Sample records for uranium natural uranium

  1. EA-1290: Disposition of Russian Federation Titled Natural Uranium

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United...

  2. Microbial Janitors: Enabling natural microbes to clean up uranium contamination

    E-Print Network [OSTI]

    of Energy's Environmental Remediation Sciences Program. Q: How can uranium be removed or neutralized so in the contaminated subsurface and engineering the subsurface environment to stimulate nitrate removal and uraniumMicrobial Janitors: Enabling natural microbes to clean up uranium contamination Oak Ridge

  3. Immobilization of uranium in contaminated soil by natural apatite addition

    SciTech Connect (OSTI)

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa; Iles, Deana; Zildzovic, Snezana [Institute for Technology of Nuclear and other Mineral Raw Materials, Franche d' Epere 86, Belgrade (Serbia)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P{sub 2}O{sub 5} in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uranium determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P{sub 2}O{sub 5} in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)

  4. Evolution of isotopic composition of reprocessed uranium during the multiple recycling in light water reactors with natural uranium feed

    SciTech Connect (OSTI)

    Smirnov, A. Yu., E-mail: a.y.smirnoff@rambler.ru; Sulaberidze, G. A. [National Research Nuclear University MEPhI (Russian Federation); Alekseev, P. N.; Dudnikov, A. A.; Nevinitsa, V. A., E-mail: neva@dhtp.kiae.ru; Proselkov, V. N.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

    2012-12-15T23:59:59.000Z

    A complex approach based on the consistent modeling of neutron-physics processes and processes of cascade separation of isotopes is applied for analyzing physical problems of the multiple usage of reprocessed uranium in the fuel cycle of light water reactors. A number of scenarios of multiple recycling of reprocessed uranium in light water reactors are considered. In the process, an excess absorption of neutrons by the {sup 236}U isotope is compensated by re-enrichment in the {sup 235}U isotope. Specific consumptions of natural uranium for re-enrichment of the reprocessed uranium depending on the content of the {sup 232}U isotope are obtained.

  5. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  6. URANIUM IN ALKALINE ROCKS

    E-Print Network [OSTI]

    Murphy, M.

    2011-01-01T23:59:59.000Z

    chemical elements uranium zirconium niobium beryllium rarerare earths, niobium, zirconium, uranium, and thorium.respect, uranium and thorium are niobium in carbonatitcs.

  7. WISE Uranium Project - Fact Sheet

    E-Print Network [OSTI]

    Hazards From Depleted

    t in the depleted uranium. For this purpose, we first need to calculate the mass balance of the enrichment process. We then calculate the inhalation doses from the depleted uranium and compare the dose contributions from the nuclides of interest. Mass balance for uranium enrichment at Paducah [DOE_1984, p.35] Feed Product Tails Other Mass [st] 758002 124718 621894 11390 Mass fraction 100.00% 16.45% 82.04% 1.50% Concentration of plutonium in tails (depleted uranium) from enrichment of reprocessed uranium, assuming that all plutonium were transfered to the tails: Concentration of neptunium in tails from enrichment of reprocessed uranium uranium, assuming that all neptunium were transfered to the tails: - 2 - Schematic of historic uranium enrichment process at Paducah [DOE_1999b] - -7 For comparison, we first calculate the inhalation dose from depleted uranium produced from natural uranium. We assume that the short-lived decay products have reached secular equilibrium with th

  8. Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov (indexed) [DOE]

    four alternatives that would eliminate the weapons-usability of HEU by blending it with depleted uranium, natural uranium, or low-enriched uranium (LEU) to create LEU, either as...

  9. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  10. URANIUM IN ALKALINE ROCKS

    E-Print Network [OSTI]

    Murphy, M.

    2011-01-01T23:59:59.000Z

    Greenland," in Uranium Exploration Geology, Int. AtomicMigration of Uranium and Thorium—Exploration Significance,"interesting for future uranium exploration. The c r i t e r

  11. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01T23:59:59.000Z

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  12. Safe Operating Procedure SAFETY PROTOCOL: URANIUM

    E-Print Network [OSTI]

    Farritor, Shane

    involve the use of natural or depleted uranium. Natural isotopes of uranium are U-238, U-235 and U-234 (see Table 1 for natural abundances). Depleted uranium contains less of the isotopes: U-235 and U-234. The specific activity of depleted uranium (5.0E-7 Ci/g) is less than that of natural uranium (7.1E-7 Ci

  13. Introduction Uranium is a common element in nature, and has been used for centuries as a coloring agent in

    E-Print Network [OSTI]

    in a full-blown exploration and mining boom, starting immediately after World War II and making uranium (U.S. DOE/EIA 2003a, 2003b, 2006). Another legacy of uranium exploration, mining, and ore processingIntroduction Uranium is a common element in nature, and has been used for centuries as a coloring

  14. Fingerprinting Uranium | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fingerprinting Uranium Fingerprinting Uranium Researchers show how to use x-rays to identify mobile, stationary forms of atomic pollutant PNNL and University of North Texas...

  15. Measurement and modeling of uranium and strategic element sorption by amidoxime resins in natural seawater

    E-Print Network [OSTI]

    Pina-Jordan, Jose Gregorio

    1985-01-01T23:59:59.000Z

    'ulfillment of the requirements for the degree of MASTER OP SCIENCE December i985 Major Subject: Nuclear Engineering MEASUREMENT AND MODELING OF URANIUM AND STRATEGIC ELEMENT SORPTION BY AMIDOXIME RESINS IN NATURAL SEANATER A thesis by JOSE GREGORIO PINA...MEASUREMENT AND MODELING OF URANIUM AND STRATEGIC ELEMENT SORPTION BY AMIDOXIME RESINS IN NATURAL SEAMATER A Thesis by JOSE GREGORIO PINA-JORDAN Submitted to the Graduate College oi' Texas A&M University in partial I...

  16. Uranium immobilization and nuclear waste

    SciTech Connect (OSTI)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01T23:59:59.000Z

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  17. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15T23:59:59.000Z

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  18. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  19. EA-1172: Sale of Surplus Natural and Low Enriched Uranium, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to sell uranium for subsequent enrichment and fabrication into commercial nuclear power reactor fuel.  The uranium is currently stored...

  20. A New Look at Natural Humics on Uranium Stability and Mobility Humic substances naturally forming organic materials in soil and groundwater, have

    E-Print Network [OSTI]

    A New Look at Natural Humics on Uranium Stability and Mobility Humic substances ­ naturally forming are significant because humics could present a potential challenge to immobilizing and stabilizing reduced uranium uranium bioreduction and oxidation. Environ. Sci. Technol. (in press). #12;

  1. Aquifer restoration at in-situ leach uranium mines: evidence for natural restoration processes

    SciTech Connect (OSTI)

    Deutsch, W.J.; Serne, R.J.; Bell, N.E.; Martin, W.J.

    1983-04-01T23:59:59.000Z

    Pacific Northwest Laboratory conducted experiments with aquifer sediments and leaching solution (lixiviant) from an in-situ leach uranium mine. The data from these laboratory experiments and information on the normal distribution of elements associated with roll-front uranium deposits provide evidence that natural processes can enhance restoration of aquifers affected by leach mining. Our experiments show that the concentration of uranium (U) in solution can decrease at least an order of magnitude (from 50 to less than 5 ppM U) due to reactions between the lixiviant and sediment, and that a uranium solid, possibly amorphous uranium dioxide, (UO/sub 2/), can limit the concentration of uranium in a solution in contact with reduced sediment. The concentrations of As, Se, and Mo in an oxidizing lixiviant should also decrease as a result of redox and precipitation reactions between the solution and sediment. The lixiviant concentrations of major anions (chloride and sulfate) other than carbonate were not affected by short-term (less than one week) contact with the aquifer sediments. This is also true of the total dissolved solids level of the solution. Consequently, we recommend that these solution parameters be used as indicators of an excursion of leaching solution from the leach field. Our experiments have shown that natural aquifer processes can affect the solution concentration of certain constituents. This effect should be considered when guidelines for aquifer restoration are established.

  2. Chapter 1. Introduction Uranium is a common element in nature that has for centuries been used as a coloring agent in

    E-Print Network [OSTI]

    contained in the uranium nucleus.1 Another legacy of uranium exploration, mining, and ore processing were1-1 Chapter 1. Introduction Uranium is a common element in nature that has for centuries been used as a coloring agent in decorative glass and ceramics. Uranium and its radioactive decay products are ubiquitous

  3. Uranium industry annual 1998

    SciTech Connect (OSTI)

    NONE

    1999-04-22T23:59:59.000Z

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  4. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  5. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  6. Uranium deposits of Brazil

    SciTech Connect (OSTI)

    NONE

    1991-09-01T23:59:59.000Z

    Brazil is a country of vast natural resources, including numerous uranium deposits. In support of the country`s nuclear power program, Brazil has developed the most active uranium industry in South America. Brazil has one operating reactor (Angra 1, a 626-MWe PWR), and two under construction. The country`s economic challenges have slowed the progress of its nuclear program. At present, the Pocos de Caldas district is the only active uranium production. In 1990, the Cercado open-pit mine produced approximately 45 metric tons (MT) U{sub 3}O{sub 8} (100 thousand pounds). Brazil`s state-owned uranium production and processing company, Uranio do Brasil, announced it has decided to begin shifting its production from the high-cost and nearly depleted deposits at Pocos de Caldas, to lower-cost reserves at Lagoa Real. Production at Lagoa Real is schedules to begin by 1993. In addition to these two districts, Brazil has many other known uranium deposits, and as a whole, it is estimated that Brazil has over 275,000 MT U{sub 3}O{sub 8} (600 million pounds U{sub 3}O{sub 8}) in reserves.

  7. Natural uranium/conversion services/enrichment services

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    This article is the 1993 uranium market summary. During this reporting period, there were 50 deals in the concentrates market, 26 deals in the UF6 market, and 14 deals for enrichment services. In the concentrates market, the restricted value closed $0.15 higher at $9.85, and the unrestricted value closed down $0.65 at $7.00. In the UF6 market, restricted prices fluctuated and closed higher at $31.00, and unrestricted prices closed at their initial value of $24.75. The restricted transaction value closed at $10.25 and the unrestricted value closed at $7.15. In the enrichment services market, the restricted value moved steadily higher to close at $84.00 per SWU, and the unrestricted value closed at its initial value of $68.00 per SWU.

  8. Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths

    E-Print Network [OSTI]

    Hwang, Chiachi

    2009-01-01T23:59:59.000Z

    problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactiveMB. (2004). Depleted and natural uranium: chemistry and

  9. Uranium industry annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  10. Prompt Neutron Decay for Delayed Critical Bare and Natural-Uranium-Reflected Metal Spheres of Plutonium and Highly Enriched Uranium

    SciTech Connect (OSTI)

    Mihalczo, John T [ORNL

    2011-01-01T23:59:59.000Z

    Prompt neutron decay at delayed criticality was measured by Oak Ridge National Laboratory for uranium-reflected highly enriched uranium (HEU) and Pu metal spheres (FLATTOP), for an unreflected Pu metal (4.5% {sup 240}Pu) sphere (JEZEBEL) at Los Alamos National Laboratory (LANL) and for an unreflected HEU metal sphere at Oak Ridge Critical Experiments Facility. The average prompt neutron decay constants from hundreds of Rossi-{alpha} and randomly pulsed neutron measurements with {sup 252}Cf at delayed criticality are as follows: 3.8458 {+-} 0.0016 x 10{sup 5} s{sup -1}, 2.2139 {+-} 0.0022 x 10{sup 5} s{sup -1}, 6.3126 {+-} 0.0100 x 10{sup 5} s{sup -1}, and 1.1061 {+-} 0.0009 x 10{sup 6} s{sup -1}, respectively. These values agree with previous measurements by LANL for FLATTOP, JEZEBEL, and GODIVA I as follows: 3.82 {+-} 0.02 x 10{sup 5} s{sup -1} for a uranium core; 2.14 {+-} 0.05 x 10{sup 5} s{sup -1} and 2.29 x 10{sup 5} s{sup -1} (uncertainty not reported) for a plutonium core; 6.4 {+-} 0.1 x 10{sup 5} s{sup -1}, and 1.1 {+-} 0.1 x 10{sup 6} s{sup -1}, respectively, but have smaller uncertainties because of the larger number of measurements. For the FLATTOP and JEZEBEL assemblies, the measurements agree with calculations. Traditionally, the calculated decay constants for the bare uranium metal sphere GODIVA I and the Oak Ridge Uranium Metal Sphere were higher than experimental by {approx}10%. Other energy-dependent quantities for the bare uranium sphere agree within 1%.

  11. Depleted Uranium Technical Brief

    E-Print Network [OSTI]

    Depleted Uranium Technical Brief United States Environmental Protection Agency Office of Air and Radiation Washington, DC 20460 EPA-402-R-06-011 December 2006 #12;#12;Depleted Uranium Technical Brief EPA of Radiation and Indoor Air Radiation Protection Division ii #12;iii #12;FOREWARD The Depleted Uranium

  12. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01T23:59:59.000Z

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  13. Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films

    E-Print Network [OSTI]

    Hart, Gus

    Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

  14. Uranium hexafluoride public risk

    SciTech Connect (OSTI)

    Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

    1994-08-01T23:59:59.000Z

    The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

  15. Recovery of uranium from seawater. 14. System arrangements for the recovery of uranium from seawater by spherical amidoxime chelating resins utilizing natural seawater motions

    SciTech Connect (OSTI)

    Egawa, Hiroaki; Kabay, Nalan; Shuto, Taketomi; Jyo, Akinori (Kumamoto Univ. (Japan))

    1993-04-01T23:59:59.000Z

    In order to evaluate performances of lightly cross-linked highly porous amidoxime resins in uranium-adsorption systems utilizing natural seawater motions, uranium uptake by the resins from seawater was studied by different approaches, such as simulated sea current exposure tests, towing trials, and/or mooring trials. In general, the efficiency of uranium uptake became higher with a decrease in the thickness of packing layers, indicating important roles of fluidization of the resin particles. On the basis of these fundamental data, mooring tests in the natural sea current were designed and conducted. By mooring flat adsorption beds (base area 260 cm[sup 2], height 3.0 cm) packed with 780 ml of the resin for 40 h, promising uranium uptake as high as 44 mg/kg of resin (9.9 mg/l of resin) was achieved under sea conditions in which the velocity of sea currents and the vertical velocity of waves were 5.5-49.7 cm/s and 3.4-27 cm/s, respectively.

  16. Uranium Mill Tailings Management

    SciTech Connect (OSTI)

    Nelson, J.D.

    1982-01-01T23:59:59.000Z

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements).

  17. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06T23:59:59.000Z

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  18. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  19. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19T23:59:59.000Z

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  20. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A. (Kennewick, WA)

    1986-01-01T23:59:59.000Z

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  1. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10T23:59:59.000Z

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  2. Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A [ORNL] [ORNL; Lee, Denise L [ORNL] [ORNL; Croft, Stephen [ORNL] [ORNL; McElroy, Robert Dennis [ORNL] [ORNL; Hertel, Nolan [Georgia Institute of Technology] [Georgia Institute of Technology; Chapman, Jeffrey Allen [ORNL] [ORNL; Cleveland, Steven L [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of density, concentration and enrichment. A detailed uncertainty analysis will be presented providing insights into instrumentation limitations to spoofing.

  3. Measurement and modeling of uranium and strategic element sorption by amidoxime resins in natural seawater 

    E-Print Network [OSTI]

    Pina-Jordan, Jose Gregorio

    1985-01-01T23:59:59.000Z

    Neutron Counting. The maximun uptake of uranium was 134 ppm in 30 days. A kinetic model to analyze the ur anium uptake was developed, and it was deter mined that intr apar ticle diffusion was the controlling mechanism of the uptake process... with Super? cial Velocity of Seawater in a Fluidized Bed of Spherical Particles. Correlation By Gunn 26 Uranium Uptake Data Using Kinetic Model for Film Diffusion Control (POG503) . 66 27 Uranium Uptake Data Using Kinetic Model for Intraparticle...

  4. CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS

    E-Print Network [OSTI]

    Hart, Gus

    CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

  5. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

    2009-12-29T23:59:59.000Z

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  6. Beneficial Uses of Depleted Uranium

    SciTech Connect (OSTI)

    Brown, C. [U.S. Department of Energy, Germantown, MD (United States); Croff, A.G.; Haire, M. J. [Oak Ridge National Lab., TN (United States)

    1997-08-01T23:59:59.000Z

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  7. EPA Update: NESHAP Uranium Activities

    E-Print Network [OSTI]

    EPA Update: NESHAP Uranium Activities Reid J. Rosnick Environmental Protection Agency Radiation Protection Division (6608J) Washington, DC 20460 NMA/NRC Uranium Recovery Workshop July 2, 2009 #12 for underground uranium mining operations (Subpart B) EPA regulatory requirements for operating uranium mill

  8. Spectroscopic Evidence of Uranium Immobilization in Acidic Wetlands by Natural Organic Matter and Plant Roots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; Seaman, John C.; Jaffé, Peter R.; Koster van Groos, Paul; Scheckel, Kirk G.; Segre, Carlo U.; Chen, Ning; Jiang, De-Tong; et al

    2015-03-03T23:59:59.000Z

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L?-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ?2.88 Ĺ), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulatingmore »the SRS wetland processes, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.« less

  9. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01T23:59:59.000Z

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  10. 300 AREA URANIUM CONTAMINATION

    SciTech Connect (OSTI)

    BORGHESE JV

    2009-07-02T23:59:59.000Z

    {sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

  11. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, Alvin B. (Cincinnati, OH)

    1983-01-01T23:59:59.000Z

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  12. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.

    1982-10-27T23:59:59.000Z

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  13. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments. Abstract: A...

  14. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  15. Controlling uranium reactivity March 18, 2008

    E-Print Network [OSTI]

    Meyer, Karsten

    for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

  16. Comparison of potential radiological consequences from a spent-fuel repository and natural uranium deposits

    SciTech Connect (OSTI)

    Wick, O.J.; Cloninger, M.O.

    1980-09-01T23:59:59.000Z

    A general criterion has been suggested for deep geological repositories containing spent fuel - the repositories should impose no greater radiological risk than due to naturally occurring uranium deposits. The following analysis investigates the rationale of that suggestion and determines whether current expectations of spent-fuel repository performance are consistent with such a criterion. In this study, reference spent-fuel repositories were compared to natural uranium-ore deposits. Comparisons were based on intrinsic characteristics, such as radionuclide inventory, depth, proximity to aquifers, and regional distribution, and actual and potential radiological consequences that are now occurring from some ore deposits and that may eventually occur from repositories and other ore deposits. The comparison results show that the repositories are quite comparable to the natural ore deposits and, in some cases, present less radiological hazard than their natural counterparts. On the basis of the first comparison, placing spent fuel in a deep geologic repository apparently reduces the hazard from natural radioactive materials occurring in the earth's crust by locating the waste in impermeable strata without access to oxidizing conditions. On the basis of the second comparison, a repository constructed within reasonable constraints presents no greater hazard than a large ore deposit. It is recommended that if the naturally radioactive environment is to be used as a basis for a criterion regarding repositories, then this criterion should be carefully constructed. The criterion should be based on the radiological quality of the waters in the immediate region of a specific repository, and it should be in terms of an acceptable potential increase in the radiological content of those waters due to the existence of the repository.

  17. Uranium resources: Issues and facts

    SciTech Connect (OSTI)

    Delene, J.G.

    1993-12-31T23:59:59.000Z

    Although there are several secondary issues, the most important uranium resource issue is, ``will there be enough uranium available at a cost which will allow nuclear power to be competitive in the future?`` This paper will attempt to answer this question by discussing uranium supply, demand, and economics from the perspective of the United States. The paper will discuss: how much uranium is available; the sensitivity of nuclear power costs to uranium price; the potential future demand for uranium in the Unites States, some of the options available to reduce this demand, the potential role of the Advanced Liquid Metal Cooled Reactor (ALMR) in reducing uranium demand; and potential alternative uranium sources and technologies.

  18. Uranium-titanium-niobium alloy

    DOE Patents [OSTI]

    Ludtka, Gail M. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    1990-01-01T23:59:59.000Z

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  19. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla; Peacock, Aaron D.; Lesher, E.; Williams, Kenneth H.; Bargar, John R.; Wilkins, Michael J.; Figueroa, Linda A.; Ranville, James; Davis, James; Long, Philip E.

    2012-05-23T23:59:59.000Z

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.

  20. Review The Toxicity of Depleted Uranium

    E-Print Network [OSTI]

    Wayne Briner

    Abstract: Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  1. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    SciTech Connect (OSTI)

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M. [Candu Energy Inc., 2285 Speakman Drive, Mississauga, ON L5K 1B1 (Canada)

    2012-07-01T23:59:59.000Z

    The Enhanced CANDU 6{sup R} (ECo{sup R}) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  2. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1995-12-31T23:59:59.000Z

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  3. Recovery of uranium by using new microorganisms isolated from North American uranium deposits

    SciTech Connect (OSTI)

    Sakaguchi, T.; Nakajima, A.; Tsuruta, T. [Miyazaki Medical College (Japan)

    1995-12-31T23:59:59.000Z

    Some attempts were made to remove uranium that may be present in refining effluents, mine tailings by using new microorganisms isolated from uranium deposits and peculiar natural environments. To screen microorganisms isolated from uranium deposits and peculiar natural environments in North America and Japan for maximal accumulation of uranium, hundreds of microorganisms were examined. Some microorganisms can accumulate about 500 mg (4.2 mEq) of uranium per gram of Microbial cells within 1 h. The uranium accumulation capacity of the cells exceeds that of commercially available chelating agents (2-3 mEq/g adsorbent). We attempted to recover uranium from uranium refining waste water by using new microorganisms. As a result, these microbial cells can recover trace amounts of uranium from uranium waste water with high efficiency. These strains also have a high accumulating ability for thorium. Thus, these new microorganisms can be used as an adsorbing agent for the removal of nuclear elements may be present in metallurgical effluents, mine tailings and other waste sources.

  4. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21T23:59:59.000Z

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  5. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

    1990-01-01T23:59:59.000Z

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  6. Recovery of uranium by immobilized polyhydroxyanthraquinone

    SciTech Connect (OSTI)

    Sakaguchi, T.; Nakajima, A.

    1986-01-01T23:59:59.000Z

    Nine species of polyhydroxyanthraquinone and two of polyhydroxynaphthoquinone were screened to determine which have the greatest ability to accumulate uranium. 1,2-Dihydroxyanthraquinone and 3-amino-1,2-dihydroxyanthraquinone have extremely high accumulation abilities. To improve the adsorbing characteristics of these compounds, the authors tried to immobilize these compounds by coupling with diazotized aminopolystyrene. The immobilized 1,2-dihydroxyanthraquinone has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. This adsorbent can recover uranium almost quantitatively from natural seawater. Almost all uranium adsorbed is desorbed with a solution of 1 N HCl. Thus, immobilized 1,2-dihydroxyanthraquinone can be used repeatedly in the adsorption-desorption process.

  7. Uranium from seawater

    SciTech Connect (OSTI)

    Gregg, D.; Folkendt, M.

    1982-09-21T23:59:59.000Z

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  8. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    SciTech Connect (OSTI)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal,; Monado, Fiber; Sekimoto, Hiroshi [Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134, Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134 (Indonesia); Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134, Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Reserach of Laboratory for Nuclear Reactors, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152 (Japan)

    2012-06-06T23:59:59.000Z

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  9. Bioremediation of Uranium Plumes with Nano-scale

    E-Print Network [OSTI]

    Fay, Noah

    (IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - MobilizationBioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from

  10. Improving Natural Uranium Utilization By Using Thorium in Low Moderation PWRs - A Preliminary Neutronic Scoping Study

    SciTech Connect (OSTI)

    Gilles Youinou; Ignacio Somoza

    2010-10-01T23:59:59.000Z

    The Th-U fuel cycle is not quite self-sustainable when used in water-cooled reactors and with fuel burnups higher than a few thousand of MWd/t characteristic of CANDU reactors operating with a continuous refueling. For the other industrially mature water-cooled reactors (i.e. PWRs and BWRs) it is economically necessary that the fuel has enough reactivity to reach fuel burnups of the order of a few tens of thousand of MWd/t. In this particular case, an additional input of fissile material is necessary to complement the bred fissile U-233. This additional fissile material could be included in the form of Highly Enriched Uranium (HEU) at the fabrication of the Th-U fuel. The objective of this preliminary neutronic scoping study is to determine (1) how much HEU and, consequently, how much natural uranium is necessary in such Th-U fuel cycle with U recycling and (2) how much TRansUranics (TRU=Pu, Np, Am and Cm) are produced. These numbers are then compared with those of a standard UO2 PWR. The thorium reactors considered have a homogeneous hexagonal lattice made up of the same (Th-U)O2 pins. Furthermore, at this point, we are not considering the use of blankets inside or outside the core. The lattice pitch has been varied to estimate the effect of the water-to-fuel volume ratio, and light water as well as heavy water have been considered. For most cases, an average burnup at discharge of 45,000 MWd/t has been considered.

  11. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09T23:59:59.000Z

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  12. URANIUM MILLING ACTIVITIES AT SEQUOYAH FUELS CORPORATION

    E-Print Network [OSTI]

    unknown authors

    Sequoyah Fuels Corporation (SFC) describes previous operations at its Gore, Oklahoma, uranium conversion facility as: (1) the recovery of uranium by concentration and purification processes; and (2) the conversion of concentrated and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these

  13. Composition of the U.S. DOE Depleted Uranium Inventory

    E-Print Network [OSTI]

    Concentration Of Less

    about 2.75 wt% U-235. For further enrichment, the material was shipped to the Oak Ridge and Portsmouth plants. In addition to natural uranium, also uranium recycled from spent fuel was fed into the Paducah enrichment cascade (Table 2 and Fig. 2). The recycled uranium introduced various isotopes not found in natural uranium into the cascade: fission products, such as Technetium-99; transuranics, such as Neptunium-237 and Plutonium-239; and the artificial uranium isotope of Uranium-236. The spent fuel, from which uranium was recycled, originated from the Hanford and Savannah River military plutonium production reactors. This uranium was recycled, although its assay of U-235 was somewhat lower than in natural uranium (Table 2). This obviously must be seen in the context of the Cold War era, when uranium was a scarce resource. Due to the low burn-up of the military reactors, concentrations of artificial U-236 are comparatively low in this recycled uranium. The recycled uranium represents

  14. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

    2006-09-05T23:59:59.000Z

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  15. Recovery of uranium from seawater

    SciTech Connect (OSTI)

    Sugasaka, K. (Government Industrial Research Inst., Shikoku, Japan); Katoh, S.; Takai, N.; Takahashi, H.; Umezawa, Y.

