National Library of Energy BETA

Sample records for uranium hexafluoride duf6

  1. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6...

    Energy Savers [EERE]

    DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at...

  2. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

    Broader source: Energy.gov (indexed) [DOE]

    Jack Zimmerman, DUF6 at the PortsmouthPaducah Project Office. DUF6 is depleted uranium hexafluoride, a byproduct of uranium enrichment that has taken place at U.S. gaseous...

  3. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah...

    Broader source: Energy.gov (indexed) [DOE]

    and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of...

  4. DUF6 Project Doubles Production in 2013 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier. EM's Portsmouth Paducah Project Office...

  5. EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

  6. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153Danielthrough theK APolicyonStates | Department

  7. Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants

    SciTech Connect (OSTI)

    Jones, E

    1999-07-26

    One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on the conversion process, preconceptual plant description, rough capital and operating costs, and preliminary project schedule.

  8. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  9. DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services

    Broader source: Energy.gov [DOE]

    Cincinnati – The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH.

  10. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...

    Broader source: Energy.gov (indexed) [DOE]

    and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site;...

  11. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  12. Uranium hexafluoride bibliography

    SciTech Connect (OSTI)

    Burnham, S.L.

    1988-01-01

    This bibliography is a compilation of reports written about the transportation, handling, safety, and processing of uranium hexafluoride. An on-line literature search was executed using the DOE Energy files and the Nuclear Science Abstracts file to identify pertinent reports. The DOE Energy files contain unclassified information that is processed at the Office of Scientific and Technical Information of the US Department of Energy. The reports selected from these files were published between 1974 and 1983. Nuclear Science Abstracts contains unclassified international nuclear science and technology literature published from 1948 to 1976. In addition, scientific and technical reports published by the US Atomic Energy Commission and the US Energy Research and Development Administration, as well as those published by other agencies, universities, and industrial and research organizations, are included in the Nuclear Science Abstracts file. An alphabetical listing of the acronyms used to denote the corporate sponsors follows the bibliography.

  13. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominateEnergyThis memoEnergy TheDepartment

  14. DUF6 Materials Use Roadmap

    SciTech Connect (OSTI)

    Haire, M.J.

    2002-09-04

    The U.S. government has {approx}500,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms stored at U.S. Department of Energy (DOE) sites across the United States. This DU, most of which is DU hexafluoride (DUF{sub 6}) resulting from uranium enrichment operations, is the largest amount of nuclear material in DOE's inventory. On July 6, 1999, DOE issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap'' in order to establish a strategy for the products resulting from conversion of DUF{sub 6} to a stable form. This report meets the commitment in the Final Plan by providing a comprehensive roadmap that DOE will use to guide any future research and development activities for the materials associated with its DUF{sub 6} inventory. The Roadmap supports the decision presented in the ''Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride'', namely to begin conversion of the DUF{sub 6} inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for future uses of as much of this inventory as possible. In particular, the Roadmap is intended to explore potential uses for the DUF{sub 6} conversion products and to identify areas where further development work is needed. It focuses on potential governmental uses of DUF{sub 6} conversion products but also incorporates limited analysis of using the products in the private sector. The Roadmap builds on the analyses summarized in the recent ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride''. It also addresses other surplus DU, primarily in the form of DU trioxide and DU tetrafluoride. The DU-related inventory considered here includes the following: (1) Components directly associated with the DUF{sub 6} presently being stored at gaseous diffusion plant sites in Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee--470,500 MT of DU, 225,000 MT of fluorine chemically combined with the DU, and 74,000 MT of carbon steel comprising the storage cylinders; (2) Approximately 27,860 MT of DU in the form of uranium trioxide, tetrafluoride, and various other forms containing varying amounts of radioactive and chemical impurities, presently stored primarily at DOE's Savannah River Site. This Roadmap characterizes and analyzes alternative paths for eventual disposition of these materials, identifies the barriers that exist to implementing the paths, and makes recommendations concerning the activities that should be undertaken to overcome the barriers. The disposition paths considered in this roadmap and shown in Fig. ES.1 are (a) implementation of cost-effective and institutionally feasible beneficial uses of DU using the products of DUF{sub 6} conversion and other forms of DU in DOE's inventory, (b) processing the fluorine product resulting from DUF{sub 6} conversion to yield an optimal mix of valuable fluorine compounds [e.g., hydrogen fluoride (hydrofluoric acid), boron trifluoride] for industrial use, and (c) processing emptied cylinders to yield intact cylinders that are suitable for reuse, while maintaining an assured and cost-effective direct disposal path for all of the DU-related materials. Most paths consider the potential beneficial use of the DU and other DUF{sub 6} conversion products for the purpose of achieving overall benefits, including cost savings to the federal government, compared with simply disposing of the materials. However, the paths provide for assured direct disposal of these products if cost-effective and institutionally feasible beneficial uses are not found.

  15. Depleted uranium storage and disposal trade study: Summary report

    SciTech Connect (OSTI)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  16. Fire testing of bare uranium hexafluoride cylinders

    SciTech Connect (OSTI)

    Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  17. Fire testing of bare uranium hexafluoride cylinders

    SciTech Connect (OSTI)

    Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  18. The solubility of uranium hexafluoride in perfluoroethers

    SciTech Connect (OSTI)

    Barber, E.J.

    1984-07-15

    The polyperfluoroethers are compatible with uranium hexafluoride (UF/sub 6/) and are suitable for use in diffusion pumps and in mechanical vacuum pumps which rely on oil as both the lubricant and the seal. The UF/sub 6/ is soluble in all fluids with which it is compatible. Because a number of vacuum pumps in the BOP facilities of the GCEP plant employ these perfluoroether oils as the working fluid and have oil chambers which are large, questions have been raised as to the relationships governing the solubility of UF/sub 6/ in these materials and the maximum quantities of UF/sub 6/ which could be dissolved in these oils under credible accident conditions. This report summarizes these solubility relations and the interaction of the UF/sub 6/ solubility and the pumping capability of this type of vacuum pump. It will be shown that, whereas the solubility of UF/sub 6/ in Fomblin Y25 fluoroether fluid under a UF/sub 6/ pressure of 760 torr and at the pump operating temperature of 160/sup 0/F is about 500 g of UF/sub 6/ per liter of oil, the system controls are such as to isolate the system from the pumps before the quantity of UF/sub 6/ dissolved in the perfluoroether exceeds about 10 g of UF/sub 6/ per liter of oil. 13 refs., 7 figs.

  19. TRIMOLECULAR REACTIONS OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect (OSTI)

    Westbrook, M.; Becnel, J.; Garrison, S.

    2010-02-25

    The hydrolysis reaction of uranium hexafluoride (UF{sub 6}) is a key step in the synthesis of uranium dioxide (UO{sub 2}) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF{sub 6} molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizeable barrier of 78.2 kJ {center_dot} mol{sup -1}, indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO{sub 2} product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF{sub 6} molecules and one water molecule, and (2) the reaction of two water molecules with a single UF{sub 6} molecule. The predicted reaction of two UF{sub 6} molecules with one water molecule displays an interesting 'fluorine-shuttle' mechanism, a significant energy barrier of 69.0 kJ {center_dot} mol{sup -1} to the formation of UF{sub 5}OH, and an enthalpy of reaction ({Delta}H{sub 298}) of +17.9 kJ {center_dot} mol{sup -1}. The reaction of a single UF{sub 6} molecule with two water molecules displays a 'proton-shuttle' mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ {center_dot} mol{sup -1} and an exothermic enthalpy of reaction ({Delta}H{sub 298}) of -13.9 kJ {center_dot} mol{sup -1}. The exothermic nature of the overall UF{sub 6} + 2 {center_dot} H{sub 2}O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging; however, the sizable energy barrier indicates further study of the UF{sub 6} hydrolysis reaction mechanism is warranted to resolve the remaining discrepancies between the predicted mechanisms and experimental observations.

  20. DUF6 Project Continues on Success Track | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DUF6 Project Continues on Success Track DUF6 Project Continues on Success Track January 29, 2014 - 12:00pm Addthis The Paducah plant processed this DUF6 cylinder, its first, in...

  1. Method for removing adhering or dust-like deposits in systems handling uranium hexafluoride

    SciTech Connect (OSTI)

    Bacher, W.; Jacob, E.

    1984-02-28

    A process is claimed for removing adhering or dust-like deposits in an apparatus which handles uranium hexafluoride. The process includes the steps of: (a) reacting the deposits with a gaseous boron halogenide other than boron trifluoride, to form at least one uranium halogenide; and (b) reacting the at least one uranium halogenide with a fluorine containing substance to form uranium hexafluoride.

  2. In-line assay monitor for uranium hexafluoride

    DOE Patents [OSTI]

    Wallace, S.A.

    1980-03-21

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.

  3. Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings

    SciTech Connect (OSTI)

    Strunk, W.D.; Thornton, S.G. (eds.)

    1988-01-01

    This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA. (LTN)

  4. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOE Patents [OSTI]

    Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  5. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  6. Including environmental concerns in management strategies for depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Goldberg, M. [Argonne National Laboratory, Washington, DC (United States); Avci, H.I. [Argonne National Lab., IL (United States); Bradley, C.E. [USDOE, Washington, DC (United States)

    1995-12-31

    One of the major programs within the Office of Nuclear Energy, Science, and Technology of the US Department of Energy (DOE) is the depleted uranium hexafluoride (DUF{sub 6}) management program. The program is intended to find a long-term management strategy for the DUF{sub 6} that is currently stored in approximately 46,400 cylinders at Paducah, KY; Portsmouth, OH; and Oak Ridge, TN, USA. The program has four major components: technology assessment, engineering analysis, cost analysis, and the environmental impact statement (EIS). From the beginning of the program, the DOE has incorporated the environmental considerations into the process of strategy selection. Currently, the DOE has no preferred alternative. The results of the environmental impacts assessment from the EIS, as well as the results from the other components of the program, will be factored into the strategy selection process. In addition to the DOE`s current management plan, other alternatives continued storage, reuse, or disposal of depleted uranium, will be considered in the EIS. The EIS is expected to be completed and issued in its final form in the fall of 1997.

  7. Standard test methods for arsenic in uranium hexafluoride

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 These test methods are applicable to the determination of total arsenic in uranium hexafluoride (UF6) by atomic absorption spectrometry. Two test methods are given: Test Method A—Arsine Generation-Atomic Absorption (Sections 5-10), and Test Method B—Graphite Furnace Atomic Absorption (Appendix X1). 1.2 The test methods are equivalent. The limit of detection for each test method is 0.1 ?g As/g U when using a sample containing 0.5 to 1.0 g U. Test Method B does not have the complete collection details for precision and bias data thus the method appears as an appendix. 1.3 Test Method A covers the measurement of arsenic in uranyl fluoride (UO2F2) solutions by converting arsenic to arsine and measuring the arsine vapor by flame atomic absorption spectrometry. 1.4 Test Method B utilizes a solvent extraction to remove the uranium from the UO2F2 solution prior to measurement of the arsenic by graphite furnace atomic absorption spectrometry. 1.5 Both insoluble and soluble arsenic are measured when UF6 is...

  8. DUF6 Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us| Department ofDisposition SchedulesDUF6

  9. Uranium hexafluoride: A manual of good handling practices. Revision 7

    SciTech Connect (OSTI)

    NONE

    1995-01-01

    The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

  10. Standard practice for bulk sampling of liquid uranium hexafluoride

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers methods for withdrawing representative samples of liquid uranium hexafluoride (UF6) from bulk quantities of the material. Such samples are used for determining compliance with the applicable commercial specification, for example Specification C787 and Specification C996. 1.2 It is assumed that the bulk liquid UF6 being sampled comprises a single quality and quantity of material. This practice does not address any special additional arrangements that might be required for taking proportional or composite samples, or when the sampled bulk material is being added to UF6 residues already in a container (“heels recycle”). 1.3 The number of samples to be taken, their nominal sample weight, and their disposition shall be agreed upon between the parties. 1.4 The scope of this practice does not include provisions for preventing criticality incidents. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of th...

  11. Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Dubrin, J.W., Rahm-Crites, L.

    1997-09-01

    The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

  12. Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 1

    SciTech Connect (OSTI)

    Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

    1995-06-30

    With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation. These Appendices contain the Federal Register Notice, comments on evaluation factors, independent technical reviewers resumes, independent technical reviewers manual, and technology information packages.

  13. Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 2

    SciTech Connect (OSTI)

    Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

    1995-06-30

    With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation.

  14. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover procedures for subsampling and for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride UF6. Most of these test methods are in routine use to determine conformance to UF6 specifications in the Enrichment and Conversion Facilities. 1.2 The analytical procedures in this document appear in the following order: Note 1—Subcommittee C26.05 will confer with C26.02 concerning the renumbered section in Test Methods C761 to determine how concerns with renumbering these sections, as analytical methods are replaced with stand-alone analytical methods, are best addressed in subsequent publications. Sections Subsampling of Uranium Hexafluoride 7 - 10 Gravimetric Determination of Uranium 11 - 19 Titrimetric Determination of Uranium 20 Preparation of High-Purity U3O 8 21 Isotopic Analysis 22 Isotopic Analysis by Double-Standard Mass-Spectrometer Method 23 - 29 Determination of Hydrocarbons, Chlorocarbons, and Partially Substitut...

  15. Depleted uranium hexafluoride management program : data compilation for the Portsmouth site.

    SciTech Connect (OSTI)

    Hartmann, H. M.

    2001-06-05

    This report is a compilation of data and analyses for the Portsmouth site, near Portsmouth, Ohio. The data were collected and the analyses were done in support of the U.S. Department of Energy (DOE) 1999 Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (DOE/EIS-0269). The report describes the affected environment at the Portsmouth site and summarizes potential environmental impacts that could result from conducting the following depleted uranium hexafluoride (UF{sub 6}) management activities at the site: continued cylinder storage, preparation of cylinders for shipment, conversion, and long-term storage. DOE's preferred alternative is to begin converting the depleted UF{sub 6} inventory as soon as possible to either uranium oxide, uranium metal, or a combination of both, while allowing for use of as much of this inventory as possible.

  16. Depleted uranium hexafluoride management program : data compilation for the Paducah site.

    SciTech Connect (OSTI)

    Hartmann, H.

    2001-06-07

    This report is a compilation of data and analyses for the Paducah site, near Paducah, Kentucky. The data were collected and the analyses were done in support of the U.S. Department of Energy (DOE) 1999 Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (DOE/EIS-0269). The report describes the affected environment at the Paducah site and summarizes potential environmental impacts that could result from conducting the following depleted uranium hexafluoride (UF{sub 6}) activities at the site: continued cylinder storage, preparation of cylinders for shipment, conversion, and long-term storage. DOE's preferred alternative is to begin converting the depleted UF{sub 6} inventory as soon as possible to either uranium oxide, uranium metal, or a combination of both, while allowing for use of as much of this inventory as possible.

  17. Engineering analysis report for the long-term management of depleted uranium hexafluoride : storage of depleted uranium metal.

    SciTech Connect (OSTI)

    Folga, S.M.; Kier, P.H.; Thimmapuram, P.R.

    2001-01-24

    This report contains an engineering analysis of long-term storage of uranium metal in boxes as an option for long-term management of depleted uranium hexafluoride (UF{sub 6}). Three storage facilities are considered: buildings, vaults, and mined cavities. Three cases are considered: either all, half, or a quarter of the depleted uranium metal that would be produced from the conversion of depleted UF{sub 6} is stored at the facility. The analysis of these alternatives is based on a box design used in the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride, report DOE/EIS-0269, published in 1999 by the US Department of Energy. This box design does not appear to effectively use space within the box. Hence, an alternative box design that allows for a reduced storage area is addressed in the appendices for long-term storage in buildings.

  18. Depleted uranium hexafluoride management program : data compilation for the K-25 site.

    SciTech Connect (OSTI)

    Hartmann, H. M.

    2001-06-05

    This report is a compilation of data and analyses for the K-25 site on the Oak Ridge Reservation, Oak Ridge, Tennessee. The data were collected and the analyses were done in support of the U.S. Department of Energy (DOE) 1999 Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (DOE/EIS-0269). The report describes the affected environment at the K-25 site and summarizes the potential environmental impacts that could result from continued cylinder storage and preparation of cylinders for shipment at the site. It is probable that the cylinders at the K-25 site will be shipped to another site for conversion. Because conversion and long-term storage of the entire inventory at the K-25 site are highly unlikely, these data are not presented in this report. DOE's preferred alternative is to begin converting the depleted uranium hexafluoride inventory as soon as possible to either uranium oxide, uranium metal, or a combination of both, while allowing for use of as much of this inventory as possible.

  19. Evaluation of health effects in Sequoyah Fuels Corporation workers from accidental exposure to uranium hexafluoride

    SciTech Connect (OSTI)

    Fisher, D.R. (Pacific Northwest Lab., Richland, WA (USA)); Swint, M.J.; Kathren, R.L. (Hanford Environmental Health Foundation, Richland, WA (USA))

    1990-05-01

    Urine bioassay measurements for uranium and medical laboratory results were studied to determine whether there were any health effects from uranium intake among a group of 31 workers exposed to uranium hexafluoride (UF{sub 6}) and hydrolysis products following the accidental rupture of a 14-ton shipping cylinder in early 1986 at the Sequoyah Fuels Corporation uranium conversion facility in Gore, Oklahoma. Physiological indicators studied to detect kidney tissue damage included tests for urinary protein, casts and cells, blood, specific gravity, and urine pH, blood urea nitrogen, and blood creatinine. We concluded after reviewing two years of follow-up medical data that none of the 31 workers sustained any observable health effects from exposure to uranium. The early excretion of uranium in urine showed more rapid systemic uptake of uranium from the lung than is assumed using the International Commission on Radiological Protection (ICRP) Publication 30 and Publication 54 models. The urinary excretion data from these workers were used to develop an improved systemic recycling model for inhaled soluble uranium. We estimated initial intakes, clearance rates, kidney burdens, and resulting radiation doses to lungs, kidneys, and bone surfaces. 38 refs., 10 figs., 7 tabs.

  20. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Paducah site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion coproduct; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  1. Determination of trace impurities in uranium hexafluoride using inductively coupled plasma-atomic emission spectroscopy

    SciTech Connect (OSTI)

    Floyd, M.A.; Morrow, R.W.; Lazader, W.B.; Farrar, R.B.; Halouma, A.A.

    1982-06-01

    A procedure has been developed to determine 30 trace elements in high-purity uranium hexafluoride (UF/sub 6/) using inductively coupled plasma-atomic emission spectroscopy. The analytical method consists of a liquid-liquid extraction of the uranium from the trace impurities with a tri-(2-ethyl-hexyl)-phosphate (TEHP)-hexane mixture. A computer-controlled scanning monochromator system interfaced to an inductively coupled plasma (ICP) is then used to determine the levels of 30 trace elements present in the UF/sub 6/. A single sample dissolution procedure is used for all elements investigated. This preliminary report details experimental work done to date as part of a countinuing program to determine metallic impurities in uranium by ICP.

  2. Standard test method for determination of technetium-99 in uranium hexafluoride by liquid scintillation counting

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method is a quantitative method used to determine technetium-99 (99Tc) in uranium hexafluoride (UF6) by liquid scintillation counting. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Standard guide for determination of plutonium and neptunium in uranium hexafluoride by alpha spectrometry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This method covers the determination of plutonium and neptunium isotopes in uranium hexafluoride by alpha spectroscopy. The method can also be applicable to any matrix that may be converted to a nitric acid system. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

  4. Standard specification for uranium hexafluoride enriched to less than 5 % 235U

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification covers nuclear grade uranium hexafluoride (UF6) that either has been processed through an enrichment plant, or has been produced by the blending of Highly Enriched Uranium with other uranium to obtain uranium of any 235U concentration below 5 % and that is intended for fuel fabrication. The objectives of this specification are twofold: (1) To define the impurity and uranium isotope limits for Enriched Commercial Grade UF6 so that, with respect to fuel design and manufacture, it is essentially equivalent to enriched uranium made from natural UF6; and (2) To define limits for Enriched Reprocessed UF6 to be expected if Reprocessed UF6 is to be enriched without dilution with Commercial Natural UF6. For such UF6, special provisions, not defined herein, may be needed to ensure fuel performance and to protect the work force, process equipment, and the environment. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched UF6 that is to be used in the pro...

  5. Summary of the cost analysis report for the long-term management of depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Dubrin, J.W.; Rahm-Crites, L.

    1997-09-01

    This report is a summary of the Cost Analysis Report which provides comparative cost data for the management strategy alternatives. The PEIS and the Cost Analysis Report will help DOE select a management strategy. The Record of Decision, expected in 1998, will complete the first part of the Depleted Uranium Hexafluoride Management Program. The second part of the Program will look at specific sites and technologies for carrying out the selected strategy. The Cost Analysis Report estimates the primary capital and operating costs for the different alternatives. It reflects the costs of technology development construction of facilities, operation, and decontamination and decommissioning. It also includes potential revenues from the sale of by-products such as anhydrous hydrogen fluoride (ABF). These estimates are based on early designs. They are intended to help in comparing alternatives, rather than to indicate absolute costs for project budgets or bidding purposes. More detailed estimates and specific funding sources will be considered in part two of the Depleted Uranium Hexafluoride Management Program.

  6. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  7. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1

    SciTech Connect (OSTI)

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

  8. DUF6 Project Doubles Production in 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153 METHODSDOE/LaborSeptemberEnergy DS02: A NewDUF6

  9. TRANSITION STATE FOR THE GAS-PHASE REACTION OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect (OSTI)

    Garrison, S; James Becnel, J

    2008-03-18

    Density Functional Theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transitions states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF{sub 6}, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F{sub 5}, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structure and relative energies of the reacting complex and transition state. However, a significant change in the product complex structure was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF{sub 4}, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF{sub 6} with water.

  10. Sampling, characterization, and remote sensing of aerosols formed in the atmospheric hydrolysis of uranium hexafluoride

    SciTech Connect (OSTI)

    Bostick, W.D.; McCulla, W.H.; Pickrell, P.W.

    1984-05-01

    When gaseous uranium hexafluoride (UF/sub 6/) is released into the atmosphere, it rapidly reacts with ambient moisture to form an aerosol of uranyl fluoride (UO/sub 2/F/sub 2/) and hydrogen fluoride (HF). As part of our Safety Analysis program, we have performed several experimental releases of HF/sub 6/ in contained volumes in order to investigate techniques for sampling and characterizing the aerosol materials. The aggregate particle morphology and size distribution have been found to be dependent upon several conditions, including the temperature of the UF/sub 6/ at the time of its release, the relative humidity of the air into which it is released, and the elapsed time after the release. Aerosol composition and settling rate have been investigated using stationary samplers for the separate collection of UO/sub 2/F/sub 2/ and HF and via laser spectroscopic remote sensing (Mie scatter and infrared spectroscopy). 25 refs., 16 figs., 5 tabs.

  11. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Becker, D.L.; Lindquist, M.R.

    1993-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF[sub 6]). Uranium hexafluoride enriched greater than 1.0 wt percent [sup 235]U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF[sub 6] cylinders/overpacks (Reference 3). Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF[sub 6] packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a tram of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the review is documented in Reference 4.

  12. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Becker, D.L.; Lindquist, M.R.

    1993-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched greater than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks (Reference 3). Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a tram of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the review is documented in Reference 4.

