National Library of Energy BETA

Sample records for uranium hexafluoride uf

  1. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  2. PRODUCTION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-08-27

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

  3. Method of recovering uranium hexafluoride

    DOE Patents [OSTI]

    Schuman, S.

    1975-12-01

    A method of recovering uranium hexafluoride from gaseous mixtures which comprises adsorbing said uranium hexafluoride on activated carbon is described.

  4. Nuclear criticality safety aspects of gaseous uranium hexafluoride (UF{sub 6}) in the diffusion cascade

    SciTech Connect (OSTI)

    Huffer, J.E.

    1997-04-01

    This paper determines the nuclear safety of gaseous UF{sub 6} in the current Gaseous Diffusion Cascade and auxiliary systems. The actual plant safety system settings for pressure trip points are used to determine the maximum amount of HF moderation in the process gas, as well as the corresponding atomic number densities. These inputs are used in KENO V.a criticality safety models which are sized to the actual plant equipment. The ENO V.a calculation results confirm nuclear safety of gaseous UF{sub 6} in plant operations..

  5. PROCESS FOR PRODUCING URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-10-22

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ convented to UF/sub 6/ by reaction with a fluorinating agent. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reaction chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. The oven is then swept clean of hydrogen and the water vapor formed by means of nitrogen and then while continuing to maintain the temperature between 400 and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion to uranium tetrafluoride, the temperature of the reaction chamber is lowered to ahout 400 deg C, and elemental fluorine is used as the fluorinating agent for the conversion of UF/sub 4/ into UF/sub 6/. The fluorine gas is passed into the chamber, and the UF/sub 6/ formed passes out and is delivered to a condenser.

  6. Rupture of Model 48Y UF/sub 6/ cylinder and release of uranium hexafluoride. Cylinder overfill, March 12-13, 1986. Investigation of a failed UF/sub 6/ shipping container. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1986-06-01

    NUREG-1179, Volume 1, reported on the rupture of a Model 48Y uranium hexafluoride (UF/sub 6/) cylinder and the subsequent release of UF/sub 6/. At the time of publication, a detailed metallurgical examination of the damaged cylinder was under way and results were not available. Subsequent to the publication of Volume 1, a second incident occurred at the Sequoyah Fuels Corporation facility. On March 13, 1986, a Model 48X cylinder was overfilled during a special one-time draining procedure; however, no release of UF/sub 6/ occurred. An Augmented Investigation Team investigated this second incident. This report, NUREG-1179, Volume 2, presents the findings made by the Augmented Investigation Team of the March 13 incident and the report of the detailed metallurgical examination conducted by Battelle Columbus Division of the cylinder damaged on January 4, 1986.

  7. PREPARATION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

    1959-10-01

    A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

  8. Rupture of Model 48Y UF/sub 6/ cylinder and release of uranium hexafluoride, Sequoyah Fuels Facility, Gore, Oklahoma, January 4, 1986. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    At 11:30 a.m. on January 4, 1986, a Model 48Y UF/sub 6/ cylinder filled with uranium hexafluoride (UF/sub 6/) ruptured while it was being heated in a steam chest at the Sequoyah Fuels Conversion Facility near Gore, Oklahoma. One worker died because he inhaled hydrogen fluoride fumes, a reaction product of UF/sub 6/ and airborne moisture. Several other workers were injured by the fumes, but none seriously. Much of the facility complex and some offsite areas to the south were contaminated with hydrogen fluoride and a second reaction product, uranyl fluoride. The interval of release was approximately 40 minutes. The cylinder, which had been overfilled, ruptured while it was being heated because of the expansion of UF/sub 6/ as it changed from the solid to the liquid phase. The maximum safe capacity for the cylinder is 27,560 pounds of product. Evidence indicates that it was filled with an amount exceeding this limit. 18 figs.

  9. PROCESS FOR MAKING URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Rosen, R.

    1959-07-14

    A process is described for producing uranium hexafluoride by reacting uranium hexachloride with hydrogen fluoride at a temperature below about 150 deg C, under anhydrous conditions.

  10. The solubility of uranium hexafluoride in perfluoroethers

    SciTech Connect (OSTI)

    Barber, E.J.

    1984-07-15

    The polyperfluoroethers are compatible with uranium hexafluoride (UF/sub 6/) and are suitable for use in diffusion pumps and in mechanical vacuum pumps which rely on oil as both the lubricant and the seal. The UF/sub 6/ is soluble in all fluids with which it is compatible. Because a number of vacuum pumps in the BOP facilities of the GCEP plant employ these perfluoroether oils as the working fluid and have oil chambers which are large, questions have been raised as to the relationships governing the solubility of UF/sub 6/ in these materials and the maximum quantities of UF/sub 6/ which could be dissolved in these oils under credible accident conditions. This report summarizes these solubility relations and the interaction of the UF/sub 6/ solubility and the pumping capability of this type of vacuum pump. It will be shown that, whereas the solubility of UF/sub 6/ in Fomblin Y25 fluoroether fluid under a UF/sub 6/ pressure of 760 torr and at the pump operating temperature of 160/sup 0/F is about 500 g of UF/sub 6/ per liter of oil, the system controls are such as to isolate the system from the pumps before the quantity of UF/sub 6/ dissolved in the perfluoroether exceeds about 10 g of UF/sub 6/ per liter of oil. 13 refs., 7 figs.

  11. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    SciTech Connect (OSTI)

    Penrod, S.R.

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}, Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  12. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    SciTech Connect (OSTI)

    Penrod, S.R.

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}. Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  13. Uranium hexafluoride bibliography

    SciTech Connect (OSTI)

    Burnham, S.L.

    1988-01-01

    This bibliography is a compilation of reports written about the transportation, handling, safety, and processing of uranium hexafluoride. An on-line literature search was executed using the DOE Energy files and the Nuclear Science Abstracts file to identify pertinent reports. The DOE Energy files contain unclassified information that is processed at the Office of Scientific and Technical Information of the US Department of Energy. The reports selected from these files were published between 1974 and 1983. Nuclear Science Abstracts contains unclassified international nuclear science and technology literature published from 1948 to 1976. In addition, scientific and technical reports published by the US Atomic Energy Commission and the US Energy Research and Development Administration, as well as those published by other agencies, universities, and industrial and research organizations, are included in the Nuclear Science Abstracts file. An alphabetical listing of the acronyms used to denote the corporate sponsors follows the bibliography.

  14. TRIMOLECULAR REACTIONS OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect (OSTI)

    Westbrook, M.; Becnel, J.; Garrison, S.

    2010-02-25

    The hydrolysis reaction of uranium hexafluoride (UF{sub 6}) is a key step in the synthesis of uranium dioxide (UO{sub 2}) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF{sub 6} molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizeable barrier of 78.2 kJ {center_dot} mol{sup -1}, indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO{sub 2} product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF{sub 6} molecules and one water molecule, and (2) the reaction of two water molecules with a single UF{sub 6} molecule. The predicted reaction of two UF{sub 6} molecules with one water molecule displays an interesting 'fluorine-shuttle' mechanism, a significant energy barrier of 69.0 kJ {center_dot} mol{sup -1} to the formation of UF{sub 5}OH, and an enthalpy of reaction ({Delta}H{sub 298}) of +17.9 kJ {center_dot} mol{sup -1}. The reaction of a single UF{sub 6} molecule with two water molecules displays a 'proton-shuttle' mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ {center_dot} mol{sup -1} and an exothermic enthalpy of reaction ({Delta}H{sub 298}) of -13.9 kJ {center_dot} mol{sup -1}. The exothermic nature of the overall UF{sub 6} + 2 {center_dot} H{sub 2}O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging; however, the sizable energy barrier indicates further study of the UF{sub 6} hydrolysis reaction mechanism is

  15. Design and calibration of the AWCC for measuring uranium hexafluoride

    SciTech Connect (OSTI)

    Wenz, T.R.; Menlove, H.O.; WSalton, G.; Baca, J.

    1995-08-01

    An Active Well Coincidence Counter (AWCC) has been modified to measure variable enrichment uranium hexafluoride (UF{sub 6}) in storage bottles. An active assay technique was used to measure the {sup 235}U content because of the small quantity (nominal loading of 2 kg UF{sub 6}) and nonuniform distribution of UF{sub 6} in the storage bottles. A new insert was designed for the AWCC composed of graphite containing four americium-lithium sources. Monte Carlo calculations were used to design the insert and to calibrate the detector. Benchmark measurements and calculations were performed using uranium oxide resulted in assay values that agreed within 2 to 3% of destructive assay values. In addition to UF{sub 6}, the detector was also calibrated for HEU ingots, billets, and alloy scrap using the standard Mode 1 end-plug configuration.

  16. Fire testing of bare uranium hexafluoride cylinders

    SciTech Connect (OSTI)

    Pryor, W.A.

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  17. Fire testing of bare uranium hexafluoride cylinders

    SciTech Connect (OSTI)

    Pryor, W.A.

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  18. Criticality concerns in cleaning large uranium hexafluoride cylinders

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    Cleaning large cylinders used to transport low-enriched uranium hexafluoride (UF{sub 6}) presents several challenges to nuclear criticality safety. This paper presents a brief overview of the cleaning process, the criticality controls typically employed and their bases. Potential shortfalls in implementing these controls are highlighted, and a simple example to illustrate the difficulties in complying with the Double Contingency Principle is discussed. Finally, a summary of recommended criticality controls for large cylinder cleaning operations is presented.

  19. DOE Extends Contract to Operate Depleted Uranium Hexafluoride...

    Energy Savers [EERE]

    Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - ...

  20. Uranium hexafluoride: A manual of good handling practices. Revision 7

    SciTech Connect (OSTI)

    1995-01-01

    The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

  1. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky

    Energy Savers [EERE]

    Site | Department of Energy 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste

  2. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants | Department of Energy Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - 10:00am Addthis Media Contact Brad Mitzelfelt, 859-219-4035 brad.mitzelfelt@lex.doe.gov LEXINGTON, Ky. - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for Operations of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities

  3. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

    Energy Savers [EERE]

    Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites October 20, 2011 - 9:16am Addthis When Babcock & Wilcox Conversion ...

  4. Uranium hexafluoride: A manual of good handling practices. Revision...

    Office of Scientific and Technical Information (OSTI)

    and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UFsub 6) shipping containers and handling procedures. ...

  5. Correlation of heat transfer in a cylinder containing uranium hexafluoride engulfed in a fire

    SciTech Connect (OSTI)

    Anderson, J.C.

    1994-08-01

    Transient heat transfer/stress analysis models are currently being developed to evaluate the response of cylinders containing uranium hexafluoride (UF{sub 6}) to fire accident scenarios. In order to accurately predict temperatures within the cylinder, and ultimately elapsed time to failure, the heat transfer to and within the cylinder must be well characterized. This report contains a complete set of heat transfer correlations required for such a model. Correlations are presented for predicting heat transfer rates over the cylinder exterior (radiative exchange and natural convection), from the cylinder interior to the various phases of UF{sub 6} (solid, liquid, and vapor) in the cylinder, between UF{sub 6} phases in the cylinder, and during UF{sub 6} liquid boiling. The heat transfer coefficients predicted by these correlations were chosen based on best engineering judgement and have not yet been compared to data from actual cylinder fire tests.

  6. Uranium hexafluoride liquid thermal expansion, elusive eutectic with hydrogen fluoride, and very first production using chlorine trifluoride

    SciTech Connect (OSTI)

    Rutledge, G.P.

    1991-12-31

    Three unusual incidents and case histories involving uranium hexafluoride in the enrichment facilities of the USA in the late 1940`s and early 1950`s are presented. The history of the measurements of the thermal expansion of liquids containing fluorine atoms within the molecule is reviewed with special emphasis upon uranium hexafluoride. A comparison is made between fluorinated esters, fluorocarbons, and uranium hexafluoride. The quantitative relationship between the thermal expansion coefficient, a, of liquids and the critical temperature, T{sub c} is presented. Uranium hexafluoride has an a that is very high in a temperature range that is used by laboratory and production workers - much higher than any other liquid measured. This physical property of UF{sub 6} has resulted in accidents involving filling the UF{sub 6} containers too full and then heating with a resulting rupture of the container. Such an incident at a uranium gaseous diffusion plant is presented. Production workers seldom {open_quotes}see{close_quotes} uranium hexafluoride. The movement of UF{sub 6} from one container to another is usually trailed by weight, not sight. Even laboratory scientists seldom {open_quotes}see{close_quotes} solid or liquid UF{sub 6} and this can be a problem at times. This inability to {open_quotes}see{close_quotes} the UF{sub 6}-HF mixtures in the 61.2{degrees}C to 101{degrees}C temperature range caused a delay in the understanding of the phase diagram of UF{sub 6}-HF which has a liquid - liquid immiscible region that made the eutectic composition somewhat elusive. Transparent fluorothene tubes solved the problem both for the UF{sub 6}-HF phase diagram as well as the UF{sub 6}-HF-CIF{sub 3} phase diagram with a miscibility gap starting at 53{degrees}C. The historical background leading to the first use of CIF{sub 3} to produce UF{sub 6} in both the laboratory and plant at K-25 is presented.

  7. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOE Patents [OSTI]

    Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  8. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6...

    Energy Savers [EERE]

    Uranium Hexafluoride (DUF6) Operations at the two DUF6 conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky. A cost plus award fee contract with firm-fixed-price ...

  9. A concept of a nonfissile uranium hexafluoride overpack for storage, transport, and processing of corroded cylinders

    SciTech Connect (OSTI)

    Pope, R.B.; Cash, J.M.; Singletary, B.H.

    1996-06-01

    There is a need to develop a means of safely transporting breached 48-in. cylinders containing depleted uranium hexafluoride (UF{sub 6}) from current storage locations to locations where the contents can be safely removed. There is also a need to provide a method of safely and easily transporting degraded cylinders that no longer meet the US Department of Transportation (DOT) and American National Standards Institute, Inc., (ANSI) requirements for shipments of depleted UF{sub 6}. A study has shown that an overpack can be designed and fabricated to satisfy these needs. The envisioned overpack will handle cylinder models 48G, 48X, and 48Y and will also comply with the ANSI N14.1 and the American Society of Mechanical Engineers (ASME) Sect. 8 requirements.

  10. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1

    SciTech Connect (OSTI)

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

  11. Uranium isotope exchange between gaseous UF{sub 6} and solid UF{sub 5}

    SciTech Connect (OSTI)

    Yato, Yumio; Kishimoto, Yoichiro; Sasao, Nobuyuki; Suto, Osamu; Funasaka, Hideyuki

    1996-08-01

    Based on a collision model, a new rate equation is derived for uranium isotope exchange between gaseous UF{sub 6} and solid UF{sub 5} by considering the number of UF{sub 5} molecules on the solid surface to be dependent on time. The reaction parameters included in the equation are determined from the experimental data and compared with the previous ones. A remarkable agreement is found between the particle sizes of UF{sub 5} estimated from the reaction parameter and from the direct observation with an electron microscope. The rate equation given in this work fully satisfies the related mass conservation and furthermore includes explicitly the terms related to the UF{sub 6} density and the mean size of UF{sub 5} particles, both of which are considered to cause an important effect on the reaction. This remarkable feature facilitates the simulation studies on this reaction under various conditions. The long term behavior of a simulated exchange reaction is studied under the condition considered to be close to that in a recovery zone of the MLIS process. The result indicates that the reaction is virtually limited to the solid surface under this conditions and thus the depletion of {sup 235}UF{sub 5} concentration averaged over the whole UF{sub 5} particles is not significant even after 200 h of the exchange reaction.

  12. Enterprise Assessments Targeted Review of the Paducah Depleted Uranium Hexafluoride Conversion Facility Fire Protection Program – September 2015

    Broader source: Energy.gov [DOE]

    Targeted Review of the Fire Protection Program at the Paducah Depleted Uranium Hexafluoride Conversion Facility

  13. TRANSITION STATE FOR THE GAS-PHASE REACTION OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect (OSTI)

    Garrison, S; James Becnel, J

    2008-03-18

    Density Functional Theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transitions states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF{sub 6}, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F{sub 5}, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structure and relative energies of the reacting complex and transition state. However, a significant change in the product complex structure was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF{sub 4}, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF{sub 6} with water.

  14. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Becker, D.L.; Lindquist, M.R.

    1993-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF[sub 6]). Uranium hexafluoride enriched greater than 1.0 wt percent [sup 235]U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF[sub 6] cylinders/overpacks (Reference 3). Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF[sub 6] packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a tram of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the review is documented in Reference 4.

  15. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Becker, D.L.; Lindquist, M.R.

    1993-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched greater than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks (Reference 3). Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a tram of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the review is documented in Reference 4.

  16. FIREPLUME model for plume dispersion from fires: Application to uranium hexafluoride cylinder fires

    SciTech Connect (OSTI)

    Brown, D.F.; Dunn, W.E.; Policastro, A.J.; Maloney, D.

    1997-06-01

    This report provides basic documentation of the FIREPLUME model and discusses its application to the prediction of health impacts resulting from releases of uranium hexafluoride (UF{sub 6}) in fires. The model application outlined in this report was conducted for the Draft Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted UF{sub 6}. The FIREPLUME model is an advanced stochastic model for atmospheric plume dispersion that predicts the downwind consequences of a release of toxic materials from an explosion or a fire. The model is based on the nonbuoyant atmospheric dispersion model MCLDM (Monte Carlo Lagrangian Dispersion Model), which has been shown to be consistent with available laboratory and field data. The inclusion of buoyancy and the addition of a postprocessor to evaluate time-varying concentrations lead to the current model. The FIREPLUME model, as applied to fire-related UF{sub 6} cylinder releases, accounts for three phases of release and dispersion. The first phase of release involves the hydraulic rupture of the cylinder due to heating of the UF{sub 6} in the fire. The second phase involves the emission of material into the burning fire, and the third phase involves the emission of material after the fire has died during the cool-down period. The model predicts the downwind concentration of the material as a function of time at any point downwind at or above the ground. All together, five fire-related release scenarios are examined in this report. For each scenario, downwind concentrations of the UF{sub 6} reaction products, uranyl fluoride and hydrogen fluoride, are provided for two meteorological conditions: (1) D stability with a 4-m/s wind speed, and (2) F stability with a 1-m/s wind speed.

  17. In-line assay monitor for uranium hexafluoride

    DOE Patents [OSTI]

    Wallace, S.A.

    1980-03-21

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.

  18. EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

  19. Characterization of uranium tetrafluoride (UF 4 ) with Raman spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Villa-Aleman, Eliel; Wellons, Matthew S.

    2016-03-22

    The Raman spectrum of uranium tetrafluoride (UF4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF4 demonstrates 16 distinct Raman bands within the 50-400 cm-1 region. The observed Raman bands are representative of various F-F vibrational modes. UF4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF4 spectrum with the ZrF4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanning electron microscopy (SEM) and in situmore » Raman spectroscopy microanalytical measurements of UF4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less

  20. Characterization of uranium tetrafluoride (UF4) with Raman spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Villa-Aleman, Eliel; Wellons, Matthew S.

    2016-03-22

    The Raman spectrum of uranium tetrafluoride (UF4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF4 demonstrates 16 distinct Raman bands within the 50-400 cm-1 region. The observed Raman bands are representative of various F-F vibrational modes. UF4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF4 spectrum with the ZrF4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanning electron microscopy (SEM) and in situmore » Raman spectroscopy microanalytical measurements of UF4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less

  1. In-line assay monitor for uranium hexafluoride

    DOE Patents [OSTI]

    Wallace, Steven A.

    1981-01-01

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.

  2. Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1996-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

  3. Study of the hydrolysis of uranium hexafluoride by Fourier transform infrared spectroscopy

    SciTech Connect (OSTI)

    Anderson, S.P.

    1982-08-01

    The reaction of uranium hexafluoride with water has been studied by using Fourier transform infrared (FT-IR) spectroscopy. Several different methods for accomplishing this task have been carried out. In addition, interpretatins of the results have been made. These interpretations have been based on literature values for the reactants and for compounds analogous to possible products. It was shown that classical matrix-isolation techniques proved to be unsatisfactory for studying this reaction. Other methods were developed in order to obtain results. They were: (1) the codeposition of pure UF/sub 6/ and H/sub 2/O on a cold window at 16/sup 0/K, (2) the codeposition of argon matrix to sample ratios of 10:1 to 2:1 of UF/sub 6/ and H/sub 2/O at 16/sup 0/K, and (3) the annealing of the samples produced by (1) and (2) while they were being scanned with FT-IR. 78 refs., 86 figs., 7 tabs.

  4. Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings

    SciTech Connect (OSTI)

    Strunk, W.D.; Thornton, S.G.

