. Finally, the dose results are summarized, and recommendations are provided that enable the reader to make quick estimates of downwind doses for different source terms that are scalable.

Fisher, S.E.; Lenox, K.E.

1995-03-01T23:59:59.000Z

393

Plutonium recovery from spent reactor fuel by uranium displacement  

DOE Patents (OSTI)

A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, John P. (Downers Grove, IL)

1992-01-01T23:59:59.000Z

394

Plutonium recovery from spent reactor fuel by uranium displacement  

DOE Patents (OSTI)

This report discusses a process for separating uranium values and transuranic values from fission products containing rare earth values when the values which are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is re-established.

Ackerman, J.P.

1991-01-01T23:59:59.000Z

395

Illinois mineral industry in 1984 and review of preliminary mineral production data for 1985. Illinois mineral notes  

SciTech Connect

The annual output and value of Illinois minerals extracted, processed, and manufactured into products in 1984 are summarized in the report. Materials used in manufacturing were not necessarily extracted within the state. Coal continued to be the leading commodity in terms of value; oil ranked second; stone and sand and gravel ranked third and fourth; fluorspar was fifth. Nationally, Illinois ranked eighteenth in value of nonfuel mineral production. It remained the principal U.S. producer of fluorspar, tripoli, and industrial sand and led in the manufacture of iron-oxide pigments. In stone and peat production, the state ranked fourth. Preliminary data for 1985 indicate that the value of minerals mined was $2,947.8 million, a decrease of 6.1 percent from the $3,138.0 million in 1984. Detailed production summaries and analyses--including maps, tables, and graphs--for all mineral commodities are based on data available for 1984.

Samson, I.E.; Bhagwat, S.B.

1986-01-01T23:59:59.000Z

396

An Exploratory Study of International Product Transfer and Production Ramp-Up in the Data Storage Industry  

E-Print Network (OSTI)

to considerable "yield fallout," i.e. products which failoutput. The biggest yield fallout occurred at two stations,are fewer sources of yield fallout remaining. Third, there

Christian Terwiesch; Kuong S. Chea; Roger E. Bohn

1999-01-01T23:59:59.000Z

397

The End of Cheap Uranium  

E-Print Network (OSTI)

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

Dittmar, Michael

2011-01-01T23:59:59.000Z

398

LITERATURE REVIEW ON THE SORPTION OF PLUTONIUM, URANIUM, NEPTUNIUM, AMERICIUM AND TECHNETIUM TO CORROSION PRODUCTS ON WASTE TANK LINERS  

SciTech Connect

The Savannah River Site (SRS) has conducted performance assessment (PA) calculations to determine the risk associated with closing liquid waste tanks. The PA estimates the risk associated with a number of scenarios, making various assumptions. Throughout all of these scenarios, it is assumed that the carbon-steel tank liners holding the liquid waste do not sorb the radionuclides. Tank liners have been shown to form corrosion products, such as Fe-oxyhydroxides (Wiersma and Subramanian 2002). Many corrosion products, including Fe-oxyhydroxides, at the high pH values of tank effluent, take on a very strong negative charge. Given that many radionuclides may have net positive charges, either as free ions or complexed species, it is expected that many radionuclides will sorb to corrosion products associated with tank liners. The objective of this report was to conduct a literature review to investigate whether Pu, U, Np, Am and Tc would sorb to corrosion products on tank liners after they were filled with reducing grout (cementitious material containing slag to promote reducing conditions). The approach was to evaluate radionuclides sorption literature with iron oxyhydroxide phases, such as hematite ({alpha}-Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), goethite ({alpha}-FeOOH) and ferrihydrite (Fe{sub 2}O{sub 3} {center_dot} 0.5H{sub 2}O). The primary interest was the sorption behavior under tank closure conditions where the tanks will be filled with reducing cementitious materials. Because there were no laboratory studies conducted using site specific experimental conditions, (e.g., high pH and HLW tank aqueous and solid phase chemical conditions), it was necessary to extend the literature review to lower pH studies and noncementitious conditions. Consequently, this report relied on existing lower pH trends, existing geochemical modeling, and experimental spectroscopic evidence conducted at lower pH levels. The scope did not include evaluating the appropriateness of K{sub d} values for the Fe-oxyhydroxides, but instead to evaluate whether it is a conservative assumption to exclude this sorption process of radionuclides onto tank liner corrosion products in the PA model. This may identify another source for PA conservatism since the modeling did not consider any sorption by the tank liner.

Li, D.; Kaplan, D.

