Sample records for uranium ore processing

  1. An Overview of Process Monitoring Related to the Production of Uranium Ore Concentrate

    SciTech Connect (OSTI)

    McGinnis, Brent [Innovative Solutions Unlimited, LLC

    2014-04-01T23:59:59.000Z

    Uranium ore concentrate (UOC) in various chemical forms, is a high-value commodity in the commercial nuclear market, is a potential target for illicit acquisition, by both State and non-State actors. With the global expansion of uranium production capacity, control of UOC is emerging as a potentially weak link in the nuclear supply chain. Its protection, control and management thus pose a key challenge for the international community, including States, regulatory authorities and industry. This report evaluates current process monitoring practice and makes recommendations for utilization of existing or new techniques for managing the inventory and tracking this material.

  2. BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL

    SciTech Connect (OSTI)

    Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.; Thompson, Anthony J.

    2003-02-27T23:59:59.000Z

    Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials at a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.

  3. Radiological assessment of residues from uranium and other ore mining and processing - A precondition for decisions on remedial measures

    SciTech Connect (OSTI)

    Ettenhuber, E; Roehnsch, W. [Bundesamt fuer Strahlenschutz, Berlin (Germany); Biesold, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Colonge (Germany)

    1994-12-31T23:59:59.000Z

    In certain parts of Eastern Germany relics of uranium mining and milling as well as of traditional ore mining and processing may contribute to the environmental contamination and the radiation exposure of the public. Systematic investigations of the situation are the indispensable prerequisite for decisions upon the radiological relevance and remedial actions. In view of the large number and scattering of relics under consideration, a stepwise procedure with increasing intensity of investigation was developed to solve the task effectively and in an appropriate time. For the radiological evaluation following the steps of investigation generic criteria were derived. They are based on a primary reference dose of level (1 mSv/year) and on measureable radioactivity quantities recommend by the German Commission on Radiological Protection for unrestricted/restricted release of contaminated grounds. Applying the criteria established for the verification (gamma dose rate, volume of disposed material, area affected by waste materials) the investigations led to the result that no more than 30% of the objects of former mining have to be classified as {open_quotes}possibly relevant{close_quotes} and have to be investigated further on.

  4. albarrana uranium ores: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 7 A...

  5. Chemical Equilibrium of the Dissolved Uranium in Groundwaters From a Spanish Uranium-Ore Deposit

    SciTech Connect (OSTI)

    Garralon, Antonio; Gomez, Paloma; Turrero, Maria Jesus; Buil, Belen; Sanchez, Lorenzo [Departamento de Medio Ambiente, CIEMAT, Avda. Complutense 22. Edificio 19, Madrid, 28040 (Spain)

    2007-07-01T23:59:59.000Z

    The main objectives of this work are to determine the hydrogeochemical evolution of an uranium ore and identify the main water/rock interaction processes that control the dissolved uranium content. The Mina Fe uranium-ore deposit is the most important and biggest mine worked in Spain. Sageras area is located at the north part of the Mina Fe, over the same ore deposit. The uranium deposit was not mined in Sageras and was only perturbed by the exploration activities performed 20 years ago. The studied area is located 10 Km northeast of Ciudad Rodrigo (Salamanca) at an altitude over 650 m.a.s.l. The uranium mineralization is related to faults affecting the metasediments of the Upper Proterozoic to Lower Cambrian schist-graywacke complex (CEG), located in the Centro-Iberian Zone of the Hesperian Massif . The primary uranium minerals are uraninite and coffinite but numerous secondary uranium minerals have been formed as a result of the weathering processes: yellow gummite, autunite, meta-autunite, torbernite, saleeite, uranotile, ianthinite and uranopilite. The water flow at regional scale is controlled by the topography. Recharge takes place mainly in the surrounding mountains (Sierra Pena de Francia) and discharge at fluvial courses, mainly Agueda and Yeltes rivers, boundaries S-NW and NE of the area, respectively. Deep flows (lower than 100 m depth) should be upwards due to the river vicinity, with flow directions towards the W, NW or N. In Sageras-Mina Fe there are more than 100 boreholes drilled to investigate the mineral resources of the deposit. 35 boreholes were selected in order to analyze the chemical composition of groundwaters based on their depth and situation around the uranium ore. Groundwater samples come from 50 to 150 m depth. The waters are classified as calcium-bicarbonate type waters, with a redox potential that indicates they are slightly reduced (values vary between 50 to -350 mV). The TOC varies between <0.1 and 4.0 mgC/L and the dissolved uranium has a maximum value of 7.7 mg/L. According the analytical data of dissolved uranium, the mineral closest to equilibrium seems to be UO{sub 2}(am). The tritium contents in the groundwaters vary between 1.5 and 7.3 T.U. Considering that the mean value of tritium in rainwater from the studied area has a value of 4 T.U., it can be concluded that the residence times of the groundwaters are relatively short, not longer than 50 years in the oldest case. (authors)

  6. A study of uranium distribution in an upper Jackson lignite-sandstone ore body, South Texas 

    E-Print Network [OSTI]

    Chatham, James Randall

    1979-01-01T23:59:59.000Z

    here). Under certain con- dit1ons an oxidation-reduction i nterface may develope. This interface is essentially a boundary of oxidizing conditions updip and reducing conditions downdip (Fig. 1). As the uranium complex-bearing ground- water migrates... be preserved. Continual deposition may bury the ore body several hundred feet below surface, making its detection diffi- cult. These processes are believed by many (including the autllor) to be fundamental in the formation of sedimentary uranium deposits...

  7. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2003-12-31T23:59:59.000Z

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 October through 31 December of 2003.

  8. Uranium ore treatment. January 1970-May 1981 (citations from the Engineering Index Data Base). Report for Jan 70-May 81

    SciTech Connect (OSTI)

    Not Available

    1981-05-01T23:59:59.000Z

    The treatment of uranium ores is presented with emphasis placed on acid leaching as the primary step in the process. Tailing disposal and proper handling of radioactive materials, including environmental monitoring is emphasized. Primary treatment procedures include ion exchange, sulfuric acid leaching, solvent extraction and sedimentation. (Contains 300 citations fully indexed and including a title list.)

  9. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments. Abstract: A...

  10. A study of uranium distribution in an upper Jackson lignite-sandstone ore body, South Texas

    E-Print Network [OSTI]

    Chatham, James Randall

    1979-01-01T23:59:59.000Z

    -central Wyoming (Denson, 1959). Since then similar discoveries have been made in North and South Dakota, Montana, Idaho, New Mexico, and most recently, in Texas. Porous, organic-r1ch sediments have repeatedly been proven to be favorable sites for uranium...A STUDY OF URANIUM DISTRIBUTION IN AN UPPER JACKSON LIGNITE-SANDSTONE ORE BODY, SOUTH TEXAS A Thesis James Randall Chatham Subnitted to the Graduate College of Texas A8M University in Partial fulfillment of the requirement for the degree...

  11. The Dispersion of Radon Above Deeply Buried Uranium Ore: Millennium Deposit, Athabasca Basin, SK , K Hattori1

    E-Print Network [OSTI]

    of Rn provides information useful in exploring for deeply buried uranium depositsThe Dispersion of Radon Above Deeply Buried Uranium Ore: Millennium Deposit, Athabasca Basin, SK M Sciences and Engineering Council of Canada CMIC-NSERC Exploration Footprints Research Network References

  12. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  13. Uranium Processing Facility Site Readiness Subproject Completed...

    National Nuclear Security Administration (NNSA)

    Field Offices Welcome to the NNSA Production Office NPO News Releases Uranium Processing Facility Site Readiness Subproject Completed ... Uranium Processing Facility Site...

  14. Enumeration and characterization of microorganisms associated with the uranium ore deposit at Cigar Lake, Canada; Informal report

    SciTech Connect (OSTI)

    Francis, A.J.; Joshi-Tope, G.; Gillow, J.B.; Dodge, C.J.

    1994-03-01T23:59:59.000Z

    The high-grade uranium deposit at Cigar Lake, Canada, is being investigated as a natural analog for the disposal of nuclear fuel waste. Geochemical aspects of the site have been studied in detail, but the microbial ecology has not been fully investigated. Microbial populations in an ore sample and in groundwater samples from the vicinity of the ore zone were examined to determine their effect on uranium mobility. Counts of the total number of bacteria and of respiring bacteria were obtained by direct microscopy, and the viable aerobic and anaerobic bacteria were assessed as colony forming units (CFUs) by the dilution plating technique. In addition, the population distribution of denitrifiers, fermenters, iron- and sulfur-oxidizers, iron- and sulfate-reducers, and methanogens was determined by the most probable number (MPN) technique.

  15. URANIUM MILLING ACTIVITIES AT SEQUOYAH FUELS CORPORATION

    E-Print Network [OSTI]

    unknown authors

    Sequoyah Fuels Corporation (SFC) describes previous operations at its Gore, Oklahoma, uranium conversion facility as: (1) the recovery of uranium by concentration and purification processes; and (2) the conversion of concentrated and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these

  16. Electrolytic process for preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  17. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06T23:59:59.000Z

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  18. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  19. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, Gifford G. (Cincinnatti, OH); Kato, Takeo R. (Cincinnatti, OH); Schonegg, Edward (Cleves, OH)

    1986-01-01T23:59:59.000Z

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  20. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11T23:59:59.000Z

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  1. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers.

  2. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    SciTech Connect (OSTI)

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

    1981-01-01T23:59:59.000Z

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  3. Finding of No Significant Impact, proposed remediation of the Maybell Uranium Mill Processing Site, Maybell, Colorado

    SciTech Connect (OSTI)

    Not Available

    1995-12-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0347) on the proposed surface remediation of the Maybell uranium mill processing site in Moffat County, Colorado. The mill site contains radioactively contaminated materials from processing uranium ore that would be stabilized in place at the existing tailings pile location. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, Public Law 91-190 (42 U.S.C. {section}4321 et seq.), as amended. Therefore, preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  4. Assessment of Controlling Processes for Field-Scale Uranium Reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant...

  5. Process for alloying uranium and niobium

    SciTech Connect (OSTI)

    Holcombe, C.E.; Northcutt, W.G.; Masters, D.R.; Chapman, L.R.

    1990-12-31T23:59:59.000Z

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uranium sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  6. Process for alloying uranium and niobium

    SciTech Connect (OSTI)

    Holcombe, C.E.; Northcutt, W.G.; Masters, D.R.; Chapman, L.R.

    1991-04-09T23:59:59.000Z

    This patent describes alloys such as U-6Nb prepared by forming a stacked sandwich array of uranium sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  7. Appendix IV. Risks Associated with Conventional Uranium Milling Introduction

    E-Print Network [OSTI]

    ", uranium is removed from the processed ore with sulfuric acid. Sodium chlorate is also addedAppendix IV. Risks Associated with Conventional Uranium Milling Operations Introduction Although uranium mill tailings are considered byproduct materials under the AEA and not TENORM, EPA's Science

  8. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  9. Uranium Ore Uranium is extracted

    E-Print Network [OSTI]

    be discharged to water. Radioactive Wastes--Wastes managed for their radioactive content. Spent Nuclear Fuels--Fuel plants with reactors that use water for moderating nuclear reactions and cooling. Spent Nuclear Fuel Used or"spent"nuclear fuel is stored in pools, or in specially designed dry storage casks. Fabrication

  10. Process for alloying uranium and niobium

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Northcutt, Jr., Walter G. (Oak Ridge, TN); Masters, David R. (Knoxville, TN); Chapman, Lloyd R. (Knoxville, TN)

    1991-01-01T23:59:59.000Z

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  11. Chapter 1. Introduction Uranium is a common element in nature that has for centuries been used as a coloring agent in

    E-Print Network [OSTI]

    contained in the uranium nucleus.1 Another legacy of uranium exploration, mining, and ore processing were1-1 Chapter 1. Introduction Uranium is a common element in nature that has for centuries been used as a coloring agent in decorative glass and ceramics. Uranium and its radioactive decay products are ubiquitous

  12. Utilization of geothermal energy in the mining and processing of tungsten ore. Quarterly report

    SciTech Connect (OSTI)

    Lane, C.K.; Erickson, M.V.; Lowe, G.D.

    1980-02-01T23:59:59.000Z

    The status of the engineering and economic feasibility study of utilizing geothermal energy for the mining and processing of tungsten ore at the Union Carbide-Metals Division Pine Creek tungsten complex near Bishop, Calfironia is reviewed. Results of geophysical data analysis including determination of assumed resource parameters are presented. The energy utilization evaluation identifies potential locations for substituting geothermal energy for fossil fuel energy using current technology. Preliminary analyses for local environmental and institutional barriers to development of a geothermal system are also provided.

  13. A Geostatistical Study of the Uranium Deposit at Kvanefjeld,

    E-Print Network [OSTI]

    are identified by the discriminating effect of the individual variable. INIS descriptors; URANIUM ORES? RESERVES

  14. Innovative Elution Processes for Recovering Uranium from Seawater

    SciTech Connect (OSTI)

    Wai, Chien; Tian, Guoxin; Janke, Christopher

    2014-05-29T23:59:59.000Z

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium removal from the sorbent reaches only 80% after 10 hours of leaching. Some information regarding coordination of vanadium with amidoxime molecules and elution of vanadium from amidoxime- based sorbents is also given in the report.

  15. Decarburization of uranium via electron beam processing

    SciTech Connect (OSTI)

    McKoon, R H

    1998-10-23T23:59:59.000Z

    For many commercial and military applications, the successive Vacuum Induction Melting of uranium metal in graphite crucibles results in a product which is out of specification in carbon. The current recovery method involves dissolution of the metal in acid and chemical purification. This is both expensive and generates mixed waste. A study was undertaken at Lawrence Livermore National Laboratory to investigate the feasibility of reducing the carbon content of uranium metal using electron beam techniques. Results will be presented on the rate and extent of carbon removal as a function of various operating parameters.

  16. adepleted uranium hexafluoride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 15...

  17. active uranium americium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 5...

  18. anthropogenic uranium concentration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 12...

  19. abandoned uranium mill: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 3...

  20. anaconda uranium mill: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 3...

  1. Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing site (Kirki, Greece)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing-00553648,version1-30Jan2014 Author manuscript, published in "Waste Management & Research 28, 11 (2010) p, among the mining waste abandoned at a mine and processing plant, the most critical potential pollution

  2. Occupational exposures to uranium: processes, hazards, and regulations

    SciTech Connect (OSTI)

    Stoetzel, G.A.; Fisher, D.R.; McCormack, W.D.; Hoenes, G.R.; Marks, S.; Moore, R.H.; Quilici, D.G.; Breitenstein, B.D.

    1981-04-01T23:59:59.000Z

    The United States Uranium Registry (USUR) was formed in 1978 to investigate potential hazards from occupational exposure to uranium and to assess the need for special health-related studies of uranium workers. This report provides a summary of Registry work done to date. The history of the uranium industry is outlined first, and the current commercial uranium industry (mining, milling, conversion, enrichment, and fuel fabrication) is described. This description includes information on basic processes and areas of greatest potential radiological exposure. In addition, inactive commercial facilities and other uranium operations are discussed. Regulation of the commercial production industry for uranium fuel is reported, including the historic development of regulations and the current regulatory agencies and procedures for each phase of the industry. A review of radiological health practices in the industry - facility monitoring, exposure control, exposure evaluation, and record-keeping - is presented. A discussion of the nonradiological hazards of the industry is provided, and the final section describes the tissue program developed as part of the Registry.

  3. Reductive stripping process for uranium recovery from organic extracts

    DOE Patents [OSTI]

    Hurst, Jr., Fred J. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H.sub.3 PO.sub.4 is available from the evaporator stage of the process.

  4. Reductive stripping process for uranium recovery from organic extracts

    DOE Patents [OSTI]

    Hurst, F.J. Jr.

    1983-06-16T23:59:59.000Z

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H/sub 3/PO/sub 4/ is available from the evaporator stage of the process.

  5. Chromium Remediation or Release? Effect of Iron(II) Sulfate Addition on Chromium(VI) Leaching from Columns of Chromite Ore Processing Residue 

    E-Print Network [OSTI]

    Geelhoed, Jeanine S; Meeussen, Johannes CL; Roe, Martin J; Hillier, Stephen; Thomas, Rhodri P; Farmer, John G; Paterson, Edward

    2003-01-01T23:59:59.000Z

    Chromite ore processing residue (COPR), derived from the so-called high lime processing of chromite ore, contains high levels of Cr(III) and Cr(VI) and has a pH between 11 and 12. Ferrous sulfate, which is used for ...

  6. Introduction Uranium is a common element in nature, and has been used for centuries as a coloring agent in

    E-Print Network [OSTI]

    in a full-blown exploration and mining boom, starting immediately after World War II and making uranium (U.S. DOE/EIA 2003a, 2003b, 2006). Another legacy of uranium exploration, mining, and ore processingIntroduction Uranium is a common element in nature, and has been used for centuries as a coloring

  7. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOE Patents [OSTI]

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29T23:59:59.000Z

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  8. aluminium ores: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based Paris-Sud XI, Universit de 182 The Dispersion of Radon Above Deeply Buried Uranium Ore: Millennium Deposit, Athabasca Basin, SK , K Hattori1 Geosciences Websites...

  9. 1.0 MAJOR STUDIES SUPPORTING THIS SCOPING RISK The most important period of past U.S. uranium production spanned from approximately 1948

    E-Print Network [OSTI]

    plants (U.S. DOE/EIA 2003a, 2003b, 2006). Uranium exploration, mining, and ore processing left a legacy.S. uranium production spanned from approximately 1948 to the early 1980s (U.S. DOE/EIA 1992). Through 2005 the industry had generated over 420,000 metric tons (MTs) of uranium for nuclear weapons and commercial power

  10. Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR)

    SciTech Connect (OSTI)

    CHRYSOCHOOU, MARIA; FAKRA, SIRINE C .; Marcus, Matthew A.; Moon, Deok Hyun; Dermatas, Dimitris

    2010-03-01T23:59:59.000Z

    The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30percent of its total Cr(VI) (6000 mg/kg) as large crystals(>20 ?m diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50percent of the Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmilleritewasalso likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment ofHBCOPRis challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to ~;;50percent of Cr(VI) in GB COPR.

  11. Dry process fluorination of uranium dioxide using ammonium bifluoride

    E-Print Network [OSTI]

    Yeamans, Charles Burnett, 1978-

    2003-01-01T23:59:59.000Z

    An experimental study was conducted to determine the practicality of various unit operations for fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double salts from uranium dioxide and ...

  12. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Miller, William E. (Naperville, IL)

    1989-01-01T23:59:59.000Z

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  13. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, J.P.; Miller, W.E.

    1987-11-05T23:59:59.000Z

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.

  14. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30T23:59:59.000Z

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  15. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Hayden, Jr., Howard W. (Oakridge, TN)

    1995-01-01T23:59:59.000Z

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  16. Exploration for Uranium Ore (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation describes permitting procedures and requirements for exploration activities. For the purpose of this legislation, exploration is defined as the drilling of test holes or...

  17. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes

    SciTech Connect (OSTI)

    Marsh, Terence L.

    2013-07-30T23:59:59.000Z

    Our contribution to the larger project (ANL) was the phylogenetic analysis of evolved communities capable of reducing metals including uranium.

  18. Mineralogical characterization of steel industry hazardous waste and refractory sulfide ores for zinc and gold recovery processing

    SciTech Connect (OSTI)

    Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Geology Geophysics Dept.)

    1994-04-01T23:59:59.000Z

    The steel industry generates dust as a waste product from high temperature electric arc furnaces (EAF), which is a major step in processing scrap metal into steel. The Environmental Protection Agency (EPA) has classified EAF dust as KO61 hazardous waste, due to its lead, cadmium, and chromium content. The dust also contains valuable zinc, averaging 19%. Detailed mineralogical characterization show the zinc is present as crystals of franklinite-magnetite-jacobsite solid solutions in calcium-iron-silicate glass spheres and as zincite mostly as very small individual spheres. Much of the chromium is present in an insoluble form in solid solution in the iron spinels. This microscopic research is a valuable tool in determining treatment processes for the 600,000 tons of dust generated annually in the US. Refractory gold ores, pyrite and arsenopyrite, have been studied to determine additional, cost-effective methods of processing. One technique under investigation involves roasting sulfide mineral particles to hematite to create porosity through which a leach can permeate to recover the gold. Portlandite, Ca(OH)[sub 2], is added to the roast for retention of hazardous sulfur and arsenic. Modern microscopic and spectroscopic techniques, such electron spectroscopy for chemical analysis, cathodoluminescence microscopy, and electron microprobe, have been applied, as well as reflected light and dark field microscopy, and scanning electron microscopy to determine the mineralogy of the sulfur, arsenic, and iron phases, and the extent of porosity, permeability, and oxidation state of the ore particles at various roasting temperatures. It is concluded that mineralogical techniques can be effectively applied to the solution of environmental problems.

  19. Assessment of Controlling Processes for Field-Scale Uranium Reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore...

  20. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments

    SciTech Connect (OSTI)

    Mohanty, Santosh R.; Kollah, Bharati; Hedrick, David B.; Peacock, Aaron D.; Kukkadapu, Ravi K.; Roden, Eric E.

    2008-06-15T23:59:59.000Z

    A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A classical sequence of TEAPs was observed in ethanol-amended slurries, with NO3- reduction, Fe(III) reduction, SO4 2- reduction, and CH4 production proceeding in sequence until all of the added 13C-ethanol (9 mM) was consumed. Approximately 60% of the U(VI) content of the sediment was reduced during the period of Fe(III) reduction. No additional U(VI) reduction took place during the sulfate-reducing and methanogenic phases of the experiment. Only gradual reduction of NO3 -, and no reduction of U(VI), took place in ethanol-free slurries. Stimulation of additional Fe(III) or SO4 2- reduction in the ethanol-amended slurries failed to promote further U(VI) reduction. Reverse transcribed 16S rRNA clone libraries revealed major increases in the abundance of organisms related to Dechloromonas, Geobacter, and Oxalobacter in the ethanolamended slurries. PLFAs indicative of Geobacter showed a distinct increase in the amended slurries, and analysis of PLFA 13C/12C ratios confirmed the incorporation of ethanol into these PLFAs. A increase in the abundance of 13C-labeled PLFAs indicative of Desulfobacter, Desulfotomaculum, and Desulfovibrio took place during the brief period of sulfate reduction which followed the Fe(III) reduction phase. Our results show that major redox processes in ethanol-amended sediments can be reliably interpreted in terms of standard conceptual models of TEAPs in sediments. However, the redox speciation of uranium is complex and cannot be explained based on simplified thermodynamic considerations.

  1. Final Uranium Leasing Program Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores. ULP PEIS...

  2. Process for recovering niobium from uranium-niobium alloys

    SciTech Connect (OSTI)

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1983-11-01T23:59:59.000Z

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  3. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, Steven A. (Knoxville, TN); Creech, Edward T. (Oak Ridge, TN); Northcutt, Walter G. (Oak Ridge, TN)

    1983-01-01T23:59:59.000Z

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  4. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27T23:59:59.000Z

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  5. New insights into uranium (VI) sol-gel processing

    SciTech Connect (OSTI)

    King, C.M.; Thompson, M.C.; Buchanan, B.R. (Westinghouse Savannah River Co., Aiken, SC (USA)); King, R.B. (Georgia Univ., Athens, GA (USA). Dept. of Chemistry); Garber, A.R. (South Carolina Univ., Columbia, SC (USA). Dept. of Chemistry)

    1990-01-01T23:59:59.000Z

    Nuclear Magnetic Resonance (NMR) investigations on the Oak Ridge National Laboratory process for sol-gel synthesis of microspherical nuclear fuel (UO{sub 2}), has been extremely useful in sorting out the chemical mechanism in the sol-gel steps. {sup 13}C, {sup 15}N, and {sup 1}H NMR studies on the HMTA gelation agent (Hexamethylene tetramine, C{sub 6}H{sub 12}N{sub 4}) has revealed near quantitative stability of this adamantane-like compound in the sol-gel process, contrary to its historical role as an ammonia source for gelation from the worldwide technical literature. {sup 17}O NMR of uranyl (UO{sub 2}{sup ++}) hydrolysis fragments produced in colloidal sols has revealed the selective formation of a uranyl trimer, ((UO{sub 2}){sub 3}({mu}{sub 3}-O)({mu}{sub 2}-OH){sub 3}){sup +}, induced by basic hydrolysis with the HMTA gelation agent. Spectroscopic results will be presented to illustrate that trimer condensation occurs during sol-gel processing leading to layered polyanionic hydrous uranium oxides in which HMTAH{sup +} is occluded as an intercalation'' cation. Subsequent sol-gel processing of microspheres by ammonia washing results in in-situ exchange and formation of a layered hydrous ammonium uranate with a proposed structural formula of (NH{sub 4}){sub 2} ((UO{sub 2}){sub 8} O{sub 4} (OH){sub 10}) {center dot} 8H{sub 2}O. This compound is the precursor to sintered UO{sub 2} ceramic fuel. 23 refs., 10 figs.

  6. Mineralogical analysis and uranium distribution of the sediments from the upper Jackson formation, Karnes County, Texas 

    E-Print Network [OSTI]

    Fishman, Paul Harold

    1978-01-01T23:59:59.000Z

    is generally associated with a high concentration of clays and zeolites. Coffinite is the predominant uranium-bearing mineral. Clay mineral analyses show that smectite dominated the clay mineral assemblage in the sediment with minor amounts of kaolinite... of uranium from ore-bearing sediment. The reasons are as follows. For a considerable time the uranium ore bodies in South Texas have drawn very little attention in mining activity because the ores contain relatively low concentrations of uranium. Ore...

  7. Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill

    SciTech Connect (OSTI)

    Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

    2002-02-26T23:59:59.000Z

    Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

  8. Mixed uranium dicarbide and uranium dioxide microspheres and process of making same

    DOE Patents [OSTI]

    Stinton, David P. (Knoxville, TN)

    1983-01-01T23:59:59.000Z

    Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.

  9. Separation of Zirconium from Uranium in U-Zr Alloys Using a Chlorination Process

    E-Print Network [OSTI]

    Parkison, Adam J

    2013-06-04T23:59:59.000Z

    The fundamental behavior underpinning a new processing concept was demonstrated which is capable of separating uranium from zirconium in U-Zr alloys through the formation and selective volatilization of their respective chlorides. Bench...

  10. Separation of Zirconium from Uranium in U-Zr Alloys Using a Chlorination Process 

    E-Print Network [OSTI]

    Parkison, Adam J

    2013-06-04T23:59:59.000Z

    The fundamental behavior underpinning a new processing concept was demonstrated which is capable of separating uranium from zirconium in U-Zr alloys through the formation and selective volatilization of their respective chlorides. Bench...

  11. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation

    E-Print Network [OSTI]

    Druhan, J.L.

    2009-01-01T23:59:59.000Z

    results in enrichment of S, the heavier isotope of sulfur,isotope data from M-24 were observed, although the degree of enrichmentisotopes as indicators of in situ acetate amended sulfate and uranium bioreduction processes. Enrichment

  12. Candidate processes for diluting the {sup 235}U isotope in weapons-capable highly enriched uranium

    SciTech Connect (OSTI)

    Snider, J.D.

    1996-02-01T23:59:59.000Z

    The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile {sup 235}U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile {sup 235}U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel.

  13. Evaluation of in vitro dissolution rates of throum in uranium mill tailings

    SciTech Connect (OSTI)

    Reif, R.G. [Department of Energy, Albuquerque, NM (United States)

    1996-06-01T23:59:59.000Z

    Dissolution rates of thorium from the uranium mill tailings piles at two Department of Energy Uranium Mill Tailings Remedial Action Project (UMTRAP) sites have been evaluated. The thorium dissolution rates were evaluated in vitro using simulated lung fluid. The former uranium mills at the UMTRAP sites employed different chemical processes (acid leach and alkaline pressure leach) to extract the uranium from the ore, and the thorium dissolution rates at these sites were found to be markedly different. A site specific annual limit on intake (ALI) value for {sup 230}Th was calculated for the UMTRAP Site that was associated with a multiple component dissolution curve.

  14. Evaluation of in vitro dissolution rates of thorium in uranium mill tailings

    SciTech Connect (OSTI)

    Reif, R.H. [RUST Federal Services, Albuquerque, NM (United States)

    1994-11-01T23:59:59.000Z

    Dissolution rates of thorium from the uranium mill tailings piles at two Department of Energy Uranium Mill Tailings Remedial Action Project (UMTRAP) sites have been evaluated. The thorium dissolution rates were evaluated in vitro using simulated lung fluid. The former uranium mills at the UMTRAP sites employee different chemical processes (acid leach and alkaline pressure leach) to extract the uranium from the ore, and the thorium dissolution rates at these sites were found to be markedly different. A site specific annual limit on intake (ALI) value for {sup 230}Th was calculated for the UMTRAP site that was associated with a multiple component dissolution curve. 9 refs., 1 fig., 3 tabs.

  15. TRW/ORE-IDA potato-processing project: construction phase. Final report

    SciTech Connect (OSTI)

    Cherne, J; Logan, J

    1981-07-23T23:59:59.000Z

    A solar process heat system has been installed at an existing potato processing plant in Oregon. After a brief description of the location, commercial hardware, predicted performance and contracting procedures, the system is described subsystem-by-subsystem, including the parabolic trough collector field, steam generator, freeze prevention, computerized control system, data acquisition system, and various ancillary equipment. The operating modes are discussed, including normal operation, freeze prevention, control, and data acquisition operation. The construction process and problems encountered during construction and start-up are discussed. A paper on the control scheme and the data acquisition system functional specification are appended. A set of 23 record drawings illustrates the system. (LEW)

  16. Dupoly process for treatment of depleted uranium and production of beneficial end products

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Adams, Jay W. (Stony Brook, NY); Lageraaen, Paul R. (Seaford, NY); Cooley, Carl R. (Gaithersburg, MD)

    2000-02-29T23:59:59.000Z

    The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

  17. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, Michael R. (Pasadena, CA); Arnold, Robert G. (Pasadena, CA); Stephanopoulos, Gregory (Pasadena, CA)

    1989-01-01T23:59:59.000Z

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  18. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14T23:59:59.000Z

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  19. Aquifer restoration at in-situ leach uranium mines: evidence for natural restoration processes

    SciTech Connect (OSTI)

    Deutsch, W.J.; Serne, R.J.; Bell, N.E.; Martin, W.J.

    1983-04-01T23:59:59.000Z

    Pacific Northwest Laboratory conducted experiments with aquifer sediments and leaching solution (lixiviant) from an in-situ leach uranium mine. The data from these laboratory experiments and information on the normal distribution of elements associated with roll-front uranium deposits provide evidence that natural processes can enhance restoration of aquifers affected by leach mining. Our experiments show that the concentration of uranium (U) in solution can decrease at least an order of magnitude (from 50 to less than 5 ppM U) due to reactions between the lixiviant and sediment, and that a uranium solid, possibly amorphous uranium dioxide, (UO/sub 2/), can limit the concentration of uranium in a solution in contact with reduced sediment. The concentrations of As, Se, and Mo in an oxidizing lixiviant should also decrease as a result of redox and precipitation reactions between the solution and sediment. The lixiviant concentrations of major anions (chloride and sulfate) other than carbonate were not affected by short-term (less than one week) contact with the aquifer sediments. This is also true of the total dissolved solids level of the solution. Consequently, we recommend that these solution parameters be used as indicators of an excursion of leaching solution from the leach field. Our experiments have shown that natural aquifer processes can affect the solution concentration of certain constituents. This effect should be considered when guidelines for aquifer restoration are established.