    1988-01-01

    This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA. (LTN)

  5. Modified biokinetic model for uranium from analysis of acute exposure to UF6

    SciTech Connect (OSTI)

    Fisher, D.R.; Kathren, R.L.; Swint, M.J. )

    1991-03-01

    Urinalysis measurements from 31 workers acutely exposed to uranium hexafluoride (UF6) and its hydrolysis product UO2F2 (during the 1986 Gore, Oklahoma UF6-release accident) were used to develop a modified recycling biokinetic model for soluble U compounds. The model is expressed as a five-compartment exponential equation: yu(t) = 0.086e-2.77t + 0.0048e-0.116t + 0.00069e-0.0267t + 0.00017 e-0.00231t + 2.5 x 10(-6) e-0.000187t, where yu(t) is the fractional daily urinary excretion and t is the time after intake, in days. The excretion constants of the five exponential compartments correspond to residence half-times of 0.25, 6, 26, 300, and 3,700 d in the lungs, kidneys, other soft tissues, and in two bone volume compartments, respectively. The modified recycling model was used to estimate intake amounts, the resulting committed effective dose equivalent, maximum kidney concentrations, and dose equivalent to bone surfaces, kidneys, and lungs.

  6. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio and Kentucky Facilities | Department of Energy DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities April 1, 2015 - 3:30pm Addthis Media Contact: Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Draft Request for Proposal (RFP) seeking a contractor to perform

  7. EA-1290: Disposition of Russian Federation Titled Natural Uranium

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United...

  8. Including environmental concerns in management strategies for depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Goldberg, M.; Avci, H.I.; Bradley, C.E.

    1995-12-31

    One of the major programs within the Office of Nuclear Energy, Science, and Technology of the US Department of Energy (DOE) is the depleted uranium hexafluoride (DUF{sub 6}) management program. The program is intended to find a long-term management strategy for the DUF{sub 6} that is currently stored in approximately 46,400 cylinders at Paducah, KY; Portsmouth, OH; and Oak Ridge, TN, USA. The program has four major components: technology assessment, engineering analysis, cost analysis, and the environmental impact statement (EIS). From the beginning of the program, the DOE has incorporated the environmental considerations into the process of strategy selection. Currently, the DOE has no preferred alternative. The results of the environmental impacts assessment from the EIS, as well as the results from the other components of the program, will be factored into the strategy selection process. In addition to the DOE`s current management plan, other alternatives continued storage, reuse, or disposal of depleted uranium, will be considered in the EIS. The EIS is expected to be completed and issued in its final form in the fall of 1997.

  9. Evaluation of a RF-Based Approach for Tracking UF6 Cylinders at a Uranium Enrichment Plant

    SciTech Connect (OSTI)

    Pickett, Chris A; Younkin, James R; Kovacic, Donald N; Laughter, Mark D; Hines, Jairus B; Boyer, Brian; Martinez, B.

    2008-01-01

    Approved industry-standard cylinders are used globally to handle and store uranium hexafluoride (UF{sub 6}) feed, product, tails, and samples at uranium enrichment plants. The International Atomic Energy Agency (IAEA) relies on time-consuming physical inspections to verify operator declarations and detect possible diversion of UF{sub 6}. Development of a reliable, automated, and tamper-resistant system for near real-time tracking and monitoring UF{sub 6} cylinders (as they move within an enrichment facility) would greatly improve the inspector function. This type of system can reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a proof-of-concept approach that was designed to evaluate the feasibility of using radio frequency (RF)-based technologies to track individual UF{sub 6} cylinders throughout a portion of their life cycle, and thus demonstrate the potential for improved domestic accountability of materials, and a more effective and efficient method for application of site-level IAEA safeguards. The evaluation system incorporates RF-based identification devices (RFID) which provide a foundation for establishing a reliable, automated, and near real-time tracking system that can be set up to utilize site-specific, rules-based detection algorithms. This paper will report results from a proof-of-concept demonstration at a real enrichment facility that is specifically designed to evaluate both the feasibility of using RF to track cylinders and the durability of the RF equipment to survive the rigors of operational processing and handling. The paper also discusses methods for securely attaching RF devices and describes how the technology can effectively be layered with other safeguard systems and approaches to build a robust system for detecting cylinder diversion. Additionally

  10. A review of the Model 5A uranium hexafluoride cylinder

    SciTech Connect (OSTI)

    Dorning, R.E. II

    1989-05-23

    Both the Model 5A (Monel 400) and 5A (Monel 400) Modified five-inch cylinders have been used at the Portsmouth GDP to withdraw, store, and ship highly enriched uranium hexafluoride. As a result of a generic cracking problem with Monel 400 valve-boss material, a cylinder modification was implemented in the mid 1970s. This modification resulted in the violation of the ASME ''Code'' stamp status of the Model 5A Modified cylinder. Hydrostatic testing-to- rupture data indicated that the Model 5A Modified cylinders had ruptured strengths equivalent to that of the original Model 5A cylinders. An independent consultant reviewed the available information and confirmed that the Model 5A Modified cylinders ''will with proper maintenance continue to perform satisfactorily for many additional years of service.'' Based on the test data and consultant's review, DOE approved continued use of the 5A Modified cylinder and also requested procurement of replacement 5B cylinders be expedited. Currently, the 5A modified cylinders are in the production, storage, shipment cycle, and a sufficient number of 5B cylinders has been ordered to accommodate the projected product shipping requirements for the Navy flow. 3 tabs.

  11. SEPARATION OF URANIUM HEXAFLUORIDE FROM ORGANIC FLUORO COMPOUNDS

    DOE Patents [OSTI]

    Libby, W.F.

    1958-10-01

    A method is presented for removing perfiuoroorganic compounds such as C/ sub 7/F/sub 16/ from UF/sub 6/. The physical and chemical properties of the perfluoro compounds are such as to render their removal from UF/sub 6/ difficulty by conventional techniques. The mixture containing UF/sub 6/ and the perfluoro compounds is pyrolyzed in an inert container at high temperature and pressure. The properties of the products obtained by pyrolysis differ from the properties of UF/sub 6/ to a sufficient degree to render their separation possible by ordinary methods.

  12. Benchmark Gamma Spectroscopy Measurements of Uranium Hexafluoride in Aluminmum Pipe with a Sodium Iodide Detector

    SciTech Connect (OSTI)

    March-Leuba, Jose A; Uckan, Taner; Gunning, John E; Brukiewa, Patrick D; Upadhyaya, Belle R; Revis, Stephen M

    2010-01-01

    The expected increased demand in fuel for nuclear power plants, combined with the fact that a significant portion of the current supply from the blend down of weapons-source material will soon be coming to an end, has led to the need for new sources of enriched uranium for nuclear fuel. As a result, a number of countries have announced plans, or are currently building, gaseous centrifuge enrichment plants (GCEPs) to supply this material. GCEPs have the potential to produce uranium at enrichments above the level necessary for nuclear fuel purposes-enrichments that make the uranium potentially usable for nuclear weapons. As a result, there is a critical need to monitor these facilities to ensure that nuclear material is not inappropriately enriched or diverted for unintended use. Significant advances have been made in instrument capability since the current International Atomic Energy Agency (IAEA) monitoring methods were developed. In numerous cases, advances have been made in other fields that have the potential, with modest development, to be applied in safeguards applications at enrichment facilities. A particular example of one of these advances is the flow and enrichment monitor (FEMO). (See Gunning, J. E. et al., 'FEMO: A Flow and Enrichment Monitor for Verifying Compliance with International Safeguards Requirements at a Gas Centrifuge Enrichment Facility,' Proceedings of the 8th International Conference on Facility Operations - Safeguards Interface. Portland, Oregon, March 30-April 4th, 2008.) The FEMO is a conceptual instrument capable of continuously measuring, unattended, the enrichment and mass flow of {sup 235}U in pipes at a GCEP, and consequently increase the probability that the potential production of HEU and/or diversion of fissile material will be detected. The FEMO requires no piping penetrations and can be installed on pipes containing the flow of uranium hexafluoride (UF{sub 6}) at a GCEP. This FEMO consists of separate parts, a flow monitor (FM

  13. Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

    1995-12-01

    The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

  14. Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Dubrin, J.W., Rahm-Crites, L.

    1997-09-01

    The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

  15. Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 2

    SciTech Connect (OSTI)

    Zoller, J.N.; Rosen, R.S.; Holliday, M.A.

    1995-06-30

    With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation.

  16. Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 1

    SciTech Connect (OSTI)

    Zoller, J.N.; Rosen, R.S.; Holliday, M.A.

    1995-06-30

    With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation. These Appendices contain the Federal Register Notice, comments on evaluation factors, independent technical reviewers resumes, independent technical reviewers manual, and technology information packages.

  17. METHOD FOR THE RECOVERY AND PURIFICATION OF GASEOUS UF$sub 6$ FROM GASEOUS MIXTURES AND UF$sub 7$NO AND UF$sub 7$NO$sub 2$ PRODUCTS PRODUCED THEREBY

    DOE Patents [OSTI]

    Ogle, P.R. Jr.

    1962-06-16

    A method is given for recovering uranium hexafluoride from a gaseous mixture containing said uranium hexafluoride and extraneous gaseous impurities. The method comprises reacting said mixture with a nitrogen oxyfluoride at a temperature in the range - 100 to 50 deg C to thereby form a solid compound having the empirical formula UF/sub 7/N(O)/sub x/ where x is a number from 1 to 2. (AEC)

  18. DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services

    Broader source: Energy.gov [DOE]

    Cincinnati – The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH.

  19. UF{sub 6} cylinder lifting equipment enhancements

    SciTech Connect (OSTI)

    Hortel, J.M.

    1991-12-31

    This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF{sub 6}). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement.

  20. Aspects of uranium chemistry pertaining to UF{sub 6} cylinder handling

    SciTech Connect (OSTI)

    Ritter, R.L.; Barber, E.J.

    1991-12-31

    Under normal conditions, the bulk of UF{sub 6} in storage cylinders will be in the solid state with an overpressure of gaseous UF{sub 6} well below one atmosphere. Corrosion of the interior of the cylinder will be very slow, with formation of a small amount of reduced fluoride, probably U{sub 2}F{sub 9}. The UO{sub 3}-HF-H{sub 2}O phase diagram indicates that reaction of any inleaking water vapor with the solid UF{sub 6} will generate the solid material [H{sub 3}O]{sub 2}(U(OH){sub 4}F{sub 4}) in equilibrium with an aqueous HF solution containing only small amounts of uranium. The corrosion of the steel cylinder by these materials may be enhanced over that observed with gaseous anhydrous UF{sub 6}.

  1. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6

  2. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride

  3. Moderation control in low enriched {sup 235}U uranium hexafluoride packaging operations and transportation

    SciTech Connect (OSTI)

    Dyer, R.H.; Kovac, F.M.; Pryor, W.A.

    1993-10-01

    Moderation control is the basic parameter for ensuring nuclear criticality safety during the packaging and transport of low {sup 235}U enriched uranium hexafluoride before its conversion to nuclear power reactor fuel. Moderation control has permitted the shipment of bulk quantities in large cylinders instead of in many smaller cylinders and, therefore, has resulted in economies without compromising safety. Overall safety and uranium accountability have been enhanced through the use of the moderation control. This paper discusses moderation control and the operating procedures to ensure that moderation control is maintained during packaging operations and transportation.

  4. Thermal Reactions of Uranium Metal, UO2, U3O8, UF4, and UO2F2 with NF3 to Produce UF6

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Scheele, Randall D.; Kozelisky, Anne E.; Edwards, Matthew K.

    2009-11-01

    he objective of this paper is to demonstrate that NF3 fluorinates uranium metal, UO2, UF4, UO3, U3O8, and UO2F22H2O to produce the volatile UF6 at temperatures between 100 and 500?C. Thermogravimetric reaction profiles are described that reflect changes in the uranium oxidation state and discrete chemical speciation. Differences in the onset temperatures for each system indicate that NF3-substrate interactions are important for the temperature at which NF3 reacts: U metal > UO3 > UO2 > UO2F2 > UF4 and in fact may indicate different fluorination mechanisms for these various substrates. These studies demonstrate that NF3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in oft-proposed actinide volatility reprocessing.

  5. CONTINUOUS PROCESS FOR PREPARING URANIUM HEXAFLUORIDE FROM URANIUM TETRAFLUORIDE AND OXYGEN

    DOE Patents [OSTI]

    Adams, J.B.; Bresee, J.C.; Ferris, L.M.

    1961-11-21

    A process for preparing UF/sub 6/ by reacting UF/sub 4/ and oxygen is described. The UF/sub 4/ and oxygen are continuously introduced into a fluidized bed of UO/sub 2/F/sub 2/ at a temperature of 600 to 900 deg C. The concentration of UF/sub 4/ in the bed is maintained below 25 weight per cent in order to avoid sintering and intermediate compound formation. By-product U0/sub 2/F/sub 2/ is continuously removed from the top of the bed recycled. In an alternative embodiment heat is supplied to the reaction bed by burning carbon monoxide in the bed. The product UF/sub 6/ is filtered to remove entrained particles and is recovered in cold traps and chemical traps. (AEC)

  6. Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride

    Office of Environmental Management (EM)

    DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This

  7. Method and apparatus for measuring enrichment of UF6

    DOE Patents [OSTI]

    Hill, Thomas Roy; Ianakiev, Kiril Dimitrov

    2011-06-07

    A system and method are disclosed for determining the enrichment of .sup.235U in Uranium Hexafluoride (UF6) utilizing synthesized X-rays which are directed at a container test zone containing a sample of UF6. A detector placed behind the container test zone then detects and counts the X-rays which pass through the container and the UF6. In order to determine the portion of the attenuation due to the UF6 gas alone, this count rate may then be compared to a calibration count rate of X-rays passing through a calibration test zone which contains a vacuum, the test zone having experienced substantially similar environmental conditions as the actual test zone. Alternatively, X-rays of two differing energy levels may be alternately directed at the container, where either the container or the UF6 has a high sensitivity to the difference in the energy levels, and the other having a low sensitivity.

  8. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    SciTech Connect (OSTI)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  9. Metamorphosis: Phases of UF{sub 6}

    SciTech Connect (OSTI)

    Dyer, R.H.

    1991-12-31

    A 15-minute videotape is presented. The subject matter is 150 grams of UF{sub 6} sealed in a glass tube. Close-up views show the UF{sub 6} as phase changes are effected by the addition or removal of heat from the closed system. The solid-to-liquid transition is shown as heat is added, both slowly and rapidly. The solid phases which result from freezing and from desublimation are contrasted. In the solid state, uranium hexafluoride is a nearly-white, dense crystalline solid. The appearance of this solid depends on whether it is formed by freezing from the liquid or by desublimation from the vapor phase. If frozen from the liquid, the solid particles take the form of irregularly shaped coarse grains, while the solid product of desublimation tends to be a rather formless mass without individually distinguishable particles. The changes in state are presented in terms of the UF{sub 6} phase diagram.

  10. Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants

    SciTech Connect (OSTI)

    Jones, E

    1999-07-26

    One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on

  11. Radiation dose rates from UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Friend, P.J.

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  12. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  13. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  14. Results from a "Proof-of-Concept" Demonstration of RF-Based Tracking of UF6 Cylinders during a Processing Operation at a Uranium Enrichment Plant

    SciTech Connect (OSTI)

    Pickett, Chris A; Kovacic, Donald N; Whitaker, J Michael; Younkin, James R; Hines, Jairus B; Laughter, Mark D; Morgan, Jim; Carrick, Bernie; Boyer, Brian; Whittle, K.

    2008-01-01

    Approved industry-standard cylinders are used globally for processing, storing, and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants. To ensure that cylinder movements at enrichment facilities occur as declared, the International Atomic Energy Agency (IAEA) must conduct time-consuming periodic physical inspections to validate facility records, cylinder identity, and containment. By using a robust system design that includes the capability for real-time unattended monitoring (of cylinder movements), site-specific rules-based event detection algorithms, and the capability to integrate with other types of monitoring technologies, one can build a system that will improve overall inspector effectiveness. This type of monitoring system can provide timely detection of safeguard events that could be used to ensure more timely and appropriate responses by the IAEA. It also could reduce reliance on facility records and have the additional benefit of enhancing domestic safeguards at the installed facilities. This paper will discuss the installation and evaluation of a radio-frequency- (RF-) based cylinder tracking system that was installed at a United States Enrichment Corporation Centrifuge Facility. This system was installed primarily to evaluate the feasibility of using RF technology at a site and the operational durability of the components under harsh processing conditions. The installation included a basic system that is designed to support layering with other safeguard system technologies and that applies fundamental rules-based event processing methodologies. This paper will discuss the fundamental elements of the system design, the results from this site installation, and future efforts needed to make this technology ready for IAEA consideration.

  15. NGSI: IAEA Verification of UF6 Cylinders

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2012-06-05

    The International Atomic Energy Agency (IAEA) is often ignorant of the location of declared, uranium hexafluoride (UF6) cylinders following verification, because cylinders are not typically tracked onsite or off. This paper will assess various methods the IAEA uses to verify cylinder gross defects, and how the task could be ameliorated through the use of improved identification and monitoring. The assessment will be restricted to current verification methods together with one that has been applied on a trial basis—short-notice random inspections coupled with mailbox declarations. This paper is part of the NNSA Office of Nonproliferation and International Security’s Next Generation Safeguards Initiative (NGSI) program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF6 cylinders.

  16. Results of the remote sensing feasibility study for the uranium hexafluoride storage cylinder yard program

    SciTech Connect (OSTI)

    Balick, L.K.; Bowman, D.R.; Bounds, J.H.

    1997-02-01

    The US DOE manages the safe storage of approximately 650,000 tons of depleted uranium hexafluoride remaining from the Cold War. This slightly radioactive, but chemically active, material is contained in more than 46,000 steel storage cylinders that are located at Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Some of the cylinders are more than 40 years old, and approximately 17,500 are considered problem cylinders because their physical integrity is questionable. These cylinders require an annual visual inspection. The remainder of the 46,000-plus cylinders must be visually inspected every four years. Currently, the cylinder inspection program is extremely labor intensive. Because these inspections are accomplished visually, they may not be effective in the early detection of leaking cylinders. The inspection program requires approximately 12--14 full-time-equivalent (FTE) employees. At the cost of approximately $125K per FTE, this translates to $1,500K per annum just for cylinder inspection. As part of the technology-development portion of the DOE Cylinder Management Program, the DOE Office of Facility Management requested the Remote Sensing Laboratory (RSL) to evaluate remote sensing techniques that have potential to increase the effectiveness of the inspection program and, at the same time, reduce inspection costs and personnel radiation exposure. During two site visits (March and May 1996) to the K-25 Site at Oak Ridge, TN, RSL personnel tested and characterized seven different operating systems believed to detect leakage, surface contamination, thickness and corrosion of cylinder walls, and general area contamination resulting from breached cylinders. The following techniques were used and their performances are discussed: Laser-induced fluorescent imaging; Long-range alpha detection; Neutron activation analysis; Differential gamma-ray attenuation; Compton scatterometry; Active infrared inspection; and Passive thermal infrared imaging.

  17. Evaluation of the Acceptability of Potential Depleted Uranium Hexafluoride Conversion Products at the Envirocare Disposal Site

    SciTech Connect (OSTI)

    Croff, A.G.

    2001-01-11

    The purpose of this report is to review and document the capability of potential products of depleted UF{sub 6} conversion to meet the current waste acceptance criteria and other regulatory requirements for disposal at the facility in Clive, Utah, owned by Envirocare of Utah, Inc. The investigation was conducted by identifying issues potentially related to disposal of depleted uranium (DU) products at Envirocare and conducting an initial analysis of them. Discussions were then held with representatives of Envirocare, the state of Utah (which is a NRC Agreement State and, thus, is the cognizant regulatory authority for Envirocare), and DOE Oak Ridge Operations. Provisional issue resolution was then established based on the analysis and discussions and documented in a draft report. The draft report was then reviewed by those providing information and revisions were made, which resulted in this document. Issues that were examined for resolution were (1) license receipt limits for U isotopes; (2) DU product classification as Class A waste; (3) use of non-DOE disposal sites for disposal of DOE material; (4) historical NRC views; (5) definition of chemical reactivity; (6) presence of mobile radionuclides; and (7) National Environmental Policy Act coverage of disposal. The conclusion of this analysis is that an amendment to the Envirocare license issued on October 5, 2000, has reduced the uncertainties regarding disposal of the DU product at Envirocare to the point that they are now comparable with uncertainties associated with the disposal of the DU product at the Nevada Test Site that were discussed in an earlier report.

  18. Uranium hexafluoride: A manual of good practice ORO 651 revision 6

    SciTech Connect (OSTI)

    Dyer, R.H.

