Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear Fuel Facts: Uranium | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities NuclearCycleFacts:

2

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

3

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

4

THERMODYNAMIC MODEL FOR URANIUM DIOXIDE BASED NUCLEAR FUEL  

SciTech Connect (OSTI)

Many projects involving nuclear fuel rest on a quantitative understanding of the co-existing phases at various stages of burnup. Since the many fission products have considerably different abilities to chemically associate with oxygen, and the oxygen-to-metal molar ratio is slowly changing, the chemical potential of oxygen is a function of burnup. Concurrently, well-recognized small fractions of new phases such as inert gas, noble metals, zirconates, etc. also develop. To further complicate matters, the dominant UO2 fuel phase may be non-stoichiometric and most of the minor phases themselves have a variable composition dependent on temperature and possible contact with the coolant in the event of a sheathing breach. A thermodynamic fuel model to predict the phases in partially burned CANDU (CANada Deuterium Uranium) nuclear fuel containing many major fission products has been under development. The building blocks of the model are the standard Gibbs energies of formation of the many possible compounds expressed as a function of temperature. To these data are added mixing terms associated with the appearance of the component species in particular phases. In operational terms, the treatment rests on the ability to minimize the Gibbs energy in a multicomponent system, in our case using the algorithms developed by Eriksson. The model is capable of handling non-stoichiometry in the UO2 fluorite phase, dilute solution behaviour of significant solute oxides, noble metal inclusions, a second metal solid solution U(Pd-Rh-Ru)3, zirconate, molybdate, and uranate solutions as well as other minor solid phases, and volatile gaseous species.

Thompson, Dr. William T. [Royal Military College of Canada; Lewis, Dr. Brian J [Royal Military College of Canada; Corcoran, E. C. [Royal Military College of Canada; Kaye, Dr. Matthew H. [Royal Military College of Canada; White, S. J. [Royal Military College of Canada; Akbari, F. [Atomic Energy of Canada Limited, Chalk River Laboratories; Higgs, Jamie D. [Atomic Energy of Canada Limited, Point Lepreau; Thompson, D. M. [Praxair Inc.; Besmann, Theodore M [ORNL; Vogel, S. C. [Los Alamos National Laboratory (LANL)

2007-01-01T23:59:59.000Z

5

Synthesis of Uranium Trichloride for the Pyrometallurgical Processing of Used Nuclear Fuel  

SciTech Connect (OSTI)

The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results and conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.

B.R. Westphal; J.C. Price; R.D. Mariani

2011-11-01T23:59:59.000Z

6

Separation of uranium from technetium in recovery of spent nuclear fuel  

DOE Patents [OSTI]

Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc/sup +7/ therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

Pruett, D.J.; McTaggart, D.R.

1983-08-31T23:59:59.000Z

7

The study of material accountancy procedures for uranium in a whole nuclear fuel cycle  

SciTech Connect (OSTI)

Material accountancy procedures for uranium under a whole nuclear fuel cycle were studied by taking into consideration the material accountancy capability associated with realistic measurement uncertainties. The significant quantity used by the International Atomic Energy Agency (IAEA) for low-enriched uranium is 75 kg U-235 contained. A loss of U-235 contained in uranium can be detected by either of the following two procedures: one is a traditional U-235 isotope balance, and the other is a total uranium element balance. Facility types studied in this paper were UF6 conversion, gas centrifuge uranium enrichment, fuel fabrication, reprocessing, plutonium conversion, and MOX fuel production in Japan, where recycled uranium is processed in addition to natural uranium. It was found that the material accountancy capability of a total uranium element balance was almost always higher than that of a U-235 isotope balance under normal accuracy of weight, concentration, and enrichment measurements. Changing from the traditional U-235 isotope balance to the total uranium element balance for these facilities would lead to a gain of U-235 loss detection capability through material accountancy and to a reduction in the required resources of both the IAEA and operators.

Nakano, Hiromasa; Akiba, Mitsunori [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

1995-07-01T23:59:59.000Z

8

DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel  

SciTech Connect (OSTI)

A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

1995-11-30T23:59:59.000Z

9

Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate  

DOE Patents [OSTI]

A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

Travelli, A.