  20. Uranium from seawater

    SciTech Connect (OSTI)

    Gregg, D.; Folkendt, M.

    1982-09-21T23:59:59.000Z

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  1. EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores. The cooperating...

  2. Uranium immobilization and nuclear waste

    SciTech Connect (OSTI)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01T23:59:59.000Z

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  3. Uranium Processing Facility | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. Uranium purchased by ownersAbout /

  4. The Uranium Processing Facility Finite Element Meshing Discussion

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive LiquidSavings for Specific MeasuresUranium

  5. Uranium Processing Facility Team Signs Partnering Agreement | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout Us Updates andUraniumSecurity

  6. The Uranium Processing Facility (UPF) Finite Element Meshing Discussion |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon theTed Donat AboutThe QuadrennialDepartment

  7. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation

    E-Print Network [OSTI]

    Druhan, J.L.

    2009-01-01T23:59:59.000Z

    sulfate reduction and uranium removal. The samples for thisanism of Sulfate and Uranium Removal. In M-23, low acetatethe highest rates of uranium removal were observed at redox

  8. Development of a Novel Depleted Uranium Treatment Process at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gates-Anderson, D; Bowers, J; Laue, C; Fitch, T

    2007-01-22T23:59:59.000Z

    A three-stage process was developed at Lawrence Livermore National Laboratory to treat potentially pyrophoric depleted uranium metal wastes. The three-stage process includes waste sorting/rinsing, acid dissolution of the waste metal with a hydrochloric and phosphoric acid solution, and solidification of the neutralized residuals from the second stage with clay. The final product is a solid waste form that can be transported to and disposed of at a permitted low-level radioactive waste disposal site.

  9. A study of kinetics and mechanisms of iron ore reduction in ore/coal composites

    SciTech Connect (OSTI)

    Sun, S.; Lu, W.K. [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Materials Science and Engineering

    1996-12-31T23:59:59.000Z

    Blast furnace ironmaking technology, by far the most important ironmaking process, is based on coke and iron ore pellets (or sinter) to produce liquid iron. However, there has been a worldwide effort searching for a more economical and environmental friendly alternative process for the production of liquid iron. The essential requirement is that it should be minimized in the usage of metallurgical coke and agglomerate of iron ore concentrates. With iron ore concentrate and coal as raw materials, there are two approaches: (a) Smelting reduction; melting the ore before reduction; (b) Reduction of the ore in solid state followed by melting. The present work is on the fundamentals of the latter. It consists of a better designed experimental study including pressure gradient measurement, and a more rigorous non-isothermal and non-isobaric mathematical model. Results of this work may be applied to carbothermic processes, such as FASTMET and LB processes, as well as recycling of fines in steel plants.

  10. Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States

    SciTech Connect (OSTI)

    Scherer, Carolynn P [Los Alamos National Laboratory; Long, Jon D [Los Alamos National Laboratory

    2010-09-28T23:59:59.000Z

    In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD), incorporating Systems Engineering (SE) principles for these two projects.

  11. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    SciTech Connect (OSTI)

    Patterson, M.W. [Westinghouse Idaho Nuclear Co., Idaho Falls, ID (United States); Thompson, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-01-01T23:59:59.000Z

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities.

  12. Fluid dynamics, particulate segregation, chemical processes, and natural ore analog discussions that relate to the potential for criticality in Hanford tanks

    SciTech Connect (OSTI)

    Barney, G.S.

    1996-09-27T23:59:59.000Z

    This report presents an in-depth review of the potential for nuclear criticality to occur in Hanford defense waste tanks during past, current and future safe storage and maintenance operations. The report also briefly discusses the potential impacts of proposed retrieval activities, although retrieval was not a main focus of scope. After thorough review of fluid dynamic aspects that focus on particle segregation, chemical aspects that focus on solubility and adsorption processes that might concentrate plutonium and/or separate plutonium from the neutron absorbers in the tank waste, and ore-body formation and mining operations, the interdisciplinary team has come to the conclusion that there is negligible risk of nuclear critically under existing storage conditions in Hanford site underground waste storage tanks. Further, for the accident scenarios considered an accidental criticality is incredible.

  13. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation

    E-Print Network [OSTI]

    Druhan, J.L.

    2009-01-01T23:59:59.000Z

    S. Pilot-scale in situ bioremediation of uranium in a highlyassociated with bioremediation of uranium to submicromolarassociated with Cr(VI) bioremediation. Environ. Sci.

  14. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

  15. Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process

    SciTech Connect (OSTI)

    Collins, Robert T [ORNL] [ORNL; Collins, Jack Lee [ORNL] [ORNL; Hunt, Rodney Dale [ORNL] [ORNL; Ladd-Lively, Jennifer L [ORNL] [ORNL; Patton, Kaara K [ORNL] [ORNL; Hickman, Robert [NASA Marshall Space Flight Center, Huntsville, AL] [NASA Marshall Space Flight Center, Huntsville, AL

    2014-01-01T23:59:59.000Z

    The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

  16. Assessment of Controlling Processes for Field-Scale Uranium Reactive Transport under Highly Transient Flow Conditions

    SciTech Connect (OSTI)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.

    2014-02-13T23:59:59.000Z

    This paper presents the results of a comprehensive model-based analysis of a uranium tracer test conducted at the U.S Department of Energy Hanford 300 Area (300A) IFRC site. A three-dimensional multi-component reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant physical and chemical processes, the selected conceptual/numerical model replicates the spatial and temporal variations of the observed U(VI) concentrations reasonably well in spite of the highly complex field conditions. A sensitivity analysis was performed to interrogate the relative importance of various processes and factors for reactive transport of U(VI) at the field-scale. The results indicate that multi-rate U(VI) sorption/desorption, U(VI) surface complexation reactions, and initial U(VI) concentrations were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes, which were previously identified to be important in laboratory experiments, played less important roles under the field-scale experimental condition at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore presumably not dynamic enough to appropriately assess the effects of ion exchange reaction and the choice of surface complexation models on U(VI) sorption and desorption. Furthermore, it also showed that the field experimental duration (16 days) was not sufficiently long to precisely assess the role of a majority of the sorption sites that were accessed by slow kinetic processes within the dual domain model. The sensitivity analysis revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus significantly affected both field-scale measurements and simulated U(VI) concentrations as a combined effect of aquifer heterogeneity and highly dynamic flow conditions. Overall, this study, which provides one of the few detailed and highly data-constrained uranium transport simulations, highlights the difference in controlling processes between laboratory and field scale that prevent a simple direct upscaling of laboratory-scale models.

  17. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    SciTech Connect (OSTI)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01T23:59:59.000Z

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  18. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01T23:59:59.000Z

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  19. EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado

    Broader source: Energy.gov [DOE]

    This EIS evaluated the potential environmental impacts of management alternatives for DOE’s Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores.

  20. Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined in a wide variety of rocks, including sandstone, carbonates1

    E-Print Network [OSTI]

    3-1 Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined conventional mining, solution extraction, and milling of uranium, a principal focus of this report is TENORM, or which may need future reclamation. When uranium mining first started, most of the ores were recovered

  1. Synthesis of Uranium Trichloride for the Pyrometallurgical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; J.C. Price; R.D. Mariani

    2011-11-01T23:59:59.000Z

    The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results and conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.

  2. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  3. Progress in developing processes for converting {sup 99}Mo production from high- to low-enriched uranium--1998.

    SciTech Connect (OSTI)

    Conner, C.

    1998-10-28T23:59:59.000Z

    During 1998, the emphasis of our activities was focused mainly on target fabrication. Successful conversion requires a reliable irradiation target; the target being developed uses thin foils of uranium metal, which can be removed from the target hardware for dissolution and processing. This paper describes successes in (1) improving our method for heat-treating the uranium foil to produce a random-small grain structure, (2) improving electrodeposition of zinc and nickel fission-fragment barriers onto the foil, and (3) showing that these fission fragment barriers should be stable during transport of the targets following irradiation. A method was also developed for quantitatively electrodepositing uranium and plutonium contaminants in the {sup 99}Mo. Progress was also made in broadening international cooperation in our development activities.

  4. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  5. Uranium Leasing Program: Program Summary | Department of Energy

    Energy Savers [EERE]

    then lease them to private industry for mineral exploration and for development and mining of uranium and vanadium ore. A total of 25,000 acres of land in southwestern Colorado,...

  6. Fuel cycle optimization of thorium and uranium fueled PWR systems

    E-Print Network [OSTI]

    Garel, Keith Courtnay

    1977-01-01T23:59:59.000Z

    The burnup neutronics of uniform PWR lattices are examined with respect to reduction of uranium ore requirements with an emphasis on variation of the fuel-to-moderator ratio

  7. Structure and uranium deposits of the Salina Quadrangle, Utah

    SciTech Connect (OSTI)

    Williams, P.E.; Hackman, R.J.

    1983-01-01T23:59:59.000Z

    Structure contours were drawn on the base of the Dakota Sandstone, or on the base of the Tununk Member of the Mancos Shale where the Dakota is absent. The map shows uranium ore deposits and prospects. (ACR)

  8. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07T23:59:59.000Z

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  9. Inherently safe in situ uranium recovery

    DOE Patents [OSTI]

    Krumhansl, James L; Brady, Patrick V

    2014-04-29T23:59:59.000Z

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  10. History of Uranium-233(sup233U)Processing at the Rocky Flats Plant. In support of the RFETS Acceptable Knowledge Program

    SciTech Connect (OSTI)

    Moment, R.L.; Gibbs, F.E.; Freiboth, C.J.

    1999-04-01T23:59:59.000Z

    This report documents the processing of Uranium-233 at the Rocky Flats Plant (Rocky Flats Environmental Technology Site). The information may be used to meet Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC)and for determining potential Uranium-233 content in applicable residue waste streams.

  11. The U.S. Uranium Mill Tailings Radiation Control Act -- An environmental legacy of the Cold War

    SciTech Connect (OSTI)

    Watson, C.D.; Nelson, R.A. [Jacobs Engineering Group Inc., Albuquerque, NM (United States). Albuquerque Operations Office; Mann, P. [USDOE Albuquerque Operations Office, NM (United States)

    1993-12-31T23:59:59.000Z

    The US Department of Energy (DOE) has guided the Uranium Mill Tailings Remedial Action (UMTRA) Project through its first 10 years of successful remediation. The Uranium Mill Tailings Radiation Control Act (UMTRCA), passed in 1978, identified 24 uranium mill tailings sites in need of remediation to protect human health and the environment from the residual contamination resulting from the processing of uranium ore. The UMTRCA was promulgated in two titles: Title 1 and Title 2. This paper describes the regulatory structure, required documentation, and some of the technical approaches used to meet the Act`s requirements for managing and executing the $1.4 billion project under Title 1. Remedial actions undertaken by private industry under Title 2 of the Act are not addressed in this paper. Some of the lessons learned over the course of the project`s history are presented so that other countries conducting similar remedial action activities may benefit.

  12. Radiological survey of the former uranium recovery pilot and process sites, Gardinier, Incorporated, Tampa, Florida. Final report

    SciTech Connect (OSTI)

    Haywood, F F; Goldsmith, W A; Leggett, R W; Doane, R W; Fox, W F; Shinpaugh, W H; Stone, D R; Crawford, D J

    1981-03-01T23:59:59.000Z

    A radiological survey was conducted at a former uranium recovery plant near Tampa, Florida, operated as a part of a phosphoric acid plant. The uranium recovery operations were conducted from 1951 through 1960, the primary goal being the extraction of uranium from phosphoric acid. Pilot operations were first carried out at a small plant, and full-scale extraction was later carried out at a larger adjacent process plant. The survey included measurement of the followng: beta-gamma dose rates at 1 cm from surfaces and external gamma radiation levels at the surfaces and 1 m above the floor inside the pilot operations building and process building and outdoors in areas around these buildings; fixed and transferable alpha and beta-gamma contamination levels on the floor, walls, ceilings, and roof of the process building and on the floor, walls, and ceiling of the pilot plant offices; concentrations of /sup 226/Ra and /sup 238/U in soil samples taken at grid points around the buildings and in residue samples taken inside the process building; concentrations of /sup 226/Ra and /sup 238/U in water and sediment samples taken outdoors on the site and the concentration of these same nuclides in background samples collected off the site. It was found that beta-gamma and/or alpha contamination levels on surfaces exceed current guidelines for the release of property for unrestricted use at some points inside the process building and in the outdoor area near the process building and pilot operations building. Some samples of soil and residue taken from the floor and equipment on the second level of the process building contained natural uranium in excess of 0.05% by weight and contained natural radium in excess of 900 pCi/g.

  13. The mechanical response of a uranium-nobium alloy: a comparison of cast versus wrought processing

    SciTech Connect (OSTI)

    Cady, Carl M [Los Alamos National Laboratory; Gray, George T., III [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Aikin, Robert M [Los Alamos National Laboratory; Chen, Shuh - Rong [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory; Lopez, Mike F [Los Alamos National Laboratory; Korzekwa, Deniece R [Los Alamos National Laboratory; Kelly, Ann M [Los Alamos National Laboratory

    2009-02-13T23:59:59.000Z

    A rigorous experimentation and validation program is being undertaken to create constitutive models that elucidate the fundamental mechanisms controlling plasticity in uranium-6 wt.% niobium alloys (U-6Nb). The first, 'wrought', material produced by processing a cast ingot I'ia forging and forming into plate was studied. The second material investigated is a direct cast U-6Nb alloy. The purpose of the investigation is to detennine the principal differences, or more importantly, similarities, between the two materials due to processing. It is well known that parameters like grain size, impurity size and chemistry affect the deformation and failure characteristics of materials. Metallography conducted on these materials revealed that the microstructures are quite different. Characterization techniques like tension, compression, and shear were performed to find the principal differences between the materials as a function of stress state. Dynamic characterization using a split Hopkinson pressure bar in conjunction with Taylor impact testing was conducted to derive and thereafter validate constitutive material models. The Mechanical Threshold Strength Model is shown to accurately capture the constitutive response of these materials and Taylor cylinder tests are used to provide a robust way to verify and validate the constitutive model predictions of deformation by comparing finite element simulations with the experimental results. The primary differences between the materials will be described and predictions about material behavior will be made.

  14. Uranium Removal from Groundwater via In Situ Biostimulation: Field-Scale Modeling of Transport and Biological Processes

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Fang, Yilin; Long, Philip E.; Resch, Charles T.; Peacock, Aaron D.; Komlos, John; Jaffe, Peter R.; Morrison, Stan J.; Dayvault, Richard; White, David C.; Anderson, Robert T.

    2007-03-12T23:59:59.000Z

    During 2002 and 2003, bioremediation experiments in the unconfined aquifer of the Old Rifle UMTRA field site in western Colorado provided evidence for the immobilization of hexavalent uranium in groundwater by iron-reducing Geobacter sp. stimulated by acetate amendment. As the bioavailable Fe(III) terminal electron acceptor was depleted in the zone just downgradient of the acetate injection gallery, sulfate-reducing organisms came to dominate the microbial community. In the present study, we use multicomponent reactive transport modeling to analyze data from the 2002 field experiment to 1) identify the dominant transport and biological processes controlling uranium mobility during biostimulation, 2) determine field-scale parameters for these modeled processes, and 3) apply the calibrated process models to history match observations during the 2003 field experiment. In spite of temporally and spatially variable observations during the field-scale biostimulation experiments, the coupled process simulation approach was able to establish a quantitative characterization of the principal flow, transport, and reaction processes that could be applied without modification to describe the 2003 field experiment. Insights gained from this analysis include field-scale estimates of bioavailable Fe(III) mineral, and the magnitude of uranium bioreduction during biostimulated growth of the iron-reducing and sulfate-reducing microorganisms.

  15. Magnetic resonance as a structural probe of a uranium (VI) sol-gel process

    SciTech Connect (OSTI)

    King, C.M.; Thompson, M.C.; Buchanan, B.R. (Westinghouse Savannah River Co., Aiken, SC (United States)); King, R.B. (Georgia Univ., Athens, GA (United States). Dept. of Chemistry); Garber, A.R. (South Carolina Univ., Columbia, SC (United States). Dept. of Chemistry)

    1989-01-01T23:59:59.000Z

    NMR investigations on the ORNL process for sol-gel synthesis of microspherical nuclear fuel (UO{sub 2}), has been useful in sorting out the chemical mechanism in the sol-gel steps. {sup 13}C, {sup 15}N, and {sup 1}H NMR studies on the HMTA gelation agent (Hexamethylene tetramine, C{sub 6}H{sub l2}N{sub 4}) has revealed near quantitative stability of this adamantane-like compound in the sol-Gel process, contrary to its historical role as an ammonia source for gelation from the worldwide technical literature. {sub 17}0 NMR of uranyl (UO{sub 2}{sup ++}) hydrolysis fragments produced in colloidal sols has revealed the selective formation of a uranyl trimer, ((UO{sub 2}){sub 3}({mu}{sub 3}-O)({mu}{sub 2}-OH){sub 3}){sup +}, induced by basic hydrolysis with the HMTA gelation agent. Spectroscopic results show that trimer condensation occurs during sol-gel processing leading to layered polyanionic hydrous uranium oxides in which HMTAH{sup +} is occluded as an intercalation'' cation. Subsequent sol-gel processing of microspheres by ammonia washing results in in-situ ion exchange and formation of a layered hydrous ammonium uranate with a proposed structural formula of (NH{sub 4}){sub 2}((UO{sub 2}){sub 8}O{sub 4}(OH){sub 10}) {center dot} 8H{sub 2}0. This compound is the precursor to sintered U0{sub 2} ceramic fuel.

  16. Magnetic resonance as a structural probe of a uranium (VI) sol-gel process

    SciTech Connect (OSTI)

    King, C.M.; Thompson, M.C.; Buchanan, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); King, R.B. [Georgia Univ., Athens, GA (United States). Dept. of Chemistry; Garber, A.R. [South Carolina Univ., Columbia, SC (United States). Dept. of Chemistry

    1989-12-31T23:59:59.000Z

    NMR investigations on the ORNL process for sol-gel synthesis of microspherical nuclear fuel (UO{sub 2}), has been useful in sorting out the chemical mechanism in the sol-gel steps. {sup 13}C, {sup 15}N, and {sup 1}H NMR studies on the HMTA gelation agent (Hexamethylene tetramine, C{sub 6}H{sub l2}N{sub 4}) has revealed near quantitative stability of this adamantane-like compound in the sol-Gel process, contrary to its historical role as an ammonia source for gelation from the worldwide technical literature. {sub 17}0 NMR of uranyl (UO{sub 2}{sup ++}) hydrolysis fragments produced in colloidal sols has revealed the selective formation of a uranyl trimer, [(UO{sub 2}){sub 3}({mu}{sub 3}-O)({mu}{sub 2}-OH){sub 3}]{sup +}, induced by basic hydrolysis with the HMTA gelation agent. Spectroscopic results show that trimer condensation occurs during sol-gel processing leading to layered polyanionic hydrous uranium oxides in which HMTAH{sup +} is occluded as an ``intercalation`` cation. Subsequent sol-gel processing of microspheres by ammonia washing results in in-situ ion exchange and formation of a layered hydrous ammonium uranate with a proposed structural formula of (NH{sub 4}){sub 2}[(UO{sub 2}){sub 8}O{sub 4}(OH){sub 10}] {center_dot} 8H{sub 2}0. This compound is the precursor to sintered U0{sub 2} ceramic fuel.

  17. Apparatus and process for the electrolytic reduction of uranium and plutonium oxides

    DOE Patents [OSTI]

    Poa, David S. (Naperville, IL); Burris, Leslie (Naperville, IL); Steunenberg, Robert K. (Naperville, IL); Tomczuk, Zygmunt (Orland Park, IL)

    1991-01-01T23:59:59.000Z

    An apparatus and process for reducing uranium and/or plutonium oxides to produce a solid, high-purity metal. The apparatus is an electrolyte cell consisting of a first container, and a smaller second container within the first container. An electrolyte fills both containers, the level of the electrolyte in the first container being above the top of the second container so that the electrolyte can be circulated between the containers. The anode is positioned in the first container while the cathode is located in the second container. Means are provided for passing an inert gas into the electrolyte near the lower end of the anode to sparge the electrolyte and to remove gases which form on the anode during the reduction operation. Means are also provided for mixing and stirring the electrolyte in the first container to solubilize the metal oxide in the electrolyte and to transport the electrolyte containing dissolved oxide into contact with the cathode in the second container. The cell is operated at a temperature below the melting temperature of the metal product so that the metal forms as a solid on the cathode.

  18. Selection of water treatment processes special study. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. The restoration of contaminated aquifers is to be undertaken in Phase II of the UMTRA Project. To begin implementation of Phase II, DOE requested that groundwater restoration methods and technologies be investigated by the Technical Assistance Contractor (TAC). and that the results of the TAC investigations be documented in special study reports. Many active and passive methods are available to clean up contaminated groundwater. Passive groundwater treatment includes natural flushing, geochemical barriers, and gradient manipulation by stream diversion or slurry walls. Active groundwater.cleanup techniques include gradient manipulation by well extraction or injection. in-situ biological or chemical reclamation, and extraction and treatment. Although some or all of the methods listed above may play a role in the groundwater cleanup phase of the UMTRA Project, the extraction and treatment (pump and treat) option is the only restoration alternative discussed in this report. Hence, all sections of this report relate either directly or indirectly to the technical discipline of process engineering.

  19. Distribution and a possible mechanism of uranium accumulation in the Catahoula Tuff, Live Oak County, Texas

    E-Print Network [OSTI]

    Parks, Steven Louis

    1979-01-01T23:59:59.000Z

    by Galloway (1977) . Gal- loway's report concentrates on the "genetic stratigraphy, structural configuration, composition, and regional ground water flow dynamics of the Catahoula" and their relation to uranium mineralization. The following is a summary of... is actually located within a shaley sand and also a tuffaceous sand. In this study the minimum uranium concentration con- sidered to be ore was 50 ppm uranium. This value represents a significant enrichment in uranium over uranium concentra- tions found...

  20. WISE Uranium Project - Fact Sheet

    E-Print Network [OSTI]

    Hazards From Depleted

    t in the depleted uranium. For this purpose, we first need to calculate the mass balance of the enrichment process. We then calculate the inhalation doses from the depleted uranium and compare the dose contributions from the nuclides of interest. Mass balance for uranium enrichment at Paducah [DOE_1984, p.35] Feed Product Tails Other Mass [st] 758002 124718 621894 11390 Mass fraction 100.00% 16.45% 82.04% 1.50% Concentration of plutonium in tails (depleted uranium) from enrichment of reprocessed uranium, assuming that all plutonium were transfered to the tails: Concentration of neptunium in tails from enrichment of reprocessed uranium uranium, assuming that all neptunium were transfered to the tails: - 2 - Schematic of historic uranium enrichment process at Paducah [DOE_1999b] - -7 For comparison, we first calculate the inhalation dose from depleted uranium produced from natural uranium. We assume that the short-lived decay products have reached secular equilibrium with th

  1. Scientific basis for risk assessment and management of uranium mill tailings

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    A National Research Council study panel, convened by the Board on Radioactive Waste Management, has examined the scientific basis for risk assessment and management of uranium mill tailings and issued this final report containing a number of recommendations. Chapter 1 provides a brief introduction to the problem. Chapter 2 examines the processes of uranium extraction and the mechanisms by which radionuclides and toxic chemicals contained in the ore can enter the environment. Chapter 3 is devoted to a review of the evidence on health risks associated with radon and its decay products. Chapter 4 provides a consideration of conventional and possible new technical alternatives for tailings management. Chapter 5 explores a number of issues of comparative risk, provides a brief history of uranium mill tailings regulation, and concludes with a discussion of choices that must be made in mill tailing risk management. 211 refs., 30 figs., 27 tabs.

  2. UMTRA -- The US Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Lightner, R. [Dept. of Energy, Washington, DC (United States); Cormier, C. [Department of Energy, Albuquerque, NM (United States); Bierley, D. [Roy F. Weston, Inc., Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    In the late 1970s, the United States (US) established the first comprehensive regulatory structure for the management, disposal, and long-term care of wastes produced from its domestic uranium processing industry. This regulatory framework was established through the passage of the Uranium Mill Tailings Radiation Control Act of 1978, often referred to as UMTRCA. This legislation created the Uranium Mill Tailings Remedial Action (UMTRA) Project and assigned the US Department of Energy (DOE) the lead in conducting the required remedial action at 24 designated inactive uranium ore processing sites. With the majority of these 22 sites complete, the DOE`s UMTRA Project has established a distinguished reputation for safely and effectively remediating these low-level waste sites in a complex regulatory and socioeconomic environment. This paper describes the past accomplishments and current status of the UMTRA Project and discusses the DOE`s plans for addressing ground water contamination associated with these sites and its commitment to continuing the long-term care and management of these disposal cells.

  3. DOSAGE RADIOMTRIQUE RAPIDE DE L'URANIUM ET DU THORIUM DANS LES MINERAIS COMPLEXES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    35 A. DOSAGE RADIOMÉTRIQUE RAPIDE DE L'URANIUM ET DU THORIUM DANS LES MINERAIS COMPLEXES Par G radio métrique rapide de dosage de l'uranium et du thorium dans des minerais complexes. Elle utilise method for the determination of uranium and thorium in complex ores. We use fundamentally two gamma

  4. The New Generation of Uranium In Situ Recovery Facilities: Design Improvements Should Reduce Radiological Impacts Relative to First Generation Uranium Solution Mining Plants

    SciTech Connect (OSTI)

    Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

    2008-07-01T23:59:59.000Z

    In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium In Situ Leaching / In Situ Recovery (ISL / ISR - also referred to as 'solution mining'), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and are expected to make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since the mid 1970's. However, current designs are expected to result in less radiological wastes and emissions relative to these 'first' generation plants (which were designed, constructed and operated through the 1980's). These early designs typically used alkaline leach chemistries in situ including use of ammonium carbonate which resulted in groundwater restoration challenges, open to air recovery vessels and high temperature calcining systems for final product drying vs the 'zero emissions' vacuum dryers as typically used today. Improved containment, automation and instrumentation control and use of vacuum dryers in the design of current generation plants are expected to reduce production of secondary waste byproduct material, reduce Radon emissions and reduce potential for employee exposure to uranium concentrate aerosols at the back end of the milling process. In Situ Recovery in the U.S. typically involves the circulation of groundwater, fortified with oxidizing (gaseous oxygen e.g) and complexing agents (carbon dioxide, e.g) into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant ( mill). Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. The radiological character of these processes are described using empirical data collected from many operating facilities. Additionally, the major aspects of the health physics and radiation protection programs that were developed at these first generation facilities are discussed and contrasted to circumstances of the current generation and state of the art of uranium ISR technologies and facilities. In summary: This paper has presented an overview of in situ Uranium recovery processes and associated major radiological aspects and monitoring considerations. Admittedly, the purpose was to present an overview of those special health physics considerations dictated by the in situ Uranium recovery technology, to point out similarities and differences to conventional mill programs and to contrast these alkaline leach facilities to modern day ISR designs. As evidenced by the large number of ISR projects currently under development in the U.S. and worldwide, non conventional Uranium recovery techniques

  5. Systematic evaluation of satellite remote sensing for identifying uranium mines and mills.

    SciTech Connect (OSTI)

    Blair, Dianna Sue; Stork, Christopher Lyle; Smartt, Heidi Anne; Smith, Jody Lynn

    2006-01-01T23:59:59.000Z

    In this report, we systematically evaluate the ability of current-generation, satellite-based spectroscopic sensors to distinguish uranium mines and mills from other mineral mining and milling operations. We perform this systematic evaluation by (1) outlining the remote, spectroscopic signal generation process, (2) documenting the capabilities of current commercial satellite systems, (3) systematically comparing the uranium mining and milling process to other mineral mining and milling operations, and (4) identifying the most promising observables associated with uranium mining and milling that can be identified using satellite remote sensing. The Ranger uranium mine and mill in Australia serves as a case study where we apply and test the techniques developed in this systematic analysis. Based on literature research of mineral mining and milling practices, we develop a decision tree which utilizes the information contained in one or more observables to determine whether uranium is possibly being mined and/or milled at a given site. Promising observables associated with uranium mining and milling at the Ranger site included in the decision tree are uranium ore, sulfur, the uranium pregnant leach liquor, ammonia, and uranyl compounds and sulfate ion disposed of in the tailings pond. Based on the size, concentration, and spectral characteristics of these promising observables, we then determine whether these observables can be identified using current commercial satellite systems, namely Hyperion, ASTER, and Quickbird. We conclude that the only promising observables at Ranger that can be uniquely identified using a current commercial satellite system (notably Hyperion) are magnesium chlorite in the open pit mine and the sulfur stockpile. Based on the identified magnesium chlorite and sulfur observables, the decision tree narrows the possible mineral candidates at Ranger to uranium, copper, zinc, manganese, vanadium, the rare earths, and phosphorus, all of which are milled using sulfuric acid leaching.

  6. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section}7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  7. The Soviet uranium industry and exports of nuclear materials and services

    SciTech Connect (OSTI)

    Sagers, M.J.

    1990-08-01T23:59:59.000Z

    The USSR has been offering Western countries, through long-term contracts, services in the processing and enrichment of uranium for their nuclear power industries since 1973. Although known for some time from Western sources, this was confirmed by Boris Semyenov, First Deputy Chairman of the USSR State Committee for the Utilization of Atomic Energy, in 1989. Other sources state that the first service contract was signed in 1971, with initial deliveries beginning in 1973, and that altogether, there are now about 10-12 long-term contracts with firms in various Western European countries that extend to the year 2000 or in some cases to 2010. Although these services are said to remain the mainstay of business with the capitalist countries of the West, the export of enriched uranium materials produced from domestic ore began in 1988. Clients include firms in both the US and Western Europe. Evidently, the severe balance-of-payments problems in Soviet foreign trade operations in recent years have led the Soviets to push alternatives to oil exports as much as possible, notably metals and minerals and chemicals and fertilizers, and this has now extended to the Soviet uranium industry. The paper discusses the USSR uranium industry, uranium mining, uranium enrichment, and plutonium production.

  8. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    SciTech Connect (OSTI)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01T23:59:59.000Z

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

  10. Wetland and Sensitive Species Survey Report for Y-12: Proposed Uranium Processing Facility (UPF)

    SciTech Connect (OSTI)

    Giffen, N.; Peterson, M.; Reasor, S.; Pounds, L.; Byrd, G.; Wiest, M. C.; Hill, C. C.

    2009-11-01T23:59:59.000Z

    This report summarizes the results of an environmental survey conducted at sites associated with the proposed Uranium Processing Facility (UPF) at the Y-12 National Security Complex in September-October 2009. The survey was conducted in order to evaluate potential impacts of the overall project. This project includes the construction of a haul road, concrete batch plant, wet soil storage area and dry soil storage area. The environmental surveys were conducted by natural resource experts at ORNL who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). Natural resource staff assistance on this project included the collection of environmental information that can aid in project location decisions that minimize impacts to sensitive resource such as significant wildlife populations, rare plants and wetlands. Natural resources work was conducted in various habitats, corresponding to the proposed areas of impact. Thc credentials/qualifications of the researchers are contained in Appendix A. The proposed haul road traverses a number of different habitats including a power-line right-of-way. wetlands, streams, forest and mowed areas. It extends from what is known as the New Salvage Yard on the west to the Polaris Parking Lot on the east. This haul road is meant to connect the proposed concrete batch plant to the UPF building site. The proposed site of the concrete batch plant itself is a highly disturbed fenced area. This area of the project is shown in Fig. 1. The proposed Wet Soils Disposal Area is located on the north side of Bear Creek Road at the former Control Burn Study Area. This is a second growth arce containing thick vegetation, and extensive dead and down woody material. This area of the project is shown in Fig. 2. Thc dry soils storage area is proposed for what is currently known as the West Borrow Area. This site is located on the west side of Reeves Road south of Bear Creek Road. The site is an early successional field. This area of the project is shown in Fig. 2.