    1991-12-31

    The United States Department of Energy publishes a document containing UF{sub 6} handling procedures and descriptions of the approved UF{sub 6} cylinders. Since its initial publication in 1966, it has been frequently revised to provide more and better information. The principle additions to the sixth revision which will be discussed are: (1) more detail on the physical and chemical properties of UF{sub 6}; (2) cold trap description and operation; (3) cylinder emptying and filling concepts; (4) basis for cylinder fill limits; (5) short- and long-term cylinder storage; and (6) cylinder photographs and drawings showing major dimensions.

  19. Valve studies: Hydrogen fluoride monitoring of UF{sub 6} cylinder valves

    SciTech Connect (OSTI)

    Leedy, R.R.; Ellis, A.R.; Hoffmann, D.P.; Marsh, G.C.

    1996-08-01

    Uranium hexafluoride (UF{sub 6}) cylinder valves have, like the cylinders, been in use and/or storage for periods ranging from 15 to 44 years. Visual inspection of the cylinders has shown that the extent of corrosion and the overall cylinder condition varies widely throughout the storage yards. One area of concern is the integrity of the cylinder valves. Visual inspection has found deposits which have been identified as radioactive material on or near the valves. These deposits suggest leakage of UF{sub 6} and may indicate valve degradation; however, these deposits may simply be residual material from cylinder filling operations.

  20. Signatures and Methods for the Automated Nondestructive Assay of UF6 Cylinders at Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Smith, Leon E.; Mace, Emily K.; Misner, Alex C.; Shaver, Mark W.

    2010-08-08

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of manpower and assay accuracy. Such a station would use sensors that can be operated in an unattended mode at an industrial facility: medium-resolution scintillators for gamma-ray spectroscopy (e.g., NaI(Tl)) and moderated He-3 neutron detectors. This sensor combination allows the exploitation of additional, more-penetrating signatures beyond the traditional 185-keV emission from U-235: neutrons produced from F-19(α,n) reactions (spawned primarily from U 234 alpha emission) and high-energy gamma rays (extending up to 8 MeV) induced by neutrons interacting in the steel cylinder. This paper describes a study of these non-traditional signatures for the purposes of cylinder enrichment verification. The signatures and the radiation sensors designed to collect them are described, as are proof-of-principle cylinder measurements and analyses. Key sources of systematic uncertainty in the non-traditional signatures are discussed, and the potential benefits of utilizing these non-traditional signatures, in concert with an automated form of the traditional 185-keV-based assay, are discussed.

  1. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    SciTech Connect (OSTI)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  2. Analysis of the April 10, 1987 UF{sub 6} release test

    SciTech Connect (OSTI)

    Just, R.A.; Bloom, S.G.

    1989-02-01

    A series of controlled uranium hexafluoride (UF{sub 6}) release tests are being conducted at a CESTA (a French government agency) test site near Bordeaux, France. The results of the first release test are documented in Analysis of the April 18,1986 UF{sub 6}, Release Test. The first UF{sub 6} release test was designated as a qualification test. The primary objective of this test was to provide the information required to obtain approval for a series of UF{sub 6} release tests. As a result of the experimental difficulties and the compromises associated with obtaining the required qualification data, results from the first release test were used primarily to qualify the site and to plan for additional release tests. Utilizing the lessons learned during the first release test it was possible to conduct a very successful second release test. The second release test was conducted on April 10, 1987. The data collected during the two UF{sub 6} release tests at the CESTA test site are the only known information on UF{sub 6} releases that can be used to evaluate the accuracy of the UF{sub 6} dispersion model. In this report the data collected during the April 10, 1987 release test will be evaluated and compared with the predictions of the UF{sub 6}, dispersion model.

  3. Analysis of the April 10, 1987 UF[sub 6] release test

    SciTech Connect (OSTI)

    Just, R.A.; Bloom, S.G.

    1989-02-01

    A series of controlled uranium hexafluoride (UF[sub 6]) release tests are being conducted at a CESTA (a French government agency) test site near Bordeaux, France. The results of the first release test are documented in Analysis of the April 18,1986 UF[sub 6], Release Test. The first UF[sub 6] release test was designated as a qualification test. The primary objective of this test was to provide the information required to obtain approval for a series of UF[sub 6] release tests. As a result of the experimental difficulties and the compromises associated with obtaining the required qualification data, results from the first release test were used primarily to qualify the site and to plan for additional release tests. Utilizing the lessons learned during the first release test it was possible to conduct a very successful second release test. The second release test was conducted on April 10, 1987. The data collected during the two UF[sub 6] release tests at the CESTA test site are the only known information on UF[sub 6] releases that can be used to evaluate the accuracy of the UF[sub 6] dispersion model. In this report the data collected during the April 10, 1987 release test will be evaluated and compared with the predictions of the UF[sub 6], dispersion model.

  4. Evaluation of selected detector systems for products formed in the atmospheric hydrolysis of uranium hexafluoride

    SciTech Connect (OSTI)

    Bostick, W.D.; Bostick, D.T.

    1987-03-01

    Sensitive detection of UF/sub 6/ hydrolysis products, either by discontinuous sampling or by continuous or near real-time monitoring, is an important safety consideration for DOE contractors handling large quantities of UF/sub 6/. Automated continuous or rapid intermittent remote sensing of these reaction products can provide an alarm signal when a preselected threshold value has been exceeded (absolute response) or when a significant emission excursion has occurred (rate of change of response). This report evaluates the performance of selected devices for the detection of airborne materials formed in the release of liquid UF/sub 6/ (approx. =1.3 g) into an enclosed volume of 6 m/sup 3/; these experiments were initiated on October 23, 1986. The detection principles investigated are: photometric, gas detector tubes, and electrochemical sensor.

  5. Technology Assessment for Proof-of-Concept UF6 Cylinder Unique Identification Task 3.1.2 Report – Survey and Assessment of Technologies

    SciTech Connect (OSTI)

    Wylie, Joann; Hockert, John

    2014-04-24

    The National Nuclear Security Administration (NNSA) Office of Nonproliferation and International Security’s (NA-24) Next Generation Safeguards Initiative (NGSI) and the nuclear industry have begun to develop approaches to identify and monitor uranium hexafluoride (UF6) cylinders. The NA-24 interest in a global monitoring system for UF6 cylinders relates to its interest in supporting the International Atomic Energy Agency (IAEA) in deterring and detecting diversion of UF6 (e.g., loss of cylinder in transit) and undeclared excess production at conversion and enrichment facilities. The industry interest in a global monitoring system for UF6 cylinders relates to the improvements in operational efficiencies that such a system would provide. This task is part of an effort to survey and assess technologies for a UF6 cylinder to identify candidate technologies for a proof-of-concept demonstration and evaluation for the Cylinder Identification System (CIS).

  6. Benefits of an International Database for UF6 Cylinders

    SciTech Connect (OSTI)

    Babcock, R A; Whitaker, J M; Murphy, J; Oakberg, J

    2008-06-30

    A reasonable expectation regarding the nuclear energy renaissance is that the location of fuel cycle nuclear materials throughout the world will be known. We ask--would an international system for uranium hexafluoride (UF{sub 6}) cylinders provide the effective assurances expected for international fuel supply and of the international fuel centers? This paper introduces the question and discusses the potential benefits of tracking UF{sub 6} cylinders through the development of an international database. The nonproliferation benefits of an international database for UF{sub 6} cylinders being used in the fuel cycle include an enhanced capability to reconcile nuclear material imports and exports. Currently, import and export declarations only require the reporting of total 'rolled up' quantities of nuclear materials contained in all items--not the quantities of materials in individual items like individual UF{sub 6} cylinders. The database could provide supplier countries with more assurance on the location of the UF{sub 6} cylinders they export. Additionally, a comprehensive database on all declared cylinders would be a valuable resource in detecting and recognizing undeclared cylinders. The database could potentially be administered by the IAEA and be accessible to authorized countries around the world. During the nuclear renaissance, the general public, as well as the participants will expect transparency and quality information about movement of nuclear fuel cycle nuclear materials. We will discuss the potential benefits of such a database for the suppliers, inspectorates, and general public.

  7. Model for Simulating Dispersion due to Atmospheric Release of UF6

    Energy Science and Technology Software Center (OSTI)

    1997-01-01

    HGSYSTEMUF6 is a suite of models designed for use in estimating consequences associated with accidental, atmospheric release of Uranium Hexafluoride (UF6) and its reaction products, namely Hydrogen Fluoride (HF), and other non-reactive contaminants which are either negatively, neutrally, or positively buoyant. It is based on HGSYSTEM Version 3.0 of Shell Research LTD., and contains specific algorithms for the treatment of UF6 chemistry and thermodynamics. HGSYSTEMUF6 contains algorithms for the treatment of dense gases, dry andmore » wet deposition, effects due to the presence of buildings (canyon and wake), plume lift-off, and the effects of complex terrain. The models components of the suite include (1) AEROPLUME/RK, used to model near-field dispersion from pressurized two-phase jet releases of UF6 and its reaction products, (2) HEGADAS/UF6 for simulating dense, ground based release of UF6, (3) PGPLUME for simulation of passive, neutrally buoyant plumes (4) UF6Mixer for modeling warm, potentially reactive, ground-level releases of UF6 from buildings, and (5) WAKE, used to model elevated and ground-level releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant.« less

  8. HGSYSTEMUF6. Model for Simulating Dispersion due to Atmospheric Release of UF6

    SciTech Connect (OSTI)

    Hanna, G; Chang, J.C.; Zhang, J.X.; Bloom, S.G.; Goode, W.D. Jr; Lombardi, D.A.; Yambert, M.W.

    1998-08-01

    HGSYSTEMUF6 is a suite of models designed for use in estimating consequences associated with accidental, atmospheric release of Uranium Hexafluoride (UF6) and its reaction products, namely Hydrogen Fluoride (HF), and other non-reactive contaminants which are either negatively, neutrally, or positively buoyant. It is based on HGSYSTEM Version 3.0 of Shell Research LTD., and contains specific algorithms for the treatment of UF6 chemistry and thermodynamics. HGSYSTEMUF6 contains algorithms for the treatment of dense gases, dry and wet deposition, effects due to the presence of buildings (canyon and wake), plume lift-off, and the effects of complex terrain. The models components of the suite include (1) AEROPLUME/RK, used to model near-field dispersion from pressurized two-phase jet releases of UF6 and its reaction products, (2) HEGADAS/UF6 for simulating dense, ground based release of UF6, (3) PGPLUME for simulation of passive, neutrally buoyant plumes (4) UF6Mixer for modeling warm, potentially reactive, ground-level releases of UF6 from buildings, and (5) WAKE, used to model elevated and ground-level releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant.

  9. URANIUM RECOVERY FROM NUCLEAR FUEL

    DOE Patents [OSTI]

    Vogel, R.C.; Rodger, W.A.

    1962-04-24

    A process of recovering uranium from a UF/sub 4/-NaFZrF/sub 4/ mixture by spraying the molten mixture at about 200 deg C in nitrogen of super- atmospheric pressure into droplets not larger than 100 microns, and contacting the molten droplets with fluorine at about 200 deg C for 0.01 to 10 seconds in a container the walls of which have a temperature below the melting point of the mixture is described. Uranium hexafluoride is formed and volatilized and the uranium-free salt is solidified. (AEC)

  10. CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Reinhart, G.M.; Collopy, T.J.

    1962-11-13

    A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)

  11. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E.

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  12. Ultra-low field NMR for detection and characterization of 235 UF6

    SciTech Connect (OSTI)

    Espy, Michelle A; Magnelind, Per E; Matlashov, Andrei N; Urbaitis, Algis V; Volegov, Petr L

    2009-01-01

    We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

  13. Compilation of Requirements for Safe Handling of Fluorine and Fluorine-Containing Products of Uranium Hexafluoride Conversion

    SciTech Connect (OSTI)

    Ferrada, J.J.

    2000-04-03

    Public Law (PL) 105-204 requires the U.S. Department of Energy to develop a plan for inclusion in the fiscal year 2000 budget for conversion of the Department's stockpile of depleted uranium hexafluoride (DUF{sub 6}) to a more stable form over an extended period. The conversion process into a more stable form will produce fluorine compounds (e.g., elemental fluorine or hydrofluoric acid) that need to be handled safely. This document compiles the requirements necessary to handle these materials within health and safety standards, which may apply in order to ensure protection of the environment and the safety and health of workers and the public. Fluorine is a pale-yellow gas with a pungent, irritating odor. It is the most reactive nonmetal and will react vigorously with most oxidizable substances at room temperature, frequently with ignition. Fluorine is a severe irritant of the eyes, mucous membranes, skin, and lungs. In humans, the inhalation of high concentrations causes laryngeal spasm and broncospasms, followed by the delayed onset of pulmonary edema. At sublethal levels, severe local irritation and laryngeal spasm will preclude voluntary exposure to high concentrations, unless the individual is trapped or incapacitated. A blast of fluorine gas on the shaved skin of a rabbit causes a second degree burn. Lower concentrations cause severe burns of insidious onset, resulting in ulceration, similar to the effects produced by hydrogen fluoride. Hydrofluoric acid is a colorless, fuming liquid or gas with a pungent odor. It is soluble in water with release of heat. Ingestion of an estimated 1.5 grams produced sudden death without gross pathological damage. Repeated ingestion of small amounts resulted in moderately advanced hardening of the bones. Contact of skin with anhydrous liquid produces severe burns. Inhalation of AHA or aqueous hydrofluoric acid mist or vapors can cause severe respiratory tract irritation that may be fatal. Based on the extreme chemical

  14. Long-term evaluation of fluoroelastomer O-rings in UF/sub 6/

    SciTech Connect (OSTI)

    Russell, R.G.; Otey, M.G.; Dippo, G.L.

    1986-05-01

    A major component in the gaseous centrifuge enrichment plant (GCEP) was fluoroelastomer O-rings, which were used to seal the uranium hexafluoride (UF/sub 6/) gas system. A program utilizing accelerated test conditions was used to help identify the best material out of four selected candidates and to predict the service life of these materials at GCEP conditions. The tests included accelerated temperatures, mechanical stress, and UF/sub 6/ exposure. Data were evaluated using the Newman--Keuls/sup 1/ ranking system to identify the best material and a zero-order reaction rate equation to help predict service life. This presentation includes a description of the test facility, the materials tested, the types of tests, objectives of the study, service life predictions, and conclusions. The O-rings are predicted to last approx. 30 years, and a high-molecular-weight polymer had the best performance ranking.

  15. Release of UF/sub 6/ from a ruptured model 48Y cylinder at Sequoyah Fuels Corporation Facility: lessons-learned report

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The uranium hexafluoride (UF/sub 6/) release of January 4, 1986, at the Sequoyah Fuels Corporation facility has been reviewed by a NRC Lessons-Learned Group. A Model 48Y cylinder containing UF/sub 6/ ruptured upon being heated after it was grossly overfilled. The UF/sub 6/ released upon rupture of the cylinder reacted with airborne moisture to produce hydrofluoric acid (HF) and uranyl fluoride (UO/sub 2/F/sub 2/). One individual died from exposure to airborne HF and several others were injured. There were no significant immediate effects from exposure to uranyl fluoride. This supplement report contains NRC's response to the recommendations made in NUREG-1198 by the Lessons Learned Group. In developing a response to each of the recommendations, the staff considered actions that should be taken: (1) for the restart of the Sequoyah Fuels Facility; (2) to make near-term improvement; and (3) to improve the regulatory framework.

  16. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  17. Releases of UF{sub 6} to the atmosphere after a potential fire in a cylinder storage yard

    SciTech Connect (OSTI)

    Lombardi, D.A.; Williams, W.R.; Anderson, J.C.

    1997-06-01

    Uranium hexafluoride (UF{sub 6}), a toxic material, is stored in just over 6200 cylinders at the K-25 site in Oak Ridge, Tennessee. The safety analysis report (SAR) for cylinder yard storage operations at the plant required the development of accident scenarios for the potential release of UF{sub 6} to the atmosphere. In accordance with DOE standards and guidance, the general approach taken in this SAR was to examine the functions and contents of the cylinder storage yards to determine whether safety-significant hazards were present for workers in the immediate vicinity, workers on-site, the general public off-site, or the environment. and to evaluate the significance of any hazards that were found. A detailed accident analysis was performed to determine a set of limiting accidents that have potential for off-site consequences. One of the limiting accidents identified in the SAR was the rupture of a cylinder engulfed in a fire.

  18. Stark and Zeeman effect in the [18.6]3.5 – X(1)4.5 transition of uranium monofluoride, UF

    SciTech Connect (OSTI)

    Linton, C.; Adam, A. G.; Steimle, T. C.

    2014-06-07

    High resolution spectra of the 0-0 band of the [18.6]3.5 – X(1)4.5 transition of uranium monofluoride, UF, obtained using a laser ablation spectrometer, showed a perturbation in the upper state. Examination of the Stark and Zeeman effects yielded permanent electric dipole moments of 2.01 and 1.88 D and magnetic g-factors of 3.28 and 3.26 for the ground and excited states, respectively. Both the dipole moment and g-factor of the ground state are in good agreement with ab initio calculations [I. O. Antonov and M. C. Heaven, J. Phys. Chem. A 117, 9684 (2013)]. The Zeeman effect results confirm that the ground state arises primarily from the U{sup +}(5f {sup 3}7s{sup 24}I{sub 4.5})F{sup −} configuration and suggest several possible configurations for the upper state.

  19. A "Proof-of-Concept" Demonstration of RF-Based Technologies for UF6 Cylinder Tracking at Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Pickett, Chris A; Younkin, James R; Kovacic, Donald N; Dixon, E. T.; Martinez, B.

    2007-01-01

    This effort describes how radio-frequency (RF) technology can be integrated into a uranium enrichment facility's nuclear materials accounting and control program to enhance uranium hexafluoride (UF6) cylinder tracking and thus provide benefits to both domestic and international safeguards. Approved industry-standard cylinders are used to handle and store UF6 feed, product, tails, and samples at uranium enrichment plants. In the international arena, the International Atomic Energy Agency (IAEA) relies on time-consuming manual cylinder inventory and tracking techniques to verify operator declarations and to detect potential diversion of UF6. Development of a reliable, automated, and tamper-resistant process for tracking and monitoring UF6 cylinders would greatly reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a "proof-of concept" system that was designed show the feasibility of using RF based technologies to track individual UF6 cylinders throughout their entire life cycle, and thus ensure both increased domestic accountability of materials and a more effective and efficient method for application of IAEA international safeguards at the site level. The proposed system incorporates RF-based identification devices, which provide a mechanism for a reliable, automated, and tamper-resistant tracking network. We explore how securely attached RF tags can be integrated with other safeguards technologies to better detect diversion of cylinders. The tracking system could also provide a foundation for integration of other types of safeguards that would further enhance detection of undeclared activities.

  20. 2015 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    The natural UF 6 and enriched UF 6 weighted-average price represent only the U 3 O 8 equivalent uranium-component price specified in the contract for each delivery of natural UF 6 ...

  1. 2015 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    and enriched UF6 weighted-average price represent only the U3O8 equivalent uranium-component price specified in the contract for each delivery of natural UF6 and enriched UF6, ...

  2. Next Generation Safeguards Initiative: Overview and Policy Context of UF6 Cylinder Tracking Program

    SciTech Connect (OSTI)

    Boyer, Brian D; Whitaker, J. Michael; White-Horton, Jessica L.; Durbin, Karyn R.

    2012-07-12

    Thousands of cylinders containing uranium hexafluoride (UF{sub 6}) move around the world from conversion plants to enrichment plants to fuel fabrication plants, and their contents could be very useful to a country intent on diverting uranium for clandestine use. Each of these large cylinders can contain close to a significant quantity of natural uranium (48Y cylinder) or low-enriched uranium (LEU) (30B cylinder) defined as 75 kg {sup 235}U which can be further clandestinely enriched to produce 1.5 to 2 significant quantities of high enriched uranium (HEU) within weeks or months depending on the scale of the clandestine facility. The National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) kicked off a 5-year plan in April 2011 to investigate the concept of a unique identification system for UF{sub 6} cylinders and potentially to develop a cylinder tracking system that could be used by facility operators and the International Atomic Energy Agency (IAEA). The goal is to design an integrated solution beneficial to both industry and inspectorates that would improve cylinder operations at the facilities and provide enhanced capabilities to deter and detect both diversion of low-enriched uranium and undeclared enriched uranium production. The 5-year plan consists of six separate incremental tasks: (1) define the problem and establish the requirements for a unique identification (UID) and monitoring system; (2) develop a concept of operations for the identification and monitoring system; (3) determine cylinder monitoring devices and technology; (4) develop a registry database to support proof-of-concept demonstration; (5) integrate that system for the demonstration; and (6) demonstrate proof-of-concept. Throughout NNSA's performance of the tasks outlined in this program, the multi-laboratory team emphasizes that extensive engagement with industry stakeholders, regulatory authorities and inspectorates is essential to its success.