1985-10-25T23:59:59.000Z

10

Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate  

SciTech Connect (OSTI)

A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

Travelli, Armando (Hinsdale, IL)

1988-01-01T23:59:59.000Z

11

Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy  

SciTech Connect (OSTI)

For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

none,

2013-07-01T23:59:59.000Z

12

What is spent nuclear fuel?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is Spent Nuclear Fuel? Spent nuclear fuel (SNF) is irradiated fuel or targets containing uranium, plutonium, or thorium that is permanently withdrawn from a nuclear reactor or...

13

Electrochemical separation of aluminum from uranium for research reactor spent nuclear fuel applications.  

SciTech Connect (OSTI)

Researchers at Argonne National Laboratory (ANL) are developing an electrorefining process to treat aluminum-based spent nuclear fuel by electrochemically separating aluminum from uranium. The aluminum electrorefiner is modeled after the high-throughput electrorefiner developed at ANL. Aluminum is electrorefined, using a fluoride salt electrolyte, in a potential range of -0.1 V to -0.2 V, while uranium is electrorefined in a potential range of -0.3 V to -0.4 V; therefore, aluminum can be selectively separated electrochemically from uranium. A series of laboratory-scale experiments was performed to demonstrate the aluminum electrorefining concept. These experiments involved selecting an electrolyte (determining a suitable fluoride salt composition); selecting a crucible material for the electrochemical cell; optimizing the operating conditions; determining the effect of adding alkaline and rare earth elements to the electrolyte; and demonstrating the electrochemical separation of aluminum from uranium, using a U-Al-Si alloy as a simulant for aluminum-based spent nuclear fuel. Results of the laboratory-scale experiments indicate that aluminum can be selectively electrotransported from the anode to the cathode, while uranium remains in the anode basket.

Slater, S. A.; Willit, J. L.; Gay, E. C.; Chemical Engineering

1999-01-01T23:59:59.000Z

14

Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate  

SciTech Connect (OSTI)

A nuclear fuel-containing plate structure for a nuclear reactor is described; such structure comprising a pair of malleable metallic non-fissionable matrix plates having confronting surfaces which are pressure bonded together and fully united to form a bonded surface, and elongated malleable wire-like fissionable fuel members separately confined and fully enclosed between the matrix plates along the interface to afford a high fuel density as well as structural integrity and effective retention of fission products. The plates have separate recesses formed in the confronting surfaces for closely receiving the wire-like fissionable fuel members. The wire-like fissionable fuel members are made of a maleable uranium alloy capable of being formed into elongated wire-like members and capable of withstanding pressure bonding. The wire-like fissionable fuel members are completely separated and isolated by fully united portions of the interface.

Travelli, A.

1988-01-19T23:59:59.000Z

15

RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA  

SciTech Connect (OSTI)

In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

2009-07-01T23:59:59.000Z

16

Recovery of fissile materials from plutonium residues, miscellaneous spent nuclear fuel, and uranium fissile wastes  

SciTech Connect (OSTI)

A new process is proposed that converts complex feeds containing fissile materials into a chemical form that allows the use of existing technologies (such as PUREX and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel, and (3) uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics. 14 refs., 4 figs.

Forsberg, C.W.

1997-03-01T23:59:59.000Z

17

Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process  

SciTech Connect (OSTI)

The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

Collins, Robert T [ORNL] [ORNL; Collins, Jack Lee [ORNL] [ORNL; Hunt, Rodney Dale [ORNL] [ORNL; Ladd-Lively, Jennifer L [ORNL] [ORNL; Patton, Kaara K [ORNL] [ORNL; Hickman, Robert [NASA Marshall Space Flight Center, Huntsville, AL] [NASA Marshall Space Flight Center, Huntsville, AL

2014-01-01T23:59:59.000Z

18

Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications  

E-Print Network [OSTI]

The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding...

Helmreich, Grant

2012-02-14T23:59:59.000Z

19

Standard guide for pyrophoricity/combustibility testing in support of pyrophoricity analyses of metallic uranium spent nuclear fuel  

E-Print Network [OSTI]

1.1 This guide covers testing protocols for testing the pyrophoricity/combustibility characteristics of metallic uranium-based spent nuclear fuel (SNF). The testing will provide basic data for input into more detailed computer codes or analyses of thermal, chemical, and mechanical SNF responses. These analyses would support the engineered barrier system (EBS) design bases and safety assessment of extended interim storage facilities and final disposal in a geologic repository. The testing also could provide data related to licensing requirements for the design and operation of a monitored retrievable storage facility (MRS) or independent spent fuel storage installation (ISFSI). 1.2 This guide describes testing of metallic uranium and metallic uranium-based SNF in support of transportation (in accordance with the requirements of 10CFR71), interim storage (in accordance with the requirements of 10CFR72), and geologic repository disposal (in accordance with the requirements of 10CFR60/63). The testing described ...