    1981-01-01T23:59:59.000Z

    Seawater contains various elements in solution. Deuterium, lithium, and uranium are the important ingredients for energy application at present and in the future. This paper deals with the recovery of uranium from seawater, with emphasis on the development of an adsorbent with high selectivity and rate of adsorption for uranium. Polyacrylamidoxime chelating resins were synthesized from various co-polymers of acrylonitrile and cross-linking agents. The resulting resins with the chelating amidoxime group showed selective adsorption for uranium in seawater. The amount of uranium adsorbed from seawater at room temperature reached 3.2 mg/g resin after 180 days. Polyacrylamidoxime fiber, which was prepared from polyacrylonitrile fiber and hydroxylamine, showed a high rate of adsorption for uranium. The polyacrylamidoxime fiber conditioned with 1 M HC1 and 1 M NaOH adsorbed 4 mg U/g fiber from seawater in ten days. 9 figures, 6 tables.

  16. Uranium in prehistoric Indian pottery

    E-Print Network [OSTI]

    Filberth, Ernest William

    1976-01-01T23:59:59.000Z

    URANIUM IN PREHISTORIC INDIAN POTTERY A Thesis by ERNEST WILLIAM FILBERTH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1976 Major Subject...: Chemistry URANIUM IN PREHISTORIC INDIAN POTTERY A Thesis by ERNEST WILLIAM FILBERTH Approved as to style and content by: (Chairman of Committee) (Head of Department) (Member) (Membe (Member) (Member) December 1976 ABSTRACT Uranium in Prehistoric...

  17. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect (OSTI)

    Monado, Fiber, E-mail: fiber.monado@gmail.com [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia and Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Ariani, Menik [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung (Indonesia); Aziz, Ferhat [National Nuclear Energy Agency of Indonesia (BATAN) (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, O-okoyama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-02-12T23:59:59.000Z

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  18. anthropogenic uranium enrichments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Flats Plutonium and Uranium Weapons-Grade Plutonium Enriched Uranium Depleted Uranium Plutonium-238 0.01 - 0.05% Uranium-234 0.1 - 1.02% Uranium-234...

  19. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Goodknight, C.S.; Burger, J.A. (comps.) [comps.

    1982-10-01T23:59:59.000Z

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1/sup 0/ x 2/sup 0/ quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed.

  20. Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov (indexed) [DOE]

    of Surplus Highly Enriched Uranium Environmental Impact Statement kternationd Atomic Energy Agency Idaho Nationrd Engineering Laborato low-enriched uranium low-level waste...

  1. Uranium Processing Facility Site Readiness Subproject Completed...

    National Nuclear Security Administration (NNSA)

    Field Offices Welcome to the NNSA Production Office NPO News Releases Uranium Processing Facility Site Readiness Subproject Completed ... Uranium Processing Facility Site...

  2. Unexpected, Stable Form of Uranium Detected | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected, Stable Form of Uranium Detected Unexpected, Stable Form of Uranium Detected Insights on underappreciated reaction could shed light on environmental cleanup options...

  3. Uranium Weapons Components Successfully Dismantled | National...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Uranium Weapons Components Successfully Dismantled Uranium Weapons Components Successfully...

  4. Adsorptive Stripping Voltammetric Measurements of Trace Uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adsorptive Stripping Voltammetric Measurements of Trace Uranium at the Bismuth Film Electrode. Adsorptive Stripping Voltammetric Measurements of Trace Uranium at the Bismuth Film...

  5. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Environmental Management (EM)

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  6. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOE Patents [OSTI]

    Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

    2001-01-01T23:59:59.000Z

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  7. Review of uranium bioassay techniques

    SciTech Connect (OSTI)

    Bogard, J.S.

    1996-04-01T23:59:59.000Z

    A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

  8. 2013 Domestic Uranium Production Report

    E-Print Network [OSTI]

    Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA.S. Energy Information Administration | 2013 Domestic Uranium Production Report iii Preface The U.S. Energy://www.eia.doe.gov/glossary/. #12;U.S. Energy Information Administration | 2013 Domestic Uranium Production Report iv Contents

  9. Uranium Marketing Annual Report -

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea:Mnt(N)3. Deliveries of uranium

  10. Uranium Marketing Annual Report -

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea:Mnt(N)3. Deliveries of uranium4.

  11. Uranium Marketing Annual Report -

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea:Mnt(N)3. Deliveries2.5.3. Uranium

  12. alaska national uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of the Interior National Park Service Natural Resource Loso, Michael G. 98 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  13. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C

  14. APPENDIX J Partition Coefficients For Uranium

    E-Print Network [OSTI]

    APPENDIX J Partition Coefficients For Uranium #12;Appendix J Partition Coefficients For Uranium J.1.0 Background The review of uranium Kd values obtained for a number of soils, crushed rock and their effects on uranium adsorption on soils are discussed below. The solution pH was also used as the basis

  15. Uranium Oxide as a Highly Reflective Coating from 150-350 eV

    E-Print Network [OSTI]

    Hart, Gus

    of depleted uranium metal (less than 0.2% U-235). After sputtering, the uranium was allowed to oxidize1 Uranium Oxide as a Highly Reflective Coating from 150-350 eV Richard L. Sandberg, David D. Allred.byu.edu ABSTRACT We present the measured reflectances (beamline 6.3.2, ALS at LBNL) of naturally oxidized uranium

  16. Radiometric Determination of Uranium in Natural Waters after Enrichment and Separation by Cation-Exchange and Liquid-Liquid Extraction

    E-Print Network [OSTI]

    I. Pashalidis; H. Tsertos

    2003-04-28T23:59:59.000Z

    The alpha-radiometric determination of uranium after its pre-concentration from natural water samples using the cation-exchange resin Chelex-100, its selective extraction by tributylphosphate and electrodeposition on stainless steel discs is reported. The validity of the separation procedure and the chemical recoveries were checked by addition of uranium standard solution as well as by tracing with U-232. The average uranium yield was determined to be (97 +- 2) % for the cation-exchange, (95 +- 2) % for the liquid-liquid extraction, and more than 99% for the electrodeposition. Employing high-resolution alpha-spectroscopy, the measured activity of the U-238 and U-234 radioisotopes was found to be of similar magnitude; i.e. ~7 mBq/L and ~35 mBq/L for ground- and seawater samples, respectively. The energy resolution (FWHM) of the alpha-peaks was 22 keV, while the Minimum Detectable Activity (MDA) was estimated to be 1 mBq/L (at the 95% confidence limit).

  17. The End of Cheap Uranium

    E-Print Network [OSTI]

    Michael Dittmar

    2011-06-21T23:59:59.000Z

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

  18. DEPARTMENT OF ENERGY Excess Uranium Management: Effects of DOE...

    Broader source: Energy.gov (indexed) [DOE]

    Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries; Request for Information AGENCY: Office of...

  19. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium(VI) Diffusion in Low-Permeability Subsurface Materials. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials. Abstract: Uranium(VI) diffusion was investigated in...

  20. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation

    E-Print Network [OSTI]

    Wilkins, M.J.

    2010-01-01T23:59:59.000Z

    Phillips.  1992.  Bioremediation of  uranium contamination in situ uranium bioremediation.  Microbial Biotechnology 2:genes during in situ bioremediation of uranium?contaminated 

  1. adepleted uranium hexafluoride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 15...

  2. active uranium americium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 5...

  3. anthropogenic uranium concentration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 12...

  4. abandoned uranium mill: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 3...

  5. anaconda uranium mill: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 3...

  6. THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01T23:59:59.000Z

    1979) in "Uranium Enrichment", S. Villani, Ed. , Springer-E. (1973) "Uranium Enrichment by Gas Centrifuge" Mills andTHE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

  7. Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01T23:59:59.000Z

    Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration

  8. Process for alloying uranium and niobium

    SciTech Connect (OSTI)

    Holcombe, C.E.; Northcutt, W.G.; Masters, D.R.; Chapman, L.R.

    1990-12-31T23:59:59.000Z

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uranium sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  9. Process for alloying uranium and niobium

    SciTech Connect (OSTI)

    Holcombe, C.E.; Northcutt, W.G.; Masters, D.R.; Chapman, L.R.

    1991-04-09T23:59:59.000Z

    This patent describes alloys such as U-6Nb prepared by forming a stacked sandwich array of uranium sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  10. The uranium cylinder assay system for enrichment plant safeguards

    SciTech Connect (OSTI)

    Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Rael, Carlos D [Los Alamos National Laboratory; Iwamoto, Tomonori [JNFL; Tamura, Takayuki [JNFL; Aiuchi, Syun [JNFL

    2010-01-01T23:59:59.000Z

    Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

  11. Recovery of uranium from seawater by immobilized tannin

    SciTech Connect (OSTI)

    Sakaguchi, T.; Nakajima, A.

    1987-06-01T23:59:59.000Z

    Tannin compounds having multiple adjacent hydroxy groups have an extremely high affinity for uranium. To prevent the leaching of tannins into water and to improve the adsorbing characteristics of these compounds, the authors tried to immobilize tannins. The immobilized tannin has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. The immobilized tannin can recover uranium from natural seawater with high efficiency. About 2530 ..mu..g uranium is adsorbed per gram of this adsorbent within 22 h. Depending on the concentration in seawater, an enrichment of up to 766,000-fold within the adsorbent is possible. Almost all uranium adsorbed is easily desorbed with a very dilute acid. Thus, the immobilized tannin can be used repeatedly in the adsorption-desorption process.

  12. Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications 

    E-Print Network [OSTI]

    Helmreich, Grant

    2012-02-14T23:59:59.000Z

    The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding...

  13. Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications

    E-Print Network [OSTI]

    Helmreich, Grant

    2012-02-14T23:59:59.000Z

    The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding...

  14. Depleted uranium plasma reduction system study

    SciTech Connect (OSTI)

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01T23:59:59.000Z

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

  15. Standard practice for removal of uranium or plutonium, or both, for impurity assay in uranium or plutonium materials

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    Standard practice for removal of uranium or plutonium, or both, for impurity assay in uranium or plutonium materials

  16. Depleted uranium disposal options.

    SciTech Connect (OSTI)

    Biwer, B. M.; Ranek, N. L.; Goldberg, M.; Avci, H. I.

    2000-04-01T23:59:59.000Z

    Depleted uranium hexafluoride (UF{sub 6}) has been produced in the United States since the 1940s as part of both the military program and the civilian nuclear energy program. The U.S. Department of Energy (DOE) is the agency responsible for managing most of the depleted UF{sub 6} that has been produced in the United States. The total quantity of depleted UF{sub 6} that DOE has to or will have to manage is approximately 700,000 Mg. Studies have been conducted to evaluate the various alternatives for managing this material. This paper evaluates and summarizes the alternative of disposal as low-level waste (LLW). Results of the analysis indicate that UF{sub 6} needs to be converted to a more stable form, such as U{sub 3}O{sub 8}, before disposal as LLW. Estimates of the environmental impacts of disposal in a dry environment are within the currently applicable standards and regulations. Of the currently operating LLW disposal facilities, available information indicates that either of two DOE facilities--the Hanford Site or the Nevada Test Site--or a commercial facility--Envirocare of Utah--would be able to dispose of up to the entire DOE inventory of depleted UF{sub 6}.

  17. Uranium 2007 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01T23:59:59.000Z

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  18. A uranium-titanium-niobium alloy

    SciTech Connect (OSTI)

    Ludtka, G.M.; Ludtka, G.M.

    1990-02-23T23:59:59.000Z

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  19. Inherently safe in situ uranium recovery

    DOE Patents [OSTI]

    Krumhansl, James L; Brady, Patrick V

    2014-04-29T23:59:59.000Z

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  20. Uranium Acquisition | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Interest (EOI) to acquire up to 6,800 metric tons of Uranium (MTU) of high purity depleted uranium metal (DU) and related material and services. This request for EOI does...

  1. D Riso-R-429 Automated Uranium

    E-Print Network [OSTI]

    -induced delayed-neutron coun- ting is applied preferably in large geochemical exploration pro- grammes. UraniumCM i D Riso-R-429 Automated Uranium Analysis by Delayed-Neutron Counting H. Kunzendorf, L. Lřvborg AUTOMATED URANIUM ANALYSIS BY DELAYED-NEUTRON COUNTING H. Kunzendorf, L. Lřvborg and E.M. Christiansen

  2. Remediation and Recovery of Uranium from Contaminated

    E-Print Network [OSTI]

    Lovley, Derek

    that Geobacter species can effectively remove uranium from contaminated groundwater by reducing soluble U emplaced in flow- through columns of uranium-contaminated sediments readily removed U(VI) from the groundwater, and 87% of the uranium that had been removed was recovered from the electrode surface after

  3. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  4. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  5. Uranium Watch REGULATORY CONFUSION: FEDERALAND STATE

    E-Print Network [OSTI]

    Uranium Watch Report REGULATORY CONFUSION: FEDERALAND STATE ENFORCEMENT OF 40 C.F.R. PART 61 SUBPART W INTRODUCTION 1. This Uranium Watch Report, Regulatory Confusion: Federal and State Enforcement at the White Mesa Uranium Mill, San Juan County, Utah. 2. The DAQ, a Division of the Utah Department

  6. Clean Air Act Requirements: Uranium Mill Tailings

    E-Print Network [OSTI]

    EPA'S Clean Air Act Requirements: Uranium Mill Tailings Radon Emissions Rulemaking Reid J. Rosnick requirements for operating uranium mill tailings (Subpart W) Status update on Subpart W activities Outreach/Communications #12;3 EPA Regulatory Requirements for Operating Uranium Mill Tailings (Clean Air Act) · 40 CFR 61

  7. URANIUM MILL TAILINGS RADON FLUX CALCULATIONS

    E-Print Network [OSTI]

    URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIĂ?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Inc. (Golder) was commissioned by EFRC to evaluate the operations of the uranium mill tailings storage in this report were conducted using the WISE Uranium Mill Tailings Radon Flux Calculator, as updated on November

  8. Uranium mill tailings and radon

    SciTech Connect (OSTI)

    Hanchey, L A

    1981-01-01T23:59:59.000Z

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  9. Physical and mechanical metallurgy of uranium and uranium alloys

    SciTech Connect (OSTI)

    Eckelmeyer, K.H. [Sandia National Labs. (United States)

    1998-12-31T23:59:59.000Z

    Engineering disadvantages of unalloyed uranium include relatively low strength, low ductility, and poor oxidation and corrosion resistance. As-cast uranium typically exhibits very large grains that cause nonuniform deformation and low tensile ductility. Uranium is often alloyed to improve its corrosion resistance and mechanical properties. Titanium is most commonly used to increase strength; niobium and molybdenum, to increase oxidation and corrosion resistance; and vanadium, to refine alpha grain size in castings. Under equilibrium conditions these elements are extensively soluble in the high-temperature gamma phase, slightly soluble in the intermediate temperature beta phase, and essentially insoluble in the low-temperature alpha phase. Uranium alloys are vacuum solution heat treated in the gamma range to dissolve the alloying elements and remove hydrogen. The subsequent microstructures and properties are determined by the cooling rate from the solution treatment temperature. Oxidation and corrosion resistance increases with increasing the amount of alloy in solid solution. As a result, alloys such as U-6%Nb and U-10%Mo are often used in applications requiring good corrosion resistance.

  10. Electron Backscatter Diffraction (EBSD) Characterization of Uranium and Uranium Alloys

    SciTech Connect (OSTI)

    McCabe, Rodney J. [Los Alamos National Laboratory; Kelly, Ann Marie [Los Alamos National Laboratory; Clarke, Amy J. [Los Alamos National Laboratory; Field, Robert D. [Los Alamos National Laboratory; Wenk, H. R. [University of California, Berkeley

    2012-07-25T23:59:59.000Z

    Electron backscatter diffraction (EBSD) was used to examine the microstructures of unalloyed uranium, U-6Nb, U-10Mo, and U-0.75Ti. For unalloyed uranium, we used EBSD to examine the effects of various processes on microstructures including casting, rolling and forming, recrystallization, welding, and quasi-static and shock deformation. For U-6Nb we used EBSD to examine the microstructural evolution during shape memory loading. EBSD was used to study chemical homogenization in U-10Mo, and for U-0.75Ti, we used EBSD to study the microstructure and texture evolution during thermal cycling and deformation. The studied uranium alloys have significant microstructural and chemical differences and each of these alloys presents unique preparation challenges. Each of the alloys is prepared by a sequence of mechanical grinding and polishing followed by electropolishing with subtle differences between the alloys. U-6Nb and U-0.75Ti both have martensitic microstructures and both require special care in order to avoid mechanical polishing artifacts. Unalloyed uranium has a tendency to rapidly oxidize when exposed to air and a two-step electropolish is employed, the first step to remove the damaged surface layer resulting from the mechanical preparation and the second step to passivate the surface. All of the alloying additions provide a level of surface passivation and different one and two step electropolishes are employed to create good EBSD surfaces. Because of its low symmetry crystal structure, uranium exhibits complex deformation behavior including operation of multiple deformation twinning modes. EBSD was used to observe and quantify twinning contributions to deformation and to examine the fracture behavior. Figure 1 shows a cross section of two mating fracture surfaces in cast uranium showing the propensity of deformation twinning and intergranular fracture largely between dissimilarly oriented grains. Deformation of U-6Nb in the shape memory regime occurs by the motion of twin boundaries formed during the martensitic transformation. Deformation actually results in a coarsening of the microstructure making EBSD more practical following a limited amount of strain. Figure 2 shows the microstructure resulting from 6% compression. Casting of U-10Mo results in considerable chemical segregation as is apparent in Figure 2a. The segregation subsists through rolling and heat treatment processes as shown in Figure 2b. EBSD was used to study the effects of homogenization time and temperature on chemical heterogeneity. It was found that times and temperatures that result in a chemically homogeneous microstructure also result in a significant increase in grain size. U-0.75Ti forms an acicular martinsite as shown in Figure 4. This microstructure prevails through cycling into the higher temperature solid uranium phases.

  11. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    SciTech Connect (OSTI)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-06-19T23:59:59.000Z

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.

  12. Removal of uranium from aqueous HF solutions

    DOE Patents [OSTI]

    Pulley, Howard (West Paducah, KY); Seltzer, Steven F. (Paducah, KY)

    1980-01-01T23:59:59.000Z

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  13. Process for alloying uranium and niobium

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Northcutt, Jr., Walter G. (Oak Ridge, TN); Masters, David R. (Knoxville, TN); Chapman, Lloyd R. (Knoxville, TN)

    1991-01-01T23:59:59.000Z

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  14. Opportunities to reduce consumption of natural uranium in reactor SVBR-75/100 when changing over to the closed fuel cycle

    SciTech Connect (OSTI)

    Toshinsky, G.I.; Komlev, O.G.; Mel'nikov, K.G.; Novikova, N.N. [FSUE SSC RF-IPPE, 1, Bondarenko sq., Obninsk, Kaluga rg., 249033 (Russian Federation)

    2007-07-01T23:59:59.000Z

    The design of reactor SVBR-75/100 allows it to operate using different types of fuel and in different fuel cycles without changing its design and deteriorating its safety characteristics. Fuel-at-once refueling adopted in the design (lack of partial refueling) makes it possible to change the core content at each refueling by using the type of fuel that is the most economically effective at the current stage of nuclear power (NP) development. In the nearest future use of mastered oxide uranium fuel and operating in the opened fuel cycle with postponed reprocessing will be the most economically effective. Changeover to the mixed uranium-plutonium fuel and closed nuclear fuel cycle (NFC) will be economically effective in an event of increase of natural uranium costs when the expenditures for construction of the enterprises on reprocessing the spent nuclear fuel (SNF), re-fabrication of new fuel with plutonium and their operating are less than the corresponding costs of natural uranium, its enrichment costs, the costs of manufacturing fresh uranium fuel and long temporary storage of SNF. At this, it is possible to use both MOX fuel with weapon or reactor plutonium and mixed nitride fuel in case its usage is more profitable. As fast reactors (FR) using uranium fuel and operating in the opened NFC consume much more natural uranium in comparison with thermal reactors (TR), and at the expected high paces of NP development the cheap resources of natural uranium will be exhausted prior to the middle of the century that will cause increase in the uranium cost, the period of FRs operating in the opened NFC must be maximally reduced. However, it should be mentioned that it is difficult to forecast reliably the date when because of the increased cost of natural uranium the NP will lose its competitiveness with electric power using fossil fuel. This is conditioned by the fact that the cost of the NPP produced electricity is less sensitive to the cost of natural uranium in contrast to the cost of electricity produced by thermal power plants using fossil fuel. At the same time, the available resources of natural uranium are increasing progressively with increase of its cost. The expenditure caused by changeover to the closed NFC will be less, if plutonium extracted from the own SNF of uranium loads is used in fabrication of the first MOX fuel loads. If the oxide uranium fuel is used, by the end of the lifetime a comparatively high breeding ratio (BR) ({approx}0.84) provides a sufficiently high content of plutonium in the SNF that may be used in the next fuel lifetimes when organizing the closed fuel cycle. Moreover, the own SNF of starting loads from oxide uranium fuel contains large quantity of unburned uranium-235 that is expedient to use for forming load for the next lifetime. From the very beginning of realization of the extended program on implementation of reactors SVBR-75/100 in the NP, use of plutonium extracted from the TRs' SNF for forming the starting loads of those reactors for the purpose of total elimination of natural uranium consumption will be more expensive as compared with the considered variant of changeover from the opened NFC to the closed NFC. This is conditioned by the fact that for the plutonium extracted from the TRs' SNF, the plutonium cost determined by a volume of SNF reprocessing per ton of plutonium will be several times higher as compared with its cost in case of using the own SNF because of considerably less content of plutonium in the TRs' SNF. It should be taken into account that the organization of the enterprise on large-scale reprocessing of TRs' SNF and MOX fuel fabrication must precede the construction of NPPs with FRs. Thus, the demands in investments are increased. At the same time, for the proposed changeover from the opened NFC to the closed one the construction of the closed NFC enterprise may be long postponed from FR launching that reduces the investment demands. At this, as the assessments have revealed, the investment fund for construction of such enterprise could be formed during abo ut t

  15. Uranium 2014 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  16. Uranium 2011 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2012-01-01T23:59:59.000Z

    In the wake of the Fukushima Daiichi nuclear power plant accident, questions are being raised about the future of the uranium market, including as regards the number of reactors expected to be built in the coming years, the amount of uranium required to meet forward demand, the adequacy of identified uranium resources to meet that demand and the ability of the sector to meet reactor requirements in a challenging investment climate. This 24th edition of the “Red Book”, a recognised world reference on uranium jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, provides analyses and information from 42 producing and consuming countries in order to address these and other questions. It offers a comprehensive review of world uranium supply and demand as well as data on global uranium exploration, resources, production and reactor-related requirements. It also provides substantive new information on established uranium production centres around the world and in countri...

  17. Uranium 2005 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2006-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  18. Nuclear power fleets and uranium resources recovered from phosphates

    SciTech Connect (OSTI)

    Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

    2013-07-01T23:59:59.000Z

    Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

  19. Innovative Elution Processes for Recovering Uranium from Seawater

    SciTech Connect (OSTI)

    Wai, Chien; Tian, Guoxin; Janke, Christopher

    2014-05-29T23:59:59.000Z

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium removal from the sorbent reaches only 80% after 10 hours of leaching. Some information regarding coordination of vanadium with amidoxime molecules and elution of vanadium from amidoxime- based sorbents is also given in the report.

  20. Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274

    SciTech Connect (OSTI)

    Hays, David C. [United States Army Corps of Engineers, Kansas City, Missouri, 64106 (United States)

    2012-07-01T23:59:59.000Z

    Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

  1. Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs

    E-Print Network [OSTI]

    Matthews, Isaac A

    2010-01-01T23:59:59.000Z

    An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

  2. Influence of Acidic and Alkaline Waste Solution Properties on Uranium Migration in Subsurface Sediments

    SciTech Connect (OSTI)

    Szecsody, James E.; Truex, Michael J.; Qafoku, Nikolla; Wellman, Dawn M.; Resch, Charles T.; Zhong, Lirong

    2013-08-01T23:59:59.000Z

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments has significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10s to 100s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  3. Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths

    E-Print Network [OSTI]

    Hwang, Chiachi

    2009-01-01T23:59:59.000Z

    problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactive

  4. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01T23:59:59.000Z

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  5. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01T23:59:59.000Z

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  6. L'URANIUM ET LES ARMES L'URANIUM APPAUVRI. Pierre Roussel*

    E-Print Network [OSTI]

    Boyer, Edmond

    L'URANIUM ET LES ARMES � L'URANIUM APPAUVRI. Pierre Roussel* Institut de Physique Nucléaire, CNRS massivement dans la guerre du Golfe, des obus anti- chars ont été utilisés, avec des "charges d'uranium, avec une charge de 300 g d'uranium et tiré par des avions, l'autre de 120 mm de diamètre avec une

  7. Uranium in prehistoric Indian pottery 

    E-Print Network [OSTI]

    Filberth, Ernest William

    1976-01-01T23:59:59.000Z

    . 2 to 25 ppm (Katz 1951). From thermal equilibrium calculations on the earth's core, mantle, and crust, and through actual analysis of samples, uranium was found to be concentrated in the earth's crust. According to modern geological thought..., as the uniformly molten earth cooled, its matter became separated into one vapor phase and three concentric condensed phases: the siderosphere (the earth's core, probably primarily molten iron), the chalcosphere forming the intermediate shell (the mantle...

  8. Dry process fluorination of uranium dioxide using ammonium bifluoride

    E-Print Network [OSTI]

    Yeamans, Charles Burnett, 1978-

    2003-01-01T23:59:59.000Z

    An experimental study was conducted to determine the practicality of various unit operations for fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double salts from uranium dioxide and ...

  9. albarrana uranium ores: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these unknown authors 7 A...

  10. Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium(III)

    E-Print Network [OSTI]

    Meyer, Karsten

    , we are currently investigating the coordina- tion chemistry of uranium metal centers with classicalUranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium, and Karsten Meyer* Contribution from the Department of Chemistry and Biochemistry, UniVersity of California

  11. Colorimetric detection of uranium in water

    DOE Patents [OSTI]

    DeVol, Timothy A. (Clemson, SC); Hixon, Amy E. (Piedmont, SC); DiPrete, David P. (Evans, GA)

    2012-03-13T23:59:59.000Z

    Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

  12. Final Uranium Leasing Program Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores. ULP PEIS...

  13. Statistical data of the uranium industry

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Statistical Data of the Uranium Industry is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1981. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining, and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office (GJAO) of the US Department of Energy. The production, reserves, and drilling information is reported in a manner which avoids disclosure of proprietary information.

  14. Distribution of uranium-bearing phases in soils from Fernald

    SciTech Connect (OSTI)

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1993-12-31T23:59:59.000Z

    Electron beam techniques have been used to characterize uranium-contaminated soils and the Fernald Site, Ohio. Uranium particulates have been deposited on the soil through chemical spills and from the operation of an incinerator plant on the site. The major uranium phases have been identified by electron microscopy as uraninite, autunite, and uranium phosphite [U(PO{sub 3}){sub 4}]. Some of the uranium has undergone weathering resulting in the redistribution of uranium within the soil.