  3. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to

  4. Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by

  5. SYSTEM FOR CONVERSION OF UF$sub 4$ TO UF$sub 6$

    DOE Patents [OSTI]

    Brater, D.G.; Pike, J.W.

    1958-12-01

    Method and apparatus are presented for rapid and complete conversion of solid, powdered uranium tetrafiuorlde to uranlum hexafluorlde by treating the UF/ sub 4/ with fluorine gas at a temperature of about 800 icient laborato C.

  6. Depleted uranium: A DOE management guide

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

  7. ELECTROLYTIC PREPARATION OF UF$sub 4$

    DOE Patents [OSTI]

    Allen, A.L.; Anderson, R.W.; Powell, E.W.

    1958-11-01

    A method is presented for converting hexavalent aranium to uranium tetrafluoride. The method consists of electrolyzing a solution of uranyl fluoride in hydrofluoric acld at about 90 icient laborato C. The uranyl ions are reduced at the cathode and a hydrated uranium tetrafluoride precipitates. The precipitate is separated and subsequently dehydrated to UF/sub 4/.

  8. PRODUCTION OF URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Shaw, W.E.; Spenceley, R.M.; Teetzel, F.M.

    1959-08-01

    A method is presented for producing uranium tetrafluoride from the gaseous hexafluoride by feeding the hexafluoride into a high temperature zone obtained by the recombination of molecularly dissociated hydrogen. The molal ratio of hydrogen to uranium hexnfluoride is preferably about 3 to 1. Uranium tetrafluoride is obtained in a finely divided, anhydrous state.

  9. Direct fissile assay of highly enriched UF/sub 6/ using random self-interrogation and neutron coincidence response

    SciTech Connect (OSTI)

    Stewart, J.E.; Menlove, H.O.

    1983-01-01

    A new nondestructive method for direct assay of /sup 235/U mass contained in Model 5A uranium hexafluoride (UF/sub 6/) product storage cylinders has been successfully tested in the laboratory and under field conditions. The technique employs passive neutron self-interrogation and uses the ratio of coincidences-to-totals counts as a measure of bulk fissile mass. The accuracy of the method is 6.8% (1 sigma) based on field measurements of 44 Model 5A cylinders, 11 of which were either only partially filled or contained reactor return material. The cylinders contained UF/sub 6/ with enrichments from 5.96% to 97.6%. Count times were 3 to 6 min depending on /sup 235/U mass. Samples ranged from below 1 kg to over 16 kg of /sup 235/U. Because the method relies primarily on fast neutron self-interrogation, complete sampling of the UF/sub 6/ takes place. This feature alleviates inhomogeneity problems and offers increased assurance of the presence of stated amounts of bulk fissile material as compared with current verification methods.

  10. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}

    SciTech Connect (OSTI)

    Newvahner, R.L.; Pryor, W.A.

    1991-12-31

    Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

  11. Microsoft Word - FLYSHEET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ducting surrounding a uranium hexafluoride (UF 6 ) pipe had instrument lines in it. ... an instruction for uranium hexafluoride pipe removal used for tapping and venting of ...

  12. Beneficial Uses of Depleted Uranium

    SciTech Connect (OSTI)

    Brown, C.; Croff, A.G.; Haire, M. J.

    1997-08-01

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  13. PREPARATION OF NEPTUNIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Seaborg, G.T.; Brown, H.S.

    1961-05-01

    A method is described for preparing neptunium hexafluoride by treating the lower fluorides of neptunium, such as neptunium tetrafluoride and trifluoride, with fluorine at elevated temperatures.

  14. Rupture testing of UF/sub 6/ transport and storage cylinders

    SciTech Connect (OSTI)

    Ziehlke, K.T.; Barlow, C.R.

    1989-01-01

    Large steel cylinders for shipment and storage of uranium hexafluoride have been in production since about 1951, in support of the United States Department of Energy (DOE) programs for nuclear fuel enrichment services. These 48-inch diameter cylinders, in 10- and 14-ton capacities and intended for use with feed, tails, and low enrichment U-235 intermediate product, have been purchased in several minor design variations and comprise about 46,500 cylinders at the present time. In addition, DOE's uranium enrichment operations own a large number of smaller product cylinders: more than 3,000 type 30A steel cylinders, about 1,650 5-, 8-, and 12-inch product cylinders made of nickel and Monel, and about 2,000 small sample cylinders of nickel and Monel. The total number of UF/sub 6/ containers in world-wide distribution is unknown but must number well in excess of 100,000 units. Handling accidents, such as the damaged cylinders from the Monte Louis, the Portsmouth, and Kerr-McGee incidents, and many other handling and transport accidents of lesser consequence, along with governmental policies and industrial practices which have a bearing on long-term storage of feed or processes materials all raise proper concerns about the ability of these cylinders to safely contain uranium hexafluoride. In addition to being designed, built, and maintained to national code standards, the cylinder designs have been subjected to burst tests over the past several years. This paper reviews and updates the results of these tests. 1 ref., 1 tab.

  15. Status Report on the Passive Neutron Enrichment Meter (PNEM) for UF6 Cylinder Assay

    SciTech Connect (OSTI)

    Miller, Karen A.; Swinhoe, Martyn T.; Menlove, Howard O.; Marlow, Johnna B.

    2012-05-02

    The Passive Neutron Enrichment Meter (PNEM) is a nondestructive assay (NDA) system being developed at Los Alamos National Laboratory (LANL). It was designed to determine {sup 235}U mass and enrichment of uranium hexafluoride (UF{sub 6}) in product, feed, and tails cylinders (i.e., 30B and 48Y cylinders). These cylinders are found in the nuclear fuel cycle at uranium conversion, enrichment, and fuel fabrication facilities. The PNEM is a {sup 3}He-based neutron detection system that consists of two briefcase-sized detector pods. A photograph of the system during characterization at LANL is shown in Fig. 1. Several signatures are currently being studied to determine the most effective measurement and data reduction technique for unfolding {sup 235}U mass and enrichment. The system collects total neutron and coincidence data for both bare and cadmium-covered detector pods. The measurement concept grew out of the success of the Uranium Cylinder Assay System (UCAS), which is an operator system at Rokkasho Enrichment Plant (REP) that uses total neutron counting to determine {sup 235}U mass in UF{sub 6} cylinders. The PNEM system was designed with higher efficiency than the UCAS in order to add coincidence counting functionality for the enrichment determination. A photograph of the UCAS with a 48Y cylinder at REP is shown in Fig. 2, and the calibration measurement data for 30B product and 48Y feed and tails cylinders is shown in Fig. 3. The data was collected in a low-background environment, meaning there is very little scatter in the data. The PNEM measurement concept was first presented at the 2010 Institute of Nuclear Materials Management (INMM) Annual Meeting. The physics design and uncertainty analysis were presented at the 2010 International Atomic Energy Agency (IAEA) Safeguards Symposium, and the mechanical and electrical designs and characterization measurements were published in the ESARDA Bulletin in 2011.

  16. PREPARATION OF DENSE URANIUM DIOXIDE PARTICLES FROM URANIUM HEXAFLUORI...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... A fluid-bed method was developed for the direct preparation from uranium hexafluoride of ...

  17. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    SciTech Connect (OSTI)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  18. THE RECOVERY OF URANIUM FROM GAS MIXTURE

    DOE Patents [OSTI]

    Jury, S.H.

    1964-03-17

    A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)

  19. RESULTS FROM A DEMONSTRATION OF RF-BASED UF6 CYLINDER ACCOUNTING AND TRACKING SYSTEM INSTALLED AT A USEC FACILITY

    SciTech Connect (OSTI)

    Pickett, Chris A; Kovacic, Donald N; Morgan, Jim; Younkin, James R; Carrick, Bernie; Ken, Whittle; Johns, R E

    2008-09-01

    Approved industry-standard cylinders are used globally for storing and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants and processing facilities. To verify that no diversion or undeclared production of nuclear material involving UF{sub 6} cylinders at the facility has occurred, the International Atomic Energy Agency (IAEA) conducts periodic, labor-intensive physical inspections to validate facility records, cylinder identities, and cylinder weights. A reliable cylinder monitoring system that would improve overall inspector effectiveness would be a significant improvement to the current international safeguards inspection regime. Such a system could include real-time unattended monitoring of cylinder movements, situation-specific rules-based event detection algorithms, and the capability to integrate with other types of safeguards technologies. This type of system could provide timely detection of abnormal operational activities that may be used to ensure more appropriate and efficient responses by the IAEA. A system of this type can reduce the reliance on paper records and have the additional benefit of facilitating domestic safeguards at the facilities at which it is installed. A radio-frequency (RF)-based system designed to track uranium hexafluoride (UF{sub 6}) cylinders during processing operations was designed, assembled, and tested at the United States Enrichment Corporation (USEC) facility in Portsmouth, Ohio, to determine the operational feasibility and durability of RF technology. The overall objective of the effort was to validate the robustness of RF technology for potential use as a future international safeguards tool for tracking UF6 cylinders at uranium-processing facilities. The results to date indicate that RF tags represent a feasible technique for tracking UF{sub 6} cylinders in operating facilities. Additional work will be needed to improve the operational robustness of the tags for repeated autoclave processing and to

  20. Release of UF/sub 6/ from a ruptured Model 48Y cylinder at Sequoyah Fuels Corporation Facility: lessons-learned report

    SciTech Connect (OSTI)

    Not Available

    1986-06-01

    The uranium hexafluoride (UF/sub 6/) release of January 4, 1986, at the Sequoyah Fuels Corporation facility has been reviewed by a NRC Lessons-Learned Group. A Model 48Y cylinder containing UF/sub 6/ ruptured upon being heated after it was grossly overfilled. The Uf/sub 6/ released upon rupture of the cylinder reacted with airborne moisture to produce hydrofluoric acid (HF) and uranyl fluoride (UO/sub 2/F/sub 2/). One individual died from exposure to airborne HF and several others were injured. There were no significant immediate effects from exposure to uranyl fluoride. This report of the Lessons-Learned Group presents discussions and recommendations on the process, operation and design of the facility, as well as on the responses of the licensee, NRC, and other local, state and federal agencies to the incident. It also provides recommendations in the areas of NRC licensing and inspection of fuel facility and certain other NMSS licensees. The implementation of some recommendations will depend on decisions to be made regarding the scope of NRC responsibilities with respect to those aspects of the design and operation of such facilities that are not directly related to radiological safety.

  1. Evaluation of coverage of enriched UF{sub 6} cylinder storage lots by existing criticality accident alarms

    SciTech Connect (OSTI)

    Lee, B.L. Jr.; Dobelbower, M.C.; Woollard, J.E.; Sutherland, P.J.; Tayloe, R.W. Jr.

    1995-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) is leased from the US Department of Energy (DOE) by the United States Enrichment Corporation (USEC), a government corporation formed in 1993. PORTS is in transition from regulation by DOE to regulation by the Nuclear Regulatory Commission (NRC). One regulation is 10 CFR Part 76.89, which requires that criticality alarm systems be provided for the site. PORTS originally installed criticality accident alarm systems in all building for which nuclear criticality accidents were credible. Currently, however, alarm systems are not installed in the enriched uranium hexafluoride (UF{sub 6}) cylinder storage lots. This report analyzes and documents the extent to which enriched UF{sub 6} cylinder storage lots at PORTS are covered by criticality detectors and alarms currently installed in adjacent buildings. Monte Carlo calculations are performed on simplified models of the cylinder storage lots and adjacent buildings. The storage lots modelled are X-745B, X-745C, X745D, X-745E, and X-745F. The criticality detectors modelled are located in building X-343, the building X-344A/X-342A complex, and portions of building X-330. These criticality detectors are those located closest to the cylinder storage lots. Results of this analysis indicate that the existing criticality detectors currently installed at PORTS are largely ineffective in detecting neutron radiation from criticality accidents in most of the cylinder storage lots at PORTS, except sometimes along portions of their peripheries.

  2. PRODUCTION OF URANIUM TETRACHLORIDE

    DOE Patents [OSTI]

    Calkins, V.P.

    1958-12-16

    A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

  3. GLOBAL MONITORING OF URANIUM HEXIFLORIDE CYLINDERS NEXT STEPS IN DEVELOPMENT OF AN ACTION PLAN

    SciTech Connect (OSTI)

    Hanks, D.

    2010-06-09

    Over 40 industrial facilities world-wide use standardized uranium hexafluoride (UF{sub 6}) cylinders for transport, storage and in-process receiving in support of uranium conversion, enrichment and fuel fabrication processes. UF{sub 6} is processed and stored in the cylinders, with over 50,000 tU of UF{sub 6} transported each year in these International Organization for Standardization (ISO) qualified containers. Although each cylinder is manufactured to an ISO standard that calls for a nameplate with the manufacturer's identification number (ID) and the owner's serial number engraved on it, these can be quite small and difficult to read. Recognizing that each facility seems to use a different ID, a cylinder can have several different numbers recorded on it by means of metal plates, sticky labels, paint or even marker pen as it travels among facilities around the world. The idea of monitoring movements of UF{sub 6} cylinders throughout the global uranium fuel cycle has become a significant issue among industrial and safeguarding stakeholders. Global monitoring would provide the locations, movements, and uses of cylinders in commercial nuclear transport around the world, improving the efficiency of industrial operations while increasing the assurance that growing nuclear commerce does not result in the loss or misuse of cylinders. It should be noted that a unique ID (UID) attached to a cylinder in a verifiable manner is necessary for safeguarding needs and ensuring positive ID, but not sufficient for an effective global monitoring system. Modern technologies for tracking and inventory control can pair the UID with sensors and secure data storage for content information and complete continuity of knowledge over the cylinder. This paper will describe how the next steps in development of an action plan for employing a global UF{sub 6} cylinder monitoring network could be cultivated using four primary UID functions - identification, tracking, controlling, and accounting.

  4. Criticality Safety Study of UF6and UO2F2in 8-in. Inner Diameter Piping

    SciTech Connect (OSTI)

    Elam, K.R.

    2003-10-07

    The purpose of this report is to provide an evaluation of the criticality safety aspects of using up to 8-in.-inner-diameter (ID) piping as part of a system to monitor the {sup 235}U enrichment in uranium hexafluoride (UF{sub 6}) gas both before and after an enrichment down-blending operation. The evaluated operation does not include the blending stage but includes only the monitors and the piping directly associated with the monitors, which are in a separate room from the blending operation. There are active controls in place to limit the enrichment of the blended UF{sub 6} to a maximum of 5 weight percent (wt%) {sup 235}U. Under normal operating conditions of temperature and pressure, the UF{sub 6} will stay in the gas phase and criticality will not be credible. The two accidents of concern are solidification of the UF{sub 6} along with some hydrofluoric acid (HF) and water or moisture ingress, which would cause the UF{sub 6} gas to react and form a hydrated uranyl fluoride (UO{sub 2}F{sub 2}) solid or solution. Of these two types of accidents, the addition of water and formation of UO{sub 2}F{sub 2} is the most reactive scenario and thus limits related to UO{sub 2}F{sub 2} will bound the limits related to UF{sub 6}. Two types of systems are included in the monitoring process. The first measures the enrichment of the approximately 90 wt% enriched UF{sub 6} before it is blended. This system uses a maximum 4-in.-(10.16-cm-) ID pipe, which is smaller than the 13.7-cm-cylinder-diameter subcritical limit for UO{sub 2}F{sub 2} solution of any enrichment as given in Table 1 of American National Standard ANSI/ANS-8.1.1 Therefore, this system poses no criticality concerns for either accident scenario. The second type of system includes two enrichment monitors for lower-enriched UF{sub 6}. One monitors the approximately 1.5 wt% enriched UF{sub 6} entering the blending process, and the second monitors the approximately 5 wt% enriched UF{sub 6} coming out of the blending

  5. In Situ NDA Conformation Measurements Performed at Auxiliary Charcoal Bed and Other Main Charcoal Beds After Uranium Removal from Molten Salt Reactor Experiment ACB at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Kring, C. T.; McGehee, J. T.; Jugan, M. R.; Chapman, J.; Meyer, K. E.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). The MSRE was run by Oak Ridge National Laboratory (ORNL) to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503. The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed to cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. Beginning in 1987, it was discovered that gaseous uranium (U-233/U-232) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 had been generated when radiolysis in the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine. Some of the free fluorine combined with uranium fluorides (UF4) in the salt to produce UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE. One of the systems that UF6 migrated into due to this process was the offgas system which is vented to the MSRE main charcoal beds and MSRE auxiliary charcoal bed (ACB). Recently, the majority of the uranium laden-charcoal material residing within the ACB was safely and successfully removed using

  6. Study of Chemical Changes in Uranium Oxyfluoride Particles Progress Report March - October 2009

    SciTech Connect (OSTI)

    Kips, R; Kristo, M; Hutcheon, I

    2009-11-22

    Nuclear forensics relies on the analysis of certain sample characteristics to determine the origin and history of a nuclear material. In the specific case of uranium enrichment facilities, it is the release of trace amounts of uranium hexafluoride (UF{sub 6}) gas - used for the enrichment of uranium - that leaves a process-characteristic fingerprint. When UF{sub 6} gas interacts with atmospheric moisture, uranium oxyfluoride particles or particle agglomerates are formed with sizes ranging from several microns down to a few tens of nanometers. These particles are routinely collected by safeguards organizations, such as the International Atomic Energy Agency (IAEA), allowing them to verify whether a facility is compliant with its declarations. Spectrometric analysis of uranium particles from UF{sub 6} hydrolysis has revealed the presence of both particles that contain fluorine, and particles that do not. It is therefore assumed that uranium oxyfluoride is unstable, and decomposes to form uranium oxide. Understanding the rate of fluorine loss in uranium oxyfluoride particles, and the parameters that control it, may therefore contribute to placing boundaries on the particle's exposure time in the environment. Expressly for the purpose of this study, we prepared a set of uranium oxyfluoride particles at the Institute for Reference Materials and Measurements (EU-JRC-IRMM) from a static release of UF{sub 6} in a humid atmosphere. The majority of the samples was stored in controlled temperature, humidity and lighting conditions. Single particles were characterized by a suite of micro-analytical techniques, including NanoSIMS, micro-Raman spectrometry (MRS), scanning (SEM) and transmission (TEM) electron microscopy, energy-dispersive X-ray spectrometry (EDX) and focused ion beam (FIB). The small particle size was found to be the main analytical challenge. The relative amount of fluorine, as well as the particle chemical composition and morphology were determined at

  7. SINGLE-STEP CONVERSION OF UO$sub 3$ TO UF$sub 4$

    DOE Patents [OSTI]

    Moore, J.E.

    1960-07-12

    A description is given of the preparation of uranium tetrafluoride by reacting a hexavalent uranium compound with a pclysaccharide and gaseous hydrogen fluoride at an elevated temperature. Uranium trioxide and starch are combined with water to form a doughy mixture. which is extruded into pellets and dried. The pellets are then contacted with HF at a temperature from 500 to 700 deg C in a moving bed reactor to prcduce UF/sub 4/. Reduction of the hexavalent uranium to UO/sub 2/ and conversion of the UO/sub 2/ to UF/sub 4/ are accomplished simultaneously in this process.

  8. Microsoft PowerPoint - DOE Paducah Site Tour Industry Day - 2012...

    Broader source: Energy.gov (indexed) [DOE]

    to convert returns (recycled uranium from nuclear reactors) to uranium hexafluoride (UF 6 ). * Returns decline over time as reprocessing operations end at Hanford and Savannah ...

  9. PRODUCTION OF URANIUM

    DOE Patents [OSTI]

    Ruehle, A.E.; Stevenson, J.W.

    1957-11-12

    An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

  10. Investigation of breached depleted UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

    1991-09-01

    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

  11. Investigation of breached depleted UF sub 6 cylinders

    SciTech Connect (OSTI)

    Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

    1991-09-01

    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

  12. From the Lab to the real world : sources of error in UF {sub 6} gas enrichment monitoring

    SciTech Connect (OSTI)

    Lombardi, Marcie L.