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

20

NEUTRALIZATIONS OF HIGH ALUMINUM LOW URANIUM USED NUCLEAR FUEL SOLUTIONS CONTAINING GADOLINIUM AS A NEUTRON POISON  

SciTech Connect (OSTI)

H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS) high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected densities of typical neutralized waste. Based on particle size and scanning electron microscopy analyses, the neutralized solids were found to be homogeneous and less than 20 microns in size. The majority of solids were less than 4 microns in size. Compared to previous studies, a larger percentage of the Gd was found to precipitate in the partially neutralized solutions (at pH 3.5-4). In addition the Gd:U mass ratio was found to be at least 1.0 in all of the solids obtained after partial or full neutralization. The hydrogen to U (H:U) molar ratios for two accident scenarios were also determined. The first was for transient neutralization and agitator failure. Experimentally this scenario was determined by measuring the H:U ratio of the settled solids. The minimum H:U molar ratio for solids from fully neutralized solutions was 388:1. The second accident scenario is for the solids drying out in an unagitiated pump box. Experimentally, this scenario was determined by measuring the H:U molar ratio in centrifuged solids. The minimum H:U atom ratios for centrifuged precipitated solids was 250:1. It was determined previously that a 30:1 H:Pu atom ratio was sufficient for a 1:1 Gd:Pu mass ratio. Assuming a 1:1 equivalence with {sup 239}Pu, the results of these experiments show Gd is a viable poison for neutralizing U/Gd solutions with the tested compositions.

Taylor-Pashow, K.

2011-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Atomic Diffusion in the Uranium-50wt% Zirconium Nuclear Fuel System  

E-Print Network [OSTI]

Atomic diffusion phenomena were examined in a metal-alloy nuclear fuel system composed of ?-phase U-50wt%Zr fuel in contact with either Zr-10wt%Gd or Zr-10wt%Er. Each alloy was fabricated from elemental feed material via melt-casting, and diffusion...

Eichel, Daniel

2013-06-17T23:59:59.000Z

22

High loading uranium fuel plate  

DOE Patents [OSTI]

Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

1990-01-01T23:59:59.000Z

23

EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany  

Broader source: Energy.gov [DOE]

This environmental assessment (EA) will evaluate the potential environmental impacts of a DOE proposal to accept used nuclear fuel from the Federal Republic of Germany at DOE’s Savannah River Site (SRS) for processing and disposition. This used nuclear fuel is composed of kernels containing thorium and U.S.-origin highly enriched uranium (HEU) embedded in small graphite spheres that were irradiated in nuclear reactors used for research and development purposes.

24

Nuclear Criticality Control and Safety of Plutonium-Uranium Fuel Mixtures Outside Reactors  

SciTech Connect (OSTI)

The ANSI/ANS 8.12 standard was first approved in July 1978. At that time, this edition was applicable to operations with plutonium-uranium oxide (MOX) fuel mixtures outside reactors and was limited to subcritical limits for homogeneous systems. The next major revision, ANSI/ANS-8.12-1987, included the addition of subcritical limits for heterogeneous systems. The standard was subsequently reaffirmed in February 1993. During late 1990s, substantial work was done by the ANS 8.12 Standard Working Group to re-examine the technical data presented in the standard using the latest codes and cross section sets. Calculations performed showed good agreement with the values published in the standard. This effort resulted in the reaffirmation of the standard in March 2002. The standard is currently in a maintenance mode. After 2002, activities included discussions to determine the future direction of the standard and to follow the MOX standard development by the International Standard Organization (ISO). In 2007, the Working Group decided to revise the standard to extend the areas of applicability by providing a wider range of subcritical data. The intent is to cover a wider domain of MOX fuel fabrication and operations. It was also decided to follow the ISO MOX standard specifications (related to MOX density and isotopics) and develop a new set of subcritical limits for homogeneous systems. This has resulted in the submittal (and subsequent approval) of the project initiation notification system form (PINS) in 2007.