  15. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1993-01-01T23:59:59.000Z

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  16. Development of sorbers for the recovery of uranium from seawater. Part 2. The accumulation of uranium from seawater by resins containing amidoxime and imidoxime functional groups

    SciTech Connect (OSTI)

    Astheimer, L.; Schenk, H.J.; Witte, E.G.; Schwochau, K.

    1983-04-01T23:59:59.000Z

    Hydroxylamine derivatives of cross-linked poly(acrylonitriles), so-called poly(acrylamidoxime) resins, are suitable for the accumulation of uranium from natural seawater of pH = 8.1 to 8.3. Depending on the method of manufacture, these sorbers yield excellent uranium loadings up to some thousand ppM which roughly equals the average uranium content of actually explored uranium ores. The rate of uranium uptake, which is 5 to 30 ppM/d at room temperature, increases with increasing temperature of seawater. Uranium can be eluted by 1 M HCl with an elution efficiency of more than 90%. Owing to a certain instability of the uranium binding groups in acid eluants, the uranium uptake decreases with increasing number of sorption-elution cycles. Hydroxylamine derivatives of poly(acrylonitrile) are shown to contain simultaneously at least two kinds of functional groups: open-chain amidoxime groups which are stable and cyclic imidoxime groups which are unstable in 1 M HCl. Experimental evidence is presented that the uptake of uranium from natural seawater is closely related to the presence of cyclic imidoxime configurations in the polyacrylic lattice. Polystyrene and poly(glycidylmethacrylate)-based amidoxime and imide dioxime resins are less effective in extracting uranium from natural seawater. 10 figures, 4 tables.

  17. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Environmental Management (EM)

    Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

  18. Legacy Management Work Progresses on Defense-Related Uranium...

    Office of Environmental Management (EM)

    LM visited 84 defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global positioning...

  19. Uncertainty analysis of multi-rate kinetics of uranium desorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Abstract: A...

  20. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers [EERE]

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  1. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6...

    Energy Savers [EERE]

    Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and...

  2. Geochemical Controls on Contaminant Uranium in Vadose Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls on Contaminant Uranium in Vadose Hanford Formation Sediments at the 200 Area and 300 Area, Hanford Site, Geochemical Controls on Contaminant Uranium in Vadose Hanford...

  3. Microbial Reduction of Uranium under Iron- and Sulfate-reducing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium under Iron- and Sulfate-reducing Conditions: Effect of Amended Goethite on Microbial Community Microbial Reduction of Uranium under Iron- and Sulfate-reducing Conditions:...

  4. Microscopic Reactive Diffusion of Uranium in the Contaminated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactive Diffusion of Uranium in the Contaminated Sediments at Hanford, United States. Microscopic Reactive Diffusion of Uranium in the Contaminated Sediments at Hanford, United...

  5. Y-12 uranium storage facility?a Ťdream come true?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ranks and actually provides the first impedance for the just finished highly enriched uranium storage facility. Recently the Highly Enriched Uranium Material Facility was...

  6. Composition, stability, and measurement of reduced uranium phases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition, stability, and measurement of reduced uranium phases for groundwater bioremediation at Old Rifle, CO. Composition, stability, and measurement of reduced uranium phases...

  7. Record of Decision for the Uranium Leasing Program Programmatic...

    Energy Savers [EERE]

    Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact...

  8. Sequestering Uranium from Seawater: Binding Strength and Modes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl...

  9. alloyed uranium transformation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding... Helmreich, Grant...

  10. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

  11. acute uranium intoxication: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consists of replacing the water with 20 Garland Jr., Theodore 8 Review The Toxicity of Depleted Uranium CiteSeer Summary: Abstract: Depleted uranium (DU) is an emerging...

  12. alloyed uranium sicral: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding... Helmreich, Grant...

  13. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

    Office of Environmental Management (EM)

    Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

  14. Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report

    SciTech Connect (OSTI)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

    1994-10-01T23:59:59.000Z

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

  15. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    Coordination Chemistry of Uranium………………………………….11 1.4researchers from uranium chemistry. Fortunately, despiteclassical coordination chemistry of uranium has flourished

  16. Uranium Management - Preservation of a National Asset

    SciTech Connect (OSTI)

    Jackson, J. D.; Stroud, J. C.

    2002-02-27T23:59:59.000Z

    The Uranium Management Group (UMG) was established at the Department of Energy's (DOE's) Oak Ridge Operations in 1999 as a mechanism to expedite the de-inventory of surplus uranium from the Fernald Environmental Management Project site. This successful initial venture has broadened into providing uranium material de-inventory and consolidation support to the Hanford site as well as retrieving uranium materials that the Department had previously provided to universities under the loan/lease program. As of December 31, 2001, {approx} 4,300 metric tons of uranium (MTU) have been consolidated into a more cost effective interim storage location at the Portsmouth site near Piketon, OH. The UMG continues to uphold its corporate support mission by promoting the Nuclear Materials Stewardship Initiative (NMSI) and the twenty-five (25) action items of the Integrated Nuclear Materials Management Plan (1). Before additional consolidation efforts may commence to remove excess inventory from Environmental Management closure sites and universities, a Programmatic Environmental Assessment (PEA) must be completed. Two (2) noteworthy efforts currently being pursued involve the investigation of re-use opportunities for surplus uranium materials and the recovery of usable uranium from the shutdown Portsmouth cascade. In summary, the UMG is available as a DOE complex-wide technical resource to promote the responsible management of surplus uranium.

  17. Bioremediation of uranium contaminated soils and wastes

    SciTech Connect (OSTI)

    Francis, A.J.

    1998-12-31T23:59:59.000Z

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  18. Molten-Salt Depleted-Uranium Reactor

    E-Print Network [OSTI]

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01T23:59:59.000Z

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  19. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01T23:59:59.000Z

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  20. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03T23:59:59.000Z

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  1. Thermodynamic data for uranium fluorides

    SciTech Connect (OSTI)

    Leitnaker, J.M.

    1983-03-01T23:59:59.000Z

    Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF/sub 4/ and UF/sub 6/, including UF/sub 4/ (solid and gas), U/sub 4/F/sub 17/ (solid), U/sub 2/F/sub 9/ (solid), UF/sub 5/ (solid and gas), U/sub 2/F/sub 10/ (gas), and UF/sub 6/ (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior.

  2. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium Production

  3. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium

  4. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9 2014

  5. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9

  6. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium911 2014

  7. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium911

  8. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9117 2014

  9. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9117 20145

  10. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomestic Uranium9117

  11. 2014 Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y MDomesticDomestic Uranium

  12. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi" ,"Plant","Primary1. TotalRevenueTotal97.10. Uranium

  13. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi" ,"Plant","Primary1. TotalRevenueTotal97.10. Uranium9.

  14. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4Residential17. Purchases of6a. Uranium

  15. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4Residential17. Purchases4. Uranium

  16. 2014 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4Residential17. Purchases4. Uranium57.

  17. Uranium series disequilibrium in the Bargmann property area of Karnes County, Texas

    SciTech Connect (OSTI)

    Davidson, J.R.

    1998-02-01T23:59:59.000Z

    Historical evidence is presented for natural uranium series radioactive disequilibrium in uranium bearing soils in the Bargmann property area of karnes County on the Gulf Coastal Plain of south Texas. The early history of uranium exploration in the area is recounted and records of disequilibrium before milling and mining operations began are given. The property contains an open pit uranium mine associated with a larger ore body. In 1995, the US Department of Energy (DOE) directed Oak Ridge National Laboratory (ORNL) to evaluate the Bargmann tract for the presence of uranium mill tailings (ORNL 1996). There was a possibility that mill tailings had washed onto or blown onto the property from the former tailings piles in quantities that would warrant remediation under the Uranium Mill Tailings Remediation Action Project. Activity ratios illustrating disequilibrium between {sup 226}Ra and {sup 238}U in background soils during 1986 are listed and discussed. Derivations of uranium mass-to-activity conversion factors are covered in detail.

  18. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    SciTech Connect (OSTI)

    Francis, C. W.

    1993-09-01T23:59:59.000Z

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  19. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetite, Bahia, Brazil

    SciTech Connect (OSTI)

    Pereira, Wagner de S [Coordenacao de Protecao Radiologica, Unidade de Tratamento de Minerios, Caixa Postal 961, CEP 37701-970, Pocos de Caldas, MG, BR Industrias Nucleares do Brasil (Brazil); Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha (Brazil); Kelecom, Alphonse [Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha (Brazil); Universidade Federal Fluminense, Programa de Pos-graduacao em Ciencia Ambiental, Instituto de Geociencias, av. Litoranea s/no, Boa Viagem, 24210-340 Niteroi, RJ Caixa Postal 107.092, CEP 24360-970, Niteroi, RJ (Brazil); Azevedo Py Junior, Delcy de [Coordenacao de Protecao Radiologica, Unidade de Concentrado de Uranio. Caixa Postal 7, CEP 46.400-000 Caetite, Bahia, Brasil Industrias Nucleares do Brasil (Brazil)

    2008-08-07T23:59:59.000Z

    The uranium mining at Caetite (Uranium Concentrate Unit--URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5x10{sup 3} {mu}Gy y{sup -1} has been used. The derived absorbed dose rate calculated for Tilapia was 2.51x10{sup 0} {mu}Gy y{sup -1}, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  20. A Geostatistical Study of the Uranium Deposit at Kvanefjeld,

    E-Print Network [OSTI]

    are identified by the discriminating effect of the individual variable. INIS descriptors; URANIUM ORES? RESERVES

  1. Uranium Cluster Chemistry DOI: 10.1002/anie.200906605

    E-Print Network [OSTI]

    Uranium Cluster Chemistry DOI: 10.1002/anie.200906605 Tetranuclear Uranium Clusters by Reductive in the coordination chemistry and small-molecule reactivity of uranium. Among the intriguing reactivity patterns of tetravalent uranium with 3,5-dimethylpyrazolate (Me2PzŔ ) led to forma- tion of an unprecedented homoleptic

  2. Technical Basis for Assessing Uranium Bioremediation Performance

    SciTech Connect (OSTI)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01T23:59:59.000Z

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  3. Electrochemistry, Spectroscopy, and Reactivity of Uranium Complexes Supported by Ferrocene Diamide Ligands

    E-Print Network [OSTI]

    Duhovic, Selma

    2012-01-01T23:59:59.000Z

    J. L. , Pentavalent Uranium Chemistry-Synthetic Pursuit of afor Trivalent Uranium Chemistry. Inorg. Chem. 1989, 28, (and High-Valent Uranium Chemistry. Organometallics 2011,

  4. Recent International R&D Activities in the Extraction of Uranium from Seawater

    E-Print Network [OSTI]

    Rao, Linfeng

    2011-01-01T23:59:59.000Z

    Uranium and Rare Earth Elements Using Biomass of Algae, Bioinorganic ChemistryRecovery of uranium from sea water. Chemistry & Industry (uranium recovery from seawater. Industrial & Engineering Chemistry

  5. Decolonizing cartographies : sovereignty, territoriality, and maps of meaning in the uranium landscape

    E-Print Network [OSTI]

    Voyles, Traci Brynne

    2010-01-01T23:59:59.000Z

    continued mining and uranium exploration on and near theand thereby open to uranium exploration, claims-staking, andbe used for uranium mining or exploration. One Hispano

  6. Recent International R&D Activities in the Extraction of Uranium from Seawater

    E-Print Network [OSTI]

    Rao, Linfeng

    2011-01-01T23:59:59.000Z

    for extracting uranium from seawater. Brit. (1978), 3 pp.Ger. ). Recovery of uranium from seawater. Ger. Offen. (Ger. ). Recovery of uranium from seawater. Ger. Offen. (

  7. Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime

    E-Print Network [OSTI]

    Tian, Guoxin

    2013-01-01T23:59:59.000Z

    Sequestering uranium from seawater: binding strength andin sequestering uranium from seawater, forms strongExtraction of uranium from seawater is very challenging, not

  8. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    E-Print Network [OSTI]

    Williams, K.H.

    2010-01-01T23:59:59.000Z

    2008), Sustained Removal of Uranium From ContaminatedR. T. Anderson (2007), Uranium removal from groundwater viasulfide and the removal of uranium from groundwater. The

  9. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation

    E-Print Network [OSTI]

    Druhan, J.L.

    2009-01-01T23:59:59.000Z

    sulfate reduction and uranium removal. The samples for thisanism of Sulfate and Uranium Removal. In M-23, low acetatethe highest rates of uranium removal were observed at redox

  10. Field-based detection and monitoring of uranium in contaminated groundwater using two immunosensors

    E-Print Network [OSTI]

    Melton, S.J.

    2010-01-01T23:59:59.000Z

    an in situ uranium bioremediation field site. Appl. Environ.undergoing uranium bioremediation. Int. J. Systematicstimulated uranium bioremediation. Appl. Environ. Microbiol.

  11. Electrochemistry, Spectroscopy, and Reactivity of Uranium Complexes Supported by Ferrocene Diamide Ligands

    E-Print Network [OSTI]

    Duhovic, Selma

    2012-01-01T23:59:59.000Z

    J. L. , Pentavalent Uranium Chemistry-Synthetic Pursuit of aand High-Valent Uranium Chemistry. Organometallics 2011,for Trivalent Uranium Chemistry. Inorg. Chem. 1989, 28, (

  12. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect (OSTI)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19T23:59:59.000Z

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  13. Electrolytic process for preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  14. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  15. Production of 239 Pu from a natural Uranium disk and "hot" rock using a neutron howitzer

    E-Print Network [OSTI]

    Joseph Steiner; Aaron Anderson; Michael De Marco

    2008-05-23T23:59:59.000Z

    A neutron howitzer was used to produce 239Np from the targets of natural U and a hot rock. An intrinsic Germanium detector enabled the observations of the gamma rays in the decay of 239Np and a determination of its half life of 2.3 days. This shows that 239Pu had been produced in both targets

  16. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    SciTech Connect (OSTI)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01T23:59:59.000Z

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 {+-} 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 {+-} 0.0006 wt. % {sup 234}U, 19.8336 {+-} 0.0059 wt. % {sup 235}U, 0.1337 {+-} 0.0006 wt. % {sup 236}U, and 79.9171 {+-} 0.0057 wt. % {sup 238}U.

  17. Paragenesis and Geochronology of the Nopal I Uranium Deposit, Mexico

    SciTech Connect (OSTI)

    M. Fayek; M. Ren

    2007-02-14T23:59:59.000Z

    Uranium deposits can, by analogy, provide important information on the long-term performance of radioactive waste forms and radioactive waste repositories. Their complex mineralogy and variable elemental and isotopic compositions can provide important information, provided that analyses are obtained on the scale of several micrometers. Here, we present a structural model of the Nopal I deposit as well as petrography at the nanoscale coupled with preliminary U-Th-Pb ages and O isotopic compositions of uranium-rich minerals obtained by Secondary Ion Mass Spectrometry (SIMS). This multi-technique approach promises to provide ''natural system'' data on the corrosion rate of uraninite, the natural analogue of spent nuclear fuel.

  18. Mica Surfaces Stabilize Pentavalent Uranium. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ilton ES, A Haiduc, CL Cahill, and AR Felmy.2005."Mica Surfaces Stabilize Pentavalent Uranium."Inorganic Chemistry 44(9):2986-2988. Authors: ES Ilton A Haiduc CL Cahill AR...

  19. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, Gifford G. (Cincinnatti, OH); Kato, Takeo R. (Cincinnatti, OH); Schonegg, Edward (Cleves, OH)

    1986-01-01T23:59:59.000Z

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  20. Desorption of uranium from amidoxime fiber adsorbent

    SciTech Connect (OSTI)

    Goto, Akira; Morooka, Shigeharu; Fukamachi, Masakazu; Kusakabe, Katsuki (Kyushu Univ., Fukuoka (Japan)); Kago, Tokihiro (Towa Univ., Fukuoka (Japan))

    1993-10-01T23:59:59.000Z

    An amidoxime fibrous adsorbent is contacted with uranium-enriched seawater (10 ppm); about 10 mg uranium is loaded per 1 g dry fiber. Then the rate and yield of uranium desorption from the fiber are determined with various eluents. Acid solutions are superior to alkali carbonate solutions as eluents. With a 0.1 mol[center dot]L[sup [minus]1] HCl solution, desorption is completed in 2 hours regardless of the presence of uranium in the leaching solution up to 15 ppm ([approx]6 [times] 10[sup [minus]5]mol[center dot]L[sup [minus]1]). Serial operation of the adsorption-desorption cycle four times does not affect desorption efficiency, but the addition of heavy metal ions to the eluent at a level of 1.8 [times] 10[sup [minus]3]mol[center dot]L[sup [minus]1] significantly decreases desorption efficiency. 13 refs., 5 figs., 1 tab.

  1. Investigation of Trace Uranium in Biological Matrices

    E-Print Network [OSTI]

    Miller, James Christopher

    2013-05-31T23:59:59.000Z

    U.S. Department of Energy synthetic urine quality assurance standards from an inter-laboratory exercise in 2012. The separation apparatus was able to consistently separate uranium from the synthetic urine solutions with a consistent recovery between...

  2. Innovative design of uranium startup fast reactors

    E-Print Network [OSTI]

    Fei, Tingzhou

    2012-01-01T23:59:59.000Z

    Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

  3. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  4. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

  5. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11T23:59:59.000Z

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  6. Evaluation of Uranium Measurements in Water by Various Methods - 13571

    SciTech Connect (OSTI)

    Tucker, Brian J. [Shaw Environmental and Infrastructure Group, 150 Royall Street, Canton, MA (United States)] [Shaw Environmental and Infrastructure Group, 150 Royall Street, Canton, MA (United States); Workman, Stephen M. [ALS Laboratory Group, Environmental Division, 225 Commerce Drive, Fort Collins, CO 80524 (United States)] [ALS Laboratory Group, Environmental Division, 225 Commerce Drive, Fort Collins, CO 80524 (United States)

    2013-07-01T23:59:59.000Z

    In December 2000, EPA amended its drinking water regulations for radionuclides by adding a Maximum Contaminant Level (MCL) for uranium (so called MCL Rule)[1] of 30 micrograms per liter (?g/L). The MCL Rule also included MCL goals of zero for uranium and other radionuclides. Many radioactively contaminated sites must test uranium in wastewater and groundwater to comply with the MCL rule as well as local publicly owned treatment works discharge limitations. This paper addresses the relative sensitivity, accuracy, precision, cost and comparability of two EPA-approved methods for detection of total uranium: inductively plasma/mass spectrometry (ICP-MS) and alpha spectrometry. Both methods are capable of measuring the individual uranium isotopes U-234, U- 235, and U-238 and both methods have been deemed acceptable by EPA. However, the U-238 is by far the primary contributor to the mass-based ICP-MS measurement, especially for naturally-occurring uranium, which contains 99.2745% U-238. An evaluation shall be performed relative to the regulatory requirement promulgated by EPA in December 2000. Data will be garnered from various client sample results measured by ALS Laboratory in Fort Collins, CO. Data shall include method detection limits (MDL), minimum detectable activities (MDA), means and trends in laboratory control sample results, performance evaluation data for all methods, and replicate results. In addition, a comparison will be made of sample analyses results obtained from both alpha spectrometry and the screening method Kinetic Phosphorescence Analysis (KPA) performed at the U.S. Army Corps of Engineers (USACE) FUSRAP Maywood Laboratory (UFML). Many uranium measurements occur in laboratories that only perform radiological analysis. This work is important because it shows that uranium can be measured in radiological as well as stable chemistry laboratories and it provides several criteria as a basis for comparison of two uranium test methods. This data will indicate which test method is the most accurate and most cost effective. This paper provides a benefit to Formerly Utilized Sites Remedial Action Program (FUSRAP) and other Department of Defense (DOD) programs that may be performing uranium measurements. (authors)

  7. Preserving Ultra-Pure Uranium-233

    SciTech Connect (OSTI)

    Krichinsky, Alan M [ORNL; Goldberg, Dr. Steven A. [DOE SC - Chicago Office; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL)

    2011-10-01T23:59:59.000Z

    Uranium-233 ({sup 233}U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium ({sup 232}Th). At high purities, this synthetic isotope serves as a crucial reference material for accurately quantifying and characterizing uranium-bearing materials assays and isotopic distributions for domestic and international nuclear safeguards. Separated, high purity {sup 233}U is stored in vaults at Oak Ridge National Laboratory (ORNL). These materials represent a broad spectrum of {sup 233}U from the standpoint of isotopic purity - the purest being crucial for precise analyses in safeguarding uranium. All {sup 233}U at ORNL is currently scheduled to be disposed of by down-blending with depleted uranium beginning in 2015. This will reduce safety concerns and security costs associated with storage. Down-blending this material will permanently destroy its potential value as a certified reference material for use in uranium analyses. Furthermore, no credible options exist for replacing {sup 233}U due to the lack of operating production capability and the high cost of restarting currently shut down capabilities. A study was commissioned to determine the need for preserving high-purity {sup 233}U. This study looked at the current supply and the historical and continuing domestic need for this crucial isotope. It examined the gap in supplies and uses to meet domestic needs and extrapolated them in the context of international safeguards and security activities - superimposed on the recognition that existing supplies are being depleted while candidate replacement material is being prepared for disposal. This study found that the total worldwide need by this projection is at least 850 g of certified {sup 233}U reference material over the next 50 years. This amount also includes a strategic reserve. To meet this need, 18 individual items totaling 959 g of {sup 233}U were identified as candidates for establishing a lasting supply of certified reference materials (CRM), all having an isotopic purity of at least 99.4% {sup 233}U and including materials up to 99.996% purity. Current plans include rescuing the purest {sup 233}U materials during a 3-year project beginning in FY 2012 in three phases involving preparations, handling preserved materials, and cleanup. The first year will involve preparations for handling the rescued material for sampling, analysis, distribution, and storage. Such preparations involve modifying or developing work control documents and physical preparations in the laboratory, which include preparing space for new material-handling equipment and procuring and (in some cases) refurbishing equipment needed for handling {sup 233}U or qualifying candidate CRM. Once preparations are complete, an evaluation of readiness will be conducted by independent reviewers to verify that the equipment, work controls, and personnel are ready for operations involving handling radioactive materials with nuclear criticality safety as well as radiological control requirements. The material-handling phase will begin in FY 2013 and be completed early in FY 2014, as currently scheduled. Material handling involves retrieving candidate CRM items from the ORNL storage facility and shipping them to another laboratory at ORNL; receiving and handling rescued items at the laboratory (including any needed initial processing, acquisition and analysis of samples from each item, and preparation for shipment); and shipping bulk material to destination labs or to a yet-to-be-designated storage location. There are seven groups of {sup 233}U identified for handling based on isotopic purity that require the utmost care to prevent cross-contamination. The last phase, cleanup, also will be completed in 2014. It involves cleaning and removing the equipment and material-handling boxes and characterizing, documenting, and disposing of waste. As part of initial planning, the cost of rescuing candidate {sup 233}U items was estimated roughly. The annualized costs were found to be $1,228K in FY 2012, $1,375K in FY 2013,

  8. Depleted uranium: A DOE management guide

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

  9. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  10. Investigation of Trace Uranium in Biological Matrices 

    E-Print Network [OSTI]

    Miller, James Christopher

    2013-05-31T23:59:59.000Z

    . This monitoring is often multi-faceted and typically involves an air sampling and biological sampling regime. The regime depends on the potential for exposures, the materials and chemical compounds being used, and the facility history. Specifically... Y-12 led the early US uranium enrichment programs, it also pioneered early uranium bioassay.[8] Likewise, the 5 Savannah River Site (SRS) pioneered plutonium bioassay techniques.[9] From these programs, techniques were developed to detect...

  11. BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.

    SciTech Connect (OSTI)

    FRANCIS,A.J.

    1998-09-17T23:59:59.000Z

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  12. Material property correlations for uranium mononitride

    E-Print Network [OSTI]

    Hayes, Steven Lowe

    1989-01-01T23:59:59.000Z

    . 1 1770 - 2083 20. 7 - 34. 4 158, 1773 13-54 Test Environment Fuel Manafact- uring Route Test conducted in vaccuum (10~-5 ton) Cold pressed and sintered. Test conducted in 200 torr nitrogen atmosphere Isostatically Hot Pressed. Test... conductivity, high uranium density, stable irradiation behavior and compatibility with liquid metal coolants and refractory metal structural materials all combine to make uranium mononitride (UN) a very attractive nuclear fuel for use in high temperature...

  13. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Hayden, H. Wayne (Oakridge, TN)

    1995-01-01T23:59:59.000Z

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  14. Characterization of uranium(VI) in seawater

    SciTech Connect (OSTI)

    Djogic, R.; Sipos, L.; Branica, M.

    1986-09-01T23:59:59.000Z

    The physicochemical characterization of uranium(VI) in seawater is described on the basis of species distribution calculations and experiments using polarography and spectrophotometry in artificial seawater at elevated uranium concentrations. Various dissolved uranium(VI) species are identified under different conditions of pH and carbonate concentration. Below pH 4, the hydrated uranyl ion is present in the free state (forming labile complexes). Above pH 4, a stepwise coordination of uranyl by the carbonate ion occurs. The monocarbonate complex is formed in the pH range 4-5, the bicarbonate uranyl complex between 5 and 6. Above pH 8, uranium is present predominately as the tricarbonate and to a smaller extent as a trihydroxide complex. There is satisfactory agreement between our experiments and the theoretically computed distribution of uranium(VI) in seawater based on published stability constants. The experiments done at higher concentrations are justified by theoretical distributions showing that there is no great difference in species distribution between the uranium at concentrations of 10/sup -4/ and /sup -8/ mol dm/sup -3/.

  15. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  16. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    E-Print Network [OSTI]

    Mouser, P.J.

    2010-01-01T23:59:59.000Z

    Applying molecular biology to bioremediation. Nature Reviewsduring groundwater bioremediation. Environmentalduring in situ uranium bioremediation. ISME Journal 2009,

  17. Method of removing niobium from uranium-niobium alloy

    SciTech Connect (OSTI)

    Pollock, E.N.; Schlier, D.S.; Shinopulos, G.

    1992-01-28T23:59:59.000Z

    This patent describes a method of removing niobium from a uranium-niobium alloy. It comprises dissolving the uranium-niobium alloy metal pieces in a first aqueous solution containing an acid selected from the group consisting of hydrochloric acid and sulfuric acid and fluoboric acid as a catalyst to provide a second aqueous solution, which includes uranium (U{sup +4}), acid radical ions, the acids insolubles including uranium oxides and niobium oxides; adding nitric acid to the insolubles to oxidize the niobium oxides to yield niobic acid and to complete the solubilization of any residual uranium; and separating the niobic acid from the nitric acid and solubilized uranium.

  18. Field-based detection and monitoring of uranium in contaminated groundwater using two immunosensors

    E-Print Network [OSTI]

    Melton, S.J.

    2010-01-01T23:59:59.000Z

    D. R. , Sustained removal of uranium from contaminated9. 18. Brina, R. , Uranium removal from contaminated water

  19. Detection of hexavalent uranium with inline and field-portable immunosensors

    E-Print Network [OSTI]

    Melton, Scott J.