2012-02-29T23:59:59.000Z

399

Uranium Hexafluoride (UF6)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hexafluoride (UF6) Hexafluoride (UF6) Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Uranium Hexafluoride (UF6) Physical and chemical properties of UF6, and its use in uranium processing. Uranium Hexafluoride and Its Properties Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. UF6 crystals in a glass vial image UF6 crystals in a glass vial. Uranium hexafluoride does not react with oxygen, nitrogen, carbon dioxide, or dry air, but it does react with water or water vapor. For this reason,

400

RECENT ADVANCES IN THE POWDER METALLURGY OF URANIUM CARBIDE  

SciTech Connect

uranium carbide, uranium metal is converted to uranium hydride powder and then carburized using propane gas. The carbide particles are irregular, of a relatively uniform size, and highly pyrophoric. Paraffin, camphor, cetyl alcohol, beeswax, and carbowax are used as lubricants and binders for compacting uranium carbide powder. Sintering studies were conducted for various times and temperatures, primarily in vacuum. An investigation is in progress to evaluate the effect of carbon content on the properties and irradiation stability of uranium carbide. It is shown that the powder metallurgy technique achieves a product wfth reasonably good density and apparentiy adequate properties for reactor utilization. (M.C.G.)

Kalish, H.S.

1962-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Report on the Effect the Low Enriched Uranium Delivered Under the Highly  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on the Effect the Low Enriched Uranium Delivered Under the Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Ops of the Gaseous Diffusion Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Ops of the Gaseous Diffusion The successful implementation of the HEU Agreement remains a high priority of the U.S. Government. The agreement also serves U.S. and Russian commercial interests. HEU Agreement deliveries are an important source of supply in meeting requirements for U.S. utility uranium, conversion, and

402

Report on the Effect the Low Enriched Uranium Delivered Under the Highly  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on the Effect the Low Enriched Uranium Delivered Under the on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Ops of the Gaseous Diffusion Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the USA and the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Ops of the Gaseous Diffusion The successful implementation of the HEU Agreement remains a high priority of the U.S. Government. The agreement also serves U.S. and Russian commercial interests. HEU Agreement deliveries are an important source of supply in meeting requirements for U.S. utility uranium, conversion, and

403

Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1  

SciTech Connect

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

1995-07-05T23:59:59.000Z

404

Pricing and licensing of software products and services : a study on industry trends  

E-Print Network (OSTI)

The software product business reached the $150 billion mark at the end of 2005. The pricing and licensing of new products, maintenance services, services and service maintenance have become an important strategy to deliver ...

Nayak, Shivashis

2006-01-01T23:59:59.000Z

405

Green-IT: Green Initiative for Energy Efficient, Eco-products in the Construction Industry  

E-Print Network (OSTI)

GREEN-IT aims to introduce a product database [e2pilot] in the European building construction product sector and accelerate the EU market transformation towards regulated Energy Performance of Buildings.

Bhar, R.

2008-01-01T23:59:59.000Z

406

Sustainability in the product cycle : adopting a shared standard for the apparel industry  

E-Print Network (OSTI)

Decisions made by product designers strongly influence the social and environmental impacts that a consumer product will have over its lifetime. This study examines the Sustainable Apparel Index, a decision-support tool ...

Hartley, Alice C. (Alice Catherine)

2012-01-01T23:59:59.000Z

407

Process for electroslag refining of uranium and uranium alloys  

DOE Patents (OSTI)

A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

1975-07-22T23:59:59.000Z

408

Stumbling Toward Capitalism: The State, Global Production Networks, and the Unexpected Emergence of China's Independent Auto Industry  

E-Print Network (OSTI)

the Chinese Automobile Industry. ? Asia Pacific Journal ofof the Mexican Auto Industry. Princeton, NJ: Princeton2008. China Automotive Industry Yearbooks 2004, 2005, 2006,

Chang, Crystal Whai-ku

2011-01-01T23:59:59.000Z

409

Stumbling Toward Capitalism: The State, Global Production Networks, and the Unexpected Emergence of China's Independent Auto Industry  

E-Print Network (OSTI)

base for the global electric vehicle industry. Why is rapidThe second, the Electric Vehicle Industry Association, is aalliance, the Electric Vehicle Industry Association also

Chang, Crystal Whai-ku

2011-01-01T23:59:59.000Z

410

Agent-based collaborative product design engineering: an industrial case study  

Science Conference Proceedings (OSTI)

Globalization and rapid evolving of Internet and Web-based technologies have revolutionized the product development process. Engineering a product is a complex process involving the integration of distributed resources, such as human beings, engineering ... Keywords: collaboration, internet-aided design, product design engineering, software agents, workflow

Qi Hao; Weiming Shen; Zhan Zhang; Seong-Whan Park; Jai-Kyung Lee

2006-01-01T23:59:59.000Z

411

Agent-based collaborative product design engineering: An industrial case study  

Science Conference Proceedings (OSTI)