Biswas, D; Mennerdahl, D

2008-06-23T23:59:59.000Z

25

Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation  

SciTech Connect (OSTI)

On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

2008-07-01T23:59:59.000Z

26

Separation of uranium from technetium in recovery of spent nuclear fuel  

DOE Patents [OSTI]

A method for decontaminating uranium product from the Purex process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO.sub.2.sup.2+) uranium and heptavalent technetium (TcO.sub.4 -). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H.sub.2 C.sub.2 O.sub.4), and the Tc-oxalate complex is readily separated from the uranium by solvent extraction with 30 vol. % tributyl phosphate in n-dodecane.

Friedman, Horace A. (Oak Ridge, TN)

1985-01-01T23:59:59.000Z

27

Separation of uranium from technetium in recovery of spent nuclear fuel  

DOE Patents [OSTI]

A method for decontaminating uranium product from the Purex 5 process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO/sub 2//sup 2 +/) uranium and heptavalent technetium (TcO/sub 4/-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H/sub 2/C/sub 2/O/sub 4/), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.

Friedman, H.A.

1984-06-13T23:59:59.000Z

28

apex nuclear fuel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, ... Kazimi, Mujid S. 19 Nuclear Waste Imaging and Spent Fuel Verification by...

29

Standard test method for analysis of isotopic composition of uranium in nuclear-grade fuel material by quadrupole inductively coupled plasma-mass spectrometry  

E-Print Network [OSTI]

1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described i...

American Society for Testing and Materials. Philadelphia

2000-01-01T23:59:59.000Z

30

Uranium immobilization and nuclear waste  

SciTech Connect (OSTI)

Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

Duffy, C.J.; Ogard, A.E.

1982-02-01T23:59:59.000Z

31

Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applications  

E-Print Network [OSTI]

The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy alpha phase sintering experiment where the Mg is a surrogate for Pu and Am. The powder...

Garnetti, David J.

2010-07-14T23:59:59.000Z

32

Elastic Properties of Rolled Uranium -- 10 wt.% Molybdenum Nuclear Fuel Foils  

SciTech Connect (OSTI)

In situ neutron diffraction data was collected during elastic loading of rolled foils of uranium-10 wt.% molybdenum bonded to a thin layer of zirconium. Lattice parameters were ascertained from the diffraction patterns to determine the elastic strain and, subsequently, the elastic moduli and Poisson’s ratio in the rolling and transverse directions. The foil was found to be elastically isotropic in the rolling plane with an effective modulus of 86 + / - 3 GPa and a Poisson’s ratio 0.39 + / - 0.04.

D. W. Brown; D. J. Alexander; K. D. Clarke; B. Clausen; M. A. Okuniewski; T. A. Sisneros

2013-11-01T23:59:59.000Z

33

URANIUM MILLING ACTIVITIES AT SEQUOYAH FUELS CORPORATION  

E-Print Network [OSTI]

Sequoyah Fuels Corporation (SFC) describes previous operations at its Gore, Oklahoma, uranium conversion facility as: (1) the recovery of uranium by concentration and purification processes; and (2) the conversion of concentrated and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these

unknown authors

34

advanced nuclear fuels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycles University of California eScholarship Repository Summary: uranium or thorium ores and production of nuclear fuel, anynuclear fuel strontium Sievert Trivalent...

35

advanced nuclear fuel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycles University of California eScholarship Repository Summary: uranium or thorium ores and production of nuclear fuel, anynuclear fuel strontium Sievert Trivalent...

36

Corrosion Evaluation of RERTR Uranium Molybdenum Fuel  

SciTech Connect (OSTI)

As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.

A K Wertsching

2012-09-01T23:59:59.000Z

37

Thorium–based fuel cycles : saving uranium in a 200 MWth pebble bed high temperature reactor / S.K. Gintner.  

E-Print Network [OSTI]

??The predominant nuclear fuel used globally at present is uranium which is a finite resource. Thorium has been identified as an alternative nuclear fuel source… (more)

Gintner, Stephan Konrad

2010-01-01T23:59:59.000Z

38

Uranium and cesium diffusion in fuel cladding of electrogenerating channel  

SciTech Connect (OSTI)

The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500°C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

Vasil’ev, I. V., E-mail: fnti@mail.ru; Ivanov, A. S.; Churin, V. A. [National Research Center Kurchatov Institute (Russian Federation)

2014-12-15T23:59:59.000Z

39

Compositions and methods for treating nuclear fuel  

DOE Patents [OSTI]

Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

2013-08-13T23:59:59.000Z

40

Compositions and methods for treating nuclear fuel  

DOE Patents [OSTI]

Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

2014-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear fuel electrorefiner  