    2009-01-01T23:59:59.000Z

    were able detect the removal of uranium from the groundwaterDR (2008) Sustained removal of uranium from contaminated

  20. Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer

    E-Print Network [OSTI]

    N'Guessan, L.A.

    2010-01-01T23:59:59.000Z

    DR (2008). Sustained Removal of Uranium From ContaminatedKomlos J et al (2007). Uranium removal from groundwater via

  1. Multiple recycle of REMIX fuel based on reprocessed uranium and plutonium mixture in thermal reactors

    SciTech Connect (OSTI)

    Fedorov, Y.S.; Bibichev, B.A.; Zilberman, B.Y. [RPA - V.G.Khlopin Radium Institute, St-Petersburg (Russian Federation); Baryshnikov, M.V.; Kryukov, O.V.; Khaperskaya, A.V. [State Corporation ROSATOM, Moscow (Russian Federation)

    2013-07-01T23:59:59.000Z

    REMIX fuel consumption in WWER-1000 is considered. REMIX fuel is fabricated from non-separated mixture of uranium and plutonium obtained during NPP spent fuel reprocessing with further makeup by enriched natural uranium. It makes possible to recycle several times the total amount of uranium and plutonium obtained from spent fuel with 100% loading of the WWER-1000 core. The stored SNF could be also involved in REMIX fuel cycle by enrichment of regenerated uranium. The same approach could be applied to closing the fuel cycle of CANDU reactors. (authors)

  2. Recovery of uranium from seawater using amidoxime hollow fibers

    SciTech Connect (OSTI)

    Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.

    1988-03-01T23:59:59.000Z

    A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days.

  3. Uranium transformations in static microcosms.

    SciTech Connect (OSTI)

    Kelly, S. D.; Wu, W.; Yang, F.; Criddle, C.; Marsh, T. L.; O'Loughlin, E. J.; Ravel, B.; Watson, D.; Jardine, P. M.; Kemner, K. M.; Stanford Univ.; Michigan State Univ.; ORNL; BNL; EXAFS Analysis

    2010-01-01T23:59:59.000Z

    Elucidation of complex biogeochemical processes and their effects on speciation of U in the subsurface is critical for developing remediation strategies with an understanding of stability. We have developed static microcosms that are similar to bioreduction process studies in situ under laminar flow conditions or in sediment pores. Uranium L{sub 3}-edge X-ray absorption near-edge spectroscopy analysis with depth in the microcosms indicated that transformation of U{sup VI} to U{sup IV} occurred by at least two distinct processes. Extended X-ray absorption fine structure (EXAFS) analysis indicated that initial U{sup VI} species associated with C- and P-containing ligands were transformed to U{sup IV} in the form of uraninite and U associated with Fe-bound ligands. Microbial community analysis identified putative Fe{sup III} and sulfate reducers at two different depths in the microcosms. The slow reduction of U{sup VI} to U{sup IV} may contribute the stability of U{sup IV} within microcosms at 11 months after a decrease in bioreducing conditions due to limited electron donors.

  4. Criticality Safety of Low-Enriched Uranium and High-Enriched Uranium Fuel Elements in Heavy Water Lattices

    SciTech Connect (OSTI)

    Pesic, Milan P

    2003-10-15T23:59:59.000Z

    The RB reactor was designed as a natural-uranium, heavy water, nonreflected critical assembly in the Vinca Institute of Nuclear Sciences, Belgrade, Yugoslavia, in 1958. From 1962 until 2002, numerous critical experiments were carried out with low-enriched uranium and high-enriched uranium fuel elements of tubular shape, known as the Russian TVR-S fuel assembly type, placed in various heavy water square lattices within the RB cylindrical aluminum tank. Some of these well-documented experiments were selected, described, evaluated, and accepted for inclusion in the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments', contributing to the preservation of a rather small number of heavy water benchmark critical experiments.

  5. Prospects for the recovery of uranium from seawater

    E-Print Network [OSTI]

    Best, F. R.

    1980-01-01T23:59:59.000Z

    A computer program entitled URPE (Uranium Recovery Performance and Economics) has been developed to simulate the engineering performance and provide an economic analysis O of a plant recovering uranium from seawater. The ...

  6. Assessments of long-term uranium supply availability

    E-Print Network [OSTI]

    Zaterman, Daniel R

    2009-01-01T23:59:59.000Z

    The future viability of nuclear power will depend on the long-term availability of uranium. A two-form uranium supply model was used to estimate the date at which peak production will occur. The model assumes a constant ...

  7. Y-12 and the Ťsuper enriched Uranium 235?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "super enriched Uranium 235" Ken Bernander called me to say that he had read in the newspaper about the 100 milligrams of uranium oxide that is 99.999% U-235. He was chuckling when...

  8. Fabrication and Characterization of Uranium-based High Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication...

  9. RESOLUTION OF URANIUM ISOTOPES WITH KINETIC PHOSPHORESCENCE ANALYSIS

    SciTech Connect (OSTI)

    Miley, Sarah M.; Hylden, Anne T.; Friese, Judah I.

    2013-04-01T23:59:59.000Z

    This study was conducted to test the ability of the Chemchek™ Kinetic Phosphorescence Analyzer Model KPA-11 with an auto-sampler to resolve the difference in phosphorescent decay rates of several different uranium isotopes, and therefore identify the uranium isotope ratios present in a sample. Kinetic phosphorescence analysis (KPA) is a technique that provides rapid, accurate, and precise determination of uranium concentration in aqueous solutions. Utilizing a pulsed-laser source to excite an aqueous solution of uranium, this technique measures the phosphorescent emission intensity over time to determine the phosphorescence decay profile. The phosphorescence intensity at the onset of decay is proportional to the uranium concentration in the sample. Calibration with uranium standards results in the accurate determination of actual concentration of the sample. Different isotopes of uranium, however, have unique properties which should result in different phosphorescence decay rates seen via KPA. Results show that a KPA is capable of resolving uranium isotopes.

  10. abandoned uranium mines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    residents. 3.1.1 On-Site Recreation Since most uranium locations are on federal lands 91 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  11. Modeling the Removal of Uranium U(VI) from Aqueous Solutions in the

    E-Print Network [OSTI]

    include natural U deposits, mining, milling, and tailing operations and U.S. Department of Energy (DOEModeling the Removal of Uranium U(VI) from Aqueous Solutions in the Presence of Sulfate Reducing The reduction kinetics of soluble hexavalent uranium (U(VI)) to insoluble tetravalent U(IV) by both a mixed

  12. Demonstration of jackhammer incorporating depleted uranium

    SciTech Connect (OSTI)

    Fischer, L E; Hoard, R W; Carter, D L; Saculla, M D; Wilson, G V

    2000-04-01T23:59:59.000Z

    The United States Government currently has an abundance of depleted uranium (DU). This surplus of about 1 billion pounds is the result of an enrichment process using gaseous diffusion to produce enriched and depleted uranium. The enriched uranium has been used primarily for either nuclear weapons for the military or nuclear fuel for the commercial power industry. Most of the depleted uranium remains at the enrichment process plants in the form of depleted uranium hexafluoride (DUF{sub 6}). The Department of Energy (DOE) recently began a study to identify possible commercial applications for the surplus material. One of these potential applications is to use the DU in high-density strikers/hammers in pneumatically driven tools, such as jack hammers and piledrivers to improve their impulse performance. The use of DU could potentially increase tunneling velocity and excavation into target materials with improved efficiency. This report describes the efforts undertaken to analyze the particulars of using DU in two specific striking applications: the jackhammer and chipper tool.

  13. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes

    SciTech Connect (OSTI)

    Marsh, Terence L.

    2013-07-30T23:59:59.000Z

    Our contribution to the larger project (ANL) was the phylogenetic analysis of evolved communities capable of reducing metals including uranium.

  14. The radioactive Substances (Uranium and Thorium) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01T23:59:59.000Z

    STATUTORY INSTRUMENTS 1962 No.2710 ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES The Radioactive Substances (Uranium and Thorium) Exemption Order 1962...

  15. Modeling Uranium-Proton Ion Exchange in Biosorption

    E-Print Network [OSTI]

    Volesky, Bohumil

    seaweed biomass was used to remove the heavy metal uranium from the aqueous solution. Uranium biosorptionModeling Uranium-Proton Ion Exchange in Biosorption J I N B A I Y A N G A N D B O H U M I L V O L E, Quebec, Canada H3A 2B2 Biosorption of uranium metal ions by a nonliving protonated Sargassum fluitans

  16. Depleted Uranium in Kosovo Post-Conflict Environmental Assessment

    E-Print Network [OSTI]

    Unep Scientific; Mission Kosovo

    2.1 UNEP’s role in post-conflict environmental assessment................................................9 2.2 Depleted uranium............................................................10

  17. The study of material accountancy procedures for uranium in a whole nuclear fuel cycle

    SciTech Connect (OSTI)

    Nakano, Hiromasa; Akiba, Mitsunori [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1995-07-01T23:59:59.000Z

    Material accountancy procedures for uranium under a whole nuclear fuel cycle were studied by taking into consideration the material accountancy capability associated with realistic measurement uncertainties. The significant quantity used by the International Atomic Energy Agency (IAEA) for low-enriched uranium is 75 kg U-235 contained. A loss of U-235 contained in uranium can be detected by either of the following two procedures: one is a traditional U-235 isotope balance, and the other is a total uranium element balance. Facility types studied in this paper were UF6 conversion, gas centrifuge uranium enrichment, fuel fabrication, reprocessing, plutonium conversion, and MOX fuel production in Japan, where recycled uranium is processed in addition to natural uranium. It was found that the material accountancy capability of a total uranium element balance was almost always higher than that of a U-235 isotope balance under normal accuracy of weight, concentration, and enrichment measurements. Changing from the traditional U-235 isotope balance to the total uranium element balance for these facilities would lead to a gain of U-235 loss detection capability through material accountancy and to a reduction in the required resources of both the IAEA and operators.

  18. Tables des principaux minerais d'uranium et de thorium

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    233 Tables des principaux minerais d'uranium et de thorium Par B. SZILARD [Faculté des Sciences de minerais d'uranium et de thorium avec leurs données les plus importantes, telles que la com- position, la teneur en uranium et en thorium, la provenance et quelques indications générales. La liste ne prétend pas

  19. Estimating terrestrial uranium and thorium by antineutrino flux measurements

    E-Print Network [OSTI]

    Mcdonough, William F.

    Estimating terrestrial uranium and thorium by antineutrino flux measurements Stephen T. Dye, and approved November 16, 2007 (received for review July 11, 2007) Uranium and thorium within the Earth produce of uranium and thorium concentrations in geological reservoirs relies largely on geochemi- cal model

  20. Appendix IV. Risks Associated with Conventional Uranium Milling Introduction

    E-Print Network [OSTI]

    ", uranium is removed from the processed ore with sulfuric acid. Sodium chlorate is also addedAppendix IV. Risks Associated with Conventional Uranium Milling Operations Introduction Although uranium mill tailings are considered byproduct materials under the AEA and not TENORM, EPA's Science

  1. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, J.P.

    1992-03-17T23:59:59.000Z

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  2. EPA Uranium Program Update Loren W. Setlow and

    E-Print Network [OSTI]

    EPA Uranium Program Update Loren W. Setlow and Reid J. Rosnick Environmental Protection Agency Office of Radiation and Indoor Air (6608J) Washington, DC 20460 NMA/NRC Uranium Recovery Workshop April 30, 2008 #12;2 Overview EPA Radiation protection program Uranium reports and abandoned mine lands

  3. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL)

    1992-01-01T23:59:59.000Z

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  4. Standard Review Plan for In Situ Leach Uranium

    E-Print Network [OSTI]

    NUREG-1569 Standard Review Plan for In Situ Leach Uranium Extraction License Applications Final Washington, DC 20555-0001 #12;NUREG-1569 Standard Review Plan for In Situ Leach Uranium Extraction License OF A STANDARD REVIEW PLAN (NUREG­1569) FOR STAFF REVIEWS FOR IN SITU LEACH URANIUM EXTRACTION LICENSE

  5. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  6. TRIMOLECULAR REACTIONS OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect (OSTI)

    Westbrook, M.; Becnel, J.; Garrison, S.

    2010-02-25T23:59:59.000Z

    The hydrolysis reaction of uranium hexafluoride (UF{sub 6}) is a key step in the synthesis of uranium dioxide (UO{sub 2}) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF{sub 6} molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizeable barrier of 78.2 kJ {center_dot} mol{sup -1}, indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO{sub 2} product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF{sub 6} molecules and one water molecule, and (2) the reaction of two water molecules with a single UF{sub 6} molecule. The predicted reaction of two UF{sub 6} molecules with one water molecule displays an interesting 'fluorine-shuttle' mechanism, a significant energy barrier of 69.0 kJ {center_dot} mol{sup -1} to the formation of UF{sub 5}OH, and an enthalpy of reaction ({Delta}H{sub 298}) of +17.9 kJ {center_dot} mol{sup -1}. The reaction of a single UF{sub 6} molecule with two water molecules displays a 'proton-shuttle' mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ {center_dot} mol{sup -1} and an exothermic enthalpy of reaction ({Delta}H{sub 298}) of -13.9 kJ {center_dot} mol{sup -1}. The exothermic nature of the overall UF{sub 6} + 2 {center_dot} H{sub 2}O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging; however, the sizable energy barrier indicates further study of the UF{sub 6} hydrolysis reaction mechanism is warranted to resolve the remaining discrepancies between the predicted mechanisms and experimental observations.

  7. Depleted uranium hexafluoride: Waste or resource?

    SciTech Connect (OSTI)

    Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

    1995-07-01T23:59:59.000Z

    the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

  8. Method for fluorination of uranium oxide

    DOE Patents [OSTI]

    Petit, George S. (Oak Ridge, TN)

    1987-01-01T23:59:59.000Z

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  9. Measurement of enriched uranium and uranium-aluminum fuel materials with the AWCC

    SciTech Connect (OSTI)

    Krick, M.S.; Menlove, H.O.; Zick, J.; Ikonomou, P.

    1985-05-01T23:59:59.000Z

    The active well coincidence counter (AWCC) was calibrated at the Chalk River Nuclear Laboratories (CRNL) for the assay of 93%-enriched fuel materials in three categories: (1) uranium-aluminum billets, (2) uranium-aluminum fuel elements, and (3) uranium metal pieces. The AWCC was a standard instrument supplied to the International Atomic Energy Agency under the International Safeguards Project Office Task A.51. Excellent agreement was obtained between the CRNL measurements and previous Los Alamos National Laboratory measurements on similar mockup fuel material. Calibration curves were obtained for each sample category. 2 refs., 8 figs., 15 tabs.

  10. U. S. forms uranium enrichment corporation

    SciTech Connect (OSTI)

    Seltzer, R.

    1993-07-12T23:59:59.000Z

    After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business. On July 1, the Department of Energy turned over to a new government-owned entity--the US Enrichment Corp. (USEC)--both the DOE enrichment plants at Paducah, Ky., and Portsmouth, Ohio, and domestic and international marketing of enriched uranium from them. Pushed by the inability of DOE's enrichment operations to meet foreign competition, Congress established USEC under the National Energy Policy Act of 1992, envisioning the new corporation as the first step to full privatization. With gross revenues of $1.5 billion in fiscal 1992, USEC would rank 275th on the Fortune 500 list of top US companies. USEC will lease from DOE the Paducah and Portsmouth facilities, built in the early 1950s, which use the gaseous diffusion process for uranium enrichment. USEC's stock is held by the US Treasury, to which it will pay annual dividends. Martin Marietta Energy Systems, which has operated Paducah since 1984 and Portsmouth since 1986 for DOE, will continue to operate both plants for USEC. Closing one of the two facilities will be studied, especially in light of a 40% world surplus of capacity over demand. USEC also will consider other nuclear-fuel-related ventures. USEC will produce only low-enriched uranium, not weapons-grade material. Indeed, USEC will implement a contract now being completed under which the US will purchase weapons-grade uranium from dismantled Russian nuclear weapons and convert it into low-enriched uranium for power reactor fuel.

  11. Floating plant can get uranium from seawater

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    A floating plant has been designed to extract uranium from seawater using solid adsorbents. Ore is removed from the adsorbent material by means of a solvent and concentrated in ion exchangers. Seawater is supplied to the adsorbent inside by wave energy and is based on the principle that waves will rush up a sloping plane that is partly submerged and fill a reservoir to a level higher than the still water level in the sea. The company projects that an offshore plant for recovering 600 tons of uranium/yr would comprise 22 floating concrete units, each measuring 430 x 75 meters.

  12. Decarburization of uranium via electron beam processing

    SciTech Connect (OSTI)

    McKoon, R H

    1998-10-23T23:59:59.000Z

    For many commercial and military applications, the successive Vacuum Induction Melting of uranium metal in graphite crucibles results in a product which is out of specification in carbon. The current recovery method involves dissolution of the metal in acid and chemical purification. This is both expensive and generates mixed waste. A study was undertaken at Lawrence Livermore National Laboratory to investigate the feasibility of reducing the carbon content of uranium metal using electron beam techniques. Results will be presented on the rate and extent of carbon removal as a function of various operating parameters.

  13. Progress toward uranium scrap recycling via EBCHR

    SciTech Connect (OSTI)

    McKoon, R.H.

    1994-11-01T23:59:59.000Z

    A 250 kW electron beam cold hearth refining (EBCHR) melt furnace at Lawrence Livermore National Laboratory (LLNL) has been in operation for over a year producing 5.5 in.-diameter ingots of various uranium alloys. Production of in-specification uranium-6%-niobium (U-6Nb) alloy ingots has been demonstrated using virgin feedstock. A vibratory scrap feeder has been installed on the system and the ability to recycle chopped U-6Nb scrap has been established. A preliminary comparison of vacuum arc remelted (VAR) and electron beam (EB) melted product is presented.

  14. Simplifying strong electronic correlations in uranium: Localized uranium heavy-fermion UM2Zn20 (M=Co,Rh) compounds

    E-Print Network [OSTI]

    Lawrence, Jon

    Simplifying strong electronic correlations in uranium: Localized uranium heavy-fermion UM2Zn20 (M Atómica, 8400 Bariloche, Argentina 6 Department of Chemistry and Biochemistry, University of Delaware-field effects corroborate an ionic-like uranium electronic configura- tion in UM2Zn20. DOI: 10.1103/PhysRevB.78

  15. Determination of Young's modulus, shear modulus and mechanical damping as a function of temperature and microstructure for Uranium-2wt% Molybdenum using the PUCOT

    E-Print Network [OSTI]

    Varughese, Joseph Verghese

    1988-01-01T23:59:59.000Z

    Verghese Varughese, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Alan Wolfenden A research program has been completed at Texas A&M University in which dynamic Young's and shear modulus measurements were made for depleted Uranium-2wt... INTRODUCTION The need for mankind to utilize his abundant natural resources has led him to numerous research programs with depleted uranium. Depleted uranium ( U-238 ) is a by-product of the nuclear industry. Natural uranium contains about 0. 7...

  16. Melting characteristics of the stainless steel generated from the uranium conversion plant

    SciTech Connect (OSTI)

    Choi, W.K.; Song, P.S.; Oh, W.Z.; Jung, C.H. [Korea Atomic Energy Research Institute (Korea, Republic of); Min, B.Y. [Chungnam National University, 220 Gung-Dong, Yusung-Gu Taejon 305-764 (Korea, Republic of)

    2007-07-01T23:59:59.000Z

    The partition ratio of cerium (Ce) and uranium (U) in the ingot, slag and dust phases has been investigated for the effect of the slag type, slag concentration and basicity in an electric arc melting process. An electric arc furnace (EAF) was used to melt the stainless steel wastes, simulated by uranium oxide and the real wastes from the uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). The composition of the slag former used to capture the contaminants such as uranium, cerium, and cesium during the melt decontamination process generally consisted of silica (SiO{sub 2}), calcium oxide (CaO) and aluminum oxide (Al{sub 2}O{sub 3}). Also, Calcium fluoride (CaF{sub 2} ), nickel oxide (NiO), and ferric oxide (Fe{sub 2}O{sub 3}) were added to provide an increase in the slag fluidity and oxidative potential. Cerium was used as a surrogate for the uranium because the thermochemical and physical properties of cerium are very similar to those of uranium. Cerium was removed from the ingot phase to slag phase by up to 99% in this study. The absorption ratio of cerium was increased with an increase of the amount of the slag former. And the maximum removal of cerium occurred when the basicity index of the slag former was 0.82. The natural uranium (UO{sub 2}) was partitioned from the ingot phase to the slag phase by up to 95%. The absorption of the natural uranium was considerably dependent on the basicity index of the slag former and the composition of the slag former. The optimum condition for the removal of the uranium was about 1.5 for the basicity index and 15 wt% of the slag former. According to the increase of the amount of slag former, the absorption of uranium oxide in the slag phase was linearly increased due to an increase of its capacity to capture uranium oxide within the slag phase. Through experiments with various slag formers, we verified that the slag formers containing calcium fluoride (CaF{sub 2}) and a high amount of silica were more effective for a melt decontamination of stainless steel wastes contaminated with uranium. During the melting tests with stainless steel wastes from the uranium conversion plant(UCP ) in KAERI, we found that the results of the uranium decontamination were very similar to those of the uranium oxide from the melting of stimulated metal wastes. (authors)

  17. Isotopic Analysis of Uranium in NIST SRM Glass by Femtosecond Laser Ablation

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Hart, Garret L.; Hanlen, Richard C.; Eiden, Gregory C.

    2013-05-19T23:59:59.000Z

    We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the 11 determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 12 616). This uranium concentration in this series of SRM glasses is a combination of isotopically natural uranium in 13 the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium 14 elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. 15 However, other than atom percent 235U, little information is available for the remaining glasses. We present atom 16 percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the 17 certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in 18 NIST 610-616. Our results are fully consistent with a two isotopic component mixing between the depleted 19 uranium spike and natural uranium in the bulk glass.

  18. Recovery of uranium from seawater. 7; Concentration and separation of uranium in acidic eluate

    SciTech Connect (OSTI)

    Egawa, H.; Nonaka, T. (Dept. of Applied Chemistry, Faculty of Engineering, Kumamoto Univ., Kurokami 2-39-1, Kumamoto 860 (JP)); Nakayama, M. (Faculty of Pharmaceutical Sciences, Kumamoto Univ., Oe-Honmachi 5-1, Kumamoto 862 (JP))

    1990-11-01T23:59:59.000Z

    This paper reports on macroporous chelating resins (RSP, RSPO, RCSP, and RCSPO) containing dihydroxphosphino and/or -phosphono groups were examined for the concentration and separation of uranium from acidic eluates of macroporous chelating resin containing amidoxime groups. RSP and RSPO had a high adsorption capacity for uranium even in 0.25-0.50 mol {center dot} dm{sup {minus}3} H{sub 2}SO{sub 4}. Uranium adsorbed on the resins was eluted easily as a uranyl carbonate complex by use of 0.25 mol {center dot} dm{sup {minus}3} Na{sub 2}CO{sub 3}. In this effluent, other metal ions were hardly present. The use of RSP and RSPO was very effective in concentrating uranium from seawater and separating it from most other elements.

  19. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  20. Extraction of uranium from seawater using magnetic adsorbents

    SciTech Connect (OSTI)

    Yamashita, H. (Hitachi Research Lab., Japan); Fujita, K.; Nakajima, F.; Ozawa, Y.; Murata, T.

    1981-01-01T23:59:59.000Z

    A new process for the extraction of uranium from seawater was developed. In the process, uranium adsorption is effected using powdered magnetic adsorbents; the adsorbents are then separated from seawater using magnetic separation technology. This process is superior to a column method using a granulated hydrous titanium oxide adsorber bed in the following ways: (1) a higher rate of adsorption is realized because smaller particles are used in the uranium adsorption; and (2) blocking, which is inevitable in an adsorber bed, is eliminated. The composite hydrous titanium-iron oxide as a magnetic adsorbent having high uranium adsorption capacity and magnetization can be prepared by adding urea to a mixed solution of titanium sulfate and ferrous sulfate. Adsorption and desoprtion of uranium and the removal of the adsorbent using a small-scale uranium extraction plant (about 15 m/sup 3//d) is reported, and the feasibility of uranium extraction from seawater by this process is demonstrated. 10 figures.

  1. New aspects of uranium recovery from seawater

    SciTech Connect (OSTI)

    Hetkamp, D.; Wagener, K.

    1982-10-01T23:59:59.000Z

    The properties of various adsorbents for uranium extraction from seawater are measured under standardized experimental conditions. It turns out that fractionated humic acids have exceptionally fast loading kinetics. This property leads to a substantial reduction of capital investments in conventional adsorbent bed techniques as well as in a procedure designed to avoid large adsorbent bed constructions by using carrier bodies in the open sea.

  2. Phosphate Barriers for Immobilization of Uranium Plumes

    SciTech Connect (OSTI)

    Burns, Peter C.

    2004-12-01T23:59:59.000Z

    Uranium contamination of the subsurface remains a persistent problem plaguing remedial design at sites across the U.S. that were involved with production, handling, storage, milling, and reprocessing of uranium for both civilian and defense related purposes. Remediation efforts to date have relied upon excavation, pump-and-treat, or passive remediation barriers (PRB?s) to remove or attenuate uranium mobility. Documented cases convincingly demonstrate that excavation and pump-and-treat methods are ineffective for a number of highly contaminated sites. There is growing concern that use of conventional PRB?s, such as zero-valent iron, may be a temporary solution to a problem that will persist for thousands of years. Alternatives to the standard treatment methods are therefore warranted. The core objective of our research is to demonstrate that a phosphorus amendment strategy will result in a reduction of dissolved uranium to below the proposed drinking water standard. Our hypothesis is that long-chain sodium polyphosphate compounds forestall precipitation of sparingly soluble uranyl phosphate compounds, which is paramount to preventing fouling of wells at the point of injection.

  3. The Uranium Institute 24th Annual Symposium

    E-Print Network [OSTI]

    Laughlin, Robert B.

    -239 for use in subsequent reactors. A fast neutron reactor is capable of producing more plutonium fuel than the uranium fuel it burns, leading to a breeder reactor. In addition, if the reactor is a fast with half lives of 30 years or less. The fast neutron reactor of preference was to be cooled with liquid

  4. The multiphoton ionization of uranium hexafluoride

    SciTech Connect (OSTI)

    Armstrong, D.P. (Oak Ridge K-25 Site, TN (United States). UEO Enrichment Technical Operations Div.)