  11. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect (OSTI)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2004-03-31T23:59:59.000Z

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.

  12. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  14. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  15. Leaching of metals from ores. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The bibliography contains citations of selected patents concerning the extraction of metals from ores by leaching. Topics include leaching of metals from ore heaps, mine tailings, smelter wastes, and sea nodules. Metals covered include gold, uranium, copper, nickel, silver, manganese, and cobalt. Bacterio-electric, biological-acid, and hydrogen peroxide leaching are included. (Contains 50-250 citations and includes a subject term index and title list.)

  16. StORe Business Analysis 

    E-Print Network [OSTI]

    Miller, Ken

    2006-12-15T23:59:59.000Z

    The StORe project is multidisciplinary in scope, embracing the seven scientific domains of archaeology, astronomy, biochemistry, biosciences, chemistry, physics and the social sciences (originally described in the project ...

  17. Nature Macmillan Publishers Ltd 1998 6. James, R. H. & Elderfield, H. Chemistry of ore-forming fluids and mineral formation rates in an active

    E-Print Network [OSTI]

    Nature © Macmillan Publishers Ltd 1998 8 6. James, R. H. & Elderfield, H. Chemistry of ore. Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 124 and uranium mobility in hydrothermal sulphides. Terra Nova (Abstr. Suppl. 9) 555 (1997). 16. Humphris, S. E

  18. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect (OSTI)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31T23:59:59.000Z

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the performance of pellet binders, and have directly saved energy by increasing filtration rates of the pelletization feed by as much as 23%.

  19. Current issues (and problems) in uranium mine and mill site remediation

    SciTech Connect (OSTI)

    Quarch, H. [DSR GmbH, Saarbruecken (Germany); Kuhlmann, J.; Zettwoog, P. [CERTAC, Auffargis (France)

    1994-12-31T23:59:59.000Z

    The environmental impact of the mining and milling of uranium ores is similar to that of traditional metal mining with the added factor of the characteristic radioactivity in uranium ores. Residues of these ores therefore generate specific potential hazards requiring special precautions on a site specific basis, as well as special regulatory procedures and controls to ensure protection of public health and safety in the long term. There are strong indications that on a global scale U-mining tailings management and remediation-activities are steadily becoming governed by the ultimate goal of sustainable stabilization and re-establishment of a healthy environment, rather than by immediate or short term needs. In Central Europe rehabilitation of uranium mining and milling districts has only started. Some problems are listed as follows: (1) Limitation, long term control and prediction of aquatic and atmospheric dispersal of contaminants from tailings impoundments, waste rock dumps and abandoned underground mines, (2) Dewatering of tailings (large volumes), (3) Design of cover systems and inhibition of microbian process, (4) Controlled flooding of extensive underground mine workings and related prognosis and control of containment dispersion, (5) Reduction of Rn-exhalation during the flooding process and after mine abandonment, in particular in areas close to densely populated regions, (6) Determination of long term radiological impacts on residents near sources of contamination and identification of natural background levels, (7) Identification of critical containment pathways that remain active, (8) Conception and implementation of a comprehensive monitoring system for all pathways which would operate on a long term basis, (9) Limitation of mine water drainage to be treated and decontaminated and of resulting sludges (in considerable quantities) to be disposed of and which would have to be classified as hazardous waste in the future due to their radionuclide content.

  20. Method for oxygen reduction in a uranium-recovery process. [US DOE patent application

    DOE Patents [OSTI]

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1981-11-04T23:59:59.000Z

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous iron and accumulation of complex iron phosphates or cruds.

  1. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    SciTech Connect (OSTI)

    none,

    2013-07-01T23:59:59.000Z

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

  2. US Geological Survey research on the environmental fate of uranium mining and milling wastes

    SciTech Connect (OSTI)

    Landa, E.R.; Gray, J.R. [Geological Survey, Reston, VA (United States)

    1995-07-01T23:59:59.000Z

    Studies by the US Geological Survey (USGS) of uranium mill tailings (UMT) have focused on characterizing the forms in which radionuclides are retained and identifying factors influencing the release of radionuclides to air and water. Selective extraction studies and studies of radionuclide sorption by and reaching from components of UMT showed alkaline earth sulfate and hydrous ferric oxides to be important hosts of radium-226 ({sup 226}Ra) in UMT. Extrapolating from studies of barite dissolution in anerobic lake sediments, the leaching of {sup 226}Ra from UMT by sulfate-reducing bacteria was investigated; a marked increase in {sup 226}Ra release to aqueous solution as compared to sterile controls was demonstrated. A similar action of iron(III)-reducing bacteria was later shown. Ion exchangers such as clay minerals can also promote the dissolution of host-phase minerals and thereby influence the fate of radionuclides such as {sup 226}Ra. Radon release studies examined particle size and ore composition as variables. Aggregation of UMT particles was shown to mask the higher emanating fraction of finer particles. Studies of various ores and ore components showed that UMT cannot be assumed to have the same radon-release characteristics as their precursor ores, nor can {sup 226}Ra retained by various substrates be assumed to emanate the same fraction of radon. Over the last decade, USGS research directed at offsite mobility of radionuclides form uranium mining and milling processes has focused on six areas: the Midnite Mine in Washington; Ralston Creek and Reservoir, Colorado; sites near Canon City, Colorado; the Monument Valley District of Arizona and Utah; the Cameron District of Arizona; and the Puerco River basin of Arizona and New Mexico. 48 refs., 6 figs., 4 tabs.

  3. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

    2009-12-29T23:59:59.000Z

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  4. US Department of Energy response to standards for remedial actions at inactive uranium processing sites: Proposed rule

    SciTech Connect (OSTI)

    Not Available

    1988-01-29T23:59:59.000Z

    The Title I groundwater standards for inactive uranium mill tailings sites, which were promulgated on January 5, 1983, by the US Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action (UMTRA) Project, were remanded to the EPA on September 3, 1985, by the US Tenth Circuit Court of Appeals. The Court instructed the EPA to compile general groundwater standards for all Title I sites. On September 24, 1987, the EPA published proposed standards (52FR36000-36008) in response to the remand. This report includes an evaluation of the potential effects of the proposed EPA groundwater standards on the UMTRA Project, as well as a discussion of the DOE's position on the proposed standards. The report also contains and appendix which provides supporting information and cost analyses. In order to assess the impacts of the proposed EPA standards, this report summarizes the proposed EPA standards in Section 2.0. The next three sections assess the impacts of the three parts of the EPA standards: Subpart A considers disposal sites; Subpart B is concerned with restoration at processing sites; and Subpart C addresses supplemental standards. Section 6.0 integrates previous sections into a recommendations section. Section 7.0 contains the DOE response to questions posed by the EPA in the preamble to the proposed standards. 6 refs., 5 figs., 3 tabs.

  5. US Department of Energy final response to standards for remedial actions at inactive uranium processing sites; Proposed rule

    SciTech Connect (OSTI)

    Not Available

    1988-11-14T23:59:59.000Z

    This document revisits and supplements information and recommendations presented in the January 1988 US Department of Energy (DOE) submission to the US Environmental Protection Agency (EPA) regarding the proposed standards for Title I uranium processing sites (DOE, 1988). The clarifications and comments in this report are based on further DOE investigation, contemplation, and interpretation of the proposed standards. Since the January response, the DOE has undertaken a number of special studies to -investigate, evaluate, focus, and clarify issues relating to the standards. In addition, the Nuclear Regulatory Commission (NRC) has issued a draft technical position outlining its interpretation of the proposed standards and clarifying how the standards will be implemented (NRC, 1988). Some issues presented are based on previous positions, and the original DOE position is restated for reference. Other issues or recommendations are more recent than the January DOE response; therefore, no former position was advanced. The order of presentation reflects the general order of significance to the DOE, specifically in regards to the Uranium Mill Tailings Remedial Action (UMTRA) Project.

  6. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  7. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  9. A concept of a nonfissile uranium hexafluoride overpack for storage, transport, and processing of corroded cylinders

    SciTech Connect (OSTI)

    Pope, R.B.; Cash, J.M. [Oak Ridge National Lab., TN (United States); Singletary, B.H. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)

    1996-06-01T23:59:59.000Z

    There is a need to develop a means of safely transporting breached 48-in. cylinders containing depleted uranium hexafluoride (UF{sub 6}) from current storage locations to locations where the contents can be safely removed. There is also a need to provide a method of safely and easily transporting degraded cylinders that no longer meet the US Department of Transportation (DOT) and American National Standards Institute, Inc., (ANSI) requirements for shipments of depleted UF{sub 6}. A study has shown that an overpack can be designed and fabricated to satisfy these needs. The envisioned overpack will handle cylinder models 48G, 48X, and 48Y and will also comply with the ANSI N14.1 and the American Society of Mechanical Engineers (ASME) Sect. 8 requirements.

  10. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01T23:59:59.000Z

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  11. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

    1990-01-01T23:59:59.000Z

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  12. Elemental imaging of organic matter and associated metals in ore deposits using micro PIXE and micro-EBS

    E-Print Network [OSTI]

    Elemental imaging of organic matter and associated metals in ore deposits using micro PIXE matter Gold Uranium Witwatersrand a b s t r a c t Micro-PIXE and micro-EBS analyses were carried out the role of organic matter in the formation of this deposit. Micro-PIXE and Micro-EBS shows a very complex

  13. Elemental imaging of organic matter and associated metals in ore deposits using micro PIXE and micro-EBS

    E-Print Network [OSTI]

    Devernal, Anne

    Elemental imaging of organic matter and associated metals in ore deposits using micro PIXE Uranium Witwatersrand a b s t r a c t Micro-PIXE and micro-EBS analyses were carried out on samples from of organic matter in the formation of this deposit. Micro-PIXE and Micro-EBS shows a very complex metal

  14. Rehabilitation of contaminated territories while liquidating enterprises of uranium mining industry of the CIS

    SciTech Connect (OSTI)

    Karamushka, V.P.; Ostroborodov, V.V. [VNIPIPROMTECHNOLOGII, Moscow (Russian Federation)

    1993-12-31T23:59:59.000Z

    Uranium mining in the Russian Federation has caused contamination of the environment with solid, liquid and gaseous wastes. Radioactive materials are being leached from residual uranium ores and mill tailings piles. These contaminated areas are being decontaminated and recultivated. Ensuring radiation safety in remediating is of prime importance.

  15. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial action selection report, Attachment 2, Geology report: Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this document and the rest of the RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the State of Colorado.

  16. Floating plant can get uranium from seawater

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    A floating plant has been designed to extract uranium from seawater using solid adsorbents. Ore is removed from the adsorbent material by means of a solvent and concentrated in ion exchangers. Seawater is supplied to the adsorbent inside by wave energy and is based on the principle that waves will rush up a sloping plane that is partly submerged and fill a reservoir to a level higher than the still water level in the sea. The company projects that an offshore plant for recovering 600 tons of uranium/yr would comprise 22 floating concrete units, each measuring 430 x 75 meters.

  17. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect (OSTI)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01T23:59:59.000Z

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  18. 1. Department, course number, title ORE 603 Oceanography for Ocean Engineers

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    1. Department, course number, title ORE 603 Oceanography for Ocean Engineers 2. Designation Core for ocean engineers. Introduction to ocean dynamical processes and general circulation. Ocean measurement Program Outcome 3: Ocean engineering core Program Outcome 6: Problem formulation & solution Program

  19. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15T23:59:59.000Z

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  20. PUGLIA BARI ALTAMURA FIORENZO SARA BA 70022 VIA LAV1GNA. 2 0803212459 Dal lune& al Venerdl dalle ore 09.00 alle ore 13 DO e dalle

    E-Print Network [OSTI]

    Malerba, Donato

    ore 09.00 alle ore 13 DO e dalle ore 16:00 alle ore 20 00. Sabato dalle 09:00 alle 1310 PUGLIA BARI Venerdì dalle ore 09:00 alle ore 13:00 e dalle ore I6:00 alle ore 19:00 PUGLIA BARI GIOVINAllO ILLUZZI MARIA LUCIA BA 70054 VIA TRIESTE, 7 0803946280 0803946280 Dal lancia al Venerdì dalle ore 10 OD alle ore

  1. URANIUM METAL POWDER PRODUCTION, PARTICLE DISTRIBUTION ANALYSIS, AND REACTION RATE STUDIES OF A HYDRIDE-DEHYDRIDE PROCESS 

    E-Print Network [OSTI]

    Sames, William

    2011-08-08T23:59:59.000Z

    Work was done to study a hydride-dehydride method for producing uranium metal powder. Particle distribution analysis was conducted using digital microscopy and grayscale image analysis software. The particle size was found to be predominantly...

  2. URANIUM METAL POWDER PRODUCTION, PARTICLE DISTRIBUTION ANALYSIS, AND REACTION RATE STUDIES OF A HYDRIDE-DEHYDRIDE PROCESS

    E-Print Network [OSTI]

    Sames, William

    2011-08-08T23:59:59.000Z

    -12 plant in Oak Ridge, Tennessee for providing the depleted uranium used in this project. vi NOMENCLATURE ? Reaction Fraction ACV Atmosphere Containment Vessel AFCI Advanced Fuel Cycle Initiative FCML Fuel Cycle and Materials Laboratory...

  3. Stratigraphy, Structure, Hydrothermal Alteration and Ore Mineralizatio...

    Open Energy Info (EERE)

    Mexico- a Detailed Overview Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Stratigraphy, Structure, Hydrothermal Alteration and Ore Mineralization...

  4. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field Scale Subsurface Research Challenge Site at Rifle, Colorado, February 2011 to January 2012

    E-Print Network [OSTI]

    Long, P.E.

    2013-01-01T23:59:59.000Z

    Field Scale Uranium Bioremediation. Eos Trans. AGU 88 (52),Iron Reduction and Uranium Mobility. Eos Trans. AGU 88 (52),at a Former Uranium Mill Tailings Site. Eos Trans. AGU 91,

  5. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field Scale Subsurface Research Challenge Site at Rifle, Colorado, February 2011 to January 2012

    E-Print Network [OSTI]

    Long, P.E.

    2013-01-01T23:59:59.000Z

    D.R. , 2008. Sustained removal of uranium from contaminatedAnderson, R.T. , 2007. Uranium Removal from Groundwater viaand highly effective removal of uranium from groundwater at

  6. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect (OSTI)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30T23:59:59.000Z

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of heap leaching.

  7. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    SciTech Connect (OSTI)

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.; Ring, T.A.

    1982-10-01T23:59:59.000Z

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output. A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.

  8. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    SciTech Connect (OSTI)

    none,

    2012-03-01T23:59:59.000Z

    This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

  10. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  11. URANIUM IN ALKALINE ROCKS

    E-Print Network [OSTI]

    Murphy, M.

    2011-01-01T23:59:59.000Z

    chemical elements uranium zirconium niobium beryllium rarerare earths, niobium, zirconium, uranium, and thorium.respect, uranium and thorium are niobium in carbonatitcs.

  12. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  13. National uranium resource evaluation. Geology and recognition criteria for sandstone uranium deposits of the salt wash type, Colorado Plateau Province. Final report

    SciTech Connect (OSTI)

    Thamm, J.K.; Kovschak, A.A. Jr.; Adams, S.S.

    1981-01-01T23:59:59.000Z

    The uranium-vanadium deposits of the Salt Wash Member of the Morrison Formation in the Colorado Plateau are similar to sandstone uranium deposits elsewhere in the USA. The differences between Salt Wash deposits and other sandstone uranium deposits are also significant. The Salt Wash deposits are unique among sandstone deposits in that they are dominantly vanadium deposits with accessory uranium. The Salt Wash ores generally occur entirely within reduced sandstone, without adjacent tongues of oxidized sandstone. They are more like the deposits of Grants, which similarly occur in reduced sandstones. Recent studies of the Grants deposits have identified alteration assemblages which are asymmetrically distributed about the deposits and provide a basis for a genetic model for those deposits. The alteration types recognized by Shawe in the Slick Rock district may provide similar constraints on ore formation when expanded to broader areas and more complete chemical analyses.

  14. Uranium deposits of Brazil

    SciTech Connect (OSTI)

    NONE

    1991-09-01T23:59:59.000Z

    Brazil is a country of vast natural resources, including numerous uranium deposits. In support of the country`s nuclear power program, Brazil has developed the most active uranium industry in South America. Brazil has one operating reactor (Angra 1, a 626-MWe PWR), and two under construction. The country`s economic challenges have slowed the progress of its nuclear program. At present, the Pocos de Caldas district is the only active uranium production. In 1990, the Cercado open-pit mine produced approximately 45 metric tons (MT) U{sub 3}O{sub 8} (100 thousand pounds). Brazil`s state-owned uranium production and processing company, Uranio do Brasil, announced it has decided to begin shifting its production from the high-cost and nearly depleted deposits at Pocos de Caldas, to lower-cost reserves at Lagoa Real. Production at Lagoa Real is schedules to begin by 1993. In addition to these two districts, Brazil has many other known uranium deposits, and as a whole, it is estimated that Brazil has over 275,000 MT U{sub 3}O{sub 8} (600 million pounds U{sub 3}O{sub 8}) in reserves.

  15. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOE Patents [OSTI]

    Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

    2001-01-01T23:59:59.000Z

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  16. Uranium roll front study in the upper Jackson group, Atascosa County, Texas 

    E-Print Network [OSTI]

    Miller, Michael Eugene

    1979-01-01T23:59:59.000Z

    ) that the ore zone is continually enriched by the constant migra- tion of uranium-bearing groundwater. Although roll-type deposits have sim1lar morphologies, they may form under different conditions. Iron disulfide minerals, producing the reducing... front. The ore body being examined in this study was chosen because 1t is a particularly good exposure of a roll front deposit. A roll front 1s the boundary produced when alkaline, uranium-bear1ng groundwaters encountered reducing condit1ons...

  17. Uranium series disequilibrium in the Bargmann property area of Karnes County, Texas

    SciTech Connect (OSTI)

    Davidson, J.R.

    1998-02-01T23:59:59.000Z

    Historical evidence is presented for natural uranium series radioactive disequilibrium in uranium bearing soils in the Bargmann property area of karnes County on the Gulf Coastal Plain of south Texas. The early history of uranium exploration in the area is recounted and records of disequilibrium before milling and mining operations began are given. The property contains an open pit uranium mine associated with a larger ore body. In 1995, the US Department of Energy (DOE) directed Oak Ridge National Laboratory (ORNL) to evaluate the Bargmann tract for the presence of uranium mill tailings (ORNL 1996). There was a possibility that mill tailings had washed onto or blown onto the property from the former tailings piles in quantities that would warrant remediation under the Uranium Mill Tailings Remediation Action Project. Activity ratios illustrating disequilibrium between {sup 226}Ra and {sup 238}U in background soils during 1986 are listed and discussed. Derivations of uranium mass-to-activity conversion factors are covered in detail.

  18. Project StORe: Physics Report 

    E-Print Network [OSTI]

    Bull, Stephen

    Results are presented on the Physics Survey of Researcher Use of Repositories which constitutes the culmination of Work Package 2 (in Physics) of Project StORe (Source to Output Repositories). The data were obtained by ...

  19. Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A [ORNL] [ORNL; Lee, Denise L [ORNL] [ORNL; Croft, Stephen [ORNL] [ORNL; McElroy, Robert Dennis [ORNL] [ORNL; Hertel, Nolan [Georgia Institute of Technology] [Georgia Institute of Technology; Chapman, Jeffrey Allen [ORNL] [ORNL; Cleveland, Steven L [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of density, concentration and enrichment. A detailed uncertainty analysis will be presented providing insights into instrumentation limitations to spoofing.

  20. Development of Novel Sorbents for Uranium Extraction from Seawater

    SciTech Connect (OSTI)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08T23:59:59.000Z

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

  1. PowerPoint Presentation

    Office of Environmental Management (EM)

    * Electronics and data handling when not tied to specific application * Basic chemistry and physics of uranium and plutonium * Processing of uranium ore * Uranium...

  2. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field Scale Subsurface Research Challenge Site at Rifle, Colorado, February 2011 to January 2012

    E-Print Network [OSTI]

    Long, P.E.

    2013-01-01T23:59:59.000Z

    during in situ U(VI) Bioremediation with a Field-PortableField Scale Uranium Bioremediation. Environ. Sci. Technol.an in situ uranium bioremediation field site and its impact

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  4. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01T23:59:59.000Z

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  5. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-07-07T23:59:59.000Z

    Experiments at the Department of Energy’s Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer – a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  6. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  7. Results from a "Proof-of-Concept" Demonstration of RF-Based Tracking of UF6 Cylinders during a Processing Operation at a Uranium Enrichment Plant

    SciTech Connect (OSTI)

    Pickett, Chris A [ORNL] [ORNL; Kovacic, Donald N [ORNL] [ORNL; Whitaker, J Michael [ORNL] [ORNL; Younkin, James R [ORNL] [ORNL; Hines, Jairus B [ORNL] [ORNL; Laughter, Mark D [ORNL] [ORNL; Morgan, Jim [Innovative Solutions] [Innovative Solutions; Carrick, Bernie [USEC] [USEC; Boyer, Brian [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL); Whittle, K. [USEC] [USEC

    2008-01-01T23:59:59.000Z

    Approved industry-standard cylinders are used globally for processing, storing, and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants. To ensure that cylinder movements at enrichment facilities occur as declared, the International Atomic Energy Agency (IAEA) must conduct time-consuming periodic physical inspections to validate facility records, cylinder identity, and containment. By using a robust system design that includes the capability for real-time unattended monitoring (of cylinder movements), site-specific rules-based event detection algorithms, and the capability to integrate with other types of monitoring technologies, one can build a system that will improve overall inspector effectiveness. This type of monitoring system can provide timely detection of safeguard events that could be used to ensure more timely and appropriate responses by the IAEA. It also could reduce reliance on facility records and have the additional benefit of enhancing domestic safeguards at the installed facilities. This paper will discuss the installation and evaluation of a radio-frequency- (RF-) based cylinder tracking system that was installed at a United States Enrichment Corporation Centrifuge Facility. This system was installed primarily to evaluate the feasibility of using RF technology at a site and the operational durability of the components under harsh processing conditions. The installation included a basic system that is designed to support layering with other safeguard system technologies and that applies fundamental rules-based event processing methodologies. This paper will discuss the fundamental elements of the system design, the results from this site installation, and future efforts needed to make this technology ready for IAEA consideration.

  8. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    SciTech Connect (OSTI)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08T23:59:59.000Z

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  9. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01T23:59:59.000Z

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  10. Brazilian uranium mine decommissioning-chemical and radiological study of waste rock piles

    SciTech Connect (OSTI)

    Wiikmann, L. O. [Industrias Nucleares do Brasil, Pocos de Caldas (Brazil)

    1996-12-31T23:59:59.000Z

    The Pocos de Caldas plateau is a high-natural-radioactivity area in the state of Minas Gerais, southeast Brazil. Uranium occurrence in the plateau was first observed in 1948. Mining started in 1977 with mine scouring, and the first ore pile was constructed in 1981. Waste rocks are derived from the mine material. The analysis of core samples is discussed.

  11. Uranium roll front study in the upper Jackson group, Atascosa County, Texas

    E-Print Network [OSTI]

    Miller, Michael Eugene

    1979-01-01T23:59:59.000Z

    of organic carbon, and converting pyr1te to goethite or hemat1te. He estimates a pH range of between 7 and 8. 5 for the uranium-bearing solution. 13 F 00 100 200 Cu 2 ~ l2 V 0'- VIDO)i ORE-GEARING SOI UTION -SS~ S90? 1 100 F~95 ~ Fs(0 HI) Eh 0...

  12. URANIUM IN ALKALINE ROCKS

    E-Print Network [OSTI]

    Murphy, M.

    2011-01-01T23:59:59.000Z

    Greenland," in Uranium Exploration Geology, Int. AtomicMigration of Uranium and Thorium—Exploration Significance,"interesting for future uranium exploration. The c r i t e r

  13. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 2 febbraio 2012 Compitino (2 ore)

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 2 febbraio 2012­ Compitino (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  14. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 14 novembre 2011 Compitino (2 ore)

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 14 novembre 2011­ Compitino (2 ore) Giustificare ogni affermazione Salvare il file CoCoA come

  15. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    SciTech Connect (OSTI)

    None

    1986-12-01T23:59:59.000Z

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  16. Development of sorbers of the recovery of uranium from seawater. Assessment of key parameters and screening of sorber materials

    SciTech Connect (OSTI)

    Schenk, H.J.; Astheimer, L.; Witte, E.G.; Schwochau, K.S.

    1982-01-01T23:59:59.000Z

    At an average uranium content of 3.3 ppb the oceans can be considered as a very low-grade but practically unlimited source of uranium. Some essential chemical aspects of a large-scale sorptive recovery of uranium from seawater are discussed with special emphasis on required sorber properties such as high physical and chemical stability in seawater, fast and selective uptake of uranium, as well as a sufficient loading capacity. Systematic screening tests, including about 200 sorber materials on the basis of organic ion-exchange resins, identified cross-linked poly(acrylamidoximes) as the most promising candidate sorbers. Their uranium uptake closely approaches the uranium content of actually explored uranium ores.

  17. Development of sorbers for the recovery of uranium from seawater. Part 2. The accumulation of uranium from seawater by resins containing amidoxime and imidoxime functional groups

    SciTech Connect (OSTI)

    Astheimer, L.; Schenk, H.J.; Witte, E.G.; Schwochau, K.

    1983-04-01T23:59:59.000Z

    Hydroxylamine derivatives of cross-linked poly(acrylonitriles), so-called poly(acrylamidoxime) resins, are suitable for the accumulation of uranium from natural seawater of pH = 8.1 to 8.3. Depending on the method of manufacture, these sorbers yield excellent uranium loadings up to some thousand ppM which roughly equals the average uranium content of actually explored uranium ores. The rate of uranium uptake, which is 5 to 30 ppM/d at room temperature, increases with increasing temperature of seawater. Uranium can be eluted by 1 M HCl with an elution efficiency of more than 90%. Owing to a certain instability of the uranium binding groups in acid eluants, the uranium uptake decreases with increasing number of sorption-elution cycles. Hydroxylamine derivatives of poly(acrylonitrile) are shown to contain simultaneously at least two kinds of functional groups: open-chain amidoxime groups which are stable and cyclic imidoxime groups which are unstable in 1 M HCl. Experimental evidence is presented that the uptake of uranium from natural seawater is closely related to the presence of cyclic imidoxime configurations in the polyacrylic lattice. Polystyrene and poly(glycidylmethacrylate)-based amidoxime and imide dioxime resins are less effective in extracting uranium from natural seawater. 10 figures, 4 tables.

  18. Fingerprinting Uranium | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fingerprinting Uranium Fingerprinting Uranium Researchers show how to use x-rays to identify mobile, stationary forms of atomic pollutant PNNL and University of North Texas...

  19. Colorimetric detection of uranium in water

    DOE Patents [OSTI]

    DeVol, Timothy A. (Clemson, SC); Hixon, Amy E. (Piedmont, SC); DiPrete, David P. (Evans, GA)

    2012-03-13T23:59:59.000Z

    Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

  20. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  1. Radiation- and Depleted Uranium-Induced Carcinogenesis Studies: Characterization of the Carcinogenic Process and Development of Medical Countermeasures

    E-Print Network [OSTI]

    A. C. Miller; D. Beltran; R. Rivas; M. Stewart; R. J. Merlot; P. B. Lison

    External or internal contamination from radioactive elements during military operations or a terrorist attack is a serious threat to military and civilian populations. External radiation exposure could result from conventional military scenarios including nuclear weapons use and low-dose exposures during radiation accidents or terrorist attacks. Alternatively, internal radiation exposure could result from depleted uranium exposure via DU shrapnel wounds or inhalation. The long-term health effects of these types of radiation exposures are not well known. Furthermore, development of pharmacological countermeasures to low-dose external and internal radiological contamination is essential to the health and safety of both military and civilian populations. The purpose of these studies is to evaluate low-dose radiation or DU-induced carcinogenesis using in vitro and in vivo models, and to test safe and efficacious medical countermeasures. A third goal of these studies is to identify biomarkers of both exposure and disease development. Initially, we used a human cell model (human osteoblast cells, HOS) to evaluate the carcinogenic potential of DU in vitro by assessing morphological transformation, genotoxicity (chromosomal aberrations), mutagenic (HPRT loci), and genomic instability. As a comparison, low-dose cobalt radiation, broad-beam alpha particles, and other military-projectile metals, i.e., tungsten mixtures, are being examined. Published data from

  2. Beneficial Uses of Depleted Uranium

    SciTech Connect (OSTI)

    Brown, C. [U.S. Department of Energy, Germantown, MD (United States); Croff, A.G.; Haire, M. J. [Oak Ridge National Lab., TN (United States)

    1997-08-01T23:59:59.000Z

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  3. Bioremediation of uranium contaminated soils and wastes

    SciTech Connect (OSTI)

    Francis, A.J.

    1998-12-31T23:59:59.000Z

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  4. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  5. Representativeness of large sample INAA in the study of Brazilian uranium mine waste

    SciTech Connect (OSTI)

    De Nadai Fernandes, E.A. [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil); Bode, P. [Interfaculty Reactor Institute, Delft (Netherlands)

    1997-12-01T23:59:59.000Z

    Osamu Utsumi was the first uranium mine to be explored in Brazil and has been active for approximately two decades. It is located on the Poqos de Caldas plateau in the state of Minas Gerais, which is an area of the world with one of the highest levels of natural radioactivity. Mining activities were terminated in April 1996, leaving some tons of uranium at depths at which exploration is not economically viable. The decision to prematurely terminate mining activities was taken in light of the planned commissioning within 2 yr of a new mine in the state of Bahia in the Jazida da Cachoeira region, where a high-grade uranium ore is found. This paper describes the use of INAA for the analysis of wastes produced from ores.

  6. Extraction of uranium from seawater using magnetic adsorbents

    SciTech Connect (OSTI)

    Yamashita, H. (Hitachi Research Lab., Japan); Fujita, K.; Nakajima, F.; Ozawa, Y.; Murata, T.

    1981-01-01T23:59:59.000Z

    A new process for the extraction of uranium from seawater was developed. In the process, uranium adsorption is effected using powdered magnetic adsorbents; the adsorbents are then separated from seawater using magnetic separation technology. This process is superior to a column method using a granulated hydrous titanium oxide adsorber bed in the following ways: (1) a higher rate of adsorption is realized because smaller particles are used in the uranium adsorption; and (2) blocking, which is inevitable in an adsorber bed, is eliminated. The composite hydrous titanium-iron oxide as a magnetic adsorbent having high uranium adsorption capacity and magnetization can be prepared by adding urea to a mixed solution of titanium sulfate and ferrous sulfate. Adsorption and desoprtion of uranium and the removal of the adsorbent using a small-scale uranium extraction plant (about 15 m/sup 3//d) is reported, and the feasibility of uranium extraction from seawater by this process is demonstrated. 10 figures.

  7. Remedial action plan for the inactive uranium processing site at Naturita, Colorado. Remedial action selection report: Attachment 2, geology report; Attachment 3, ground water hydrology report; Attachment 4, supplemental information

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the U.S. Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, becomes Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  8. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03T23:59:59.000Z

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  9. Geology of eastern Smith Lake ore trend, Grants mineral belt

    SciTech Connect (OSTI)

    Ristorcelli, S.J.