    2012-03-01

    Safeguarding uranium enrichment facilities is a serious concern for the International Atomic Energy Agency (IAEA). Safeguards methods have changed over the years, most recently switching to an improved safeguards model that calls for new technologies to help keep up with the increasing size and complexity of today’s gas centrifuge enrichment plants (GCEPs). One of the primary goals of the IAEA is to detect the production of uranium at levels greater than those an enrichment facility may have declared. In order to accomplish this goal, new enrichment monitors need to be as accurate as possible. This dissertation will look at the Advanced Enrichment Monitor (AEM), a new enrichment monitor designed at Los Alamos National Laboratory. Specifically explored are various factors that could potentially contribute to errors in a final enrichment determination delivered by the AEM. There are many factors that can cause errors in the determination of uranium hexafluoride (UF{sub 6}) gas enrichment, especially during the period when the enrichment is being measured in an operating GCEP. To measure enrichment using the AEM, a passive 186-keV (kiloelectronvolt) measurement is used to determine the {sup 235}U content in the gas, and a transmission measurement or a gas pressure reading is used to determine the total uranium content. A transmission spectrum is generated using an x-ray tube and a “notch” filter. In this dissertation, changes that could occur in the detection efficiency and the transmission errors that could result from variations in pipe-wall thickness will be explored. Additional factors that could contribute to errors in enrichment measurement will also be examined, including changes in the gas pressure, ambient and UF{sub 6} temperature, instrumental errors, and the effects of uranium deposits on the inside of the pipe walls will be considered. The sensitivity of the enrichment calculation to these various parameters will then be evaluated. Previously, UF

  13. uranium

    National Nuclear Security Administration (NNSA)

    to prepare surplus plutonium for disposition, and readiness to begin the Second Uranium Cycle, to start processing spent nuclear fuel.

    H Canyon is also being...

  14. CONTINUOUS PROCESS FOR THE CONVERSION OF UF$sub 6$ TO UF$sub 4$

    DOE Patents [OSTI]

    Smiley, S.H.; Brater, D.C.; Nimmo, R.H.

    1959-10-01

    A method is presented for reducing UF/sub 6/ to UF/sub 6/ with hydrogen. A preheated mixture of UF/sub 6/ and fluorine is contacted with a stoichiometric excess of preheated hydrogen in a reaction chamber thereby producing UF/sub 6/. The UF/sub 6/ reacts quantitatively and the UF/sub 6/ produced is of high purity and high density.

  15. Method of absorbing UF.sub.6 from gaseous mixtures in alkamine absorbents

    DOE Patents [OSTI]

    Lafferty, Robert H.; Smiley, Seymour H.; Radimer, Kenneth J.

    1976-04-06

    A method of recovering uranium hexafluoride from gaseous mixtures employing as an absorbent a liquid composition at least one of the components of which is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2.

  16. DOE Issues Final Request for Proposal for the Operation of Depleted Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hexafluoride (DUF6) Conversion Facilities | Department of Energy the Operation of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities DOE Issues Final Request for Proposal for the Operation of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities September 8, 2015 - 3:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati -- The U.S. Department of Energy (DOE) today issued a Final Request for Proposal (RFP), for the Operation of Depleted

  17. DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID

    DOE Patents [OSTI]

    Johnson, R.; Horn, F.L.; Strickland, G.

    1963-05-01

    A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)

  18. METHOD FOR RECOVERING URANIUM FROM OILS

    DOE Patents [OSTI]

    Gooch, L.H.

    1959-07-14

    A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

  19. Enforcement Letter, NEL-2011-01- March 31, 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Issued to LATA Environmental Services of Kentucky, LLC, regarding work control issues that resulted in the release of uranium hexafluoride (UF6) at the Paducah Gaseous Diffusion Plant

  20. Conceptual Ideas for New Nondestructive UF6 Cylinder Assay Techniques

    SciTech Connect (OSTI)

    Miller, Karen A.

    2012-05-02

    Nondestructive assay (NDA) measurements of uranium cylinders play an important role in helping the International Atomic Energy Agency (IAEA) safeguard uranium enrichment plants. Traditionally, these measurements have consisted of a scale or load cell to determine the mass of UF{sub 6} in the cylinder combined with a gamma-ray measurement of the 186 keV peak from {sup 235}U to determine enrichment. More recently, Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL) have developed systems that exploit the passive neutron signal from UF{sub 6} to determine uranium mass and/or enrichment. These include the Uranium Cylinder Assay System (UCAS), the Passive Neutron Enrichment Meter (PNEM), and the Hybrid Enrichment Verification Array (HEVA). The purpose of this report is to provide the IAEA with new ideas on technologies that may or may not be under active development but could be useful for UF{sub 6} cylinder assay. To begin, we have included two feasibility studies of active interrogation techniques. There is a long history of active interrogation in the field of nuclear safeguards, especially for uranium assay. Both of the active techniques provide a direct measure of {sup 235}U content. The first is an active neutron method based on the existing PNEM design that uses a correlated {sup 252}Cf interrogation source. This technique shows great promise for UF{sub 6} cylinder assay and is based on advanced technology that could be implemented in the field in the near term. The second active technique is nuclear resonance fluorescence (NRF). In the NRF technique, a bremsstrahlung photon beam could be used to illuminate the cylinder, and high-resolution gamma-ray detectors would detect the characteristic de-excitation photons. The results of the feasibility study show that under certain measurement geometries, NRF is impractical for UF6 cylinder assay, but the 'grazing transmission' and 'secant transmission' geometries have more potential

  1. PROCESS FOR PRODUCING URANIUM HALIDES

    DOE Patents [OSTI]

    Murphree, E.V.

    1957-10-29

    A process amd associated apparatus for producing UF/sub 4/ from U/sub 3/ O/sub 8/ by a fluidized'' technique are reported. The U/sub 3/O/sub 8/ is first reduced to UO/sub 2/ by reaction with hydrogen, and the lower oxide of uranium is then reacted with gaseous HF to produce UF/sub 4/. In each case the reactant gas is used, alone or in combination with inert gases, to fluidize'' the finely divided reactant solid. The complete setup of the plant equipment including bins, reactor and the associated piping and valving, is described. An auxiliary fluorination reactor allows for the direct production of UF/sub 6/ from UF/sub 4/ and fluorine gas, or if desired, UF/sub 4/ may be collected as the product.

  2. Uranium

    SciTech Connect (OSTI)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-10-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U/sub 3/O/sub 8/; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables. (DP)

  3. Method for converting UF5 to UF4 in a molten fluoride salt

    DOE Patents [OSTI]

    Bennett, Melvin R.; Bamberger, Carlos E.; Kelmers, A. Donald

    1977-01-01

    The reduction of UF.sub.5 to UF.sub.4 in a molten fluoride salt by sparging with hydrogen is catalyzed by metallic platinum. The reaction is also catalyzed by platinum alloyed with gold reaction equipment.

  4. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  5. Calculational criticality analyses of 10- and 20-MW UF[sub 6] freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF[sub 6] freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF[sub 6] in each vessel have been considered for uranium enriched between 2 and 5 wt % [sup 235]U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  6. Calculational criticality analyses of 10- and 20-MW UF{sub 6} freezer/sublimer vessels

    SciTech Connect (OSTI)

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF{sub 6} freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF{sub 6} in each vessel have been considered for uranium enriched between 2 and 5 wt % {sup 235}U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control.

  7. Advancements of the Hybrid Method UF6 Container Inspection System

    SciTech Connect (OSTI)

    Mace, Emily K.; Orton, Christopher R.; Jordan, David V.; McDonald, Benjamin S.; Smith, Leon E.

    2011-07-17

    Safeguards inspectors currently visit uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution detectors on a limited number of cylinders taken to be representative of the plant’s cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute. Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter data (186 keV photons from 235U) and non-traditional, neutron-induced, high-energy gamma-ray signatures (3-8 MeV) with an array of collimated, medium-resolution scintillators. Previous work at PNNL (2010) demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term, unattended operations. This system aims to increase the number of inspected cylinders at higher accuracy and with lower cost than when compared to inspectors with hand-held instruments. Several measurement campaigns of 30B cylinder populations and a refined MCNP model will be reported. The MCNP model consists of per-gram basis vectors for the different uranium isotopes and several fill geometries, enabling fast generation of any UF6 enrichment level and multiple configurations. The refined model was used to optimize collimator design and detector configuration for the hybrid method. In addition, a new field prototype based on model results was utilized in a set of field measurements.

  8. Determination of the 235U Mass and Enrichment within Small UF6 Cylinders via a Neutron Coincidence Well Counting System

    SciTech Connect (OSTI)

    McElroy, Robert Dennis; Croft, Dr. Stephen; Young, Brian M; Venkataraman, Ram

    2011-01-01

    The construction of three new uranium enrichment facilities in the United States has sparked renewed interest in the development and enhancement of methods to determine the enrichment and fissile mass content of UF6 cylinders. We describe the design and examine the expected performance of a UF6 bottle counter developed for the assay of Type 5A cylinders. The counter, as designed and subsequently constructed, is a tall passive neutron well counter with a clam-shell configuration and graphite end plugs operated in fast neutron mode. Factory performance against expectation is described. The relatively high detection efficiency and effectively 4 detection geometry provide a near-ideal measurement configuration, making the UF6 bottle counter a valuable tool for the evaluation of the neutron coincidence approach to UF6 cylinder assay. The impacts of non-uniform filling, voids, enrichment, and mixed enrichments are examined

  9. Photoelectron Spectroscopy and Theoretical Studies of UF5 ? and UF6 ?

    SciTech Connect (OSTI)

    Dau, Phuong D.; Su, Jing; Liu, Hong-Tao; Huang, Dao-Ling; Wei, Fan; Li, Jun; Wang, Lai S.

    2012-05-17

    The UF5 ? and UF6 ? anions are produced using electrospray ionization and investigated by photoelectron spectroscopy and relativistic quantum chemistry. An extensive vibrational progression is observed in the spectra of UF5 ?, indicating significant geometry changes between the anion and neutral ground state. Franck-Condon factor simulations of the observed vibrational progression yield an adiabatic electron detachment energy of 3.82 0.05 eV for UF5 ?. Relativistic quantum calculations using density functional and ab initio theories are performed on UF5 ? and UF6 ? and their neutrals. The ground states of UF5 ? and UF5 are found to have C4v symmetry, but with a large U?F bond length change. The ground state of UF5 ? is a triplet state (3B2) with the two 5f electrons occupying a 5fz3-based 8a1 highest occupied molecular orbital (HOMO) and the 5fxyz-based 2b2 HOMO-1 orbital. The detachment cross section from the 5fxyz orbital is observed to be extremely small and the detachment transition from the 2b2 orbital is more than ten times weaker than that from the 8a1 orbital at the photon energies available. The UF6 ? anion is found to be octahedral, similar to neutral UF6 with the extra electron occupying the 5fxyz-based a2u orbital. Surprisingly, no photoelectron spectrum could be observed for UF6 ? due to the extremely low detachment cross section from the 5fxyz-based HOMO of UF6 ?.

  10. METHOD OF PREPARING UF$sub 6$

    DOE Patents [OSTI]

    Davidson, R.; Fried, S.

    1959-10-27

    A method is described of preparing uraniurn hexafluoride without the use of fluorine gas by reacting uraniurn tetrafluoride with oxygen gas under rigorously anhydrous conditions at 600 to 1300 deg K within a pre-fluorinated nickel vessel.

  11. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  12. Integrating UF6 Cylinder RF Tracking With Continuous Load Cell Monitoring for Verifying Declared UF6 Feed and Withdrawal Operations Verifying Declared UF6 Feed and Withdrawal Operations

    SciTech Connect (OSTI)

    Krichinsky, Alan M; Miller, Paul; Pickett, Chris A; Richardson, Dave; Rowe, Nathan C; Whitaker, J Michael; Younkin, James R

    2009-01-01

    Oak Ridge National Laboratory is demonstrating the integration of UF6 cylinder tracking, using RF technology, with continuous load cell monitoring (CLCM) at mock UF6 feed and withdrawal (F&W) stations. CLCM and cylinder tracking are two of several continuous-monitoring technologies that show promise in providing integrated safeguards of F&W operations at enrichment plants. Integrating different monitoring technologies allows advanced, automated event processing to screen innocuous events thereby minimizing false alerts to independent inspectors. Traditionally, international inspectors rely on batch verification of material inputs and outputs derived from operator declarations and periodic on-site inspections at uranium enrichment plants or other nuclear processing facilities. Continuously monitoring F&W activities between inspections while providing filtered alerts of significant operational events will substantially increase the amount of valuable information available to inspectors thereby promising to enhance the effectiveness of safeguards and to improve efficiency in conducting on-site inspections especially at large plants for ensuring that all operations are declared.

  13. Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A; Lee, Denise L; Croft, Stephen; McElroy, Robert Dennis; Hertel, Nolan; Chapman, Jeffrey Allen; Cleveland, Steven L

    2013-01-01

    Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of

  14. Uranium Marketing Annual Report - Release Date: May 31, 2011

    Gasoline and Diesel Fuel Update (EIA)

    4. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and material type, 2015 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries Uranium concentrate Natural UF6 Enriched UF6 Natural UF6 and Enriched UF6 Total U.S.-origin uranium Purchases 2,733 W W 686 3,419 Weighted-average price 46.23 W W 34.44 43.86 Foreign-origin uranium Purchases 28,179 W W 24,927 53,106 Weighted-average price 43.61 W W 44.77 44.14 Total

  15. Adsorptive Films in Support of In-field UF6 Destructive Assay Sample Collection and Analysis

    SciTech Connect (OSTI)

    Barrett, Christopher A.; Martinez, Alonzo; McNamara, Bruce K.; Cannon, Bret D.; Anheier, Norman C.

    2014-07-20

    International Atom Energy Agency (IAEA) safeguard verification measures in gaseous centrifuge enrichment plants (GCEPs) rely on environmental sampling, non-destructive assay (NDA), and destructive assay (DA) sampling and analysis to determine uranium enrichment. UF6 bias defect measurements are made by DA sampling and analysis to assure that enrichment is consistent with declarations. DA samples are collected from a limited number of cylinders for high precision, offsite mass spectrometer analysis. Samples are typically drawn from a sampling tap into a UF6 sample bottle, then packaged, sealed, and shipped under IAEA chain of custody to an offsite analytical laboratory. Future DA safeguard measures may require improvements in efficiency and effectiveness as GCEP capacities increase and UF6 shipping regulations become increasingly more restrictive. The Pacific Northwest National Laboratory (PNNL) DA sampler concept and Laser Ablation Absorption Ratio Spectrometry (LAARS) assay method are under development to potentially provide DA safeguard tools that increase inspection effectiveness and reduce sample shipping constraints. The PNNL DA sampler concept uses a handheld sampler to collect DA samples for either onsite LAARS assay or offsite laboratory analysis. The DA sampler design will use a small sampling planchet that is coated with an adsorptive film to collect controlled quantities of UF6 gas directly from a cylinder or process sampling tap. Development efforts are currently underway at PNNL to enhance LAARS assay performance to allow high-precision onsite bias defect measurements. In this paper, we report on the experimental investigation to develop adsorptive films for the PNNL DA sampler concept. These films are intended to efficiently capture UF6 and then stabilize the collected DA sample prior to onsite LAARS or offsite laboratory analysis. Several porous material composite films were investigated, including a film designed to maximize the chemical adsorption

  16. SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS

    SciTech Connect (OSTI)

    Gray, J.; Torres, R.; Korinko, P.; Martinez-Rodriguez, M.; Becnel, J.; Garcia-Diaz, B.; Adams, T.

    2012-09-25

    Reactive Gas Recycling (RGR) technology development has been initiated at Savannah River National Laboratory (SRNL), with a stretch-goal to develop a fully dry recycling technology for Used Nuclear Fuel (UNF). This approach is attractive due to the potential of targeted gas-phase treatment steps to reduce footprint and secondary waste volumes associated with separations relying primarily on traditional technologies, so long as the fluorinators employed in the reaction are recycled for use in the reactors or are optimized for conversion of fluorinator reactant. The developed fluorination via SF{sub 6}, similar to the case for other fluorinators such as NF{sub 3}, can be used to address multiple fuel forms and downstream cycles including continued processing for LWR via fluorination or incorporation into a aqueous process (e.g. modified FLUOREX) or for subsequent pyro treatment to be used in advanced gas reactor designs such metal- or gas-cooled reactors. This report details the most recent experimental results on the reaction of SF{sub 6} with various fission product surrogate materials in the form of oxides and metals, including uranium oxides using a high-temperature DTA apparatus capable of temperatures in excess of 1000{deg}C . The experimental results indicate that the majority of the fission products form stable solid fluorides and sulfides, while a subset of the fission products form volatile fluorides such as molybdenum fluoride and niobium fluoride, as predicted thermodynamically. Additional kinetic analysis has been performed on additional fission products. A key result is the verification that SF{sub 6} requires high temperatures for direct fluorination and subsequent volatilization of uranium oxides to UF{sub 6}, and thus is well positioned as a head-end treatment for other separations technologies, such as the volatilization of uranium oxide by NF{sub 3} as reported by colleagues at PNNL, advanced pyrochemical separations or traditional full recycle

  17. METHOD OF PRODUCING URANIUM

    DOE Patents [OSTI]

    Foster, L.S.; Magel, T.T.

    1958-05-13

    A modified process is described for the production of uranium metal by means of a bomb reduction of UF/sub 4/. Difficulty is sometimes experienced in obtaining complete separation of the uranium from the slag when the process is carried out on a snnall scale, i.e., for the production of 10 grams of U or less. Complete separation may be obtained by incorporating in the reaction mixture a quantity of MnCl/sub 2/, so that this compound is reduced along with the UF/sub 4/ . As a result a U--Mn alloy is formed which has a melting point lower than that of pure U, and consequently the metal remains molten for a longer period allowing more complete separation from the slag.

  18. ALARA Controls and the Radiological Lessons Learned During the Uranium Fuel Removal Projects at the Molten Salt Reactor Experiment

    SciTech Connect (OSTI)

    Gilliam, B. J.; Chapman, J. A.; Jugan, M. R.

    2002-02-26

    The removal of uranium-233 (233 U) from the auxiliary charcoal bed (ACB) of the Molten Salt Reactor Experiment (MSRE), performed from January through May 2001, created both unique radiological challenges and widely-applicable lessons learned. In addition to the criticality concerns and alpha contamination, 233U has an associated intense gamma photon from the cocontaminant uranium-232 (232U) decaying to thallium-208 (208Tl). Therefore, rigorous contamination controls and significant shielding were implemented. Extensive, timed mock-up training was also imperative to minimize individual and collective personnel exposures. Back-up shielding and containment techniques (that had been previously developed for defense in depth) were used successfully to control significant, changed conditions. Additional controls were placed on tests and on recovery designs to assure a higher level of safety throughout the removal operations. This paper delineates the manner in which each difficulty was solved, while relating the relevance of the results and the methodology to other projects with high dose-rate, highly-contaminated ionizing radiation hazards. Because of the distinctive features of and current interest in molten salt technology, a brief overview is provided. Also presented is the detailed, practical application of radiological controls integrated into, rather than added after, each evolution of the project--thus demonstrating the broad-based benefits of radiological engineering and ALARA reviews. The resolution of the serious contamination-control problems caused by unexpected uranium hexafluoride (UF6) gaseous diffusion is also explicated. Several tables and figures document the preparations, equipment and operations. A comparison of the pre-job dose calculations for the various functions of the uranium deposit removal (UDR) and the post-job dose-rate data are included in the conclusion.

  19. Secretarial Determination for the Sale or Transfer of Uranium.pdf

    Office of Environmental Management (EM)

    or Transfer of Low-Enriched Uranium | Department of Energy USEC Privatization Act for the Sale or Transfer of Low-Enriched Uranium Secretarial Determination Pursuant to USEC Privatization Act for the Sale or Transfer of Low-Enriched Uranium Secretarial determination regarding the potential impacts of the transfer by DOE of up to 48 metric tons of low-enriched uranium to USEC Inc. in exchange for DOE receiving approximately 409 metric tons of uranium hexafluoride, the equivalent amount of

  20. Depleted uranium plasma reduction system study

    SciTech Connect (OSTI)

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

  1. Integrating UF6 Cylinder RF Tracking With Continuous Load Cell...

    Office of Scientific and Technical Information (OSTI)

    is demonstrating the integration of UF6 cylinder tracking, using RF technology, with continuous load cell monitoring (CLCM) at mock UF6 feed and withdrawal (F&W) stations. ...

  2. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Energy Savers [EERE]

    Department of Energy EO 13563 January 2014 Update Report and Burden Reduction Efforts DOE EO 13563 January 2014 Update Report and Burden Reduction Efforts DOE Retrospective Review Plan and Burden Reduction Report January 2014 DOE Retrospective Review Plan and Burden Reduction Report January 2014 FINAL (108.53 KB) More Documents & Publications DOE Retrospective Review Plan Report May 2012 DOE Retrospective Review Plan and Burden Reduction Report July 29, 2013 DOE 13563 and ICR Report

  3. Continuous reduction of uranium tetrafluoride

    SciTech Connect (OSTI)

    DeMint, A.L.; Maxey, A.W.