    1992-05-01T23:59:59.000Z

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

  5. The Quest for the Heaviest Uranium Isotope

    E-Print Network [OSTI]

    S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

    2012-01-17T23:59:59.000Z

    We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

  6. Geodatabase of the South Texas Uranium District

    E-Print Network [OSTI]

    Mark Beaman; William Wade Mcgee

    Uranium and its associated trace elements and radionuclides are ubiquitous in the South Texas Tertiary environment. Surface mining of this resource from the 1960s through the early 1980s at over sixty locations has left an extensive anthropological footprint (Fig. 1) in the lower Nueces and San Antonio river basins. Reclamation of mining initiated after 1975 has been under the regulatory authority of the Railroad Commission of Texas (RCT). However, mines that were active before the Texas Surface Mining Act of 1975 was enacted, and never reclaimed, are now considered abandoned. The Abandoned Mine Land Section of the RCT is currently reclaiming these pre-regulation uranium mines with funding from the federal government. The RCT monitors the overall effectiveness of this process through post-reclamation radiation and vegetative cover surveys, water quality testing, slope stability and erosion control monitoring. Presently a number of graduate and postgraduate students are completing research on the watershed and reservoir distribution of trace elements and radionuclides downstream of the South Texas Uranium District. The question remains as to whether the elevated levels of uranium, its associated trace elements and radiation levels in the South Texas environment are due to mining

  7. Criticality safety concerns of uranium deposits in cascade equipment

    SciTech Connect (OSTI)

    Plaster, M.J. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States)

    1996-12-31T23:59:59.000Z

    The Paducah and Portsmouth Gaseous Diffusion Plants enrich uranium in the {sup 235}U isotope by diffusing gaseous uranium hexafluoride (UF{sub 6}) through a porous barrier. The UF{sub 6} gaseous diffusion cascade utilized several thousand {open_quotes}stages{close_quotes} of barrier to produce highly enriched uranium (HEU). Historically, Portsmouth has enriched the Paducah Gaseous Diffusion Plant`s product (typically 1.8 wt% {sup 235}U) as well as natural enrichment feed stock up to 97 wt%. Due to the chemical reactivity of UF{sub 6}, particularly with water, the formation of solid uranium deposits occur at a gaseous diffusion plant. Much of the equipment operates below atmospheric pressure, and deposits are formed when atmospheric air enters the cascade. Deposits may also be formed from UF{sub 6} reactions with oil, UF{sub 6} reactions with the metallic surfaces of equipment, and desublimation of UF{sub 6}. The major deposits form as a result of moist air in leakage due to failure of compressor casing flanges, blow-off plates, seals, expansion joint convolutions, and instrument lines. This report describes criticality concerns and deposit disposition.

  8. Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils

    SciTech Connect (OSTI)

    Jerden, James L. Jr. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439 (United States)

    2007-07-01T23:59:59.000Z

    A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group minerals react to form U(VI)- bearing aluminum phosphates. (author)

  9. Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01T23:59:59.000Z

    Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)

  10. Candidate processes for diluting the {sup 235}U isotope in weapons-capable highly enriched uranium

    SciTech Connect (OSTI)

    Snider, J.D.

    1996-02-01T23:59:59.000Z

    The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile {sup 235}U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile {sup 235}U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel.

  11. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    researchers from uranium chemistry. Fortunately, despitescarce in uranium coordination chemistry. A more detailedligands for uranium coordination chemistry. Figure 4-2.

  12. Compact reaction cell for homogenizing and down-blending highly enriched uranium metal

    DOE Patents [OSTI]

    McLean, W. II; Miller, P.E.; Horton, J.A.

    1995-05-02T23:59:59.000Z

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.

  13. Compact reaction cell for homogenizing and down-blanding highly enriched uranium metal

    DOE Patents [OSTI]

    McLean, II, William (Oakland, CA); Miller, Philip E. (Livermore, CA); Horton, James A. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gasses into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell.

  14. Chemical Equilibrium of the Dissolved Uranium in Groundwaters From a Spanish Uranium-Ore Deposit

    SciTech Connect (OSTI)

    Garralon, Antonio; Gomez, Paloma; Turrero, Maria Jesus; Buil, Belen; Sanchez, Lorenzo [Departamento de Medio Ambiente, CIEMAT, Avda. Complutense 22. Edificio 19, Madrid, 28040 (Spain)

    2007-07-01T23:59:59.000Z

    The main objectives of this work are to determine the hydrogeochemical evolution of an uranium ore and identify the main water/rock interaction processes that control the dissolved uranium content. The Mina Fe uranium-ore deposit is the most important and biggest mine worked in Spain. Sageras area is located at the north part of the Mina Fe, over the same ore deposit. The uranium deposit was not mined in Sageras and was only perturbed by the exploration activities performed 20 years ago. The studied area is located 10 Km northeast of Ciudad Rodrigo (Salamanca) at an altitude over 650 m.a.s.l. The uranium mineralization is related to faults affecting the metasediments of the Upper Proterozoic to Lower Cambrian schist-graywacke complex (CEG), located in the Centro-Iberian Zone of the Hesperian Massif . The primary uranium minerals are uraninite and coffinite but numerous secondary uranium minerals have been formed as a result of the weathering processes: yellow gummite, autunite, meta-autunite, torbernite, saleeite, uranotile, ianthinite and uranopilite. The water flow at regional scale is controlled by the topography. Recharge takes place mainly in the surrounding mountains (Sierra Pena de Francia) and discharge at fluvial courses, mainly Agueda and Yeltes rivers, boundaries S-NW and NE of the area, respectively. Deep flows (lower than 100 m depth) should be upwards due to the river vicinity, with flow directions towards the W, NW or N. In Sageras-Mina Fe there are more than 100 boreholes drilled to investigate the mineral resources of the deposit. 35 boreholes were selected in order to analyze the chemical composition of groundwaters based on their depth and situation around the uranium ore. Groundwater samples come from 50 to 150 m depth. The waters are classified as calcium-bicarbonate type waters, with a redox potential that indicates they are slightly reduced (values vary between 50 to -350 mV). The TOC varies between <0.1 and 4.0 mgC/L and the dissolved uranium has a maximum value of 7.7 mg/L. According the analytical data of dissolved uranium, the mineral closest to equilibrium seems to be UO{sub 2}(am). The tritium contents in the groundwaters vary between 1.5 and 7.3 T.U. Considering that the mean value of tritium in rainwater from the studied area has a value of 4 T.U., it can be concluded that the residence times of the groundwaters are relatively short, not longer than 50 years in the oldest case. (authors)

  15. 4.0 RISK FROM URANIUM MINING WASTE IN BUILDING In general, building materials contain low levels of radioactivity. For example, the range of

    E-Print Network [OSTI]

    the wastes from uranium mines have been removed from mining sites and used in local and nearby communities4.0 RISK FROM URANIUM MINING WASTE IN BUILDING MATERIALS In general, building materials contain low levels of radioactivity. For example, the range of natural uranium concentrations may average as low

  16. Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)

    SciTech Connect (OSTI)

    PLYS, M.G.

    2000-10-10T23:59:59.000Z

    The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3) Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method against experimental data, (4) Application of the method to plausibly explain operational experience, and (5) Application of the method to present process steps to demonstrate process safety and margin. Essentially, the logic above is used to demonstrate that runaway reactions cannot occur during normal SNF Project process steps, and to illustrate the depth of the technical basis for such a conclusion. Some off-normal conditions are identified here that could potentially lead to runaway reactions. However, this document is not intended to provide an exhaustive analysis of such cases. In summary, this report provides a ''toolkit'' of models and approaches for analysis of pyrophoricity safety issues at Hanford, and the technical basis for the recommended approaches. A summary of recommended methods appears in Section 9.0.

  17. Measurements of the spatial and energy distribution of thermal neutrons in uranium, heavy water lattices

    E-Print Network [OSTI]

    Brown, Paul S. (Paul Sherman)

    1962-01-01T23:59:59.000Z

    Intracell activity distributions were measured in three natural uranium, heavy water lattices of 1. 010 inch diameter, aluminum clad rods on triangular spacings of 4. 5 inches, 5. 0 inches, and 5. 75 inches, respectively, ...

  18. Delayed neutron assay to test sorbers for uranium-from-seawater applications

    E-Print Network [OSTI]

    Nitta, Cynthia K.

    1982-01-01T23:59:59.000Z

    Delayed Fission Neutron (DFN) assay has been applied to the measurement of uranium content in sorbers exposed to natural seawater for the purpose of evaluating advanced ion exchange resins. DFN assay was found to be ...

  19. Assessing the environmental availability of uranium in soils and sediments

    SciTech Connect (OSTI)

    Amonette, J.E.; Holdren, G.R. Jr.; Krupa, K.M.; Lindenmeier, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1994-06-01T23:59:59.000Z

    Soils and sediments contaminated with uranium pose certain environmental and ecological risks. At low to moderate levels of contamination, the magnitude of these risks depends not only on the absolute concentrations of uranium in the material but also on the availability of the uranium to drinking water supplies, plants, or higher organisms. Rational approaches for regulating the clean-up of sites contaminated with uranium, therefore, should consider the value of assessing the environmental availability of uranium at the site before making decisions regarding remediation. The purpose of this work is to review existing approaches and procedures to determine their potential applicability for assessing the environmental availability of uranium in bulk soils or sediments. In addition to making the recommendations regarding methodology, the authors have tabulated data from the literature on the aqueous complexes of uranium and major uranium minerals, examined the possibility of predicting environmental availability of uranium based on thermodynamic solubility data, and compiled a representative list of analytical laboratories capable of performing environmental analyses of uranium in soils and sediments.

  20. BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL

    SciTech Connect (OSTI)

    Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.; Thompson, Anthony J.

    2003-02-27T23:59:59.000Z

    Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials at a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.

  1. Ultraslow Wave Nuclear Burning of Uranium-Plutonium Fissile Medium on Epithermal Neutrons

    E-Print Network [OSTI]

    V. D. Rusov; V. A. Tarasov; M. V. Eingorn; S. A. Chernezhenko; A. A. Kakaev; V. M. Vashchenko; M. E. Beglaryan

    2014-09-29T23:59:59.000Z

    For a fissile medium, originally consisting of uranium-238, the investigation of fulfillment of the wave burning criterion in a wide range of neutron energies is conducted for the first time, and a possibility of wave nuclear burning not only in the region of fast neutrons, but also for cold, epithermal and resonance ones is discovered for the first time. For the first time the results of the investigation of the Feoktistov criterion fulfillment for a fissile medium, originally consisting of uranium-238 dioxide with enrichments 4.38%, 2.00%, 1.00%, 0.71% and 0.50% with respect to uranium-235, in the region of neutron energies 0.015-10.0eV are presented. These results indicate a possibility of ultraslow wave neutron-nuclear burning mode realization in the uranium-plutonium media, originally (before the wave initiation by external neutron source) having enrichments with respect to uranium-235, corresponding to the subcritical state, in the regions of cold, thermal, epithermal and resonance neutrons. In order to validate the conclusions, based on the slow wave neutron-nuclear burning criterion fulfillment depending on the neutron energy, the numerical modeling of ultraslow wave neutron-nuclear burning of a natural uranium in the epithermal region of neutron energies (0.1-7.0eV) was conducted for the first time. The presented simulated results indicate the realization of the ultraslow wave neutron-nuclear burning of the natural uranium for the epithermal neutrons.

  2. The Hazard Posed by Depleted Uranium Munitions

    E-Print Network [OSTI]

    Steve Fetter And; Steve Fetter A

    This paper assesses the radiological and chemical hazards resulting from the use of depleted uranium (DU) munitions. Due to the low radioactivity of DU, radiological hazards to individuals would become significant in comparison to natural background radiation doses only in cases of prolonged contact---for example, when shards of a DU penetrator remain embedded in a soldier's body. Although the radiation doses to virtually all civilians would be very low, the cumulative "population dose" resulting from the dispersal of hundreds of tons of DU, as occurred during the Gulf War, could result in up to ten cancer deaths. It is highly unlikely that exposures of persons downwind from the use of DU munitions or consuming food or water contaminated by DU dust would reach the estimated threshold for chemical heavy-metal effects. The exposures of soldiers in vehicles struck by DU munitions could be much higher, however, and persons who subsequently enter such vehicles without adequate respiratory protection could potentially be at risk. Soldiers should be trained to avoid unnecessary exposure to DU, and vehicles struck by DU munitions should be made inaccessible to curious civilians. INTRODUCTION

  3. In-line assay monitor for uranium hexafluoride

    DOE Patents [OSTI]

    Wallace, S.A.

    1980-03-21T23:59:59.000Z

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.

  4. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01T23:59:59.000Z

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  5. Uranium Oxide Aerosol Transport in Porous Graphite

    SciTech Connect (OSTI)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23T23:59:59.000Z

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  6. Uranium enrichment export control guide: Gaseous diffusion

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of export laws that relate to the Zangger International Trigger List for gaseous diffusion uranium enrichment process components, equipment, and materials. Particular emphasis is focused on items that are especially designed or prepared since export controls are required for these by States that are party to the International Nuclear Nonproliferation Treaty.

  7. Energy balance for uranium recovery from seawater

    SciTech Connect (OSTI)

    Schneider, E.; Lindner, H. [The University of Texas, 1 University Station C2200, Austin, TX 78712 (United States)

    2013-07-01T23:59:59.000Z

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

  8. Uranium recovery from seawater by adsorption

    SciTech Connect (OSTI)

    Koske, P.H.; Ohlrogge, K.; Peinemann, K.V.

    1988-10-01T23:59:59.000Z

    Results are presented of a 10 weeks field experiment producing uranium from seawater by the so-called adsorber-loop-concept. For the adsorption process polyamidoxin (PAO) granulate has been used with grain sizes between 0.3 - 1.2 mm diameter. The performance of the adsorber and the efficiency of the adsorption process - especially with regard to high volume flows of seawater - are presented.

  9. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

  10. Phosphate Barriers for Immobilization of Uranium Plumes

    SciTech Connect (OSTI)

    Burns, Peter C.

    2005-06-01T23:59:59.000Z

    Uranium contamination of the subsurface has remained a persistent problem plaguing remedial design at sites across the U.S. that were involved with production, handling, storage, milling, and reprocessing of fissile uranium for both civilian and defense related purposes. Remediation efforts to date have relied upon excavation, pump-and-treat, or passive remediation barriers (PRB?s) to remove or attenuate uranium mobility. Documented cases convincingly demonstrate that excavation and pump-and-treat methods are ineffective for a number of highly contaminated sites. There is growing concern that use of conventional PRB?s, such as zero-valent iron, are a temporary solution to a problem that will persist for thousands of years. Alternatives to the standard treatment methods are therefore warranted. The core objective of our research is to demonstrate that a phosphorous amendment strategy will result in a reduction of dissolved uranium to below the proposed drinking water standard. Our hypothesis is that long-chain polyphosphate compounds forestall precipitation of sparingly soluble uranyl phosphate compounds, which is key to preventing fouling of wells at the point of injection. Our other fundamental objective is to synthesize and correctly characterize the uranyl phosphate phases that form in the geochemical conditions under consideration. This report summarizes work conducted at the University of Notre Dame through November of 2003 under DOE grant DE-FG07-02ER63489, which has been funded since September, 2002. The objectives at Notre Dame are development of synthesis techniques for uranyl phosphate phases, together with detailed structural and chemical characterization of the myriad of uranyl phosphate phases that may form under geochemical conditions under consideration.

  11. Material property correlations for uranium mononitride 

    E-Print Network [OSTI]

    Hayes, Steven Lowe

    1989-01-01T23:59:59.000Z

    who have provided technical support for this project throughout its duration. I also express my sincere appreciation and thanks to the U. S. Department of Energy and Oak Ridge Associated Universities whose Nuclear Engineering and Health Physics... space nuclear reactors. Uranium mononitride is currently the reference fuel for the SP-100 space reactor system and will likely be considered for application in future multimegawatt space power systems as well. Although fuel modeling efforts have...

  12. Uranio impoverito: perché? (Depleted uranium: why?)

    E-Print Network [OSTI]

    Germano D'Abramo

    2003-06-05T23:59:59.000Z

    In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of understanding the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

  13. Plutonium Uranium Extraction Facility Documented Safety Analysis

    SciTech Connect (OSTI)

    DODD, E.N.

    2003-10-08T23:59:59.000Z

    This document provides the documented safety analysis (DSA) and Central Plateau Remediation Project (CP) requirements that apply to surveillance and maintenance (S&M) activities at the Plutonium-Uranium Extraction (PUREX) facility. This DSA was developed in accordance with DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities''. Upon approval and implementation of this document, the current safety basis documents will be retired.

  14. Measurement of uranium enrichment by gamma spectroscopy: result of an experimental design

    E-Print Network [OSTI]

    , Gamma Spectrometry, uranium enrichment #12;PAPER Measurement of uranium enrichment by gamma spectroscopy: result of an experimental design Gamma spectroscopy is commonly used in nuclear safeguards to measure uranium enrichment. An experimental

  15. Uranium Recovery from Seawater: Development of Fiber Adsorbents Prepared via Atom-Transfer Radical Polymerization

    SciTech Connect (OSTI)

    Saito, Tomonori; Brown, Suree; Chatterjee, Sabornie; Kim, Jungseung; Tsouris, Constantinos; Mayes, Richard; Kuo, Li-Jung; Gill, Gary A.; Oyola, Yatsandra; Janke, C.; Dai, Sheng

    2014-07-09T23:59:59.000Z

    Uranium exists uniformly at a concentration of ~3.3 ppb in seawater. The extraction of uranium from seawater presents a very attractive alternative source of uranium for nuclear fuel needs.

  16. Magnetic Exchange Coupling and Single-Molecule Magnetism in Uranium Complexes

    E-Print Network [OSTI]

    Rinehart, Jeffrey Dennis

    2010-01-01T23:59:59.000Z

    in molecular uranium cluster chemistry. 13 Compound 2 ischemistry and small-molecule reactivity of uranium. AmongUranium Complexes by Jeffrey Dennis Rinehart Doctor of Philosophy in Chemistry

  17. Recent International R&D Activities in the Extraction of Uranium from Seawater

    E-Print Network [OSTI]

    Rao, Linfeng

    2011-01-01T23:59:59.000Z

    Uranium and Rare Earth Elements Using Biomass of Algae, Bioinorganic Chemistry andRecovery of uranium from sea water. Chemistry & Industry (of uranium from seawater. Turkish Journal of Chemistry, 17 (

  18. The geochemistry of uranium in the Orca Basin

    E-Print Network [OSTI]

    Weber, Frederick Fewell

    1979-01-01T23:59:59.000Z

    . , 1974). Substantial uranium enrichments have been reported by many investigators for samples taken from aroxic environments (Strom, 1948; Starik et al. , '1961; Swanson, 1961; Sackett and Cook, 1969; Kolodny and Kaplan, 1969; Bertine et al. , 1970...) ~ Degens et al. , (1977) report concentrations of uranium as high as 60ppm, more than an order of magnitude enrich- meut, for Black Sea sediments. If marine reducing environments are found with uranium concentrations apuroaching 100ppm, they will begin...

  19. The geochemistry of uranium in the Orca Basin 

    E-Print Network [OSTI]

    Weber, Frederick Fewell

    1979-01-01T23:59:59.000Z

    as uranium concentrations dzop to an average of 2. dppm, indicative of relatively low uranium bearing pelagic particle deposition. Furthermore, the 13 C values become heavier in this region, lacking a large terrest. rial component. This evidence suggests... 39 the basin walls. It may be possible that these particles at the brine/seawater interface incorporate any uranium reduced in this zone and carry it to the brine perimeter where it is deposited. Unfortunately, attempts to accurately core...

  20. National Uranium Resource Evaluation: Salina Quadrangle, Utah

    SciTech Connect (OSTI)

    Lupe, R.D.; Campbell, J.A.; Franczyk, K.J.; Luft, S.J.; Peterson, F.; Robinson, K.

    1982-09-01T23:59:59.000Z

    Two stratigraphic units, the Late Jurassic Salt Wash Member of the Morrison Formation and the Triassic Chinle Formation, were determined to be favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the US Department of Energy in the Salina 1 x 2/sup 0/ Quadrangle, Utah. Three areas judged favorable for the Salt Wash Member are the Tidwell and Notom districts, and the Henry Mountains mineral belt. The criteria used to establish favorability were the presence of: (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Four favorable areas have been outlined for the Chinle Formation. These are the San Rafael Swell, Inter River, and the Orange Cliffs subareas and the Capitol Reef area. The criteria used to establish these areas are: the sandstone-to-mudstone ratios and the geographic distribution of the Petrified Forest Member of the Chinle Formation which is considered as the probable source for the uranium.

  1. Uncertainty clouds uranium enrichment corporation's plans

    SciTech Connect (OSTI)

    Lane, E.

    1993-03-24T23:59:59.000Z

    An expected windfall to the US Treasury from the sale of the Energy Dept.'s commercial fuel enrichment facilities may evaporate in the next few weeks when the Clinton administration submits its fiscal 1994 budget proposal to Congress, according to congressional and administration officials. Under the Energy Policy Act of 1992, DOE is required to lease two uranium enrichment facilities, Portsmouth, Ohio, and Paducah, KY., to the government-owned US Enrichment Corp. (USEC) by July 1. Estimates by OMB and Treasury indicate a potential yearly payoff of $300 million from the government-owned company's sale of fuel for commercial reactors. Those two facilities use a process of gaseous diffusion to enrich uranium to about 3 percent for use as fuel in commercial power plants. DOE has contracts through at least 1996 to provide about 12 million separative work units (SWUs) yearly to US utilities and others world-wide. But under an agreement signed between the US and Russia last August, at least 10 metric tons, or 1.5 million SWUs, of low-enriched uranium (LEU) blended down from Russia warheads is expected to be delivered to the US starting in 1994. It could be sold at $50 to $60 per SWU, far below what DOE currently charges for its SWUs - $135 per SWU for 70 percent of the contract price and $90 per SWU for the remaining 30 percent.

  2. Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined in a wide variety of rocks, including sandstone, carbonates1

    E-Print Network [OSTI]

    3-1 Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined conventional mining, solution extraction, and milling of uranium, a principal focus of this report is TENORM, or which may need future reclamation. When uranium mining first started, most of the ores were recovered

  3. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    coordination chemistry is depleted uranium, a by-product innuclear reactors. Depleted uranium Figure 1-1. The periodic

  4. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    SciTech Connect (OSTI)

    none,

    2013-07-01T23:59:59.000Z

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

  5. Uranium immobilization by sulfate-reducing biofilms grown on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of uranium-complexing carbonates. The biofilms were grown in three identically operated fixed bed reactors, filled with three types of minerals: one noncarbonate-bearing...

  6. Assessment of Controlling Processes for Field-Scale Uranium Reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore...

  7. Secretarial Determination of No Adverse Material Impact for Uranium...

    Energy Savers [EERE]

    set forth in the 2012 Secretarial Determination and the Department's Excess Uranium Inventory Management Plan released in July 2013. Secretarial Determination 5-15-14.pdf More...

  8. Assessment of Controlling Processes for Field-Scale Uranium Reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant...

  9. Uranium-contaminated soils: Ultramicrotomy and electron beam analysis

    SciTech Connect (OSTI)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1994-04-01T23:59:59.000Z

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  10. High grade uranium resources in the United States : an overview

    E-Print Network [OSTI]

    Graves, Richard E.

    1974-01-01T23:59:59.000Z

    A time analysis of uranium exploration, production and known reserves in the United States is employed to reveal industry trends. The

  11. The radioactive Substances (Prepared Uranium Thorium Compounds) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01T23:59:59.000Z

    STATUTORY INSTRUMENTS 1962 No. 2711 ATOMIC ENERGY AND RADIOACI1VE SUBSTANCES The Radioactive Substances (prepared Uranium and Thorium Compounds) Exemption Order 1962...

  12. EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores. The cooperating...

  13. Financial Assurance for In Situ Uranium Facilities (Texas)

    Broader source: Energy.gov [DOE]

    Owners or operators are required to provide financial assurance for in situ uranium sites. This money is required for: decommissioning, decontamination, demolition, and waste disposal for buildings...

  14. President Truman Increases Production of Uranium and Plutonium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increases Production of Uranium and Plutonium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  15. NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...

    National Nuclear Security Administration (NNSA)

    Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  16. Uranium Leasing Program Draft PEIS Public Comment Period Extended...

    Broader source: Energy.gov (indexed) [DOE]

    Uranium Leasing Program Draft PEIS Public Comment Period Extended to May 31, 2013 Draft ULPEIS comment extension community notification041813 (3).pdf More Documents & Publications...

  17. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W.

    1995-01-10T23:59:59.000Z

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  18. Basic characterization of highly enriched uranium by gamma spectrometry

    E-Print Network [OSTI]

    Cong Tam Nguyen; Jozsef Zsigrai

    2005-08-25T23:59:59.000Z

    Gamma-spectrometric methods suitable for the characterization of highly enriched uranium samples encountered in illicit trafficking of nuclear materials are presented. In particular, procedures for determining the 234U, 235U, 238U, 232U and 236U contents and the age of highly enriched uranium are described. Consequently, the total uranium content and isotopic composition can be calculated. For determining the 238U and 232U contents a low background chamber was used. In addition, age dating of uranium was also performed using low-background spectrometry.

  19. Basic characterization of highly enriched uranium by gamma spectrometry

    E-Print Network [OSTI]

    Nguyen, C T

    2006-01-01T23:59:59.000Z

    Gamma-spectrometric methods suitable for the characterization of highly enriched uranium samples encountered in illicit trafficking of nuclear materials are presented. In particular, procedures for determining the 234U, 235U, 238U, 232U and 236U contents and the age of highly enriched uranium are described. Consequently, the total uranium content and isotopic composition can be calculated. For determining the 238U and 232U contents a low background chamber was used. In addition, age dating of uranium was also performed using low-background spectrometry.

  20. agricultural crops uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inorganic elements were also identified during 430 Clean Air Act Requirements: Uranium Mill Tailings Environmental Sciences and Ecology Websites Summary: :www.epa.govradiation...

  1. Method of fabricating a uranium-bearing foil

    DOE Patents [OSTI]

    Gooch, Jackie G. (Seymour, TN); DeMint, Amy L. (Kingston, TN)

    2012-04-24T23:59:59.000Z

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  2. US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium...

    National Nuclear Security Administration (NNSA)

    of 36 kilograms (approximately 80 pounds) of highly enriched uranium (HEU) spent fuel from the Institute of Nuclear Physics (INP) in Almaty, Kazakhstan. The HEU was...

  3. americium plutonium uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a fascinating ele- ment. Last year, we learned that some com- pounds of plutonium superconduct at sur- prisingly Steinberger, Bernhard 110 Standard specification for uranium...

  4. arlit uranium mines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration and pre-processing Part 2: Association rule mining Part Christen, Peter 32 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  5. analogue uranium decorporation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which are uniquely quantum mechanical. Daniel Collins; Sandu Popescu 2001-07-16 19 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  6. area uranium plume: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 1974. 57 Coordinate geometry specific to the Babylon... Kelley, Van Alan 2012-06-07 52 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  7. area uranium stabilization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gyroscope which meets the stringent stability requirements for high accuracy Hart, Gus 26 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  8. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah...

    Energy Savers [EERE]

    operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the...