    1980-01-01T23:59:59.000Z

    The sandstones in the Brushy Basin Member of the Morrison Formation (Jurassic) are the ore-bearing horizons of the eastern Smith Lake area. The Brushy Basin Member in this district consists of three sandstones with interbedded mudstones. Only the lower two sandstones contain ore. The sandstones are fine to coarse grained, well rounded, and arkosic, representing continental stream sediments. The lower sandstone contains rollfront ore. The redox interface is laterally extensive and well defined, extending at least 7 mi (11 km) west of the Bluewater fault zone. The ore generally occurs at the redox boundary but occasionally will be up to 1500 ft (450 m) updip. Limonitic alteration, where present, is downdip from the hematitic zone and is 100-1,500 ft (30 to 450 m) wide. The middle sandstone contains both trend ore and roll-front ore. The trend ore occurs downdip from the redox front in unoxidized ground. The redox front in the middle sand is also laterally extensive but displays a wedge shape, rather than a C shape. The clay assemblages of the two types of ore are different: the trend ore occurs in sands with the pore spaces filled with kaolinite; the roll-front ore is associated with altered illite-montmorillonite as grain coatings. Hematitic alteration is asociated with the latter. A second stage of kaolinite coats the illite-montmorillonite. Two periods of mineralization are suggested, but no absolute dates are known. The trend ore is the oldest (Jurassic) and is similar to the ore found in unoxidized ground elsewhere in the Grants region. The rollfront ore could be Laramide or post-Laramide because of its association with local Laramide structures.

  10. Organic binders for iron ore pelletization and steelmaking

    SciTech Connect (OSTI)

    Karkoska, D.; Sankey, E. [Allied Colloids, Suffolk, VA (United States); Anderson, R. [Eveleth Mines, MN (United States)

    1995-12-01T23:59:59.000Z

    Historically, bentonite has been used in the agglomeration process in North American iron ore plants. In 1986, Eveleth Mines replaced bentonite with Peridur, a carboxy methyl cellulose organic binder used in conjunction with 1% limestone. Since May of 1993, Allied Colloids` Alcotac FE8 has been used by Eveleth as the replacement for bentonite. This paper discusses the performance benefits obtained when bentonite was replaced with an organic binder. These totally synthetic binders are used in conjunction with limestone. The benefits of organic binders are: improved metallurgical parameters of the fired pellet, especially the reducibility, which results in more efficient use of gases in the blast furnace; reduced silica in the pellet, in the case of Eveleth Mines this was a reduction of 0.5%, a lower silica pellet reduces slag in the blast furnace; increased production in both the agglomeration/induration and steelmaking processes; and a decrease in coke consumption.

  11. Uranium industry annual 1998

    SciTech Connect (OSTI)

    NONE

    1999-04-22T23:59:59.000Z

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  12. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  13. Position paper on the applicability of supplemental standards to the uppermost aquifer at the Uranium Mill Tailings Vitro Processing Site, Salt Lake City, Utah

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This report documents the results of the evaluation of the potential applicability of supplemental standards to the uppermost aquifer underlying the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing Site, Salt Lake City, Utah. There are two goals for this evaluation: provide the landowner with information to make an early qualitative decision on the possible use of the Vitro property, and evaluate the proposed application of supplemental standards as the ground water compliance strategy at the site. Justification of supplemental standards is based on the contention that the uppermost aquifer is of limited use due to wide-spread ambient contamination not related to the previous site processing activities. In support of the above, this report discusses the site conceptual model for the uppermost aquifer and related hydrogeological systems and establishes regional and local background water quality. This information is used to determine the extent of site-related and ambient contamination. A risk-based evaluation of the contaminants` effects on current and projected land uses is also provided. Reports of regional and local studies and U.S. Department of Energy (DOE) site investigations provided the basis for the conceptual model and established background ground water quality. In addition, a limited field effort (4 through 28 March 1996) was conducted to supplement existing data, particularly addressing the extent of contamination in the northwestern portion of the Vitro site and site background ground water quality. Results of the field investigation were particularly useful in refining the conceptual site model. This was important in light of the varied ground water quality within the uppermost aquifer. Finally, this report provides a critical evaluation, along with the related uncertainties, of the applicability of supplemental standards to the uppermost aquifer at the Salt Lake City Vitro processing site.

  14. arlit uranium mines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration and pre-processing Part 2: Association rule mining Part Christen, Peter 32 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  15. Recovery of uranium by immobilized polyhydroxyanthraquinone

    SciTech Connect (OSTI)

    Sakaguchi, T.; Nakajima, A.

    1986-01-01T23:59:59.000Z

    Nine species of polyhydroxyanthraquinone and two of polyhydroxynaphthoquinone were screened to determine which have the greatest ability to accumulate uranium. 1,2-Dihydroxyanthraquinone and 3-amino-1,2-dihydroxyanthraquinone have extremely high accumulation abilities. To improve the adsorbing characteristics of these compounds, the authors tried to immobilize these compounds by coupling with diazotized aminopolystyrene. The immobilized 1,2-dihydroxyanthraquinone has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. This adsorbent can recover uranium almost quantitatively from natural seawater. Almost all uranium adsorbed is desorbed with a solution of 1 N HCl. Thus, immobilized 1,2-dihydroxyanthraquinone can be used repeatedly in the adsorption-desorption process.

  16. Discovery of HE 1523-0901, a Strongly r-Process Enhanced Metal-Poor Star with Detected Uranium

    E-Print Network [OSTI]

    Anna Frebel; Norbert Christlieb; John E. Norris; Christopher Thom; Timothy C. Beers; Jaehyon Rhee

    2007-03-15T23:59:59.000Z

    We present age estimates for the newly discovered very r-process enhanced metal-poor star HE 1523-0901 ([Fe/H]=-2.95) based on the radioactive decay of Th and U. The bright (V=11.1) giant was found amongst a sample of bright metal-poor stars selected from the Hamburg/ESO survey. From an abundance analysis of a high-resolution (R=75,000) VLT/UVES spectrum we find HE 1523-0901 to be strongly overabundant in r-process elements ([r/Fe]=1.8). The abundances of heavy neutron-capture elements (Z>56) measured in HE 1523-0901 match the scaled solar r-process pattern extremely well. We detect the strongest optical U line at 3859.57 A. For the first time, we are able to employ several different chronometers, such as the U/Th, U/Ir, Th/Eu and Th/Os ratios to measure the age of a star. The weighted average age of HE 1523-0901 is 13.2 Gyr. Several sources of uncertainties are assessed in detail.

  17. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, J.P.

    1992-03-17T23:59:59.000Z

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  18. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL)

    1992-01-01T23:59:59.000Z

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  19. Performance Evaluation of O-Ring Seals in Model 9975 Packaging Assemblies (U)

    SciTech Connect (OSTI)

    Skidmore, Eric

    1998-12-28T23:59:59.000Z

    The Materials Consultation Group of SRTC has completed a review of existing literature and data regarding the useable service life of Viton{reg_sign} GLT fluoroelastomer O-rings currently used in the Model 9975 packaging assemblies. Although the shipping and transportation period is normally limited to 2 years, it is anticipated that these packages will be used for longer-term storage of Pu-bearing materials in KAMS (K-Area Materials Storage) prior to processing or disposition in the APSF (Actinide Packaging and Storage Facility). Based on the service conditions and review of available literature, Materials Consultation concludes that there is sufficient existing data to establish the technical basis for storage of Pu-bearing materials using Parker Seals O-ring compound V835-75 (or equivalent) for up to 10 years following the 2-year shipping period. Although significant physical deterioration of the O-rings and release of product is not expected, definite changes in physical properties will occur. However, due to the complex relationship between elastomer formulation, seal properties, and competing degradation mechanisms, the actual degree of property variation and impact upon seal performance is difficult to predict. Therefore, accelerated aging and/or surveillance programs are recommended to validate the assumptions outlined in this report and to assess the long-term performance of O-ring seals under actual service conditions. Such programs could provide a unique opportunity to develop nonexistent long-term performance data, as well as address storage extension issues if necessary.

  20. Post-Doctoral Stages Aims : strategic metal concentrations from ore genesis to ore beneficiation and

    E-Print Network [OSTI]

    Canet, Léonie

    approaches that combine their competences and knowledge : · ore genesis and metal cycle in the lithosphere impacts of the new types of metal exploitation so as to assure environmental preservation (ecotoxicity, management of ecosystems and territories, land use and rehabilitation, observation and monitoring). The call

  1. Kumba Iron Ore | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas:Kuju Kanko Hotel GeothermalKumba Iron Ore

  2. Uranium industry annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  3. Ground water elevation monitoring at the Uranium Mill Tailings Remedial Action Salt Lake City, Utah, Vitro processing site

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    In February 1994, a ground water level monitoring program was begun at the Vitro processing site. The purpose of the program was to evaluate how irrigating the new golf driving range affected ground water elevations in the unconfined aquifer. The program also evaluated potential impacts of a 9-hole golf course planned as an expansion of the driving range. The planned golf course expansion would increase the area to be irrigated and, thus, the water that could infiltrate the processing site soil to recharge the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in ground water could migrate off the site or could discharge to bodies of surface water in the area. The potential effects of expanding the golf course have been evaluated, and a report is being prepared. Water level data obtained during this monitoring program indicate that minor seasonal mounding may be occurring in response to irrigation of the driving range. However, the effects of irrigation appear small in comparison to the effects of precipitation. There are no monitor wells in the area that irrigation would affect most; that data limitation makes interpretations of water levels and the possibility of ground water mounding uncertain. Limitations of available data are discussed in the conclusion.

  4. Depleted Uranium Technical Brief

    E-Print Network [OSTI]

    Depleted Uranium Technical Brief United States Environmental Protection Agency Office of Air and Radiation Washington, DC 20460 EPA-402-R-06-011 December 2006 #12;#12;Depleted Uranium Technical Brief EPA of Radiation and Indoor Air Radiation Protection Division ii #12;iii #12;FOREWARD The Depleted Uranium

  5. Petrochemical and Mineralogical Constraints on the Source and Processes of Uranium Mineralisation in the Granitoids of Zing-Monkin Area, Adamawa Massif, NE Nigeria

    SciTech Connect (OSTI)

    Haruna, I. V., E-mail: vela_hi@yahoo.co.uk [Federal University of Technology, Geology Department (Nigeria); Orazulike, D. M. [Abubakar Tafawa Balewa University, Geology Programme (Nigeria); Ofulume, A. B. [Federal University of Technology, Geosciences Department (Nigeria); Mamman, Y. D. [Federal University of Technology, Geology Department (Nigeria)

    2011-12-15T23:59:59.000Z

    Zing-Monkin area, located in the northern part of Adamawa Massif, is underlain by extensive exposures of moderately radioactive granodiorites, anatectic migmatites, equigranular granites, porphyritic granites and highly radioactive fine-grained granites with minor pegmatites. Selected major and trace element petrochemical investigations of the rocks show that a progression from granodiorite through migmatite to granites is characterised by depletion of MgO, CaO, Fe{sub 2}O{sub 3,} Sr, Ba, and Zr, and enrichment of SiO{sub 2} and Rb. This trend is associated with uranium enrichment and shows a chemical gradation from the more primitive granodiorite to the more evolved granites. Electron microprobe analysis shows that the uranium is content in uranothorite and in accessories, such as monazite, titanite, apatite, epidote and zircon. Based on petrochemical and mineralogical data, the more differentiated granitoids (e.g., fine-grained granite) bordering the Benue Trough are the immediate source of the uranium prospect in Bima Sandstone within the Trough. Uranium was derived from the granitoids by weathering and erosion. Transportation and subsequent interaction with organic matter within the Bima Sandstone led to precipitation of insoluble secondary uranium minerals in the Benue Trough.

  6. Depleted uranium plasma reduction system study

    SciTech Connect (OSTI)

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01T23:59:59.000Z

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

  7. DOE Awards Contract for Moab Mill Tailings Cleanup | Department...

    Broader source: Energy.gov (indexed) [DOE]

    part of the Department's continued efforts to protect the Colorado River and downstream water users by removing uranium tailings at the former Atlas uranium-ore processing...

  8. LINEAR CONTROL SYSTEMS OVER ORE ALGEBRAS: EFFECTIVE ALGORITHMS FOR

    E-Print Network [OSTI]

    Robertz, Daniel

    LINEAR CONTROL SYSTEMS OVER ORE ALGEBRAS: EFFECTIVE ALGORITHMS FOR THE COMPUTATION@momo.math.rwth-aachen.de. Abstract: In this paper, we study linear control systems over Ore algebras. Within this mathematical framework, we can simultaneously deal with different classes of linear control systems such as time

  9. GIORNATA DI STUDIO 12 giugno 2012 ore 9,00

    E-Print Network [OSTI]

    Di Pillo, Gianni

    produttive - Facoltà di Economia Prof. Paolo Moretti Presidente dell'Istituto per il Governo Societario Comitato scientifico dell'Istituto per il Governo Societario #12;2 -ore 11,15 Il sistema di controllo Governo Societario -ore 12,15 Trasparenza e comunicazione agli stakeholder nella governance societaria

  10. Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed

    SciTech Connect (OSTI)

    Smirnov, A. Yu., E-mail: a.y.smirnoff@rambler.ru; Sulaberidze, G. A. [National Research Nuclear University MEPhI (Russian Federation); Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A., E-mail: neva@dhtp.kiae.ru; Proselkov, V. N.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

    2012-12-15T23:59:59.000Z

    A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.

  11. Application of Odor Sensors to Ore Sorting and Mill Feed Control

    SciTech Connect (OSTI)

    Michael G. Nelson

    2005-08-01T23:59:59.000Z

    Control of the feed provided to mineral processing facilities is a continuing challenge. Much effort is currently being devoted to overcoming these problems. These projects are usually described under the general headings of Mine-to-Mill Integration or Mine-Mill Optimization. It should be possible to combine the knowledge of ore type, mineralogy, and other characteristics (located in the mine modeling system), with the advanced capabilities of state-of-the-art mill control systems, to achieve an improved level of control in mineral processing that will allow optimization of the mill processes on an almost real-time basis. This is not happening because mill feed it is often treated as a uniform material, when in reality it varies in composition and characteristics. An investigation was conducted to assess the suitability of odor sensors for maintaining traceability in ore production and processing. Commercially available sensors are now used in food processing, environmental monitoring, and other applications and can detect the presence of very small amounts (0.1-500 ppm) of some molecules. An assortment of such molecules could be used to ''tag'' blocks of ore as they are mined, according to their respective characteristics. Then, as the ore came into the mill, an array of ''electronic noses'' could be used to assess its characteristics in real time. It was found that the Cyranose 320{trademark}, a commercially available odor sensor, can easily distinguish among samples of rock marked with almond, cinnamon, citronella, lemon, and orange oils. Further, the sensor could detect mixtures of rocks marked with various combinations of these oils. Treatment of mixtures of galena and silica with odorant compounds showed no detrimental effects on flotation response in laboratory tests. Additional work is recommended to determine how this concept can be extended to the marking of large volumes of materials.

  12. Maintaining the uranium resources data system and assessing the 1989 US uranium potential resources

    SciTech Connect (OSTI)

    McCammon, R.B. (Geological Survey, Reston, VA (USA)); Finch, W.I.; Grundy, W.D.; Pierson, C.T. (Geological Survey, Denver, CO (USA))

    1990-12-31T23:59:59.000Z

    Under the Memorandum of Understanding (MOU) between the EIA, US Department of Energy, and the US Geological Survey (USGS), US Department of the Interior, the USGS develops estimates of uranium endowment for selected geological environments in the United States. New estimates of endowment are used to update the Uranium Resources Assessment Data (URAD) System which, beginning in 1990, is maintained for EIA by the USGS. For 1989, estimates of US undiscovered resources were generated using revised economic index values (current to December 1989) in the URAD system's cost model. The increase in the estimates for the Estimated Additional Resources (EAR) and Speculative Resources (SR) classes resulted primarily from increases in the estimates of uranium endowment for the solution-collapse, breccia-pipe uranium deposit environment in the Colorado Plateau resource region. The mean values for $30-, $50-, and $100-per-pound U{sub 3}O{sub 8} forward-cost categories of EAR increased by about 8, 48, and 32 percent, respectively, as compared to 1988. Estimates of the 1989 undiscovered resources in the SR class also increased in all three forward-cost categories by 10, 5, and 9 percent, respectively. The original cost equations in the URAD System were designed to cover drilling costs related to extensive flat-lying tabular ore bodies. The equations do not adequately treat drilling costs for the smaller areas of vertical breccia pipe uranium deposits in the Colorado Plateau resource region. The development of appropriate cost equations for describing the economics of mining this type of deposit represents a major new task. 12 refs., 4 figs., 5 tabs.

  13. Induction slag reduction process for making titanium

    DOE Patents [OSTI]

    Traut, Davis E. (Corvallis, OR)

    1991-01-01T23:59:59.000Z

    Continuous process for preparing titanium comprising fluorinating titanium ore, and reducing the formed alkaline earth fluotitanate with an alkaline earth metal in an induction slag reactor.

  14. Electron Backscatter Diffraction (EBSD) Characterization of Uranium and Uranium Alloys

    SciTech Connect (OSTI)

    McCabe, Rodney J. [Los Alamos National Laboratory; Kelly, Ann Marie [Los Alamos National Laboratory; Clarke, Amy J. [Los Alamos National Laboratory; Field, Robert D. [Los Alamos National Laboratory; Wenk, H. R. [University of California, Berkeley

    2012-07-25T23:59:59.000Z

    Electron backscatter diffraction (EBSD) was used to examine the microstructures of unalloyed uranium, U-6Nb, U-10Mo, and U-0.75Ti. For unalloyed uranium, we used EBSD to examine the effects of various processes on microstructures including casting, rolling and forming, recrystallization, welding, and quasi-static and shock deformation. For U-6Nb we used EBSD to examine the microstructural evolution during shape memory loading. EBSD was used to study chemical homogenization in U-10Mo, and for U-0.75Ti, we used EBSD to study the microstructure and texture evolution during thermal cycling and deformation. The studied uranium alloys have significant microstructural and chemical differences and each of these alloys presents unique preparation challenges. Each of the alloys is prepared by a sequence of mechanical grinding and polishing followed by electropolishing with subtle differences between the alloys. U-6Nb and U-0.75Ti both have martensitic microstructures and both require special care in order to avoid mechanical polishing artifacts. Unalloyed uranium has a tendency to rapidly oxidize when exposed to air and a two-step electropolish is employed, the first step to remove the damaged surface layer resulting from the mechanical preparation and the second step to passivate the surface. All of the alloying additions provide a level of surface passivation and different one and two step electropolishes are employed to create good EBSD surfaces. Because of its low symmetry crystal structure, uranium exhibits complex deformation behavior including operation of multiple deformation twinning modes. EBSD was used to observe and quantify twinning contributions to deformation and to examine the fracture behavior. Figure 1 shows a cross section of two mating fracture surfaces in cast uranium showing the propensity of deformation twinning and intergranular fracture largely between dissimilarly oriented grains. Deformation of U-6Nb in the shape memory regime occurs by the motion of twin boundaries formed during the martensitic transformation. Deformation actually results in a coarsening of the microstructure making EBSD more practical following a limited amount of strain. Figure 2 shows the microstructure resulting from 6% compression. Casting of U-10Mo results in considerable chemical segregation as is apparent in Figure 2a. The segregation subsists through rolling and heat treatment processes as shown in Figure 2b. EBSD was used to study the effects of homogenization time and temperature on chemical heterogeneity. It was found that times and temperatures that result in a chemically homogeneous microstructure also result in a significant increase in grain size. U-0.75Ti forms an acicular martinsite as shown in Figure 4. This microstructure prevails through cycling into the higher temperature solid uranium phases.

  15. Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films

    E-Print Network [OSTI]

    Hart, Gus

    Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

  16. T><2too/t6' Mineralogicai, Radiographic

    E-Print Network [OSTI]

    , MINERALOGY, ORE PROCESSING, PETROLOGY, SODIUM CARBONATES, STEENSTRUPINE, URANIUM MINERALS, URANIUM ORES. UDC AND CONCLUSIONS 122 7.1. Geology, petrology 122 7.2. Mineralogy and fission-track data 125 7.3. Chemistry

  17. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology report, Final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.

  18. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  19. BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.

    SciTech Connect (OSTI)

    FRANCIS,A.J.

    1998-09-17T23:59:59.000Z

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  20. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    SciTech Connect (OSTI)

    Adler, H.H.

    1981-03-01T23:59:59.000Z

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States.

  1. Chapter 2. Uranium Mining and Extraction Processes in the United States In 1946, Congress passed the Atomic Energy Act (AEA), establishing the Atomic Energy Commission

    E-Print Network [OSTI]

    and provided production incentives (e.g., including access roads, haulage allowances, and buying stations by the demand generated by the U.S. government's weapons program. The second, in the 1970s to early 1980s than 0.10 percent uranium, they would mine the material and ship it to regional AEC buying stations

  2. Method of fabricating a uranium-bearing foil

    DOE Patents [OSTI]

    Gooch, Jackie G. (Seymour, TN); DeMint, Amy L. (Kingston, TN)

    2012-04-24T23:59:59.000Z

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  3. Purification of trona ores by conditioning with an oil-in-water emulsion

    DOE Patents [OSTI]

    Miller, J. D. (Salt Lake City, UT); Wang, Xuming (Salt Lake City, UT); Li, Minhua (Salt Lake City, UT)

    2009-04-14T23:59:59.000Z

    The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material. Thus, the floated gangue material can be readily separated from the trona to form a purified trona concentrate without requirements of additional heat or other expensive processing steps.

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  5. Uranium hexafluoride public risk

    SciTech Connect (OSTI)

    Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

    1994-08-01T23:59:59.000Z

    The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

  6. Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils

    SciTech Connect (OSTI)

    Jerden, James L. Jr. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439 (United States)

    2007-07-01T23:59:59.000Z

    A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group minerals react to form U(VI)- bearing aluminum phosphates. (author)

  7. Mineralogical signature of nonsulfide zinc ores at Accha (Peru): A key for recovery Maria Boni a,b,

    E-Print Network [OSTI]

    Boni, Maria

    Mineralogical signature of nonsulfide zinc ores at Accha (Peru): A key for recovery Maria Boni a 14 October 2009 Keywords: Nonsulfide zinc Mineralogy Petrography Processing Flowsheet The Accha deposit in Southern Peru is the first case in which an integrated study between mineralogy, petrography

  8. Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor

    SciTech Connect (OSTI)

    Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

    1980-01-01T23:59:59.000Z

    A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

  9. Uranium Mill Tailings Management

    SciTech Connect (OSTI)

    Nelson, J.D.

    1982-01-01T23:59:59.000Z

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements).

  10. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  11. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

  12. Chapter 5. Conclusion Uranium, a naturally occurring element, contributes to low levels of natural background radiation in the

    E-Print Network [OSTI]

    radium and the radioactive gas radon. Mining is the process by which mineral and metal bearing ores and price. This subeconomic ore is often stockpiled at the mine site for future exploitation under straddling the Four Corners where Utah, Colorado, New Mexico, and Arizona meet, though more than a dozen

  13. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19T23:59:59.000Z

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  14. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2011 to January 2012

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Zheng, Chunmiao

    2012-03-05T23:59:59.000Z

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface biogeochemical setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer motivates research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated biogeochemical system. The project was initiated in February 2007, with CY 2007, CY 2008, CY 2009, and CY 2010 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project acted upon all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of 'Modeling' and 'Well-Field Mitigation' plans that are now posted on the Hanford IFRC web-site, and modifications to the IFRC well-field completed in CY 2011. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2011 including: (i) well modifications to eliminate well-bore flows, (ii) hydrologic testing of the modified well-field and upper aquifer, (iii) geophysical monitoring of winter precipitation infiltration through the U-contaminated vadose zone and spring river water intrusion to the IFRC, (iv) injection experimentation to probe the lower vadose zone and to evaluate the transport behavior of high U concentrations, (v) extended passive monitoring during the period of water table rise and fall, and (vi) collaborative down-hole experimentation with the PNNL SFA on the biogeochemistry of the 300 A Hanford-Ringold contact and the underlying redox transition zone. The modified well-field has functioned superbly without any evidence for well-bore flows. Beyond these experimental efforts, our site-wide reactive transport models (PFLOTRAN and eSTOMP) have been updated to include site geostatistical models of both hydrologic properties and adsorbed U distribution; and new hydrologic characterization measurements of the upper aquifer. These increasingly robust models are being used to simulate past and recent U desorption-adsorption experiments performed under different hydrologic conditions, and heuristic modeling to understand the complex functioning of the smear zone. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, with significant and positive progress in 2011 that will enable publication in 2012. Our increasingly comprehensive field experimental results and robust reactive transport simulators, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes influencing N, S, C, Mn, and Fe. Collectively these findings and higher scale models are providing a unique and unparalleled system-scale understanding of the biogeochemical function of the groundwater-river interaction zone.

  15. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2010 to January 2011

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2011-02-01T23:59:59.000Z

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer focus research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007, CY 2008, and CY 2009 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project has responded to all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of “Modeling” and “Well-Field Mitigation” plans that are now posted on the Hanford IFRC web-site. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2010 including the quantification of well-bore flows in the fully screened wells and the testing of means to mitigate them; the development of site geostatistical models of hydrologic and geochemical properties including the distribution of U; developing and parameterizing a reactive transport model of the smear zone that supplies contaminant U to the groundwater plume; performance of a second passive experiment of the spring water table rise and fall event with a associated multi-point tracer test; performance of downhole biogeochemical experiments where colonization substrates and discrete water and gas samplers were deployed to the lower aquifer zone; and modeling of past injection experiments for model parameterization, deconvolution of well-bore flow effects, system understanding, and publication. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, and have now implemented a new strategy for this activity to bypass an approach that was found unworkable. An important focus of CY 2010 activities has been infrastructure modification to the IFRC site to eliminate vertical well bore flows in the fully screened wells. The mitigation procedure was carefully evaluated and is now being implementated. A new experimental campaign is planned for early spring 2011 that will utilize the modified well-field for a U reactive transport experiment in the upper aquifer zone. Preliminary geophysical monitoring experiments of rainwater recharge in the vadose zone have been initiated with promising results, and a controlled infiltration experiment to evaluate U mobilization from the vadose zone is now under planning for the September 2011. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes.

  16. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark E.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammon, Glenn; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2010-02-01T23:59:59.000Z

    The Integrated Field-Scale Subsurface Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on mass transfer are posed for research which relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007 and CY 2008 progress summarized in preceding reports. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2009 with completion of extensive laboratory measurements on field sediments, field hydrologic and geophysical characterization, four field experiments, and modeling. The laboratory characterization results are being subjected to geostatistical analyses to develop spatial heterogeneity models of U concentration and chemical, physical, and hydrologic properties needed for reactive transport modeling. The field experiments focused on: (1) physical characterization of the groundwater flow field during a period of stable hydrologic conditions in early spring, (2) comprehensive groundwater monitoring during spring to characterize the release of U(VI) from the lower vadose zone to the aquifer during water table rise and fall, (3) dynamic geophysical monitoring of salt-plume migration during summer, and (4) a U reactive tracer experiment (desorption) during the fall. Geophysical characterization of the well field was completed using the down-well Electrical Resistance Tomography (ERT) array, with results subjected to robust, geostatistically constrained inversion analyses. These measurements along with hydrologic characterization have yielded 3D distributions of hydraulic properties that have been incorporated into an updated and increasingly robust hydrologic model. Based on significant findings from the microbiologic characterization of deep borehole sediments in CY 2008, down-hole biogeochemistry studies were initiated where colonization substrates and spatially discrete water and gas samplers were deployed to select wells. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes. A significant issue related to vertical flow in the IFRC wells was identified and evaluated during the spring and fall field experimental campaigns. Both upward and downward flows were observed in response to dynamic Columbia River stage. The vertical flows are caused by the interaction of pressure gradients with our heterogeneous hydraulic conductivity field. These impacts are being evaluated with additional modeling and field activities to facilitate interpretation and mitigation. The project moves into CY 2010 with ambitious plans for a drilling additional wells for the IFRC well field, additional experiments, and modeling. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.

  17. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    SciTech Connect (OSTI)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01T23:59:59.000Z

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  18. Recovery of uranium from seawater. 13. Long-term stability tests for high-performance chelating resins containing amidoxime groups and evaluation of elution process

    SciTech Connect (OSTI)

    Egawa, Hiroaki; Kabay, Nalan; Shuto, Taketomi; Jyo, Akinori (Kumamoto Univ. (Japan))

    1993-03-01T23:59:59.000Z

    Large-scale adsorption/elution cycles were performed to investigate the long-term stability of the chelating resins employed. The adsorbed metal ions were rapidly and quantitatively eluted from the resins with acid eluants. The shrinkage of the resins with successive adsorption/elution cycles influenced the adsorption capacity. The uranium recovery was maintained at a nearly constant value by the employment of bicarbonate eluants. In particular, 2 mol dm[sup [minus]3] NH[sub 4]HCO[sub 3] yielded an efficient stripping for uranium. However, it was clarified that the elution with 0.25 mol dm[sup [minus]3] H[sub 2]SO[sub 4], which gave a high efficiency, was better than the bicarbonate eluants.

  19. Adding OAI-ORE Support to Repository Platforms

    E-Print Network [OSTI]

    Maslov, Alexey; Mikeal, Adam; Phillips, Scott; Leggett, John; McFarland, Mark

    2009-05-17T23:59:59.000Z

    ETD repository and the mapping of the OAI-ORE data model to the DSpace architecture. We discuss our implementation that adds both dissemination and harvesting functionality to the repository. We conclude by discussing the architectural flexibility...

  20. ORE 601 Ocean and Resources Engineering Laboratory Designation

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    ORE 601 Ocean and Resources Engineering Laboratory Designation Core course Catalog Description This course aims to provide ocean and resources engineering students with the fundamentals necessary Program Outcome 2: Basic science, mathematics, & engineering Program Outcome 3: Ocean engineering core

  1. Recovery of uranium from seawater by immobilized tannin

    SciTech Connect (OSTI)

    Sakaguchi, T.; Nakajima, A.

    1987-06-01T23:59:59.000Z

    Tannin compounds having multiple adjacent hydroxy groups have an extremely high affinity for uranium. To prevent the leaching of tannins into water and to improve the adsorbing characteristics of these compounds, the authors tried to immobilize tannins. The immobilized tannin has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. The immobilized tannin can recover uranium from natural seawater with high efficiency. About 2530 ..mu..g uranium is adsorbed per gram of this adsorbent within 22 h. Depending on the concentration in seawater, an enrichment of up to 766,000-fold within the adsorbent is possible. Almost all uranium adsorbed is easily desorbed with a very dilute acid. Thus, the immobilized tannin can be used repeatedly in the adsorption-desorption process.

  2. Groundwater prospecting for sandstone-type uranium deposits: the merits of mineral-solution equilibria versus single element tracer methods. Volume II

    SciTech Connect (OSTI)

    Wanty, R.B.; Langmuir, D.; Chatham, J.R.