    1993-10-21

    Operation of a pilot-scale system for continuous metallothermic reduction of uranium tetrafluoride (UF{sub 4} or green salt) has been initiated. This activity is in support of the development of a cost- effective process to produce uranium-iron (U-Fe) alloy feed for the Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) program. To date, five runs have been made to reduce green salt (UF{sub 4}) with magnesium. During this quarter, three runs were made to perfect the feeding system, examine feed rates, and determine the need for a crust breaker/stirrer. No material was drawn off in any of the runs; both product metal and by-product salt were allowed to accumulate in the reactor.

  4. Commercial considerations in conversion and UF{sub 6} transactions

    SciTech Connect (OSTI)

    1994-02-01

    This article addresses various commercial considerations that result from the conversion of U3O8 into UF6 and the associated physical characteristics of natural UF6. Handling, transport, conversion, and enrichment of UF6 are discussed. Avenues of acquisition, including nation of origin, are also noted.

  5. PURIFICATION OF URANIUM FUELS

    DOE Patents [OSTI]

    Niedrach, L.W.; Glamm, A.C.

    1959-09-01

    An electrolytic process of refining or decontaminating uranium is presented. The impure uranium is made the anode of an electrolytic cell. The molten salt electrolyte of this cell comprises a uranium halide such as UF/sub 4/ or UCl/sub 3/ and an alkaline earth metal halide such as CaCl/sub 2/, BaF/sub 2/, or BaCl/sub 2/. The cathode of the cell is a metal such as Mn, Cr, Co, Fe, or Ni which forms a low melting eutectic with U. The cell is operated at a temperature below the melting point of U. In operation the electrodeposited uranium becomes alloyed with the metal of the cathode, and the low melting alloy thus formed drips from the cathode.

  6. UF{sub 6} cylinder fire test

    SciTech Connect (OSTI)

    Park, S.H.

    1991-12-31

    With the increasing number of nuclear reactors for power generation, there is a comparable increase in the amount of UF{sub 6} being transported. Likewise, the probability of having an accident involving UF{sub 6}-filled cylinders also increases. Accident scenarios which have been difficult to assess are those involving a filled UF{sub 6} cylinder subjected to fire. A study is underway at the Oak Ridge K-25 Site, as part of the US DOE Enrichment Program, to provide empirical data and a computer model that can be used to evaluate various cylinder-in-fire scenarios. It is expected that the results will provide information leading to better handling of possible fire accidents as well as show whether changes should be made to provide different physical protection during shipment. The computer model being developed will be capable of predicting the rupture of various cylinder sizes and designs as well as the amount of UF{sub 6}, its distribution in the cylinder, and the conditions of the fire.

  7. U.S. transparency monitoring of HEU oxide conversion and blending to LEU hexafluoride at three Russian blending plants

    SciTech Connect (OSTI)

    Leich, D., LLNL

    1998-07-27

    The down-blending of Russian highly enriched uranium (HEU) takes place at three Russian gaseous centrifuge enrichment plants. The fluorination of HEU oxide and down-blending of HEU hexafluoride began in 1994, and shipments of low enriched uranium (LEU) hexafluoride product to the United States Enrichment Corporation (USEC) began in 1995 US transparency monitoring under the HEU Purchase Agreement began in 1996 and includes a permanent monitoring presence US transparency monitoring at these facilities is intended to provide confidence that HEU is received and down-blended to LEU for shipment to USEC The monitoring begins with observation of the receipt of HEU oxide shipments, including confirmation of enrichment using US nondestructive assay equipment The feeding of HEU oxide to the fluorination process and the withdrawal of HEU hexafluoride are monitored Monitoring is also conducted where the blending takes place and where shipping cylinders are filled with LEU product. A series of process and material accountancy documents are provided to US monitors.

  8. Strategy for Characterizing Transuranics and Technetium Contamination in Depleted UF{sub 6} Cylinders

    SciTech Connect (OSTI)

    Hightower, J.R.

    2000-10-26

    This report summarizes results of a study performed to develop a strategy for characterization of low levels of radioactive contaminants [plutonium (Pu), neptunium (Np), americium (Am), and technetium (Tc)] in depleted uranium hexafluoride (DUF{sub 6}) cylinders at the gaseous diffusion plants in Oak Ridge, Tennessee; Paducah, Kentucky; and Piketon, Ohio. In these gaseous diffusion plants, this radioactivity came from enriching recycled uranium (the so-called ''reactor returns'') from Savannah River, South Carolina, and Hanford, Washington, reactors. Results of this study will be used to support a request for proposals to design, build, and operate facilities to convert the DUF{sub 6} to more chemically stable forms. These facilities would need to be designed to handle any transuranic contaminants that might be present in order to (1) protect the workers' health and safety and (2) protect the public and the environment.

  9. FLUORIDE VOLATILITY PROCESS FOR THE RECOVERY OF URANIUM

    DOE Patents [OSTI]

    Katz, J.J.; Hyman, H.H.; Sheft, I.

    1958-04-15

    The separation and recovery of uraniunn from contaminants introduced by neutron irradiation by a halogenation and volatilization method are described. The irradiated uranium is dissolved in bromine trifluoride in the liquid phase. The uranium is converted to the BrF/sub 3/ soluble urmium hexafluoride compound whereas the fluorides of certain contaminating elements are insoluble in liquid BrF/sub 3/, and the reaction rate of the BrF/sub 3/ with certain other solid uranium contamirnnts is sufficiently slower than the reaction rate with uranium that substantial portions of these contaminating elements will remain as solids. These solids are then separated from the solution by a distillation, filtration, or centrifugation step. The uranium hexafluoride is then separated from the balance of the impurities and solvent by one or more distillations.

  10. Oxidation and crystal field effects in uranium

    SciTech Connect (OSTI)

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  11. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R.

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  12. Removal of fluoride impurities from UF.sub.6 gas

    DOE Patents [OSTI]

    Beitz, James V.

    1985-01-01

    A method of purifying a UF.sub.6 gas stream containing one or more metal fluoride impurities composed of a transuranic metal, transition metal or mixtures thereof, is carried out by contacting the gas stream with a bed of UF.sub.5 in a reaction vessel under conditions where at least one impurity reacts with the UF.sub.5 to form a nongaseous product and a treated gas stream, and removing the treated gas stream from contact with the bed. The nongaseous products are subsequently removed in a reaction with an active fluorine affording agent to form a gaseous impurity which is removed from the reaction vessel. The bed of UF.sub.5 is formed by the reduction of UF.sub.6 in the presence of UV light. One embodiment of the reaction vessel includes a plurality of UV light sources as tubes on which UF.sub.5 is formed.

  13. Removal of fluoride impurities from UF/sub 6/ gas

    DOE Patents [OSTI]

    Beitz, J.V.

    1984-01-06

    A method of purifying a UF/sub 6/ gas stream containing one or more metal fluoride impurities composed of a transuranic metal, transition metal or mixtures thereof, is carried out by contacting the gas stream with a bed of UF/sub 5/ in a reaction vessel under conditions where at least one impurity reacts with the UF/sub 5/ to form a nongaseous product and a treated gas stream, and removing the treated gas stream from contact with the bed. The nongaseous products are subsequently removed in a reaction with an active fluorine affording agent to form a gaseous impurity which is removed from the reaction vessel. The bed of UF/sub 5/ is formed by the reduction of UF/sub 6/ in the presence of uv light. One embodiment of the reaction vessel includes a plurality of uv light sources as tubes on which UF/sub 5/ is formed. 2 figures.

  14. The uranium cylinder assay system for enrichment plant safeguards

    SciTech Connect (OSTI)

    Miller, Karen A; Swinhoe, Martyn T; Marlow, Johnna B; Menlove, Howard O; Rael, Carlos D; Iwamoto, Tomonori; Tamura, Takayuki; Aiuchi, Syun

    2010-01-01

    Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

  15. Investigation of breached depleted UF{sub 6} cylinders

    SciTech Connect (OSTI)

    DeVan, J.H.

    1991-12-31

    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.

  16. Photoelectron spectroscopy and theoretical studies of UF5- and...

    Office of Scientific and Technical Information (OSTI)

    An extensive vibrational progression is observed in the spectra of UF5 -, indicating significant geometry changes between the anion and neutral ground state. Franck-Condon factor ...

  17. DOE Selects Contractor for Depleted Hexafluoride Conversion Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati ...

  18. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2015 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Spot 1 Contracts Long-Term Contracts 2 Total Material Type Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price U3O8 6,175 36.40 24,107 45.76 30,282 43.85 Natural UF6 3,879 38.52 12,292 48.13

  19. Assessment of UF6 Equation of State

    SciTech Connect (OSTI)

    Brady, P; Chand, K; Warren, D; Vandersall, J

    2009-02-11

    A common assumption in the mathematical analysis of flows of compressible fluids is to treat the fluid as a perfect gas. This is an approximation, as no real fluid obeys the perfect gas relationships over all temperature and pressure conditions. An assessment of the validity of treating the UF{sub 6} gas flow field within a gas centrifuge with perfect gas relationships has been conducted. The definition of a perfect gas is commonly stated in two parts: (1) the gas obeys the thermal equation of state, p = {rho}RT (thermally perfect), and, (2) the gas specific heats are constant (calorically perfect). Analysis indicates the thermally perfect assumption is valid for all flow conditions within the gas centrifuge, including shock fields. The low operating gas pressure is the primary factor in the suitability of the thermally perfect equation of state for gas centrifuge computations. UF{sub 6} is not calorically perfect, as the specific heats vary as a function of temperature. This effect is insignificant within the bulk of the centrifuge gas field, as gas temperatures vary over a narrow range. The exception is in the vicinity of shock fields, where temperature, pressure, and density gradients are large, and the variation of specific heats with temperature should be included in the technically detailed analyses. Results from a normal shock analysis incorporating variable specific heats is included herein, presented in the conventional form of shock parameters as a function of inlet Mach Number. The error introduced by assuming constant specific heats is small for a nominal UF{sub 6} shock field, such that calorically perfect shock relationships can be used for scaling and initial analyses. The more rigorous imperfect gas analysis should be used for detailed analyses.

  20. EIS-0269: Long-Term Management of Depleted Uranium Hexaflouride

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this programmatic environmental impact statement to assess the potential impacts of alternative management strategies for depleted uranium hexafluoride currently stored at three DOE sites: Paducah site near Paducah, Kentucky; Portsmouth site near Portsmouth, Ohio; and K-25 site on the Oak Ridge Reservation in Oak Ridge, Tennessee.

  1. Hydrofluoric Acid Corrosion Testing on Unplated and Electroless Gold-Plated Samples

    SciTech Connect (OSTI)

    Osborne, P.E.; Icenhour, A.S.; Del Cul, G.D.

    2000-08-01

    The Molten Salt Reactor Experiment (MSRE) remediation requires that almost 40 kg of uranium hexafluoride (UF6) be converted to uranium oxide (UO). In the process of this conversion, six moles of hydrofluoric acid (HP) are produced for each mole of UF6 converted.

  2. PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE

    DOE Patents [OSTI]

    Ellis, A.S.; Mooney, R.B.

    1953-08-25

    This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.

  3. Technical documentation of HGSYSTEM/UF{sub 6} model

    SciTech Connect (OSTI)

    Hanna, S.R.; Chang, J.C.; Zhang, J.X.

    1996-01-01

    MMES has been directed to upgrade the safety analyses for the gaseous diffusion plants at Paducah KY and Piketon OH. These will require assessment of consequences of accidental releases of UF{sub 6} to the atmosphere at these plants. The HGSYSTEM model has been chosen as the basis for evaluating UF{sub 6} releases; it includes dispersion algorithms for dense gases and treats the chemistry and thermodynamics of HF, a major product of the reaction of UF{sub 6} with water vapor in air. Objective of this project was to incorporate additional capability into HGSYSTEM: UF{sub 6} chemistry and thermodynamics, plume lift-off algorithms, and wet and dry deposition. The HGSYSTEM modules are discussed. The hybrid HGSYSTEM/UF{sub 6} model has been evaluated in three ways.

  4. Health risk from earthquake caused releases of UF{sub 6} at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Brown, N.W; Lu, S.; Chen, J.C.; Roehnelt, R.; Lombardi, D.

    1998-05-01

    The health risk to the public and workers from potential exposure to the toxic materials from earthquake caused releases of uranium hexafluoride from the Paducah gaseous Diffusion Plant are evaluated. The results of the study show that the health risk from earthquake caused releases is small, and probably less than risks associated with the transportation of hydrogen fluoride and other similar chemicals used by industry. The probability of more than 30 people experiencing health consequences (injuries) from earthquake damage is less than 4xlO{sup 4}/yr.

  5. Electron Ionization Mass Spectrum of Tellurium Hexafluoride

    SciTech Connect (OSTI)

    Clark, Richard A.; McNamara, Bruce K.; Barinaga, Charles J.; Peterson, James M.; Govind, Niranjan; Andersen, Amity; Abrecht, David G.; Schwantes, Jon M.; Ballou, Nathan E.

    2015-05-18

    The first electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5+, TeF4+ TeF3+, TeF2+, TeF1+, and Te+, Te2+. A trend in increasing abundance was observed for the even fluoride bearing ions: TeF1+ < TeF3+ < TeF5+, and a decreasing abundance was observed for the even fragment series: Te(0)+ > TeF2+ > TeF4+ > TeF6+, with the molecular ion TeF6+ not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6+.

  6. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio

    Energy Savers [EERE]

    Site | Department of Energy 60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site; transportation of all cylinders (DUF6, enriched, and

  7. UF.sub.6 -Recovery process utilizing desublimation

    DOE Patents [OSTI]

    Eby, Robert S.; Stephenson, Michael J.; Andrews, Deborah H.; Hamilton, Thomas H.

    1985-01-01

    The invention is a UF.sub.6 -recovery process of the kind in which a stream of substantially pure gaseous UF.sub.6 is directed through an externally chilled desublimer to convert the UF.sub.6 directly to an annular solid ring adhering to the interior wall of the desublimer. After accumulation of a desired amount of solid UF.sub.6, the desublimer is heated to liquefy the solid. Subsequently, the liquid is recovered from the desublimer. It has been found that during the heating operation the desublimer is subjected to excessive mechanical stresses. In addition, it has been found that the incorporation of a very small percentage of relatively noncondensable, nonreactive gas (e.g., nitrogen) in the UF.sub.6 input to the desublimer effects significant decreases in the stresses generated during the subsequent melting operation. This modification to the process provides valuable advantages in terms of reduced hazard, lower operating costs for the desublimer, and increased service life for the desublimer and its auxiliaries. The new process is especially suitable for the recovery of enriched UF.sub.6 from high-speed UF.sub.6 gas-centrifuge cascades.

  8. UF/sub 6/-recovery process utilizing desublimation

    DOE Patents [OSTI]

    Eby, R.S.; Stephenson, M.J.; Andrews, D.H.; Hamilton, T.H.

    1983-12-21

    The invention is a UF/sub 6/-recovery process of the kind in which a stream of substantially pure gaseous UF/sub 6/ is directed through an externally chilled desublimer to convert the UF/sub 6/ directly to an annular solid ring adhering to the interior wall of the desublimer. After accumulation of a desired amount of solid UF/sub 6/, the desublimer is heated to liquefy the solid. Subsequently, the liquid is recovered from the desublimer. It has been found that during the heating operation the desublimer is subjected to excessive mechanical stresses. In addition, it has been found that the incorporation of a very small percentage of relatively noncondensable, nonreactive gas (e.g., nitrogen) in the UF/sub 6/ input to the desublimer effects significant decreases in the stresses generated during the subsequent melting operation. This modification to the process provides valuable advantages in terms of reduced hazard, lower operating costs for the desublimer, and increased service life for the desublimer and its auxiliaries. The new process is especially suitable for the recovery of enriched UF/sub 6/ from high-speed UF/sub 6/ gas-centrifuge cascades.

  9. Enrichment Assay Methods for a UF6 Cylinder Verification Station

    SciTech Connect (OSTI)

    Smith, Leon E.; Jordan, David V.; Misner, Alex C.; Mace, Emily K.; Orton, Christopher R.

    2010-11-30

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute for inspectors. Pacific Northwest National Laboratory (PNNL) is developing an unattended measurement system capable of automated enrichment measurements over the full volume of Type 30B and Type 48 cylinders. This Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The focus of this paper is the development of nondestructive assay (NDA) methods that combine “traditional” enrichment signatures (e.g. 185-keV emission from U-235) and more-penetrating “non-traditional” signatures (e.g. high-energy neutron-induced gamma rays spawned primarily from U-234 alpha emission) collected by medium-resolution gamma-ray spectrometers (i.e. sodium iodide or lanthanum bromide). The potential of these NDA methods for the automated assay of feed, tail and product cylinders is explored through MCNP modeling and with field measurements on a cylinder population ranging from 0.2% to 5% in U-235 enrichment.

  10. March market review. [Spot market prices for uranium (1993)

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The spot market price for uranium in unrestricted markets weakened further during March, and at month end, the NUEXCO Exchange Value had fallen $0.15, to $7.45 per pound U3O8. The Restricted American Market Penalty (RAMP) for concentrates increased $0.15, to $2.55 per pound U3O8. Ample UF6 supplies and limited demand led to a $0.50 decrease in the UF6 Value, to $25.00 per kgU as UF6, while the RAMP for UF6 increased $0.75, to $5.25 per kgU. Nine near-term uranium transactions were reported, totalling almost 3.3 million pounds equivalent U3O8. This is the largest monthly spot market volume since October 1992, and is double the volume reported in January and February. The March 31 Conversion Value was $4.25 per kgU as UF6. Beginning with the March 31 Value, NUEXCO now reports its Conversion Value in US dollars per kilogram of uranium (US$/kgU), reflecting current industry practice. The March loan market was inactive with no transactions reported. The Loan Rate remained unchanged at 3.0 percent per annum. Low demand and increased competition among sellers led to a one-dollar decrease in the SWU Value, to $65 per SWU, and the RAMP for SWU declined one dollar, to $9 per SWU.

  11. UF{sub 6} pressure excursions during cylinder heating

    SciTech Connect (OSTI)

    Brown, P.G.

    1991-12-31

    As liquid UF{sub 6} inside a cylinder changes from a liquid to a solid, it forms a porous solid which occupies approximately the same volume as that of the liquid before cooling. Simultaneously as the liquid cools, UF{sub 6} vapor in the cylinder ullage above the liquid desublimes on the upper region of the inner cylinder wall. This solid is a dense, glass-like material which can accumulate to a significant thickness. The thickness of the solid coating on the upper cylinder wall and directly behind the cylinder valve area will vary depending on the conditions during the cooling stage. The amount of time lapsed between UF{sub 6} solidification and UF{sub 6} liquefaction can also affect the UF{sub 6} coating. This is due to the daily ambient heat cycle causing the coating to sublime from the cylinder wall to cooler areas, thus decreasing the thickness. Structural weakening of the dense UF{sub 6} layer also occurs due to cylinder transport vibration and thermal expansion. During cylinder heating, the UF{sub 6} nearest the cylinder wall will liquefy first. As the solid coating behind the cylinder valve begins to liquefy, it results in increased pressure depending upon the available volume for expansion. At the Paducah Gaseous Diffusion Plant (PGDP) during the liquefaction of the UF{sub 6} in cylinders in the UF{sub 6} feed and sampling autoclaves, this pressure increase has resulted in the activation of the systems rupture discs which are rated at 100 pounds per square inch differential.

  12. Enhanced Algorithm for Traceability Measurements in UF6 Flow Pipe

    SciTech Connect (OSTI)

    Copinger, Thomas E; March-Leuba, Jose A; Upadhyaya, Belle R

    2007-01-01

    The Blend Down Monitoring System (BDMS) is used to continually assess the mixing and downblending of highly enriched uranium (HEU) with low-enriched uranium (LEU). This is accomplished by measuring the enrichment and the fissile mass flow rate of the UF{sub 6} gas located in each process pipe of the system by inducing the fission of the {sup 235}U contained in the gas. Measurements are taken along this process route to trace the HEU content all the way to the product stream, ensuring that HEU was down blended. A problem associated with the current traceability measuring algorithm is that it does not account for the time-varying background that is introduced to the system by the movement of the shutter located at the HEU leg of the process. The current way of dealing with that problem is to discard the data for periods when the HEU shutter is open (50% of overall data) because it correlates with the same timeframe in which the direct contribution to background from the HEU shutter was seen. The advanced algorithm presented in this paper allows for continuous measurement of traceability (100%) by accurately accounting for the varying background during the shutter-movement cycle. This algorithm utilizes advanced processing techniques that identify and discriminate the different sources of background radiation, instead of grouping them into one background group for the whole measurement cycle. By using this additional information, the traceability measurement statistics can achieve a greater number of values, thus improving the overall usefulness of these measurements in the BDMS. The effectiveness of the new algorithm was determined by modeling it in a simulation and ensuring that it retained its integrity through a large number of runs, including various shutter-failure conditions. Each run was performed with varying amounts of background radiation from each individual source and with varying traceability counts. The simulations documented in this paper prove that

  13. Automated UF6 Cylinder Enrichment Assay: Status of the Hybrid Enrichment Verification Array (HEVA) Project: POTAS Phase II

    SciTech Connect (OSTI)

    Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; McDonald, Benjamin S.; Kulisek, Jonathan A.; Smith, Leon E.