DOE Patents [OSTI]

The present invention relates to a nuclear fuel electrorefiner having a vessel containing a molten electrolyte pool floating on top of a cadmium pool. An anodic fuel dissolution basket and a high-efficiency cathode are suspended in the molten electrolyte pool. A shroud surrounds the fuel dissolution basket and the shroud is positioned so as to separate the electrolyte pool into an isolated electrolyte pool within the shroud and a bulk electrolyte pool outside the shroud. In operation, unwanted noble-metal fission products migrate downward into the cadmium pool and form precipitates where they are removed by a filter and separator assembly. Uranium values are transported by the cadmium pool from the isolated electrolyte pool to the bulk electrolyte pool, and then pass to the high-efficiency cathode where they are electrolytically deposited thereto.

Ahluwalia, Rajesh K.; Hua, Thanh Q.

2004-02-10T23:59:59.000Z

42

Neptunium - Uranium - Plutonium Co-Extraction in TBP-based Solvent Extraction Processes for Spent Nuclear Fuel Recycling  

SciTech Connect (OSTI)

The US, through the Global Nuclear Energy Partnership, is currently engaged in efforts aimed at closing the nuclear fuel cycle. Neptunium behavior is important to understand for transuranic recycling because of its complex oxidation chemistry. The Pacific Northwest National Laboratory is investigating neptunium oxidation chemistry in the context of the PUREX process. Neptunium extraction in the PUREX process relies on maintaining either IV or V oxidation states. Qualitative conversion of neptunium(V) to neptunium(VI) was achieved within 5 hours in 6 M nitric acid at 95 deg. C. However, the VI state was not maintained during a batch contact test simulating the PUREX process and neptunium reduced to the V state, rendering it inextractable. Vanadium(V) was found to be effective in maintaining neptunium(VI) by adding it to a simulated irradiated nuclear fuel feed in 6 M nitric acid and to the scrub acid in the batch contact simulation of the PUREX process. Computer simulations of the PUREX process with a typical irradiated nuclear fuel in 6 M nitric acid as feed indicated little impact of the higher acid concentration on the behavior of fission products of moderate extractability. We plan to perform countercurrent tests of this modified PUREX process in the near future. (authors)

Arm, S.T.; Abrefah, J.; Lumetta, G.J.; Sinkov, S.I. [Battelle PNWD, Pacific Northwest National Laboratory, 902 Battelle Boulevard, PO Box 999, Richland, Washington, 99352 (United States)

2007-07-01T23:59:59.000Z

43

Plutonium partitioning in uranium and plutonium co-recovery system for fast reactor fuel recycling with enhanced nuclear proliferation resistance  

SciTech Connect (OSTI)

For enhancement of nuclear proliferation resistance, a 'co-processing' method for U and Pu co-recovery was studied. Two concepts, no U scrubbing and no Pu reduction partitioning, were employed to formulate two types of flow sheets by using a calculation code. Their process performance was demonstrated using radioactive solutions derived from an irradiated fast reactor fuel. These experimental results indicated that U and Pu were co-recovered in the U/Pu product, and the Pu content in the U/Pu product increased approximately 2.3 times regardless of using reductant. The proposed no U scrubbing and no Pu reductant flow sheet is applicable to fast reactor fuel reprocessing and enhances its resistance to nuclear proliferation. (authors)

Nakahara, Masaumi; Koma, Yoshikazu; Nakajima, Yasuo [Japan Atomic Energy Agency: 4-33 Muramatsu, Naka-gun, Tokai-mura, Ibaraki 319-1194 (Japan)

2013-07-01T23:59:59.000Z

44

22.351 Systems Analysis of the Nuclear Fuel Cycle, Spring 2003  

E-Print Network [OSTI]

In-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, ...

Kazimi, Mujid S.

45

Advanced nuclear fuel  

ScienceCinema (OSTI)

Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

Terrani, Kurt

2014-07-15T23:59:59.000Z

46

Advanced nuclear fuel  

SciTech Connect (OSTI)

Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

Terrani, Kurt

2014-07-14T23:59:59.000Z

47

22.251 / 22.351 Systems Analysis of the Nuclear Fuel Cycle, Fall 2005  

E-Print Network [OSTI]

This course provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, ...

Kazimi, Mujid S.