    1981-08-01T23:59:59.000Z

    This report presents the results of further research on the groundwater geochemistry of 96 well waters in two uraniferous aquifers in Texas and Wyoming, and is a continuation of the work presented by Chatham et al. (1981). In this study variations in concentrations of U, As, Mo, Se and V were compared with the saturation state of the groundwater with respect to mineral phases of these elements known or expected to occur in each area. The non-radiogenic trace elements exhibited strong redox dependence consistent with thermodynamic predictions, but their variations did not pinpoint existing uranium ore bodies, because of a shift in groundwater flow patterns since the time of ore emplacement. Saturation levels of trace element minerals such as realgar, native Se, and molybdenite showed broad anomalies around the ore-bearing areas, similar to patterns found for U minerals by Langmuir and Chatham (1980), and Chatham et al. (1981). The radiogenic elements Ra and Rn showed significant anomalies directly within the ore zones. Helium anomalies were displaced in the direction of groundwater flow, but by their magnitude and areal extent provided strong evidence for the existence of nearby uranium accumulations. Uranium isotope ratios showed no systematic variations within the two aquifers studied. Saturation maps for kaolinite, illite, montmorillonite and the zeolites analcime and clinoptilolite provided 1 to 2 km anomalies around the ore at the Texas site. Saturation values for the gangue minerals pyrite and calcite defined the redox interface and often suggested the position of probable uranium mineralization. When properly used, the groundwater geochemical concepts for exploration can accurately pinpoint uranium mineralization at a fraction of the cost of conventional methods that involve test drilling and geophysical and core logging.

  3. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  4. Spectroscopic Evidence for Uranium Bearing Precipitates in Vadose Zone

    E-Print Network [OSTI]

    Northwest Laboratory, Richland, Washington 99352 Uranium (U) solid-state speciation in vadose zone sediments of past nuclear fuel fabrication processes, uranium (U) has been recognized as one of the most widespreadHanfordsitesthatreceivedU-containingwastesduring its mission of Pu production between 1940 and 1990. Unirradiated fuel rod wastes were disposed

  5. CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS

    E-Print Network [OSTI]

    Hart, Gus

    CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

  6. Guardian Unlimited | Life | Microbes that can mop up uranium Sign in Register

    E-Print Network [OSTI]

    Lovley, Derek

    Guardian Unlimited | Life | Microbes that can mop up uranium Sign in Register Go to: Home This week Dispatch Opinion Interview Bad science Far out Last word Online Search Microbes that can mop up uranium Thursday October 16, 2003 The Guardian Cold war era uranium processing has left contaminated sites across

  7. Comparison of potential radiological consequences from a spent-fuel repository and natural uranium deposits

    SciTech Connect (OSTI)

    Wick, O.J.; Cloninger, M.O.

    1980-09-01T23:59:59.000Z

    A general criterion has been suggested for deep geological repositories containing spent fuel - the repositories should impose no greater radiological risk than due to naturally occurring uranium deposits. The following analysis investigates the rationale of that suggestion and determines whether current expectations of spent-fuel repository performance are consistent with such a criterion. In this study, reference spent-fuel repositories were compared to natural uranium-ore deposits. Comparisons were based on intrinsic characteristics, such as radionuclide inventory, depth, proximity to aquifers, and regional distribution, and actual and potential radiological consequences that are now occurring from some ore deposits and that may eventually occur from repositories and other ore deposits. The comparison results show that the repositories are quite comparable to the natural ore deposits and, in some cases, present less radiological hazard than their natural counterparts. On the basis of the first comparison, placing spent fuel in a deep geologic repository apparently reduces the hazard from natural radioactive materials occurring in the earth's crust by locating the waste in impermeable strata without access to oxidizing conditions. On the basis of the second comparison, a repository constructed within reasonable constraints presents no greater hazard than a large ore deposit. It is recommended that if the naturally radioactive environment is to be used as a basis for a criterion regarding repositories, then this criterion should be carefully constructed. The criterion should be based on the radiological quality of the waters in the immediate region of a specific repository, and it should be in terms of an acceptable potential increase in the radiological content of those waters due to the existence of the repository.

  8. EPA Update: NESHAP Uranium Activities

    E-Print Network [OSTI]

    EPA Update: NESHAP Uranium Activities Reid J. Rosnick Environmental Protection Agency Radiation Protection Division (6608J) Washington, DC 20460 NMA/NRC Uranium Recovery Workshop July 2, 2009 #12 for underground uranium mining operations (Subpart B) EPA regulatory requirements for operating uranium mill

  9. Uranium and Thorium Ores Price List | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Reference Materials (CRM) Contact Information New Brunswick Laboratory U.S. Department of Energy Building 350 9800 South Cass Avenue Argonne, IL 60439-4899 P: (630) 252-2442 (NBL)...

  10. DOE - Office of Legacy Management -- Falls City Uranium Ore Stockpile - TX

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo -Elk River Reactor -Texas Falls04A

  11. Uranium and Thorium Ores Price List | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School(SC) The(SC)and Thorium

  12. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 2: Small mammal food chains and bioavailability

    SciTech Connect (OSTI)

    Thomas, P.A.

    2000-06-01T23:59:59.000Z

    Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, {sup 226}Ra, {sup 210}Pb, and {sup 210}Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities.

  13. Demonstration of jackhammer incorporating depleted uranium

    SciTech Connect (OSTI)

    Fischer, L E; Hoard, R W; Carter, D L; Saculla, M D; Wilson, G V

    2000-04-01T23:59:59.000Z

    The United States Government currently has an abundance of depleted uranium (DU). This surplus of about 1 billion pounds is the result of an enrichment process using gaseous diffusion to produce enriched and depleted uranium. The enriched uranium has been used primarily for either nuclear weapons for the military or nuclear fuel for the commercial power industry. Most of the depleted uranium remains at the enrichment process plants in the form of depleted uranium hexafluoride (DUF{sub 6}). The Department of Energy (DOE) recently began a study to identify possible commercial applications for the surplus material. One of these potential applications is to use the DU in high-density strikers/hammers in pneumatically driven tools, such as jack hammers and piledrivers to improve their impulse performance. The use of DU could potentially increase tunneling velocity and excavation into target materials with improved efficiency. This report describes the efforts undertaken to analyze the particulars of using DU in two specific striking applications: the jackhammer and chipper tool.

  14. Uranium and its relationship to host rock mineralogy in an unoxidized roll front in the Jackson group, South Texas 

    E-Print Network [OSTI]

    Prasse, Eric Martin

    1978-01-01T23:59:59.000Z

    /Tordilla Sandstone Dubose Deweesville Sandstone Conquista Clay Dilworth Sandstone tion of uran1um bearing solutions to take place. Sandstone is the most common uranium host rock because its perme- ability permits the flow of m1nera11z1ng solutions through... to the flow of uranium bear1ng solutions during mineralization . In addition, the Deweesvi lie contai ns a shaly lens in its middle which is the upper boundary of several ore bod1es ( Dickinson and Sullivan, 1976), including the deposit studied 1 n...

  15. 300 AREA URANIUM CONTAMINATION

    SciTech Connect (OSTI)

    BORGHESE JV

    2009-07-02T23:59:59.000Z

    {sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

  16. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31T23:59:59.000Z

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

  17. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, Alvin B. (Cincinnati, OH)

    1983-01-01T23:59:59.000Z

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  18. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.

    1982-10-27T23:59:59.000Z

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  19. Preparation of magnetic anomaly profile and contour maps from DOE-NURE aerial survey data. Volume I: processing procedures. [National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Tinnel, E.P.; Hinze, W.J.

    1981-09-01T23:59:59.000Z

    Total intensity magnetic anomaly data acquired as a supplement to radiometric data in the DOE National Uranium Resource Evaluation (NURE) Program are useful in preparing regional profile and contour maps. Survey-contractor-supplied magnetic anomaly data are subjected to a multiprocess, computer-based procedure which prepares these data for presentation. This procedure is used to produce the following machine plotted maps of National Topographic Map Series quadrangle units at a 1:250,000 scale: (1) profile map of contractor-supplied magnetic anomaly data, (2) profile map of high-cut filtered data with contour levels of each profile marked and annotated on the associated flight track, (3) profile map of critical-point data with contour levels indicated, and (4) contour map of filtered and selected data. These quadrangle maps are supplemented with a range of statistical measures of the data which are useful in quality evaluation.

  20. Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report

    SciTech Connect (OSTI)

    Adams, S.S.; Smith, R.B.

    1981-01-01T23:59:59.000Z

    Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced, pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H/sub 2/S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H/sub 2/S.

  1. Method to remove uranium/vanadium contamination from groundwater

    DOE Patents [OSTI]

    Metzler, Donald R. (DeBeque, CO); Morrison, Stanley (Grand Junction, CO)

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  2. Method to Remove Uranium/Vanadium Contamination from Groundwater

    DOE Patents [OSTI]

    Metzler, Donald R.; Morrison Stanley

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  3. Final Environmental assessment for the Uranium Lease Management Program

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared a programmatic environmental assessment (EA) of the proposed action to continue leasing withdrawn lands and DOE-owned patented claims for the exploration and production of uranium and vanadium ores. The Domestic Uranium Program regulation, codified at Title 10, Part 760.1, of the US Code of Federal Regulations (CFR), gives DOE the flexibility to continue leasing these lands under the Uranium Lease Management Program (ULMP) if the agency determines that it is in its best interest to do so. A key element in determining what is in DOE`s ``best interest`` is the assessment of the environmental impacts that may be attributable to lease tract operations and associated activities. On the basis of the information and analyses presented in the EA for the ULMP, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined in the National Environmental Policy Act (NEPA) of 1969 (42 United States Code 4321 et seq.), as amended.Therefore, preparation of an environmental impact statement is not required for the ULMP,and DOE is issuing this Finding, of No Significant Impact (FONSI).

  4. Fundamental study on recovery uranium oxide from HEPA filters

    SciTech Connect (OSTI)

    Izumida, T. [Hitachi Ltd., Ibaraki (Japan). Hitachi Works; Matsumoto, H.; Tsuchiya, H.; Iba, H. [Hitachi Nuclear Engineering Co., Ltd., Ibaraki (Japan); Noguchi, Y. [Radioactive Waste Management Center, Tokyo (Japan)

    1993-12-31T23:59:59.000Z

    Large numbers of spent HEPA filters are produced at uranium fuel fabrication facilities. Uranium oxide particles have been collected on these filters. Then, a spent HEPA filter treatment system was developed from the viewpoint of recovering the UO{sub 2} and minimizing the volume. The system consists of a mechanical separation process and a chemical dissolution process. This paper describes the results of fundamental experiments on recovering UO{sub 2} from HEPA filters.

  5. EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

  6. Controlling uranium reactivity March 18, 2008

    E-Print Network [OSTI]

    Meyer, Karsten

    for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

  7. 40 CFR Ch. I (7101 Edition)Pt. 61, Subpt. V, Table 2 TABLE 2 TO PART 61, SUBPART V.--SURGE

    E-Print Network [OSTI]

    . Ore bodies depleted by uranium solution extraction and which remain under- ground do not constitute to owners or operators of facilities li- censed to manage uranium byproduct materials during and following the processing of uranium ores, commonly referred to as uranium mills and their associated tailings. This subpart

  8. POMERIGGIO -GREEN WORKSHOP Ore 17:00 La riqualificazione edilizia in chiave green.

    E-Print Network [OSTI]

    Di Pillo, Gianni

    POMERIGGIO - GREEN WORKSHOP Ore 17:00 La riqualificazione edilizia in chiave green. Rifiuti urbani - SPETTACOLO Ore 22:00 Proiezione del docufilm "Green Generation", prodotto da Maiora Film in collaborazione con Rai Cinema. POMERIGGIO - GREEN WORKSHOP Ore 17:00 Mobilità sostenibile e Smart City. Soluzioni tra

  9. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01T23:59:59.000Z

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  10. In-line assay monitor for uranium hexafluoride

    DOE Patents [OSTI]

    Wallace, Steven A. (Knoxville, TN)

    1981-01-01T23:59:59.000Z

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.

  11. Decommissioning of U.S. uranium production facilities

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  12. Uranium resources: Issues and facts

    SciTech Connect (OSTI)

    Delene, J.G.

    1993-12-31T23:59:59.000Z

    Although there are several secondary issues, the most important uranium resource issue is, ``will there be enough uranium available at a cost which will allow nuclear power to be competitive in the future?`` This paper will attempt to answer this question by discussing uranium supply, demand, and economics from the perspective of the United States. The paper will discuss: how much uranium is available; the sensitivity of nuclear power costs to uranium price; the potential future demand for uranium in the Unites States, some of the options available to reduce this demand, the potential role of the Advanced Liquid Metal Cooled Reactor (ALMR) in reducing uranium demand; and potential alternative uranium sources and technologies.

  13. Uranium-titanium-niobium alloy

    DOE Patents [OSTI]

    Ludtka, Gail M. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    1990-01-01T23:59:59.000Z

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  14. ORE 630 Structural Analysis in Ocean Engineering Designation

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    ORE 630 Structural Analysis in Ocean Engineering Designation Offshore Engineering Required Course to Program Outcomes Program Outcome 2: Basic science, mathematics, & engineering Program Outcome 4: Ocean engineering specialization Program Outcome 5: Use of latest tools in ocean engineering Program Outcome 6

  15. ORE 654: Applications of Ocean Acoustics Fall Semester 2014

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    of this course is to provide the ocean engineering student an understanding of how sound propagates through: Ocean engineering specialization Program Outcome 5: Use of latest tools in ocean engineering ProgramORE 654: Applications of Ocean Acoustics Syllabus Fall Semester 2014 Tuesday/Thursday 12:00-1:15 PM

  16. Designation Survey - Palmerton, Pa. Ore Storage Site William...

    Office of Legacy Management (LM)

    b If73 b 173 b 173 b 731 9 ;fo' c'ar ,bdi 'dd fc . .. xhly or about Prans- Lng at cr disposal. tion ,tigkmt I I sea. I I ent II. Gabelnan, PE?l PANEPJO: UPJJWJ?l ORE...

  17. 1. Department, Course Number, Title ORE 677, Marine Renewable Energy

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    1. Department, Course Number, Title ORE 677, Marine Renewable Energy 2. Designation as a Required. Renewable Energy from the Ocean ­ a Guide to OTEC, W.H. Avery and C. Wu, Oxford University Press, 1994. 2 and tidal resources. 3. An understanding of the role of ocean renewable energy within the current worldwide

  18. 1. Department, Course Number, Title ORE 607 Water Wave Mechanics

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    kinematics, dynamics, propagation, transformation, and statistical properties of water waves. 3. Ability1. Department, Course Number, Title ORE 607 Water Wave Mechanics 2. Designation as a Required://chl.erdc.usace.army.mil). 2. Water Wave Mechanics for Engineers and Scientists, by R.G. Dean and R.A. Dalrymple, World

  19. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier

    SciTech Connect (OSTI)

    Xiao, Rui; Song, Min; Zhang, Shuai; Shen, Laihong [School of Energy and Environment, Southeast University, Sipailou No. 2, Nanjing 210096 (China); Song, Qilei [School of Energy and Environment, Southeast University, Sipailou No. 2, Nanjing 210096 (China); Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Lu, Zuoji [School of Energy and Environment, Southeast University, Sipailou No. 2, Nanjing 210096 (China); GCL Engineering Limited, Zhujiang No. 1, Nanjing 210008 (China)

    2010-06-15T23:59:59.000Z

    Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO{sub 2}. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO{sub 2} sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasified with 87.2% steam/N{sub 2} mixture and oxidation with 5% O{sub 2} in N{sub 2} at 970 C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H{sub 2} and CO{sub 2} are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO{sub 2} and lower fractions of CO, CH{sub 4}, and H{sub 2} during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis demonstrates that there is very little coal ash deposited on the oxygen carrier particles but no appreciable crystalline phases change as verified by X-ray diffraction (XRD) analysis. Overall, the limited pressurized CLC experiments carried out in the present work suggest that PCLC of coal is promising and further investigations are necessary. (author)

  20. Uranium recovery from seawater by adsorption

    SciTech Connect (OSTI)

    Koske, P.H.; Ohlrogge, K.; Peinemann, K.V.

    1988-10-01T23:59:59.000Z

    Results are presented of a 10 weeks field experiment producing uranium from seawater by the so-called adsorber-loop-concept. For the adsorption process polyamidoxin (PAO) granulate has been used with grain sizes between 0.3 - 1.2 mm diameter. The performance of the adsorber and the efficiency of the adsorption process - especially with regard to high volume flows of seawater - are presented.

  1. U. S. forms uranium enrichment corporation

    SciTech Connect (OSTI)

    Seltzer, R.

    1993-07-12T23:59:59.000Z

    After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business. On July 1, the Department of Energy turned over to a new government-owned entity--the US Enrichment Corp. (USEC)--both the DOE enrichment plants at Paducah, Ky., and Portsmouth, Ohio, and domestic and international marketing of enriched uranium from them. Pushed by the inability of DOE's enrichment operations to meet foreign competition, Congress established USEC under the National Energy Policy Act of 1992, envisioning the new corporation as the first step to full privatization. With gross revenues of $1.5 billion in fiscal 1992, USEC would rank 275th on the Fortune 500 list of top US companies. USEC will lease from DOE the Paducah and Portsmouth facilities, built in the early 1950s, which use the gaseous diffusion process for uranium enrichment. USEC's stock is held by the US Treasury, to which it will pay annual dividends. Martin Marietta Energy Systems, which has operated Paducah since 1984 and Portsmouth since 1986 for DOE, will continue to operate both plants for USEC. Closing one of the two facilities will be studied, especially in light of a 40% world surplus of capacity over demand. USEC also will consider other nuclear-fuel-related ventures. USEC will produce only low-enriched uranium, not weapons-grade material. Indeed, USEC will implement a contract now being completed under which the US will purchase weapons-grade uranium from dismantled Russian nuclear weapons and convert it into low-enriched uranium for power reactor fuel.

  2. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21T23:59:59.000Z

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  3. Uranium in granites from the southwestern United States: actinide parent-daughter systems, sites and mobilization. Second year report. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Silver, L.T.; Woodhead, J.A.; Williams, I.S.; Chappell, B.W.

    1984-09-01T23:59:59.000Z

    Results of detailed field and laboratory studies are reported on the primary distribution of uranium (and thorium and lead) in the radioactive minerals of five radioactive granite bodies in Arizona and California. This distribution was examined in a granite pluton. Granites with uranium concentrations ranging from 4 to 47 ppM, thorium concentrations from 11 to 181 ppM, and Th/U ratios of 0.6 to 16.0 were compared. Evidence for secondary mobilization, migration, fixation and/or loss of uranium, thorium and radiogenic leads was explored. Uranium distribution in radioactive granites is hosted in a far greater diversity of sites than has previously been known. Uranium and thorium distribution in primary minerals of granites is almost entirely a disequilibrium product involving local fractionation processes during magmatic crystallization. Every radioactive granite studied contains minerals that contain uranium and/or thorium as major stoichiometric components. When the granites are subject to secondary geochemical events and processes, the behavior of uranium is determined by the stability fields of the different radioactive minerals in the rocks. The two most powerful tools for evaluating uranium migration in a granite are (a) isotope dilution mass spectrometry and (b) the electron microprobe. Uranium mobilization and loss is a common feature in radioactive granites of the southwestern United States. A model for the evaluation of uranium loss from granites has been developed. The mineral zircon can be used as an independent indicator of uranium and thorium endowment. The weathering products show surprising differences in the response of different granites in arid region settings. Significant losses of primary uranium (up to 70%) has been a common occurrence. Uranium, thorium and radiogenic lead exist in labile (movable) form on surfaces of cleavages, fractures and grain boundaries in granites.

  4. Chelating polymers for recovery of uranium from seawater

    SciTech Connect (OSTI)

    Kabay, N. (Ege Univ., Izmir (Turkey)); Egawa, Hiroaki (Kumamoto Univ. (Japan))

    1994-01-01T23:59:59.000Z

    Despite the low concentration of uranium in seawater (3.3 ppb), a special emphasis has been placed on its recovery. Although the concentration is low, it has been estimated that the world's oceans contain about 4 x 10[sup 9] tons of uranium - theoretically an unlimited supply of nuclear fuel. Adsorption has been considered to be a technically feasible procedure for a uranium recovery process with regard to economic and environmental impacts. The present paper restricts its coverage to those applications using chelating polymeric resins containing amidoxime groups as the most promising adsorbent. 72 refs., 8 figs., 1 tab.

  5. UNE SOURCE DE LUMIRE POUR LE DOSAGE ISOTOPIQUE DE L'URANIUM PAR SPECTROMTRIE D'MISSION

    E-Print Network [OSTI]

    Boyer, Edmond

    65 A. UNE SOURCE DE LUMI�RE POUR LE DOSAGE ISOTOPIQUE DE L'URANIUM PAR SPECTROM�TRIE D'�MISSION Par tétrachlorure ou au tétraiodure d'uranium qui émettent le spectre optique de l'uranium avec une intensité, une de routine. Abstract. 2014 A process is described for producing and exciting electrodeless uranium

  6. Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors 

    E-Print Network [OSTI]

    Hausaman, Jeffrey Stephen

    2012-02-14T23:59:59.000Z

    is that metal powders may be mixed and enclosed in process canisters to produce the desired composition and contain volatile components. Uranium powder was produced for the extrusion process by utilizing a hydride-dehydride process that was developed...

  7. Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors

    E-Print Network [OSTI]

    Hausaman, Jeffrey Stephen

    2012-02-14T23:59:59.000Z

    is that metal powders may be mixed and enclosed in process canisters to produce the desired composition and contain volatile components. Uranium powder was produced for the extrusion process by utilizing a hydride-dehydride process that was developed...

  8. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30T23:59:59.000Z

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

  9. Uranium removal during low discharge in the Ganges-Brahmaputra mixing zone

    SciTech Connect (OSTI)

    Carroll, J.; Moore, W.S. (Univ. of South Carolina, Columbia, SC (United States))

    1993-11-01T23:59:59.000Z

    The Ganges-Brahmaputra river system supplies more dissolved uranium to the ocean than any other system in the world (Sarin et al., 1990; Sackett et al., 1973). However, there have been no investigations to determine whether riverine supplies of uranium are altered by geochemical reactions in the river-ocean mixing zone. In this study, uranium and salinity data were collected in the Ganges-Brahmaputra mixing zone during a period of low river discharge. The uranium distribution with salinity shows that in waters <12 ppt salinity, uranium activities are significantly lower than predicted from conservative mixing of river and seawater. This suggests that uranium is being removed within the mixing zone. The behavior of uranium in the Ganges-Brahmaputra is in sharp contrast to its behavior in the Amazon mixing zone where McKee et al. (1978) found uranium activities significantly higher than predicted from conservative mixing. The contrasting behaviors for uranium in these systems are due to the different locations where mixing between river and seawater occurs. For the Amazon, mixing takes place on the continental shelf whereas for the Ganges-Brahmaputra, mixing occurs within shoreline sedimentary environments. The physiochemical processes controlling uranium removal to sediment deposits in the Amazon are partly known. The authors discuss mechanisms which may be removing uranium to suspended and mangrove sediments in the Ganges-Brahmaputra.

  10. Biogeochemistry of uranium mill wastes program overview and conclusions

    SciTech Connect (OSTI)

    Dreesen, D.R.

    1981-05-01T23:59:59.000Z

    The major findings and conclusions are summarized for research on uranium mill tailings for the US Department of Energy and the US Nuclear Regulatory Commission. An overview of results and interpretations is presented for investigations of /sup 222/Rn emissions, revegetation of tailings and mine spoils, and trace element enrichment, mobility, and bioavailability. A brief discussion addresses the implications of these findings in relation to tailings disposal technology and proposed uranium recovery processes.

  11. Geodatabase of the South Texas Uranium District

    E-Print Network [OSTI]

    Mark Beaman; William Wade Mcgee

    Uranium and its associated trace elements and radionuclides are ubiquitous in the South Texas Tertiary environment. Surface mining of this resource from the 1960s through the early 1980s at over sixty locations has left an extensive anthropological footprint (Fig. 1) in the lower Nueces and San Antonio river basins. Reclamation of mining initiated after 1975 has been under the regulatory authority of the Railroad Commission of Texas (RCT). However, mines that were active before the Texas Surface Mining Act of 1975 was enacted, and never reclaimed, are now considered abandoned. The Abandoned Mine Land Section of the RCT is currently reclaiming these pre-regulation uranium mines with funding from the federal government. The RCT monitors the overall effectiveness of this process through post-reclamation radiation and vegetative cover surveys, water quality testing, slope stability and erosion control monitoring. Presently a number of graduate and postgraduate students are completing research on the watershed and reservoir distribution of trace elements and radionuclides downstream of the South Texas Uranium District. The question remains as to whether the elevated levels of uranium, its associated trace elements and radiation levels in the South Texas environment are due to mining

  12. Method of winning aluminum metal from aluminous ore

    DOE Patents [OSTI]

    Loutfy, Raouf O. (Naperville, IL); Keller, Rudolf (Naperville, IL); Yao, Neng-Ping (Clarendon Hills, IL)

    1981-01-01T23:59:59.000Z

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  13. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09T23:59:59.000Z

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  14. Helium/solid powder O-ring leakage correlation experiments

    SciTech Connect (OSTI)

    Leisher, W.B.; Weissman, S.H.; Tallant, D.R.; Kubo, M.

    1983-01-01T23:59:59.000Z

    We have developed a method to test powder leakage that has passed O-ring seals. To validate this method we have spiked a test fixture with 98 ng of U and recovered 130 +- 25 ng of U. We did not detect U at a detection limit of 26 ng in a fixture which was treated as a blank. This method has been applied to the leakage of UO/sub 2/ powder passing the type of EPDM O-ring seals used in a SNM shipping cask belonging to PNC. Considering the three experimental tests in which no or very small quantities of U were detected as effective blank test, it appears that the level of external contamination is negligible. Therefore, we believe that the U quantities greater than 26 ng (6 tests) passed the primary O-ring seal. From this limited quantity of data, we observe no apparent correlation between the amount of U measured and either helium leak rate or equivalent tube diameter. The data for the 130/sup 0/C tests indicate the possibility of a U/time relationship; however, more data are needed for verification.

  15. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOE Patents [OSTI]

    Willit, James L. (Batavia, IL)

    2010-09-21T23:59:59.000Z

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  16. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOE Patents [OSTI]

    Willit, James L. (Ratavia, IL)

    2007-09-11T23:59:59.000Z

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  17. Studies on the reduction kinetics of hematite iron ore pellets with noncoking coals for sponge iron plants

    SciTech Connect (OSTI)

    Kumar, M.; Mohapatra, P.; Patel, S.K. [National Institute of Technology, Rourkela (India). Dept. of Mechanical Engineering

    2009-07-01T23:59:59.000Z

    In the present investigation, fired pellets were made by mixing hematite iron ore fines of -100, -16+18, and -8+10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850{sup o}C to 1000{sup o}C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000{sup o}C, and it was more intense in the first 30min. The values of activation energy, calculated from integral and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of -100 mesh size) in coals were found to be in the range 131-148 and 130-181 kJ mol{sup -1} (for =0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of -100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.

  18. Uranium mining and milling sites remediation by COGEMA impact on the environment

    SciTech Connect (OSTI)

    Daroussin, J.L.; Pfiffelmann, J.P. [COGEMA, Velizy (France)

    1994-12-31T23:59:59.000Z

    Mining and milling of any metal have a common impact on the environment. Because of radioactivity uranium ores and their residues generate specific potential hazards. First we quote the french regulation as regards to radioactive impact through the different pathways. Then we overview the different types of uranium mining wastes and the type of storage for milling residues; Objectives being set for the remediation we describe basic principles of the methodology and give a few examples from France and the US Monitoring goes on all through the active period of the site and is fitted to it after its remediation. To date, according to the measurements done in the environment, the added radiological impact is equivalent to the natural background.

  19. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOE Patents [OSTI]

    Tomczuk, Zygmunt (Orland Park, IL); Miller, William E. (Naperville, IL); Wolson, Raymond D. (Lockport, IL); Gay, Eddie C. (Park Forest, IL)

    1991-01-01T23:59:59.000Z

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  20. Uranium enrichment export control guide: Gaseous diffusion

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

  1. Uranio impoverito: perché? (Depleted uranium: why?)

    E-Print Network [OSTI]

    Germano D'Abramo

    2003-06-05T23:59:59.000Z

    In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of understanding the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

  2. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

    2006-09-05T23:59:59.000Z

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  3. Measurement and modeling of uranium and strategic element sorption by amidoxime resins in natural seawater 

    E-Print Network [OSTI]

    Pina-Jordan, Jose Gregorio

    1985-01-01T23:59:59.000Z

    Neutron Counting. The maximun uptake of uranium was 134 ppm in 30 days. A kinetic model to analyze the ur anium uptake was developed, and it was deter mined that intr apar ticle diffusion was the controlling mechanism of the uptake process... with Super? cial Velocity of Seawater in a Fluidized Bed of Spherical Particles. Correlation By Gunn 26 Uranium Uptake Data Using Kinetic Model for Film Diffusion Control (POG503) . 66 27 Uranium Uptake Data Using Kinetic Model for Intraparticle...

  4. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOE Patents [OSTI]

    Pruett, D.J.; McTaggart, D.R.

    1983-08-31T23:59:59.000Z

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc/sup +7/ therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  5. Recovery of uranium from seawater

    SciTech Connect (OSTI)

    Sugasaka, K. (Government Industrial Research Inst., Shikoku, Japan); Katoh, S.; Takai, N.; Takahashi, H.; Umezawa, Y.

    1981-01-01T23:59:59.000Z

    Seawater contains various elements in solution. Deuterium, lithium, and uranium are the important ingredients for energy application at present and in the future. This paper deals with the recovery of uranium from seawater, with emphasis on the development of an adsorbent with high selectivity and rate of adsorption for uranium. Polyacrylamidoxime chelating resins were synthesized from various co-polymers of acrylonitrile and cross-linking agents. The resulting resins with the chelating amidoxime group showed selective adsorption for uranium in seawater. The amount of uranium adsorbed from seawater at room temperature reached 3.2 mg/g resin after 180 days. Polyacrylamidoxime fiber, which was prepared from polyacrylonitrile fiber and hydroxylamine, showed a high rate of adsorption for uranium. The polyacrylamidoxime fiber conditioned with 1 M HC1 and 1 M NaOH adsorbed 4 mg U/g fiber from seawater in ten days. 9 figures, 6 tables.

  6. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  7. Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov (indexed) [DOE]

    four alternatives that would eliminate the weapons-usability of HEU by blending it with depleted uranium, natural uranium, or low-enriched uranium (LEU) to create LEU, either as...

  8. Uranium in prehistoric Indian pottery

    E-Print Network [OSTI]

    Filberth, Ernest William

    1976-01-01T23:59:59.000Z

    URANIUM IN PREHISTORIC INDIAN POTTERY A Thesis by ERNEST WILLIAM FILBERTH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1976 Major Subject...: Chemistry URANIUM IN PREHISTORIC INDIAN POTTERY A Thesis by ERNEST WILLIAM FILBERTH Approved as to style and content by: (Chairman of Committee) (Head of Department) (Member) (Membe (Member) (Member) December 1976 ABSTRACT Uranium in Prehistoric...

  9. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

    SciTech Connect (OSTI)

    N /A

    2005-08-05T23:59:59.000Z

    The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) {section} 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments and concerns to the fullest extent possible. DOE received over 1,600 comments on the draft EIS from the public, federal, state and local agencies, tribes, governors, and members of Congress. DOE has considered these comments in finalizing the EIS and has provided responses to all comments in the EIS.

  10. anthropogenic uranium enrichments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Flats Plutonium and Uranium Weapons-Grade Plutonium Enriched Uranium Depleted Uranium Plutonium-238 0.01 - 0.05% Uranium-234 0.1 - 1.02% Uranium-234...