Globalization and rapid evolving of Internet and Web-based technologies have revolutionized the product development process. Engineering a product is a complex process involving the integration of distributed resources, such as human beings, engineering ... Keywords: Collaboration, Internet-aided design, Product design engineering, Software agents, Workflow

Qi Hao; Weiming Shen; Zhan Zhang; Seong-Whan Park; Jai-Kyung Lee

2006-01-01T23:59:59.000Z

412

URANIUM RECOVERY PROCESS  

DOE Patents (OSTI)

A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

1959-02-10T23:59:59.000Z

413

SUMMER-FALL 2011 SCHEDULE Workshops to Improve Industrial Productivity by  

E-Print Network (OSTI)

. It covers material in steam generation efficiency, steam distribution system losses, and resource. For complete course information: http://www.eere.energy.gov/industry/bestpractices/pumping_systems.html Steam System Assessment Many facilities can save energy through the installation of more efficient steam

414

CALENDAR YEARS 2012-3 SCHEDULE Workshops to Improve Industrial Productivity by  

E-Print Network (OSTI)

. It covers material in steam generation efficiency, steam distribution system losses, and resource. For complete course information: http://www.eere.energy.gov/industry/bestpractices/pumping_systems.html Steam System Assessment Many facilities can save energy through the installation of more efficient steam

415

EPA Update: NESHAP Uranium Activities  

E-Print Network (OSTI)

measurements have been performed on high-enriched uranium (HEU) oxide fuel pins and depleted uranium metal

416

Method of recovering uranium hexafluoride  

DOE Patents (OSTI)

A method of recovering uranium hexafluoride from gaseous mixtures which comprises adsorbing said uranium hexafluoride on activated carbon is described.

Schuman, S.

1975-12-01T23:59:59.000Z

417

Atomic Data for Uranium (U )  

Science Conference Proceedings (OSTI)

... Uranium (U) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Uranium (U). ...

418

Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography  

SciTech Connect

A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W. (comps.)

1980-06-01T23:59:59.000Z

419

Sponsors of CIEEDAC: Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Petroleum Products Institute, Canadian Portland Cement Association, Canadian Pulp  

E-Print Network (OSTI)

2. Industrial Consumption of Energy, and the Quarterly Report of Energy Supply and Demand 3. Annual Canada (NRCan): 1. Annual Survey of Manufacturers (ASM, from STC) 2. Industrial Consumption of Energy consistent source of historical data related to energy consumption in all Canadian industry by region

420

Solar production of industrial process steam at the Home Cleaning and Laundry Co. Final technical report  

SciTech Connect

This report presents the results of the operation and performance evaluation period at the Home Laundry Solar Industrial Process Heat Project at Pasadena, California. The installation comprises 6496 ft/sup 2/ (603.5 m/sup 2/) of linear parabolic trough concentrating collectors supplying solar thermal energy for use in laundry and dry cleaning processes. The design phase began in September 1977, and an acceptance test was conducted during the week of April 12, 1982. The plant has been in operation since May 1982, with the 12-month Phase III (operational) period starting in October 1982. The objective of the operational evaluation experiment was to maximize energy delivery to the industrial participant while characterizing system performance. Data were acquired for monthly documentation of system performance, maintenance requirements, and operating costs.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Uranium Health Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

For inhalation or ingestion of soluble or moderately soluble compounds such as uranyl fluoride (UO2F2) or uranium tetrafluoride (UF4), the uranium enters the bloodstream and...

422

METHOD FOR PURIFYING URANIUM  

DOE Patents (OSTI)

A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

Knighton, J.B.; Feder, H.M.

1960-04-26T23:59:59.000Z

423

Uranium Quick Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Quick Facts A collection of facts about uranium, DUF6, and DOEs DUF6 inventory. Over the years, the Department of Energy has received numerous inquiries from the...

424

Cathodoluminescence of uranium oxides  

SciTech Connect

The cathodoluminescence of uranium oxide surfaces prepared in-situ from clean uranium exposed to dry oxygen was studied. The broad asymmetric peak observed at 470 nm is attributed to F-center excitation.

Winer, K.; Colmenares, C.; Wooten, F.

1984-08-09T23:59:59.000Z

425

Electrolytic process for preparing uranium metal  

SciTech Connect

An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

Haas, Paul A. (Knoxville, TN)

1990-01-01T23:59:59.000Z

426

Bicarbonate leaching of uranium  

SciTech Connect

The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented.

Mason, C.

1998-12-31T23:59:59.000Z

427

PREPARATION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

1959-10-01T23:59:59.000Z

428

Uranium Processing Facility | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

About / Transforming Y-12 / Uranium Processing Facility About / Transforming Y-12 / Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly, disassembly, dismantlement, quality evaluation, and product certification. An integral part of Y-12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium Processing Facility is one of two facilities at Y-12 whose joint mission will be to accomplish the storage and processing of all enriched uranium in one much smaller, centralized area. Safety, security and flexibility are key design attributes of the facility, which is in the preliminary design phase of work. UPF will be built to modern standards and engage new technologies through a responsive and agile

429

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

430

Overview: A Legacy of Uranium Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

A Legacy of Uranium Enrichment Depleted Uranium is a Legacy of Uranium Enrichment Cylinders Photo Next Screen Management Responsibilities...