48

Extraction of uranium from spent fuels using liquefied gases  

SciTech Connect (OSTI)

For reprocessing of spent nuclear fuels, a novel method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. As a fundamental study, the nitrate conversion with liquefied nitrogen dioxide and the nitrate extraction with supercritical carbon dioxide were demonstrated by using uranium dioxide powder, uranyl nitrate and tri-n-butylphosphate complex in the present study. (authors)

Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan)

2007-07-01T23:59:59.000Z

49

Fuel cycle optimization of thorium and uranium fueled PWR systems  

E-Print Network [OSTI]

The burnup neutronics of uniform PWR lattices are examined with respect to reduction of uranium ore requirements with an emphasis on variation of the fuel-to-moderator ratio

Garel, Keith Courtnay

1977-01-01T23:59:59.000Z

50

Nuclear Fuels: Promise and Limitations  

SciTech Connect (OSTI)

From 1950 through 1980, scientists, engineers and national leaders confidently predicted an early twenty-first century where fast breeder reactors and commercial nuclear fuel reprocessing were commonplace. Such a scenario seemed necessary for a world with the more than 1000 GWe of nuclear energy needed to meet such an ever-increasing thirst for energy. Thirty years later uranium reserves are increasing on pace with consumption, the growth of nuclear power has been slowed, commercial breeder reactors have yet to enter the marketplace, and less than a handful of commercial reprocessing plants operate. As Nobel Laureate Niels Bohr famously said, “Prediction is very difficult, especially if it’s about the future.” The programme for IChemE’s 2012 conference on the nuclear fuel cycle features a graphic of an idealized nuclear fuel cycle that symbolizes the quest for a closed nuclear fuel cycle featuring careful husbanding of precious resources while minimizing the waste footprint. Progress toward achieving this ideal has been disrupted by technology innovations in the mining and petrochemical industries, as well as within the nuclear industry.

Harold F. McFarlane

2012-03-01T23:59:59.000Z

51

Pyroprocessing of Fast Flux Test Facility Nuclear Fuel  

SciTech Connect (OSTI)

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

2013-10-01T23:59:59.000Z

52

Pyroprocessing of fast flux test facility nuclear fuel  

SciTech Connect (OSTI)

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415 (United States)

2013-07-01T23:59:59.000Z

53

Method of increasing the deterrent to proliferation of nuclear fuels  

DOE Patents [OSTI]

A process of recycling protactinium-231 to enhance the utilization of radioactively hot uranium-232 in nuclear fuel for the purpose of making both fresh and spent fuel more resistant to proliferation. The uranium-232 may be obtained by the irradiation of protactinium-231 which is normally found in the spent fuel rods of a thorium base nuclear reactor. The production of protactinium-231 and uranium-232 would be made possible by the use of the thorium uranium-233 fuel cycle in power reactors.

Rampolla, Donald S. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

54

Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels  

DOE Patents [OSTI]

An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

Ackerman, John P. (Downers Grove, IL); Miller, William E. (Naperville, IL)

1989-01-01T23:59:59.000Z

55

Economics of nuclear fuel cycles : option valuation and neutronics simulation of mixed oxide fuels  

E-Print Network [OSTI]

In most studies aiming at the economic assessment of nuclear fuel cycles, a primary concern is to keep scenarios economically comparable. For Uranium Oxide (UOX) and Mixed Oxide (MOX) fuels, a traditional way to achieve ...

De Roo, Guillaume

2009-01-01T23:59:59.000Z

56

Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering  

SciTech Connect (OSTI)

Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

Dr. Paul A. Lessing

2012-03-01T23:59:59.000Z

57

World nuclear fuel cycle requirements 1990  

SciTech Connect (OSTI)

This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

Not Available

1990-10-26T23:59:59.000Z

58

Uranium Ore Uranium is extracted  

E-Print Network [OSTI]

Milling of Uranium Ore Uranium is extracted from ore with strong acids or bases. The uranium is concentrated in a solid substance called"yellowcake." Chemical Conversion Plants convert the uranium in yellowcake to uranium hexafluoride (UF6 ), a compound that can be made into nuclear fuel. Enrichment

59

Impact of alternative nuclear fuel cycle options on infrastructure and fuel requirements, actinide and waste inventories, and economics  

E-Print Network [OSTI]

The nuclear fuel once-through cycle (OTC) scheme currently practiced in the U.S. leads to accumulation of uranium, transuranic (TRU) and fission product inventories in the spent nuclear fuel. Various separation and recycling ...