  11. Energy balance for uranium recovery from seawater

    SciTech Connect (OSTI)

    Schneider, E.; Lindner, H. [The University of Texas, 1 University Station C2200, Austin, TX 78712 (United States)

    2013-07-01T23:59:59.000Z

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

  12. Society for Geology Applied to Ore Deposits GENEVA MINERALS: Industry and Academia

    E-Print Network [OSTI]

    Halazonetis, Thanos

    Society for Geology Applied to Ore Deposits GENEVA MINERALS: Industry and Academia Creating links Tripodi, Vanga Resources, Geneva · A student view of economic geology. Honza Catchpole, President

  13. Cognome e nome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 18 giugno 2012 Esame (2.5 ore)

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALGA 18 giugno 2012­ Esame (2.5 ore) Giustificare ogni affermazione Salvare il file CoCoA come cognome

  14. Staking claims to China's borderland : oil, ores and statebuilding in Xinjiang Province, 1893-1964

    E-Print Network [OSTI]

    Kinzley, Judd Creighton; Kinzley, Judd Creighton

    2012-01-01T23:59:59.000Z

    the ore fields, tungsten production continued. The defectorscharacters of ‘tungsten production’ and ‘tin production’ beof tungsten, a mineral essential for war production, to

  15. Site-specific analysis of the cobbly soils at the Grand Junction processing site. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    This report describes a recent site-specific analysis to evaluate the necessity of a recommendation to install a slurry trench around the Grand Junction processing site. The following analysis addresses the cobbly nature of the site's radiologically contaminated foundation soil, reassesses the excavation depths based on bulk radionuclide concentrations, and presents data-based arguments that support the elimination of the initially proposed slurry trench. The slurry trench around the processing site was proposed by the Remedial Action Contractor (RAC) to minimize the amount of water encountered during excavation. The initial depths of excavation developed during conceptual design, which indicated the need for a slurry wall, were reexamined as part of this analysis. This reanalysis, based on bulk concentrations of a cobbly subsoil, supports decreasing the original excavation depth, limiting the dewatering quantities to those which can be dissipated by normal construction activities. This eliminates the need for a slurry trench andseparate water treatment prior to permitted discharge.

  16. Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov (indexed) [DOE]

    of Surplus Highly Enriched Uranium Environmental Impact Statement kternationd Atomic Energy Agency Idaho Nationrd Engineering Laborato low-enriched uranium low-level waste...

  17. Unexpected, Stable Form of Uranium Detected | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected, Stable Form of Uranium Detected Unexpected, Stable Form of Uranium Detected Insights on underappreciated reaction could shed light on environmental cleanup options...

  18. Uranium Weapons Components Successfully Dismantled | National...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully...

  19. Adsorptive Stripping Voltammetric Measurements of Trace Uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adsorptive Stripping Voltammetric Measurements of Trace Uranium at the Bismuth Film Electrode. Adsorptive Stripping Voltammetric Measurements of Trace Uranium at the Bismuth Film...

  20. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Environmental Management (EM)

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  1. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  2. Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

    2014-03-01T23:59:59.000Z

    Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

  3. Derivation of uranium residual radioactive material guidelines for the Shpack site

    SciTech Connect (OSTI)

    Cheng, J.J.; Yu, C.; Monette, F.; Jones, L.

    1991-08-01T23:59:59.000Z

    Residual radioactive material guidelines for uranium were derived for the Shpack site in Norton, Massachusetts. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). The uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Shpack site should not exceed a dose of 100 mrem/yr following decontamination. The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation. Three potential scenarios were considered for the site; the scenarios vary with regard to time spent at the site, sources of water used, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1000 years, provided that the soil concentration of combined uranium (uranium-234 and uranium-238) at the Shpack site does not exceed the following levels: 2500 pCi/g for Scenario A (recreationist: the expected scenario); 1100 pCi/g for Scenario B (industrial worker: a plausible scenario); and 53 pCi/g for Scenario C (resident farmer using a well water as the only water source: a possible but unlikely scenario). The uranium guidelines derived in this report apply to the combined activity concentration of uranium-234 and uranium-238 and were calculated on the basis of a dose of 100 mrem/yr. In setting the actual uranium guidelines for the Shpack site, DOE will apply the as low as reasonably achievable (ALARA) policy to the decision-making process, along with other factors, such as whether a particular scenario is reasonable and appropriate. 8 refs., 2 figs., 8 tabs.

  4. Uranium transformations in static microcosms.

    SciTech Connect (OSTI)

    Kelly, S. D.; Wu, W.; Yang, F.; Criddle, C.; Marsh, T. L.; O'Loughlin, E. J.; Ravel, B.; Watson, D.; Jardine, P. M.; Kemner, K. M.; Stanford Univ.; Michigan State Univ.; ORNL; BNL; EXAFS Analysis

    2010-01-01T23:59:59.000Z

    Elucidation of complex biogeochemical processes and their effects on speciation of U in the subsurface is critical for developing remediation strategies with an understanding of stability. We have developed static microcosms that are similar to bioreduction process studies in situ under laminar flow conditions or in sediment pores. Uranium L{sub 3}-edge X-ray absorption near-edge spectroscopy analysis with depth in the microcosms indicated that transformation of U{sup VI} to U{sup IV} occurred by at least two distinct processes. Extended X-ray absorption fine structure (EXAFS) analysis indicated that initial U{sup VI} species associated with C- and P-containing ligands were transformed to U{sup IV} in the form of uraninite and U associated with Fe-bound ligands. Microbial community analysis identified putative Fe{sup III} and sulfate reducers at two different depths in the microcosms. The slow reduction of U{sup VI} to U{sup IV} may contribute the stability of U{sup IV} within microcosms at 11 months after a decrease in bioreducing conditions due to limited electron donors.

  5. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01T23:59:59.000Z

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  6. Uranium Compounds and Other Natural Radioactivities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for application of radioactive sources requirements. However, soil samples from the Chernobyl or Fukushima exclusion areas, mined ores or tailings from mining operations, and...

  7. Influence of attrition scrubbing, ultrasonic treatment, and oxidant additions on uranium removal from contaminated soils

    SciTech Connect (OSTI)

    Timpson, M.E.; Elless, M.P.; Francis, C.W.

    1994-06-01T23:59:59.000Z

    As part of the Uranium in Soils Integrated Demonstration Project being conducted by the US Department of Energy, bench-scale investigations of selective leaching of uranium from soils at the Fernald Environmental Management Project site in Ohio were conducted at Oak Ridge National Laboratory. Two soils (storage pad soil and incinerator soil), representing the major contaminant sources at the site, were extracted using carbonate- and citric acid-based lixiviants. Physical and chemical processes were used in combination with the two extractants to increase the rate of uranium release from these soils. Attrition scrubbing and ultrasonic dispersion were the two physical processes utilized. Potassium permanganate was used as an oxidizing agent to transform tetravalent uranium to the hexavalent state. Hexavalent uranium is easily complexed in solution by the carbonate radical. Attrition scrubbing increased the rate of uranium release from both soils when compared with rotary shaking. At equivalent extraction times and solids loadings, however, attrition scrubbing proved effective only on the incinerator soil. Ultrasonic treatments on the incinerator soil removed 71% of the uranium contamination in a single extraction. Multiple extractions of the same sample removed up to 90% of the uranium. Additions of potassium permanganate to the carbonate extractant resulted in significant changes in the extractability of uranium from the incinerator soil but had no effect on the storage pad soil.

  8. Application of micro-PIXE method to ore geology

    SciTech Connect (OSTI)

    Murao, S.; Hamasaki, S. [Geological Survey of Japan, 1-1-3 Higashi, Tsukuba, Japan 305-8567 (Japan); Sie, S. H. [CSIRO Division of Exploration and Mining, P.O. Box 136, North Ryde, NSW, Australia 2113 (Australia); Maglambayan, V. B. [NIGS, College of Science, University of the Philippines, 1101 Diliman, Quezon City, The Philippines (Philippines); Hu, X. [A202 Garden Heights Sakuradai, 989-3 Kashiwa, Japan 277-0005 (Japan)

    1999-06-10T23:59:59.000Z

    Specific examples of ore mineral analysis by micro-PIXE are presented in this paper. For mineralogical usage it is essential to construct a specimen chamber which is designed exclusively for mineral analysis. In most of the analysis of natural minerals, selection of absorbers is essential in order to obtain optimum results. Trace element data reflect the crystallographic characteristics of each mineral and also geologic settings of sampling locality, and can be exploited in research spanning mineral exploration to beneficiation. Micro-PIXE thus serves as a bridge between small-scale mineralogical experiments and understanding of large-scale geological phenomenon on the globe.

  9. 2013 Domestic Uranium Production Report

    E-Print Network [OSTI]

    Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA.S. Energy Information Administration | 2013 Domestic Uranium Production Report iii Preface The U.S. Energy://www.eia.doe.gov/glossary/. #12;U.S. Energy Information Administration | 2013 Domestic Uranium Production Report iv Contents

  10. FIFTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE

    SciTech Connect (OSTI)

    Daugherty, W.; Hoffman, E.

    2010-11-01T23:59:59.000Z

    A series of experiments to monitor the aging performance of Viton{sup reg.} GLT O-rings used in the Model 9975 package has been ongoing for six years at the Savannah River National Laboratory. Sixty-seven mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 F. They were leak-tested initially and have been tested at nominal six month intervals to determine if they meet the criterion of leaktightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 F. High temperature aging continues for 36 GLT O-ring fixtures at 200--350 F. Room temperature leak test failures have been experienced in 5 of the GLT O-ring fixtures aging at 300 and 350 F, and in all 3 of the GLT O-ring fixtures aging at higher temperatures. No failures have yet been observed in GLT O-ring fixtures aging at 200 F for 30--48 months, which is still bounding to O-ring temperatures during storage in KAMS. High temperature aging continues for 6 GLT-S O-ring fixtures at 200--300 F. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 F. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 or 300 F for 19 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the O-rings displayed a compression set ranging from 51--95%. This is significantly greater than seen to date for packages inspected during KAMS field surveillance (23% average). For GLT O-rings, service life based on the room temperature leak rate criterion is comparable to that predicted by compression stress relaxation (CSR) data at higher temperatures (350--400 F). While there are no comparable failure data yet at aging temperatures below 300 F, extrapolations of the data for GLT O-rings suggests that CSR model predictions provide a conservative prediction of service life relative to the leak rate criterion. Failure data at lower temperatures is needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining fixtures.

  11. Immobilization of uranium in contaminated soil by natural apatite addition

    SciTech Connect (OSTI)

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa; Iles, Deana; Zildzovic, Snezana [Institute for Technology of Nuclear and other Mineral Raw Materials, Franche d' Epere 86, Belgrade (Serbia)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P{sub 2}O{sub 5} in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uranium determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P{sub 2}O{sub 5} in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)

  12. Uranium Marketing Annual Report -

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea:Mnt(N)3. Deliveries of uranium

  13. Uranium Marketing Annual Report -

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea:Mnt(N)3. Deliveries of uranium4.

  14. Uranium Marketing Annual Report -

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea:Mnt(N)3. Deliveries2.5.3. Uranium

  15. Continuous process electrorefiner

    DOE Patents [OSTI]

    Herceg, Joseph E. (Naperville, IL); Saiveau, James G. (Hickory Hills, IL); Krajtl, Lubomir (Woodridge, IL)

    2006-08-29T23:59:59.000Z

    A new device is provided for the electrorefining of uranium in spent metallic nuclear fuels by the separation of unreacted zirconium, noble metal fission products, transuranic elements, and uranium from spent fuel rods. The process comprises an electrorefiner cell. The cell includes a drum-shaped cathode horizontally immersed about half-way into an electrolyte salt bath. A conveyor belt comprising segmented perforated metal plates transports spent fuel into the salt bath. The anode comprises the conveyor belt, the containment vessel, and the spent fuel. Uranium and transuranic elements such as plutonium (Pu) are oxidized at the anode, and, subsequently, the uranium is reduced to uranium metal at the cathode. A mechanical cutter above the surface of the salt bath removes the deposited uranium metal from the cathode.

  16. Uranium potential of southwestern New Mexico (southern Hidalgo County), including observations on crystallization history of lavas and ash tuffs and the release of uranium from them. Final report

    SciTech Connect (OSTI)

    Walton, A.W.; Salter, T.L.; Zetterlund, D.

    1980-08-01T23:59:59.000Z

    Geological environments present in southwestern New Mexico include thick sequences of sedimentary rock including limestone, conglomerates, sandstone, and shale: igneous intrusions with associated metal deposits; caldera centers, margins, and outflow facies; and basins with marginal faults and thick late Cenozoic sedimentary fillings. Predominant rock types are Paleozoic carbonates, Mesozoic terrigeneous rocks and carbonates, and Cenozoic volcanic rocks and basin-filling terrigeneous rocks. Consideration of information available in Preliminary Reconnaissance Reports and in Hydrogeochemical and Stream Reconnaissance Reports together with 347 new whole rock chemical analyses points to three areas of anomalous uranium abundance in Hidalgo County, New Mexico. The area has experienced three major periods of igneous activity in Phanerozoic time: one associated with the Laramide cycle of the Late Cretaceous and early Tertiary, mid-Tertiary cycle of silicic volcanism with abundant calderas, and a late Tertiary cycle of mafic volcanism. Silicic volcanic rocks are the most common exposed rock type in the area, and the most enriched in uranium (range, 0.4 to 19 ppM). The most likely source for any uranium ore-forming solutions lies with this cycle of volcanism. Solutions might have been introduced during volcanism or formed later by groundwater leaching of cooled volcanic rocks. Results indicate that groundwater leaching of cooled volcanic rocks was not an effective means of mobilizing uranium in the area. Study of several rhyolite lava flows indicates that they were emplaced in supercooled condition and may have crystallized completely at temperatures well below their liquids, or they may have warmed as crystallization released latent heat. Statistical comparison of the uranium concentration revealed no differences between vitrophyres and associated felsites.

  17. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C

  18. APPENDIX J Partition Coefficients For Uranium

    E-Print Network [OSTI]

    APPENDIX J Partition Coefficients For Uranium #12;Appendix J Partition Coefficients For Uranium J.1.0 Background The review of uranium Kd values obtained for a number of soils, crushed rock and their effects on uranium adsorption on soils are discussed below. The solution pH was also used as the basis

  19. LIFETIME PREDICTION FOR MODEL 9975 O-RINGS IN KAMS

    SciTech Connect (OSTI)

    Hoffman, E.; Skidmore, E.

    2009-11-24T23:59:59.000Z

    The Savannah River Site (SRS) is currently storing plutonium materials in the K-Area Materials Storage (KAMS) facility. The materials are packaged per the DOE 3013 Standard and transported and stored in KAMS in Model 9975 shipping packages, which include double containment vessels sealed with dual O-rings made of Parker Seals compound V0835-75 (based on Viton{reg_sign} GLT). The outer O-ring of each containment vessel is credited for leaktight containment per ANSI N14.5. O-ring service life depends on many factors, including the failure criterion, environmental conditions, overall design, fabrication quality and assembly practices. A preliminary life prediction model has been developed for the V0835-75 O-rings in KAMS. The conservative model is based primarily on long-term compression stress relaxation (CSR) experiments and Arrhenius accelerated-aging methodology. For model development purposes, seal lifetime is defined as a 90% loss of measurable sealing force. Thus far, CSR experiments have only reached this target level of degradation at temperatures {ge} 300 F. At lower temperatures, relaxation values are more tolerable. Using time-temperature superposition principles, the conservative model predicts a service life of approximately 20-25 years at a constant seal temperature of 175 F. This represents a maximum payload package at a constant ambient temperature of 104 F, the highest recorded in KAMS to date. This is considered a highly conservative value as such ambient temperatures are only reached on occasion and for short durations. The presence of fiberboard in the package minimizes the impact of such temperature swings, with many hours to several days required for seal temperatures to respond proportionately. At 85 F ambient, a more realistic but still conservative value, bounding seal temperatures are reduced to {approx}158 F, with an estimated seal lifetime of {approx}35-45 years. The actual service life for O-rings in a maximum wattage package likely lies higher than the estimates due to the conservative assumptions used for the model. For lower heat loads at similar ambient temperatures, seal lifetime is further increased. The preliminary model is based on several assumptions that require validation with additional experiments and longer exposures at more realistic conditions. The assumption of constant exposure at peak temperature is believed to be conservative. Cumulative damage at more realistic conditions will likely be less severe but is more difficult to assess based on available data. Arrhenius aging behavior is expected, but non-Arrhenius behavior is possible. Validation of Arrhenius behavior is ideally determined from longer tests at temperatures closer to actual service conditions. CSR experiments will therefore continue at lower temperatures to validate the model. Ultrasensitive oxygen consumption analysis has been shown to be useful in identifying non-Arrhenius behavior within reasonable test periods. Therefore, additional experiments are recommended and planned to validate the model.

  20. Uncertainty clouds uranium enrichment corporation's plans

    SciTech Connect (OSTI)

    Lane, E.

    1993-03-24T23:59:59.000Z

    An expected windfall to the US Treasury from the sale of the Energy Dept.'s commercial fuel enrichment facilities may evaporate in the next few weeks when the Clinton administration submits its fiscal 1994 budget proposal to Congress, according to congressional and administration officials. Under the Energy Policy Act of 1992, DOE is required to lease two uranium enrichment facilities, Portsmouth, Ohio, and Paducah, KY., to the government-owned US Enrichment Corp. (USEC) by July 1. Estimates by OMB and Treasury indicate a potential yearly payoff of $300 million from the government-owned company's sale of fuel for commercial reactors. Those two facilities use a process of gaseous diffusion to enrich uranium to about 3 percent for use as fuel in commercial power plants. DOE has contracts through at least 1996 to provide about 12 million separative work units (SWUs) yearly to US utilities and others world-wide. But under an agreement signed between the US and Russia last August, at least 10 metric tons, or 1.5 million SWUs, of low-enriched uranium (LEU) blended down from Russia warheads is expected to be delivered to the US starting in 1994. It could be sold at $50 to $60 per SWU, far below what DOE currently charges for its SWUs - $135 per SWU for 70 percent of the contract price and $90 per SWU for the remaining 30 percent.

  1. Butyl rubber O-ring seals: Revision of test procedures for stockpile materials

    SciTech Connect (OSTI)

    Domeier, L.A.; Wagter, K.R.

    1996-12-01T23:59:59.000Z

    Extensive testing showed little correlation between test slab and O-ring performance. New procedures, comparable to those used with the traditional test slabs, were defined for hardness, compression set, and tensile property testing on sacrificial O-ring specimens. Changes in target performance values were made as needed and were, in one case, tightened to reflect the O-ring performance data. An additional study was carried out on O-ring and slab performance vs cure cycle and showed little sensitivity of material performance to large changes in curing time. Aging and spectra of certain materials indicated that two sets of test slabs from current vendor were accidently made from EPDM rather than butyl rubber. Random testing found no O-rings made from EPDM. As a result, and additional spectroscope test will be added to the product acceptance procedures to verify the type of rubber compound used.

  2. The End of Cheap Uranium

    E-Print Network [OSTI]

    Michael Dittmar

    2011-06-21T23:59:59.000Z

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

  3. Standard test method for the determination of uranium by ignition and the oxygen to uranium (O/U) atomic ratio of nuclear grade uranium dioxide powders and pellets

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2000-01-01T23:59:59.000Z

    1.1 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear grade uranium dioxide powder and pellets. 1.2 This test method does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this test method does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.4 This test method also is applicable to UO3 and U3O8 powder.

  4. The study of material accountancy procedures for uranium in a whole nuclear fuel cycle

    SciTech Connect (OSTI)

    Nakano, Hiromasa; Akiba, Mitsunori [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1995-07-01T23:59:59.000Z

    Material accountancy procedures for uranium under a whole nuclear fuel cycle were studied by taking into consideration the material accountancy capability associated with realistic measurement uncertainties. The significant quantity used by the International Atomic Energy Agency (IAEA) for low-enriched uranium is 75 kg U-235 contained. A loss of U-235 contained in uranium can be detected by either of the following two procedures: one is a traditional U-235 isotope balance, and the other is a total uranium element balance. Facility types studied in this paper were UF6 conversion, gas centrifuge uranium enrichment, fuel fabrication, reprocessing, plutonium conversion, and MOX fuel production in Japan, where recycled uranium is processed in addition to natural uranium. It was found that the material accountancy capability of a total uranium element balance was almost always higher than that of a U-235 isotope balance under normal accuracy of weight, concentration, and enrichment measurements. Changing from the traditional U-235 isotope balance to the total uranium element balance for these facilities would lead to a gain of U-235 loss detection capability through material accountancy and to a reduction in the required resources of both the IAEA and operators.

  5. Proceedings of Workshop on Uranium Production Environmental Restoration: An exchange between the United States and Germany

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    Scientists, engineers, elected officials, and industry regulators from the United, States and Germany met in Albuquerque, New Mexico, August 16--20, 1993, in the first joint international workshop to discuss uranium tailings remediation. Entitled ``Workshop on Uranium Production Environmental Restoration: An Exchange between the US and Germany,`` the meeting was hosted by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The goal of the workshop was to further understanding and communication on the uranium tailings cleanup projects in the US and Germany. Many communities around the world are faced with an environmental legacy -- enormous quantities of hazardous and low-level radioactive materials from the production of uranium used for energy and nuclear weapons. In 1978, the US Congress passed the Uranium Mill Tailings Radiation Control Act. Title I of the law established a program to assess the tailings at inactive uranium processing sites and provide a means for joint federal and state funding of the cleanup efforts at sites where all or substantially all of the uranium was produced for sale to a federal agency. The UMTRA Project is responsible for the cleanup of 24 sites in 10 states. Germany is facing nearly identical uranium cleanup problems and has established a cleanup project. At the workshop, participants had an opportunity to interact with a broad cross section of the environmental restoration and waste disposal community, discuss common concerns and problems, and develop a broader understanding of the issues. Abstracts are catalogued individually for the data base.

  6. Safe Operating Procedure SAFETY PROTOCOL: URANIUM

    E-Print Network [OSTI]

    Farritor, Shane

    involve the use of natural or depleted uranium. Natural isotopes of uranium are U-238, U-235 and U-234 (see Table 1 for natural abundances). Depleted uranium contains less of the isotopes: U-235 and U-234. The specific activity of depleted uranium (5.0E-7 Ci/g) is less than that of natural uranium (7.1E-7 Ci

  7. DEPARTMENT OF ENERGY Excess Uranium Management: Effects of DOE...

    Broader source: Energy.gov (indexed) [DOE]

    Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries; Request for Information AGENCY: Office of...

  8. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium(VI) Diffusion in Low-Permeability Subsurface Materials. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials. Abstract: Uranium(VI) diffusion was investigated in...

  9. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation

    E-Print Network [OSTI]

    Wilkins, M.J.

    2010-01-01T23:59:59.000Z

    Phillips.  1992.  Bioremediation of  uranium contamination in situ uranium bioremediation.  Microbial Biotechnology 2:genes during in situ bioremediation of uranium?contaminated 

  10. THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01T23:59:59.000Z

    1979) in "Uranium Enrichment", S. Villani, Ed. , Springer-E. (1973) "Uranium Enrichment by Gas Centrifuge" Mills andTHE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

  11. Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

  12. AGING PERFORMANCE OF MODEL 9975 PACKAGE FLUOROELASTOMER O-RINGS

    SciTech Connect (OSTI)

    Hoffman, E.; Daugherty, W.; Skidmore, E.; Dunn, K.; Fisher, D.

    2011-05-31T23:59:59.000Z

    The influence of temperature and radiation on Viton{reg_sign} GLT and GLT-S fluoroelastomer O-rings is an ongoing research focus at the Savannah River National Laboratory. The O-rings are credited for leaktight containment in the Model 9975 shipping package used for transportation of plutonium-bearing materials. At the Savannah River Site, the Model 9975 packages are being used for interim storage. Primary research efforts have focused on surveillance of O-rings from actual packages, leak testing of seals at bounding aging conditions and the effect of aging temperature on compression stress relaxation behavior, with the goal of service life prediction for long-term storage conditions. Recently, an additional effort to evaluate the effect of aging temperature on the oxidation of the materials has begun. Degradation in the mechanical properties of elastomers is directly related to the oxidation of the polymer. Sensitive measurements of the oxidation rate can be performed in a more timely manner than waiting for a measurable change in mechanical properties, especially at service temperatures. Measuring the oxidation rate therefore provides a means to validate the assumption that the degradation mechanisms(s) do not change from the elevated temperatures used for accelerated aging and the lower service temperatures. Monitoring the amount of oxygen uptake by the material over time at various temperatures can provide increased confidence in lifetime predictions. Preliminary oxygen consumption analysis of a Viton GLT-based fluoroelastomer compound (Parker V0835-75) using an Oxzilla II differential oxygen analyzer in the temperature range of 40-120 C was performed. Early data suggests oxygen consumption rates may level off within the first 100,000 hours (10-12 years) at 40 C and that sharp changes in the degradation mechanism (stress-relaxation) are not expected over the temperature range examined. This is consistent with the known long-term heat aging resistance of fluoroelastomers relative to hydrocarbon-based elastomers, and in absence of antioxidants that may be consumed over time. Additional experimental effort will be undertaken in the short term range within the first 100 hours of thermal aging to capture further details of the oxygen consumption rate.

  13. Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)

    SciTech Connect (OSTI)

    PLYS, M.G.

    2000-10-10T23:59:59.000Z

    The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3) Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method against experimental data, (4) Application of the method to plausibly explain operational experience, and (5) Application of the method to present process steps to demonstrate process safety and margin. Essentially, the logic above is used to demonstrate that runaway reactions cannot occur during normal SNF Project process steps, and to illustrate the depth of the technical basis for such a conclusion. Some off-normal conditions are identified here that could potentially lead to runaway reactions. However, this document is not intended to provide an exhaustive analysis of such cases. In summary, this report provides a ''toolkit'' of models and approaches for analysis of pyrophoricity safety issues at Hanford, and the technical basis for the recommended approaches. A summary of recommended methods appears in Section 9.0.

  14. Melting characteristics of the stainless steel generated from the uranium conversion plant

    SciTech Connect (OSTI)

    Choi, W.K.; Song, P.S.; Oh, W.Z.; Jung, C.H. [Korea Atomic Energy Research Institute (Korea, Republic of); Min, B.Y. [Chungnam National University, 220 Gung-Dong, Yusung-Gu Taejon 305-764 (Korea, Republic of)

    2007-07-01T23:59:59.000Z

    The partition ratio of cerium (Ce) and uranium (U) in the ingot, slag and dust phases has been investigated for the effect of the slag type, slag concentration and basicity in an electric arc melting process. An electric arc furnace (EAF) was used to melt the stainless steel wastes, simulated by uranium oxide and the real wastes from the uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). The composition of the slag former used to capture the contaminants such as uranium, cerium, and cesium during the melt decontamination process generally consisted of silica (SiO{sub 2}), calcium oxide (CaO) and aluminum oxide (Al{sub 2}O{sub 3}). Also, Calcium fluoride (CaF{sub 2} ), nickel oxide (NiO), and ferric oxide (Fe{sub 2}O{sub 3}) were added to provide an increase in the slag fluidity and oxidative potential. Cerium was used as a surrogate for the uranium because the thermochemical and physical properties of cerium are very similar to those of uranium. Cerium was removed from the ingot phase to slag phase by up to 99% in this study. The absorption ratio of cerium was increased with an increase of the amount of the slag former. And the maximum removal of cerium occurred when the basicity index of the slag former was 0.82. The natural uranium (UO{sub 2}) was partitioned from the ingot phase to the slag phase by up to 95%. The absorption of the natural uranium was considerably dependent on the basicity index of the slag former and the composition of the slag former. The optimum condition for the removal of the uranium was about 1.5 for the basicity index and 15 wt% of the slag former. According to the increase of the amount of slag former, the absorption of uranium oxide in the slag phase was linearly increased due to an increase of its capacity to capture uranium oxide within the slag phase. Through experiments with various slag formers, we verified that the slag formers containing calcium fluoride (CaF{sub 2}) and a high amount of silica were more effective for a melt decontamination of stainless steel wastes contaminated with uranium. During the melting tests with stainless steel wastes from the uranium conversion plant(UCP ) in KAERI, we found that the results of the uranium decontamination were very similar to those of the uranium oxide from the melting of stimulated metal wastes. (authors)

  15. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A. (Kennewick, WA)

    1986-01-01T23:59:59.000Z

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  16. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10T23:59:59.000Z

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  17. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  18. Fabrication options for depleted uranium components in shielded containers

    SciTech Connect (OSTI)

    Derrington, S.B.; Thompson, J.E.; Coates, C.W.

    1994-01-27T23:59:59.000Z

    Depleted uranium (DU) is an attractive material for the gamma-shielding components in containers designed for the storage, transport, and disposal of high-level radioactive wastes or spent nuclear fuel. The size and weight of these components present fabrication challenges. A broad range of technical expertise, capabilities, and facilities for uranium manufacturing and technology development exist at the Department of Energy laboratories and production facilities and within commercial industry. Several cast and wrought processes are available to fabricate the DU components. Integration of the DU fabrication capabilities and physical limitations for handling the DU components into the early design phase will ensure a fabricable product.

  19. Field Projects: Cañon City, Colorado

    Broader source: Energy.gov [DOE]

    In June 2000, Cotter Corporation installed a PRB at its uranium ore processing millsite in Cañon City, Colorado. The PRB contains zero-valent iron (ZVI) that treated molybdenum and uranium...

  20. Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01T23:59:59.000Z

    Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration

  1. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOE Patents [OSTI]

    Friedman, H.A.

    1984-06-13T23:59:59.000Z

    A method for decontaminating uranium product from the Purex 5 process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO/sub 2//sup 2 +/) uranium and heptavalent technetium (TcO/sub 4/-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H/sub 2/C/sub 2/O/sub 4/), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.

  2. THORIUM AND URANIUM CHRONOMETERS APPLIED TO CS 31082-001 Hendrik Schatz,1,2

    E-Print Network [OSTI]

    Cowan, John

    THORIUM AND URANIUM CHRONOMETERS APPLIED TO CS 31082-001 Hendrik Schatz,1,2 Ralf Toenjes,1,2 Bernd; accepted 2002 July 17 ABSTRACT We use the classical r-process model to explore the implications

  3. Uranium soils integrated demonstration: Soil characterization project report

    SciTech Connect (OSTI)

    Cunnane, J.C. [Argonne National Lab., IL (United States); Gill, V.R. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States); Morris, D.E. [Los Alamos National Lab., NM (United States); Nickelson, M.D. [HAZWRAP, Oak Ridge, TN (United States); Perry, D.L. [Lawrence Berkeley Lab., CA (United States); Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01T23:59:59.000Z

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  4. Micro-Scale Heterogeneity in Biogeochemical Uranium Cycling

    SciTech Connect (OSTI)

    Ginder-Vogel, M.; Wu, W.-M.; Kelly, S.; Criddle, C.S.; Carley, J.; Jardine, P.; Kemner, K.M.; Fendorf, S.

    2009-06-04T23:59:59.000Z

    One method for the in situ remediation of uranium contaminated subsurface environments is the removal of highly soluble U(VI) from groundwater by microbial reduction to the sparingly soluble U(IV) mineral uraninite. Success of this remediation strategy will, in part, be determined by the extent and products of microbial reduction. In heterogeneous subsurface environments, microbial processes will likely yield a combination of U(IV) and U(VI) phases distributed throughout the soil matrix. Here, we use a combination of bulk X-ray absorption spectroscopy (XAS) and micro-focused XAS and X-ray diffraction to determine uranium speciation and distribution with sediment from a pilot-scale uranium remediation project located in Oak Ridge, TN.

  5. Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications 

    E-Print Network [OSTI]

    Helmreich, Grant

    2012-02-14T23:59:59.000Z

    The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding...

  6. Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications

    E-Print Network [OSTI]

    Helmreich, Grant

    2012-02-14T23:59:59.000Z

    The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding...