    2012-06-01

    Pacific Northwest National Laboratory (PNNL) intends to automate the UF6 cylinder nondestructive assay (NDA) verification currently performed by the International Atomic Energy Agency (IAEA) at enrichment plants. PNNL is proposing the installation of a portal monitor at a key measurement point to positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until inspector arrival. This report summarizes the status of the research and development of an enrichment assay methodology supporting the cylinder verification concept. The enrichment assay approach exploits a hybrid of two passively-detected ionizing-radiation signatures: the traditional enrichment meter signature (186-keV photon peak area) and a non-traditional signature, manifested in the high-energy (3 to 8 MeV) gamma-ray continuum, generated by neutron emission from UF6. PNNL has designed, fabricated, and field-tested several prototype assay sensor packages in an effort to demonstrate proof-of-principle for the hybrid assay approach, quantify the expected assay precision for various categories of cylinder contents, and assess the potential for unsupervised deployment of the technology in a portal-monitor form factor. We refer to recent sensor-package prototypes as the Hybrid Enrichment Verification Array (HEVA). The report provides an overview of the assay signatures and summarizes the results of several HEVA field measurement campaigns on populations of Type 30B UF6 cylinders containing low-enriched uranium (LEU), natural uranium (NU), and depleted uranium (DU). Approaches to performance optimization of the assay technique via radiation transport modeling are briefly described, as are spectroscopic and data-analysis algorithms.

  14. An Optically Stimulated Luminescence Uranium Enrichment Monitor

    SciTech Connect (OSTI)

    Miller, Steven D.; Tanner, Jennifer E.; Simmons, Kevin L.; Conrady, Matthew M.; Benz, Jacob M.; Greenfield, Bryce A.

    2010-08-11

    The Pacific Northwest National Laboratory (PNNL) has pioneered the use of Optically Stimulated Luminescence (OSL) technology for use in personnel dosimetry and high dose radiation processing dosimetry. PNNL has developed and patented an alumina-based OSL dosimeter that is being used by the majority of medical X-ray and imaging technicians worldwide. PNNL has conceived of using OSL technology to passively measure the level of UF6 enrichment by attaching the prototype OSL monitor to pipes containing UF6 gas within an enrichment facility. The prototype OSL UF6 monitor utilizes a two-element approach with the first element open and unfiltered to measure both the low energy and high energy gammas from the UF6, while the second element utilizes a 3-mm thick tungsten filter to eliminate the low energy gammas and pass only the high energy gammas from the UF6. By placing a control monitor in the room away from the UF6 pipes and other ionizing radiation sources, the control readings can be subtracted from the UF6 pipe monitor measurements. The ratio of the shielded to the unshielded net measurements provides a means to estimate the level of uranium enrichment. PNNL has replaced the commercially available MicroStar alumina-based dosimeter elements with a composite of polyethylene plastic, high-Z glass powder, and BaFBr:Eu OSL phosphor powder at various concentrations. The high-Z glass was added in an attempt to raise the average Z of the composite dosimeter and increase the response. Additionally, since BaFBr:Eu OSL phosphor is optimally excited and emits light at different wavelengths compared to alumina, the commercially available MicroStar reader was modified for reading BaFBr:Eu in a parallel effort to increase reader sensitivity. PNNL will present the design and performance of our novel OSL uranium enrichment monitor based on a combination of laboratory and UF6 test loop measurements. PNNL will also report on the optimization effort to achieve the highest possible

  15. The IMCA: A field instrument for uranium enrichment measurements

    SciTech Connect (OSTI)

    Gardner, G.H.; Koskelo, M.; Moeslinger, M.; Mayer, R.L. II; McGinnis, B.R.; Wishard, B.

    1996-12-31

    The IMCA (Inspection Multi-Channel Analyzer) is a portable gamma-ray spectrometer designed to measure the enrichment of uranium either in a laboratory or in the field. The IMCA consists of a Canberra InSpector Multi-Channel Analyzer, sodium iodide or a planar germanium detector, and special application software. The system possesses a high degree of automation. The IMCA uses the uranium enrichment meter principle, and is designed to meet the International Atomic Energy Agency (IAEA) requirements for the verification of enriched uranium materials. The IMCA is available with MGA plutonium isotopic analysis software or MGAU uranium analysis software as well. In this paper, the authors present a detailed description of the hardware and software of the IMCA system, as well as results from preliminary measurements testing compliance of IMCA with IAEA requirements using uranium standards and UF6 cylinders. Measurements performed on UF6 cylinders in the field under variable environmental conditions (temperatures ranging from 0 to 35 C) have shown that good results can be achieved. The enrichment of UF6 contained in the cylinder is determined by using calibration constants generated from an instrument calibration, using traceable uranium oxide standards, performed in the laboratory under controlled environmental conditions. The IMCA software is designed to make the necessary matrix and container corrections to ensure that accurate results are achieved in the field.

  16. A Laser-Based Method for On-Site Analysis of UF6 at Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Martinez, Alonzo; Barrett, Christopher A.; Taubman, Matthew S.; Anderson, Kevin K.; Smith, Leon E.

    2014-11-23

    The International Atomic Energy Agency’s (IAEA’s) long-term research and development plan calls for more cost-effective and efficient safeguard methods to detect and deter misuse of gaseous centrifuge enrichment plants (GCEPs). The IAEA’s current safeguards approaches at GCEPs are based on a combination of routine and random inspections that include environmental sampling and destructive assay (DA) sample collection from UF6 in-process material and selected cylinders. Samples are then shipped offsite for subsequent laboratory analysis. In this paper, a new DA sample collection and onsite analysis approach that could help to meet challenges in transportation and chain of custody for UF6 DA samples is introduced. This approach uses a handheld sampler concept and a Laser Ablation, Laser Absorbance Spectrometry (LAARS) analysis instrument, both currently under development at the Pacific Northwest National Laboratory. A LAARS analysis instrument could be temporarily or permanently deployed in the IAEA control room of the facility, in the IAEA data acquisition cabinet, for example. The handheld PNNL DA sampler design collects and stabilizes a much smaller DA sample mass compared to current sampling methods. The significantly lower uranium mass reduces the sample radioactivity and the stabilization approach diminishes the risk of uranium and hydrogen fluoride release. These attributes enable safe sample handling needed during onsite LAARS assay and may help ease shipping challenges for samples to be processed at the IAEA’s offsite laboratory. The LAARS and DA sampler implementation concepts will be described and preliminary technical viability results presented.

  17. Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI

    SciTech Connect (OSTI)

    Aji, Indarta Kuncoro; Waris, A.

    2014-09-30

    Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF{sub 4} composition. The {sup 235}U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF{sub 4} with {sup 235}U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF{sub 4} with {sup 235}U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output.

  18. Neutron spectrometry for UF6 enrichment verification in storage cylinders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principalmore » component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. The results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.« less

  19. EXAFS Analysis of UF4 (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: EXAFS Analysis of UF4 Citation Details In-Document Search Title: EXAFS Analysis of UF4 You are accessing a document from the Department of Energy's (DOE)...

  20. UF{sub 6} cylinder inspections at PGDP

    SciTech Connect (OSTI)

    Lamb, G.W.; Whinnery, W.N.

    1991-12-31

    Routine inspections of all UF{sub 6} cylinders at the Paducah Gaseous Diffusion Plant have been mandated by the Department of Energy. A specific UF{sub 6} cylinder inspection procedure for what items to inspect and training for the operators prior to inspection duty are described. The layout of the cylinder yards and the forms used in the inspections are shown. The large number of cylinders (>30,000) to inspect and the schedule for completion on the mandated time table are discussed. Results of the inspections and the actions to correct the deficiencies are explained. Future inspections and movement of cylinders for relocation of certain cylinder yards are defined.

  1. Two photon spectroscopy of UF6 in the near ultraviolet

    SciTech Connect (OSTI)

    Bernstein, E.R.; Kennedy, P.M.

    1981-03-01

    The two photon excited fluorescence excitation spectrum of UF6 was observed in the region 410 to 315 nm. The spectrum was virtually indistinguishable from the one photon absorption in this region. No vibronic structure was observed in absorption or dispersed emission. These data indicate a high density of u and g states for UF6 in this energy range and facile photochemical decomposition. Emission intensity was found to be proportional to laser power to the 3.0 to 3.6 power.

  2. Safety provisions for UF{sub 6} handling in the design of a new UF{sub 6} conversion plant

    SciTech Connect (OSTI)

    Bannister, S.P.

    1991-12-31

    British Nuclear Fuels plc (BNFL) Fuel Division is currently undertaking the final design and construction of a new UF{sub 6} conversion plant at its production site at Springfields near Preston in the north of England. The Company has gained much experience in the handling of UF{sub 6} during operation of plants on site since 1961. The major hazard occurs during the liquefication cycle and the basis of the maximum credible incident scenario adopted for safety assessment and design purposes is discussed. This paper considers the design features which have been incorporated in the new plant to counter the hazards presented by the presence of UF{sub 6} in gaseous and liquid form and explains current thinking on operational procedures in areas of potential risk such as cylinder filling. The plant emergency response philosophy and systems are described and specific design provisions which have been included to satisfy the UK regulatory bodies are outlined in some detail.

  3. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    SciTech Connect (OSTI)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E. )

    1994-08-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO[sub 2] feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF[sub 4] to produce CF[sub 4] in addition to the reduction of UO[sub 2], but the fraction of metal from the reduction of UF[sub 4] can be decreased by increasing the concentration of dissolved UO[sub 2]. Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF[sub 4].

  4. Method for fluorination of uranium oxide

    DOE Patents [OSTI]

    Petit, George S. (Oak Ridge, TN)

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  5. Alternative method of retesting UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Christ, R.

    1991-12-31

    The paper describes an alternative method to perform the periodic inspection of UF{sub 6} cylinders. The hydraulic test is replaced by ultrasonic checking of wall thickness and by magnetic particle testing of all the weld seams. Information about the legal background, the air leak test and the qualification of inspectors is also given.

  6. Temporary patching of damaged UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Cardenas, A.L.

    1991-12-31

    Patching techniques based on application of epoxy resins have been developed for temporarily repairing UF{sub 6} cylinders which have sustained relatively minor damage and must be safely emptied. The method is considerably faster and simpler than metallurgical weld repairs. Laboratory tests, detailed operational procedures, and case histories of experience at the Portsmouth Gaseous Diffusion Plant are described.

  7. Urenco`s experience of UF{sub 6} handling

    SciTech Connect (OSTI)

    Saelmans, F.; Scane, C.; Christofzik, J.

    1991-12-31

    Urenco operates enrichment plants at three sites, Almelo (Netherlands), Capenhurst (United Kingdom) and Gronau (Germany). Current installed separative work capacity is 2,500 tSWpa. Since 1971, when the first pilot plants were built, enrichment production has totalled 18,000 tSW. During this last 20 years over 3,500 48 containers of UF{sub 6} have been fed to the plants, over 3,700 30 containers have been filled with product and delivered successfully to Urenco`s customers worldwide and over 3,000 48 containers of depleted tails have been filled and have either been returned to customers or retained for long term storage on site. The paper gives a brief outline of Urenco`s experience in handling UF{sub 6}: the equipment and methods used in receiving, feeding, filling, blending, liquid sampling, storing, moving on site and despatching of UF{sub 6} containers. Some of the difficulties experienced with UF{sub 6} containers are appended.

  8. Prototype Radiation Detector Positioning System For The Automated Nondestructive Assay Of Uf6 Cylinders

    SciTech Connect (OSTI)

    Hatchell, Brian K.; Valdez, Patrick LJ; Orton, Christopher R.; Mace, Emily K.

    2011-08-07

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of efficiency and assay accuracy. This paper describes an approach denoted the Integrated Cylinder Verification Station (ICVS) that supports 100% cylinder verification, provides volume-averaged cylinder enrichment assay, and reduces inspector manpower needs. To allow field measurements to be collected to validate data collection algorithms, a prototype radiation detector positioning system was constructed. The system was designed to accurately position an array of radiation detectors along the length of a cylinder to measure UF6 enrichment. A number of alternative radiation shields for the detectors were included with the system. A collimated gamma-ray spectrometer module that allows translation of the detectors in the surrounding shielding to adjust the field of view, and a collimating plug in the end to further reduce the low-energy field of view, were also developed. Proof-of-principle measurements of neutron and high-energy gamma-ray signatures, using moderated neutron detectors and large-volume spectrometers in a fixed-geometry, portal-like configuration, supported an early assessment of the viability of the concept. The system has been used successfully on two testing campaigns at an AREVA fuel fabrication plant to scan over 30 product cylinders. This paper will describe the overall design of the detector positioning system and

  9. On Line Enrichment Monitor (OLEM) UF6 Tests for 1.5" Sch40 SS Pipe, Revision 1

    SciTech Connect (OSTI)

    March-Leuba, José A.; Garner, Jim; Younkin, Jim; Simmons, Darrell W.

    2016-01-01

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants while working within budgetary constraints. The “Model Safeguards Approach for Gas Centrifuge Enrichment Plants” (GCEPs) developed by the IAEA Division of Concepts and Planning in June 2006, defines the three primary Safeguards objectives to be the timely detection of: 1) diversion of significant quantities of natural (NU), depleted (DU) or low-enriched uranium (LEU) from declared plant flow, 2) facility misuse to produce undeclared LEU product from undeclared feed, and 3) facility misuse to produce enrichments higher than the declared maximum, in particular, highly enriched uranium (HEU). The ability to continuously and independently (i.e. with a minimum of information from the facility operator) monitor not only the uranium mass balance but also the 235U mass balance in the facility could help support all three verification objectives described above. Two key capabilities required to achieve an independent and accurate material balance are 1) continuous, unattended monitoring of in-process UF6 and 2) monitoring of cylinders entering and leaving the facility. The continuous monitoring of in-process UF6 would rely on a combination of load-cell monitoring of the cylinders at the feed and withdrawal stations, online monitoring of gas enrichment, and a high-accuracy net weight measurement of the cylinder contents. The Online Enrichment Monitor (OLEM) is the instrument that would continuously measure the time-dependent relative uranium enrichment, E(t), in weight percent 235U, of the gas filling or being withdrawn from the cylinders. The OLEM design concept combines gamma-ray spectrometry using a collimated NaI(Tl) detector with gas pressure and temperature data to calculate the enrichment of the UF6

  10. Development of a portal monitor for UF6 cylinder verification

    SciTech Connect (OSTI)

    Smith, Leon E.; Curtis, Michael M.; Shaver, Mark W.; Benz, Jacob M.; Misner, Alex C.; Mace, Emily K.; Jordan, David V.; Noss, Daniel; Ford, Herbert

    2009-10-06

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s operations. As additional enrichment plans come online to support the expansion of nuclear power, reducing person-days of inspection will take on greater importance. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100% product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Automated Cylinder Enrichment Verification System (ACEVS) would be located at key measurement points and will positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. Given the potential for reduced inspector presence, the operational and manpower-reduction benefits of the portal concept are clear. However, it is necessary to assess whether the cylinder portal concept can meet, or potentially improve upon, today’s U-235 enrichment assay performance. PNNL’s ACEVS concept utilizes sensors that could be operated in an unattended mode: moderated He-3 neutron detectors and large NaI(Tl) scintillators for gamma-ray spectroscopy. The medium-resolution NaI(Tl) scintillators are a sacrifice in energy resolution but do provide high collection efficiency for signatures above 1 MeV. The He-3/NaI sensor combination allows the exploitation of additional, more-penetrating signatures than those currently utilized: Neutrons produced from F-19(μ,n) reactions (spawned primarily from U-234 alpha emission) and high-energy gamma rays (extending up to 10 MeV) induced by

  11. Onsite Gaseous Centrifuge Enrichment Plant UF6 Cylinder Destructive Analysis

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong; Carter, Jennifer C.; McNamara, Bruce K.; O'Hara, Matthew J.; Phillips, Jon R.; Curtis, Michael M.

    2012-07-17

    The IAEA safeguards approach for gaseous centrifuge enrichment plants (GCEPs) includes measurements of gross, partial, and bias defects in a statistical sampling plan. These safeguard methods consist principally of mass and enrichment nondestructive assay (NDA) verification. Destructive assay (DA) samples are collected from a limited number of cylinders for high precision offsite mass spectrometer analysis. DA is typically used to quantify bias defects in the GCEP material balance. Under current safeguards measures, the operator collects a DA sample from a sample tap following homogenization. The sample is collected in a small UF6 sample bottle, then sealed and shipped under IAEA chain of custody to an offsite analytical laboratory. Current practice is expensive and resource intensive. We propose a new and novel approach for performing onsite gaseous UF6 DA analysis that provides rapid and accurate assessment of enrichment bias defects. DA samples are collected using a custom sampling device attached to a conventional sample tap. A few micrograms of gaseous UF6 is chemically adsorbed onto a sampling coupon in a matter of minutes. The collected DA sample is then analyzed onsite using Laser Ablation Absorption Ratio Spectrometry-Destructive Assay (LAARS-DA). DA results are determined in a matter of minutes at sufficient accuracy to support reliable bias defect conclusions, while greatly reducing DA sample volume, analysis time, and cost.

  12. PREVENTION OF SCALE FORMATION IN URANIUM SOLVENT EXTRACTOR

    DOE Patents [OSTI]

    Delaplaine, J.W.

    1957-11-01

    A method for preventing the formation of scale in uranium solvent extraction apparatus is presented. The scale, consisting chiefly of precipitated silica and the sulfates uf calcium and lead, may be prevented by a combination of measures, chiefly by prior heating and agitation to crystallize and remove silica, and by a maintenance of uranyl nitrate concentration in the feed and extractant above certain levels to increase the solubility of the calcium and lead sulfates.

  13. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  14. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF.sub.6

    DOE Patents [OSTI]

    Jones, Robert L.; Otey, Milton G.; Perkins, Roy W.

    1982-01-01

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF.sub.6. The contaminants include fluorine and fluorides which are more reactive with CaCO.sub.3 than is UF.sub.6. The method comprises contacting the contaminant-carrying UF.sub.6 with particulate CaCO.sub.3 at a temperature effecting reaction of the contaminant and the CaCO.sub.3.

  15. Automated Nondestructive Assay of UF6 Cylinders: Detector Characterization and Initial Measurements

    SciTech Connect (OSTI)

    Mace, Emily K.; Smith, Leon E.

    2011-10-01

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders assumed to be representative of the facility's entire cylinder inventory. These measurements are time-consuming and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of manpower and assay accuracy. Pacific Northwest National Laboratory is developing an Integrated Cylinder Verification System (ICVS) intended for this purpose and has developed a field prototype of the nondestructive assay (NDA) components of an ICVS. The nondestructive assay methods would combine the 'traditional' enrichment-meter signature (i.e. 186-keV emission from 235U) as well as 'non-traditional' high-energy photon signatures derived from neutrons produced primarily by 19F({alpha},n) reactions. This paper describes the design, calibration and characterization of the NaI(Tl) and LaBr3(Ce) spectrometers utilized in the field prototype. An overview of a recent field measurement campaign is then provided, supported by example gamma-ray pulse-height spectra collected on cylinders of known enrichment.

  16. May market review. [Spot market prices for uranium (1993)

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    Seven uranium transactions totalling nearly three million pounds equivalent U3O8 were reported during May, but only two, totalling less than 200 thousand pounds equivalent U3O8, involved concentrates. As no discretionary buying occurred during the month, and as near-term supply and demand were in relative balance, prices were steady, while both buyers and sellers appeared to be awaiting some new market development to signal the direction of future spot-market prices. The May 31, 1993, Exchange Value and the Restricted American market Penalty (RAMP) for concentrates were both unchanged at $7.10, and $2.95 per pound U3O8, respectively. NUEXCO's judgement was that transactions for significant quantities of uranium concentrates that were both deliverable in and intended for consumption in the USA could have been concluded on May 31 at $10.05 per pound U3O8. Two near-term concentrate transactions were reported in which one US utility purchased less than 200 thousand pounds equivalent U3O8 from two separate sellers. These sales occurred at price levels at or near the May 31 Exchange Value plus RAMP. No long-term uranium transactions were reported during May. Consequently, the UF6 Value decreased $0.20 to $24.30 per kgU as UF6, reflecting some weakening of the UF6 market outside the USA.