  13. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    SciTech Connect (OSTI)

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-09-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.

  14. Uranium hexafluoride liquid thermal expansion, elusive eutectic with hydrogen fluoride, and very first production using chlorine trifluoride

    SciTech Connect (OSTI)

    Rutledge, G.P. [Central Environmental, Inc., Anchorage, AK (United States)

    1991-12-31

    Three unusual incidents and case histories involving uranium hexafluoride in the enrichment facilities of the USA in the late 1940`s and early 1950`s are presented. The history of the measurements of the thermal expansion of liquids containing fluorine atoms within the molecule is reviewed with special emphasis upon uranium hexafluoride. A comparison is made between fluorinated esters, fluorocarbons, and uranium hexafluoride. The quantitative relationship between the thermal expansion coefficient, a, of liquids and the critical temperature, T{sub c} is presented. Uranium hexafluoride has an a that is very high in a temperature range that is used by laboratory and production workers - much higher than any other liquid measured. This physical property of UF{sub 6} has resulted in accidents involving filling the UF{sub 6} containers too full and then heating with a resulting rupture of the container. Such an incident at a uranium gaseous diffusion plant is presented. Production workers seldom {open_quotes}see{close_quotes} uranium hexafluoride. The movement of UF{sub 6} from one container to another is usually trailed by weight, not sight. Even laboratory scientists seldom {open_quotes}see{close_quotes} solid or liquid UF{sub 6} and this can be a problem at times. This inability to {open_quotes}see{close_quotes} the UF{sub 6}-HF mixtures in the 61.2{degrees}C to 101{degrees}C temperature range caused a delay in the understanding of the phase diagram of UF{sub 6}-HF which has a liquid - liquid immiscible region that made the eutectic composition somewhat elusive. Transparent fluorothene tubes solved the problem both for the UF{sub 6}-HF phase diagram as well as the UF{sub 6}-HF-CIF{sub 3} phase diagram with a miscibility gap starting at 53{degrees}C. The historical background leading to the first use of CIF{sub 3} to produce UF{sub 6} in both the laboratory and plant at K-25 is presented.

  15. Study of the hydrolysis of uranium hexafluoride by Fourier transform infrared spectroscopy

    SciTech Connect (OSTI)

    Anderson, S.P.

    1982-08-01

    The reaction of uranium hexafluoride with water has been studied by using Fourier transform infrared (FT-IR) spectroscopy. Several different methods for accomplishing this task have been carried out. In addition, interpretatins of the results have been made. These interpretations have been based on literature values for the reactants and for compounds analogous to possible products. It was shown that classical matrix-isolation techniques proved to be unsatisfactory for studying this reaction. Other methods were developed in order to obtain results. They were: (1) the codeposition of pure UF/sub 6/ and H/sub 2/O on a cold window at 16/sup 0/K, (2) the codeposition of argon matrix to sample ratios of 10:1 to 2:1 of UF/sub 6/ and H/sub 2/O at 16/sup 0/K, and (3) the annealing of the samples produced by (1) and (2) while they were being scanned with FT-IR. 78 refs., 86 figs., 7 tabs.

  16. Results of the remote sensing feasibility study for the uranium hexafluoride storage cylinder yard program

    SciTech Connect (OSTI)

    Balick, L.K.; Bowman, D.R. [Bechtel Nevada, Las Vegas, NV (United States). Remote Sensing Lab.; Bounds, J.H. [Los Alamos National Lab., NM (United States)] [and others

    1997-02-01

    The US DOE manages the safe storage of approximately 650,000 tons of depleted uranium hexafluoride remaining from the Cold War. This slightly radioactive, but chemically active, material is contained in more than 46,000 steel storage cylinders that are located at Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Some of the cylinders are more than 40 years old, and approximately 17,500 are considered problem cylinders because their physical integrity is questionable. These cylinders require an annual visual inspection. The remainder of the 46,000-plus cylinders must be visually inspected every four years. Currently, the cylinder inspection program is extremely labor intensive. Because these inspections are accomplished visually, they may not be effective in the early detection of leaking cylinders. The inspection program requires approximately 12--14 full-time-equivalent (FTE) employees. At the cost of approximately $125K per FTE, this translates to $1,500K per annum just for cylinder inspection. As part of the technology-development portion of the DOE Cylinder Management Program, the DOE Office of Facility Management requested the Remote Sensing Laboratory (RSL) to evaluate remote sensing techniques that have potential to increase the effectiveness of the inspection program and, at the same time, reduce inspection costs and personnel radiation exposure. During two site visits (March and May 1996) to the K-25 Site at Oak Ridge, TN, RSL personnel tested and characterized seven different operating systems believed to detect leakage, surface contamination, thickness and corrosion of cylinder walls, and general area contamination resulting from breached cylinders. The following techniques were used and their performances are discussed: Laser-induced fluorescent imaging; Long-range alpha detection; Neutron activation analysis; Differential gamma-ray attenuation; Compton scatterometry; Active infrared inspection; and Passive thermal infrared imaging.

  17. FIREPLUME model for plume dispersion from fires: Application to uranium hexafluoride cylinder fires

    SciTech Connect (OSTI)

    Brown, D.F.; Dunn, W.E. [Univ. of Illinois, Champaign-Urbana, IL (United States). Dept. of Mechanical Engineering; Policastro, A.J.; Maloney, D. [Argonne National Lab., IL (United States)

    1997-06-01

    This report provides basic documentation of the FIREPLUME model and discusses its application to the prediction of health impacts resulting from releases of uranium hexafluoride (UF{sub 6}) in fires. The model application outlined in this report was conducted for the Draft Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted UF{sub 6}. The FIREPLUME model is an advanced stochastic model for atmospheric plume dispersion that predicts the downwind consequences of a release of toxic materials from an explosion or a fire. The model is based on the nonbuoyant atmospheric dispersion model MCLDM (Monte Carlo Lagrangian Dispersion Model), which has been shown to be consistent with available laboratory and field data. The inclusion of buoyancy and the addition of a postprocessor to evaluate time-varying concentrations lead to the current model. The FIREPLUME model, as applied to fire-related UF{sub 6} cylinder releases, accounts for three phases of release and dispersion. The first phase of release involves the hydraulic rupture of the cylinder due to heating of the UF{sub 6} in the fire. The second phase involves the emission of material into the burning fire, and the third phase involves the emission of material after the fire has died during the cool-down period. The model predicts the downwind concentration of the material as a function of time at any point downwind at or above the ground. All together, five fire-related release scenarios are examined in this report. For each scenario, downwind concentrations of the UF{sub 6} reaction products, uranyl fluoride and hydrogen fluoride, are provided for two meteorological conditions: (1) D stability with a 4-m/s wind speed, and (2) F stability with a 1-m/s wind speed.

  18. Assessment of Preferred Depleted Uranium Disposal Forms

    SciTech Connect (OSTI)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  19. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    SciTech Connect (OSTI)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0.88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the higher cost of deferred decontamination makes passive SAFSTOR more expensive than DECON. Seve

  20. Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1996-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

  1. U.S. Department of Energy Selects Portsmouth Infrastructure Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Disposition Services, LLC is responsible for the Depleted Uranium Hexafluoride (DUF6) Conversion Project. Opportunities will likely be available for various subcontracts...

  2. Standard Test Method for Isotopic Analysis of Uranium Hexafluoride by Single-Standard Gas Source Multiple Collector Mass Spectrometer Method

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method is applicable to the isotopic analysis of uranium hexafluoride (UF6) with 235U concentrations less than or equal to 5 % and 234U, 236U concentrations of 0.0002 to 0.1 %. 1.2 This test method may be applicable to the analysis of the entire range of 235U isotopic compositions providing that adequate Certified Reference Materials (CRMs or traceable standards) are available. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety health practices and determine the applicability of regulatory limitations prior to use.

  3. Standard test method for gamma energy emission from fission products in uranium hexafluoride and uranyl nitrate solution

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of gamma energy emitted from fission products in uranium hexafluoride (UF6) and uranyl nitrate solution. It is intended to provide a method for demonstrating compliance with UF6 specifications C 787 and C 996 and uranyl nitrate specification C 788. 1.2 The lower limit of detection is 5000 MeV Bq/kg (MeV/kg per second) of uranium and is the square root of the sum of the squares of the individual reporting limits of the nuclides to be measured. The limit of detection was determined on a pure, aged natural uranium (ANU) solution. The value is dependent upon detector efficiency and background. 1.3 The nuclides to be measured are106Ru/ 106Rh, 103Ru,137Cs, 144Ce, 144Pr, 141Ce, 95Zr, 95Nb, and 125Sb. Other gamma energy-emitting fission nuclides present in the spectrum at detectable levels should be identified and quantified as required by the data quality objectives. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its us...

  4. Standard test method for isotopic analysis of hydrolyzed uranium hexafluoride and uranyl nitrate solutions by thermal ionization mass spectrometry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This method applies to the determination of isotopic composition in hydrolyzed nuclear grade uranium hexafluoride. It covers isotopic abundance of 235U between 0.1 and 5.0 % mass fraction, abundance of 234U between 0.0055 and 0.05 % mass fraction, and abundance of 236U between 0.0003 and 0.5 % mass fraction. This test method may be applicable to other isotopic abundance providing that corresponding standards are available. 1.2 This test method can apply to uranyl nitrate solutions. This can be achieved either by transforming the uranyl nitrate solution to a uranyl fluoride solution prior to the deposition on the filaments or directly by depositing the uranyl nitrate solution on the filaments. In the latter case, a calibration with uranyl nitrate standards must be performed. 1.3 This test method can also apply to other nuclear grade matrices (for example, uranium oxides) by providing a chemical transformation to uranyl fluoride or uranyl nitrate solution. 1.4 This standard does not purport to address al...

  5. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    SciTech Connect (OSTI)

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF/sub 4/ is used as the sensitizer to absorb energy from a pulsed CO/sub 2/ laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF/sub 6/ is the reactant, CF/sub 3/Cl is used as reagent to trap atomic fluorine reaction product, forming CF/sub 4/ as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF/sub 6/ unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF/sub 6/ as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs.

  6. Standard test method for isotopic analysis of uranium hexafluoride by double standard single-collector gas mass spectrometer method

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This is a quantitative test method applicable to determining the mass percent of uranium isotopes in uranium hexafluoride (UF6) samples with 235U concentrations between 0.1 and 5.0 mass %. 1.2 This test method may be applicable for the entire range of 235U concentrations for which adequate standards are available. 1.3 This test method is for analysis by a gas magnetic sector mass spectrometer with a single collector using interpolation to determine the isotopic concentration of an unknown sample between two characterized UF6 standards. 1.4 This test method is to replace the existing test method currently published in Test Methods C761 and is used in the nuclear fuel cycle for UF6 isotopic analyses. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro...

  7. Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium

    SciTech Connect (OSTI)

    Gillas, D. L.; Chambers, B. K.

    2002-02-26

    Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

  8. Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

    1995-12-01

    The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

  9. A Peer Review of the Strategy for Characterizing Ransuranics and Technetium Contamination in Uranium Hexafluoride Tails Cylinders

    SciTech Connect (OSTI)

    Sengupta, S.K.; Randich, E.; Avci, H.I.; Steindler, M.J.; Brumburgh, G.P.

    2000-09-01

    This document provides the findings from a peer review of the Oak Ridge National Laboratory (ORNL) Hightower 2000 study, which set forth a strategy for characterization of low levels of radioactive contaminants in depleted uranium hexafluoride (DUF{sub 6}) cylinders at the Oak Ridge, Paducah, and Portsmouth gaseous diffusion plants. The information from that study will be used in a DOE-issued request for proposal (RFP) for conversion services from the private sector, to assist vendors in reducing costs associated with contingencies relating to handling this DUF{sub 6} with elevated transuranics (TRUs) and technetium (Tc). The Hightower study developed a general strategy for DUF{sub 6} sampling and analysis in accordance with their task but also recommended the following courses of action: (a) Collect and analyze liquid samples from the two identified Paducah Gaseous Diffusion Plant (PGDP) feed cylinders, feed the DUF{sub 6} into the cascades, and conduct an analysis on the resulting heels by washing and analyzing the wash rinsate; (b) Characterize the cylinder coatings to determine the extent and levels of polychlorinated biphenyl (PCB) contamination; and (c) Verify the characterization of the cylinder inventory's compliance with Department of Transportation (DOT) regulations and the American Society of Mechanical Engineers (ASME) pressure vessel code In addition to the above recommendations, the study also concluded that additional characterization is not likely to result in lower bids by prospective vendors, and that direct sampling of many older tails cylinders may be impractical.

  10. EIS-0330: Wallula Power Project, Walla Walla County, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

  11. U.S. Department of Energy Awards Paducah Infrastructure Services...

    Broader source: Energy.gov (indexed) [DOE]

    Disposition Services, LLC, is responsible for the Depleted Uranium Hexafluoride (DUF6) Conversion Project. Opportunities will likely be available for various subcontracts...

  12. Energy Department Awards Cooperative Agreement to Mississippi...

    Broader source: Energy.gov (indexed) [DOE]

    to the Southern States Energy Board DOE Awards Support Service Contract DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities...

  13. EIS-0359: Notice of Change in National Environmental Policy ...

    Energy Savers [EERE]

    National Environmental Policy (NEPA) Compliance Approach Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project Notice of Change in National Environmental Policy (NEPA)...

  14. Energy Department Selects Global Laser Enrichment for Future...

    Broader source: Energy.gov (indexed) [DOE]

    Operations at Paducah Site DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Selects Contractor for Depleted...

  15. Retiring Procurement Official Reflects on Career | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    remediation, deactivation and decommissioning, and depleted uranium hexafluoride (DUF6) conversion. "I have known Pam Thompson for two decades, and her dedication over the...

  16. Notice of Change in National Environmental Policy (NEPA) Compliance...

    Office of Environmental Management (EM)

    Notice of Change in National Environmental Policy (NEPA) Compliance Approach Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project Notice of Change in National...

  17. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

  18. Standard test method for the analysis of refrigerant 114, plus other carbon-containing and fluorine-containing compounds in uranium hexafluoride via fourier-transform infrared (FTIR) spectroscopy

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method covers determining the concentrations of refrigerant-114, other carbon-containing and fluorine-containing compounds, hydrocarbons, and partially or completely substituted halohydrocarbons that may be impurities in uranium hexafluoride. The two options are outlined for this test method. They are designated as Part A and Part B. 1.1.1 To provide instructions for performing Fourier-Transform Infrared (FTIR) spectroscopic analysis for the possible presence of Refrigerant-114 impurity in a gaseous sample of uranium hexafluoride, collected in a "2S" container or equivalent at room temperature. The all gas procedure applies to the analysis of possible Refrigerant-114 impurity in uranium hexafluoride, and to the gas manifold system used for FTIR applications. The pressure and temperatures must be controlled to maintain a gaseous sample. The concentration units are in mole percent. This is Part A. 1.2 Part B involves a high pressure liquid sample of uranium hexafluoride. This method can be appli...

  19. Uranium Ore Uranium is extracted

    E-Print Network [OSTI]

    Milling of Uranium Ore Uranium is extracted from ore with strong acids or bases. The uranium is concentrated in a solid substance called"yellowcake." Chemical Conversion Plants convert the uranium in yellowcake to uranium hexafluoride (UF6 ), a compound that can be made into nuclear fuel. Enrichment

  20. Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors along Little Beaver Creek, the Northwest Tributary stream, and a wooded area east of the X-100 facility. However, no Indiana bats were collected during surveys of these areas in 1994 and 1996. Locations A, B, and C do not support suitable habitat for the Indiana bat and would be unlikely to be used by Indiana bats. Indiana bat habitat also does not occur at Proposed Areas 1 and 2. Although Locations A and C contain small wooded areas, the small size and lack of suitable maturity of these areas indicate that they would provide poor habitat for Indiana bats. Trees that may be removed during construction would not be expected to be used for summer roosting by Indiana bats. Disturbance of Indiana bats potentially roosting or foraging in the vicinity of the facility during operations would be very unlikely, and any disturbance would be expected to be negligible. On the basis of these considerations, DOE concludes that the proposed action is not likely to adversely affect the Indiana bat. No critical habitat exists for this species in the action area. Although the timber rattlesnake occurs in the vicinity of the Portsmouth site, it has not been observed on the site. In addition, habitat for the timber rattlesnake is not present on the Portsmouth site. Therefore, DOE concludes that the proposed action would not affect the timber rattlesnake.

  1. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

  2. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    SciTech Connect (OSTI)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  3. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  4. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Hayden, Jr., Howard W. (Oakridge, TN)

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  5. EA-1290: Disposition of Russian Federation Titled Natural Uranium

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United...

  6. Technical considerations in materials management policy development

    SciTech Connect (OSTI)

    Avci, H.; Goldberg, M.

    1996-05-01

    Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE`s DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized.

  7. DUF6 News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | version of the1996of EnergyIdahoS . D E P A

  8. DUF6 Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us| Department ofDisposition Schedules

  9. U.S. transparency monitoring of HEU oxide conversion and blending to LEU hexafluoride at three Russian blending plants

    SciTech Connect (OSTI)

    Leich, D., LLNL

    1998-07-27

    The down-blending of Russian highly enriched uranium (HEU) takes place at three Russian gaseous centrifuge enrichment plants. The fluorination of HEU oxide and down-blending of HEU hexafluoride began in 1994, and shipments of low enriched uranium (LEU) hexafluoride product to the United States Enrichment Corporation (USEC) began in 1995 US transparency monitoring under the HEU Purchase Agreement began in 1996 and includes a permanent monitoring presence US transparency monitoring at these facilities is intended to provide confidence that HEU is received and down-blended to LEU for shipment to USEC The monitoring begins with observation of the receipt of HEU oxide shipments, including confirmation of enrichment using US nondestructive assay equipment The feeding of HEU oxide to the fluorination process and the withdrawal of HEU hexafluoride are monitored Monitoring is also conducted where the blending takes place and where shipping cylinders are filled with LEU product. A series of process and material accountancy documents are provided to US monitors.

  10. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgramof Energy ConsentCertify DOE Collects CivilEx Parte

  11. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics »Application for RefundEnergy Cyborge ReportingTraining and EducationDOEPlants

  12. EIS-0269: Long-Term Management of Depleted Uranium Hexaflouride

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this programmatic environmental impact statement to assess the potential impacts of alternative management strategies for depleted uranium hexafluoride currently stored at three DOE sites: Paducah site near Paducah, Kentucky; Portsmouth site near Portsmouth, Ohio; and K-25 site on the Oak Ridge Reservation in Oak Ridge, Tennessee.

  13. Electron Ionization Mass Spectrum of Tellurium Hexafluoride

    SciTech Connect (OSTI)

    Clark, Richard A.; McNamara, Bruce K.; Barinaga, Charles J.; Peterson, James M.; Govind, Niranjan; Andersen, Amity; Abrecht, David G.; Schwantes, Jon M.; Ballou, Nathan E.

    2015-05-18

    The first electron ionization mass spectrum of tellurium hexafluoride (TeF6) is reported. The starting material was produced by direct fluorination of Te metal or TeO2 with nitrogen trifluoride. Formation of TeF6 was confirmed through cryogenic capture of the tellurium fluorination product and analysis through Raman spectroscopy. The eight natural abundance isotopes were observed for each of the set of fragment ions: TeF5+, TeF4+ TeF3+, TeF2+, TeF1+, and Te+, Te2+. A trend in increasing abundance was observed for the even fluoride bearing ions: TeF1+ < TeF3+ < TeF5+, and a decreasing abundance was observed for the even fragment series: Te(0)+ > TeF2+ > TeF4+ > TeF6+, with the molecular ion TeF6+ not observed at all. Density functional theory based electronic structure calculations were used to calculate optimized ground state geometries of these gas phase species and their relative stabilities explain the trends in the data and the lack of observed signal for TeF6+.

  14. Beneficial Uses of Depleted Uranium

    SciTech Connect (OSTI)

    Brown, C. [U.S. Department of Energy, Germantown, MD (United States); Croff, A.G.; Haire, M. J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  15. Nitrous oxide as a substitute for sulfur hexafluoride in the ANSI/ASHRAE 110 Method of hood performance evaluation

    E-Print Network [OSTI]

    Guffey, Eric J. (Eric Jemison)

    2011-01-01

    The ANSI/ASHRAE 110 Method is the standard test for laboratory hood containment performance. Sulfur hexafluoride is specified as the gas most suitable for this test and is most commonly used. Sulfur hexafluoride use has ...

  16. Method for fluorination of uranium oxide

    DOE Patents [OSTI]

    Petit, George S. (Oak Ridge, TN)

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  17. Cost analysis guidelines

    SciTech Connect (OSTI)

    Strait, R.S.

    1996-01-10

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

  18. The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India*

    E-Print Network [OSTI]

    The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India* A.L. Ganesan of methane, nitrous oxide and sulfur hexafluoride in Northeast India A. L. Ganesan1, A. Chatterjee2, R. G-frequency atmospheric measurements of methane (CH4), nitrous oxide (N2O) and sulfur hexafluo- ride (SF6) from Darjeeling

  19. DUF6 Project Continues on Success Track | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | version of the1996of EnergyIdahoS . D E Pplant

  20. Milestones Keep DUF6 Plants Moving Ahead | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE SafetyofDepartment. "NationalTechnology |

  1. Depleted uranium: A DOE management guide

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

  2. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, Claude R. (Paducah, KY); Ernstberger, Harold G. (Paducah, KY)

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  3. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  4. Evaluation of selected detector systems for products formed in the atmospheric hydrolysis of uranium hexafluoride

    SciTech Connect (OSTI)

    Bostick, W.D.; Bostick, D.T.

    1987-03-01

    Sensitive detection of UF/sub 6/ hydrolysis products, either by discontinuous sampling or by continuous or near real-time monitoring, is an important safety consideration for DOE contractors handling large quantities of UF/sub 6/. Automated continuous or rapid intermittent remote sensing of these reaction products can provide an alarm signal when a preselected threshold value has been exceeded (absolute response) or when a significant emission excursion has occurred (rate of change of response). This report evaluates the performance of selected devices for the detection of airborne materials formed in the release of liquid UF/sub 6/ (approx. =1.3 g) into an enclosed volume of 6 m/sup 3/; these experiments were initiated on October 23, 1986. The detection principles investigated are: photometric, gas detector tubes, and electrochemical sensor.

  5. Uranium hexafluoride: A manual of good practice ORO 651 revision 6

    SciTech Connect (OSTI)

    Dyer, R.H. [Department of Energy, Oak Ridge, TN (United States)

    1991-12-31

    The United States Department of Energy publishes a document containing UF{sub 6} handling procedures and descriptions of the approved UF{sub 6} cylinders. Since its initial publication in 1966, it has been frequently revised to provide more and better information. The principle additions to the sixth revision which will be discussed are: (1) more detail on the physical and chemical properties of UF{sub 6}; (2) cold trap description and operation; (3) cylinder emptying and filling concepts; (4) basis for cylinder fill limits; (5) short- and long-term cylinder storage; and (6) cylinder photographs and drawings showing major dimensions.

  6. SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS

    SciTech Connect (OSTI)

    Gray, J.; Torres, R.; Korinko, P.; Martinez-Rodriguez, M.; Becnel, J.; Garcia-Diaz, B.; Adams, T.