  7. Standard practice for removal of uranium or plutonium, or both, for impurity assay in uranium or plutonium materials

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    Standard practice for removal of uranium or plutonium, or both, for impurity assay in uranium or plutonium materials

  8. Annual status report on the Uranium Mill Tailings Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    This fourteenth annual status report for the Uranium Mill Tailings Remedial Action (UMTRA) Project Office summarizes activities of the Uranium Mill Tailings Remedial Action Surface (UMTRA-Surface) and Uranium Mill Tailings Remedial Action Groundwater (UMTRA-Groundwater) Projects undertaken during fiscal year (FY) 1992 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1993 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604. The DOE will continue to submit annual reports to DOE-Headquarters, the states, tribes, and local representatives through Project completion in order to inform the public of the yearly Project status. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive material (RRM) located on the inactive uranium processing sites in a safe and environmentally sound manner, and to minimize or eliminate potential health hazards. Commercial and residential properties near designated processing sites that are contaminated with material from the sites, herein referred to as ``vicinity properties (VP),`` are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated VPs located in 10 states, and the VPs associated with the Edgemont, South Dakota, uranium mill currently owned by the Tennessee Valley Authority (TVA) (Figure A.1, Appendix A).

  9. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24T23:59:59.000Z

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  10. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  11. Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments

    SciTech Connect (OSTI)

    Wang, Guohui; Serne, R. Jeffrey; Lindberg, Michael J.; Um, Wooyong; Bjornstad, Bruce N.; Williams, Benjamin D.; Kutynakov, I. V.; Wang, Zheming; Qafoku, Nikolla

    2012-11-26T23:59:59.000Z

    In this study, sediments collected from boreholes drilled in 2010 and 2011 as part of a remedial investigation/feasibility study were characterized. The wells, located within or around two process ponds and one process trench waste site, were characterized in terms of total uranium concentration, mobile fraction of uranium, particle size, and moisture content along the borehole depth. In general, the gravel-dominated sediments of the vadose zone Hanford formation in all investigated boreholes had low moisture contents. Based on total uranium content, a total of 48 vadose zone and periodically rewetted zone sediment samples were selected for more detailed characterization, including measuring the concentration of uranium extracted with 8 M nitric acid, and leached using bicarbonate mixed solutions to determine the liable uranium (U(VI)) contents. In addition, water extraction was conducted on 17 selected sediments. Results from the sediment acid and bicarbonate extractions indicated the total concentrations of anthropogenic labile uranium in the sediments varied among the investigated boreholes. The peak uranium concentration (114.84 µg/g, acid extract) in <2-mm size fractions was found in borehole 399 1-55, which was drilled directly in the southwest corner of the North Process Pond. Lower uranium concentrations (~0.3–2.5 µg/g, acid extract) in <2-mm size fractions were found in boreholes 399-1-57, 399-1-58, and 399-1-59, which were drilled either near the Columbia River or inland and upgradient of any waste process ponds or trenches. A general trend of “total” uranium concentrations was observed that increased as the particle size decreased when relating the sediment particle size and acid extractable uranium concentrations in two selected sediment samples. The labile uranium bicarbonate leaching kinetic experiments on three selected sediments indicated a two-step leaching rate: an initial rapid release, followed by a slow continual release of uranium from the sediment. Based on the uranium leaching kinetic results, quasi equilibrium can be assumed after 1000-h batch reaction time in this study.

  12. Depleted uranium disposal options.

    SciTech Connect (OSTI)

    Biwer, B. M.; Ranek, N. L.; Goldberg, M.; Avci, H. I.

    2000-04-01T23:59:59.000Z

    Depleted uranium hexafluoride (UF{sub 6}) has been produced in the United States since the 1940s as part of both the military program and the civilian nuclear energy program. The U.S. Department of Energy (DOE) is the agency responsible for managing most of the depleted UF{sub 6} that has been produced in the United States. The total quantity of depleted UF{sub 6} that DOE has to or will have to manage is approximately 700,000 Mg. Studies have been conducted to evaluate the various alternatives for managing this material. This paper evaluates and summarizes the alternative of disposal as low-level waste (LLW). Results of the analysis indicate that UF{sub 6} needs to be converted to a more stable form, such as U{sub 3}O{sub 8}, before disposal as LLW. Estimates of the environmental impacts of disposal in a dry environment are within the currently applicable standards and regulations. Of the currently operating LLW disposal facilities, available information indicates that either of two DOE facilities--the Hanford Site or the Nevada Test Site--or a commercial facility--Envirocare of Utah--would be able to dispose of up to the entire DOE inventory of depleted UF{sub 6}.

  13. SEVENTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE

    SciTech Connect (OSTI)

    Daugherty, W.

    2012-08-30T23:59:59.000Z

    A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. Seventy tests using mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they meet the criterion of leak-tightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. High temperature aging continues for 23 GLT O-ring fixtures at 200 – 270 ºF. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The remaining GLT O-ring fixtures aging at 300 ºF have been retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 54-72 months, which is still bounding to O-ring temperatures during storage in K-Area Complex (KAC). Based on expectations that the fixtures aging at 200 ºF will remain leak-tight for a significant period yet to come, 2 additional fixtures began aging in 2011 at an intermediate temperature of 270 ºF, with hopes that they may reach a failure condition before the 200 ºF fixtures. High temperature aging continues for 6 GLT-S O-ring fixtures at 200 – 300 ºF. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 ºF. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 - 300 ºF for 30 - 36 months. For O-ring fixtures that have failed the room temperature leak test and been disassembled, the O-rings displayed a compression set ranging from 51 – 96%. This is greater than seen to date for any packages inspected during KAC field surveillance (24% average). For GLT O-rings, separate service life estimates have been made based on the O-ring fixture leak test data and based on compression stress relaxation (CSR) data. These two predictive models show reasonable agreement at higher temperatures (350 – 400 ºF). However, at 300 ºF, the room temperature leak test failures to date experienced longer aging times than predicted by the CSRbased model. This suggests that extrapolations of the CSR model predictions to temperatures below 300 ºF will provide a conservative prediction of service life relative to the leak rate criterion. Leak test failure data at lower temperatures are needed to verify this apparent trend. Insufficient failure data exist currently to perform a similar comparison for GLT-S O-rings. Aging and periodic leak testing will continue for the remaining PCV O-ring fixtures.

  14. Iron ore and coal: pricing and volume up for these key export commodities

    SciTech Connect (OSTI)

    NONE

    2006-01-15T23:59:59.000Z

    Australia's huge coal and iron ore industries are booming. Up until now, the majors have benefited handsomely, but smaller players are beginning to muscle in. The article discusses development in both industries. 1 fig., 4 photos.

  15. BORSE DI STUDIO DEL GOVERNO CINESE: 7 marzo ore 11 Aula Magna

    E-Print Network [OSTI]

    Di Pillo, Gianni

    BORSE DI STUDIO DEL GOVERNO CINESE: 7 marzo ore 11 Aula Magna CHINESE GOVERNMENT SCHOLARSHIP PROGRAMME: EU WINDOW Il governo cinese ha pubblicato un bando di selezione per studenti internazionali che

  16. Aging of Weapon Seals – An Update on Butyl O-ring Issues

    SciTech Connect (OSTI)

    Wilson, Mark H.

    2011-07-13T23:59:59.000Z

    During testing under the Enhanced Surveillance Campaign in 2001, preliminary data detected a previously unknown and potentially serious concern with recently procured butyl o-rings on several programs. All butyl o-rings molded from a proprietary formulation throughout the period circa 1999 through 2001 had less than a full cure. Engineering judgment was that under curing is detrimental and could possibly lead to sub-optimum performance or, in the worst case, premature seal failure. An aging study was undertaken to ensure that suspect o-rings installed in the stockpile will retain sufficient sealing force for a minimum ten-year service life. A new prediction model developed for this study indicates suspect o-rings do not need to be replaced before the ten-year service life. Long-term testing results are reported on a yearly basis to validate the prediction model. This report documents the aging results for the period September 2002 to January 2011.

  17. Shale oil recovery systems incorporating ore beneficiation : final report, October 1982

    E-Print Network [OSTI]

    Weiss, M. A.

    1982-01-01T23:59:59.000Z

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is, concentration of the kerogen) before the oil-recovery step. The objective was to ...

  18. Uranium 2007 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01T23:59:59.000Z

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  19. A uranium-titanium-niobium alloy

    SciTech Connect (OSTI)

    Ludtka, G.M.; Ludtka, G.M.

    1990-02-23T23:59:59.000Z

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  20. Uranium Acquisition | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Interest (EOI) to acquire up to 6,800 metric tons of Uranium (MTU) of high purity depleted uranium metal (DU) and related material and services. This request for EOI does...

  1. How Stakeholder Engagement is Evolving at the Caldas Uranium Mining Site in Minas Gerais, Brazil - 13223

    SciTech Connect (OSTI)

    Booth, Peter M. [WSP Environment and Energy, Manchester (United Kingdom)] [WSP Environment and Energy, Manchester (United Kingdom); Da Silva, Nivaldo Carlos [CNEN, Pocos de Caldas (Brazil)] [CNEN, Pocos de Caldas (Brazil); Pereira de Oliveira, Alexandre; Cioffi Batagini, Regina Maria [CMPC, Pocos de Caldas (Brazil)] [CMPC, Pocos de Caldas (Brazil); Rangel, Heraldo Junior [INB, Pocos de Caldas (Brazil)] [INB, Pocos de Caldas (Brazil); Da Conceicao Estrella Abad, Maria [IBAMA, Brasilia (Brazil)

    2013-07-01T23:59:59.000Z

    The Caldas site is located in the Federal State of Minas Gerais in Brazil about 25 km from the city of Pocos de Caldas. While the city itself has 150,000 inhabitants there is a total population of around 0.5 million people living in an area that could potentially be influenced by the site. Uranium ore was mined and milled here between the years of 1982 and 1995, with ore extraction taking place from an open pit. Of the material removed, aside from that extracted for uranium, some was used on-site for road construction and building embankments while the remainder was disposed of onto two major rock piles. There are a number of potential historical and current environmental impacts to groundwater as a consequence of discharges into streams which then flow off site. The site is now undergoing a phase of decommissioning which includes the formulation and substantiation of a site remediation strategy. As part of a wider International Atomic Energy Agency (IAEA) Technical Cooperation Project aimed at providing practical guidance for implementing a decommissioning and remediation plan at the site, WSP E and E were invited to lead a mission in order to provide advice on the importance and merits of stakeholder engagement and how to ultimately build an engagement program. In November 2011, WSP E and E met with personnel from the site operators, the Brazilian regulatory bodies and representatives from the local stakeholder community and explained the principles of stakeholder engagement and how the process had internationally evolved principally from a decide-announce-defend approach to a more formal two way mechanism of engagement. Historically there had been insufficient liaison between the site operator, the nuclear regulator and the environmental regulator. All parties had recognized that greater interaction was necessary. There had also been very little engagement with local stakeholders about the various activities on the site and the potential implications of these activities on human health and the environment. The main concerns of the local stakeholders were in relation to potential environmental impacts on groundwater and surface water as well as their lack of knowledge about the site's activities and how it might evolve over time. There was a feeling that the site brought no real benefit to the local community as local labor was rarely utilized when work was being undertaken. WSP E and E were asked many questions about stakeholder engagement processes and had to address a number of concerns relating to being able to construct and control an engagement program. Advice was provided on how to construct a phased program in a manner that would allow the site operator to demonstrate increased transparency and allow as wide a range of stakeholders as possible the opportunity to become engaged. We provided an important message in that engagement often had to be culture and project specific and that what might work in one country could not necessarily purely be transposed to another. Since the WSP E and E mission there has been evidence of a number of positive steps in many of the areas of stakeholder engagement related to the Caldas site. The nuclear and environmental regulators work in a more open and transparent manner and continue to undertake joint inspections of the Caldas site. They have agreed to develop a written agreement that will enable them to jointly assess and discuss the issues on the site. Both regulatory bodies had previously accompanied the site operator on a visit to the Wismut uranium mining area in Germany and as well as providing useful learning had also allowed the regulators to discuss some common issues, thus bringing them closer together. A local stakeholder group under the auspices of the Water Commission had previously been set up but now they are starting to have more regular meetings with the site operator and nuclear regulator. They are now additionally considering the formation of a site specific advisory board (based on similar lines to those at US legacy sites) in order to gain some further tec

  2. Measurements of Low-Enriched Uranium Holdup.

    SciTech Connect (OSTI)

    Belian, A. P. (Anthony P.); Reilly, T. D. (T. Douglas); Russo, P. A. (Phyllis A.); Tobin, S. J. (Stephen J.)

    2005-01-01T23:59:59.000Z

    A recent effort determined uranium holdup at a large fuel fabrication facility abroad where low enriched ({approx} 3%) uranium (LEU) oxide feeds the pellet manufacturing process. Measurements taken with both high- and low-resolution gamma-ray spectrometry systems include extensive data for the ventilation and vacuum systems. Equipment dimensions and the corresponding holdup deposit masses are large for LEU. Because deposits are infinitely thick to the 186 keV gamma ray in many locations in an LEU environment, measurements of both the 186 and 1001 keV gamma-rays were required, and self-attenuation was significant at 1001 keV in many cases. These wide-dynamic-range measruements used short count times, portable scintillator detectors, and portable MCAs. Because equipment is elevated above floor levels, most measurements were made with detectors mounted on extended telescoping poles. One of the main goals of this effort was to demonstrate and validate methods for measurement and quantitative analysis of LEU holdup using low-resolution detectors and the Generalized Geometry Holdup (GGH) techniques. The current GGH approach is applied elsewhere for holdup measurements of plutonium and high-enriched uranium. The recent experience is directly applicable to holdup measruements at LEU facilities such as the Paducah and Portmouth gaseous diffusion enrichment plants and elsewhere, including LEU sites where D and D is active. This report discusses the measurement methodology, calibration of the measurement equipment, measurement control, analysis of the data, and the global and local assay results including random and systematic uncertainties. It includes field-validation exercises (multiple calibrated systems that perform measruements on the same extended equipment) as well as quantitative validation results obtained on reference materials assembled to emulate the deposits in an extended vacuum line that was also measured by these techniques. The paper examines the differences in assay results between the low-resolution system using the GGH method and the high-resolution system utilizing the commercially available ISOCS analysis method.

  3. D Riso-R-429 Automated Uranium

    E-Print Network [OSTI]

    -induced delayed-neutron coun- ting is applied preferably in large geochemical exploration pro- grammes. UraniumCM i D Riso-R-429 Automated Uranium Analysis by Delayed-Neutron Counting H. Kunzendorf, L. Løvborg AUTOMATED URANIUM ANALYSIS BY DELAYED-NEUTRON COUNTING H. Kunzendorf, L. Løvborg and E.M. Christiansen

  4. Remediation and Recovery of Uranium from Contaminated

    E-Print Network [OSTI]

    Lovley, Derek

    that Geobacter species can effectively remove uranium from contaminated groundwater by reducing soluble U emplaced in flow- through columns of uranium-contaminated sediments readily removed U(VI) from the groundwater, and 87% of the uranium that had been removed was recovered from the electrode surface after

  5. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  6. Uranium Watch REGULATORY CONFUSION: FEDERALAND STATE

    E-Print Network [OSTI]

    Uranium Watch Report REGULATORY CONFUSION: FEDERALAND STATE ENFORCEMENT OF 40 C.F.R. PART 61 SUBPART W INTRODUCTION 1. This Uranium Watch Report, Regulatory Confusion: Federal and State Enforcement at the White Mesa Uranium Mill, San Juan County, Utah. 2. The DAQ, a Division of the Utah Department

  7. Clean Air Act Requirements: Uranium Mill Tailings

    E-Print Network [OSTI]

    EPA'S Clean Air Act Requirements: Uranium Mill Tailings Radon Emissions Rulemaking Reid J. Rosnick requirements for operating uranium mill tailings (Subpart W) Status update on Subpart W activities Outreach/Communications #12;3 EPA Regulatory Requirements for Operating Uranium Mill Tailings (Clean Air Act) · 40 CFR 61

  8. URANIUM MILL TAILINGS RADON FLUX CALCULATIONS

    E-Print Network [OSTI]

    URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIÃ?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Inc. (Golder) was commissioned by EFRC to evaluate the operations of the uranium mill tailings storage in this report were conducted using the WISE Uranium Mill Tailings Radon Flux Calculator, as updated on November

  9. NINTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE

    SciTech Connect (OSTI)

    Daugherty, W.

    2014-08-06T23:59:59.000Z

    A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. One approach has been to periodically evaluate the leak performance of O-rings being aged in mock-up 9975 Primary Containment Vessels (PCVs) at elevated temperatures. Other methods such as compression-stress relaxation (CSR) tests and field surveillance are also on-going to evaluate O-ring behavior. Seventy tests using PCV mock-ups were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they continue to meet the leak-tightness criterion defined in ANSI standard N14.5-97. Due to material substitution, fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. High temperature aging continues for 23 GLT O-ring fixtures at 200 – 270 ºF. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The earliest 300 °F GLT O-ring fixture failure was observed at 34 months. The remaining GLT O-ring fixtures aging at 300 ºF have been retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 72 - 96 months, which bounds O-ring temperatures anticipated during storage in K-Area Complex (KAC). Based on expectations that the 200 ºF fixtures will remain leak-tight for a significant period yet to come, 2 additional fixtures began aging in 2011 at 270 ºF, with hopes that they may reach a failure condition before the 200 ºF fixtures, thus providing additional time to failure data. High temperature aging continues for 6 GLT-S O-ring fixtures at 200 – 300 ºF. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 ºF. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 - 300 ºF for 54 - 57 months. No additional O-ring failures have been observed since the last interim report was issued. Aging and periodic leak testing will continue for the remaining PCV fixtures. Additional irradiation of several fixtures is recommended to maintain a balance between thermal and radiation exposures similar to that experienced in storage, and to show the degree of consistency of radiation response between GLT and GLT-S O-rings.

  10. Uranium mill tailings and radon

    SciTech Connect (OSTI)

    Hanchey, L A

    1981-01-01T23:59:59.000Z

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  11. Selective Recovery of Enriched Uranium from Inorganic Wastes

    SciTech Connect (OSTI)

    Kimura, R. T.

    2003-02-26T23:59:59.000Z

    Uranium as U(IV) and U(VI) can be selectively recovered from liquids and sludge containing metal precipitates, inorganic salts, sand and silt fines, debris, other contaminants, and slimes, which are very difficult to de-water. Chemical processes such as fuel manufacturing and uranium mining generate enriched and natural uranium-bearing wastes. This patented Framatome ANP (FANP) uranium recovery process reduces uranium losses, significantly offsets waste disposal costs, produces a solid waste that meets mixed-waste disposal requirements, and does not generate metal-contaminated liquids. At the head end of the process is a floating dredge that retrieves liquids, sludge, and slimes in the form of a slurry directly from the floor of a lined surface impoundment (lagoon). The slurry is transferred to and mixed in a feed tank with a turbine mixer and re-circulated to further break down the particles and enhance dissolution of uranium. This process uses direct steam injection and sodium hypochlorite addition to oxidize and dissolves any U(IV). Cellulose is added as a non-reactive filter aid to help filter slimes by giving body to the slurry. The slurry is pumped into a large recessed-chamber filter press then de-watered by a pressure cycle-controlled double-diaphragm pump. U(VI) captured in the filtrate from this process is then precipitated by conversion to U(IV) in another Framatome ANP-patented process which uses a strong reducing agent to crystallize and settle the U(IV) product. The product is then dewatered in a small filter press. To-date, over 3,000 Kgs of U at 3% U-235 enrichment were recovered from a 8100 m2 hypalon-lined surface impoundment which contained about 10,220 m3 of liquids and about 757 m3 of sludge. A total of 2,175 drums (0.208 m3 or 55 gallon each) of solid mixed-wastes have been packaged, shipped, and disposed. In addition, 9463 m3 of low-U liquids at <0.001 KgU/m3 were also further processed and disposed.

  12. Physical and mechanical metallurgy of uranium and uranium alloys

    SciTech Connect (OSTI)

    Eckelmeyer, K.H. [Sandia National Labs. (United States)

    1998-12-31T23:59:59.000Z

    Engineering disadvantages of unalloyed uranium include relatively low strength, low ductility, and poor oxidation and corrosion resistance. As-cast uranium typically exhibits very large grains that cause nonuniform deformation and low tensile ductility. Uranium is often alloyed to improve its corrosion resistance and mechanical properties. Titanium is most commonly used to increase strength; niobium and molybdenum, to increase oxidation and corrosion resistance; and vanadium, to refine alpha grain size in castings. Under equilibrium conditions these elements are extensively soluble in the high-temperature gamma phase, slightly soluble in the intermediate temperature beta phase, and essentially insoluble in the low-temperature alpha phase. Uranium alloys are vacuum solution heat treated in the gamma range to dissolve the alloying elements and remove hydrogen. The subsequent microstructures and properties are determined by the cooling rate from the solution treatment temperature. Oxidation and corrosion resistance increases with increasing the amount of alloy in solid solution. As a result, alloys such as U-6%Nb and U-10%Mo are often used in applications requiring good corrosion resistance.

  13. Preserving Ultra-Pure Uranium-233

    SciTech Connect (OSTI)

    Krichinsky, Alan M [ORNL; Goldberg, Dr. Steven A. [DOE SC - Chicago Office; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL)

    2011-10-01T23:59:59.000Z

    Uranium-233 ({sup 233}U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium ({sup 232}Th). At high purities, this synthetic isotope serves as a crucial reference material for accurately quantifying and characterizing uranium-bearing materials assays and isotopic distributions for domestic and international nuclear safeguards. Separated, high purity {sup 233}U is stored in vaults at Oak Ridge National Laboratory (ORNL). These materials represent a broad spectrum of {sup 233}U from the standpoint of isotopic purity - the purest being crucial for precise analyses in safeguarding uranium. All {sup 233}U at ORNL is currently scheduled to be disposed of by down-blending with depleted uranium beginning in 2015. This will reduce safety concerns and security costs associated with storage. Down-blending this material will permanently destroy its potential value as a certified reference material for use in uranium analyses. Furthermore, no credible options exist for replacing {sup 233}U due to the lack of operating production capability and the high cost of restarting currently shut down capabilities. A study was commissioned to determine the need for preserving high-purity {sup 233}U. This study looked at the current supply and the historical and continuing domestic need for this crucial isotope. It examined the gap in supplies and uses to meet domestic needs and extrapolated them in the context of international safeguards and security activities - superimposed on the recognition that existing supplies are being depleted while candidate replacement material is being prepared for disposal. This study found that the total worldwide need by this projection is at least 850 g of certified {sup 233}U reference material over the next 50 years. This amount also includes a strategic reserve. To meet this need, 18 individual items totaling 959 g of {sup 233}U were identified as candidates for establishing a lasting supply of certified reference materials (CRM), all having an isotopic purity of at least 99.4% {sup 233}U and including materials up to 99.996% purity. Current plans include rescuing the purest {sup 233}U materials during a 3-year project beginning in FY 2012 in three phases involving preparations, handling preserved materials, and cleanup. The first year will involve preparations for handling the rescued material for sampling, analysis, distribution, and storage. Such preparations involve modifying or developing work control documents and physical preparations in the laboratory, which include preparing space for new material-handling equipment and procuring and (in some cases) refurbishing equipment needed for handling {sup 233}U or qualifying candidate CRM. Once preparations are complete, an evaluation of readiness will be conducted by independent reviewers to verify that the equipment, work controls, and personnel are ready for operations involving handling radioactive materials with nuclear criticality safety as well as radiological control requirements. The material-handling phase will begin in FY 2013 and be completed early in FY 2014, as currently scheduled. Material handling involves retrieving candidate CRM items from the ORNL storage facility and shipping them to another laboratory at ORNL; receiving and handling rescued items at the laboratory (including any needed initial processing, acquisition and analysis of samples from each item, and preparation for shipment); and shipping bulk material to destination labs or to a yet-to-be-designated storage location. There are seven groups of {sup 233}U identified for handling based on isotopic purity that require the utmost care to prevent cross-contamination. The last phase, cleanup, also will be completed in 2014. It involves cleaning and removing the equipment and material-handling boxes and characterizing, documenting, and disposing of waste. As part of initial planning, the cost of rescuing candidate {sup 233}U items was estimated roughly. The annualized costs were found to be $1,228K in FY 2012, $1,375K in FY 2013,

  14. Spatial and Geochemical Spatial and Geochemical Heterogeneity Impacts on Iron Biomineralization and Uranium Sequestration

    SciTech Connect (OSTI)

    Scott Fendorf; Shawn Benner; Jim Neiss; Colleen Hansel; Peter Nico; Chris Francis; Phil Jardine

    2004-03-17T23:59:59.000Z

    Bioreductive transformations of iron (hydr)oxides are a critically important processes controlling the fate and transport of contaminants in soil and aquifer systems. Heterogeneity arising from both chemical and physical conditions will lead to various biomineralization products of iron oxides and will additionally alter reactions controlling the partitioning of hazardous elements such as uranium. We are presently exploring chemical and mineralogical transformations within physically complex material having a range of pore-size distribution and chemical environments. Here we discuss the impact of calcium on the reactive transport of uranium and the spatial heterogeneity in iron hydroxide mineralization and concomitant uranium reduction along a diffusive flow path.

  15. Position paper Oak Ridge Y-12 Plant storage of uranium in plastics

    SciTech Connect (OSTI)

    Duerksen, W.K.

    1995-07-01T23:59:59.000Z

    As a result of the end of the Cold War, the United States nuclear weapon stockpile is being reduced from approximately 20,000 warheads to fewer than 10,000 by the end of the century. The Oak Ridge Y-12 Plant is the Department of Energy (DOE) site charged with the responsibility of providing safe, secure storage for the uranium recovered from these weapons. In addition to weapons material, Y-12 has traditionally processed and stored uranium from nonweapon programs and presumably will continue to do so. The purpose of this document is to evaluate the suitability of plastics for use in the containment of uranium.

  16. EIGHTH INTERIM STATUS REPORT: MODEL 9975 PCV O-RING FIXTURE LONG-TERM LEAK PERFORMANCE

    SciTech Connect (OSTI)

    Daugherty, W. L.

    2013-09-03T23:59:59.000Z

    A series of experiments to monitor the aging performance of Viton® GLT O-rings used in the Model 9975 package has been ongoing since 2004 at the Savannah River National Laboratory. Seventy tests using mock-ups of 9975 Primary Containment Vessels (PCVs) were assembled and heated to temperatures ranging from 200 to 450 ºF. They were leak-tested initially and have been tested periodically to determine if they meet the criterion of leak-tightness defined in ANSI standard N14.5-97. Fourteen additional tests were initiated in 2008 with GLT-S O-rings heated to temperatures ranging from 200 to 400 ºF. High temperature aging continues for 23 GLT O-ring fixtures at 200 – 270 ºF. Room temperature leak test failures have been experienced in all of the GLT O-ring fixtures aging at 350 ºF and higher temperatures, and in 8 fixtures aging at 300 ºF. The remaining GLT O-ring fixtures aging at 300 ºF have been retired from testing following more than 5 years at temperature without failure. No failures have yet been observed in GLT O-ring fixtures aging at 200 ºF for 61 - 85 months, which is still bounding to O-ring temperatures during storage in KArea Complex (KAC). Based on expectations that the fixtures aging at 200 ºF will remain leaktight for a significant period yet to come, 2 additional fixtures began aging in 2011 at an intermediate temperature of 270 ºF, with hopes that they may reach a failure condition before the 200 ºF fixtures. High temperature aging continues for 6 GLT-S O-ring fixtures at 200 – 300 ºF. Room temperature leak test failures have been experienced in all 8 of the GLT-S O-ring fixtures aging at 350 and 400 ºF. No failures have yet been observed in GLT-S O-ring fixtures aging at 200 - 300 ºF for 41 - 45 months. Aging and periodic leak testing will continue for the remaining PCV fixtures.

  17. Stimulating the In Situ Activity of Geobacter Species to Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer

    SciTech Connect (OSTI)

    Anderson, R. T.; Vrionis, Helen A.; Ortiz-Bernad, Irene; Resch, Charles T.; Long, Philip E.; Dayvault, R. D.; Karp, Ken; Marutzky, Sammy J.; Metzler, Donald R.; Peacock, Aaron D.; White, David C.; Lowe, Mary; Lovley, Derek R.

    2003-10-01T23:59:59.000Z

    The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 _M in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant, and Geobacter species became a minor component of the community. This apparent switch from Fe(III) reduction to sulfate reduction as the terminal electron accepting process for the oxidation of the injected acetate was associated with an increase in uranium concentration in the groundwater. These results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species.

  18. Removal of uranium from aqueous HF solutions

    DOE Patents [OSTI]

    Pulley, Howard (West Paducah, KY); Seltzer, Steven F. (Paducah, KY)

    1980-01-01T23:59:59.000Z

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  19. Annual status report on the Uranium Mill Tailings Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1989-12-01T23:59:59.000Z

    This eleventh annual status report summarizes activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project undertaken during Fiscal Year (FY) 1989 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1990 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95--604. The DOE will continue to submit an annual report through project completion in order to inform the public of yearly project status. Title I of the UMTRCA authorizes the DOE, in cooperation with affected states and Indian tribes within whose boundaries designated uranium processing sites are located, to provide a program of assessment and remedial action at such sites. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive materials located on the inactive uranium processing sites in a safe and environmentally sound manner and to minimize or eliminate potential radiation health hazards. Commercial and residential properties in the vicinity of designated processing sites that are contaminated with material from the sites, herein referred to as vicinity properties,'' are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated vicinity properties located in 10 states, and the vicinity properties associated with Edgemont, South Dakota, an inactive uranium mill currently owned by the Tennessee Valley Authority (TVA).

  20. Criteria for the safe storage of enriched uranium at the Y-12 Plant

    SciTech Connect (OSTI)

    Cox, S.O.

    1995-07-01T23:59:59.000Z

    Uranium storage practices at US Department of Energy (DOE) facilities have evolved over a period spanning five decades of programmatic work in support of the nuclear deterrent mission. During this period, the Y-12 Plant in Oak Ridge, Tennessee has served as the principal enriched uranium facility for fabrication, chemical processing, metallurgical processing and storage. Recent curtailment of new nuclear weapons production and stockpile reduction has created significant amounts of enriched uranium available as a strategic resource which must be properly and safely stored. This standard specifies criteria associated with the safe storage of enriched uranium at the Y-12 Plant. Because programmatic needs, compliance regulations and desirable materials of construction change with time, it is recommended that these standards be reviewed and amended periodically to ensure that they continue to serve their intended purpose.

  1. The removal of uranium from acidic media using ion exchange and/or extraction chromatography

    SciTech Connect (OSTI)

    FitzPatrick, J.R.; Schake, B.S.; Murphy, J.; Holmes, K; West, M.H.

    1996-06-01T23:59:59.000Z

    The separation and purification of uranium from either nitric acid or hydrochloric acid media can be accomplished by using either solvent extraction or ion-exchange. Over the past two years at Los Alamos, emerging programs are focused on recapturing the expertise required to do limited, small-quantity processing of enriched uranium. During this period of time, we have been investigating ion-addition, waste stream polishing is associated with this effort in order to achieve more complete removal of uranium prior to recycle of the acid. Extraction chromatography has been demonstrated to further polish the uranium from both nitric and hydrochloric acid media thus allowing for a more complete recovery of the actinide material and creation of less waste during the processing steps.