431

Digital production pipelines: examining structures and methods in the computer effects industry  

E-Print Network (OSTI)

Computer animated films require collaboration: blending artistic concept with technical skill, meeting budget constraints and adhering to deadlines. The path which production follows from initial idea to finished product is known as the pipeline. The purpose of this thesis is to collect, study and share information regarding production pipeline practices and to derive a conceptual definition. Research focused on selected companies in the United States which have produced at least one feature-length computer generated film and continue to produce them. The key finding of this thesis is a conceptual definition of digital production pipelines: A digital production pipeline must, by definition, utilize digital computing hardware and software to facilitate human work and collaboration for the overarching purpose of producing content for film. The digital production pipeline is not a structure, but rather a malleable set of components which can be arranged, configured, and adapted into new structures as needed. These malleable components are human groups with assigned task domains, and digital hardware and software systems. The human groups are normally referred to as departments or teams. The digital hardware and software systems are operating systems, software tools and applications, networks, processors, and storage. The digital production pipeline is the synergy of these two types of components into adaptable systems and structures.

Bettis, Dane Edward

2005-05-01T23:59:59.000Z

432

Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1  

SciTech Connect

The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

1995-07-05T23:59:59.000Z

433

FAQ 10-Why is uranium hexafluoride used?  

NLE Websites -- All DOE Office Websites (Extended Search)

uranium hexafluoride used? Why is uranium hexafluoride used? Uranium hexafluoride is used in uranium processing because its unique properties make it very convenient. It can...

434

Selective leaching of uranium from uranium-contaminated soils  

SciTech Connect

Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminate or remove uranium to acceptable regulatory levels. The objective was to selectively extract uranium using a soil washing/extraction process without seriously degrading the soil`s physicochemical characteristics or generating a secondary waste form that would be difficult to manage and/or dispose of. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. One of the soils is from near the Plant 1 storage pad and the other soil was taken from near a waste incinerator used to burn low-level contaminated trash. The third soil was a surface soil from an area formally used as a landfarm for the treatment of spent oils at the Oak Ridge Y-12 Plant. The sediment sample was material sampled from a storm sewer sediment trap at the Oak Ridge Y-12 Plant. Uranium concentrations in the Fernald soils ranged from 450 to 550 {mu}g U/g of soil while the samples from the Y-12 Plant ranged from 150 to 200 {mu}g U/g of soil.

Francis, C.W.; Mattus, A.J.; Farr, L.L.; Lee, S.Y. [Oak Ridge National Lab., TN (United States); Elless, M.P. [Oak Ridge National Lab., TN (United States)]|[Oak Ridge Associated Universities, Inc., TN (United States)

1993-06-01T23:59:59.000Z

435

A cross-industry analysis and framework of aftermarket products and services  

E-Print Network (OSTI)

This thesis looks at how supply chains of Aftermarket Products and Services are structured. The study includes an overall examination of the Aftermarket Function, as well as an overview and examination of Aftermarket Supply ...

Englezos, Petros

2006-01-01T23:59:59.000Z

436

A method for determining the environmental footprint of industrial products using simulation  

Science Conference Proceedings (OSTI)

Effective assessment and communication of the environmental footprint is increasingly important to process development and marketing purposes. Traditionally, static methods have been applied to analyze the environmental impact during a product's life ...

Erik Lindskog; Linus Lundh; Jonatan Berglund; Y. Tina Lee; Anders Skoogh; Bjrn Johansson

2011-12-01T23:59:59.000Z

437

URANIUM RECOVERY PROCESS  

DOE Patents (OSTI)

In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

Yeager, J.H.

1958-08-12T23:59:59.000Z

438

URANIUM SEPARATION PROCESS  

DOE Patents (OSTI)

The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

1959-07-14T23:59:59.000Z

439

Evaluacin y seleccin de microorganismos para la produccin de etanol a nivel industrial = Evaluation and selection of microorganisms for ethanol production at industrial level.  