    2012-09-25

    Reactive Gas Recycling (RGR) technology development has been initiated at Savannah River National Laboratory (SRNL), with a stretch-goal to develop a fully dry recycling technology for Used Nuclear Fuel (UNF). This approach is attractive due to the potential of targeted gas-phase treatment steps to reduce footprint and secondary waste volumes associated with separations relying primarily on traditional technologies, so long as the fluorinators employed in the reaction are recycled for use in the reactors or are optimized for conversion of fluorinator reactant. The developed fluorination via SF{sub 6}, similar to the case for other fluorinators such as NF{sub 3}, can be used to address multiple fuel forms and downstream cycles including continued processing for LWR via fluorination or incorporation into a aqueous process (e.g. modified FLUOREX) or for subsequent pyro treatment to be used in advanced gas reactor designs such metal- or gas-cooled reactors. This report details the most recent experimental results on the reaction of SF{sub 6} with various fission product surrogate materials in the form of oxides and metals, including uranium oxides using a high-temperature DTA apparatus capable of temperatures in excess of 1000{deg}C . The experimental results indicate that the majority of the fission products form stable solid fluorides and sulfides, while a subset of the fission products form volatile fluorides such as molybdenum fluoride and niobium fluoride, as predicted thermodynamically. Additional kinetic analysis has been performed on additional fission products. A key result is the verification that SF{sub 6} requires high temperatures for direct fluorination and subsequent volatilization of uranium oxides to UF{sub 6}, and thus is well positioned as a head-end treatment for other separations technologies, such as the volatilization of uranium oxide by NF{sub 3} as reported by colleagues at PNNL, advanced pyrochemical separations or traditional full recycle approaches. Based on current results of the research at SRNL on SF{sub 6} fluoride volatility for UNF separations, SF{sub 6} treatment renders all anticipated volatile fluorides studied to be volatile, and all non-volatile fluorides studied to be non-volatile, with the notable exception of uranium oxides. This offers an excellent opportunity to use this as a head-end separations treatment process because: 1. SF{sub 6} can be used to remove volatile fluorides from a UNF matrix while leaving behind uranium oxides. Therefore an agent such as NF{sub 3} should be able to very cleanly separate a pure UF{sub 6} stream, leaving compounds in the bottoms such as PuF{sub 4}, SrF{sub 2} and CsF after the UNF matrix has been pre-treated with SF{sub 6}. 2. Due to the fact that the uranium oxide is not separated in the volatilization step upon direct contact with SF{sub 6} at moderately high temperatures (? 1000{deg}C), this fluoride approach may be wellsuited for head-end processing for Gen IV reactor designs where the LWR is treated as a fuel stock, and it is not desired to separate the uranium from plutonium, but it is desired to separate many of the volatile fission products. 3. It is likely that removal of the volatile fission products from the uranium oxide should simplify both traditional and next generation pyroprocessing techniques. 4. SF{sub 6} treatment to remove volatile fission products, with or without treatment with additional fluorinators, could be used to simplify the separations of traditional aqueous processes in similar fashion to the FLUOREX process. Further research should be conducted to determine the separations efficiency of a combined SF{sub 6}/NF{sub 3} separations approach which could be used as a stand-alone separations technology or a head-end process.

  7. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    SciTech Connect (OSTI)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  8. Wetland assessment of the effects of construction and operation of a depleteduranium hexafluoride conversion facility at the Portsmouth, Ohio, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This wetland assessment has been prepared by DOE, pursuant to Executive Order 11990 (''Protection of Wetlands'') and DOE regulations for implementing this Executive Order as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [Compliance with Floodplain and Wetland Environmental Review Requirements]), to evaluate potential impacts to wetlands from the construction and operation of a conversion facility at the DOE Portsmouth site. Approximately 0.02 acre (0.009 ha) of a 0.08-acre (0.03-ha) palustrine emergent wetland would likely be eliminated by direct placement of fill material during facility construction at Location A. Portions of this wetland that are not filled may be indirectly affected by an altered hydrologic regime because of the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation, and potential loss of hydrology necessary to sustain wetland conditions. Construction at Locations B or C would not result in direct impacts to wetlands. However, the hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 are set forth in 10 CFR Part 1022. The impacts at Location A may potentially be avoided by an alternative routing of the entrance road, or mitigation may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the State of Ohio. Unavoidable impacts to isolated wetlands may require an Isolated Wetlands Permit from the Ohio Environmental Protection Agency. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to wetlands are anticipated to be negligible to minor for the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found in this part of Ohio, which in many cases involve previously disturbed habitats.

  9. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  10. Criticality safety concerns of uranium deposits in cascade equipment

    SciTech Connect (OSTI)

    Plaster, M.J. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States)

    1996-12-31

    The Paducah and Portsmouth Gaseous Diffusion Plants enrich uranium in the {sup 235}U isotope by diffusing gaseous uranium hexafluoride (UF{sub 6}) through a porous barrier. The UF{sub 6} gaseous diffusion cascade utilized several thousand {open_quotes}stages{close_quotes} of barrier to produce highly enriched uranium (HEU). Historically, Portsmouth has enriched the Paducah Gaseous Diffusion Plant`s product (typically 1.8 wt% {sup 235}U) as well as natural enrichment feed stock up to 97 wt%. Due to the chemical reactivity of UF{sub 6}, particularly with water, the formation of solid uranium deposits occur at a gaseous diffusion plant. Much of the equipment operates below atmospheric pressure, and deposits are formed when atmospheric air enters the cascade. Deposits may also be formed from UF{sub 6} reactions with oil, UF{sub 6} reactions with the metallic surfaces of equipment, and desublimation of UF{sub 6}. The major deposits form as a result of moist air in leakage due to failure of compressor casing flanges, blow-off plates, seals, expansion joint convolutions, and instrument lines. This report describes criticality concerns and deposit disposition.

  11. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This book presents the GAO's views on the Department of Energy's (DOE) program to develop a new uranium enrichment technology, the atomic vapor laser isotope separation process (AVLIS). Views are drawn from GAO's ongoing review of AVLIS, in which the technical, program, and market issues that need to be addressed before an AVLIS plant is built are examined.

  12. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  13. URANIUM IN ALKALINE ROCKS

    E-Print Network [OSTI]

    Murphy, M.

    2011-01-01

    1962. "Diatremes and Uranium Deposits in the Hopi Buttes,H. , 1970. "Low-Grade Uranium Deposits in Agpaitic NephelineL. Torkild, 1974B. "The Uranium Deposit at Kvanefjeld, The

  14. URANIUM IN ALKALINE ROCKS

    E-Print Network [OSTI]

    Murphy, M.

    2011-01-01

    1977. "Geology of Brazil's Uranium and Thorium Occurrences,"A tantalo-niobate of uranium, near pyrochlore. Isometric,niobate and tantalate of uranium, with ferrous iron and rare

  15. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector.

  16. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  17. Dating groundwater with trifluoromethyl sulfurpentafluoride (SF5CF3), sulfur hexafluoride (SF6), CF3Cl (CFC-13),

    E-Print Network [OSTI]

    Dating groundwater with trifluoromethyl sulfurpentafluoride (SF5CF3), sulfur hexafluoride (SF6), CF; revised 3 October 2007; accepted 30 October 2007; published 22 February 2008. [1] A new groundwater dating and water samples. SF5CF3 and CFC-13 can be used to date groundwaters in some environments where the CFCs

  18. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    SciTech Connect (OSTI)

    Penrod, S.R. [Martin Marietta Energy Systems, Inc., KY (United States)

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}, Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  19. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    SciTech Connect (OSTI)

    Penrod, S.R. [Martin Marietta Energy Systems, Inc., KY (United States)

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}. Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  20. Enterprise Assessments Targeted Review of the Paducah Depleted Uranium Hexafluoride Conversion Facility Fire Protection Program Â… September 2015

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing Facility Construction Quality andY-12Paducah

  1. Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA. GeographicYucca fault (Class90669122

  2. Energy Department Selects Global Laser Enrichment for Future...

    Energy Savers [EERE]

    Site November 27, 2013 - 12:00pm Addthis Workers inspect cylinders containing depleted uranium hexafluoride. Workers inspect cylinders containing depleted uranium hexafluoride....

  3. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes havePUBLIC ADMINISTRATIONPaducahSiteof Energy

  4. PPPO Cleanup Projects - Portsmouth, Paducah, & DUF6 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateau TrainingeTrack,1 POLICY

  5. Final Uranium Leasing Program Programmatic Environmental Impact...

    Energy Savers [EERE]

    Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing...

  6. Depleted Uranium Technical Brief

    E-Print Network [OSTI]

    Depleted Uranium Technical Brief United States Environmental Protection Agency Office of Air and Radiation Washington, DC 20460 EPA-402-R-06-011 December 2006 #12;#12;Depleted Uranium Technical Brief EPA of Radiation and Indoor Air Radiation Protection Division ii #12;iii #12;FOREWARD The Depleted Uranium

  7. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  8. A search for the sulphur hexafluoride cation with intense, few cycle laser pulses

    SciTech Connect (OSTI)

    Dota, Krithika; Mathur, Deepak; Centre for Atomic and Molecular Physics, Manipal University, Manipal 576 104 ; Dharmadhikari, Aditya K.; Dharmadhikari, Jayashree A.; Patra, Kaustuv; Tiwari, Ashwani K.

    2013-11-21

    It is well established that upon ionization of sulphur hexafluoride, the SF{sub 6}{sup +} ion is never observed in mass spectra. Recent work with ultrashort intense laser pulses has offered indications that when strong optical field are used, the resulting “bond hardening” can induce changes in the potential energy surfaces of molecular cations such that molecular ions that are normally unstable may, indeed, become metastable enough to enable their detection by mass spectrometry. Do intense, ultrashort laser pulses permit formation of SF{sub 6}{sup +}? We have utilized intense pulses of 5 fs, 11 fs, and 22 fs to explore this possibility. Our results are negative: no evidence is discovered for SF{sub 6}{sup +}. However, multiply charged sulphur and fluorine ions from highly charged SF{sub 6}{sup q+} ions are observed that enable us to resolve the controversy regarding the kinetic energy release accompanying formation of F{sup +} fragment ions. Quantum chemical computations of field-distorted potential energy curves of SF{sub 6} and its molecular ion enable us to rationalize our non-observation of SF{sub 6}{sup +}. Our findings have implications for high harmonic generation from SF{sub 6} in the few-cycle regime.

  9. Standard test method for determination of impurities in nuclear grade uranium compounds by inductively coupled plasma mass spectrometry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of 67 elements in uranium dioxide samples and nuclear grade uranium compounds and solutions without matrix separation by inductively coupled plasma mass spectrometry (ICP-MS). The elements are listed in Table 1. These elements can also be determined in uranyl nitrate hexahydrate (UNH), uranium hexafluoride (UF6), triuranium octoxide (U3O8) and uranium trioxide (UO3) if these compounds are treated and converted to the same uranium concentration solution. 1.2 The elements boron, sodium, silicon, phosphorus, potassium, calcium and iron can be determined using different techniques. The analyst's instrumentation will determine which procedure is chosen for the analysis. 1.3 The test method for technetium-99 is given in Annex A1. 1.4 The values stated in SI units are to be regarded as standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ...

  10. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  11. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  12. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  13. Uranium Purchases Report

    Reports and Publications (EIA)

    1996-01-01

    Final issue. This report details natural and enriched uranium purchases as reported by owners and operators of commercial nuclear power plants. 1996 represents the most recent publication year.

  14. U.S.Uranium Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Reserves Data for: 2003 Release Date: June 2004 Next Release: Not determined Uranium Reserves Estimates The Energy Information Administration (EIA) has reported the...

  15. Determination of the Relative Amount of Fluorine in Uranium Oxyfluoride Particles using Secondary Ion Mass Spectrometry and Optical Spectroscopy

    SciTech Connect (OSTI)

    Kips, R; Kristo, M J; Hutcheon, I D; Amonette, J; Wang, Z; Johnson, T; Gerlach, D; Olsen, K B

    2009-05-29

    Both nuclear forensics and environmental sampling depend upon laboratory analysis of nuclear material that has often been exposed to the environment after it has been produced. It is therefore important to understand how those environmental conditions might have changed the chemical composition of the material over time, particularly for chemically sensitive compounds. In the specific case of uranium enrichment facilities, uranium-bearing particles stem from small releases of uranium hexafluoride, a highly reactive gas that hydrolyzes upon contact with moisture from the air to form uranium oxyfluoride (UO{sub 2}F{sub 2}) particles. The uranium isotopic composition of those particles is used by the International Atomic Energy Agency (IAEA) to verify whether a facility is compliant with its declarations. The present study, however, aims to demonstrate how knowledge of time-dependent changes in chemical composition, particle morphology and molecular structure can contribute to an even more reliable interpretation of the analytical results. We prepared a set of uranium oxyfluoride particles at the Institute for Reference Materials and Measurements (IRMM, European Commission, Belgium) and followed changes in their composition, morphology and structure with time to see if we could use these properties to place boundaries on the particle exposure time in the environment. Because the rate of change is affected by exposure to UV-light, humidity levels and elevated temperatures, the samples were subjected to varying conditions of those three parameters. The NanoSIMS at LLNL was found to be the optimal tool to measure the relative amount of fluorine in individual uranium oxyfluoride particles. At PNNL, cryogenic laser-induced time-resolved U(VI) fluorescence microspectroscopy (CLIFS) was used to monitor changes in the molecular structure.

  16. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  17. EIS-0359: EPA Notice of Availability of the Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site

  18. EIS-0360: EPA Notice of Availability of the Draft Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

  19. EIS-0360: EPA Notice of Availability of the Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

  20. Study of Chemical Changes in Uranium Oxyfluoride Particles Progress Report March - October 2009

    SciTech Connect (OSTI)

    Kips, R; Kristo, M; Hutcheon, I

    2009-11-22

    Nuclear forensics relies on the analysis of certain sample characteristics to determine the origin and history of a nuclear material. In the specific case of uranium enrichment facilities, it is the release of trace amounts of uranium hexafluoride (UF{sub 6}) gas - used for the enrichment of uranium - that leaves a process-characteristic fingerprint. When UF{sub 6} gas interacts with atmospheric moisture, uranium oxyfluoride particles or particle agglomerates are formed with sizes ranging from several microns down to a few tens of nanometers. These particles are routinely collected by safeguards organizations, such as the International Atomic Energy Agency (IAEA), allowing them to verify whether a facility is compliant with its declarations. Spectrometric analysis of uranium particles from UF{sub 6} hydrolysis has revealed the presence of both particles that contain fluorine, and particles that do not. It is therefore assumed that uranium oxyfluoride is unstable, and decomposes to form uranium oxide. Understanding the rate of fluorine loss in uranium oxyfluoride particles, and the parameters that control it, may therefore contribute to placing boundaries on the particle's exposure time in the environment. Expressly for the purpose of this study, we prepared a set of uranium oxyfluoride particles at the Institute for Reference Materials and Measurements (EU-JRC-IRMM) from a static release of UF{sub 6} in a humid atmosphere. The majority of the samples was stored in controlled temperature, humidity and lighting conditions. Single particles were characterized by a suite of micro-analytical techniques, including NanoSIMS, micro-Raman spectrometry (MRS), scanning (SEM) and transmission (TEM) electron microscopy, energy-dispersive X-ray spectrometry (EDX) and focused ion beam (FIB). The small particle size was found to be the main analytical challenge. The relative amount of fluorine, as well as the particle chemical composition and morphology were determined at different stages in the ageing process, and immediately after preparation. This report summarizes our most recent findings for each of the analytical techniques listed above, and provides an outlook on what remains to be resolved. Additional spectroscopic and mass spectrometric measurements were carried out at Pacific Northwest National Laboratory, but are not included in this summary.

  1. 2013 Domestic Uranium Production Report

    E-Print Network [OSTI]

    2013 Domestic Uranium Production Report May 2014 Independent Statistics & Analysis www.eia.gov U Administration | 2013 Domestic Uranium Production Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity, Renewables, and Uranium Statistics. Questions

  2. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  3. BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE

    E-Print Network [OSTI]

    Yang, Rosa L.

    2013-01-01

    Metallic Inclusions in Uranium Dioxide", LBL-11117 (1980).in Hypostoichiornetric Uranium Dioxide 11 , LBL-11095 (OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa L. Yang and

  4. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, Alvin B. (Cincinnati, OH)

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  5. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  6. file://\\\\fs-f1\\shared\\uranium\\uranium.html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glossary Home > Nuclear > U.S. Uranium Reserves Estimates U.S. Uranium Reserves Estimates Data for: 2008 Report Released: July 2010 Next Release Date: 2012 Summary The U.S. Energy...

  7. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  8. Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A; Lee, Denise L; Croft, Stephen; McElroy, Robert Dennis; Hertel, Nolan; Chapman, Jeffrey Allen; Cleveland, Steven L

    2013-01-01

    Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of density, concentration and enrichment. A detailed uncertainty analysis will be presented providing insights into instrumentation limitations to spoofing.

  9. Uranium-titanium-niobium alloy

    DOE Patents [OSTI]

    Ludtka, Gail M. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    1990-01-01

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  10. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  11. Uranium Transport Modeling

    SciTech Connect (OSTI)

    Bostick, William D.

    2008-01-15

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO{sub 2}{sup 2+}) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range {approx} 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to mineral phases. Four case studies are presented: Water and Soil Characterization, Subsurface Stabilization of Uranium and other Toxic Metals, Reductive Precipitation (in situ bioremediation) of Uranium, and Physical Transport of Particle-bound Uranium by Erosion.

  12. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9.3.3. Uranium

  13. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9.3.3. Uranium5.

  14. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9.3.3.b. Uranium

  15. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  16. Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporationIt's Potential from Tidal Streams

  17. Controlling uranium reactivity March 18, 2008

    E-Print Network [OSTI]

    Meyer, Karsten

    March 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many research groups have been involved in utilizing the large size and unique reactivity of the uranium atom

  18. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  19. GLOBAL MONITORING OF URANIUM HEXIFLORIDE CYLINDERS NEXT STEPS IN DEVELOPMENT OF AN ACTION PLAN

    SciTech Connect (OSTI)

    Hanks, D.

    2010-06-09

    Over 40 industrial facilities world-wide use standardized uranium hexafluoride (UF{sub 6}) cylinders for transport, storage and in-process receiving in support of uranium conversion, enrichment and fuel fabrication processes. UF{sub 6} is processed and stored in the cylinders, with over 50,000 tU of UF{sub 6} transported each year in these International Organization for Standardization (ISO) qualified containers. Although each cylinder is manufactured to an ISO standard that calls for a nameplate with the manufacturer's identification number (ID) and the owner's serial number engraved on it, these can be quite small and difficult to read. Recognizing that each facility seems to use a different ID, a cylinder can have several different numbers recorded on it by means of metal plates, sticky labels, paint or even marker pen as it travels among facilities around the world. The idea of monitoring movements of UF{sub 6} cylinders throughout the global uranium fuel cycle has become a significant issue among industrial and safeguarding stakeholders. Global monitoring would provide the locations, movements, and uses of cylinders in commercial nuclear transport around the world, improving the efficiency of industrial operations while increasing the assurance that growing nuclear commerce does not result in the loss or misuse of cylinders. It should be noted that a unique ID (UID) attached to a cylinder in a verifiable manner is necessary for safeguarding needs and ensuring positive ID, but not sufficient for an effective global monitoring system. Modern technologies for tracking and inventory control can pair the UID with sensors and secure data storage for content information and complete continuity of knowledge over the cylinder. This paper will describe how the next steps in development of an action plan for employing a global UF{sub 6} cylinder monitoring network could be cultivated using four primary UID functions - identification, tracking, controlling, and accounting.

  20. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  1. OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE

    E-Print Network [OSTI]

    Kim, Kee Chul

    2010-01-01

    IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE Kee Chul Kim Ph.D.727-366; Figure 1. Oxygen-uranium phase-equilibrium _ystem [18]. uranium dioxide powders and 18 0 enriched carbon

  2. Uranium in prehistoric Indian pottery 

    E-Print Network [OSTI]

    Filberth, Ernest William

    1976-01-01

    URANIUM IN PREHISTORIC INDIAN POTTERY A Thesis by ERNEST WILLIAM FILBERTH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1976 Major Subject...: Chemistry URANIUM IN PREHISTORIC INDIAN POTTERY A Thesis by ERNEST WILLIAM FILBERTH Approved as to style and content by: (Chairman of Committee) (Head of Department) (Member) (Membe (Member) (Member) December 1976 ABSTRACT Uranium in Prehistoric...

  3. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  4. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  5. Uranium Biomineralization By Natural Microbial Phosphatase Activities...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface Citation Details In-Document Search Title: Uranium Biomineralization By...

  6. Application of the HGSYSTEM/UF{sub 6} model to simulate atmospheric dispersion of UF{sub 6} releases from uranium enrichment plants

    SciTech Connect (OSTI)

    Goode, W.D. Jr.; Bloom, S.G.; Keith, K.D. Jr.

    1995-03-01

    Uranium hexafluoride is a dense, reactive gas used in Gaseous Diffusion Plants (GDPs) to make uranium enriched in the {sup 235}U isotope. Large quantities of UF{sub 6} exist at the GDPs in the form of in-process gas and as a solid in storage cylinders; smaller amounts exist as hot liquid during transfer operations. If liquid UF{sub 6} is released to the environment, it immediately flashes to a solid and a dense gas that reacts rapidly with water vapor in the air to form solid particles of uranyl fluoride and hydrogen fluoride gas. Preliminary analyses were done on various accidental release scenarios to determine which scenarios must be considered in the safety analyses for the GDPS. These scenarios included gas releases due to failure of process equipment and liquid/gas releases resulting from a breach of transfer piping from a cylinder. A major goal of the calculations was to estimate the response time for mitigating actions in order to limit potential off-site consequences of these postulated releases. The HGSYSTEM/UF{sub 6} code was used to assess the consequences of these release scenarios. Inputs were developed from release calculations which included two-phase, choked flow followed by expansion to atmospheric pressure. Adjustments were made to account for variable release rates and multiple release points. Superpositioning of outputs and adjustments for exposure time were required to evaluate consequences based on health effects due to exposures to uranium and HF at a specific location.

  7. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium purchased by

  8. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium purchased byb.

  9. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium purchased byb.S2.

  10. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium purchased

  11. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium purchasedb.

  12. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium purchasedb.4.

  13. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium purchasedb.4..

  14. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium purchasedb.4..0.

  15. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium

  16. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3. Deliveries of

  17. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3. Deliveries of4.

  18. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3. Deliveries

  19. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3. Deliveries6.

  20. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3. Deliveries6.7.

  1. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.

  2. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9. Foreign

  3. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9. Foreign.

  4. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9. Foreign.0.

  5. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9. Foreign.0.1.

  6. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9.

  7. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9.3. Inventories

  8. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9.3.

  9. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9.3.3.

  10. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9.3.3.b.

  11. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9.3.3.b.8.

  12. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSalesa. Uranium3.9.3.3.b.8.9.

  13. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown2008 Final May1. U.S. uranium

  14. A Korarchael Genome Reveals Insights into the Evolution of the Archaea

    E-Print Network [OSTI]

    Elkins, James G.