  2. Uranium 2014 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  3. Uranium 2011 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01T23:59:59.000Z

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  4. Uranium 2005 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2006-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  5. Preparation and Characterization of Uranium Oxides in Support of the K Basin Sludge Treatment Project

    SciTech Connect (OSTI)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2008-07-08T23:59:59.000Z

    Uraninite (UO2) and metaschoepite (UO3·2H2O) are the uranium phases most frequently observed in K Basin sludge. Uraninite arises from the oxidation of uranium metal by anoxic water and metaschoepite arises from oxidation of uraninite by atmospheric or radiolytic oxygen. Studies of the oxidation of uraninite by oxygen to form metaschoepite were performed at 21°C and 50°C. A uranium oxide oxidation state characterization method based on spectrophotometry of the solution formed by dissolving aqueous slurries in phosphoric acid was developed to follow the extent of reaction. This method may be applied to determine uranium oxide oxidation state distribution in K Basin sludge. The uraninite produced by anoxic corrosion of uranium metal has exceedingly fine particle size (6 nm diameter), forms agglomerates, and has the formula UO2.004±0.007; i.e., is practically stoichiometric UO2. The metaschoepite particles are flatter and wider when prepared at 21°C than the particles prepared at 50°C. These particles are much smaller than the metaschoepite observed in prolonged exposure of actual K Basin sludge to warm moist oxidizing conditions. The uraninite produced by anoxic uranium metal corrosion and the metaschoepite produced by reaction of uraninite aqueous slurries with oxygen may be used in engineering and process development testing. A rapid alternative method to determine uranium metal concentrations in sludge also was identified.

  6. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01T23:59:59.000Z

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  7. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect (OSTI)

    Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2008-01-01T23:59:59.000Z

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

  8. Evaluation of steelmaking processes

    SciTech Connect (OSTI)

    Fruehan, R.J. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)

    1994-01-01T23:59:59.000Z

    Objective of the AISI Direct Steelmaking Program is to develop a process for producing steel directly from ore and coal; the process should be less capital intensive, consume less energy, and have higher productivity. A task force was formed to examine available processes: trough, posthearth, IRSID, Electric Arc Furnace, energy optimizing furnace. It is concluded that there is insufficient incentive to replace a working BOF with any of these processes to refine hot metal; however, if new steelmaking capacity is required, IRSID and EOF should be considered. A fully continuous process should not be considered until direct ironmaking and continuous refining are perfected.

  9. Uranium-233 purification and conversion to stabilized ceramic grade urania for LWBR fuel fabrication (LWBR Development Program)

    SciTech Connect (OSTI)

    Lloyd, R.

    1980-10-01T23:59:59.000Z

    High purity ceramic grade urania (/sup 233/UO/sub 2/) used in manufacturing the fuel for the Light Water Breeder Reactor (LWBR) core was made from uranium-233 that was obtained by irradiating thoria under special conditions to result in not more than 10 ppM of uranium-232 in the recovered uranium-233 product. A developmental study established the operating parameters of the conversion process for transforming the uranium-233 into urania powder with the appropriate chemical and physical attributes for use in fabricating the LWBR core fuel. This developmental study included the following: (a) design of an ion exchange purification process for removing the gamma-emitting alpha-decay daughters of uranium-232, to reduce the gamma-radiation field of the uranium-233 during LWBR fuel manufacture; (b) definition of the parameters for precipitating the uranium-233 as ammonium uranate (ADU) and for reducing the ADU with hydrogen to yield a urania conversion product of the proper particle size, surface area and sinterability for use in manufacturing the LWBR fuel; (c) establishment of parameters and design of equipment for stabilizing the urania conversion product to prevent it from undergoing excessive oxidation on exposure to the air during LWBR fuel manufacturing operations; and (d) development of a procedure and a facility to reprocess the unirradiated thoria-urania fuel scrap from the LWBR core manufacturing operations to recover the uranium-233 and convert it into high purity ceramic grade urania for LWBR core fabrication.

  10. Evaluation of Background Concentrations of Contaminants in an Unusual Desert Arroyo Near a Uranium Mill Tailings Disposal Cell - 12260

    SciTech Connect (OSTI)

    Bush, Richard P. [U.S. Department of Energy Office of Legacy Management (United States); Morrison, Stan J. [S.M. Stoller Corporation (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages 27 sites that have groundwater containing uranium concentrations above background levels. The distal portions of the plumes merge into background groundwater that can have 50 ?g/L or more uranium. Distinguishing background from site-related uranium is often problematic, but it is critical to determining if remediation is warranted, establishing appropriate remediation goals, and evaluating disposal cell performance. In particular, groundwater at disposal cells located on the upper Cretaceous Mancos Shale may have relatively high background concentrations of uranium. Elevated concentrations of nitrate, selenium, and sulfate accompany the uranium. LM used geologic analogs and uranium isotopic signatures to distinguish background groundwater from groundwater contaminated by a former uranium processing site. The same suite of contaminants is present in groundwater near former uranium processing sites and in groundwater seeps emanating from the Mancos Shale over a broad area. The concentrations of these contaminants in Many Devils Wash, located near LM's Shiprock disposal cell, are similar to those in samples collected from many Mancos seeps, including two analog sites that are 8 to 11 km from the disposal cell. Samples collected from Many Devils Wash and the analog sites have high AR values (about 2.0)-in contrast, groundwater samples collected near the tailings disposal cell have AR values near 1.0. These chemical signatures raise questions about the origin of the contamination seeping into Many Devils Wash. (authors)

  11. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  12. Continuing investigations for technology assessment of /sup 99/Mo production from LEU (low enriched Uranium) targets

    SciTech Connect (OSTI)

    Vandergrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

    1987-01-01T23:59:59.000Z

    Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from /sup 99/Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of /sup 99/Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product /sup 99/Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent /sup 99/Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved.

  13. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Goodknight, C.S.; Burger, J.A. (comps.) [comps.

    1982-10-01T23:59:59.000Z

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1/sup 0/ x 2/sup 0/ quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed.

  14. Criticality concerns in cleaning large uranium hexafluoride cylinders

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01T23:59:59.000Z

    Cleaning large cylinders used to transport low-enriched uranium hexafluoride (UF{sub 6}) presents several challenges to nuclear criticality safety. This paper presents a brief overview of the cleaning process, the criticality controls typically employed and their bases. Potential shortfalls in implementing these controls are highlighted, and a simple example to illustrate the difficulties in complying with the Double Contingency Principle is discussed. Finally, a summary of recommended criticality controls for large cylinder cleaning operations is presented.

  15. Uranio impoverito: perch'e? (Depleted uranium: why?)

    E-Print Network [OSTI]

    D'Abramo, G

    2003-01-01T23:59:59.000Z

    In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of the author of understanding the reasons of the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

  16. Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs

    E-Print Network [OSTI]

    Matthews, Isaac A

    2010-01-01T23:59:59.000Z

    An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

  17. Method for the production of mineral wool and iron from serpentine ore

    SciTech Connect (OSTI)

    O'Connor, William K. (Albany, OR); Rush, Gilbert E. (Scio, OR); Soltau, Glen F. (Lebanon, OR)

    2011-10-11T23:59:59.000Z

    Magnesium silicate mineral wools having a relatively high liquidus temperature of at least about 1400.degree. C. and to methods for the production thereof are provided. The methods of the present invention comprise melting a magnesium silicate feedstock (e.g., comprising a serpentine or olivine ore) having a liquidus temperature of at least about 1400.degree. C. to form a molten magnesium silicate, and subsequently fiberizing the molten magnesium silicate to produce a magnesium silicate mineral wool. In one embodiment, the magnesium silicate feedstock contains iron oxide (e.g., up to about 12% by weight). Preferably, the melting is performed in the presence of a reducing agent to produce an iron alloy, which can be separated from the molten ore. Useful magnesium silicate feedstocks include, without limitation, serpentine and olivine ores. Optionally, silicon dioxide can be added to the feedstock to lower the liquidus temperature thereof.

  18. Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths

    E-Print Network [OSTI]

    Hwang, Chiachi

    2009-01-01T23:59:59.000Z

    problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactive

  19. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01T23:59:59.000Z

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  20. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01T23:59:59.000Z

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  1. L'URANIUM ET LES ARMES L'URANIUM APPAUVRI. Pierre Roussel*

    E-Print Network [OSTI]

    Boyer, Edmond

    L'URANIUM ET LES ARMES � L'URANIUM APPAUVRI. Pierre Roussel* Institut de Physique Nucléaire, CNRS massivement dans la guerre du Golfe, des obus anti- chars ont été utilisés, avec des "charges d'uranium, avec une charge de 300 g d'uranium et tiré par des avions, l'autre de 120 mm de diamètre avec une

  2. Prospects for the recovery of uranium from seawater

    SciTech Connect (OSTI)

    Best, F.R.; Driscoll, M.

    1986-04-01T23:59:59.000Z

    A computer program entitled URPE (Uranium Recovery Performance and Economics) has been developed to simulate the engineering performance and provide an economic analysis of a plant recovering uranium from seawater. The conceptual system design used as the focal point for the more general analysis consists of a floating oil-rig type of platform single-point moored in an open ocean current, using either high-volume-low-head axial pumps or the velocity head of the ambient ocean current to force seawater through a mass transfer medium (hydrous titanium oxide (HTO) coated onto particle beds or stacked tubes). Uranium is recovered from the seawater by an adsorption process, and later eluted from the adsober by an ammonium carbonate solution. A multiproduct cogenerating plant on board the platform burns coal to raise steam for electricity generation, desalination, and process heat requirements. Scrubbed stack gas from the plant is processed to recover carbon dioxide for chemical make-up needs. The equilibrium isotherm and the diffusion constant for the uranyl-HTO system, which are needed for bed performance calculations, have been calculated based on the data reported in the literature. In addition, a technique for calculating the rate constant of a fixed-bed adsoorbing system has been developed for use with Thomas' solution for predicting fixed-bed performance.

  3. Uranium Mill Tailings Remedial Action Project (UMTRAP) Public Participation Plan

    SciTech Connect (OSTI)

    NONE

    1981-05-01T23:59:59.000Z

    The purpose of this Public Participation Plan is to explain the Department of Energy`s plan for involving the public in the decision-making process related to the Uranium Mill Tailings Remedial Action (UMTRA) Project. This project was authorized by Congress in the Uranium Mill Tailings Radiation Control Act of 1978. The Act provides for a cooperative effort with affected states and Indian tribes for the eventual cleanup of abandoned or inactive uranium mill tailings sites, which are located in nine western states and in Pennsylvania. Section 111 of the Act states, ``in carrying out the provisions of this title, including the designation of processing sites, establishing priorities for such sites, the selection of remedial actions and the execution of cooperative agreements, the Secretary (of Energy), the Administrator (of the Environmental Protection Agency), and the (Nuclear Regulatory) Commission shall encourage public participation and, where appropriate, the Secretary shall hold public hearings relative to such matters in the States where processing sites and disposal sites are located.`` The objective of this document is to show when, where, and how the public will be involved in this project.

  4. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    SciTech Connect (OSTI)

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

    2013-02-01T23:59:59.000Z

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  5. New type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater

    SciTech Connect (OSTI)

    Omichi, H.; Katakai, A.; Sugo, T.; Okamoto, J.

    1985-01-01T23:59:59.000Z

    A new type of adsorbent containing amidoxime groups for the recovery of uranium from seawater was synthesized by the radiation-induced graft polymerization of acrylonitrile onto polymeric fiber followed by amidoximation with hydroxylamine. When amidoxime groups were introduced superficially on the fiber, the amount of uranium adsorbed by the amidoxime groups was higher than that with the amidoxime groups introduced homogeneously in the fiber. The introduction of the poly(acrylic acid) chain and the increase in temperature and flow rate in the adsorption process were effective in increasing the amount of adsorbed uranium. Although alkali metals and alkaline earth metals were found in the adsorbent, the concentration factors for these metals were less than 1/10/sup 3/ of that for uranium. The present adsorbent had a high stability to various treatments such as contact with alkali and seawater. 24 references, 9 figures, 3 tables.

  6. URANIUM AND PLUTONIUM LOADING ONTO MONOSODIUM TITANATE MST IN TANK 50H

    SciTech Connect (OSTI)

    Hobbs, D

    2006-08-31T23:59:59.000Z

    A possible disposition pathway for the residue from the abandoned In-Tank Precipitation (ITP) sends the material from Tank 48H in increments to Saltstone via aggregation in Tank 50H. After entering Tank 50H, the amount of fissile material sorbed on MST may increase as a result of contacting waste solutions with dissolved uranium and plutonium. SRNL recommends that nuclear criticality safety evaluations use uranium and plutonium loadings onto MST of 14.0 {+-} 1.04 weight percent (wt %) for uranium and 2.79 {+-} 0.197 wt % for plutonium given the assumed streams defined in this report. These values derive from recently measured for conditions relevant to the Actinide Removal Process (ARP) and serve as conservative upper bounds for uranium and plutonium loadings during the proposed transfers of MST from Tank 48H into Tank 50H.

  7. Uranium in prehistoric Indian pottery 

    E-Print Network [OSTI]

    Filberth, Ernest William

    1976-01-01T23:59:59.000Z

    . 2 to 25 ppm (Katz 1951). From thermal equilibrium calculations on the earth's core, mantle, and crust, and through actual analysis of samples, uranium was found to be concentrated in the earth's crust. According to modern geological thought..., as the uniformly molten earth cooled, its matter became separated into one vapor phase and three concentric condensed phases: the siderosphere (the earth's core, probably primarily molten iron), the chalcosphere forming the intermediate shell (the mantle...

  8. Standard specification for uranium hexafluoride enriched to less than 5 % 235U

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This specification covers nuclear grade uranium hexafluoride (UF6) that either has been processed through an enrichment plant, or has been produced by the blending of Highly Enriched Uranium with other uranium to obtain uranium of any 235U concentration below 5 % and that is intended for fuel fabrication. The objectives of this specification are twofold: (1) To define the impurity and uranium isotope limits for Enriched Commercial Grade UF6 so that, with respect to fuel design and manufacture, it is essentially equivalent to enriched uranium made from natural UF6; and (2) To define limits for Enriched Reprocessed UF6 to be expected if Reprocessed UF6 is to be enriched without dilution with Commercial Natural UF6. For such UF6, special provisions, not defined herein, may be needed to ensure fuel performance and to protect the work force, process equipment, and the environment. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched UF6 that is to be used in the pro...

  9. Syntectonic mobility of supergene nickel ores of New Caledonia (Southwest Pacific). Evidence from faulted regolith and garnierite veins.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Syntectonic mobility of supergene nickel ores of New Caledonia (Southwest Pacific). Evidence from. dominique.cluzel@univ-orleans.fr Running title: Syntectonic mobility of supergene nickel ores Abstract Supergene nickel deposits of New Caledonia that have been formed in the Neogene by weathering of obducted

  10. AGING PERFORMANCE OF VITON GLT O-RINGS IN RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect (OSTI)

    Skidmore, E; Kerry Dunn, K; Elizabeth Hoffman, E; Elise Fox, E; Kathryn Counts, K

    2007-05-07T23:59:59.000Z

    Radioactive material packages used for transportation of plutonium-bearing materials often contain multiple O-ring seals for containment. Packages such as the Model 9975 are also being used for interim storage of Pu-bearing materials at the Savannah River Site (SRS). One of the seal materials used in such packages is Viton{reg_sign} GLT fluoroelastomer. The aging behavior of containment vessel O-rings based on Viton{reg_sign} GLT at long-term containment term storage conditions is being characterized to assess its performance in such applications. This paper summarizes the program and test results to date.

  11. Review of uranium bioassay techniques

    SciTech Connect (OSTI)

    Bogard, J.S.

    1996-04-01T23:59:59.000Z

    A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

  12. Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium(III)

    E-Print Network [OSTI]

    Meyer, Karsten

    , we are currently investigating the coordina- tion chemistry of uranium metal centers with classicalUranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium, and Karsten Meyer* Contribution from the Department of Chemistry and Biochemistry, UniVersity of California

  13. Radiation measurements of uranium ingots from the electrometallurgical treatment of spent fuel.

    SciTech Connect (OSTI)

    Westphal, B. R.; Liaw, J. R.; Krsul, J. R.; Maddison, D. W.; Jensen, B. A.

    2003-03-24T23:59:59.000Z

    Radiation measurements and gamma spectroscopy analyses were made on numerous uranium ingots produced during the treatment of Experimental Breeder Reactor-II (EBR-II) spent nuclear fuel. The objective of these measurements was to provide background data for shielding concerns and potential process optimization. The uranium ingots resulted from the processing of both driver and blanket fuel by the electrometallurgical treatment process. The observed variation in the measurements was traced to the levels of certain fission product residues that remained in the uranium ingots produced during spent fuel treatment. A minor process change to hold the material at an elevated temperature for a specified length of time was found to significantly reduce concentrations of high-activity fission products and, thus the radiation field.

  14. Radiological survey of the inactive uranium-mill tailings at Green River, Utah

    SciTech Connect (OSTI)

    Haywood, F.F.; Christian, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Lorenzo, D.; Shinpaugh, W.H.

    1980-03-01T23:59:59.000Z

    The uranium-mill tailings at Green River, Utah, are relatively low in /sup 226/Ra content and concentration (20 Ci and 140 pCi/g, respectively) because the mill was used to upgrade the uranium ore by separating the sand and slime fractions; most of the radium was transported along with the slimes to another mill site. Spread of tailings was observed in all directions, but near-background gamma exposure rates were reached at distances of 40 to 90 m from the edge of the pile. Water erosion of the tailings is evident and, since a significant fraction of the tailings pile lies in Brown's Wash, the potential exists for repetition of the loss of a large quantity of tailings such as occurred during a flood in 1959. In general, the level of surface contamination was low at this site, but some areas in the mill site, which were being used for nonuranium work, have gamma-ray exposure rates up to 143 ..mu..R/hr.

  15. Statistical data of the uranium industry

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Statistical Data of the Uranium Industry is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1981. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining, and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office (GJAO) of the US Department of Energy. The production, reserves, and drilling information is reported in a manner which avoids disclosure of proprietary information.

  16. Review The Toxicity of Depleted Uranium

    E-Print Network [OSTI]

    Wayne Briner

    Abstract: Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  17. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    SciTech Connect (OSTI)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01T23:59:59.000Z

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  18. Distribution of uranium-bearing phases in soils from Fernald

    SciTech Connect (OSTI)

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1993-12-31T23:59:59.000Z

    Electron beam techniques have been used to characterize uranium-contaminated soils and the Fernald Site, Ohio. Uranium particulates have been deposited on the soil through chemical spills and from the operation of an incinerator plant on the site. The major uranium phases have been identified by electron microscopy as uraninite, autunite, and uranium phosphite [U(PO{sub 3}){sub 4}]. Some of the uranium has undergone weathering resulting in the redistribution of uranium within the soil.

  19. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1993-01-01T23:59:59.000Z

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  20. Autonomy and operator-assistance technologies optimize mining processes and mining equipment operation.

    E-Print Network [OSTI]

    Gupta, Abhinav

    operation. · Drills, miners and shearers are guided with laser precision for maximum extraction from the ore#12;· Autonomy and operator-assistance technologies optimize mining processes and mining equipment

  1. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Environmental Management (EM)

    Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

  2. Legacy Management Work Progresses on Defense-Related Uranium...

    Office of Environmental Management (EM)

    LM visited 84 defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global positioning...

  3. Uncertainty analysis of multi-rate kinetics of uranium desorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Abstract: A...

  4. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers [EERE]

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  5. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6...

    Energy Savers [EERE]

    Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and...

  6. Geochemical Controls on Contaminant Uranium in Vadose Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls on Contaminant Uranium in Vadose Hanford Formation Sediments at the 200 Area and 300 Area, Hanford Site, Geochemical Controls on Contaminant Uranium in Vadose Hanford...

  7. Microbial Reduction of Uranium under Iron- and Sulfate-reducing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium under Iron- and Sulfate-reducing Conditions: Effect of Amended Goethite on Microbial Community Microbial Reduction of Uranium under Iron- and Sulfate-reducing Conditions:...

  8. Microscopic Reactive Diffusion of Uranium in the Contaminated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactive Diffusion of Uranium in the Contaminated Sediments at Hanford, United States. Microscopic Reactive Diffusion of Uranium in the Contaminated Sediments at Hanford, United...

  9. Y-12 uranium storage facility?a dream come true?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ranks and actually provides the first impedance for the just finished highly enriched uranium storage facility. Recently the Highly Enriched Uranium Material Facility was...

  10. Composition, stability, and measurement of reduced uranium phases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition, stability, and measurement of reduced uranium phases for groundwater bioremediation at Old Rifle, CO. Composition, stability, and measurement of reduced uranium phases...

  11. Record of Decision for the Uranium Leasing Program Programmatic...

    Energy Savers [EERE]

    Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact...

  12. Sequestering Uranium from Seawater: Binding Strength and Modes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl...

  13. alloyed uranium transformation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding... Helmreich, Grant...

  14. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

  15. acute uranium intoxication: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consists of replacing the water with 20 Garland Jr., Theodore 8 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging...

  16. alloyed uranium sicral: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding... Helmreich, Grant...

  17. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

    Office of Environmental Management (EM)

    Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

  18. advanced oxidation process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new tools for nuclear forensic science to facilitate the identification of chemical process history in uranium oxides. Nuclear forensics (more) Plaue, Jonathan 2013-01-01...

  19. advanced oxidation processes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new tools for nuclear forensic science to facilitate the identification of chemical process history in uranium oxides. Nuclear forensics (more) Plaue, Jonathan 2013-01-01...

  20. Investigation of Uranium Polymorphs

    SciTech Connect (OSTI)

    Sweet, Lucas E.; Henager, Charles H.; Hu, Shenyang Y.; Johnson, Timothy J.; Meier, David E.; Peper, Shane M.; Schwantes, Jon M.

    2011-08-01T23:59:59.000Z

    The UO3-water system is complex and has not been fully characterized, even though these species are common throughout the nuclear fuel cycle. As an example, most production schemes for UO3 result in a mixture of up to six or more different polymorphic phases, and small differences in these conditions will affect phase genesis that ultimately result in measureable changes to the end product. As a result, this feature of the UO3-water system may be useful as a means for determining process history. This research effort attempts to better characterize the UO3-water system with a variety of optical techniques for the purpose of developing some predictive capability for estimating process history in polymorphic phases of unknown origin. Three commercially relevant preparation methods for the production of UO3 were explored. Previously unreported low temperature routes to ?- and ?-UO3 were discovered. Raman and fluorescence spectroscopic libraries were established for pure and mixed polymorphic forms of UO3 in addition to the common hydrolysis products of UO3. An advantage of the sensitivity of optical fluorescence microscopy over XRD has been demonstrated. Preliminary aging studies of the ? and ? forms of UO3 have been conducted. In addition, development of a 3-D phase field model used to predict phase genesis of the system was initiated. Thermodynamic and structural constants that will feed the model have been gathered from the literature for most of the UO3 polymorphic phases.

  1. Multicomponent reactive transport modeling of uranium bioremediation field experiments

    SciTech Connect (OSTI)

    Fang, Yilin; Yabusaki, Steven B.; Morrison, Stan J.; Amonette, James E.; Long, Philip E.

    2009-10-15T23:59:59.000Z

    Biostimulation field experiments with acetate amendment are being performed at a former uranium mill tailings site in Rifle, Colorado, to investigate subsurface processes controlling in situ bioremediation of uranium-contaminated groundwater. An important part of the research is identifying and quantifying field-scale models of the principal terminal electron-accepting processes (TEAPs) during biostimulation and the consequent biogeochemical impacts to the subsurface receiving environment. Integrating abiotic chemistry with the microbially mediated TEAPs in the reaction network brings into play geochemical observations (e.g., pH, alkalinity, redox potential, major ions, and secondary minerals) that the reactive transport model must recognize. These additional constraints provide for a more systematic and mechanistic interpretation of the field behaviors during biostimulation. The reaction network specification developed for the 2002 biostimulation field experiment was successfully applied without additional calibration to the 2003 and 2007 field experiments. The robustness of the model specification is significant in that 1) the 2003 biostimulation field experiment was performed with 3 times higher acetate concentrations than the previous biostimulation in the same field plot (i.e., the 2002 experiment), and 2) the 2007 field experiment was performed in a new unperturbed plot on the same site. The biogeochemical reactive transport simulations accounted for four TEAPs, two distinct functional microbial populations, two pools of bioavailable Fe(III) minerals (iron oxides and phyllosilicate iron), uranium aqueous and surface complexation, mineral precipitation, and dissolution. The conceptual model for bioavailable iron reflects recent laboratory studies with sediments from the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site that demonstrated that the bulk (~90%) of Fe(III) bioreduction is associated with the phyllosilicates rather than the iron oxides. The uranium reaction network includes a U(VI) surface complexation model based on laboratory studies with Old Rifle UMTRA sediments and aqueous complexation reactions that include ternary complexes (e.g., calcium-uranyl-carbonate). The bioreduced U(IV), Fe(II), and sulfide components produced during the experiments are strongly associated with the solid phases and may play an important role in long-term uranium immobilization.

  2. Standard specification for sintered (Uranium-Plutonium) dioxide pellets

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2001-01-01T23:59:59.000Z

    1.1 This specification covers finished sintered and ground (uranium-plutonium) dioxide pellets for use in thermal reactors. It applies to uranium-plutonium dioxide pellets containing plutonium additions up to 15 % weight. This specification may not completely cover the requirements for pellets fabricated from weapons-derived plutonium. 1.2 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aware of and conform to all applicable international, federal, state, and local regulations pertaining to possessing, processing, shipping, or using source or special nuclear material. Examples of U.S. government documents are Code of Federal Regulations Title 10, Part 50Domestic Licensing of Production and Utilization Facilities; Code of Federal Regulations Title 10, Part 71Packaging and Transportation of Radioactive Material; and Code of Federal Regulations Tit...

  3. 1. Department, Course Number, Title ORE 608, Probability and Statistics for Ocean Engineers

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    1. Department, Course Number, Title ORE 608, Probability and Statistics for Ocean Engineers 2-spectra, and practical applications in ocean engineering. Pre: 607 or consent. 4. Prerequisites Calculus Probability and ocean engineering. 7. Topics Covered Random Variables Monte Carlo Methods Probability Density Functions

  4. 1. Department, Course Number, Title ORE 766 Numerical Methods in Ocean Engineering

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    1. Department, Course Number, Title ORE 766 Numerical Methods in Ocean Engineering 2. Designation of numerical methods for simulating and solving ocean engineering problems. Topics include: Mathematical, & engineering Program Outcome 5: Use of latest tools in ocean engineering Program Outcome 6: Problem formulation

  5. Isotope systematics of ore-bearing granites and host rocks of the Orlovka-Spokoinoe mining

    E-Print Network [OSTI]

    Siebel, Wolfgang

    Isotope systematics of ore-bearing granites and host rocks of the Orlovka-Spokoinoe mining district and Spokoinoe granite massifs and their host rocks in the Orlovka- Spokoinoe mining district, Eastern Transbaikalia, Russia. Pb isotope analyses indicate one common Pb source for all three granite massifs

  6. REVIEW OF AGING DATA ON EPDM O-RINGS IN THE H1616 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Skidmore, E.

    2012-03-27T23:59:59.000Z

    Currently, all H1616 shipping package containers undergo annual re-verification testing, including containment vessel leak testing to verify leak-tightness (<1 x 10{sup -7} ref cc/sec air) as per ANSI N14.5. The purpose of this literature review is to supplement aging studies currently being performed by SRNL on the EPDM O-rings to provide the technical basis for extending annual re-verification testing for the H1616 shipping package and to predict the life of the seals at bounding service conditions. The available data suggest that the EPDM O-rings can retain significant mechanical properties and sealing force at or below bounding service temperatures (169 F or 76 C) beyond the 1 year maintenance period. Interpretation of available data suggests that a service life of at least 2 years and potentially 4-6 years may be possible at bounding temperatures. Seal lifetimes at lower, more realistic temperatures will likely be longer. Being a hydrocarbon elastomer, EPDM O-rings may exhibit an inhibition period due to the presence of antioxidants. Once antioxidants are consumed, mechanical properties and seal performance could decline at a faster rate. Testing is being performed to validate the assumptions outlined in this report and to assess the long-term performance of O-ring seals under actual service conditions.

  7. New method of uranium and plutonium extraction in reprocessing of the spent nuclear fuel

    SciTech Connect (OSTI)

    Volk, V.; Dvoeglazov, K.; Veslov, S.; Rubisov, V. [JSC - VNIINM Bochvar, Moscow (Russian Federation); Alekseenko, V. [FSUE - Federal Nuclear and Radiation Safety Center, Moscow (Russian Federation); Krivitsky, Y.; Alekseenko, S.; Bondin, V. [FSUE - Mining and Chemical Combine, Zheleznogorsk (Russian Federation)

    2013-07-01T23:59:59.000Z

    It is shown that a two-stage process of uranium and plutonium extraction during the reprocessing of spent nuclear fuel solves the problem of obtaining a high-concentrated extract without increasing the loss risk with raffinate and avoids the accumulation of plutonium in the unit. A possible further optimization of the process would be the creation of steps inside the stages.

  8. Selection of a management strategy for depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

    1995-09-06T23:59:59.000Z

    A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

  9. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    Coordination Chemistry of Uranium………………………………….11 1.4researchers from uranium chemistry. Fortunately, despiteclassical coordination chemistry of uranium has flourished

  10. Uranium Management - Preservation of a National Asset

    SciTech Connect (OSTI)

    Jackson, J. D.; Stroud, J. C.

    2002-02-27T23:59:59.000Z

    The Uranium Management Group (UMG) was established at the Department of Energy's (DOE's) Oak Ridge Operations in 1999 as a mechanism to expedite the de-inventory of surplus uranium from the Fernald Environmental Management Project site. This successful initial venture has broadened into providing uranium material de-inventory and consolidation support to the Hanford site as well as retrieving uranium materials that the Department had previously provided to universities under the loan/lease program. As of December 31, 2001, {approx} 4,300 metric tons of uranium (MTU) have been consolidated into a more cost effective interim storage location at the Portsmouth site near Piketon, OH. The UMG continues to uphold its corporate support mission by promoting the Nuclear Materials Stewardship Initiative (NMSI) and the twenty-five (25) action items of the Integrated Nuclear Materials Management Plan (1). Before additional consolidation efforts may commence to remove excess inventory from Environmental Management closure sites and universities, a Programmatic Environmental Assessment (PEA) must be completed. Two (2) noteworthy efforts currently being pursued involve the investigation of re-use opportunities for surplus uranium materials and the recovery of usable uranium from the shutdown Portsmouth cascade. In summary, the UMG is available as a DOE complex-wide technical resource to promote the responsible management of surplus uranium.

  11. Model-Based Analysis of the Role of Biological, Hydrological and Geochemical Factors Affecting Uranium Bioremediation

    SciTech Connect (OSTI)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2011-01-24T23:59:59.000Z

    Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitance of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of initial cell concentration and flow rate on U(VI) reduction.

  12. Molten-Salt Depleted-Uranium Reactor

    E-Print Network [OSTI]

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01T23:59:59.000Z

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  13. Thermodynamic data for uranium fluorides

    SciTech Connect (OSTI)

    Leitnaker, J.M.

    1983-03-01T23:59:59.000Z

    Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF/sub 4/ and UF/sub 6/, including UF/sub 4/ (solid and gas), U/sub 4/F/sub 17/ (solid), U/sub 2/F/sub 9/ (solid), UF/sub 5/ (solid and gas), U/sub 2/F/sub 10/ (gas), and UF/sub 6/ (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior.

  14. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium Production

  15. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium

  16. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9 2014

  17. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9

  18. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium911 2014

  19. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium911

  20. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9117 2014