E-Print Network (OSTI)

??Mariscal Moreno, Juan Pablo (2011) Evaluacin y seleccin de microorganismos para la produccin de etanol a nivel industrial = Evaluation and selection of microorganisms for (more)

Mariscal Moreno, Juan Pablo

2011-01-01T23:59:59.000Z

440

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS  

SciTech Connect

The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. the consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the third quarterly technical progress report for the SWC. During this reporting period the SWC entered into a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) to provide an additional $100,000 in co-funding for stripper well production-orientated projects.The SWC hosted its first meeting in which members proposed research projects to the SWC membership. The meeting was held on April 9-10, 2001 in State College, Pennsylvania. Twenty three proposals were submitted to the SWC for funding consideration. Investigators of the proposed projects provided the SWC membership with a 20 minute (15 minute technical discussion, 5 minute question and answer session) presentation. Of the 23 proposals, the Executive Council approved $921,000 in funding for 13 projects. Penn State then immediately started the process of issuing subcontracts to the various projects approved for funding.

Joel L. Morrison

2001-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Synthesis of uranium metal using laser-initiated reduction of uranium tetrafluoride by calcium metal  

SciTech Connect

Uranium metal has numerous uses in conventional weapons (armor penetrators) and nuclear weapons. It also has application to nuclear reactor designs utilizing metallic fuels--for example, the former Integral Fast Reactor program at Argonne National Laboratory. Uranium metal also has promise as a material of construction for spent-nuclear-fuel storage casks. A new avenue for the production of uranium metal is presented that offers several advantages over existing technology. A carbon dioxide (CO{sub 2}) laser is used to initiate the reaction between uranium tetrafluoride (UF{sub 4}) and calcium metal. The new method does not require induction heating of a closed system (a pressure vessel) nor does it utilize iodine (I{sub 2}) as a chemical booster. The results of five reductions of UF{sub 4}, spanning 100 to 200 g of uranium, are evaluated, and suggestions are made for future work in this area.

West, M.H.; Martinez, M.M.; Nielsen, J.B.; Court, D.C.; Appert, Q.D.

1995-09-01T23:59:59.000Z

442

PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS  

DOE Patents (OSTI)

A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

Moore, R.H.

1962-10-01T23:59:59.000Z

443

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Input on Nickel Disposition Strategy Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

444

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

445

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

.4,27.8,10.6 59.7,58.2,18.1 115.2,65.9,40.1 178.2,90.4,67.5 164.4,221.2,81.9 104,141,35.4 99.5,133.3,44.6 96.8,168.8,53.6 99.4,186.9,66.6...

446

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

1,173,108,18 124,296,149,79 155,291,121,188 155,323,378,375 154,394,558,457 162,318,441,175 125,337,400,211 102,419,462,208 179,394,462,161...

447

Industrial experience with building a web portal product line using a lightweight, reactive approach  

Science Conference Proceedings (OSTI)

Imprecise, frequently changing requirements and short time-to-market create challenges for application of conventional software methods in Web Portal engineering. To address these challenges, ST Electronics (Info-Software Systems) Pte. Ltd. applied a ... Keywords: maintenance, program synthesis, reuse, software product lines, static meta-programming, web engineering

Ulf Pettersson; Stan Jarzabek

2005-09-01T23:59:59.000Z

448

Economic Impacts of Expanded Woody Biomass Utilization on the Bioenergy and Forest Products Industries in Florida  

E-Print Network (OSTI)

and decentralised production of electricity, heat and cooling, and biofuels, thus supporting the diversification demonstrated impact, involving multipliers such as associations of manufacturers, wholesalers, retailers to biofuels are expected to support the implementation of the RES Directive and the proposed revised Fuel

Florida, University of

449

Agent Technologies for Virtual Enterprises in the One-of-a-Kind-Production Industry  

Science Conference Proceedings (OSTI)

One-of-a-kind-products (OKP) virtual enterprises are highly individualized and perform unique projects. Structural and behavioral modeling are important aspects of the use of agents to support their information systems. This paper discusses business ... Keywords: Software Agent Provider, Virtual Enterprises

Jeroen W.J. Gijsen; Nicholas B. Szirbik; Gerd Wagner

2002-10-01T23:59:59.000Z

450

Polyethylene Encapsulated Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

451

FAQ 1-What is uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is uranium? What is uranium? What is uranium? Uranium is a radioactive element that occurs naturally in low concentrations (a few parts per million) in soil, rock, and surface and groundwater. It is the heaviest naturally occurring element, with an atomic number of 92. Uranium in its pure form is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes: primarily uranium-238, uranium-235, and a very small amount of uranium-234. (Isotopes are different forms of an element that have the same number of protons in the nucleus, but a different number of neutrons.) In a typical sample of natural uranium, most of the mass (99.27%) consists of atoms of uranium-238. About 0.72% of the mass consists of atoms of uranium-235, and a very small amount (0.0055% by mass) is uranium-234.