    2008-01-01

    protein of unknown function DUF6, transmembrane hypotheticalprotein of unknown function DUF6, transmembrane Gene Nameprotein of unknown function DUF6, transmembrane hypothetical

  15. Functional genomics of the bacterial degradation of the emerging water contaminants: 1,4-dioxane and N-nitrosodimethylamine (NDMA)

    E-Print Network [OSTI]

    Sales, Christopher Michael

    2012-01-01

    drugs protein of unknown function DUF6 trans- drugs membraneprotein of unknown function DUF6 trans- drugs membraneprotein of unknown function DUF6 trans- putative membrane

  16. APPENDIX J Partition Coefficients For Uranium

    E-Print Network [OSTI]

    APPENDIX J Partition Coefficients For Uranium #12;Appendix J Partition Coefficients For Uranium J.1.0 Background The review of uranium Kd values obtained for a number of soils, crushed rock and their effects on uranium adsorption on soils are discussed below. The solution pH was also used as the basis

  17. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C

  18. statistical physics canonical ensemble Uranium Centrifuges

    E-Print Network [OSTI]

    statistical physics canonical ensemble Uranium Centrifuges The easiest type of nuclear weapon of the physics behind crude uranium enrichment methods. 2 The centrifuge concept is a very generic way of trying the uranium, we remove gas from the ends of the centrifuge, where the heavier uranium atoms are more

  19. Modified biokinetic model for uranium from analysis of acute exposure to UF6

    SciTech Connect (OSTI)

    Fisher, D.R.; Kathren, R.L.; Swint, M.J. )

    1991-03-01

    Urinalysis measurements from 31 workers acutely exposed to uranium hexafluoride (UF6) and its hydrolysis product UO2F2 (during the 1986 Gore, Oklahoma UF6-release accident) were used to develop a modified recycling biokinetic model for soluble U compounds. The model is expressed as a five-compartment exponential equation: yu(t) = 0.086e-2.77t + 0.0048e-0.116t + 0.00069e-0.0267t + 0.00017 e-0.00231t + 2.5 x 10(-6) e-0.000187t, where yu(t) is the fractional daily urinary excretion and t is the time after intake, in days. The excretion constants of the five exponential compartments correspond to residence half-times of 0.25, 6, 26, 300, and 3,700 d in the lungs, kidneys, other soft tissues, and in two bone volume compartments, respectively. The modified recycling model was used to estimate intake amounts, the resulting committed effective dose equivalent, maximum kidney concentrations, and dose equivalent to bone surfaces, kidneys, and lungs.

  20. The End of Cheap Uranium

    E-Print Network [OSTI]

    Michael Dittmar

    2011-06-21

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

  1. Helium on Venus: Implications for uranium and thorium

    E-Print Network [OSTI]

    Prather, MJ; Mcelroy, MB

    1983-01-01

    Implications for Uranium and Thorium Abstract. Helium isa wide range of uranium and thorium abundances. simi· lar toof crustal uranium and thorium. Studies of helium in Earth's

  2. THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01

    Soubbaramayer, (1979) in "Uranium Enrichment", S. Villani,and Davies, E. (1973) "Uranium Enrichment by Gas Centrifuge"Nuclear Energy THE THEORY OF URANIUM ENRICHMENT BY THE GAS

  3. Excess Uranium Inventory Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective...

  4. THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.

    E-Print Network [OSTI]

    Yang, Rosa Lu.

    2010-01-01

    Products in Irradiated Uranium Dioxide," UKAEA Report AERE-OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa Lu Yang (Chemical State of Irradiated Uranium- Plutonium Oxide Fuel

  5. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 2014 Uranium 201457 201425.

  6. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 2014 Uranium 201457

  7. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 2014 Uranium 201457Feed

  8. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 2014 Uranium

  9. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 2014 Uranium17. Purchases of

  10. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 2014 Uranium17. Purchases

  11. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 2014 Uranium17.

  12. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 20144. Uranium sellers to

  13. 2014 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 20144. Uranium sellers to57.

  14. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A. (Kennewick, WA)

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  15. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  16. Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration

  17. Bioremediation of metals and radionuclides: What it is and How it Works

    E-Print Network [OSTI]

    McCullough, J.; Hazen, Terry; Benson, Sally

    1999-01-01

    Uranium hexafluoride (UF6),an interim product of thenumber of accidents involving UF6. Figure3.3. This computer

  18. Standard practice for removal of uranium or plutonium, or both, for impurity assay in uranium or plutonium materials

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    Standard practice for removal of uranium or plutonium, or both, for impurity assay in uranium or plutonium materials

  19. Portsmouth/Paducah Project Office | Department of Energy

    Office of Environmental Management (EM)

    Paducah Site Background Paducah Site Cleanup Paducah Community Outreach green-bar.png DUF6 Conversion DUF6 facility at sunset.jpg DUF6 Conversion Operations DUF6 Conversion...

  20. Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium(III)

    E-Print Network [OSTI]

    Meyer, Karsten

    Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium-mail: kmeyer@ucsd.edu Abstract: The synthesis and spectroscopic characterization of the mononuclear uranium complex [((ArO)3tacn)UIII (NCCH3)] is reported. The uranium(III) complex reacts with organic azides

  1. Inherently safe in situ uranium recovery

    DOE Patents [OSTI]

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  2. The End of Cheap Uranium

    E-Print Network [OSTI]

    Dittmar, Michael

    2011-01-01

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

  3. Decolonizing cartographies : sovereignty, territoriality, and maps of meaning in the uranium landscape

    E-Print Network [OSTI]

    Voyles, Traci Brynne

    2010-01-01

    227! Figure 19 Uranium depositsthe Geological Features and Uranium Deposits in the Shiprockresource sovereignty” to uranium deposits located on Native

  4. URANIUM MILL TAILINGS RADON FLUX CALCULATIONS

    E-Print Network [OSTI]

    URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIÑON RIDGE PROJECT MONTROSE COUNTY, COLORADO (EFRC) proposes to license, construct, and operate a conventional acid leach uranium and vanadium mill storage pad, and access roads. The mill is designed to process ore containing uranium and vanadium

  5. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  6. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  7. Y-12 Uranium Exposure Study

    SciTech Connect (OSTI)

    Eckerman, K.F.; Kerr, G.D.

    1999-08-05

    Following the recent restart of operations at the Y-12 Plant, the Radiological Control Organization (RCO) observed that the enriched uranium exposures appeared to involve insoluble rather than soluble uranium that presumably characterized most earlier Y-12 operations. These observations necessitated changes in the bioassay program, particularly the need for routine fecal sampling. In addition, it was not reasonable to interpret the bioassay data using metabolic parameter values established during earlier Y-12 operations. Thus, the recent urinary and fecal bioassay data were interpreted using the default guidance in Publication 54 of the International Commission on Radiological Protection (ICRP); that is, inhalation of Class Y uranium with an activity median aerodynamic diameter (AMAD) of 1 {micro}m. Faced with apparently new workplace conditions, these actions were appropriate and ensured a cautionary approach to worker protection. As additional bioassay data were accumulated, it became apparent that the data were not consistent with Publication 54. Therefore, this study was undertaken to examine the situation.

  8. Continuous reduction of uranium tetrafluoride

    SciTech Connect (OSTI)

    DeMint, A.L.; Maxey, A.W.

    1993-10-21

    Operation of a pilot-scale system for continuous metallothermic reduction of uranium tetrafluoride (UF{sub 4} or green salt) has been initiated. This activity is in support of the development of a cost- effective process to produce uranium-iron (U-Fe) alloy feed for the Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) program. To date, five runs have been made to reduce green salt (UF{sub 4}) with magnesium. During this quarter, three runs were made to perfect the feeding system, examine feed rates, and determine the need for a crust breaker/stirrer. No material was drawn off in any of the runs; both product metal and by-product salt were allowed to accumulate in the reactor.

  9. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 2014 Uranium 201457 201425.+1

  10. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 2014 Uranium17. Purchases6a.

  11. Process for alloying uranium and niobium

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Northcutt, Jr., Walter G. (Oak Ridge, TN); Masters, David R. (Knoxville, TN); Chapman, Lloyd R. (Knoxville, TN)

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  12. Domestic utility attitudes toward foreign uranium supply

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    The current embargo on the enrichment of foreign-origin uranium for use in domestic utilization facilities is scheduled to be removed in 1984. The pending removal of this embargo, complicated by a depressed worldwide market for uranium, has prompted consideration of a new or extended embargo within the US Government. As part of its on-going data collection activities, Nuclear Resources International (NRI) has surveyed 50 domestic utility/utility holding companies (representing 60 lead operator-utilities) on their foreign uranium purchase strategies and intentions. The most recent survey was conducted in early May 1981. A number of qualitative observations were made during the course of the survey. The major observations are: domestic utility views toward foreign uranium purchase are dynamic; all but three utilities had some considered foreign purchase strategy; some utilities have problems with buying foreign uranium from particular countries; an inducement is often required by some utilities to buy foreign uranium; opinions varied among utilities concerning the viability of the domestic uranium industry; and many utilities could have foreign uranium fed through their domestic uranium contracts (indirect purchases). The above observations are expanded in the final section of the report. However, it should be noted that two of the observations are particularly important and should be seriously considered in formulation of foreign uranium import restrictions. These important observations are the dynamic nature of the subject matter and the potentially large and imbalanced effect the indirect purchases could have on utility foreign uranium procurement.

  13. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    into gaseous uranium fluoride (UF6); enrichment; fuel rodU-235 Concentration in UF6 Losses (conversion, fuelgaseous uranium hexafluoride (UF6) can be liquefied at lower

  14. Uranium 2005 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2006-01-01

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  15. EPA Update: NESHAP Uranium Activities

    E-Print Network [OSTI]

    EPA Update: NESHAP Uranium Activities Reid J. Rosnick Environmental Protection Agency Radiation Mining (Clean Air Act) · 40 CFR 61.20, Subpart B regulations limiting radon emissions from underground air radon standard not to exceed 10 mrem/yr to any member of the public-compliance determined

  16. Uranium isotopes fingerprint biotic reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more »i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  17. Evaluation of a RF-Based Approach for Tracking UF6 Cylinders at a Uranium Enrichment Plant

    SciTech Connect (OSTI)

    Pickett, Chris A; Younkin, James R; Kovacic, Donald N; Laughter, Mark D; Hines, Jairus B; Boyer, Brian; Martinez, B.

    2008-01-01

    Approved industry-standard cylinders are used globally to handle and store uranium hexafluoride (UF{sub 6}) feed, product, tails, and samples at uranium enrichment plants. The International Atomic Energy Agency (IAEA) relies on time-consuming physical inspections to verify operator declarations and detect possible diversion of UF{sub 6}. Development of a reliable, automated, and tamper-resistant system for near real-time tracking and monitoring UF{sub 6} cylinders (as they move within an enrichment facility) would greatly improve the inspector function. This type of system can reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a proof-of-concept approach that was designed to evaluate the feasibility of using radio frequency (RF)-based technologies to track individual UF{sub 6} cylinders throughout a portion of their life cycle, and thus demonstrate the potential for improved domestic accountability of materials, and a more effective and efficient method for application of site-level IAEA safeguards. The evaluation system incorporates RF-based identification devices (RFID) which provide a foundation for establishing a reliable, automated, and near real-time tracking system that can be set up to utilize site-specific, rules-based detection algorithms. This paper will report results from a proof-of-concept demonstration at a real enrichment facility that is specifically designed to evaluate both the feasibility of using RF to track cylinders and the durability of the RF equipment to survive the rigors of operational processing and handling. The paper also discusses methods for securely attaching RF devices and describes how the technology can effectively be layered with other safeguard systems and approaches to build a robust system for detecting cylinder diversion. Additionally, concepts for off-site tracking of cylinders are described.

  18. Inherently safe in situ uranium recovery.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  19. In Situ NDA Conformation Measurements Performed at Auxiliary Charcoal Bed and Other Main Charcoal Beds After Uranium Removal from Molten Salt Reactor Experiment ACB at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Kring, C. T.; McGehee, J. T.; Jugan, M. R.; Chapman, J.; Meyer, K. E.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). The MSRE was run by Oak Ridge National Laboratory (ORNL) to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503. The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed to cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. Beginning in 1987, it was discovered that gaseous uranium (U-233/U-232) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 had been generated when radiolysis in the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine. Some of the free fluorine combined with uranium fluorides (UF4) in the salt to produce UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE. One of the systems that UF6 migrated into due to this process was the offgas system which is vented to the MSRE main charcoal beds and MSRE auxiliary charcoal bed (ACB). Recently, the majority of the uranium laden-charcoal material residing within the ACB was safely and successfully removed using the uranium deposit removal system and equipment. After removal a series of NDA measurements was performed to determine the amount of uranium material remaining in the ACB, the amount of uranium material removed from the ACB, and the amount of uranium material remaining in the uranium removal equipment due to removal activities.

  20. Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs

    E-Print Network [OSTI]

    Matthews, Isaac A

    2010-01-01

    An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

  1. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  2. Uranium Metal Analysis via Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  3. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  4. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual Report 2014

  5. Dry process fluorination of uranium dioxide using ammonium bifluoride

    E-Print Network [OSTI]

    Yeamans, Charles Burnett, 1978-

    2003-01-01

    An experimental study was conducted to determine the practicality of various unit operations for fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double salts from uranium dioxide and ...

  6. THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01

    E. (1973) "Uranium Enrichment by Gas Centrifuge" Mills andTHEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE Donald R.THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE by Donald

  7. Colorimetric detection of uranium in water

    DOE Patents [OSTI]

    DeVol, Timothy A. (Clemson, SC); Hixon, Amy E. (Piedmont, SC); DiPrete, David P. (Evans, GA)

    2012-03-13

    Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

  8. Final Uranium Leasing Program Programmatic Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribe 11 12 Title: Final Uranium Leasing Program Programmatic Environmental Impact Statement 13 (DOEEIS-0472) 14 15 For additional information on this Programmatic...

  9. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  10. Sequestering Uranium from Seawater: Binding Strength and Modes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl...

  11. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers [EERE]

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  12. Department of Energy to Continue Managing Uranium Leasing Program...

    Energy Savers [EERE]

    Department of Energy to Continue Managing Uranium Leasing Program in Western Colorado Department of Energy to Continue Managing Uranium Leasing Program in Western Colorado May 12,...

  13. DOE Extends Public Comment Period for the Draft Uranium Leasing...

    Energy Savers [EERE]

    Extends Public Comment Period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement DOE Extends Public Comment Period for the Draft Uranium Leasing...

  14. Decommissioning of U.S. Uranium Production Facilities

    Reports and Publications (EIA)

    1995-01-01

    This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

  15. Secretarial Determination of No Adverse Material Impact for Uranium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretarial Determination of No Adverse Material Impact for Uranium Transfers Secretarial Determination of No Adverse Material Impact for Uranium Transfers The determination covers...

  16. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Environmental Management (EM)

    Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

  17. DOE Extends Public Comment Period for Uranium Program Environmental...

    Office of Environmental Management (EM)

    Uranium Program Environmental Impact Statement DOE Extends Public Comment Period for Uranium Program Environmental Impact Statement April 18, 2013 - 1:08pm Addthis Contractor, Bob...

  18. Record of Decision for the Uranium Leasing Program Programmatic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact...

  19. Uranium Speciation As a Function of Depth in Contaminated Hanford...

    Office of Scientific and Technical Information (OSTI)

    PLUMES; PONDS; SEDIMENTS; SILICATE MINERALS; SODIUM; SPECTRA; SPECTROSCOPY; SURFACE COATING; URANIUM; URANIUM MINERALS; WASTES; WATER TABLES Word Cloud More Like This Full Text...

  20. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01

    Coordination Chemistry of Uranium………………………………….11 1.4researchers from uranium chemistry. Fortunately, despiteclassical coordination chemistry of uranium has flourished

  1. Uranium Management - Preservation of a National Asset

    SciTech Connect (OSTI)

    Jackson, J. D.; Stroud, J. C.

    2002-02-27

    The Uranium Management Group (UMG) was established at the Department of Energy's (DOE's) Oak Ridge Operations in 1999 as a mechanism to expedite the de-inventory of surplus uranium from the Fernald Environmental Management Project site. This successful initial venture has broadened into providing uranium material de-inventory and consolidation support to the Hanford site as well as retrieving uranium materials that the Department had previously provided to universities under the loan/lease program. As of December 31, 2001, {approx} 4,300 metric tons of uranium (MTU) have been consolidated into a more cost effective interim storage location at the Portsmouth site near Piketon, OH. The UMG continues to uphold its corporate support mission by promoting the Nuclear Materials Stewardship Initiative (NMSI) and the twenty-five (25) action items of the Integrated Nuclear Materials Management Plan (1). Before additional consolidation efforts may commence to remove excess inventory from Environmental Management closure sites and universities, a Programmatic Environmental Assessment (PEA) must be completed. Two (2) noteworthy efforts currently being pursued involve the investigation of re-use opportunities for surplus uranium materials and the recovery of usable uranium from the shutdown Portsmouth cascade. In summary, the UMG is available as a DOE complex-wide technical resource to promote the responsible management of surplus uranium.

  2. Clean Air Act Requirements: Uranium Mill Tailings

    E-Print Network [OSTI]

    EPA'S Clean Air Act Requirements: Uranium Mill Tailings Radon Emissions Rulemaking Reid J. Rosnick Requirements for Uranium Operations (Clean Air Act) Subpart W Requirements (continued) · Radon emission standard of 20 pCi/m2/sec -- annual reporting requirements, notification in advance of testing · The radon

  3. Molten-Salt Depleted-Uranium Reactor

    E-Print Network [OSTI]

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  4. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  5. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  6. Thermodynamic data for uranium fluorides

    SciTech Connect (OSTI)

    Leitnaker, J.M.

    1983-03-01

    Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF/sub 4/ and UF/sub 6/, including UF/sub 4/ (solid and gas), U/sub 4/F/sub 17/ (solid), U/sub 2/F/sub 9/ (solid), UF/sub 5/ (solid and gas), U/sub 2/F/sub 10/ (gas), and UF/sub 6/ (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior.

  7. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Relative StandardCensusp2. U.S. uranium

  8. Uranium Cluster Chemistry DOI: 10.1002/anie.200906605

    E-Print Network [OSTI]

    Uranium Cluster Chemistry DOI: 10.1002/anie.200906605 Tetranuclear Uranium Clusters by Reductive in the coordination chemistry and small-molecule reactivity of uranium. Among the intriguing reactivity patterns of tetravalent uranium with 3,5-dimethylpyrazolate (Me2PzÀ ) led to forma- tion of an unprecedented homoleptic

  9. Chlorofluorocarbons, Sulfur Hexafluoride, and Dissolved Permanent Gases in Ground Water from Selected Sites In and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994 - 1997

    SciTech Connect (OSTI)

    Busenberg, E.; Plummer, L.N.; Bartholomay, R.C.; Wayland, J.E.

    1998-08-01

    From July 1994 through May 1997, the U.S. Geological Survey, in cooperations with the Department of Energy, sampled 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL). The wells were sampled for a variety of constituents including one- and two-carbon halocarbons. Concentrations of dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and trichlorotrifluororoethane (CFC-113) were determined. The data will be used to evaluate the ages of ground waters at INEEL. The ages of the ground water will be used to determine recharge rates, residence time, and travel time of water in the Snake River Plain aquifer in and near INEEL. The chromatograms of 139 ground waters are presented showing a large number of halomethanes, haloethanes, and haloethenes present in the ground waters underlying the INEEL. The chromatograms can be used to qualitatively evaluate a large number of contaminants at parts per trillion to parts per billion concentrations. The data can be used to study temporal and spatial distribution of contaminants in the Snake River Plain aquifer. Representative compressed chromatograms for all ground waters sampled in this study are available on two 3.5-inch high density computer disks. The data and the program required to decompress the data can be obtained from the U.S. Geological Survey office at Idaho Falls, Idaho. Sulfur hexafluoride (SF6) concentrations were measured in selected wells to determine the feasibility of using this environmental tracer as an age dating tool of ground water. Concentrations of dissolved nitrogen, argon, carbon dioxide, oxygen, and methane were measured in 79 ground waters. Concentrations of dissolved permanent gases are tabulated and will be used to evaluate the temperature of recharge of ground water in and near the INEEL.

  10. Technical Basis for Assessing Uranium Bioremediation Performance

    SciTech Connect (OSTI)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  11. Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Pena Blanca, Chihuahua, Mexico

    E-Print Network [OSTI]

    Dobson, P.

    2009-01-01

    of the Nopal I uranium deposit, Mexico: Proceedings, 2006of the Nopal I uranium deposit (Sierra Peña Blanca, Mexico),Chihuahua, Mexico, in Uranium Deposits in Volcanic Rocks,

  12. Electrochemistry, Spectroscopy, and Reactivity of Uranium Complexes Supported by Ferrocene Diamide Ligands

    E-Print Network [OSTI]

    Duhovic, Selma

    2012-01-01

    J. L. , Pentavalent Uranium Chemistry-Synthetic Pursuit of aand High-Valent Uranium Chemistry. Organometallics 2011,for Trivalent Uranium Chemistry. Inorg. Chem. 1989, 28, (

  13. Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges

    E-Print Network [OSTI]

    Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

    2006-01-01

    Behavior of Uranium(VI) during HEDPA Leaching for Aluminuman increase in the aqueous phase uranium concentration.The concentration of uranium continually increased over 59

  14. In-well sediment incubators to evaluate microbial community stability and dynamics following bioimmobilization of uranium

    E-Print Network [OSTI]

    Baldwin, B.R.

    2010-01-01

    D. R. (1992). Enzymatic uranium precipitation. Environmentalof technetium and uranium in a nitrate-contaminated aquifer.in situ bioremediation of uranium-contaminated groundwater.

  15. Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime

    E-Print Network [OSTI]

    Tian, Guoxin

    2013-01-01

    data_request/cif. OECD, Uranium 2009: Resources, Productionthermodynamics of uranium”, (H. Wanner and I. Forest,of California. Sequestering uranium from seawater: binding

  16. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation

    E-Print Network [OSTI]

    Druhan, J.L.

    2009-01-01

    in situ bioremediation of uranium in a highly contaminatedwith bioremediation of uranium to submicromolar levels.Reoxidation of bioreduced uranium under reducing conditions.

  17. Stability of uranium incorporated into Fe(hydr)oxides under fluctuating redox conditions

    E-Print Network [OSTI]

    Stewart, B.D.

    2009-01-01

    for Bioremediation of uranium-contaminated aquifers withReoxidation of bioreduced uranium under reducing conditions.Komlos, J. ; Jaffe, P. R. Uranium reoxidation in previously

  18. Decolonizing cartographies : sovereignty, territoriality, and maps of meaning in the uranium landscape

    E-Print Network [OSTI]

    Voyles, Traci Brynne

    2010-01-01

    Figure 8 Colorado Plateau uranium district, Life magazine in146! Figure 12 Navajo Nation and uranium industry162! Figure 14 An undated poster protesting uranium

  19. Inherently safe in situ uranium recovery (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Inherently safe in situ uranium recovery Citation Details In-Document Search Title: Inherently safe in situ uranium recovery An in situ recovery of uranium operation involves...

  20. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization

    E-Print Network [OSTI]

    Nico, Peter S.