  9. arsenic manganese uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Mn) is enriched in surface soils at the (more) Herndon, Elizabeth 2012-01-01 56 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  10. adsorbing uranium compounds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interest in magnetic bioseparations has (more) Willett, Thomas Clifford 2009-01-01 30 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  11. ambrosia lake uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a national priority. The resulting Great Lakes Restoration Initiative (GLRI 27 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  12. antei uranium deposit: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the requirement for the degree of MASTER... Miller, Michael Eugene 1979-01-01 15 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  13. atomized uranium silicide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions on the atomic nucleus surface are discussed as well. R. Tsekov 2014-06-18 38 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  14. aqueuous uranium complexes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods that take into account relevant interactions. Gershenson, Carlos 2011-01-01 11 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  15. actinide doped uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis. A vacuum box system was designed (more) Gostic, Julie Marisa 2009-01-01 25 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  16. A study of uranium in South Texas lignite 

    E-Print Network [OSTI]

    Ilger, Wayne Arthur

    1983-01-01T23:59:59.000Z

    ) to a highly mobile uranium(VI) carbonate anion, such as (U02)(C03)2 . The carbonate anion stabilizes the uranium(VI) species. In 1955 Breger (10) proposed the formation of two uranium- carbonate complexes, sodium uranyl di- and tricarbonates... with the humic acid fract1on of 11gn1te. Others, includ1ng Breger and Moore (5, lB) propose that when a uranyl-carbonate complex encounters the slightly acid1c environment of lignite, the uranium(VI) carbonate complex is chemically altered. These investigators...

  17. U.S. Environmental Protection Agency Evaluation of Uranium Mining TENORM Wastes-Characteristics, Occurrence, and Risks

    SciTech Connect (OSTI)

    Setlow, L.W. [U.S. Environmental Protection Agency, Office of Radiation and Indoor Air (6608J), Washington, DC (United States); Peake, R.T. [U.S. Environmental Protection Agency, Office of Radiation and Indoor Air (6608J), Washington, DC (United States)

    2007-07-01T23:59:59.000Z

    The U.S. Environmental Protection Agency is completing a multi year effort to issue technical reports and obtain stakeholder views on future programs to mitigate potential hazards associated with uranium mining Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM). The technical reports are the most comprehensive issued by the Agency on this topic, and should have utility for reclamation of abandoned uranium mines, as well as providing information for new mines proposed by the uranium mining industry. This presentation will provide principal results of the three technical reports issued, and elements of the proposed EPA program for uranium mining TENORM. (authors)

  18. Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations

    SciTech Connect (OSTI)

    Russell, A.D.; Emerson, S.; Nelson, B.K. (Univ. of Washington, Seattle, WA (United States)); Erez, J. (Univ. of Jerusalem, (Israel)); Lea, D.W. (Univ. of California, Santa Barbara, CA (United States))

    1994-01-01T23:59:59.000Z

    The authors present results of an investigation of uranium/calcium ratios in cleaned foraminiferal calcite as a recorder of seawater uranium concentrations. For accurate reconstruction of past seawater uranium content, shell calcite must incorporate uranium in proportion to seawater concentration and must preserve its original uranium composition over time. Laboratory culture experiments with live benthic (Amphistegina lobifera) and live planktonic (Globigerinell calida) foraminifera show that the U/Ca ratio of cleaned calcite tests is proportional to the concentration of uranium in solution. After correcting results for the presence of initial calcite, the apparent distribution coefficient D = (U/Ca[sub calcite])/(U/Ca)[sub solution] = 10.6 [+-] 0.3 (x10[sup [minus]3]) for A. lobifera and D = 7.9 [+-] 0.1 (x10[sup [minus]3]) for G. calida. U/Ca ratios in planktonic foraminifera from core tops collected above 3900 m in the equatorial Atlantic and above 2100 m in the Pacific Ocean show no significant difference among the species analyzed. D estimated form core top samples ranges from 7.6 [+-] 0.4 (x10[sup [minus]3]) for O. universa to 8.4 [+-] 0.5 (x10[sup [minus]3]) for G. ruber. In benthic species C. wuellerstorfi, D = 7.0 [+-] 0.8 (x10[sup [minus]3]). U/Ca and Mg/Ca in G. tumida and G. sacculifer from core tops taken near and below the regional lysocline decrease with water depth. Smaller decreases in U/Ca and Mg/Ca with depth were observed in C. wuellerstorfi. In the planktonic species, the authors believe that U/CA and Mg/Ca are lower in the more dissolution-resistant fraction of calcite, leading to lower U/Ca in more highly dissolved samples.

  19. Selective Recovery of Enriched Uranium from Inorganic Wastes

    SciTech Connect (OSTI)

    Kimura, R. T.

    2003-02-26T23:59:59.000Z

    Uranium as U(IV) and U(VI) can be selectively recovered from liquids and sludge containing metal precipitates, inorganic salts, sand and silt fines, debris, other contaminants, and slimes, which are very difficult to de-water. Chemical processes such as fuel manufacturing and uranium mining generate enriched and natural uranium-bearing wastes. This patented Framatome ANP (FANP) uranium recovery process reduces uranium losses, significantly offsets waste disposal costs, produces a solid waste that meets mixed-waste disposal requirements, and does not generate metal-contaminated liquids. At the head end of the process is a floating dredge that retrieves liquids, sludge, and slimes in the form of a slurry directly from the floor of a lined surface impoundment (lagoon). The slurry is transferred to and mixed in a feed tank with a turbine mixer and re-circulated to further break down the particles and enhance dissolution of uranium. This process uses direct steam injection and sodium hypochlorite addition to oxidize and dissolves any U(IV). Cellulose is added as a non-reactive filter aid to help filter slimes by giving body to the slurry. The slurry is pumped into a large recessed-chamber filter press then de-watered by a pressure cycle-controlled double-diaphragm pump. U(VI) captured in the filtrate from this process is then precipitated by conversion to U(IV) in another Framatome ANP-patented process which uses a strong reducing agent to crystallize and settle the U(IV) product. The product is then dewatered in a small filter press. To-date, over 3,000 Kgs of U at 3% U-235 enrichment were recovered from a 8100 m2 hypalon-lined surface impoundment which contained about 10,220 m3 of liquids and about 757 m3 of sludge. A total of 2,175 drums (0.208 m3 or 55 gallon each) of solid mixed-wastes have been packaged, shipped, and disposed. In addition, 9463 m3 of low-U liquids at <0.001 KgU/m3 were also further processed and disposed.

  20. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    SciTech Connect (OSTI)

    Meyers, L A; Williams, R W; Glover, S E; LaMont, S P; Stalcup, A M; Spitz, H B

    2012-03-16T23:59:59.000Z

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.

  1. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    SciTech Connect (OSTI)

    A K Wertsching

    2012-09-01T23:59:59.000Z

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.

  2. Novel Transformations using Uranium and Group 5 Metal Complexes Supported by 1,1'-diamidoferrocene Ligands

    E-Print Network [OSTI]

    Lopez, Michael Joseph

    2013-01-01T23:59:59.000Z

    Chemistry by Michael Joseph Lopez ABSTRACT OF THE THESIS Novel Transformations using Uranium andchemistry has grown significantly in the past decade. 1 Uranium

  3. CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTIS (BIS(TRIMETHYLSILYL)AMIDO]URANIUM(IV)

    E-Print Network [OSTI]

    Andersen, Richard A.

    2012-01-01T23:59:59.000Z

    Chemistry CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTRIS[BIS(TRIMETHYLSILYL)AMIDO]URANIUM(Chemistry University of California Berkeley, California 94720 New hydride derivatives of thorium (IV) and uranium (

  4. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity....

  5. Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado

    E-Print Network [OSTI]

    Li, L.

    2009-01-01T23:59:59.000Z

    During Stimulated Bioremediation. Environ. Sci. Technol.H. A. Simulating bioremediation of uranium-contaminatedan in situ uranium bioremediation field site. Appl. Environ.

  6. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    E-Print Network [OSTI]

    Williams, K.H.

    2010-01-01T23:59:59.000Z

    biofilms as monitors of bioremediation, Microbial Ecol. ,an in situ uranium bioremediation field site, Appl. Environ.Pilot-scale in situ bioremediation of uranium in a highly

  7. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation

    E-Print Network [OSTI]

    Druhan, J.L.

    2009-01-01T23:59:59.000Z

    S. Pilot-scale in situ bioremediation of uranium in a highlyassociated with bioremediation of uranium to submicromolarassociated with Cr(VI) bioremediation. Environ. Sci.

  8. CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTIS (BIS(TRIMETHYLSILYL)AMIDO]URANIUM(IV)

    E-Print Network [OSTI]

    Andersen, Richard A.

    2012-01-01T23:59:59.000Z

    Chemistry University of California Berkeley, California 94720 New hydride derivatives of thorium (IV) and uranium (Chemistry CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTRIS[BIS(TRIMETHYLSILYL)AMIDO]URANIUM(

  9. Novel Transformations using Uranium and Group 5 Metal Complexes Supported by 1,1'-diamidoferrocene Ligands

    E-Print Network [OSTI]

    Lopez, Michael Joseph

    2013-01-01T23:59:59.000Z

    chemistry has grown significantly in the past decade. 1 UraniumChemistry by Michael Joseph Lopez ABSTRACT OF THE THESIS Novel Transformations using Uranium

  10. DOE Announces Transfer of Depleted Uranium to Advance the U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer of Depleted Uranium to Advance the U.S. National Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant DOE Announces Transfer of Depleted Uranium to...

  11. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOE Patents [OSTI]

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29T23:59:59.000Z

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  12. Cost estimate report for the long-term management of depleted uranium hexafluoride : storage of depleted uranium metal.

    SciTech Connect (OSTI)

    Folga, S.M.; Kier, P.H.; Thimmapuram, P.R.

    2001-01-24T23:59:59.000Z

    This report contains a cost analysis of the long-term storage of depleted uranium in the form of uranium metal. Three options are considered for storage of the depleted uranium. These options are aboveground buildings, partly underground vaults, and mined cavities. Three cases are presented. In the first case, all the depleted uranium metal that would be produced from the conversion of depleted uranium hexafluoride (UF{sub 6}) generated by the US Department of Energy (DOE) prior to July 1993 would be stored at the storage facility (100% Case). In the second case, half the depleted uranium metal would be stored at this storage facility (50% Case). In the third case, one-quarter of the depleted uranium metal would be stored at the storage facility (25% Case). The technical basis for the cost analysis presented in this report is principally found in the companion report, ANL/EAD/TM-100, ''Engineering Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride: Storage of Depleted Uranium Metal'', prepared by Argonne National Laboratory.

  13. Development of Novel Sorbents for Uranium Extraction from Seawater

    SciTech Connect (OSTI)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08T23:59:59.000Z

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

  14. Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill

    SciTech Connect (OSTI)

    Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

    2002-02-26T23:59:59.000Z

    Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

  15. Uranium from seawater research. Final progress report, FY 1982

    SciTech Connect (OSTI)

    Borzekowski, J.; Driscoll, M.J.; Best, F.R.

    1982-09-01T23:59:59.000Z

    During the FY 1982 campaign 14 new ion exchange resin formulations, prepared by the Rohm and Haas Company, were tested by MIT at the Woods Hole Oceanographic Institution. The best of these chelating resins was again of the acrylic amidoxime type; it picked up approximately 100 ppM uranium in seven days' exposure to seawater, which represents a factor of better than two improvement over the seven-day results for the best FY 1981 candidate (which saturated at roughly 100 ppM U after 30 days' exposure). Saturation was not reached and, within experimental accuracy, uranium accumulated at a constant rate over the seven-day period; it is speculated that a useful capacity of over 300 ppM U would be achieved. All resins of the styrenic amidoxime type were found to be an order of magnitude lower in their effective capacity for uranium in seawater than the best of the acrylic forms. Particle size effects, which were found to be less than expected from theoretical computations of both fluid and solid side mass transfer resistance, can not account for this difference. Scanning electron microscope examination by R and H scientists of ion exchange resin beads from beds subjected to seawater flow for 30 days in MIT's WHOI columns showed that the internal pores of the macro-reticular-type resins become filled with debris (of undetermined nature and effect) during exposure.

  16. Mixed uranium dicarbide and uranium dioxide microspheres and process of making same

    DOE Patents [OSTI]

    Stinton, David P. (Knoxville, TN)

    1983-01-01T23:59:59.000Z

    Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.

  17. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    SciTech Connect (OSTI)

    Haas, P.A.

    1992-02-01T23:59:59.000Z

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl{sub 4}) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO{sub 2}) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl{sub 4}-UO{sub 2} shows a reaction to form uranium oxychloride (UOCl{sub 2}) that has a good solubility in molten UCl{sub 4}. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl{sub 4}, ZrCl{sub 4}, SiCl{sub 4}, ThCl{sub 4}) by reaction of oxides with chlorine (Cl{sub 2}) and carbon has application to the preparation of UCl{sub 4}.

  18. Fabrication and Characterization of Uranium-Molybdenum-Zirconium Alloys

    E-Print Network [OSTI]

    Woolum, Connor

    2014-12-12T23:59:59.000Z

    As part of a global effort to convert reactors that require highly enriched uranium to instead operate with low enriched uranium, monolithic fuel plates consisting of a U-Mo fuel meat with a zirconium foil barrier layer and clad in aluminum...

  19. Uranium and cesium diffusion in fuel cladding of electrogenerating channel

    SciTech Connect (OSTI)

    Vasil’ev, I. V., E-mail: fnti@mail.ru; Ivanov, A. S.; Churin, V. A. [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500°C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

  20. NUREG/CR-6911 Tests of Uranium (VI) Adsorption

    E-Print Network [OSTI]

    NUREG/CR-6911 Tests of Uranium (VI) Adsorption Models in a Field Setting U.S. Geological Survey U/CR-6911 Tests of Uranium (VI) Adsorption Models in a Field Setting Manuscript Completed: August 2006 Date observations clearly demonstrated that in aquifers where U(VI) concentrations are controlled by adsorption

  1. Uranium in the oceans: Where it goes and why

    SciTech Connect (OSTI)

    Klinkhammer, G.P. (Oregon State Univ., Corvallis (United States)); Palmer, M.R. (Bristol Univ. (England))

    1991-07-01T23:59:59.000Z

    Uranium is removed from the oceans by diffusion across the sediment-water interface of organic-rich sediments. This pathway is the largest single sink in the global budget of this element. Dissolved uranium is drawn into suboxic sediments along a concentration gradient established by the precipitation of an insoluble phase which forms when U(VI) is reduced to U(IV). This transformation occurs relatively late in the diagenetic sequence, after the microbially mediated dissolution of manganese and iron oxides, and may be induced by the onset of sulfate reduction. Metallo-organics play an important role in the diagenetic behavior of this element as some uranium is released into solution when labile organics are consumed at the sediment-water interface. In contrast, the diagenesis of authigenic Fe- and Mn-oxides exerts negligible influence on the uranium diagenetic cycle. Variations in the uranium concentration of sediment with time are controlled directly by the uranium content of the source material settling from the water column, and indirectly, by the organic content of this material and sedimentation rate. Since diffusion from seawater influences dramatically the short-term burial rate of uranium, down-core distributions of dissolved and solid uranium can provide an estimate of recent sedimentation rates in rapidly accumulating sediments.

  2. Process for recovering niobium from uranium-niobium alloys

    SciTech Connect (OSTI)

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1983-11-01T23:59:59.000Z

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  3. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, Steven A. (Knoxville, TN); Creech, Edward T. (Oak Ridge, TN); Northcutt, Walter G. (Oak Ridge, TN)

    1983-01-01T23:59:59.000Z

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  4. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27T23:59:59.000Z

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  5. Case Study/ Effects of Groundwater Development on Uranium

    E-Print Network [OSTI]

    Case Study/ Effects of Groundwater Development on Uranium: Central Valley, California, USA Abstract Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley development during the last 100 years have changed the chemistry and magnitude of groundwater recharge

  6. Spectroscopic Evidence for Uranium Bearing Precipitates in Vadose Zone

    E-Print Network [OSTI]

    Northwest Laboratory, Richland, Washington 99352 Uranium (U) solid-state speciation in vadose zone sediments of past nuclear fuel fabrication processes, uranium (U) has been recognized as one of the most widespreadHanfordsitesthatreceivedU-containingwastesduring its mission of Pu production between 1940 and 1990. Unirradiated fuel rod wastes were disposed

  7. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect (OSTI)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01T23:59:59.000Z

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  8. In-line assay monitor for uranium hexafluoride

    DOE Patents [OSTI]

    Wallace, Steven A. (Knoxville, TN)

    1981-01-01T23:59:59.000Z

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.

  9. Modeled atmospheric radon concentrations from uranium mines

    SciTech Connect (OSTI)

    Droppo, J.G.

    1985-04-01T23:59:59.000Z

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  10. Measurements of Low-Enriched Uranium Holdup.

    SciTech Connect (OSTI)

    Belian, A. P. (Anthony P.); Reilly, T. D. (T. Douglas); Russo, P. A. (Phyllis A.); Tobin, S. J. (Stephen J.)

    2005-01-01T23:59:59.000Z

    A recent effort determined uranium holdup at a large fuel fabrication facility abroad where low enriched ({approx} 3%) uranium (LEU) oxide feeds the pellet manufacturing process. Measurements taken with both high- and low-resolution gamma-ray spectrometry systems include extensive data for the ventilation and vacuum systems. Equipment dimensions and the corresponding holdup deposit masses are large for LEU. Because deposits are infinitely thick to the 186 keV gamma ray in many locations in an LEU environment, measurements of both the 186 and 1001 keV gamma-rays were required, and self-attenuation was significant at 1001 keV in many cases. These wide-dynamic-range measruements used short count times, portable scintillator detectors, and portable MCAs. Because equipment is elevated above floor levels, most measurements were made with detectors mounted on extended telescoping poles. One of the main goals of this effort was to demonstrate and validate methods for measurement and quantitative analysis of LEU holdup using low-resolution detectors and the Generalized Geometry Holdup (GGH) techniques. The current GGH approach is applied elsewhere for holdup measurements of plutonium and high-enriched uranium. The recent experience is directly applicable to holdup measruements at LEU facilities such as the Paducah and Portmouth gaseous diffusion enrichment plants and elsewhere, including LEU sites where D and D is active. This report discusses the measurement methodology, calibration of the measurement equipment, measurement control, analysis of the data, and the global and local assay results including random and systematic uncertainties. It includes field-validation exercises (multiple calibrated systems that perform measruements on the same extended equipment) as well as quantitative validation results obtained on reference materials assembled to emulate the deposits in an extended vacuum line that was also measured by these techniques. The paper examines the differences in assay results between the low-resolution system using the GGH method and the high-resolution system utilizing the commercially available ISOCS analysis method.

  11. Enrichment Determination of Uranium in Shielded Configurations

    SciTech Connect (OSTI)

    Crye, Jason Michael [ORNL] [ORNL; Hall, Howard L [ORNL] [ORNL; McConchie, Seth M [ORNL] [ORNL; Mihalczo, John T [ORNL] [ORNL; Pena, Kirsten E [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The determination of the enrichment of uranium is required in many safeguards and security applications. Typical methods of determining the enrichment rely on detecting the 186 keV gamma ray emitted by {sup 235}U. In some applications, the uranium is surrounded by external shields, and removal of the shields is undesirable. In these situations, methods relying on the detection of the 186 keV gamma fail because the gamma ray is shielded easily. Oak Ridge National Laboratory (ORNL) has previously measured the enrichment of shielded uranium metal using active neutron interrogation. The method consists of measuring the time distribution of fast neutrons from induced fissions with large plastic scintillator detectors. To determine the enrichment, the measurements are compared to a calibration surface that is created from Monte Carlo simulations where the enrichment in the models is varied. In previous measurements, the geometry was always known. ORNL is extending this method to situations where the geometry and materials present are not known in advance. In the new method, the interrogating neutrons are both time and directionally tagged, and an array of small plastic scintillators measures the uncollided interrogating neutrons. Therefore, the attenuation through the item along many different paths is known. By applying image reconstruction techniques, an image of the item is created which shows the position-dependent attenuation. The image permits estimating the geometry and materials present, and these estimates are used as input for the Monte Carlo simulations. As before, simulations predict the time distribution of induced fission neutrons for different enrichments. Matching the measured time distribution to the closest prediction from the simulations provides an estimate of the enrichment. This presentation discusses the method and provides results from recent simulations that show the importance of knowing the geometry and materials from the imaging system.

  12. Maintaining the uranium resources data system and assessing the 1989 US uranium potential resources

    SciTech Connect (OSTI)

    McCammon, R.B. (Geological Survey, Reston, VA (USA)); Finch, W.I.; Grundy, W.D.; Pierson, C.T. (Geological Survey, Denver, CO (USA))

    1990-12-31T23:59:59.000Z

    Under the Memorandum of Understanding (MOU) between the EIA, US Department of Energy, and the US Geological Survey (USGS), US Department of the Interior, the USGS develops estimates of uranium endowment for selected geological environments in the United States. New estimates of endowment are used to update the Uranium Resources Assessment Data (URAD) System which, beginning in 1990, is maintained for EIA by the USGS. For 1989, estimates of US undiscovered resources were generated using revised economic index values (current to December 1989) in the URAD system's cost model. The increase in the estimates for the Estimated Additional Resources (EAR) and Speculative Resources (SR) classes resulted primarily from increases in the estimates of uranium endowment for the solution-collapse, breccia-pipe uranium deposit environment in the Colorado Plateau resource region. The mean values for $30-, $50-, and $100-per-pound U{sub 3}O{sub 8} forward-cost categories of EAR increased by about 8, 48, and 32 percent, respectively, as compared to 1988. Estimates of the 1989 undiscovered resources in the SR class also increased in all three forward-cost categories by 10, 5, and 9 percent, respectively. The original cost equations in the URAD System were designed to cover drilling costs related to extensive flat-lying tabular ore bodies. The equations do not adequately treat drilling costs for the smaller areas of vertical breccia pipe uranium deposits in the Colorado Plateau resource region. The development of appropriate cost equations for describing the economics of mining this type of deposit represents a major new task. 12 refs., 4 figs., 5 tabs.

  13. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31T23:59:59.000Z

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

  14. 300 Area Uranium Stabilization Through Polyphosphate Injection: Final Report

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Bjornstad, Bruce N.; Fritz, Brad G.; Fruchter, Jonathan S.; Mackley, Rob D.; Newcomer, Darrell R.; Mendoza, Donaldo P.; Rockhold, Mark L.; Wellman, Dawn M.; Williams, Mark D.

    2009-06-30T23:59:59.000Z

    The objective of the treatability test was to evaluate the efficacy of using polyphosphate injections to treat uranium-contaminated groundwater in situ. A test site consisting of an injection well and 15 monitoring wells was installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. This report summarizes the work on the polyphosphate injection project, including bench-scale laboratory studies, a field injection test, and the subsequent analysis and interpretation of the results. Previous laboratory tests have demonstrated that when a soluble form of polyphosphate is injected into uranium-bearing saturated porous media, immobilization of uranium occurs due to formation of an insoluble uranyl phosphate, autunite [Ca(UO2)2(PO4)2•nH2O]. These tests were conducted at conditions expected for the aquifer and used Hanford soils and groundwater containing very low concentrations of uranium (10-6 M). Because autunite sequesters uranium in the oxidized form U(VI) rather than forcing reduction to U(IV), the possibility of re-oxidation and subsequent re-mobilization is negated. Extensive testing demonstrated the very low solubility and slow dissolution kinetics of autunite. In addition to autunite, excess phosphorous may result in apatite mineral formation, which provides a long-term source of treatment capacity. Phosphate arrival response data indicate that, under site conditions, the polyphosphate amendment could be effectively distributed over a relatively large lateral extent, with wells located at a radial distance of 23 m (75 ft) reaching from between 40% and 60% of the injection concentration. Given these phosphate transport characteristics, direct treatment of uranium through the formation of uranyl-phosphate mineral phases (i.e., autunite) could likely be effectively implemented at full field scale. However, formation of calcium-phosphate mineral phases using the selected three-phase approach was problematic. Although amendment arrival response data indicate some degree of overlap between the reactive species and thus potential for the formation of calcium-phosphate mineral phases (i.e., apatite formation), the efficiency of this treatment approach was relatively poor. In general, uranium performance monitoring results support the hypothesis that limited long-term treatment capacity (i.e., apatite formation) was established during the injection test. Two separate overarching issues affect the efficacy of apatite remediation for uranium sequestration within the 300 Area: 1) the efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions, and 2) the formation and emplacement of apatite via polyphosphate technology. In addition, the long-term stability of uranium sequestered via apatite is dependent on the chemical speciation of uranium, surface speciation of apatite, and the mechanism of retention, which is highly susceptible to dynamic geochemical conditions. It was expected that uranium sequestration in the presence of hydroxyapatite would occur by sorption and/or surface complexation until all surface sites have been depleted, but that the high carbonate concentrations in the 300 Area would act to inhibit the transformation of sorbed uranium to chernikovite and/or autunite. Adsorption of uranium by apatite was never considered a viable approach for in situ uranium sequestration in and of itself, because by definition, this is a reversible reaction. The efficacy of uranium sequestration by apatite assumes that the adsorbed uranium would subsequently convert to autunite, or other stable uranium phases. Because this appears to not be the case in the 300 Area aquifer, even in locations near the river, apatite may have limited efficacy for the retention and long-term immobilization of uranium at the 300 Area site..

  15. Geology of Superior Ridge uranium deposits, Ventura County, California

    SciTech Connect (OSTI)

    Dickinson, K.A.; Leventhal, J.S.

    1988-03-01T23:59:59.000Z

    Epigenetic uranium deposits with potential commercial value have been found in the lower part of the upper Eocene to lower Miocene Sespe Formation near Ojai, in Ventura County, California. This report describes the geological and geochemical setting of these deposits and postulates a model for their origin. Several uranium deposits are located on Superior Ridge, a topographic high about 3 miles long located just south of White Ledge Peak and 6 to 9 miles west of Ojai (Photo 1). A single uranium deposit on Laguna Ridge is located about 3 miles south of Superior Ridge, and was included with the Superior Ridge deposits in the White Ledge Peak district. A few small deposits are known to exist in other parts of Ventura County. A preliminary model for uranium mineralization in the Sespe Formation postulated that the organic material necessary for concentrating the uranium by chemical reduction or precipitation originated as terrestrial humic acid or humate.

  16. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    SciTech Connect (OSTI)

    White, D L; Foster, M

    1982-05-01T23:59:59.000Z

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint.

  17. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    SciTech Connect (OSTI)

    Myers, Astasia [Stanford University, Stanford, CA 94305, USA and MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

    2011-06-28T23:59:59.000Z

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  18. Standard specification for uranium hexafluoride enriched to less than 5 % 235U

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This specification covers nuclear grade uranium hexafluoride (UF6) that either has been processed through an enrichment plant, or has been produced by the blending of Highly Enriched Uranium with other uranium to obtain uranium of any 235U concentration below 5 % and that is intended for fuel fabrication. The objectives of this specification are twofold: (1) To define the impurity and uranium isotope limits for Enriched Commercial Grade UF6 so that, with respect to fuel design and manufacture, it is essentially equivalent to enriched uranium made from natural UF6; and (2) To define limits for Enriched Reprocessed UF6 to be expected if Reprocessed UF6 is to be enriched without dilution with Commercial Natural UF6. For such UF6, special provisions, not defined herein, may be needed to ensure fuel performance and to protect the work force, process equipment, and the environment. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched UF6 that is to be used in the pro...