452

Challenges dealing with depleted uranium in Germany - Reuse or disposal  

SciTech Connect

During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)

Moeller, Kai D. [Federal Office for Radiation Protection, Bundesamt fuer Strahlenschutz - BFS, Postfach 10 01 49, D-38201 Salzgitter (Germany)

2007-07-01T23:59:59.000Z

453

Ecological Dynamics of De Novo and De Alio Products in the Worldwide Optical Disk Drive Industry, 1983-1999  

E-Print Network (OSTI)

Given the extreme capital intensity of optical disk drivethe industries with low capital intensity or industries withof high and low capital intensity (Freeman & Soete, 1999),

Olga M. Khessina; Glenn R. Carroll

2001-01-01T23:59:59.000Z

454

The Copper Industry  

Science Conference Proceedings (OSTI)

...These products are sold to a wide variety of industrial users. Certain mill products??chiefly wire, cable, and most

455

Regulation of new depleted uranium uses.  

DOE Green Energy (OSTI)

This report evaluates how the existing U.S. Nuclear Regulatory Commission (NRC) regulatory structure and pending modifications would affect full deployment into radiologically uncontrolled areas of certain new depleted uranium (DU) uses being studied as part of the U.S. Department of Energy's DU uses research and development program. Such new DU uses include as catalysts (for destroying volatile organic compounds in off-gases from industrial processes and for hydrodesulfurization [HDS] of petroleum fuels), semiconductors (for fabricating integrated circuits, solar cells, or thermoelectric devices, especially if such articles are expected to have service in hostile environments), and electrodes (for service in solid oxide fuel cells, in photoelectrochemical cells used to produce hydrogen, and in batteries). The report describes each new DU use and provides a detailed analysis of whether any existing NRC licensing exemption or general license would be available to users of products and devices manufactured to deploy the new use. Although one existing licensing exemption was found to be possibly available for catalysts used for HDS of petroleum fuels and one general license was found to be possibly available for catalysts, semiconductors, and electrodes used in hydrogen production or batteries, existing regulations would require most users of products and devices deploying new DU uses to obtain specific source material licenses from the NRC or an Agreement State. This situation would not be improved by pending regulatory modifications. Thus, deployment of new DU uses may be limited because persons having no previous experience with NRC or Agreement State regulations may be hesitant to incur the costs and inconvenience of regulatory compliance, unless using a DU-containing product or device offers a substantial economic benefit over nonradioactive alternatives. Accordingly, estimating the risk of deploying new DU-containing products and devices in certain radiologically uncontrolled areas is recommended. If the estimated risks of such deployment are found to be acceptable, then it may be possible to justify adding new exemptions or general licenses to the NRC regulations.

Ranek, N. L.

2003-01-22T23:59:59.000Z

456

Indias Iron and Steel Industry: Productivity, Energy Efficiency and Carbon Emissions  

E-Print Network (OSTI)

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence; Katja Schumacher; Jayant Sathaye; Katja Schumacher; Jayant Sathaye

1998-01-01T23:59:59.000Z

457

Uranium hexafluoride public risk  

SciTech Connect

The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

1994-08-01T23:59:59.000Z

458

BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.  

SciTech Connect

Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

FRANCIS,A.J.

1998-09-17T23:59:59.000Z

459

Nuclear & Uranium - U.S. Energy Information Administration (EIA) - U.S.  

Gasoline and Diesel Fuel Update (EIA)

Nuclear & Uranium Nuclear & Uranium Glossary › FAQS › Overview Data Summary Uranium & Nuclear Fuel Nuclear Power Plants Radioactive Waste International All Nuclear Data Reports Analysis & Projections Most Requested Nuclear Plants and Reactors Projections Uranium All Reports Uranium Mill Sites Under the UMTRA Project Remediation of UMTRCA Title I Uranium Mill Sites Under the UMTRA Project Summary Table: Uranium Ore Processed, Disposal Cell Material, and Cost for Remediation as of December 31, 1999 Uranium Ore Processed Remediation Project Cost Remediation Project (Mill Site Name, State) Ore (Million Short Tons) Uranium Production (Million Pounds U3O8) Disposal Cell Remediated Material Volume (Million Cubic Yards) Total Cost A (Thousand U.S. Dollars)02/09 Per Pound Produced (Dollars per Pound U3O8) Per Unit of Remediated Material

460

Arizona strip breccia pipe program: exploration, development, and production  

Science Conference Proceedings (OSTI)

As part of the long-range plans for the Energy Fuels Corporation, they have embarked on one of the most active and aggressive uranium exploration programs in the US. These exploration efforts are located in the northwestern part of Arizona in an area referred to as the Arizona Strip. At a time when the domestic uranium industry is staggering to recover from its worst economic slump, Energy Fuels is spending millions of dollars a year on exploration, development, production, and milling. The reason for Energy Fuels' commitment to uranium exploration and production lies in the ground of Arizona in unique geologic formations called breccia pipes. Some of these structures, generally no more than 300 to 350 ft in diameter, contain uranium that is, on the average, five to ten times richer than ore found elsewhere in the US. The richness of this Arizona ore makes it the only conventionally mined uranium in the US that can compete in today's market of cheaper, high-grade foreign sources. Between January 1980 and December 1986, Energy Fuels has mined more than 10 billion lb of uranium from breccia pipe deposits at an average grade of 0.65% U/sub 3/O/sub 8/. Currently, Energy Fuels is operating six breccia pipe mines, and a plan of operations on a seventh mine has been submitted to the appropriate government agencies for the necessary mining permits.