    2010-01-01

    B. M. ; Geesey, G. G. Uranium complexes formed at hematiteheterogeneity in an in situ uranium bioremediation fieldL. R. In-situ evidence for uranium immobilization and

  1. Novel Transformations using Uranium and Group 5 Metal Complexes Supported by 1,1'-diamidoferrocene Ligands

    E-Print Network [OSTI]

    Lopez, Michael Joseph

    2013-01-01

    in the past decade. 1 Uranium is the most studiedactinide, due the stability of uranium-238and uranium involvement in nuclear power. Despite interest

  2. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    E-Print Network [OSTI]

    Lee, Victoria E.

    2010-01-01

    and river transport. Uranium-Series Geochemistry 52, 533-using high- precision uranium isotopic measurements.B. , Turner, S.P. , 2008. Uranium-series isotopes in river

  3. Magnetic Exchange Coupling and Single-Molecule Magnetism in Uranium Complexes

    E-Print Network [OSTI]

    Rinehart, Jeffrey Dennis

    2010-01-01

    method for interpreting uranium magnetism and will becontaining lower-valent uranium centers can be seen to1995. Chapter 4: Tetranuclear Uranium Clusters via Reductive

  4. Decolonizing cartographies : sovereignty, territoriality, and maps of meaning in the uranium landscape

    E-Print Network [OSTI]

    Voyles, Traci Brynne

    2010-01-01

    uranium mining .. 176!Doug, “The History of Uranium Mining and the Navajo People,”The Navajo People and Uranium Mining, University of New

  5. Electrolytic process for preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  6. uranium

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 FederalRivers andMEDA Station3/%2A ¡BLM Public

  7. Results from a "Proof-of-Concept" Demonstration of RF-Based Tracking of UF6 Cylinders during a Processing Operation at a Uranium Enrichment Plant

    SciTech Connect (OSTI)

    Pickett, Chris A; Kovacic, Donald N; Whitaker, J Michael; Younkin, James R; Hines, Jairus B; Laughter, Mark D; Morgan, Jim; Carrick, Bernie; Boyer, Brian; Whittle, K.

    2008-01-01

    Approved industry-standard cylinders are used globally for processing, storing, and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants. To ensure that cylinder movements at enrichment facilities occur as declared, the International Atomic Energy Agency (IAEA) must conduct time-consuming periodic physical inspections to validate facility records, cylinder identity, and containment. By using a robust system design that includes the capability for real-time unattended monitoring (of cylinder movements), site-specific rules-based event detection algorithms, and the capability to integrate with other types of monitoring technologies, one can build a system that will improve overall inspector effectiveness. This type of monitoring system can provide timely detection of safeguard events that could be used to ensure more timely and appropriate responses by the IAEA. It also could reduce reliance on facility records and have the additional benefit of enhancing domestic safeguards at the installed facilities. This paper will discuss the installation and evaluation of a radio-frequency- (RF-) based cylinder tracking system that was installed at a United States Enrichment Corporation Centrifuge Facility. This system was installed primarily to evaluate the feasibility of using RF technology at a site and the operational durability of the components under harsh processing conditions. The installation included a basic system that is designed to support layering with other safeguard system technologies and that applies fundamental rules-based event processing methodologies. This paper will discuss the fundamental elements of the system design, the results from this site installation, and future efforts needed to make this technology ready for IAEA consideration.

  8. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    SciTech Connect (OSTI)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 {+-} 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 {+-} 0.0006 wt. % {sup 234}U, 19.8336 {+-} 0.0059 wt. % {sup 235}U, 0.1337 {+-} 0.0006 wt. % {sup 236}U, and 79.9171 {+-} 0.0057 wt. % {sup 238}U.

  9. Thermodynamic properties of uranium dioxide

    SciTech Connect (OSTI)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the thermodynamic properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, there has been international agreement on a vapor pressure equation for the total pressure over UO/sub 2/, new methods have been suggested for the calculation of enthalpy and heat capacity, and a phase change at 2670 K has been proposed. In this report, an electronic term is used in place of the Frenkel defect term in the enthalpy and heat capacity equation and the phase transition is accepted.

  10. Highly Enriched Uranium Disposition | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    NNSA seeks to recover the economic value of the material by using the resulting LEU as nuclear reactor fuel. U.S.-Russian Highly Enriched Uranium Purchase Agreement NNSA's HEU...

  11. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  12. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    1. U.S. Forward-Cost Uranium Reserves by State, Year-End 2008 State 50lb 100lb Ore (million tons) Gradea (%) U3O8 (million lbs) Ore (million tons) Gradea (%) U3O8 (million lbs)...

  13. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, Gifford G. (Cincinnatti, OH); Kato, Takeo R. (Cincinnatti, OH); Schonegg, Edward (Cleves, OH)

    1986-01-01

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  14. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    Methodology The U.S. uranium ore reserves reported by EIA for specific MFC categories represent the sums of quantities estimated to occur in known deposits on properties where data...

  15. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    2. U.S. Forward-Cost Uranium Reserves by Mining Method, Year-End 2008 Mining Method 50 per pound 100 per pound Ore (million tons) Gradea (percent U3O8) U3O8 (million pounds) Ore...

  16. Innovative design of uranium startup fast reactors

    E-Print Network [OSTI]

    Fei, Tingzhou

    2012-01-01

    Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

  17. Decommissioning of uranium mines in Canada

    SciTech Connect (OSTI)

    Zgola, M.B. [Atomic Energy Control Board, Ottawa, Ontario (Canada)

    1996-12-31

    The Atomic Energy Control Board (AECB) regulates the nuclear fuel cycle in Canada. This paper overviews the nature and function of the AECB; discusses its {open_quotes}site-specific{close_quotes} approach to regulating the decommissioning of uranium mining facilities; catalogues the location and status of inactive uranium tailings impoundments in Canada; and, summarizes the decommissioning work at the licensed Elliot Lake tailings impoundments.

  18. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  19. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Hayden, H. Wayne (Oakridge, TN)

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  20. Stability of uranium incorporated into Fe(hydr)oxides under fluctuating redox conditions

    E-Print Network [OSTI]

    Stewart, B.D.

    2009-01-01

    at the Koongarra uranium deposit, Northern Australia -Uranium isotopic evidence for the origin of the Bahariya iron deposits,

  1. Spain`s uranium industry

    SciTech Connect (OSTI)

    Ferguson, M.P.

    1992-05-01

    Spain currently operates nine nuclear reactors totalling over 7,100 MWe of capacity, contributing about one-third of all electricity generated in Spain. Four reactors at advanced stages of construction remain mothballed as the result of a government-imposed moratorium, and a fire at Vandellos 1 in 1989 led to its premature closure and to a revival of anti-nuclear sentiment in the country. In the new national energy plan, which was sent to the Spanish Parliament on July 25, 1991, Spain opted to continue the nuclear moratorium that began in 1984 and rely upon conservation measures, additional natural gas imports, and electricity imports to meet expected demand. Under the new plan, nuclear power`s share of Spain`s total installed electrical generating capacity will fall from about 17 percent in 1990, to approximately 14 percent by the end of the century, as only the current nuclear facilities will continue to operate and no new nuclear plants will be built. Spain`s integration into the European Community also is affecting the country`s energy plans, prompting consolidation within the Spanish electricity sector in order to be more competitive in Europe. To supply the existing reactors, the government is supporting a major expansion of the country`s domestic uranium industry.

  2. Uranium mill ore dust characterization

    SciTech Connect (OSTI)

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  3. RESOLUTION OF URANIUM ISOTOPES WITH KINETIC PHOSPHORESCENCE ANALYSIS

    SciTech Connect (OSTI)

    Miley, Sarah M.; Hylden, Anne T.; Friese, Judah I.

    2013-04-01

    This study was conducted to test the ability of the Chemchek™ Kinetic Phosphorescence Analyzer Model KPA-11 with an auto-sampler to resolve the difference in phosphorescent decay rates of several different uranium isotopes, and therefore identify the uranium isotope ratios present in a sample. Kinetic phosphorescence analysis (KPA) is a technique that provides rapid, accurate, and precise determination of uranium concentration in aqueous solutions. Utilizing a pulsed-laser source to excite an aqueous solution of uranium, this technique measures the phosphorescent emission intensity over time to determine the phosphorescence decay profile. The phosphorescence intensity at the onset of decay is proportional to the uranium concentration in the sample. Calibration with uranium standards results in the accurate determination of actual concentration of the sample. Different isotopes of uranium, however, have unique properties which should result in different phosphorescence decay rates seen via KPA. Results show that a KPA is capable of resolving uranium isotopes.

  4. ORNL/TM-2009/110 Profile of World Uranium

    E-Print Network [OSTI]

    Pennycook, Steve

    ORNL/TM-2009/110 Profile of World Uranium Enrichment Programs--2009 April 2009 Prepared by M. D PROFILE OF WORLD URANIUM ENRICHMENT PROGRAMS--2009 M. D. Laughter Date Published: April 2009 This work

  5. Prospects for the recovery of uranium from seawater

    E-Print Network [OSTI]

    Best, F. R.

    1980-01-01

    A computer program entitled URPE (Uranium Recovery Performance and Economics) has been developed to simulate the engineering performance and provide an economic analysis O of a plant recovering uranium from seawater. The ...

  6. Assessments of long-term uranium supply availability

    E-Print Network [OSTI]

    Zaterman, Daniel R

    2009-01-01

    The future viability of nuclear power will depend on the long-term availability of uranium. A two-form uranium supply model was used to estimate the date at which peak production will occur. The model assumes a constant ...

  7. Electron Microbeam Investigation of Uranium-Contaminated Soils from

    E-Print Network [OSTI]

    Zhu, Chen

    . Uranium(VI), which typically occurs in the uranyl (UO2 2+) ion or in uranyl complexes, dominates under

  8. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes

    SciTech Connect (OSTI)

    Marsh, Terence L.

    2013-07-30

    Our contribution to the larger project (ANL) was the phylogenetic analysis of evolved communities capable of reducing metals including uranium.

  9. The Uranium Processing Facility (UPF) Finite Element Meshing Discussion

    Broader source: Energy.gov [DOE]

    The Uranium Processing Facility (UPF) Finite Element Meshing Discussion Loring Wyllie Arne Halterman Degenkolb Engineers, San Francisco

  10. Modeling Uranium-Proton Ion Exchange in Biosorption

    E-Print Network [OSTI]

    Volesky, Bohumil

    Modeling Uranium-Proton Ion Exchange in Biosorption J I N B A I Y A N G A N D B O H U M I L V O L E, Quebec, Canada H3A 2B2 Biosorption of uranium metal ions by a nonliving protonated Sargassum fluitans seaweed biomass was used to remove the heavy metal uranium from the aqueous solution. Uranium biosorption

  11. Retrieval of buried depleted uranium from the T-1 trench

    SciTech Connect (OSTI)

    Burmeister, M.; Castaneda, N.; Greengard, T. |; Hull, C.; Barbour, D.; Quapp, W.J.

    1998-07-01

    The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

  12. The radioactive Substances (Uranium and Thorium) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01

    STATUTORY INSTRUMENTS 1962 No.2710 ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES The Radioactive Substances (Uranium and Thorium) Exemption Order 1962

  13. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  14. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  15. Soil to plant transfer of 238 Th on a uranium

    E-Print Network [OSTI]

    Hu, Qinhong "Max"

    Soil to plant transfer of 238 U, 226 Ra and 232 Th on a uranium mining-impacted soil from species grown in soils from southeastern China contaminated with uranium mine tailings were analyzed. Keywords: Uranium; Thorium; Radium; Tailings-contaminated soil; Soileplant transfer 1. Introduction

  16. Uranium Reduction in Sediments under Diffusion-Limited Transport of

    E-Print Network [OSTI]

    Hazen, Terry

    Uranium Reduction in Sediments under Diffusion-Limited Transport of Organic Carbon T E T S U K, Chicago, Illinois 60637 Costly disposal of uranium (U) contaminated sediments is motivating research. Introduction Uranium (U) is an important subsurface contaminant at sites associated with its mining

  17. Estimating terrestrial uranium and thorium by antineutrino flux measurements

    E-Print Network [OSTI]

    Mcdonough, William F.

    Estimating terrestrial uranium and thorium by antineutrino flux measurements Stephen T. Dye, and approved November 16, 2007 (received for review July 11, 2007) Uranium and thorium within the Earth produce of uranium and thorium concentrations in geological reservoirs relies largely on geochemi- cal model

  18. EPA Uranium Program Update Loren W. Setlow and

    E-Print Network [OSTI]

    EPA Uranium Program Update Loren W. Setlow and Reid J. Rosnick Environmental Protection Agency Office of Radiation and Indoor Air (6608J) Washington, DC 20460 NMA/NRC Uranium Recovery Workshop April 30, 2008 #12;2 Overview EPA Radiation protection program Uranium reports and abandoned mine lands

  19. Standard Review Plan for In Situ Leach Uranium

    E-Print Network [OSTI]

    NUREG-1569 Standard Review Plan for In Situ Leach Uranium Extraction License Applications Final Washington, DC 20555-0001 #12;NUREG-1569 Standard Review Plan for In Situ Leach Uranium Extraction License OF A STANDARD REVIEW PLAN (NUREG­1569) FOR STAFF REVIEWS FOR IN SITU LEACH URANIUM EXTRACTION LICENSE

  20. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL)

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  1. Appendix IV. Risks Associated with Conventional Uranium Milling Introduction

    E-Print Network [OSTI]

    as in situ leaching (ISL) mining operations, to provide a more complete picture of uranium production. While this report focuses on the impacts associated with conventional surface and underground uranium mines Radioactive Materials from Uranium Mining. Volume 1: Mining and Reclamation Background" by U.S. EPA (2006

  2. SANS Measurement of Hydrides in Uranium

    SciTech Connect (OSTI)

    Spooner, S; Ludtka, G.M.; Bullock, J.S.; Bridges, R.L.; Powell, G.L.

    2001-09-04

    SANS scattering is shown to be an effective method for detecting the presence of hydrogen precipitates in uranium. High purity polycrystalline samples of depleted uranium were given several hydriding treatments which included extended exposures to hydrogen gas at two different pressures at 630 C as well as a furnace anneal at 850 C followed by slow cooling in the near absence hydrogen gas. All samples exhibited neutron scattering that was in proportion to the expected levels of hydrogen content. While the scattering signal was strong, the shape of the scattering curve indicated that the scattering objects were large sized objects. Only by use of a very high angular resolution SANS technique was it possible to make estimates of the major diameter of the scattering objects. This analysis permits an estimate of the volume fraction and means size of the hydride precipitates in uranium.

  3. Fission Enhanced diffusion of uranium in zirconia

    E-Print Network [OSTI]

    Bérerd, N; Moncoffre, N; Sainsot, P; Faust, H; Catalette, H

    2005-01-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin $^{235}UO\\_2$ layer in direct contact with an oxidized zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 10$^{11}$ ions cm$^{-2}$ s$^{-1}$ and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10$^{-15}$ cm$^2$ s$^{-1}$ at 480$\\circ$C and compared to uranium thermal diffusion data in ZrO$\\_2$ in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  4. U. S. forms uranium enrichment corporation

    SciTech Connect (OSTI)

    Seltzer, R.

    1993-07-12

    After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business. On July 1, the Department of Energy turned over to a new government-owned entity--the US Enrichment Corp. (USEC)--both the DOE enrichment plants at Paducah, Ky., and Portsmouth, Ohio, and domestic and international marketing of enriched uranium from them. Pushed by the inability of DOE's enrichment operations to meet foreign competition, Congress established USEC under the National Energy Policy Act of 1992, envisioning the new corporation as the first step to full privatization. With gross revenues of $1.5 billion in fiscal 1992, USEC would rank 275th on the Fortune 500 list of top US companies. USEC will lease from DOE the Paducah and Portsmouth facilities, built in the early 1950s, which use the gaseous diffusion process for uranium enrichment. USEC's stock is held by the US Treasury, to which it will pay annual dividends. Martin Marietta Energy Systems, which has operated Paducah since 1984 and Portsmouth since 1986 for DOE, will continue to operate both plants for USEC. Closing one of the two facilities will be studied, especially in light of a 40% world surplus of capacity over demand. USEC also will consider other nuclear-fuel-related ventures. USEC will produce only low-enriched uranium, not weapons-grade material. Indeed, USEC will implement a contract now being completed under which the US will purchase weapons-grade uranium from dismantled Russian nuclear weapons and convert it into low-enriched uranium for power reactor fuel.

  5. Aseismic design criteria for uranium enrichment plants

    SciTech Connect (OSTI)

    Beavers, J.E.

    1980-01-01

    In this paper technological, economical, and safety issues of aseismic design of uranium enrichment plants are presented. The role of management in the decision making process surrounding these issues is also discussed. The resolution of the issues and the decisions made by management are controlling factors in developing aseismic design criteria for any facility. Based on past experience in developing aseismic design criteria for the GCEP various recommendations are made for future enrichment facilities, and since uranium enrichment plants are members of the nuclear fuel cycle the discussion and recommendations presented herein are applicable to other nonreactor nuclear facilities.

  6. Simplifying strong electronic correlations in uranium: Localized uranium heavy-fermion UM2Zn20 (M=Co,Rh) compounds

    E-Print Network [OSTI]

    Lawrence, Jon

    Simplifying strong electronic correlations in uranium: Localized uranium heavy-fermion UM2Zn20 (M Atómica, 8400 Bariloche, Argentina 6 Department of Chemistry and Biochemistry, University of Delaware-field effects corroborate an ionic-like uranium electronic configura- tion in UM2Zn20. DOI: 10.1103/PhysRevB.78

  7. U.S. Department of Energy Portsmouth/Paducah Project Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    steam generation boilers with several smaller, more efficient steam boilers; transfer of uranium hexafluoride (UF 6 ) to compliant cylinders; treatment of cells to remove...

  8. EIS-0269: Notice of Intent to Prepare a Programmatic Environmental...

    Office of Environmental Management (EM)

    EIS-0269: Notice of Intent to Prepare a Programmatic Environmental Impact Statement Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride,...

  9. Enterprise Assessments Targeted Review of the Paducah Depleted...

    Broader source: Energy.gov (indexed) [DOE]

    Targeted Review of the Fire Protection Program at the Paducah Depleted Uranium Hexafluoride Conversion Facility The U.S. Department of Energy (DOE) Office of Enterprise Assessments...

  10. Potential Outline of Section 180(c) Policy and Procedures

    Office of Environmental Management (EM)

    shipment-related activities. Examples include the WIPP, Foreign Research Reactor, West Valley, and depleted uranium hexafluoride shipping programs. DOE's interpretation of...

  11. Possibility of nuclear pumped laser experiment using low enriched uranium

    SciTech Connect (OSTI)

    Obara, Toru; Takezawa, Hiroki [Center for Research into Innovative Nuclear Energy Systems Tokyo Institute of Technology 2-12-1-N1-19, Ookayama Meguro-ku, Tokyo 152-8550 (Japan)

    2012-06-06

    Possibility to perform experiments for nuclear pumped laser oscillation by using low enriched uranium is investigated. Kinetic analyses are performed for two types of reactor design, one is using highly enriched uranium and the other is using low enriched uranium. The reactor design is based on the experiment reactor in IPPE. The results show the oscillation of nuclear pumped laser in the case of low enriched uranium reactor is also possible. The use of low enriched uranium in the experiment will make experiment easier.

  12. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions.

    SciTech Connect (OSTI)

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    2014-10-23

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U??Ga??, (UC)??Ga?? and U??Cs?, (UC)??Cs??, respectively.

  13. The Uranium Institute 24th Annual Symposium

    E-Print Network [OSTI]

    Laughlin, Robert B.

    -239 for use in subsequent reactors. A fast neutron reactor is capable of producing more plutonium fuel than the uranium fuel it burns, leading to a breeder reactor. In addition, if the reactor is a fast with half lives of 30 years or less. The fast neutron reactor of preference was to be cooled with liquid

  14. The Quest for the Heaviest Uranium Isotope

    E-Print Network [OSTI]

    S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

    2012-01-17

    We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

  15. Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)

  16. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    E-Print Network [OSTI]

    Isselhardt, Brett Hallen

    2011-01-01

    4.5 Uranium Isotope Ratio Measurements . . . . . .4.32 Uranium sputtered from three U-rich materials of varying uranium isotopic

  17. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01

    of a Charge- Separated Uranium Benzophenone Ketyl Radical3. Charge-Separation in Uranium Diazomethane ComplexesRelated Small Molecules by Uranium Coordination Complexes”,

  18. Assessing the environmental availability of uranium in soils and sediments

    SciTech Connect (OSTI)

    Amonette, J.E.; Holdren, G.R. Jr.; Krupa, K.M.; Lindenmeier, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1994-06-01

    Soils and sediments contaminated with uranium pose certain environmental and ecological risks. At low to moderate levels of contamination, the magnitude of these risks depends not only on the absolute concentrations of uranium in the material but also on the availability of the uranium to drinking water supplies, plants, or higher organisms. Rational approaches for regulating the clean-up of sites contaminated with uranium, therefore, should consider the value of assessing the environmental availability of uranium at the site before making decisions regarding remediation. The purpose of this work is to review existing approaches and procedures to determine their potential applicability for assessing the environmental availability of uranium in bulk soils or sediments. In addition to making the recommendations regarding methodology, the authors have tabulated data from the literature on the aqueous complexes of uranium and major uranium minerals, examined the possibility of predicting environmental availability of uranium based on thermodynamic solubility data, and compiled a representative list of analytical laboratories capable of performing environmental analyses of uranium in soils and sediments.

  19. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction bymore »clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H 2 ) production. « less

  20. Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094

    SciTech Connect (OSTI)

    Camper, Larry W.; Michalak, Paul; Cohen, Stephen; Carter, Ted [Nuclear Regulatory Commission (United States)

    2012-07-01

    Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly and the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)

  1. The uranium cylinder assay system for enrichment plant safeguards

    SciTech Connect (OSTI)

    Miller, Karen A; Swinhoe, Martyn T; Marlow, Johnna B; Menlove, Howard O; Rael, Carlos D; Iwamoto, Tomonori; Tamura, Takayuki; Aiuchi, Syun

    2010-01-01

    Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

  2. Uranium accountancy in Atomic Vapor Laser Isotope Separation

    SciTech Connect (OSTI)

    Carver, R.D.

    1986-01-01

    The AVLIS program pioneers the large scale industrial application of lasers to produce low cost enriched uranium fuel for light water reactors. In the process developed at Lawrence Livermore National Laboratory, normal uranium is vaporized by an electron beam, and a precisely tuned laser beam selectively photo-ionizes the uranium-235 isotopes. These ions are moved in an electromagnetic field to be condensed on the product collector. All other uranium isotopes remain uncharged and pass through the collector section to condense as tails. Tracking the three types of uranium through the process presents special problems in accountancy. After demonstration runs, the uranium on the collector was analyzed for isotopic content by Battelle Pacific Northwest Laboratory. Their results were checked at LLNL by analysis of parallel samples. The differences in isotopic composition as reported by the two laboratories were not significant.

  3. Uranium enrichment management review: summary of analysis

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    In May 1980, the Assistant Secretary for Resource Applications within the Department of Energy requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. After extensive investigation, analysis, and discussion, the review group presented its findings and recommendations in a report on December 2, 1980. The following pages contain background material on which that final report was based. This report is arranged in chapters that parallel those of the uranium enrichment management review final report - chapters that contain summaries of the review group's discussion and analyses in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. Further information, in-depth analysis, and discussion of suggested alternative management practices are provided in five appendices.