  17. A Mock UF6 Feed and Withdrawal System for Testing Safeguards...

    Office of Scientific and Technical Information (OSTI)

    System for Testing Safeguards Monitoring Systems and Strategies Intended for ... Title: A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and ...

  18. Reactions of aluminum with uranium fluorides and oxyfluorides

    SciTech Connect (OSTI)

    Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S.

    1991-12-31

    Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

  19. Health physics considerations in UF{sub 6} handling

    SciTech Connect (OSTI)

    Bailey, J.C.

    1991-12-31

    Uranium is a radioactive substance that emits alpha particles and very small amounts of gamma radiation. Its daughter products emit beta and gamma radiation. In uranium handling operations these are the radiations one must consider. This presentation will review the characteristics of the radiations, the isotopes from which they originate, the growth and decay of the uranium daughter products, and some specific health physics practices dictated by these factors.

  20. URANIUM ALLOYS

    DOE Patents [OSTI]

    Colbeck, E.W.

    1959-12-29

    A uranium alloy is reported containing from 0.1 to 5 per cent by weight of molybdenum and from 0.1 to 5 per cent by weight of silicon, the balance being uranium.

  1. Radiation-Triggered Surveillance for UF6 Monitoring

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2015-12-01

    This paper recommends the use of radiation detectors, singly or in sets, to trigger surveillance cameras. Ideally, the cameras will monitor cylinders transiting the process area as well as the process area itself. The general process area will be surveyed to record how many cylinders have been attached and detached to the process between inspections. Rad-triggered cameras can dramatically reduce the quantity of recorded images, because the movement of personnel and equipment not involving UF6 cylinders will not generate a surveillance review file.

  2. Quality assurance in the transport of UF{sub 6}

    SciTech Connect (OSTI)

    Ravenscroft, N.L.

    1991-12-31

    Edlow International`s primary business is the international transportation of radioactive materials. Therefore, Edlow has the responsibility to ensure that shipments are performed in compliance with regulatory requirements. In this regard, Edlow maintains a Quality Assurance (QA) Program. A major part of this Program is the establishment and use of QA Procedures. This paper addresses QA procedural requirements and how they are applied to a routine international shipment of low enriched UF{sub 6}. Only the major requirements for scheduling shipments will be addressed.

  3. A more accurate and penetrating method to measure the enrichment and mass of UF6 storage containers using passive neutron self-interrogation

    SciTech Connect (OSTI)

    Menlove, Howard O; Swinhoe, Martyn T; Miller, Karen A

    2010-01-01

    This paper describes an unattended mode neutron measurement that can provide the enrichment of the uranium in UF{sub 6} cylinders. The new passive neutron measurement provides better penetration into the uranium mass than prior gamma-ray enrichment measurement methods. The Passive Neutron Enrichment Monitor (PNEM) provides a new measurement technique that uses passive neutron totals and coincidence counting together with neutron self-interrogation to measure the enrichment in the cylinders. The measurement uses the neutron rates from two detector pods. One of the pods has a bare polyethylene surface next to the cylinder and the other polyethylene surface is covered with Cd to prevent thermal neutrons from returning to the cylinder. The primary neutron source from the enriched UF{sub 6} is the alpha-particle decay from the {sub 234}U that interacts with the fluorine to produce random neutrons. The singles neutron counting rate is dominated by the {sub 234}U neutrons with a minor contribution from the induced fissions in the {sub 235}U. However, the doubles counting rate comes primarily from the induced fissions (i.e., multiplication) in the {sub 235}U in enriched uranium. The PNEM concept makes use of the passive neutrons that are initially produced from the {sub 234}U reactions that track the {sub 235}U enrichment during the enrichment process. The induced fission reactions from the thermal-neutron albedo are all from the {sub 235}U and provide a measurement of the {sub 235}U. The Cd ratio has the desirable feature that all of the thermal-neutron-induced fissions in {sub 235}U are independent of the original neutron source. Thus, the ratio is independent of the uranium age, purity, and prior reactor history.

  4. Uranium deposition study on aluminum: results of early tests

    SciTech Connect (OSTI)

    Hughes, M.R.; Nolan, T.A.

    1984-06-19

    Laboratory experiments to quantify uranium compound deposition on Aluminum 3003 test coupons have been initiated. These experiments consist of exposing the coupons to normal assay UF/sub 6/ (0.7% /sup 235/U) in nickel reaction vessels under various conditions of UF/sub 6/ pressure, temperature, and time. To-date, runs from 5 minutes to 2000 hr have been completed at a UF/sub 6/ pressure of 100 torr and at a temperature of 60/sup 0/C. Longer exposure times are in progress. Initial results indicated that a surface film of uranium, primarily as uranyl fluoride (UO/sub 2/F/sub 2/), is deposited very soon after exposure to UF/sub 6/. In a five minute UF/sub 6/ exposure at a temperature of 60/sup 0/C, an average of 2.9 ..mu..g U/cm/sup 2/ was deposited; after 24 hr the deposit typically increased to 5.0 ..mu..g/cm/sup 2/ and then increased to 10.4 ..mu..g/cm/sup 2/ after 2000 hr. This amount of deposit (at 2000 hr exposure) would contribute roughly 10 to 20% to the total 186 keV gamma signal obtained from a GCEP product header pipe being operated at UF/sub 6/ pressures of 2 to 5 torr. The amount of isotopic exchange which would occur in the deposit in the event that HEU and LEU productions were alternated is considered. It is felt that isotopic exchange would not occur to any significant amount within the fixed deposit during relatively short HEU production periods since the HEU would be present primarily as adsorbed UF/sub 6/ molecules on the surface of the deposit. The adsorbed HEU molecules would be removed by evacuation and diluted by LEU production. Major increases in the deposit count would be observed if a leak occurred or moisture was introduced into the system while HEU was being produced.

  5. April market review. [Spot market prices for uranium (1993)

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The spot market price for uranium outside the USA weakened further during April, and at month end, the NUEXCO Exchange Value had fallen $0.35, to $7.10 per pound U3O8. This is the lowest Exchange Value observed in nearly twenty years, comparable to Values recorded during the low price levels of the early 1970s. The Restricted American Market Penalty (RAMP) for concentrates increased $0.40, to $2.95 per pound U3O8. Transactions for significant quantities of uranium concentrates that are both deliverable in and intended for consumption in the USA could have been concluded on April 30 at $10.05 per pound U3O8, up $0.05 from the sum of corresponding March Values. Four near-term concentrates transactions were reported, totalling nearly 1.5 million pounds equivalent U3O8. One long-term sale was reported. The UF6 Value also declined, as increased competition among sellers led to a $0.50 decrease, to $24.50 per kgU as UF6. However, the RAMP for UF6 increased $0.65, to $5.90 per kgU as UF6, reflecting an effective US market level of $30.40 per kgU. Two near term transactions were reported totalling approximately 1.1 million pounds equivalent U3O8. In total, eight uranium transactions totalling 28 million pounds equivalent U3O8 were reported, which is about average for April market activity.

  6. Aluminum and polymeric coatings for protection of uranium

    SciTech Connect (OSTI)

    Colmenares, C.; McCreary, T.; Monaco, S.; Walkup, C.; Gleeson, G.; Kervin, J.; Smith, R.L.; McCaffrey, C.

    1983-12-21

    Ion-plated aluminum films on uranium will not provide adequate protection for 25 years. Magnetron-plated aluminum films on uranium are much better than ion-plated ones. Kel-F 800 films on uranium can provide adequate protection for 25 years. Their use in production must be delayed until the following factors are sorted out: water permeability in Kel-F 800 must be determined between 30 and 60/sup 0/C; the effect of UF/sub 3/, at the Kel-F/metal interface, on the permeability of water must be assessed; and the effect of crystallinity on water permeability must be evaluated. Applying Kel-F films on aluminum ion-plated uranium provides a good interim solution for long term storage.

  7. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites

    Broader source: Energy.gov [DOE]

    When Babcock & Wilcox Conversion Services took over the DUF6 Project on March 29 of this year, the company had one thing in mind: Bring all seven conversion lines at both plants to fully operational status by Sept. 30, 2011.

  8. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  9. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  10. Perimeter safeguards techniques for uranium-enrichment plants

    SciTech Connect (OSTI)

    Fehlau, P.E.; Chamber, W.H.

    1981-09-01

    In 1972, a working group of the International Atomic Energy Agency identified a goal to develop and evaluate perimeter safeguards for uranium isotope enrichment plants. As part of the United State's response to that goal, Los Alamos Detection and Verification personnel studied gamma-ray and neutron emissions from uranium hexafluoride. They developed instruments that use the emissions to verify uranium enrichment and to monitor perimeter personnel and shipping portals. Unattended perimeter monitors and hand-held verification instruments were evaluated in field measurements and, when possible, were loaned to enrichment facilities for trials. None of the seven package monitoring techniques that were investigated proved entirely satisfactory for an unattended monitor. They either revealed proprietary information about centrifuge design or were subject to interference by shielding materials that could be present in a package. Further evaluation in a centrifuge facility may help in developing an acceptable attended package monitor. 34 figures, 9 tables.

  11. Raman Investigation of The Uranium Compounds U3O8, UF4, UH3 and...

    Office of Scientific and Technical Information (OSTI)

    They absorb the incoming radiation and quickly heat up to the point of decomposition. This has been dealt with in the past by keeping the incoming laser power to very low levels on ...

  12. Raman Investigation of The Uranium Compounds U3O8, UF4, UH3 and...

    Office of Scientific and Technical Information (OSTI)

    ... and can compare with ambient literature data for samples from Strem (US-MA) and ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 11 ...

  13. Depleted uranium storage and disposal trade study: Summary report

    SciTech Connect (OSTI)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  14. Criticality safety review of 2 1/2 -, 10-, and 14-ton UF sub 6 cylinders

    SciTech Connect (OSTI)

    Broadhead, B.L.

    1991-01-01

    The US regulations governing the packaging and transportation of UF{sub 6} cylinders are contained in the publication 10CFR71. Under the current 10CFR71 regulations, packages are classified according to Fissile Class I, II, or III and a corresponding transport index (TI). UF{sub 6} cylinders designed to contain 2{1/2}-tons of UF{sub 6} are classified as Fissile Class II packages with a TI of 5 for the purpose of transportation. The 10-ton UF{sub 6} cylinders are classified as Fissile Class I with no TI assigned for transportation. The 14-ton cylinders are not certified for transport with enrichments greater than 1 wt % since they have no approved overpack. This work reviews the suitability of 2{1/2}-ton UF{sub 6} packages for reclassification as Fissile Class I with a maximum {sup 235}U enrichment of 5 wt %. Additionally, the 10- and 14-ton cylinders are reviewed to address a change in maximum {sup 235}U enrichment from 4.5 to 5 wt %. Based on this evaluation, the 2{1/2}-ton UF{sub 6} cylinders meet the 10CFR71 criteria for Fissile Class I packages, and no TI is needed for criticality safety purposes. Similarly, the 10- and 14-ton UF{sub 6} packages appear suitable for a maximum enrichment rating change to 5 wt % {sup 235}U. 6 refs., 4 figs., 1 tab.

  15. Modeling of UF{sub 6} enrichment with gas centrifuges for nuclear safeguards activities

    SciTech Connect (OSTI)

    Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G.

    2012-09-26

    The physical modeling of uranium isotopes ({sup 235}U, {sup 238}U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF{sub 6} gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution and the solution was obtained using the Matlab software tool. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays). Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the 'on site' inspectors' measurements.

  16. Summary of Field Measurement on UF6 Cylinders Using Electro-Mechanically Cooled Systems

    SciTech Connect (OSTI)

    McGinnis, Brent R; Smith, Steven E; Solodov, Alexander A; Whitaker, J Michael; Morgan, James B; MayerII, Richard L.; Montgomery, J. Brent

    2009-01-01

    Measurement of the enrichment of solid state UF6 stored within large metal cylinders is a task commonly performed by plant operators and inspectors. The measurement technologies typically used range from low-resolution, high-efficiency sodium iodide detectors to high-resolution, moderate-efficiency high-purity germanium (HPGe) detectors. The technology used and methods deployed are dependent upon the material being measured, environmental conditions, time constraints, and measurement-precision requirements. Operators and inspectors typically use specially designed, HPGe detectors that are cooled with liquid nitrogen in situations where high-resolution measurements are required. However, the requirement for periodically refilling the system with liquid nitrogen makes remote usage cumbersome and slow. The task of cooling the detector reduces the available time for the inspector to perform other safeguards activities while on site. If the inspector has to reduce the count time for each selected cylinder to ensure that all preselected cylinders are measured during the inspection, the resulting measurement uncertainties may be increased, making it more difficult to detect and verify potential discrepancies in the operator's declarations. However, recent advances in electromechanically cooled HPGe detectors may provide the inspector with an improved verification tool by eliminating the need for liquid nitrogen. This report provides a summary of test results for field measurements performed using electromechanically cooled HPGe detectors on depleted, natural, and low-enriched uranium cylinders. The results of the study provide valuable information to inspectors and operators regarding the capabilities and limitations of electromechanically cooled systems based on true field-measurement conditions.

  17. Overseas shipments of 48Y cylinders

    SciTech Connect (OSTI)

    Tanaka, R.T.; Furlan, A.S.

    1991-12-31

    This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

  18. Natural uranium/conversion services/enrichment services

    SciTech Connect (OSTI)

    1993-12-31

    This article is the 1993 uranium market summary. During this reporting period, there were 50 deals in the concentrates market, 26 deals in the UF6 market, and 14 deals for enrichment services. In the concentrates market, the restricted value closed $0.15 higher at $9.85, and the unrestricted value closed down $0.65 at $7.00. In the UF6 market, restricted prices fluctuated and closed higher at $31.00, and unrestricted prices closed at their initial value of $24.75. The restricted transaction value closed at $10.25 and the unrestricted value closed at $7.15. In the enrichment services market, the restricted value moved steadily higher to close at $84.00 per SWU, and the unrestricted value closed at its initial value of $68.00 per SWU.

  19. URANIUM COMPOSITIONS

    DOE Patents [OSTI]

    Allen, N.P.; Grogan, J.D.

    1959-05-12

    This patent relates to high purity uranium alloys characterized by improved stability to thermal cycling and low thermal neutron absorption. The high purity uranium alloy contains less than 0.1 per cent by weight in total amount of any ore or more of the elements such as aluminum, silicon, phosphorous, tin, lead, bismuth, niobium, and zinc.

  20. Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

    1996-10-01

    Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

  1. Uranium Processing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Uranium Processing Facility

  2. 18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer

    SciTech Connect (OSTI)

    Fujinaga, H.; Yamazaki, N.; Takebe, N.

    1991-12-31

    In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

  3. PREPARATION OF HIGH PURITY UF$sub 4$

    DOE Patents [OSTI]

    Magner, J.E.; Long, R.S.; Ellis, D.A.; Grinstead, R.R.

    1962-04-17

    S>A process for preparing very highly pure uranous tetrafluoride from impure uranium laden solvent extraction strip solutions, ion exchange process and resin-inpulp process eluate solutions which are at least 8M in hydrochloric acid is described. The process first comprises treating any of the above-mentioned solutions with a reducing agent to reduce the uranium to the + 4 oxidation state, and then contacting the reduced solution with an extractant phase comprising about 10 to 70% of tri-butyl phosphate in an organic solvent-diluent selected from benzene, ethyl-benzene, chlorobenzene, xylene, kerosene, or the like. The uranium is extracted into the extractant phase and is subsequently precipitated by treating the extractant with an aqueous fluoride solution. The highly pure uranous tetrafluoride precipitate is separated from the phases and recovered for subsequent utilization. (AEC)

  4. Natural phenomena evaluations of the K-25 site UF{sub 6} cylinder storage yards

    SciTech Connect (OSTI)

    Fricke, K.E.

    1996-09-15

    The K-25 Site UF{sub 6} cylinder storage yards are used for the temporary storage of UF{sub 6} normal assay cylinders and long-term storage of other UF{sub 6} cylinders. The K-25 Site UF{sub 6} cylinder storage yards consist of six on-site areas: K-1066-B, K-1066-E, K-1066-F, K-1066-J, K-1066-K and K-1066-L. There are no permanent structures erected on the cylinder yards, except for five portable buildings. The operating contractor for the K-25 Site is preparing a Safety Analysis Report (SAR) to examine the safety related aspects of the K-25 Site UF{sub 6} cylinder storage yards. The SAR preparation encompasses many tasks terminating in consequence analysis for the release of gaseous and liquid UF{sub 6}, one of which is the evaluation of natural phenomena threats, such as earthquakes, floods, and winds. In support of the SAR, the six active cylinder storage yards were evaluated for vulnerabilities to natural phenomena, earthquakes, high winds and tornados, tornado-generated missiles, floods (local and regional), and lightning. This report summarizes those studies. 30 refs.

  5. Uranium industry annual 1997

    SciTech Connect (OSTI)

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  6. JACKETING URANIUM

    DOE Patents [OSTI]

    Saller, H.A.; Keeler, J.R.

    1959-07-14

    The bonding to uranium of sheathing of iron or cobalt, or nickel, or alloys thereof is described. The bonding is accomplished by electro-depositing both surfaces to be joined with a coating of silver and amalgamating or alloying the silver layer with mercury or indium. Then the silver alloy is homogenized by exerting pressure on an assembly of the uranium core and the metal jacket, reducing the area of assembly and heating the assembly to homogenize by diffusion.

  7. Microsoft PowerPoint - 9_Jessica White-Horton_NMMSS_2013.ppt [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    Global Monitoring of Uranium Hexafluoride Cylinders Jessica White-Horton, Oak Ridge National Laboratory NMMSS Users Annual Training Meeting, May 21, 2013 Outline 2  Project Context & Current Challenges  NNSA 5-year Program Plan  Concept of Operations  Stakeholder Views * Conclusions and Next Steps Model 30B cylinder for low- enriched uranium (LEU) Model 48Y cylinder for natural uranium Context for NNSA UF 6 Project 3 * Approximately 20,000 cylinders are in active circulation at

  8. Wetland assessment of the effects of construction and operation of a depleteduranium hexafluoride conversion facility at the Portsmouth, Ohio, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This wetland assessment has been prepared by DOE, pursuant to Executive Order 11990 (''Protection of Wetlands'') and DOE regulations for implementing this Executive Order as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [Compliance with Floodplain and Wetland Environmental Review Requirements]), to evaluate potential impacts to wetlands from the construction and operation of a conversion facility at the DOE Portsmouth site. Approximately 0.02 acre (0.009 ha) of a 0.08-acre (0.03-ha) palustrine emergent wetland would likely be eliminated by direct placement of fill material during facility construction at Location A. Portions of this wetland that are not filled may be indirectly affected by an altered

  9. MODEL AND ALGORITHM EVALUATION FOR THE HYBRID UF6 CONTAINER INSPECTION SYSTEM

    SciTech Connect (OSTI)

    McDonald, Benjamin S.; Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; Smith, Leon E.; Wittman, Richard S.

    2011-06-14

    ABSTRACT Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter (186 keV photons from U-235) data and non-traditional, neutron-induced, high-energy gamma-signatures (3-8.5 MeV) with an array of collimated, medium-resolution scintillators. Previous (2010) work at PNNL demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term unattended operations. We used Monte Carlo modeling with MCNP5 to support system design (e.g., number and configuration of detector arrays, and design of iron/poly collimators for enhanced (n,γ) conversion) and enrichment algorithm development. We developed a first-generation modeling framework in 2010. These tools have since been expanded, refined and benchmarked against field measurements with a prototype system of a 30B cylinder population (0.2 to 4.95 weight % U-235). The MCNP5 model decomposes the radiation transport problem into a linear superposition of “basis spectra” representing contributions from the different uranium isotopes and gamma-ray generation mechanisms (e.g. neutron capture). This scheme accommodates fast generation of “virtual assay signatures” for arbitrary enrichment, material age, and fill variations. Ongoing (FY-2011) refinements to the physics model include accounting for generation of bremsstrahlung photons, arising primarily from the beta decay of Pa-234m, a U-238 daughter. We are using the refined model to optimize collimator design for the hybrid method. The traditional assay method benefits from a high degree of collimation (to isolate each detector’s field-of-view) and relatively small detector area, while the non-traditional method benefits from a wide field

  10. High temperature experiments on a 4 tons UF6 container TENERIFE program

    SciTech Connect (OSTI)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.