  19. Active neutron multiplicity counting of bulk uranium

    SciTech Connect (OSTI)

    Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C.

    1991-01-01T23:59:59.000Z

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235 }U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs.

  20. Uranium Mining, Conversion, and Enrichment Industries

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy OfficeFact Sheet Uranium Mill Tailingsi

  1. Uranium Marketing Annual Report - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand expected toall Uranium

  2. Uranium Leasing Program Documents | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter-Japan Joint Nuclear D.C. *ofUranium EnrichmentDocuments

  3. Summary - Uranium233 Downblending and Disposition Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing of AdmiraltheOil and LessOak Ridge,SRSTank

  4. Decommissioning of U.S. uranium production facilities

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  5. Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applications 

    E-Print Network [OSTI]

    Garnetti, David J.

    2010-07-14T23:59:59.000Z

    The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy alpha phase sintering experiment where the Mg is a surrogate ...

  6. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Miller, William E. (Naperville, IL)

    1989-01-01T23:59:59.000Z

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  7. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, J.P.; Miller, W.E.

    1987-11-05T23:59:59.000Z

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.

  8. Conservative behavior of uranium vs. salinity in Arctic sea ice and brine Christelle Not a,

    E-Print Network [OSTI]

    Available online 23 December 2011 Keywords: Uranium Salinity Sea ice Brine Seawater Arctic UraniumConservative behavior of uranium vs. salinity in Arctic sea ice and brine Christelle Not a, ,1 disequilibrium The conservative behavior of uranium (U) with respect to salinity in open ocean waters is widely

  9. Final Scientific/Technical Report for Project entitled "Mechanism of Uranium Reduction by Shewanella oneidensis"

    SciTech Connect (OSTI)

    DiChristina, Thomas J. [Georgia Tech

    2013-04-30T23:59:59.000Z

    Final Scientific/Technical Report for Project entitled "Mechanism of Uranium Reduction by Shewanella oneidensis"

  10. Stability of uranium incorporated into Fe(hydr)oxides under fluctuating redox conditions

    E-Print Network [OSTI]

    Stewart, B.D.

    2009-01-01T23:59:59.000Z

    uranium deposit, Northern Australia - Lessons from the Alligator Rivers analogue project. Physics and Chemistry

  11. Complexation of Gluconate with Uranium(VI) in Acidic Solutions: Thermodynamic Study with Structural Analysis

    E-Print Network [OSTI]

    Zhang, Zhicheng

    2009-01-01T23:59:59.000Z

    uranium is approximately one order of magnitude lower than expected, suggesting that the coordination chemistry

  12. Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector

    E-Print Network [OSTI]

    1980-01-01T23:59:59.000Z

    Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector

  13. Effects of Solid-to-Solution Ratio on Uranium(VI) Adsorption and Its

    E-Print Network [OSTI]

    Roden, Eric E.

    grade uranium standard (depleted uranium). Synthetic Effects of Solid-to-Solution Ratio on Uranium(VI) Adsorption and Its Implications T A O C H E N G interacting ligands. Introduction The migration of uranium(VI), as well as other radionuclides and metal

  14. Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01T23:59:59.000Z

    Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis

  15. Defining Conditions for Maximizing Bioreduction of Uranium

    SciTech Connect (OSTI)

    David C. White; Aaron D. Peacock; Yun-Juan Chang; Roland Geyer; Philip E. Long; Jonathan D. Istok; Amanda N.; R. Todd Anderson; Dora Ogles

    2004-03-17T23:59:59.000Z

    Correlations between modifying electron donor and acceptor accessibility, the in-situ microbial community, and bioreduction of Uranium at the FRC and UMTRA research sites indicated that significant modifications in the rate, amount and by inference the potential stability of immobilized Uranium are feasible in these environments. The in-situ microbial community at these sites was assessed with a combination of lipid and real-time molecular techniques providing quantitative insights of effects of electron donor and manipulations. Increased (9mM in 2003 vs 3mM 2002) donor amendment at the Old Rifle site resulted in the stimulation of anaerobic conditions downgradient of the injection gallery. Biomass within the test plot increased relative to the control well at 17 feet. Q-PCR specific for IRB/SRB showed increased copy numbers within the test plot and was the highest at the injection gallery. Q-PCR specific for Geobacter sp. showed increased copy numbers within the test plot but further downgradient from the injection gallery than the SRB/IRB. DNA and Lipid analysis confirm changes in the microbial community structure due to donor addition. See also the PNNL (Long) and UMASS (Anderson) posters for more information about this site.

  16. Occupational exposures to uranium: processes, hazards, and regulations

    SciTech Connect (OSTI)

    Stoetzel, G.A.; Fisher, D.R.; McCormack, W.D.; Hoenes, G.R.; Marks, S.; Moore, R.H.; Quilici, D.G.; Breitenstein, B.D.

    1981-04-01T23:59:59.000Z

    The United States Uranium Registry (USUR) was formed in 1978 to investigate potential hazards from occupational exposure to uranium and to assess the need for special health-related studies of uranium workers. This report provides a summary of Registry work done to date. The history of the uranium industry is outlined first, and the current commercial uranium industry (mining, milling, conversion, enrichment, and fuel fabrication) is described. This description includes information on basic processes and areas of greatest potential radiological exposure. In addition, inactive commercial facilities and other uranium operations are discussed. Regulation of the commercial production industry for uranium fuel is reported, including the historic development of regulations and the current regulatory agencies and procedures for each phase of the industry. A review of radiological health practices in the industry - facility monitoring, exposure control, exposure evaluation, and record-keeping - is presented. A discussion of the nonradiological hazards of the industry is provided, and the final section describes the tissue program developed as part of the Registry.

  17. Selective elution of uranium from amidoxime polymer. I

    SciTech Connect (OSTI)

    Hirotsu, T.; Katoh, S.; Sugasaka, K.; Takai, N.; Seno, M.; Itagaki, T.

    1987-07-01T23:59:59.000Z

    The separative elution of uranium from an amidoxime polymer was examined by the column method with hydrochloric acid solutions. The amidoxime polymer was immersed in seawater for 40 d for preparation of an uranium-loaded polymer sample for the elution experiments; the metal ions adsorbed were Mg(II), Ca(II), Fe(III), Ni(II), Cu(II), and Zn(II) as well as UO/sub 2/(VI). It was found from the pH dependence of elution extent by a batch method that the order of elution pH values is Fe(III) < UO/sub 2/(VI) < Cu(II) < Ni(II) < Zn(II) < Ca(II) < Mg(II). In the elution by a column method, Mg(II), Ca(II), Zn(II), and Ni(II) were eluted completely by 0.1 M HCl and the eluate of enriched uranium was obtained by a succeeding elution with 0.5 or 1 M HCl. This eluate contained Cu(II) and Fe(III), which could be removed in the succeeding step. The elution treatment with hydrochloric acid solutions hardly affected the adsorptivity for uranium in seawater. It was suggested that the elution of uranium with hydrochloric acid solutions from amidoxime polymers is satisfactorily applicable to uranium elution in the recovery of uranium from seawater with amidoxime polymers.

  18. Distribution and a possible mechanism of uranium accumulation in the Catahoula Tuff, Live Oak County, Texas

    E-Print Network [OSTI]

    Parks, Steven Louis

    1979-01-01T23:59:59.000Z

    by Galloway (1977) . Gal- loway's report concentrates on the "genetic stratigraphy, structural configuration, composition, and regional ground water flow dynamics of the Catahoula" and their relation to uranium mineralization. The following is a summary of... is actually located within a shaley sand and also a tuffaceous sand. In this study the minimum uranium concentration con- sidered to be ore was 50 ppm uranium. This value represents a significant enrichment in uranium over uranium concentra- tions found...

  19. Distribution and a possible mechanism of uranium accumulation in the Catahoula Tuff, Live Oak County, Texas 

    E-Print Network [OSTI]

    Parks, Steven Louis

    1979-01-01T23:59:59.000Z

    , physical and chemical subdivisions. The uranium-bearing solution is migrating from left to right, oxidizing the sand as it passes through. Uranium Acummulation Principal economic uranium deposits occur in terres- trial and shoreline sandstones... the primary mechan- ism responsible for uranium mineralization in south Texas. Most likely, none of' the above factors are solely respon- sible for the uranium mineralization of south Texas, but each factor probably plays a role in the development of...

  20. Method of precipitating uranium from an aqueous solution and/or sediment

    DOE Patents [OSTI]

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20T23:59:59.000Z

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  1. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site

    SciTech Connect (OSTI)

    Chang, Yun-Juan (Unknown); Peacock, A D. (Tennessee, Univ Of); Long, Philip E. (BATTELLE (PACIFIC NW LAB)); Stephen, John R. (Unknown); McKinley, James P. (BATTELLE (PACIFIC NW LAB)); Mcnaughton, Sarah J. (Unknown); Hussain, A K M A.; Saxton, A M.; White, D C. (Unknown)

    2000-12-01T23:59:59.000Z

    Microbially mediated reduction and immobilization of U(VI) to U(TV) plays a role in both natural attenuation and accelerated bioremediation of uranium contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex,, was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from F-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least,52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0, Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within F-Proteobacteria were mainly recovered from low-uranium (less than or equal to 302 ppb) samples. One Desulfotomaculum like sequence cluster overwhelmingly dominated high-U (> 1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P= 0.0001), This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research.

  2. Heavy Ion Beam in Resolution of the Critical Point Problem for Uranium and Uranium Dioxide

    E-Print Network [OSTI]

    Igor Iosilevskiy; Victor Gryaznov

    2010-05-23T23:59:59.000Z

    Important advantages of heavy ion beam (HIB) irradiation of matter are discussed in comparison with traditional sources - laser heating, electron beam, electrical discharge etc. High penetration length (~ 10 mm) is of primary importance for investigation of dense matter properties. This gives an extraordinary chance to reach the uniform heating regime when HIB irradiation is being used for thermophysical property measurements. Advantages of HIB heating of highly-dispersive samples are claimed for providing free and relatively slow quasi-isobaric heating without fast hydrodynamic expansion of heated sample. Perspective of such HIB application are revised for resolution of long-time thermophysical problems for uranium and uranium-bearing compounds (UO2). The priorities in such HIB development are stressed: preferable energy levels, beam-time duration, beam focusing, deposition of the sample etc.

  3. Isotope Ratio Triangulation: A Method for Determining Uranium Isotope Ratios and Application to the Search for Uranium Isotope Anomalies in the Mineral Titanite 

    E-Print Network [OSTI]

    Hill, Joseph Roger

    2014-11-10T23:59:59.000Z

    -evaluation of the isotope ratio of “naturaluranium value used in geochronology has called into question both this value and its constancy in U-bearing minerals, most notably titanite, formed in high-temperature magmatic and metamorphic settings. A 233U-236U spike may...

  4. High temperature behavior of metallic inclusions in uranium dioxide

    SciTech Connect (OSTI)

    Yang, R.L.

    1980-08-01T23:59:59.000Z

    The object of this thesis was to construct a temperature gradient furnace to simulate the thermal conditions in the reactor fuel and to study the migration of metallic inclusions in uranium oxide under the influence of temperature gradient. No thermal migration of molybdenum and tungsten inclusions was observed under the experimental conditions. Ruthenium inclusions, however, dissolved and diffused atomically through grain boundaries in slightly reduced uranium oxide. An intermetallic compound (probably URu/sub 3/) was formed by reaction of Ru and UO/sub 2-x/. The diffusivity and solubility of ruthenium in uranium oxide were measured.

  5. Uranium - thorium series study on Yucatan slope cores

    E-Print Network [OSTI]

    Exner, Mary Elizabeth

    1972-01-01T23:59:59.000Z

    substance and a corresponding enrichment in another. Soils, on being eroded, 14 adhorb dissolved uranium from runoff and ocean water and show a progressive change in U "/U activity ratios from 0. 9 in soils to 0, 95 in river muds to 1. 15 in recently... concluded that uranium is mainly associated with the non- carbonate fraction and reported his uranium and thorium concentra- tions on a calcium carbonate-free basis. His sediments were from the major oceans of the world; none were from the Gulf of Mexico...

  6. A study of uranium in South Texas lignite

    E-Print Network [OSTI]

    Ilger, Wayne Arthur

    1983-01-01T23:59:59.000Z

    pointing downd1p" (1). Th1s type of depos1t occurs when slightly basic, oxygenated, uranium-enriched ground water encounters an acidic reduc1ng layer of ground water, typ1cally conta1ning hydrogen sulfide, pyrite, and sandstone rich in organic matter... and organic matter has been recognized for many years. Berthoud (7), in 1875, , ' reported on the association of some uranium minerals with coal in , Colorado. In 1905, Boutwell (8) found coal1f1ed logs that also contained uranium minerals. In 1955...

  7. Chelating polymers for recovery of uranium from seawater

    SciTech Connect (OSTI)

    Kabay, N. (Ege Univ., Izmir (Turkey)); Egawa, Hiroaki (Kumamoto Univ. (Japan))

    1994-01-01T23:59:59.000Z

    Despite the low concentration of uranium in seawater (3.3 ppb), a special emphasis has been placed on its recovery. Although the concentration is low, it has been estimated that the world's oceans contain about 4 x 10[sup 9] tons of uranium - theoretically an unlimited supply of nuclear fuel. Adsorption has been considered to be a technically feasible procedure for a uranium recovery process with regard to economic and environmental impacts. The present paper restricts its coverage to those applications using chelating polymeric resins containing amidoxime groups as the most promising adsorbent. 72 refs., 8 figs., 1 tab.

  8. Potential incorporation of transuranics into uranium phases

    SciTech Connect (OSTI)

    Kim, C. W.; Wronkiewicz, D. J.; Buck, E. C.

    1999-12-07T23:59:59.000Z

    The UO{sub 2} in spent nuclear fuel is unstable under moist oxidizing conditions and will be altered to uranyl oxide hydrate phases. The transuranics released during the corrosion of spent fuel may also be incorporated into the structures of secondary U{sup 6+} phases. The incorporation of radionuclides into alteration products will affect their mobility. A series of precipitation tests were conducted at either 150 or 90 C for seven days to determine the potential incorporation of Ce{sup 4+} and Nd{sup 3+} (surrogates for Pu{sup 4+} and Am{sup 3+}, respectively) into uranium phases. Ianthinite ([U{sub 2}{sup 4+}(UO{sub 2}){sub 4}O{sub 6}(OH){sub 4}(H{sub 2}O){sub 4}](H{sub 2}O){sub 5}) was produced by dissolving uranium oxyacetate in a solution containing copper acetate monohydrate as a reductant. The leachant used in these tests were doped with either 2.1 ppm cerium or 399 ppm neodymium. Inductively coupled plasma-mass spectrometer (ICP-MS) analysis of the solid phase reaction products which were dissolved in a HNO{sub 3} solution indicates that about 306 ppm Ce (K{sub d} = 146) was incorporated into ianthinite, while neodymium contents were much higher, being approximately 24,800 ppm (K{sub d} = 62). Solid phase examinations using an analytical transmission electron microscope/electron energy-loss spectrometer (AEM/EELS) indicate a uniform distribution of Nd, while Ce contents were below detection. Becquerelite (Ca[(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}]{center_dot}8H{sub 2}O) was produced by dissolving uranium oxyacetate in a solution containing calcium acetate. The leachant in these tests was doped with either 2.1 ppm cerium or 277 ppm neodymium. ICP-MS results indicate that about 33 ppm Ce (K{sub d}=16) was incorporated into becquerelite, while neodymium contents were higher, being approximately 1,300 ppm (K{sub d}=5). Homogeneous distribution of Nd in the solid phase was noted during AEM/EELS examination, and Ce contents were also below detection.

  9. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    SciTech Connect (OSTI)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01T23:59:59.000Z

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  10. Analysis of uranium urinalysis and in vivo measurement results from eleven participating uranium mills

    SciTech Connect (OSTI)

    Spitz, H.B.; Simpson, J.C.; Aldridge, T.L.

    1984-05-01T23:59:59.000Z

    Uranium urinalysis and in vivo examination results obtained from workers at eleven uranium mills between 1978 and 1980 were evaluated. The main purpose was to determine the degree of the mills' compliance with bioassay monitoring recommendations given in the draft NRC Regulatory Guide 8.22 (USNRC 1978). The effect of anticipated changes in the draft regulatory guidance, as expressed to PNL in May 1982, was also studied. Statistical analyses of the data showed that the bioassay results did not reliably meet the limited performance criteria given in the draft regulatory guide. Furthermore, quality control measurements of uranium in urine indicated that detection limits at ..cap alpha.. = ..beta.. = 0.05 ranged from 13 ..mu..g/l to 29 ..mu..g/l, whereas the draft regulatory guidance suggests 5 ..mu..g/l as the detection limit. Recommendations for monitoring frequencies given in the draft guide were not followed consistently from mill to mill. The results of these statistical analyses indicate a need to include performance criteria for accuracy, precision, and confidence in revisions of the draft Regulatory Guide 8.22. Revised guidance should also emphasize the need for each mill to continually test the laboratory performing urinalyses by submitting quality control samples (i.e., blank and spiked urine samples as open and blind test) to insure that the performance criteria are being met. Recommendations for a bioassay audit program are also given. 25 references, 15 figures, 17 tables.

  11. National Uranium Resource Evaluation. Bibliographic index of Grand Junction office uranium reports

    SciTech Connect (OSTI)

    Johnson, J.B.

    1981-05-01T23:59:59.000Z

    In October 1978, Mesa College entered into subcontract with Bendix Field Engineering Corporation (BFEC) to prepare a bibliographic index of the uranium raw materials reports issued by the Grand Junction Office of the US Department of Energy (DOE). Bendix, prime contractor to the Grand Junction Office, operates the Technical Library at the DOE facility. Since the early 1950s, approximately 2700 reports have been issued by the Grand Junction Office. These reports were the results of uranium investigations conducted by federal agencies and their subcontractors. The majority of the reports cover geology, mineralogy, and metallurgy of uranium and/or thorium. No single, complete list of these reports existed. The purpose of this subcontract was to compile a comprehensive index to these reports. The Mesa College geology faculty worked with the BFEC and DOE staffs to develop the format for the index. Undergraduate geology students from Mesa compiled a master record sheet for each report. All reports issued up to January 1, 1979 were included in the bibliography. The bibliography is in preliminary, unedited form. It is being open-filed at this time, on microfiche, to make the information available to the public on a timely basis. The bibliography is divided into a master record list arranged in alpha-numeric order by report identification number, with separate indices arranged by title, author, state and county, 1/sup 0/ x 2/sup 0/ NTMS quadrangle, key words, and exploration area.

  12. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    SciTech Connect (OSTI)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01T23:59:59.000Z

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

  13. Molten uranium dioxide structure and dynamics

    SciTech Connect (OSTI)

    Skinner, L. B. [Argonne National Laboratory (ANL), Argonne, IL (United States); Stony Brook Univ., Stony Brook, NY (United States); Materials Development Inc., Arlington Heights, IL (United States); Parise, J. B. [Stony Brook Univ., Stony Brook, NY (United States); Benmore, C. J. [Argonne National Laboratory (ANL), Argonne, IL (United States); Weber, J. K.R. [Materials Development Inc., Arlington Heights, IL (United States); Williamson, M. A. [Argonne National Laboratory (ANL), Argonne, IL (United States); Tamalonis, A. [Materials Development Inc., Arlington Heights, IL (United States); Hebden, A. [Argonne National Laboratory (ANL), Argonne, IL (United States); Wiencek, T. [Argonne National Laboratory (ANL), Argonne, IL (United States); Alderman, O. L.G. [Materials Development Inc., Arlington Heights, IL (United States); Guthrie, M. [Carnegie Inst., Washington, DC (United States); Leibowitz, L. [Argonne National Laboratory (ANL), Argonne, IL (United States)

    2014-11-20T23:59:59.000Z

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  14. Uranium enrichment decontamination and decommissioning fund

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    One of the most challenging issues facing the Department of Energy`s Office of Environmental Management is the cleanup of the three gaseous diffusion plants. In October 1992, Congress passed the Energy Policy Act of 1992 and established the Uranium Enrichment Decontamination and Decommissioning Fund to accomplish this task. This mission is being undertaken in an environmentally and financially responsible way by: devising cost-effective technical solutions; producing realistic life-cycle cost estimates, based on practical assumptions and thorough analysis; generating coherent long-term plans which are based on risk assessments, land use, and input from stakeholders; and, showing near-term progress in the cleanup of the gaseous diffusion facilities at Oak Ridge.

  15. Molten uranium dioxide structure and dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skinner, L. B. [Argonne National Laboratory (ANL), Argonne, IL (United States); Stony Brook Univ., Stony Brook, NY (United States); Materials Development Inc., Arlington Heights, IL (United States); Parise, J. B. [Stony Brook Univ., Stony Brook, NY (United States); Benmore, C. J. [Argonne National Laboratory (ANL), Argonne, IL (United States); Weber, J. K.R. [Materials Development Inc., Arlington Heights, IL (United States); Williamson, M. A. [Argonne National Laboratory (ANL), Argonne, IL (United States); Tamalonis, A. [Materials Development Inc., Arlington Heights, IL (United States); Hebden, A. [Argonne National Laboratory (ANL), Argonne, IL (United States); Wiencek, T. [Argonne National Laboratory (ANL), Argonne, IL (United States); Alderman, O. L.G. [Materials Development Inc., Arlington Heights, IL (United States); Guthrie, M. [Carnegie Inst., Washington, DC (United States); Leibowitz, L. [Argonne National Laboratory (ANL), Argonne, IL (United States)

    2014-11-20T23:59:59.000Z

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  16. Helium Migration Mechanisms in Polycrystalline Uranium Dioxide

    SciTech Connect (OSTI)

    Martin, Guillaume; Desgardin, Pierre; Sauvage, Thierry; Barthe, Marie-France [CERI, CNRS, 3 A rue de la Ferollerie, ORLEANS, 45071 (France); Garcia, Philippe; Carlot, Gaelle [DEN/DEC/SESC/LLCC, CEA Cadarache, Saint Paul Lez Durance, 13108 (France)

    2007-07-01T23:59:59.000Z

    This study aims at identifying the release mechanisms of helium in uranium dioxide. Two sets of polycrystalline UO{sub 2} sintered samples presenting different microstructures were implanted with {sup 3}He ions at concentrations in the region of 0.1 at.%. Changes in helium concentrations were monitored using two Nuclear Reaction Analysis (NRA) techniques based on the {sup 3}He(d,{alpha}){sup 1}H reaction. {sup 3}He release is measured in-situ during sample annealing at temperatures ranging between 700 deg. C and 1000 deg. C. Accurate helium depth profiles are generated after each annealing stage. Results that provide data for further understanding helium release mechanisms are discussed. It is found that helium diffusion appears to be enhanced above 900 deg. C in the vicinity of grain boundaries possibly as a result of the presence of defects. (authors)

  17. Molten uranium dioxide structure and dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; et al

    2014-11-20T23:59:59.000Z

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. Onmore »melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.« less

  18. Probing the Electronic Structures of Low Oxidation-State Uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluoride Molecules UFx- (x2-4). Probing the Electronic Structures of Low Oxidation-State Uranium Fluoride Molecules UFx- (x2-4). Abstract: We report the experimental observation...

  19. Probing the electronic structures of low oxidation-state uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecules UFx- (x2-4) . Probing the electronic structures of low oxidation-state uranium fluoride molecules UFx- (x2-4) . Abstract: We report the experimental observation...

  20. Solidification/stabilization of simulated uranium and nickel contaminated sludges 

    E-Print Network [OSTI]

    Ramabhadran, Sanjay

    1996-01-01T23:59:59.000Z

    Research missions in nuclear energy conducted by the U.S. Department of Energy facilities have generated large volumes of mixed wastes with hazardous and radioactive components. Uranium and nickel are the primary contaminants of concern...

  1. DOE Extends Public Comment Period for the Draft Uranium Leasing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25,000 acres - that are leased to private entities for uranium and vanadium mining. No mining operations are active on these lands at this time. DOE is preparing the ULP...

  2. DOE Extends Public Comment Period for Uranium Program Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25,000 acres - that are leased to private entities for uranium and vanadium mining. No mining operations are active on these lands at this time. DOE is preparing the ULP...

  3. Uranium Leasing Program: Program Summary | Department of Energy

    Energy Savers [EERE]

    then lease them to private industry for mineral exploration and for development and mining of uranium and vanadium ore. A total of 25,000 acres of land in southwestern Colorado,...

  4. DOE Evaluates Environmental Impacts of Uranium Mining on Government...

    Broader source: Energy.gov (indexed) [DOE]

    25,000 acres - that are leased to private entities for uranium and vanadium mining. There have been three previous leasing periods on the tracts since the program was...

  5. Texas Uranium Exploration, Surface Mining, and Reclamation Act (Texas)

    Broader source: Energy.gov [DOE]

    The Railroad Commission of Texas is the regulatory authority for uranium surface mining. Law authorizes the Commission to assure that reclamation of mining sites is possible, to protect land owners...

  6. Department of Energy to Continue Managing Uranium Leasing Program...

    Broader source: Energy.gov (indexed) [DOE]

    to approximately 25,000 acres leased to private entities for uranium and vanadium mining. There have been three previous leasing periods on the tracts since the program was...

  7. Method to remove uranium/vanadium contamination from groundwater

    DOE Patents [OSTI]

    Metzler, Donald R. (DeBeque, CO); Morrison, Stanley (Grand Junction, CO)

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  8. Fuel cycle optimization of thorium and uranium fueled PWR systems

    E-Print Network [OSTI]

    Garel, Keith Courtnay

    1977-01-01T23:59:59.000Z

    The burnup neutronics of uniform PWR lattices are examined with respect to reduction of uranium ore requirements with an emphasis on variation of the fuel-to-moderator ratio

  9. Uranium-contaminated soils: Ultramicrotomy and electron beam analysis

    SciTech Connect (OSTI)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1994-02-01T23:59:59.000Z

    Uranium-contaminated soils from the U.S. Department of Energy (DOE) Fernald Site, Ohio, have been examined by a combination of scanning electron microscopy with backscattered electron imaging (SEM/BSE) and analytical electron microscopy (AEM). The inhomogeneous distribution of particulate uranium phases in the soil required the development of a method for using ultramicrotomy to prepare transmission electron microscopy (TEM) thin sections of the SEM mounts. A water-miscible resin was selected that allowed comparison between SEM and TEM images, permitting representative sampling of the soil. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite (UO{sub 2}). No uranium was detected in association with phyllosilicates in the soil.

  10. Systems studies on the extraction of uranium from seawater

    E-Print Network [OSTI]

    Driscoll, Michael J.

    1981-01-01T23:59:59.000Z

    This report summarizes the work done at MIT during FY 1981 on the overall system design of a uranium-from-seawater facility. It consists of a sequence of seven major chapters, each of which was originally prepared as a ...