  4. Uranium Oxide Aerosol Transport in Porous Graphite

    SciTech Connect (OSTI)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  5. Engineering assessment of inactive uranium mill tailings

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

  6. Fayans functional for deformed nuclei. Uranium region

    E-Print Network [OSTI]

    S. V. Tolokonnikov; I. N. Borzov; M. Kortelainen; Yu. S. Lutostansky; E. E. Saperstein

    2015-08-03

    Fayans energy density functional (EDF) FaNDF^0 has been applied to the nuclei around uranium region. Ground state characteristics of the Th, U and Pu isotopic chains, up to the two-neutron drip line, are found and compared with predictions from several Skyrme EDFs. The two-neutron drip line is found for FaNDF^0, SLy4 and SkM^* EDFs for a set of elements with even proton number, from Pb up to Fm.

  7. Fayans functional for deformed nuclei. Uranium region

    E-Print Network [OSTI]

    Tolokonnikov, S V; Kortelainen, M; Lutostansky, Yu S; Saperstein, E E

    2015-01-01

    Fayans energy density functional (EDF) FaNDF^0 has been applied to the nuclei around uranium region. Ground state characteristics of the Th, U and Pu isotopic chains, up to the two-neutron drip line, are found and compared with predictions from several Skyrme EDFs. The two-neutron drip line is found for FaNDF^0, SLy4 and SkM^* EDFs for a set of elements with even proton number, from Pb up to Fm.

  8. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization

    E-Print Network [OSTI]

    Nico, Peter S.

    2010-01-01

    Uranium isotopic evidence for the origin of the Bahariya iron deposits,U deposit, and the DOE Oak Ridge site (where uranium bearingdeposits, mining activities, and nuclear weapons production. Uranium

  9. Magnetic Exchange Coupling and Single-Molecule Magnetism in Uranium Complexes

    E-Print Network [OSTI]

    Rinehart, Jeffrey Dennis

    2010-01-01

    in molecular uranium cluster chemistry. 13 Compound 2 ischemistry and small-molecule reactivity of uranium. AmongUranium Complexes by Jeffrey Dennis Rinehart Doctor of Philosophy in Chemistry

  10. Recent International R&D Activities in the Extraction of Uranium from Seawater

    E-Print Network [OSTI]

    Rao, Linfeng

    2011-01-01

    Uranium and Rare Earth Elements Using Biomass of Algae, Bioinorganic Chemistry andRecovery of uranium from sea water. Chemistry & Industry (of uranium from seawater. Turkish Journal of Chemistry, 17 (

  11. CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTIS (BIS(TRIMETHYLSILYL)AMIDO]URANIUM(IV)

    E-Print Network [OSTI]

    Andersen, Richard A.

    2012-01-01

    BIS(TRIMETHYLSILYL)AMIDO]URANIUM(IV) Richard A. Andersen,BIS(TRIMETHYLSILYL)AMIDO]URANIUM(IV) Richard A. Andersen,of thorium (IV) and uranium (IV), HM[N(SiMe ) 2] 3 , have

  12. Examination of Uranium(VI) Leaching During Ligand Promoted Dissolution of Waste Tank Sludge Surrogates

    E-Print Network [OSTI]

    Powell, Brian A.

    2008-01-01

    Effects of phosphate on uranium(VI) adsorption to goethite-and ionic strength upon uranium(VI) sorption onto alumina asD. R. , Leslie, B. W. , Uranium sorption on a-alumina:

  13. Investigation of the electronic structure of mono(1,1?- diamidoferrocene) uranium(IV) complexes

    E-Print Network [OSTI]

    Duhovi?, S; Oria, JV; Odoh, SO; Schreckenbach, G; Batista, ER; Diaconescu, PL

    2013-01-01

    1,1’- Diamidoferrocene) Uranium(IV) Complexes Selma Duhovi?,mono(1,1’- diamidoferrocene) uranium complexes (NN R )UX 2 (as actinides. 17-19 For uranium, we have observed a wide

  14. Uranium Recovery from Seawater: Development of Fiber Adsorbents Prepared via Atom-Transfer Radical Polymerization

    SciTech Connect (OSTI)

    Saito, Tomonori; Brown, Suree; Chatterjee, Sabornie; Kim, Jungseung; Tsouris, Constantinos; Mayes, Richard; Kuo, Li-Jung; Gill, Gary A.; Oyola, Yatsandra; Janke, C.; Dai, Sheng

    2014-07-09

    Uranium exists uniformly at a concentration of ~3.3 ppb in seawater. The extraction of uranium from seawater presents a very attractive alternative source of uranium for nuclear fuel needs.

  15. The US uranium industry: Regulatory and policy impediments

    SciTech Connect (OSTI)

    Drennen, T.E.; Glicken, J.

    1995-06-01

    The Energy Policy Act of 1992 required the DOE to develop recommendations and implement government programs to assist the domestic uranium industry in increasing export opportunities. In 1993, as part of that effort, the Office of Nuclear Energy identified several key factors that could (or have) significantly impact(ed) export opportunities for domestic uranium. This report addresses one of these factors: regulatory and policy impediments to the flow of uranium products between the US and other countries. It speaks primarily to the uranium market for civil nuclear power. Changes in the world political and economic order have changed US national security requirements, and the US uranium industry has found itself without the protected market it once enjoyed. An unlevel playing field for US uranium producers has resulted from a combination of geology, history, and a general US political philosophy of nonintervention that precludes the type of industrial policy practiced in other uranium-exporting countries. The US has also been hampered in its efforts to support the domestic uranium-producing industry by its own commitment to free and open global markets and by international agreements such as GATT and NAFTA. Several US policies, including the imposition of NRC fees and licensing costs and Harbor Maintenance fees, directly harm the competitiveness of the domestic uranium industry. Finally, requirements under US law, such as those in the 1979 Nuclear Nonproliferation Act, place very strict limits on the use of US-origin uranium, limitations not imposed by other uranium-producing countries. Export promotion and coordination are two areas in which the US can help the domestic uranium industry without violating existing trade agreements or other legal or policy constraints.

  16. Colloids generation from metallic uranium fuel

    SciTech Connect (OSTI)

    Metz, C.; Fortner, J.; Goldberg, M.; Shelton-Davis, C.

    2000-07-20

    The possibility of colloid generation from spent fuel in an unsaturated environment has significant implications for storage of these fuels in the proposed repository at Yucca Mountain. Because colloids can act as a transport medium for sparingly soluble radionuclides, it might be possible for colloid-associated radionuclides to migrate large distances underground and present a human health concern. This study examines the nature of colloidal materials produced during corrosion of metallic uranium fuel in simulated groundwater at elevated temperature in an unsaturated environment. Colloidal analyses of the leachates from these corrosion tests were performed using dynamic light scattering and transmission electron microscopy. Results from both techniques indicate a bimodal distribution of small discrete particles and aggregates of the small particles. The average diameters of the small, discrete colloids are {approximately}3--12 nm, and the large aggregates have average diameters of {approximately}100--200 nm. X-ray diffraction of the solids from these tests indicates a mineral composition of uranium oxide or uranium oxy-hydroxide.

  17. Equation of State of Uranium and Plutonium

    E-Print Network [OSTI]

    Barroso, Dalton Ellery Girão

    2015-01-01

    The objective of this work is to define the parameters of the three-term equation of state for uranium and plutonium, appropriate for conditions in which these materials are subjected to strong shock compressions, as in cylindrical and spherical implosions. The three-term equation of state takes into account the three components of the pressure that resist to compression in the solid: the elastic or "cold" pressure (coulombian repulsion between atoms), the thermal pressure due to vibratory motion of atoms in the lattice of the solid and the thermal pressure of electrons thermally excited. The equation of state defined here permits also to take into account the variation of the specific heat with the transition of the solid to the liquid or gaseous state due to continued growth of temperature in strong shock compressions. In the definition of uranium equation of state, experimental data on the uranium compression, available in the open scientific literature, are used. In the plutonium case, this element was co...

  18. Equation of State of Uranium and Plutonium

    E-Print Network [OSTI]

    Dalton Ellery Girão Barroso

    2015-07-13

    The objective of this work is to define the parameters of the three-term equation of state for uranium and plutonium, appropriate for conditions in which these materials are subjected to strong shock compressions, as in cylindrical and spherical implosions. The three-term equation of state takes into account the three components of the pressure that resist to compression in the solid: the elastic or "cold" pressure (coulombian repulsion between atoms), the thermal pressure due to vibratory motion of atoms in the lattice of the solid and the thermal pressure of electrons thermally excited. The equation of state defined here permits also to take into account the variation of the specific heat with the transition of the solid to the liquid or gaseous state due to continued growth of temperature in strong shock compressions. In the definition of uranium equation of state, experimental data on the uranium compression, available in the open scientific literature, are used. In the plutonium case, this element was considered initially in the alpha-phase or stabilized in the delta-phase. In the last case, an abrupt and instantaneous transition to the alpha-phase was considered when the delta-phase plutonium is submitted to strong compressions.

  19. Supply of enriched uranium for research reactors

    SciTech Connect (OSTI)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  20. Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined in a wide variety of rocks, including sandstone, carbonates1

    E-Print Network [OSTI]

    3-1 Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined conventional mining, solution extraction, and milling of uranium, a principal focus of this report is TENORM, or which may need future reclamation. When uranium mining first started, most of the ores were recovered

  1. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    SciTech Connect (OSTI)

    2013-07-01

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

  2. The radioactive Substances (Prepared Uranium Thorium Compounds) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01

    STATUTORY INSTRUMENTS 1962 No. 2711 ATOMIC ENERGY AND RADIOACI1VE SUBSTANCES The Radioactive Substances (prepared Uranium and Thorium Compounds) Exemption Order 1962

  3. High grade uranium resources in the United States : an overview

    E-Print Network [OSTI]

    Graves, Richard E.

    1974-01-01

    A time analysis of uranium exploration, production and known reserves in the United States is employed to reveal industry trends. The

  4. The Hydrogen Corrosion of Uranium: Identification of Underlying...

    Office of Scientific and Technical Information (OSTI)

    The Hydrogen Corrosion of Uranium: Identification of Underlying Causes and Proposed Mitigation Strategies Citation Details In-Document Search Title: The Hydrogen Corrosion of...

  5. Degradation problems with the solvent extraction organic at Roessing uranium

    SciTech Connect (OSTI)

    Munyungano, Brodrick; Feather, Angus; Virnig, Michael

    2008-07-01

    Roessing Uranium Ltd recovers uranium from a low-grade ore in Namibia. Uranium is recovered and purified from an ion-exchange eluate in a solvent-extraction plant. The solvent-extraction plant uses Alamine 336 as the extractant for uranium, with isodecanol used as a phase modifier in Sasol SSX 210, an aliphatic hydrocarbon diluent. Since the plant started in the mid 1970's, there have been a few episodes where the tertiary amine has been quickly and severely degraded when the plant was operated outside certain operating parameters. The Rossing experience is discussed in more detail in this paper. (authors)

  6. Basic characterization of highly enriched uranium by gamma spectrometry

    E-Print Network [OSTI]

    Cong Tam Nguyen; Jozsef Zsigrai

    2005-08-25

    Gamma-spectrometric methods suitable for the characterization of highly enriched uranium samples encountered in illicit trafficking of nuclear materials are presented. In particular, procedures for determining the 234U, 235U, 238U, 232U and 236U contents and the age of highly enriched uranium are described. Consequently, the total uranium content and isotopic composition can be calculated. For determining the 238U and 232U contents a low background chamber was used. In addition, age dating of uranium was also performed using low-background spectrometry.

  7. Basic characterization of highly enriched uranium by gamma spectrometry

    E-Print Network [OSTI]

    Nguyen, C T

    2006-01-01

    Gamma-spectrometric methods suitable for the characterization of highly enriched uranium samples encountered in illicit trafficking of nuclear materials are presented. In particular, procedures for determining the 234U, 235U, 238U, 232U and 236U contents and the age of highly enriched uranium are described. Consequently, the total uranium content and isotopic composition can be calculated. For determining the 238U and 232U contents a low background chamber was used. In addition, age dating of uranium was also performed using low-background spectrometry.

  8. DOE Evaluates Environmental Impacts of Uranium Mining on Government...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JUNCTION, Colo. - The U.S. Department of Energy (DOE) today announced that the Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) is available to...

  9. Uranium and Strontium Batch Sorption and Diffusion Kinetics into...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium and Strontium Batch Sorption and Diffusion Kinetics into Mesoporous Silica Friday, February 27, 2015 Figure 1 Figure 1. Transmission electron microscopy images of (A)...

  10. Abandoned Uranium Mine Technical Services and Cleanup Industry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abandoned Uranium Mine Technical Services and Cleanup Industry Day In January 2015, the United States (U.S.) and the Anadarko Litigation Trust ("Litigation Trust") entered into a...

  11. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  12. Toxic Substances Control Act Uranium Enrichment Federal Facilities...

    Office of Environmental Management (EM)

    Toxic Substance Control Act Uranium Enrichment Federal Facilities Compliance Agreement (TSCA-UE- FFCA), February 20, 1992 State Kentucky Agreement Type Compliance Agreement Legal...

  13. The Uranium Processing Facility Finite Element Meshing Discussion

    Office of Environmental Management (EM)

    Uranium Processing Facility (UPF) Finite Element Meshing Discussion ...Need picture of Building... October 25, 2011 Department of Energy - Natural Phenomenon Hazard Workshop 1...

  14. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Broader source: Energy.gov (indexed) [DOE]

    440 Highly Enriched Uranium Materials Facility (HEUMF) Major Design Changes Late Lessons Learned Report Apr 2010.pdf More Documents & Publications EIS-0387: Draft Site-Wide...

  15. Toxic Substances Control Act Uranium Enrichment Federal Facilities...

    Office of Environmental Management (EM)

    Toxic Substance Control Act Uranium Enrichment Federal Facilities Compliance Agreement (TSCA-UE- FFCA), February 20, 1992 State Ohio Agreement Type Compliance Agreement Legal...

  16. Method of fabricating a uranium-bearing foil

    DOE Patents [OSTI]

    Gooch, Jackie G. (Seymour, TN); DeMint, Amy L. (Kingston, TN)

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  17. President Truman Increases Production of Uranium and Plutonium...

    National Nuclear Security Administration (NNSA)

    Increases Production of Uranium and Plutonium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  18. Promoting Uranium Immobilization by the Activities of Microbial...

    Office of Scientific and Technical Information (OSTI)

    of uranium U(VI) phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release andor...

  19. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect (OSTI)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  20. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    SciTech Connect (OSTI)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

  1. Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides

    SciTech Connect (OSTI)

    Haas, P.A.; Lee, D.D.; Mailen, J.C.

    1991-11-01

    The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

  2. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    SciTech Connect (OSTI)

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.

  3. Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Pena Blanca, Chihuahua, Mexico

    E-Print Network [OSTI]

    Dobson, P.

    2009-01-01

    and geochronology of the Nopal I uranium deposit, Mexico:with hydrothermally altered Nopal Formation rhyolitic tuff.uranium mineralization at the Nopal deposit include Calas (

  4. CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTIS (BIS(TRIMETHYLSILYL)AMIDO]URANIUM(IV)

    E-Print Network [OSTI]

    Andersen, Richard A.

    2012-01-01

    Chemistry University of California Berkeley, California 94720 New hydride derivatives of thorium (IV) and uranium (Chemistry CRYSTAL AND MOLECULAR STRUCTURE OF HYDRIDOTRIS[BIS(TRIMETHYLSILYL)AMIDO]URANIUM(

  5. Novel Transformations using Uranium and Group 5 Metal Complexes Supported by 1,1'-diamidoferrocene Ligands

    E-Print Network [OSTI]

    Lopez, Michael Joseph

    2013-01-01

    chemistry has grown significantly in the past decade. 1 UraniumChemistry by Michael Joseph Lopez ABSTRACT OF THE THESIS Novel Transformations using Uranium

  6. Inherently safe in situ uranium recovery (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Inherently safe in situ uranium recovery Citation Details In-Document Search Title: Inherently safe in situ uranium recovery You are accessing a document from the Department of...

  7. EA-1172: Sale of Surplus Natural and Low Enriched Uranium, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to sell uranium for subsequent enrichment and fabrication into commercial nuclear power reactor fuel.  The uranium is currently stored...

  8. DOE Announces Transfer of Depleted Uranium to Advance the U.S...

    Energy Savers [EERE]

    Transfer of Depleted Uranium to Advance the U.S. National Security Interests, Extend Operations at Paducah Gaseous Diffusion Plant DOE Announces Transfer of Depleted Uranium to...

  9. Recent International R&D Activities in the Extraction of Uranium from Seawater

    E-Print Network [OSTI]

    Rao, Linfeng

    2011-01-01

    Poletiko, S. Prabhakar, P. K. Tewari, Extraction of uranium1982) 145-150. 27. P. K. Tewari, Recovery of Uranium from

  10. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOE Patents [OSTI]

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  11. Development of Novel Sorbents for Uranium Extraction from Seawater

    SciTech Connect (OSTI)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

  12. Uranium isotopes in ground water as a prospecting technique

    SciTech Connect (OSTI)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

  13. Mixed uranium dicarbide and uranium dioxide microspheres and process of making same

    DOE Patents [OSTI]

    Stinton, David P. (Knoxville, TN)

    1983-01-01

    Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.

  14. Spectroscopic Evidence for Uranium Bearing Precipitates in Vadose Zone

    E-Print Network [OSTI]

    of past nuclear fuel fabrication processes, uranium (U) has been recognized as one of the most widespreadHanfordsitesthatreceivedU-containingwastesduring its mission of Pu production between 1940 and 1990. Unirradiated fuel rod wastes were disposed to the 300 Area that included copper-uranium-nitric acid solutions and dissolved aluminum cladding (basic

  15. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  16. Uranium and cesium diffusion in fuel cladding of electrogenerating channel

    SciTech Connect (OSTI)

    Vasil’ev, I. V. Ivanov, A. S.; Churin, V. A.

    2014-12-15

    The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500°C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

  17. Case Study/ Effects of Groundwater Development on Uranium

    E-Print Network [OSTI]

    Case Study/ Effects of Groundwater Development on Uranium: Central Valley, California, USA Abstract Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley development during the last 100 years have changed the chemistry and magnitude of groundwater recharge

  18. Process for recovering niobium from uranium-niobium alloys

    DOE Patents [OSTI]

    Wallace, Steven A. (Knoxville, TN); Creech, Edward T. (Oak Ridge, TN); Northcutt, Walter G. (Oak Ridge, TN)

    1983-01-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  19. Adsorption study for uranium in Rocky Flats groundwater

    SciTech Connect (OSTI)

    Laul, J.C.; Rupert, M.C.; Harris, M.J.; Duran, A.

    1995-01-01

    Six adsorbents were studied to determine their effectiveness in removing uranium in Rocky Flats groundwater. The bench column and batch (Kd) tests showed that uranium can be removed (>99.9%) by four adsorbents. Bone Charcoal (R1O22); F-1 Alumina (granular activated alumina); BIOFIX (immobilized biological agent); SOPBPLUS (mixed metal oxide); Filtrasorb 300 (granular activated carbon); and Zeolite (clinoptilolite).

  20. Fabrication and Characterization of Uranium-Molybdenum-Zirconium Alloys 

    E-Print Network [OSTI]

    Woolum, Connor

    2014-12-12

    As part of a global effort to convert reactors that require highly enriched uranium to instead operate with low enriched uranium, monolithic fuel plates consisting of a U-Mo fuel meat with a zirconium foil barrier layer and clad in aluminum...

  1. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect (OSTI)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  2. Uranium in US surface, ground, and domestic waters

    SciTech Connect (OSTI)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium concentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  3. Preserving Ultra-Pure Uranium-233

    SciTech Connect (OSTI)

    Krichinsky, Alan M [ORNL; Goldberg, Dr. Steven A. [DOE SC - Chicago Office; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL)

    2011-10-01

    Uranium-233 ({sup 233}U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium ({sup 232}Th). At high purities, this synthetic isotope serves as a crucial reference material for accurately quantifying and characterizing uranium-bearing materials assays and isotopic distributions for domestic and international nuclear safeguards. Separated, high purity {sup 233}U is stored in vaults at Oak Ridge National Laboratory (ORNL). These materials represent a broad spectrum of {sup 233}U from the standpoint of isotopic purity - the purest being crucial for precise analyses in safeguarding uranium. All {sup 233}U at ORNL is currently scheduled to be disposed of by down-blending with depleted uranium beginning in 2015. This will reduce safety concerns and security costs associated with storage. Down-blending this material will permanently destroy its potential value as a certified reference material for use in uranium analyses. Furthermore, no credible options exist for replacing {sup 233}U due to the lack of operating production capability and the high cost of restarting currently shut down capabilities. A study was commissioned to determine the need for preserving high-purity {sup 233}U. This study looked at the current supply and the historical and continuing domestic need for this crucial isotope. It examined the gap in supplies and uses to meet domestic needs and extrapolated them in the context of international safeguards and security activities - superimposed on the recognition that existing supplies are being depleted while candidate replacement material is being prepared for disposal. This study found that the total worldwide need by this projection is at least 850 g of certified {sup 233}U reference material over the next 50 years. This amount also includes a strategic reserve. To meet this need, 18 individual items totaling 959 g of {sup 233}U were identified as candidates for establishing a lasting supply of certified reference materials (CRM), all having an isotopic purity of at least 99.4% {sup 233}U and including materials up to 99.996% purity. Current plans include rescuing the purest {sup 233}U materials during a 3-year project beginning in FY 2012 in three phases involving preparations, handling preserved materials, and cleanup. The first year will involve preparations for handling the rescued material for sampling, analysis, distribution, and storage. Such preparations involve modifying or developing work control documents and physical preparations in the laboratory, which include preparing space for new material-handling equipment and procuring and (in some cases) refurbishing equipment needed for handling {sup 233}U or qualifying candidate CRM. Once preparations are complete, an evaluation of readiness will be conducted by independent reviewers to verify that the equipment, work controls, and personnel are ready for operations involving handling radioactive materials with nuclear criticality safety as well as radiological control requirements. The material-handling phase will begin in FY 2013 and be completed early in FY 2014, as currently scheduled. Material handling involves retrieving candidate CRM items from the ORNL storage facility and shipping them to another laboratory at ORNL; receiving and handling rescued items at the laboratory (including any needed initial processing, acquisition and analysis of samples from each item, and preparation for shipment); and shipping bulk material to destination labs or to a yet-to-be-designated storage location. There are seven groups of {sup 233}U identified for handling based on isotopic purity that require the utmost care to prevent cross-contamination. The last phase, cleanup, also will be completed in 2014. It involves cleaning and removing the equipment and material-handling boxes and characterizing, documenting, and disposing of waste. As part of initial planning, the cost of rescuing candidate {sup 233}U items was estimated roughly. The annualized costs were found to be $1,228K in FY 2012, $1,375K in FY 2013,

  4. Measurements of Low-Enriched Uranium Holdup.

    SciTech Connect (OSTI)

    Belian, A. P. (Anthony P.); Reilly, T. D. (T. Douglas); Russo, P. A. (Phyllis A.); Tobin, S. J. (Stephen J.)