Mathisen, I.W. Jr.

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium production industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Predicting 232U Content in Uranium  

SciTech Connect

The minor isotope 232U may ultimately be used for detection or confirmation of uranium in a variety of applications. The primary advantage of 232 U as an indicator of the presence of enriched uranium is the plentiful and penetrating nature of the radiation emitted by its daughter radionuclide 208Tl. A possible drawback to measuring uranium via 232U is the relatively high uncertainty in 232U abundance both within and between material populations. An important step in assessing this problem is to ascertain what determines the 232U concentration within any particular sample of uranium. To this end, we here analyze the production and eventual enrichment of 232 U during fuel-cycle operations. The goal of this analysis is to allow approximate prediction of 232 U quantities, or at least some interpretation of the results of 232U measurements. We have found that 232U is produced via a number of pathways during reactor irradiation of uranium and is subsequently concentrated during the later enrichment of the uranium' s 235U Content. While exact calculations are nearly impossible for both the reactor-production and cascade-enrichment parts of the prediction problem, estimates and physical bounds can be provided as listed below and detailed within the body of the report. Even if precise calculations for the irradiation and enrichment were possible, the ultimate 212U concentration would still depend upon the detailed fuel-cycle history. Assuming that a thennal-diffusion cascade is used to produce highly enriched uranium (HEU), dilution of reactor-processed fuel at the cascade input and the long-term holdup of 232U within the cascade both affect the 232U concentration in the product. Similar issues could be expected to apply for the other isotope-separation technologies that are used in other countries. Results of this analysis are listed below: 0 The 232U concentration depends strongly on the uranium enrichment, with depleted uranium (DU) containing between 1600 and 8000 times less 232U than HEU does. * The 236U/232U concentration ratio in HEU is likely to be between 10{sup 6} and 2 x 10{sup 7}. 0 Plutonium-production reactors yield uranium with between I and 10 ppt of 232u. 0 Much higher 132U concentrations can be obtained in some situations. * Significant variation in the 232U concentration is inevitable. * Cascade enrichment increases the 232U concentration by a factor of at least 200, and possibly as much as 1000. 0 The actual 232U concentration depends upon the dilution at the cascade input.

AJ Peurrung

1999-01-07T23:59:59.000Z

462

Predicting 232U Content in Uranium  

SciTech Connect

The minor isotope 232U may ultimately be used for detection or confirmation of uranium in a variety of applications. The primary advantage of 232 U as an indicator of the presence of enriched uranium is the plentiful and penetrating nature of the radiation emitted by its daughter radionuclide 208Tl. A possible drawback to measuring uranium via 232U is the relatively high uncertainty in 232U abundance both within and between material populations. An important step in assessing this problem is to ascertain what determines the 232U concentration within any particular sample of uranium. To this end, we here analyze the production and eventual enrichment of 232 U during fuel-cycle operations. The goal of this analysis is to allow approximate prediction of 232 U quantities, or at least some interpretation of the results of 232U measurements. We have found that 232U is produced via a number of pathways during reactor irradiation of uranium and is subsequently concentrated during the later enrichment of the uranium' s 235U Content. While exact calculations are nearly impossible for both the reactor-production and cascade-enrichment parts of the prediction problem, estimates and physical bounds can be provided as listed below and detailed within the body of the report. Even if precise calculations for the irradiation and enrichment were possible, the ultimate 212U concentration would still depend upon the detailed fuel-cycle history. Assuming that a thennal-diffusion cascade is used to produce highly enriched uranium (HEU), dilution of reactor-processed fuel at the cascade input and the long-term holdup of 232U within the cascade both affect the 232U concentration in the product. Similar issues could be expected to apply for the other isotope-separation technologies that are used in other countries. Results of this analysis are listed below: 0 The 232U concentration depends strongly on the uranium enrichment, with depleted uranium (DU) containing between 1600 and 8000 times less 232U than HEU does. * The 236U/232U concentration ratio in HEU is likely to be between 10{sup 6} and 2 x 10{sup 7}. 0 Plutonium-production reactors yield uranium with between I and 10 ppt of 232u. 0 Much higher 132U concentrations can be obtained in some situations. * Significant variation in the 232U concentration is inevitable. * Cascade enrichment increases the 232U concentration by a factor of at least 200, and possibly as much as 1000. 0 The actual 232U concentration depends upon the dilution at the cascade input.