  11. Aluminum and polymeric coatings for protection of uranium

    SciTech Connect (OSTI)

    Colmenares, C.; McCreary, T.; Monaco, S.; Walkup, C.; Gleeson, G.; Kervin, J.; Smith, R.L.; McCaffrey, C.

    1983-12-21T23:59:59.000Z

    Ion-plated aluminum films on uranium will not provide adequate protection for 25 years. Magnetron-plated aluminum films on uranium are much better than ion-plated ones. Kel-F 800 films on uranium can provide adequate protection for 25 years. Their use in production must be delayed until the following factors are sorted out: water permeability in Kel-F 800 must be determined between 30 and 60/sup 0/C; the effect of UF/sub 3/, at the Kel-F/metal interface, on the permeability of water must be assessed; and the effect of crystallinity on water permeability must be evaluated. Applying Kel-F films on aluminum ion-plated uranium provides a good interim solution for long term storage.

  12. Uranium Adsorption on Granular Activated Carbon – Batch Testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2013-09-26T23:59:59.000Z

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 ?g/g for the two Tusaar materials.

  13. Structure and uranium deposits of the Salina Quadrangle, Utah

    SciTech Connect (OSTI)

    Williams, P.E.; Hackman, R.J.

    1983-01-01T23:59:59.000Z

    Structure contours were drawn on the base of the Dakota Sandstone, or on the base of the Tununk Member of the Mancos Shale where the Dakota is absent. The map shows uranium ore deposits and prospects. (ACR)

  14. Speciation of Uranium in Biologically Reduced Sediments in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Speciation of Uranium in Biologically Reduced Sediments in the Old Rifle Aquifer Wednesday, May 16, 2012 - 1:30pm SSRL Conference Room 137-322 Juan S. Lezama Pacheco The speciation...

  15. Final report on improved uranium utilization in PWRs

    E-Print Network [OSTI]

    Driscoll, Michael J.

    1982-01-01T23:59:59.000Z

    This is the final summary progress report on a research program carried out within the MIT Energy Laboratory/Nuclear Engineering Department under the US Department of Energy's program to increase the effectiveness of uranium ...

  16. Method to Remove Uranium/Vanadium Contamination from Groundwater

    DOE Patents [OSTI]

    Metzler, Donald R.; Morrison Stanley

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  17. Uranium Exerts Acute Toxicity by Binding to Pyrroloquinoline Quinone Cofactor

    SciTech Connect (OSTI)

    Michael R. VanEngelen; Robert I. Szilagyi; Robin Gerlach; Brady E. Lee; William A. Apel; Brent M. Peyton

    2011-02-01T23:59:59.000Z

    Uranium as an environmental contaminant has been shown to be toxic to eukaryotes and prokaryotes; however, no specific mechanisms of uranium toxicity have been proposed so far. Here a combination of in vivo, in vitro, and in silico studies are presented describing direct inhibition of pyrroloquinoline quinone (PQQ)-dependent growth and metabolism by uranyl cations. Electrospray-ionization mass spectroscopy, UV-vis optical spectroscopy, competitive Ca2+/uranyl binding studies, relevant crystal structures, and molecular modeling unequivocally indicate the preferred binding of uranyl simultaneously to the carboxyl oxygen, pyridine nitrogen, and quinone oxygen of the PQQ molecule. The observed toxicity patterns are consistent with the biotic ligand model of acute metal toxicity. In addition to the environmental implications, this work represents the first proposed molecular mechanism of uranium toxicity in bacteria, and has relevance for uranium toxicity in many living systems.

  18. Radiation and Uranium Resources Exposure Control (South Dakota)

    Broader source: Energy.gov [DOE]

    The public policy of South Dakota is to encourage the constructive uses of radiation, the proper development of uranium resources, and the control of any associated harmful effects. The disposal of...

  19. australian uranium mining: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    poetry that focuses on working-class life and (more) Attfield, Sarah Jane 2007-01-01 89 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  20. australian uranium projects: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    poetry that focuses on working-class life and (more) Attfield, Sarah Jane 2007-01-01 70 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  1. assessing uranium bioremediation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Monteoliva-sanchez; M. J. Lopez 1992-01-01 5 Assessing the risk from the depleted uranium weapons used in Operation Allied Force CERN Preprints Summary: The...

  2. ash doped uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    57Maple, Hard85Magnolia 58Yellow Poplar86Oak, Chestnut 59Maple, Soft91Oak, White 12 Depleted Uranium Technical Brief Environmental Sciences and Ecology Websites Summary: and...

  3. Solid State Phase Transformations in Uranium-Zirconium Alloys

    E-Print Network [OSTI]

    Irukuvarghula, Sandeep

    2013-08-06T23:59:59.000Z

    Depleted Uranium WDS Wavelength Dispersive Spectroscopy DIC Di erential Interference Contrast BSE Back Scattered Electron image SS Stainless Steel MIC Microscopy and Imaging Center OR Orientation Relationship EDS Energy Dispersive Spectroscopy UNLV...

  4. Biogeochemistry of uranium mill wastes program overview and conclusions

    SciTech Connect (OSTI)

    Dreesen, D.R.

    1981-05-01T23:59:59.000Z

    The major findings and conclusions are summarized for research on uranium mill tailings for the US Department of Energy and the US Nuclear Regulatory Commission. An overview of results and interpretations is presented for investigations of /sup 222/Rn emissions, revegetation of tailings and mine spoils, and trace element enrichment, mobility, and bioavailability. A brief discussion addresses the implications of these findings in relation to tailings disposal technology and proposed uranium recovery processes.

  5. Fundamental study on recovery uranium oxide from HEPA filters

    SciTech Connect (OSTI)

    Izumida, T. [Hitachi Ltd., Ibaraki (Japan). Hitachi Works; Matsumoto, H.; Tsuchiya, H.; Iba, H. [Hitachi Nuclear Engineering Co., Ltd., Ibaraki (Japan); Noguchi, Y. [Radioactive Waste Management Center, Tokyo (Japan)

    1993-12-31T23:59:59.000Z

    Large numbers of spent HEPA filters are produced at uranium fuel fabrication facilities. Uranium oxide particles have been collected on these filters. Then, a spent HEPA filter treatment system was developed from the viewpoint of recovering the UO{sub 2} and minimizing the volume. The system consists of a mechanical separation process and a chemical dissolution process. This paper describes the results of fundamental experiments on recovering UO{sub 2} from HEPA filters.

  6. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    SciTech Connect (OSTI)

    Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W. (comps.)

    1980-06-01T23:59:59.000Z

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  7. The IMCA: A field instrument for uranium enrichment measurements

    SciTech Connect (OSTI)

    Gardner, G.H.; Koskelo, M.; Moeslinger, M. [Canberra Industries, Meriden, CT (United States); Mayer, R.L. II; McGinnis, B.R. [Lockheed Martin Utility Services, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant; Wishard, B. [International Atomic Energy Agency, Vienna (Austria)

    1996-12-31T23:59:59.000Z

    The IMCA (Inspection Multi-Channel Analyzer) is a portable gamma-ray spectrometer designed to measure the enrichment of uranium either in a laboratory or in the field. The IMCA consists of a Canberra InSpector Multi-Channel Analyzer, sodium iodide or a planar germanium detector, and special application software. The system possesses a high degree of automation. The IMCA uses the uranium enrichment meter principle, and is designed to meet the International Atomic Energy Agency (IAEA) requirements for the verification of enriched uranium materials. The IMCA is available with MGA plutonium isotopic analysis software or MGAU uranium analysis software as well. In this paper, the authors present a detailed description of the hardware and software of the IMCA system, as well as results from preliminary measurements testing compliance of IMCA with IAEA requirements using uranium standards and UF6 cylinders. Measurements performed on UF6 cylinders in the field under variable environmental conditions (temperatures ranging from 0 to 35 C) have shown that good results can be achieved. The enrichment of UF6 contained in the cylinder is determined by using calibration constants generated from an instrument calibration, using traceable uranium oxide standards, performed in the laboratory under controlled environmental conditions. The IMCA software is designed to make the necessary matrix and container corrections to ensure that accurate results are achieved in the field.

  8. Uranium recovery from low-level aqueous sources. [76 references

    SciTech Connect (OSTI)

    Kelmers, A.D.; Goeller, H.E.

    1981-03-01T23:59:59.000Z

    The aqueous sources of soluble uranium were surveyed and evaluated in terms of the uranium geochemical cycle in an effort to identify potential unexploited resources. Freshwater sources appeared to be too low in uranium content to merit consideration, while seawater, although very dilute (approx. 3.3 ppB), contains approx. 4 x 10/sup 9/ metric tons of uranium in all the world's oceans. A literature review of recent publications and patents concerning uranium recovery from seawater was conducted. Considerable experimental work is currently under way in Japan; less is being done in the European countries. An assessment of the current state of technology is presented in this report. Repeated screening programs have identified hydrous titanium oxide as the most promising candidate absorbent. However, some of its properties such as distribution coefficient, selectivity, loading, and possibly stability appear to render its use inadequate in a practical recovery system. Also, various assessments of the energy efficiency of pumped or tidal power schemes for contacting the sorbent and seawater are in major disagreement. Needed future research and development tasks are discussed. A fundamental sorbent development program to greatly improve sorbent properties would be required to permit practical recovery of uranium from seawater. Major unresolved engineering aspects of such recovery systems are also identified and discussed.

  9. Standard specification for sintered gadolinium oxide-uranium dioxide pellets

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01T23:59:59.000Z

    1.1 This specification is for finished sintered gadolinium oxide-uranium dioxide pellets for use in light-water reactors. It applies to gadolinium oxide-uranium dioxide pellets containing uranium of any 235U concentration and any concentration of gadolinium oxide. 1.2 This specification recognizes the presence of reprocessed uranium in the fuel cycle and consequently defines isotopic limits for gadolinium oxide-uranium dioxide pellets made from commercial grade UO2. Such commercial grade UO2 is defined so that, regarding fuel design and manufacture, the product is essentially equivalent to that made from unirradiated uranium. UO2 falling outside these limits cannot necessarily be regarded as equivalent and may thus need special provisions at the fuel fabrication plant or in the fuel design. 1.3 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aw...

  10. Diffusion model of the non-stoichiometric uranium dioxide

    SciTech Connect (OSTI)

    Moore, Emily, E-mail: emily.moore@cea.fr [CEA Saclay, DEN-DPC-SCCME, 91191 Gif-sur-Yvette Cedex (France); Guéneau, Christine, E-mail: christine.gueneau@cea.fr [CEA Saclay, DEN-DPC-SCCME, 91191 Gif-sur-Yvette Cedex (France); Crocombette, Jean-Paul, E-mail: jean-paul.crocombette@cea.fr [CEA Saclay, DEN DEN, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette Cedex (France)

    2013-07-15T23:59:59.000Z

    Uranium dioxide (UO{sub 2}), which is used in light water reactors, exhibits a large range of non-stoichiometry over a wide temperature scale up to 2000 K. Understanding diffusion behavior of uranium oxides under such conditions is essential to ensure safe reactor operation. The current understanding of diffusion properties is largely limited by the stoichiometric deviations inherent to the fuel. The present DICTRA-based model considers diffusion across non-stoichiometric ranges described by experimentally available data. A vacancy and interstitial model of diffusion is applied to the U–O system as a function of its defect structure derived from CALPHAD-type thermodynamic descriptions. Oxygen and uranium self and tracer diffusion coefficients are assessed for the construction of a mobility database. Chemical diffusion coefficients of oxygen are derived with respect to the Darken relation and migration energies of defects are evaluated as a function of stoichiometric deviation. - Graphical abstract: Complete description of Oxygen–Uranium diffusion as a function of composition at various temperatures according to the developed Dictra model. - Highlights: • Assessment of a uranium–oxygen diffusion model with Dictra. • Complete description of U–O diffusion over wide temperature and composition range. • Oxygen model includes terms for interstitial and vacancy migration. • Interaction terms between defects help describe non-stoichiometric domain of UO{sub 2±x}. • Uranium model is separated into mobility terms for the cationic species.

  11. Engineering analysis report for the long-term management of depleted uranium hexafluoride : storage of depleted uranium metal.

    SciTech Connect (OSTI)

    Folga, S.M.; Kier, P.H.; Thimmapuram, P.R.

    2001-01-24T23:59:59.000Z

    This report contains an engineering analysis of long-term storage of uranium metal in boxes as an option for long-term management of depleted uranium hexafluoride (UF{sub 6}). Three storage facilities are considered: buildings, vaults, and mined cavities. Three cases are considered: either all, half, or a quarter of the depleted uranium metal that would be produced from the conversion of depleted UF{sub 6} is stored at the facility. The analysis of these alternatives is based on a box design used in the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride, report DOE/EIS-0269, published in 1999 by the US Department of Energy. This box design does not appear to effectively use space within the box. Hence, an alternative box design that allows for a reduced storage area is addressed in the appendices for long-term storage in buildings.

  12. Examination of the conversion of the U.S. submarine fleet from highly enriched uranium to low enriched uranium

    E-Print Network [OSTI]

    McCord, Cameron (Cameron Liam)

    2014-01-01T23:59:59.000Z

    The nuclear reactors used by the U.S. Navy for submarine propulsion are currently fueled by highly enriched uranium (HEU), but HEU brings administrative and political challenges. This issue has been studied by the Navy ...

  13. EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

  14. Standard test method for the determination of uranium by ignition and the oxygen to uranium (O/U) atomic ratio of nuclear grade uranium dioxide powders and pellets

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2000-01-01T23:59:59.000Z

    1.1 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear grade uranium dioxide powder and pellets. 1.2 This test method does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this test method does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.4 This test method also is applicable to UO3 and U3O8 powder.

  15. Determination of arsenic, molybdenum, uranium and vanadium in seawater by neutron activation analysis after preconcentration by colloid flotation

    SciTech Connect (OSTI)

    Murthy, R.S.S.; Ryan, D.E.

    1983-04-01T23:59:59.000Z

    Colloid flotation of arsenic, molybdenum, uranium, and vanadium on hydrous iron(III) oxide permits rapid collection of the precipitate for neutron activation analysis. The precipitate is floated, in the presence of sodium dodecyl sulfate and tiny nitrogen bubbles, from 1 L of seawater at pH 5.7 +/- 0.2. Except for uranium, recoveries are better than 95%; about 75% of the uranium was recovered. Selenium(IV) and tungsten(VI) can be similarly collected but their natural concentration levels in seawater are below detection limits for 1 L volumes.

  16. Radical anionic versus neutral 2,2'-bipyridyl coordination in uranium complexes supported by amide and ketimide ligands.

    E-Print Network [OSTI]

    Diaconescu, PL; Cummins, CC

    2015-01-01T23:59:59.000Z

    the organometallic chemistry of uranium. The radical anionicof Chemistry 2012 Journal Name present 2.4(9) at the uraniumChemistry 2013 Since our initial examples, others have also reported bridging benzene or toluene uranium

  17. Uranium and other heavy metals in soil and vegetation from the Hanford environs

    SciTech Connect (OSTI)

    Price, K.R.; Kinnison, R.R.

    1982-11-01T23:59:59.000Z

    Strong winds that could transport contaminated dust and other materials offsite from the Hanford 300 Area typically blow from the west or southwest. Samples were collected from an offsite study area located across the Columbia River and downwind from the 300 Area to estimate the concentrations of uranium and other heavy metals in soils and vegetation. Results were compared to similar measurements collected at control sites located both on and off the Hanford Site. These comparisons were used to test hypotheses that uranium and other heavy metals had been transported offsite by wind-blown dust or other materials. The conclusion from this study was that operations at the 300 Area have not resulted in a detectable impact on the offsite environs across the river. The concentration of uranium in soil samples from the study area was statistically greater than comparable samples from control sites, but there was no evidence that the uranium in the study-area samples was other than naturally occurring. There was no statistical difference in the concentration of lead, silver, zinc or copper in soil samples from the study area as compared to the control sites. No statistically significant differences in uranium or other heavy metals were noted among vegetation samples from the various sampling sites.

  18. An Optically Stimulated Luminescence Uranium Enrichment Monitor

    SciTech Connect (OSTI)

    Miller, Steven D.; Tanner, Jennifer E.; Simmons, Kevin L.; Conrady, Matthew M.; Benz, Jacob M.; Greenfield, Bryce A.

    2010-08-11T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) has pioneered the use of Optically Stimulated Luminescence (OSL) technology for use in personnel dosimetry and high dose radiation processing dosimetry. PNNL has developed and patented an alumina-based OSL dosimeter that is being used by the majority of medical X-ray and imaging technicians worldwide. PNNL has conceived of using OSL technology to passively measure the level of UF6 enrichment by attaching the prototype OSL monitor to pipes containing UF6 gas within an enrichment facility. The prototype OSL UF6 monitor utilizes a two-element approach with the first element open and unfiltered to measure both the low energy and high energy gammas from the UF6, while the second element utilizes a 3-mm thick tungsten filter to eliminate the low energy gammas and pass only the high energy gammas from the UF6. By placing a control monitor in the room away from the UF6 pipes and other ionizing radiation sources, the control readings can be subtracted from the UF6 pipe monitor measurements. The ratio of the shielded to the unshielded net measurements provides a means to estimate the level of uranium enrichment. PNNL has replaced the commercially available MicroStar alumina-based dosimeter elements with a composite of polyethylene plastic, high-Z glass powder, and BaFBr:Eu OSL phosphor powder at various concentrations. The high-Z glass was added in an attempt to raise the average “Z” of the composite dosimeter and increase the response. Additionally, since BaFBr:Eu OSL phosphor is optimally excited and emits light at different wavelengths compared to alumina, the commercially available MicroStar reader was modified for reading BaFBr:Eu in a parallel effort to increase reader sensitivity. PNNL will present the design and performance of our novel OSL uranium enrichment monitor based on a combination of laboratory and UF6 test loop measurements. PNNL will also report on the optimization effort to achieve the highest possible performance from both the OSL enrichment monitor and the new custom OSL reader modified for this application. This project has been supported by the US Department of Energy’s National Nuclear Security Administration’s Office of Dismantlement and Transparency (DOE/NNSA/NA-241).

  19. Representativeness of large sample INAA in the study of Brazilian uranium mine waste

    SciTech Connect (OSTI)

    De Nadai Fernandes, E.A. [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil); Bode, P. [Interfaculty Reactor Institute, Delft (Netherlands)

    1997-12-01T23:59:59.000Z

    Osamu Utsumi was the first uranium mine to be explored in Brazil and has been active for approximately two decades. It is located on the Poqos de Caldas plateau in the state of Minas Gerais, which is an area of the world with one of the highest levels of natural radioactivity. Mining activities were terminated in April 1996, leaving some tons of uranium at depths at which exploration is not economically viable. The decision to prematurely terminate mining activities was taken in light of the planned commissioning within 2 yr of a new mine in the state of Bahia in the Jazida da Cachoeira region, where a high-grade uranium ore is found. This paper describes the use of INAA for the analysis of wastes produced from ores.

  20. The US uranium revitalization, Tailings Reclamation and Enrichment Act, Title 1

    SciTech Connect (OSTI)

    NONE

    1988-05-01T23:59:59.000Z

    On November 4, 1987, the US Senate Committee on Energy and Natural Resources reported out to the Senate bill number S.1846 (Uranium Revitalization, Tailings Reclamation and Enrichment Act of 1987). In early 1988, the bill was reintroduced as S.2097, withut some of its earlier provisions that had caused jurisdictional conflict with the Senate Finance Committee. One of the deleted provisions comprised most of Title I of S.1846, dealing primarily with establishing a fee on the use of imported uranium by US utilities. These provisions were reintroduced by amendment on the floor of the Senate on March 30, 1988. In a key vote, a motion to block the reintroduction of the deleted provisions was defeated by a 47-45 margin. The full bill S.2097, again with uranium import provisions, was subsequently passed by a vote of 62-28 in the Senate. The bill now goes to the US House of Representatives for its consideration.

  1. Uranium- and thorium-bearing pegmatites of the United States

    SciTech Connect (OSTI)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01T23:59:59.000Z

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.

  2. Thermodynamics of the Complexation of Uranium(VI) by oxalate in aqueous solution at 10-70oC

    E-Print Network [OSTI]

    Di Bernardo, Plinio

    2009-01-01T23:59:59.000Z

    O. Tochiyama in Chemical Thermodynamics of Compounds andUpdate on the Chemical Thermodynamics of Uranium, Neptunium,Thermodynamics of the Complexation of Uranium(VI) with

  3. Dynamics of microbial community composition and function during in-situ bioremediation of a uranium-contaminated aquifer

    E-Print Network [OSTI]

    Nostrand, J.D. Van

    2012-01-01T23:59:59.000Z

    associated with bioremediation of uranium to submicromolarsolubility during bioremediation of uranium- contaminated14. Lovley, D. R. 1995. Bioremediation of organic and metal

  4. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during uranium bioremediation at Rifle, Colorado

    E-Print Network [OSTI]

    Li, Li

    2010-01-01T23:59:59.000Z

    heterogeneity and bioremediation induced biogeochemicalduring uranium bioremediation at Rifle, Colorado. Environ.E.J.P. , 1992. Bioremediation of Uranium Contamination with

  5. Fire testing of bare uranium hexafluoride cylinders

    SciTech Connect (OSTI)

    Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)

    1991-12-31T23:59:59.000Z

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  6. Fire testing of bare uranium hexafluoride cylinders

    SciTech Connect (OSTI)

    Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  7. Density Prediction of Uranium-6 Niobium Ingots

    SciTech Connect (OSTI)

    D.F.Teter; P.K. Tubesing; D.J.Thoma; E.J.Peterson

    2003-04-15T23:59:59.000Z

    The densities of uranium-6 niobium (U-Nb) alloys have been compiled from a variety of literature sources such as Y-12 and Rocky Flats datasheets. We also took advantage of the 42 well-pedigreed, homogeneous baseline U-Nb alloys produced under the Enhanced Surveillance Program for density measurements. Even though U-Nb alloys undergo two-phase transitions as the Nb content varies from 0 wt. % to 8 wt %, the theoretical and measured densities vary linearly with Nb content. Therefore, the effect of Nb content on the density was modeled with a linear regression. From this linear regression, a homogeneous ingot of U-6 wt.% Nb would have a density of 17.382 {+-} 0.040 g/cc (95% CI). However, ingots produced at Y-12 are not homogeneous with respect to the Nb content. Therefore, using the 95% confidence intervals, the density of a Y-12 produced ingot would vary from 17.310 {+-} 0.043 g/cc at the center to 17.432 {+-} 0.039 g/cc at the edge. Ingots with larger Nb inhomogeneities will also have larger variances in the density.

  8. Liquid uranium alloy-helium fission reactor

    DOE Patents [OSTI]

    Minkov, Vladimir (Skokie, IL)

    1986-01-01T23:59:59.000Z

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  9. Liquid uranium alloy-helium fission reactor

    DOE Patents [OSTI]

    Minkov, V.

    1984-06-13T23:59:59.000Z

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  10. Measurements of uranium mill tailings consolidation characteristics

    SciTech Connect (OSTI)

    Fayer, M J

    1985-02-01T23:59:59.000Z

    A series of experiments were conducted on uranium mill tailings from the tailings pile in Grand Junction, Colorado, to determine their consolidation characteristics. Three materials (sand, sand/slimes mix, slimes) were loaded under saturated conditions to determine their saturated consolidated behavior. During a separate experiment, samples of the slimes material were kept under a constant load while the pore pressure was increased to determine the partially saturated consolidation behavior. Results of the saturated tests compared well with published data. Sand consolidated the least, while slimes consolidated the most. As each material consolidated, the measured hydraulic conductivity decreased in a linear fashion with respect to the void ratio. Partially saturated experiments with the slimes indicated that there was little consolidation as the pore pressure was increased progressively above 7 kPa. The small amount of consolidation that did occur was only a fraction of the amount of saturated consolidation. Preliminary measurements between pore pressures of 0 and 7 kPa indicated that measurable consolidation could occur in this range of pore pressure, but only if there was no load. 13 references, 13 figures.

  11. Brazilian uranium mine decommissioning-chemical and radiological study of waste rock piles

    SciTech Connect (OSTI)

    Wiikmann, L. O. [Industrias Nucleares do Brasil, Pocos de Caldas (Brazil)

    1996-12-31T23:59:59.000Z

    The Pocos de Caldas plateau is a high-natural-radioactivity area in the state of Minas Gerais, southeast Brazil. Uranium occurrence in the plateau was first observed in 1948. Mining started in 1977 with mine scouring, and the first ore pile was constructed in 1981. Waste rocks are derived from the mine material. The analysis of core samples is discussed.

  12. Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applications

    E-Print Network [OSTI]

    Garnetti, David J.

    2010-07-14T23:59:59.000Z

    The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy alpha phase sintering experiment where the Mg is a surrogate for Pu and Am. The powder...

  13. EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado

    Broader source: Energy.gov [DOE]

    This EIS evaluated the potential environmental impacts of management alternatives for DOE’s Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores.

  14. 2014 Review of the Potential Impact of DOE Excess Uranium Inventory...

    Energy Savers [EERE]

    2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the Commercial Markets 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the Commercial...

  15. Use of uranium^thorium dating to determine C reservoir eects in lakes: examples from Antarctica

    E-Print Network [OSTI]

    Henderson, Gideon

    Use of uranium^thorium dating to determine past 14 C reservoir eˇects in lakes: examples from of dissolved `dead' carbon or to slow air^water exchange. Here we use the TIMS uranium^thorium disequilibrium

  16. Synthesis of Uranium Trichloride for the Pyrometallurgical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; J.C. Price; R.D. Mariani

    2011-11-01T23:59:59.000Z

    The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results and conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.

  17. Microstructural Evolution and Radiation Effects of Uranium-Bearing Diffusion Couples 

    E-Print Network [OSTI]

    Wei, Chao-Chen

    2014-12-12T23:59:59.000Z

    bombarded regions. Additionally, the mechanism of intermetallics formation (e.g.Fe23Zr6) and radiation stability were discussed. Second, a matrix of uranium-bearing couples is established. 1) Depleted uranium (DU) was bonded with polycrystalline iron...

  18. Management Controls over the Department of Energy's Uranium Leasing Program, OAS-M-08-05

    Broader source: Energy.gov [DOE]

    The Department of Energy's Uranium Leasing Program was established by the Atomic Energy Act of 1954 to develop a supply of domestic uranium to meet the nation's defense needs. Pursuant to the Act,...

  19. Development of a low enrichment uranium core for the MIT reactor

    E-Print Network [OSTI]

    Newton, Thomas Henderson

    2006-01-01T23:59:59.000Z

    An investigation has been made into converting the MIT research reactor from using high enrichment uranium (HEU) to low enrichment uranium (LEU) with a newly developed fuel material. The LEU fuel introduces negative ...

  20. Jack Case ? the man who helped bring uranium machining to Y...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the man who helped bring uranium machining to Y-12 Most of you realize that Y-12 is basically a huge and very precise machine shop. For years it has been the nation's only uranium...