    2005-01-01

    A recent effort determined uranium holdup at a large fuel fabrication facility abroad where low enriched ({approx} 3%) uranium (LEU) oxide feeds the pellet manufacturing process. Measurements taken with both high- and low-resolution gamma-ray spectrometry systems include extensive data for the ventilation and vacuum systems. Equipment dimensions and the corresponding holdup deposit masses are large for LEU. Because deposits are infinitely thick to the 186 keV gamma ray in many locations in an LEU environment, measurements of both the 186 and 1001 keV gamma-rays were required, and self-attenuation was significant at 1001 keV in many cases. These wide-dynamic-range measruements used short count times, portable scintillator detectors, and portable MCAs. Because equipment is elevated above floor levels, most measurements were made with detectors mounted on extended telescoping poles. One of the main goals of this effort was to demonstrate and validate methods for measurement and quantitative analysis of LEU holdup using low-resolution detectors and the Generalized Geometry Holdup (GGH) techniques. The current GGH approach is applied elsewhere for holdup measurements of plutonium and high-enriched uranium. The recent experience is directly applicable to holdup measruements at LEU facilities such as the Paducah and Portmouth gaseous diffusion enrichment plants and elsewhere, including LEU sites where D and D is active. This report discusses the measurement methodology, calibration of the measurement equipment, measurement control, analysis of the data, and the global and local assay results including random and systematic uncertainties. It includes field-validation exercises (multiple calibrated systems that perform measruements on the same extended equipment) as well as quantitative validation results obtained on reference materials assembled to emulate the deposits in an extended vacuum line that was also measured by these techniques. The paper examines the differences in assay results between the low-resolution system using the GGH method and the high-resolution system utilizing the commercially available ISOCS analysis method.

  5. Modeled atmospheric radon concentrations from uranium mines

    SciTech Connect (OSTI)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  6. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    SciTech Connect (OSTI)

    Myers, Astasia [Stanford University, Stanford, CA 94305, USA and MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

    2011-06-28

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  7. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

  8. VANE Uranium One JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility Rates API Version 2(RECP)VANE Uranium One

  9. Manhattan Project: More Uranium Research, 1942

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle)SciTechNorris Bradbury,Cubes of uranium metal, Los

  10. Uranium Weapons Components Successfully Dismantled | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinalUnexpectedofWyko NT33004. Uranium4.

  11. Nuclear Fuel Facts: Uranium | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e OfficeResearch andFacts: Uranium

  12. Uranium Marketing Annual Report - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldieselgasolinemonthlysummer gasolineall Uranium

  13. Innovative Elution Processes for Recovering Uranium from Seawater

    SciTech Connect (OSTI)

    Wai, Chien; Tian, Guoxin; Janke, Christopher

    2014-05-29

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium removal from the sorbent reaches only 80% after 10 hours of leaching. Some information regarding coordination of vanadium with amidoxime molecules and elution of vanadium from amidoxime- based sorbents is also given in the report.

  14. Decommissioning of U.S. uranium production facilities

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  15. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  16. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Miller, William E. (Naperville, IL)

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  17. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, J.P.; Miller, W.E.

    1987-11-05

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.

  18. Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation

    E-Print Network [OSTI]

    Tokunaga, T.K.

    2010-01-01

    Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits.

  19. DETECTION OF ULTRA-TRACE LEVELS OF URANIUM IN AQUEOUS SAMPLES BY LASER INDUCED FLUORESCENCE SPECTROMETRY

    E-Print Network [OSTI]

    Perry, Dale L.

    2012-01-01

    deposits (especially around nuclear waste repositories) requires rapid, high sensitive analytical techniques. Hydrogeochemical exploration for uranium

  20. Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    Standard practice for the ion exchange separation of uranium and plutonium prior to isotopic analysis

  1. Stability of uranium incorporated into Fe(hydr)oxides under fluctuating redox conditions

    E-Print Network [OSTI]

    Stewart, B.D.

    2009-01-01

    uranium deposit, Northern Australia - Lessons from the Alligator Rivers analogue project. Physics and Chemistry

  2. Complexation of Gluconate with Uranium(VI) in Acidic Solutions: Thermodynamic Study with Structural Analysis

    E-Print Network [OSTI]

    Zhang, Zhicheng

    2009-01-01

    uranium is approximately one order of magnitude lower than expected, suggesting that the coordination chemistry

  3. MODELING ANISOTROPIC STRESS-STRAIN RESPONSE AND TEXTURE EVOLUTION OF -URANIUM

    E-Print Network [OSTI]

    Mihaila, Bogdan

    MODELING ANISOTROPIC STRESS-STRAIN RESPONSE AND TEXTURE EVOLUTION OF -URANIUM Marko Knezevic Metz, France, laurent.capolungo@me.gatech.edu ABSTRACT The deformation behavior of wrought -uranium, and their role on strain hardening and texture evolution in -uranium. INTRODUCTION: At room temperature -uranium

  4. Occupational exposures to uranium: processes, hazards, and regulations

    SciTech Connect (OSTI)

    Stoetzel, G.A.; Fisher, D.R.; McCormack, W.D.; Hoenes, G.R.; Marks, S.; Moore, R.H.; Quilici, D.G.; Breitenstein, B.D.

    1981-04-01

    The United States Uranium Registry (USUR) was formed in 1978 to investigate potential hazards from occupational exposure to uranium and to assess the need for special health-related studies of uranium workers. This report provides a summary of Registry work done to date. The history of the uranium industry is outlined first, and the current commercial uranium industry (mining, milling, conversion, enrichment, and fuel fabrication) is described. This description includes information on basic processes and areas of greatest potential radiological exposure. In addition, inactive commercial facilities and other uranium operations are discussed. Regulation of the commercial production industry for uranium fuel is reported, including the historic development of regulations and the current regulatory agencies and procedures for each phase of the industry. A review of radiological health practices in the industry - facility monitoring, exposure control, exposure evaluation, and record-keeping - is presented. A discussion of the nonradiological hazards of the industry is provided, and the final section describes the tissue program developed as part of the Registry.

  5. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    SciTech Connect (OSTI)

    Lucchini, Jean-francois; Khaing, Hnin; Reed, Donald T

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

  6. Method of precipitating uranium from an aqueous solution and/or sediment

    DOE Patents [OSTI]

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  7. Heavy Ion Beam in Resolution of the Critical Point Problem for Uranium and Uranium Dioxide

    E-Print Network [OSTI]

    Iosilevskiy, Igor

    2010-01-01

    Important advantages of heavy ion beam (HIB) irradiation of matter are discussed in comparison with traditional sources - laser heating, electron beam, electrical discharge etc. High penetration length (~ 10 mm) is of primary importance for investigation of dense matter properties. This gives an extraordinary chance to reach the uniform heating regime when HIB irradiation is being used for thermophysical property measurements. Advantages of HIB heating of highly-dispersive samples are claimed for providing free and relatively slow quasi-isobaric heating without fast hydrodynamic expansion of heated sample. Perspective of such HIB application are revised for resolution of long-time thermophysical problems for uranium and uranium-bearing compounds (UO2). The priorities in such HIB development are stressed: preferable energy levels, beam-time duration, beam focusing, deposition of the sample etc.

  8. Heavy Ion Beam in Resolution of the Critical Point Problem for Uranium and Uranium Dioxide

    E-Print Network [OSTI]

    Igor Iosilevskiy; Victor Gryaznov

    2010-05-23

    Important advantages of heavy ion beam (HIB) irradiation of matter are discussed in comparison with traditional sources - laser heating, electron beam, electrical discharge etc. High penetration length (~ 10 mm) is of primary importance for investigation of dense matter properties. This gives an extraordinary chance to reach the uniform heating regime when HIB irradiation is being used for thermophysical property measurements. Advantages of HIB heating of highly-dispersive samples are claimed for providing free and relatively slow quasi-isobaric heating without fast hydrodynamic expansion of heated sample. Perspective of such HIB application are revised for resolution of long-time thermophysical problems for uranium and uranium-bearing compounds (UO2). The priorities in such HIB development are stressed: preferable energy levels, beam-time duration, beam focusing, deposition of the sample etc.

  9. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    E-Print Network [OSTI]

    Ku, T. L.

    2010-01-01

    map of the Nopal I uranium deposit, indicating the locationflow at the Nopal I uranium deposit, Sierra Peña Blanca,Chihuahua, Mexico. In: Uranium Deposits in Volcanic Rocks,

  10. Uranium and other heavy metals in the plant-animal-human food chain near abandoned mining sites and structures in an American Indian community in northwestern New Mexico

    E-Print Network [OSTI]

    Samuel-Nakamura, Christine

    2013-01-01

    environment of uranium deposits of the Grants region, Newan area with large uranium deposits. The area was initiallyepigenetic sandstone uranium ore deposits, the predominant

  11. Uranium and other heavy metals in the plant-animal-human food chain near abandoned mining sites and structures in an American Indian community in northwestern New Mexico

    E-Print Network [OSTI]

    Samuel-Nakamura, Christine

    2013-01-01

    of risk maps to minimize uranium exposures in the NavajoThe Navajo people and uranium mining. Albuquerque, NM:toxicity of natural uranium: A review. Reviews on

  12. Uranium 238U/235U isotope ratios as indicators of reduction: Results from an in situ biostimulation experiment at Rifle, Colorado, USA

    E-Print Network [OSTI]

    Bopp IV, C.J.

    2010-01-01

    Series Geochemistry; In Uranium-Series Geochemistry; BernardIsotopic Fractionation of Uranium. Earth and Planetaryand precipitation of uranium and vanadium at low

  13. High temperature behavior of metallic inclusions in uranium dioxide

    SciTech Connect (OSTI)

    Yang, R.L.

    1980-08-01

    The object of this thesis was to construct a temperature gradient furnace to simulate the thermal conditions in the reactor fuel and to study the migration of metallic inclusions in uranium oxide under the influence of temperature gradient. No thermal migration of molybdenum and tungsten inclusions was observed under the experimental conditions. Ruthenium inclusions, however, dissolved and diffused atomically through grain boundaries in slightly reduced uranium oxide. An intermetallic compound (probably URu/sub 3/) was formed by reaction of Ru and UO/sub 2-x/. The diffusivity and solubility of ruthenium in uranium oxide were measured.

  14. Characterization of Thermal Properties of Depleted Uranium Metal Microspheres 

    E-Print Network [OSTI]

    Humrickhouse, Carissa Joy

    2012-07-16

    llment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Sean M. McDeavitt Committee Members, Kenneth L. Peddicord Lin Shao Head of Department, Yassin A. Hassan May 2012 Major Subject: Nuclear Engineering iii.../m-K) Density (units: g/cm3) CHTA Crucible Heater Test Assembly DU Depleted uranium EU Enriched uranium LFA Laser (or light) ash analysis LFA 447 Light ash analyzer, model 447, by Netzsch Instruments LWR Light water reactor ODU Oxidized depleted uranium...

  15. Uranium Track Team | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinalUnexpectedofWyko NT33004. Uranium4. UraniumUraniumTrack

  16. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    SciTech Connect (OSTI)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  17. Analysis of uranium urinalysis and in vivo measurement results from eleven participating uranium mills

    SciTech Connect (OSTI)

    Spitz, H.B.; Simpson, J.C.; Aldridge, T.L.

    1984-05-01

    Uranium urinalysis and in vivo examination results obtained from workers at eleven uranium mills between 1978 and 1980 were evaluated. The main purpose was to determine the degree of the mills' compliance with bioassay monitoring recommendations given in the draft NRC Regulatory Guide 8.22 (USNRC 1978). The effect of anticipated changes in the draft regulatory guidance, as expressed to PNL in May 1982, was also studied. Statistical analyses of the data showed that the bioassay results did not reliably meet the limited performance criteria given in the draft regulatory guide. Furthermore, quality control measurements of uranium in urine indicated that detection limits at ..cap alpha.. = ..beta.. = 0.05 ranged from 13 ..mu..g/l to 29 ..mu..g/l, whereas the draft regulatory guidance suggests 5 ..mu..g/l as the detection limit. Recommendations for monitoring frequencies given in the draft guide were not followed consistently from mill to mill. The results of these statistical analyses indicate a need to include performance criteria for accuracy, precision, and confidence in revisions of the draft Regulatory Guide 8.22. Revised guidance should also emphasize the need for each mill to continually test the laboratory performing urinalyses by submitting quality control samples (i.e., blank and spiked urine samples as open and blind test) to insure that the performance criteria are being met. Recommendations for a bioassay audit program are also given. 25 references, 15 figures, 17 tables.

  18. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    SciTech Connect (OSTI)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E. )

    1994-08-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO[sub 2] feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF[sub 4] to produce CF[sub 4] in addition to the reduction of UO[sub 2], but the fraction of metal from the reduction of UF[sub 4] can be decreased by increasing the concentration of dissolved UO[sub 2]. Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF[sub 4].

  19. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    SciTech Connect (OSTI)

    Hatfield, Kirk

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction with DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under controlled field conditions. In the third and fourth year a suite of larger field studies were conducted. For these studies, the uranium flux sensor was used with uranium speciation measurements and molecular-biological tools to characterize microbial community and active biomass at synonymous wells distributed in a large grid. These field efforts quantified spatial changes in uranium flux and field-scale rates of uranium attenuation (ambient and stimulated), uranium stability, and quantitatively assessed how fluxes and effective reaction rates were coupled to spatial variations in microbial community and active biomass. Analyses of data from these field experiments were used to generate estimates of Monod kinetic parameters that are ‘effective’ in nature and optimal for modeling uranium fate and transport at the field-scale. This project provided the opportunity to develop the first sensor that provides direct measures of both uranium (VI) and groundwater flux. A multidisciplinary team was assembled to include two geochemists, a microbiologist, and two quantitative contaminant hydrologists. Now that the project is complete, the sensor can be deployed at DOE sites to evaluate field-scale uranium attenuation, source behavior, the efficacy of remediation, and off-site risk. Because the sensor requires no power, it can be deployed at remote sites for periods of days to months. The fundamental science derived from this project can be used to advance the development of predictive models for various transport and attenuation processes in aquifers. Proper development of these models is critical for long-term stewardship of contaminated sites in the context of predicting uranium source behavior, remediation performance, and off-site risk.

  20. US developments in technology for uranium enrichment

    SciTech Connect (OSTI)

    Wilcox, W.J. Jr.; McGill, R.M.

    1982-01-01

    The purpose of this paper is to review recent progress and the status of the work in the United States on that part of the fuel cycle concerned with uranium enrichment. The United States has one enrichment process, gaseous diffusion, which has been continuously operated in large-scale production for the past 37 years; another process, gas centrifugation, which is now in the construction phase; and three new processes, molecular laser isotope separation, atomic vapor laser isotope separation, plasma separation process, in which the US has also invested sizable research and development efforts over the last few years. The emphasis in this paper is on the technical aspects of the various processes, but the important economic factors which will define the technological mix which may be applied in the next two decades are also discussed.

  1. Molten uranium dioxide structure and dynamics

    SciTech Connect (OSTI)

    Skinner, L. B. [Argonne National Laboratory (ANL), Argonne, IL (United States); Stony Brook Univ., Stony Brook, NY (United States); Materials Development Inc., Arlington Heights, IL (United States); Parise, J. B. [Stony Brook Univ., Stony Brook, NY (United States); Benmore, C. J. [Argonne National Laboratory (ANL), Argonne, IL (United States); Weber, J. K.R. [Materials Development Inc., Arlington Heights, IL (United States); Williamson, M. A. [Argonne National Laboratory (ANL), Argonne, IL (United States); Tamalonis, A. [Materials Development Inc., Arlington Heights, IL (United States); Hebden, A. [Argonne National Laboratory (ANL), Argonne, IL (United States); Wiencek, T. [Argonne National Laboratory (ANL), Argonne, IL (United States); Alderman, O. L.G. [Materials Development Inc., Arlington Heights, IL (United States); Guthrie, M. [Carnegie Inst., Washington, DC (United States); Leibowitz, L. [Argonne National Laboratory (ANL), Argonne, IL (United States)

    2014-11-20

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  2. Molten uranium dioxide structure and dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skinner, L. B. [Argonne National Laboratory (ANL), Argonne, IL (United States); Stony Brook Univ., Stony Brook, NY (United States); Materials Development Inc., Arlington Heights, IL (United States); Parise, J. B. [Stony Brook Univ., Stony Brook, NY (United States); Benmore, C. J. [Argonne National Laboratory (ANL), Argonne, IL (United States); Weber, J. K.R. [Materials Development Inc., Arlington Heights, IL (United States); Williamson, M. A. [Argonne National Laboratory (ANL), Argonne, IL (United States); Tamalonis, A. [Materials Development Inc., Arlington Heights, IL (United States); Hebden, A. [Argonne National Laboratory (ANL), Argonne, IL (United States); Wiencek, T. [Argonne National Laboratory (ANL), Argonne, IL (United States); Alderman, O. L.G. [Materials Development Inc., Arlington Heights, IL (United States); Guthrie, M. [Carnegie Inst., Washington, DC (United States); Leibowitz, L. [Argonne National Laboratory (ANL), Argonne, IL (United States)

    2014-11-20

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  3. Molten uranium dioxide structure and dynamics

    SciTech Connect (OSTI)

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; Leibowitz, L.

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  4. Molten uranium dioxide structure and dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; et al

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. Onmore »melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.« less

  5. Systems studies on the extraction of uranium from seawater

    E-Print Network [OSTI]

    Driscoll, Michael J.

    1981-01-01

    This report summarizes the work done at MIT during FY 1981 on the overall system design of a uranium-from-seawater facility. It consists of a sequence of seven major chapters, each of which was originally prepared as a ...

  6. Uncertainty analysis of multi-rate kinetics of uranium desorption...

    Office of Scientific and Technical Information (OSTI)

    multi-rate kinetics of uranium desorption from sediments A multi-rate expression for uranyl U(VI) surface complexation reactions has been proposed to describe diffusion-limited...

  7. Method to remove uranium/vanadium contamination from groundwater

    DOE Patents [OSTI]

    Metzler, Donald R. (DeBeque, CO); Morrison, Stanley (Grand Junction, CO)

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  8. Radiation and Uranium Resources Exposure Control (South Dakota)

    Broader source: Energy.gov [DOE]

    The public policy of South Dakota is to encourage the constructive uses of radiation, the proper development of uranium resources, and the control of any associated harmful effects. The disposal of...

  9. Fuel cycle optimization of thorium and uranium fueled PWR systems

    E-Print Network [OSTI]

    Garel, Keith Courtnay

    1977-01-01

    The burnup neutronics of uniform PWR lattices are examined with respect to reduction of uranium ore requirements with an emphasis on variation of the fuel-to-moderator ratio

  10. Final report on improved uranium utilization in PWRs

    E-Print Network [OSTI]

    Driscoll, Michael J.

    1982-01-01

    This is the final summary progress report on a research program carried out within the MIT Energy Laboratory/Nuclear Engineering Department under the US Department of Energy's program to increase the effectiveness of uranium ...

  11. DOE Evaluates Environmental Impacts of Uranium Mining on Government...

    Broader source: Energy.gov (indexed) [DOE]

    25,000 acres - that are leased to private entities for uranium and vanadium mining. There have been three previous leasing periods on the tracts since the program was...

  12. Safeguards for Uranium Extraction (UREX) +1a Process 

    E-Print Network [OSTI]

    Feener, Jessica S.

    2011-08-08

    As nuclear energy grows in the United States and around the world, the expansion of the nuclear fuel cycle is inevitable. All currently deployed commercial reprocessing plants are based on the Plutonium - Uranium Extraction ...

  13. Toxic Substances Control Act Uranium Enrichment Federal Facilities...

    Office of Environmental Management (EM)

    Thomas L. McCall, Jr. http:www.em.doe.govffaaortsca.html 4252001 Toxic Substances Control Act Uranium Enrichment Federal Facilities Compliance Agree.. Page 12 of 26 Deputy...

  14. U.S. Uranium Reserves Estimates - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all Nuclear Reports U.S. Uranium Reserves Estimates Data for: 2008 | Release Date: July 2010 | Next Release Date: Discontinued The U.S. Energy Information Administration (EIA) has...

  15. Legacy Management Work Progresses on Defense-Related Uranium...

    Broader source: Energy.gov (indexed) [DOE]

    (LM) continues to work on a report to Congress regarding defense-related legacy uranium mines. LM was directed by the U.S. Congress in the National Defense Authorization Act...

  16. Speciation of Uranium in Biologically Reduced Sediments in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Speciation of Uranium in Biologically Reduced Sediments in the Old Rifle Aquifer Wednesday, May 16, 2012 - 1:30pm SSRL Conference Room 137-322 Juan S. Lezama Pacheco The speciation...

  17. Solidification/stabilization of simulated uranium and nickel contaminated sludges 

    E-Print Network [OSTI]

    Ramabhadran, Sanjay

    1996-01-01

    Research missions in nuclear energy conducted by the U.S. Department of Energy facilities have generated large volumes of mixed wastes with hazardous and radioactive components. Uranium and nickel are the primary contaminants of concern...

  18. Uranium Adsorption on Granular Activated Carbon – Batch Testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2013-09-26

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 ?g/g for the two Tusaar materials.

  19. Method to Remove Uranium/Vanadium Contamination from Groundwater

    DOE Patents [OSTI]

    Metzler, Donald R.; Morrison Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  20. Uranium - thorium series study on Yucatan slope cores 

    E-Print Network [OSTI]

    Exner, Mary Elizabeth

    1972-01-01

    URANIUM ? THORIUM SERIES STUDY ON YUCATAN SLOPE CORES A Thesis by Mary Elizabeth Exner Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August, 1972... Major Subject: Oceanography URANIUM ? THORIUM SERIES STUDY ON YUCATAN SLOPE CORES A Thesis by Mary Elizabeth Exner Approved as to style and content by: (Chairman of ommittee) , 1 (Head of Department)' p (Member ) (Member) August, 1972 gg...

  1. Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

    SciTech Connect (OSTI)

    Graves, Christopher R; Kiplinger, Jaqueline L

    2009-01-01

    This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.

  2. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    SciTech Connect (OSTI)

    Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W.

    1980-06-01

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  3. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    SciTech Connect (OSTI)

    Sobecky, Patricia A.

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  4. The IMCA: A field instrument for uranium enrichment measurements

    SciTech Connect (OSTI)

    Gardner, G.H.; Koskelo, M.; Moeslinger, M.; Mayer, R.L. II; McGinnis, B.R.; Wishard, B.

    1996-12-31

    The IMCA (Inspection Multi-Channel Analyzer) is a portable gamma-ray spectrometer designed to measure the enrichment of uranium either in a laboratory or in the field. The IMCA consists of a Canberra InSpector Multi-Channel Analyzer, sodium iodide or a planar germanium detector, and special application software. The system possesses a high degree of automation. The IMCA uses the uranium enrichment meter principle, and is designed to meet the International Atomic Energy Agency (IAEA) requirements for the verification of enriched uranium materials. The IMCA is available with MGA plutonium isotopic analysis software or MGAU uranium analysis software as well. In this paper, the authors present a detailed description of the hardware and software of the IMCA system, as well as results from preliminary measurements testing compliance of IMCA with IAEA requirements using uranium standards and UF6 cylinders. Measurements performed on UF6 cylinders in the field under variable environmental conditions (temperatures ranging from 0 to 35 C) have shown that good results can be achieved. The enrichment of UF6 contained in the cylinder is determined by using calibration constants generated from an instrument calibration, using traceable uranium oxide standards, performed in the laboratory under controlled environmental conditions. The IMCA software is designed to make the necessary matrix and container corrections to ensure that accurate results are achieved in the field.