AJ Peurrung

1999-01-07T23:59:59.000Z

463

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. (was Uranium Asset Management) Advance Uranium Asset Management Ltd. (was Uranium Asset Management) AREVA NC, Inc. (was COGEMA, Inc.) American Fuel Resources, LLC American Fuel Resources, LLC BHP Billiton Olympic Dam Corporation Pty Ltd AREVA NC, Inc. AREVA NC, Inc. CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd BHP Billiton Olympic Dam Corporation Pty Ltd ConverDyn CAMECO CAMECO Denison Mines Corp. ConverDyn ConverDyn Energy Resources of Australia Ltd. Denison Mines Corp. Energy Fuels Resources Energy USA, Inc. Effective Energy N.V. Energy Resources of Australia Ltd.

464

First Principles Calculations of Uranium and Uranium-Zirconium Alloys  

Science Conference Proceedings (OSTI)

Presentation Title, First Principles Calculations of Uranium and Uranium- Zirconium Alloys. Author(s), Benjamin Good, Benjamin Beeler, Chaitanya Deo, Sergey...

465

Preparation of uranium compounds  

SciTech Connect

UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

2013-02-19T23:59:59.000Z

466

A LABORATORY INVESTIGATION OF THE FLUORINATION OF CRUDE URANIUM TETRAFLUORIDE  

DOE Green Energy (OSTI)

Ore concentrates were converted directly to crude uranium tetrafluoride by hydrogen reduction aad hydrofluorination in fluidized-bed reactors. Small- scale laboratory experiments demonstrated that this process can be extended to the production of crude uranium hexafluoride through fluorination of the uranium tetrafluoride in a fluidized bed. The satisfactory temperature range for the reaction lies between 300 and 600 deg C. At 450 deg C the fluorine utilization is between 50 and 80%. With excess fluorine, over 99% of the uranium is volatilized from the solid material. The fluidization characteristics of certain materials are improved by the addition of an inert solid diluent to the bed. (auth) .

Sandus, O.; Steunenberg, R.K.

1957-12-01T23:59:59.000Z

467

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

468

Uranium 'pearls' before slime  

NLE Websites -- All DOE Office Websites (Extended Search)

harm to themselves, scientists have wondered how on Earth these microbes do it. For Shewanella oneidensis, a microbe that modifies uranium chemistry, the pieces are coming...

469

Uranium Purchases Report  

Reports and Publications (EIA)

Final issue. This report details natural and enriched uranium purchases as reported by owners and operators of commercial nuclear power plants. 1996 represents the most recent publication year.

Douglas Bonnar

1996-06-01T23:59:59.000Z

470

Uranium Purchases Report 1995  

U.S. Energy Information Administration (EIA)

DOE/EIA0570(95) Distribution Category UC950 Uranium Purchases Report 1995 June 1996 Energy Information Administration Office of Coal, Nuclear, ...

471

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

472

Measurement of Trace Uranium Isotopes  

Science Conference Proceedings (OSTI)

The extent to which thermal ionization mass spectrometry (TIMS) can measure trace quantities of 233U and 236U in the presence of a huge excess of natural uranium is evaluated. This is an important nuclear non-proliferation measurement. Four ion production methods were evaluated with three mass spectrometer combinations. The most favorable combinations are not limited by abundance sensitivity; rather, the limitations are the ability to generate a uranium ion beam of sufficient intensity to obtain the required number of counts on the minor isotopes in relationship to detector background. The most favorable situations can measure isotope ratios in the range of E10 if sufficient sample intensity is available. These are the triple sector mass spectrometer with porous ion emitters (PIE) and the single sector mass spectrometer with energy filtering.

Matthew G. Watrous; James E. Delmore

2011-05-01T23:59:59.000Z

473

PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM  

DOE Patents (OSTI)

A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.

Wheelwright, E.J.

1959-02-17T23:59:59.000Z

474

Synthesis of Uranium Trichloride for the Pyrometallurgical Processing of Used Nuclear Fuel  

SciTech Connect

The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results and conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.

B.R. Westphal; J.C. Price; R.D. Mariani

2011-11-01T23:59:59.000Z

475

URANIUM LEACHING AND RECOVERY PROCESS  

DOE Patents (OSTI)

A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

McClaine, L.A.

1959-08-18T23:59:59.000Z

476

PROCESS FOR MAKING URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for producing uranium hexafluoride by reacting uranium hexachloride with hydrogen fluoride at a temperature below about 150 deg C, under anhydrous conditions.

Rosen, R.

1959-07-14T23:59:59.000Z

477

URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO  

SciTech Connect

Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

2006-04-01T23:59:59.000Z