  5. Standard specification for sintered gadolinium oxide-uranium dioxide pellets

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification is for finished sintered gadolinium oxide-uranium dioxide pellets for use in light-water reactors. It applies to gadolinium oxide-uranium dioxide pellets containing uranium of any 235U concentration and any concentration of gadolinium oxide. 1.2 This specification recognizes the presence of reprocessed uranium in the fuel cycle and consequently defines isotopic limits for gadolinium oxide-uranium dioxide pellets made from commercial grade UO2. Such commercial grade UO2 is defined so that, regarding fuel design and manufacture, the product is essentially equivalent to that made from unirradiated uranium. UO2 falling outside these limits cannot necessarily be regarded as equivalent and may thus need special provisions at the fuel fabrication plant or in the fuel design. 1.3 This specification does not include (1) provisions for preventing criticality accidents or (2) requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aw...

  6. Sampling Plan for Assaying Plates Containing Depleted or Normal Uranium

    SciTech Connect (OSTI)

    Ivan R. Thomas

    2011-11-01

    This paper describes the rationale behind the proposed method for selecting a 'representative' sample of uranium metal plates, portions of which will be destructively assayed at the Y-12 Security Complex. The total inventory of plates is segregated into two populations, one for Material Type 10 (depleted uranium (DU)) and one for Material Type 81 (normal [or natural] uranium (NU)). The plates within each population are further stratified by common dimensions. A spreadsheet gives the collective mass of uranium element (and isotope for DU) and the piece count of all plates within each stratum. These data are summarized in Table 1. All plates are 100% uranium metal, and all but approximately 60% of the NU plates have Kel-F{reg_sign} coating. The book inventory gives an overall U-235 isotopic percentage of 0.22% for the DU plates, ranging from 0.19% to 0.22%. The U-235 ratio of the NU plates is assumed to be 0.71%. As shown in Table 1, the vast majority of the plates are comprised of depleted uranium, so most of the plates will be sampled from the DU population.

  7. Diffusion model of the non-stoichiometric uranium dioxide

    SciTech Connect (OSTI)

    Moore, Emily, E-mail: emily.moore@cea.fr [CEA Saclay, DEN-DPC-SCCME, 91191 Gif-sur-Yvette Cedex (France); Guéneau, Christine, E-mail: christine.gueneau@cea.fr [CEA Saclay, DEN-DPC-SCCME, 91191 Gif-sur-Yvette Cedex (France); Crocombette, Jean-Paul, E-mail: jean-paul.crocombette@cea.fr [CEA Saclay, DEN DEN, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette Cedex (France)

    2013-07-15

    Uranium dioxide (UO{sub 2}), which is used in light water reactors, exhibits a large range of non-stoichiometry over a wide temperature scale up to 2000 K. Understanding diffusion behavior of uranium oxides under such conditions is essential to ensure safe reactor operation. The current understanding of diffusion properties is largely limited by the stoichiometric deviations inherent to the fuel. The present DICTRA-based model considers diffusion across non-stoichiometric ranges described by experimentally available data. A vacancy and interstitial model of diffusion is applied to the U–O system as a function of its defect structure derived from CALPHAD-type thermodynamic descriptions. Oxygen and uranium self and tracer diffusion coefficients are assessed for the construction of a mobility database. Chemical diffusion coefficients of oxygen are derived with respect to the Darken relation and migration energies of defects are evaluated as a function of stoichiometric deviation. - Graphical abstract: Complete description of Oxygen–Uranium diffusion as a function of composition at various temperatures according to the developed Dictra model. - Highlights: • Assessment of a uranium–oxygen diffusion model with Dictra. • Complete description of U–O diffusion over wide temperature and composition range. • Oxygen model includes terms for interstitial and vacancy migration. • Interaction terms between defects help describe non-stoichiometric domain of UO{sub 2±x}. • Uranium model is separated into mobility terms for the cationic species.

  8. Examination of the conversion of the U.S. submarine fleet from highly enriched uranium to low enriched uranium

    E-Print Network [OSTI]

    McCord, Cameron (Cameron Liam)

    2014-01-01

    The nuclear reactors used by the U.S. Navy for submarine propulsion are currently fueled by highly enriched uranium (HEU), but HEU brings administrative and political challenges. This issue has been studied by the Navy ...

  9. EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

  10. Standard test method for the determination of uranium by ignition and the oxygen to uranium (O/U) atomic ratio of nuclear grade uranium dioxide powders and pellets

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear grade uranium dioxide powder and pellets. 1.2 This test method does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this test method does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.4 This test method also is applicable to UO3 and U3O8 powder.

  11. Radical anionic versus neutral 2,2'-bipyridyl coordination in uranium complexes supported by amide and ketimide ligands.

    E-Print Network [OSTI]

    Diaconescu, PL; Cummins, CC

    2015-01-01

    the organometallic chemistry of uranium. The radical anionicof Chemistry 2012 Journal Name present 2.4(9) at the uraniumChemistry 2013 Since our initial examples, others have also reported bridging benzene or toluene uranium

  12. Radical anionic versus neutral 2,2'-bipyridyl coordination in uranium complexes supported by amide and ketimide ligands.

    E-Print Network [OSTI]

    Diaconescu, PL; Cummins, CC

    2015-01-01

    A series of 2,2’-bipyridyl uranium complexes shows that bipyor a neutral ligand such that uranium is in the +4 oxidationBipyridyl Coordination in Uranium Complexes Supported by

  13. Uranium diphosphonates templated by interlayer organic amines

    SciTech Connect (OSTI)

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Institut fuer Kristallographie, RWTH Aachen University, D-52066 Aachen ; Albrecht-Schmitt, Thomas E.; Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556 ; Ewing, Rodney C.

    2013-02-15

    The hydrothermal treatment of uranium trioxide and methylenediphosphonic acid with a variety of amines (2,2-dipyridyl, triethylenediamine, ethylenediamine, and 1,10-phenanthroline) at 200 Degree-Sign C results in the crystallization of a series of layered uranium diphosphonate compounds, [C{sub 10}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Ubip2), [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} (UDAB), [C{sub 2}H{sub 10}N{sub 2}]{sub 2}{l_brace}(UO{sub 2}){sub 2}(H{sub 2}O){sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sub 2}{center_dot}0.5H{sub 2}O{r_brace} (Uethyl), and [C{sub 12}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Uphen). The crystal structures of the compounds are based on UO{sub 7} units linked by methylenediphosphonate molecules to form two-dimensional anionic sheets in Ubip2 and UDAB, and one-dimensional anionic chains in Uethyl and Uphen, which are charge balanced by protonated amine molecules. Interaction of the amine molecules with phosphonate oxygens and water molecules results in extensive hydrogen bonding in the interlayer. These amine molecules serve both as structure-directing agents and charge-balancing cations for the anionic uranium phosphonate sheets and chains in the formation of the different coordination geometries and topologies of each structure. Reported herein are the syntheses, structural and spectroscopic characterization of the synthesized compounds. - Graphical abstract: The Raman spectra of the synthesized compounds and an illustration of the stacking of the layers with the diprotonated triethylenediamine molecules in [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} UDAB. Solvent water molecules are removed for clarity. The corresponding Raman spectra for the complexes synthesized is also shown. The structure is constructed from UO{sub 7} pentagonal bipyramids (yellow), oxygen=red, phosphorus=magenta, carbon=black, and nitrogen=blue. Highlights: Black-Right-Pointing-Pointer Organic amines act both as charge-balancing and as structure-directing agents. Black-Right-Pointing-Pointer Extensive hydrogen bonding interactions with solvent water molecules and amines. Black-Right-Pointing-Pointer Altering the organic amine (size or flexibility) affects structure formation.

  14. Evaluation of Uranium Measurements in Water by Various Methods - 13571

    SciTech Connect (OSTI)

    Tucker, Brian J. [Shaw Environmental and Infrastructure Group, 150 Royall Street, Canton, MA (United States)] [Shaw Environmental and Infrastructure Group, 150 Royall Street, Canton, MA (United States); Workman, Stephen M. [ALS Laboratory Group, Environmental Division, 225 Commerce Drive, Fort Collins, CO 80524 (United States)] [ALS Laboratory Group, Environmental Division, 225 Commerce Drive, Fort Collins, CO 80524 (United States)

    2013-07-01

    In December 2000, EPA amended its drinking water regulations for radionuclides by adding a Maximum Contaminant Level (MCL) for uranium (so called MCL Rule)[1] of 30 micrograms per liter (?g/L). The MCL Rule also included MCL goals of zero for uranium and other radionuclides. Many radioactively contaminated sites must test uranium in wastewater and groundwater to comply with the MCL rule as well as local publicly owned treatment works discharge limitations. This paper addresses the relative sensitivity, accuracy, precision, cost and comparability of two EPA-approved methods for detection of total uranium: inductively plasma/mass spectrometry (ICP-MS) and alpha spectrometry. Both methods are capable of measuring the individual uranium isotopes U-234, U- 235, and U-238 and both methods have been deemed acceptable by EPA. However, the U-238 is by far the primary contributor to the mass-based ICP-MS measurement, especially for naturally-occurring uranium, which contains 99.2745% U-238. An evaluation shall be performed relative to the regulatory requirement promulgated by EPA in December 2000. Data will be garnered from various client sample results measured by ALS Laboratory in Fort Collins, CO. Data shall include method detection limits (MDL), minimum detectable activities (MDA), means and trends in laboratory control sample results, performance evaluation data for all methods, and replicate results. In addition, a comparison will be made of sample analyses results obtained from both alpha spectrometry and the screening method Kinetic Phosphorescence Analysis (KPA) performed at the U.S. Army Corps of Engineers (USACE) FUSRAP Maywood Laboratory (UFML). Many uranium measurements occur in laboratories that only perform radiological analysis. This work is important because it shows that uranium can be measured in radiological as well as stable chemistry laboratories and it provides several criteria as a basis for comparison of two uranium test methods. This data will indicate which test method is the most accurate and most cost effective. This paper provides a benefit to Formerly Utilized Sites Remedial Action Program (FUSRAP) and other Department of Defense (DOD) programs that may be performing uranium measurements. (authors)

  15. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field Scale Subsurface Research Challenge Site at Rifle, Colorado, February 2011 to January 2012

    E-Print Network [OSTI]

    Long, P.E.

    2013-01-01

    Hasche-Berger, A. Eds. ), Uranium, Mining and Hydrogeology.Monitoring: A History of Uranium Mining and Processing in

  16. An Optically Stimulated Luminescence Uranium Enrichment Monitor

    SciTech Connect (OSTI)

    Miller, Steven D.; Tanner, Jennifer E.; Simmons, Kevin L.; Conrady, Matthew M.; Benz, Jacob M.; Greenfield, Bryce A.

    2010-08-11

    The Pacific Northwest National Laboratory (PNNL) has pioneered the use of Optically Stimulated Luminescence (OSL) technology for use in personnel dosimetry and high dose radiation processing dosimetry. PNNL has developed and patented an alumina-based OSL dosimeter that is being used by the majority of medical X-ray and imaging technicians worldwide. PNNL has conceived of using OSL technology to passively measure the level of UF6 enrichment by attaching the prototype OSL monitor to pipes containing UF6 gas within an enrichment facility. The prototype OSL UF6 monitor utilizes a two-element approach with the first element open and unfiltered to measure both the low energy and high energy gammas from the UF6, while the second element utilizes a 3-mm thick tungsten filter to eliminate the low energy gammas and pass only the high energy gammas from the UF6. By placing a control monitor in the room away from the UF6 pipes and other ionizing radiation sources, the control readings can be subtracted from the UF6 pipe monitor measurements. The ratio of the shielded to the unshielded net measurements provides a means to estimate the level of uranium enrichment. PNNL has replaced the commercially available MicroStar alumina-based dosimeter elements with a composite of polyethylene plastic, high-Z glass powder, and BaFBr:Eu OSL phosphor powder at various concentrations. The high-Z glass was added in an attempt to raise the average “Z” of the composite dosimeter and increase the response. Additionally, since BaFBr:Eu OSL phosphor is optimally excited and emits light at different wavelengths compared to alumina, the commercially available MicroStar reader was modified for reading BaFBr:Eu in a parallel effort to increase reader sensitivity. PNNL will present the design and performance of our novel OSL uranium enrichment monitor based on a combination of laboratory and UF6 test loop measurements. PNNL will also report on the optimization effort to achieve the highest possible performance from both the OSL enrichment monitor and the new custom OSL reader modified for this application. This project has been supported by the US Department of Energy’s National Nuclear Security Administration’s Office of Dismantlement and Transparency (DOE/NNSA/NA-241).

  17. Interdiffusion and Reaction between Uranium and Iron

    SciTech Connect (OSTI)

    K. Huang; Y. Park; A. Ewh; B. H. Sencer; J. R. Kennedy; K. R. Coffey; Y. H. Sohn

    2012-05-01

    Metallic uranium alloy fuels cladded in stainless steel are being examined for fast reactors that operate at high temperature. In this work, solid-to-solid diffusion couples were assembled between pure U and Fe, and annealed at 853K, 888K and 923K where U exists as orthorhombic {alpha}, and at 953K and 973K where U exists as tetragonal {beta}. The microstructures and concentration profiles developed during annealing were examined by scanning electron microscopy and electron probe microanalysis, respectively. U{sub 6}Fe and UFe{sub 2} intermetallics developed in all diffusion couples, and U{sub 6}Fe was observed to grow faster than UFe{sub 2}. The interdiffusion fluxes of U and Fe were calculated to determine the integrated interdiffusion coefficients in U{sub 6}Fe and UFe{sub 2}. The extrinsic (K{sub I}) and intrinsic growth constants (K{sub II}) of U{sub 6}Fe and UFe{sub 2} were also calculated according to Wagner's formalism. The difference between K{sub I} and K{sub II} of UFe{sub 2} indicate that its growth was impeded by the fast-growing U{sub 6}Fe phase. However, the thin UFe{sub 2} played only a small role on the growth of U{sub 6}Fe as its K{sub I} and K{sub II} values were determined to be similar. The allotropic transformation of uranium (orthorhombic {alpha} to tetragonal {beta} phase) was observed to influence the growth of U{sub 6}Fe directly, because the growth rate of U{sub 6}Fe changed based on variation of activation energy. The change in chemical potential and crystal structure of U due to the allotropic transformation affected the interdiffusion between U and U{sub 6}Fe. Faster growth of U{sub 6}Fe is also examined with respect to various factors including crystal structure, phase diagram, and diffusion.

  18. Uranium- and thorium-bearing pegmatites of the United States

    SciTech Connect (OSTI)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.

  19. Thermodynamics of the Complexation of Uranium(VI) by oxalate in aqueous solution at 10-70oC

    E-Print Network [OSTI]

    Di Bernardo, Plinio

    2009-01-01

    O. Tochiyama in Chemical Thermodynamics of Compounds andUpdate on the Chemical Thermodynamics of Uranium, Neptunium,Thermodynamics of the Complexation of Uranium(VI) with

  20. Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: Implications for radioactivity in the Earth's core

    E-Print Network [OSTI]

    Mcdonough, William F.

    Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: Implications Measurable uranium (U) is found in metal sulfide liquids in equilibrium with molten silicate at conditions

  1. Recovery of Depleted Uranium Fragments from Soil

    SciTech Connect (OSTI)

    Farr, C.P.; Alecksen, T.J.; Heronimus, R.S.; Simonds, M.H.; Farrar, D.R.; Baker, K.R. [Environmental Restoration Group, Inc., Washington St. NE, Albuquerque, NM (United States); Miller, M.L. [Sandia National Laboratories, Albuquerque, NM (United States)

    2008-07-01

    A cost-effective method was demonstrated for recovering depleted uranium (DU) fragments from soil. A compacted clean soil pad was prepared adjacent to a pile of soil containing DU fragments. Soil from the contaminated pile was placed on the pad in three-inch lifts using conventional construction equipment. Each lift was scanned with an automatic scanning system consisting of an array of radiation detectors coupled to a detector positioning system. The data were downloaded into ArcGIS for data presentation. Areas of the pad exhibiting scaler counts above the decision level were identified as likely locations of DU fragments. The coordinates of these locations were downloaded into a PDA that was wirelessly connected to the positioning system. The PDA guided technicians to the locations where hand-held trowels and shovels were used to remove the fragments. After DU removal, the affected areas were re-scanned and the new data patched into the data base to replace the original data. This new data set along with soil sample results served as final status survey data. (authors)

  2. Liquid uranium alloy-helium fission reactor

    DOE Patents [OSTI]

    Minkov, Vladimir (Skokie, IL)

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  3. Liquid uranium alloy-helium fission reactor

    DOE Patents [OSTI]

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  4. Uranium Adsorption on Ion-Exchange Resins - Batch Testing

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Golovich, Elizabeth C.; Wellman, Dawn M.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    The uranium adsorption performance of five resins (Dowex 1, Dowex 21K 16-30 [fresh], Dowex 21K 16-30 [regenerated], Purofine PFA600/4740, and ResinTech SIR-1200) were tested using unspiked, nitrate-spiked, and nitrate-spiked/pH adjusted source water from well 299-W19-36. These batch tests were conducted in support of a resin selection process in which the best resin to use for uranium treatment in the 200-West Area groundwater pump-and-treat system will be identified. The results from these tests are as follows: • The data from the high-nitrate (1331 mg/L) tests indicated that Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 all adsorbed uranium similarly well with Kd values ranging from ~15,000 to 95,000 ml/g. All four resins would be considered suitable for use in the treatment system based on uranium adsorption characteristics. • Lowering the pH of the high nitrate test conditions from 8.2 to 7.5 did not significantly change the uranium adsorption isotherms for the four tested resins. The Kd values for these four resins under high nitrate (1338 mg/L), lower pH (7.5) ranged from ~15,000 to 80,000 ml/g. • Higher nitrate concentrations greatly reduced the uranium adsorption on all four resins. Tests conducted with unspiked (no amendments; nitrate at 337 mg/L and pH at 8.2) source water yielded Kd values for Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 resins ranging from ~800,000 to >3,000,000 ml/g. These values are about two orders of magnitude higher than the Kd values noted from tests conducted using amended source water. • Compared to the fresh resin, the regenerated Dowex 21K 16-30 resin exhibited significantly lower uranium-adsorption performance under all test conditions. The calculated Kd values for the regenerated resin were typically an order of magnitude lower than the values calculated for the fresh resin. • Additional testing using laboratory columns is recommended to better resolve differences between the adsorption abilities of the resins and to develop estimates of uranium loading on the resins. By determining the quantity of uranium that each resin can adsorb and the time required to reach various levels of loading, resin lifetime in the treatment system can be estimated.

  5. Impact of organic matter and speciation on the behaviour of uranium in submerged ultrafiltration 

    E-Print Network [OSTI]

    Semião, Andrea J.C.; Rossiter, Helfrid M.A.; Schäfer, Andrea

    2010-01-01

    Influence of organic matter (OM) on uranium removal mechanisms by ultrafiltration (UF) over a pH range of 3–11 was investigated. Humic, alginic and tannic acid were used as OM. It was found that uranium adsorbed strongly ...

  6. Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics

    E-Print Network [OSTI]

    Booth, C. H.

    2014-01-01

    Orbitals in Uranium and Plutonium Intermetallics C. H. BoothAbstract: Uranium and plutonium’s 5f electrons are tenuouslyanomalous properties of ?-plutonium. Nature 446(7135):513.

  7. Development of a low enrichment uranium core for the MIT reactor

    E-Print Network [OSTI]

    Newton, Thomas Henderson

    2006-01-01

    An investigation has been made into converting the MIT research reactor from using high enrichment uranium (HEU) to low enrichment uranium (LEU) with a newly developed fuel material. The LEU fuel introduces negative ...

  8. Remediation of Uranium-contaminated Groundwater by Sorption onto Hydroxyapatite Derived

    E-Print Network [OSTI]

    Clement, Prabhakar

    Remediation of Uranium-contaminated Groundwater by Sorption onto Hydroxyapatite Derived from of CFHA to remove uranium (U(VI)) from aqueous phase was investigated using both batch and column experi

  9. 2014 Review of the Potential Impact of DOE Excess Uranium Inventory...

    Office of Environmental Management (EM)

    4 Review of the Potential Impact of DOE Excess Uranium Inventory On the Commercial Markets 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the Commercial...

  10. EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado

    Broader source: Energy.gov [DOE]

    This EIS evaluated the potential environmental impacts of management alternatives for DOE’s Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores.

  11. Uranium-series isotope and thermal constraints on the rate and depth of silicic magma genesis

    E-Print Network [OSTI]

    Sandiford, Mike

    Uranium-series isotope and thermal constraints on the rate and depth of silicic magma genesis A Sciences, University of Durham, South Road, Durham DH1 3LE, UK Abstract: Uranium-series isotopes provide

  12. Management Controls over the Department of Energy's Uranium Leasing Program, OAS-M-08-05

    Broader source: Energy.gov [DOE]

    The Department of Energy's Uranium Leasing Program was established by the Atomic Energy Act of 1954 to develop a supply of domestic uranium to meet the nation's defense needs. Pursuant to the Act,...

  13. Bacterial influence on uranium oxidation reduction reactions : implications for environmental remediation and isotopic composition

    E-Print Network [OSTI]

    Mullen, Lisa Maureen

    2007-01-01

    The bacterial influence on the chemistry and speciation of uranium has some important impacts on the environment, and can be exploited usefully for the purposes of environmental remediation of uranium waste contamination. ...

  14. Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna

    Broader source: Energy.gov [DOE]

    VIENNA – The Moab Uranium Mill Tailings Remedial Action (UMTRA) Project has kept the United States at the forefront of characterization, remediation, and end-state reuse of uranium millsites around the world.

  15. Synthesis of Uranium Trichloride for the Pyrometallurgical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; J.C. Price; R.D. Mariani

    2011-11-01

    The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results and conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.

  16. Decolonizing cartographies : sovereignty, territoriality, and maps of meaning in the uranium landscape

    E-Print Network [OSTI]

    Voyles, Traci Brynne

    2010-01-01

    the 1940s, when the Manhattan Project used uranium found inthe lead of the Manhattan Project and the AEC geologists andyears (prior to the Manhattan Project, uranium was largely

  17. Process for producing an aggregate suitable for inclusion into a radiation shielding product

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    2000-01-01

    The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.

  18. Molecular uranates - laser synthesis of uranium oxide anions in the gas phase

    E-Print Network [OSTI]

    Marcalo, Joaquim

    2011-01-01

    readily from solutions of uranyl salts by reaction withstate of the uranium, a uranyl moiety may or may not be

  19. Decolonizing cartographies : sovereignty, territoriality, and maps of meaning in the uranium landscape

    E-Print Network [OSTI]

    Voyles, Traci Brynne

    2010-01-01

    July 16, 1979, a mill tailings pond upstream of the Churchthe UNC uranium mill tailings pond ran right through our

  20. Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Pena Blanca, Chihuahua, Mexico

    E-Print Network [OSTI]

    Dobson, P.

    2009-01-01

    2006, Paragenesis and geochronology of the Nopal I uranium1977, Subcommision on geochronology: Convention on the use