Guérin, Laurent, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

60

Uranium chloride extraction of transuranium elements from LWR fuel  

DOE Patents [OSTI]

A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.

Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

1992-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Uranium chloride extraction of transuranium elements from LWR fuel  

DOE Patents [OSTI]

A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

Miller, William E. (Naperville, IL); Ackerman, John P. (Downers Grove, IL); Battles, James E. (Oak Forest, IL); Johnson, Terry R. (Wheaton, IL); Pierce, R. Dean (Naperville, IL)

1992-01-01T23:59:59.000Z

62

Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel  

SciTech Connect (OSTI)

Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR`s uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ``hot segment`` analysis of narrow axial regions along the plate and ``hot streak`` analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about {minus}7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square ({chi}{sup 2}) test for goodness of fit to normal distributions was not satisfied.

Blumenfeld, P.E.

1995-08-01T23:59:59.000Z

63

Thermal analysis of uranium zirconium hydride fuel using a lead-bismuth gap at LWR operating temperatures  

E-Print Network [OSTI]

Next generation nuclear technology calls for more advanced fuels to maximize the effectiveness of new designs. A fuel currently being studied for use in advanced light water reactors (LWRs) is uranium zirconium hydride ...

Ensor, Brendan M. (Brendan Melvin)

2012-01-01T23:59:59.000Z

64

World nuclear capacity and fuel cycle requirements, November 1993  

SciTech Connect (OSTI)

This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

Not Available

1993-11-30T23:59:59.000Z

65

Methods for making a porous nuclear fuel element  

DOE Patents [OSTI]

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L; Williams, Brian E; Benander, Robert E

2014-12-30T23:59:59.000Z

66

Computational Design of Advanced Nuclear Fuels  

SciTech Connect (OSTI)

The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

2014-06-03T23:59:59.000Z

67

Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts  

SciTech Connect (OSTI)

The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse, enablement of material accountability, and decreasing material attractiveness.

S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

2010-09-01T23:59:59.000Z

68

Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE  

SciTech Connect (OSTI)

In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

Ade, Brian J [ORNL; Gauld, Ian C [ORNL

2011-10-01T23:59:59.000Z

69

Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel  

SciTech Connect (OSTI)

Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium is more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the best core performance characteristics for each of them. With the exception of the fuel type and enrichment, the reference AFR-100 core design characteristics were kept unchanged, including the general core layout and dimensions, assembly dimensions, materials and power rating. In addition, the mass of {sup 235}U required was kept within a reasonable range from that of the reference AFR-100 design. The core performance characteristics, kinetics parameters and reactivity feedback coefficients were calculated using the ANL suite of fast reactor analysis code systems. Orifice design calculations and the steady-state thermal-hydraulic analyses were performed using the SE2-ANL code. The thermal margins were evaluated by comparing the peak temperatures to the design limits for parameters such as the fuel melting temperature and the fuel-cladding eutectic temperature. The inherent safety features of AFR-100 cores proposed were assessed using the integral reactivity parameters of the quasi-static reactivity balance analysis. The design objectives and requirements, the computation methods used as well as a description of the core concept are provided in Section 2. The three major approaches considered are introduced in Section 3 and the neutronics performances of those approaches are discussed in the same section. The orifice zoning strategies used and the steady-state thermal-hydraulic performance are provided in Section 4. The kinetics and reactivity coefficients, including the inherent safety characteristics, are provided in Section 5, and the Conclusions in Section 6. Other scenarios studied and sensitivity studies are provided in the Appendix section.

Heidet, F.; Kim, T.; Grandy, C. (Nuclear Engineering Division)

2012-07-30T23:59:59.000Z

70

Nuclear Spent Fuel Program Drivers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was created to plan and coordinate the management of Department of Energy-owned spent nuclear fuel. It was established as a result of a 1992 decision to stop spent nuclear fuel...

71

National Spent Nuclear Fuel Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

need to safely and efficiently manage all DOE-owned spent nuclear fuel and high level waste and prepare it for disposal. The National Spent Nuclear Fuel Program is addressing...

72

Criticality Safety of Low-Enriched Uranium and High-Enriched Uranium Fuel Elements in Heavy Water Lattices  

SciTech Connect (OSTI)

The RB reactor was designed as a natural-uranium, heavy water, nonreflected critical assembly in the Vinca Institute of Nuclear Sciences, Belgrade, Yugoslavia, in 1958. From 1962 until 2002, numerous critical experiments were carried out with low-enriched uranium and high-enriched uranium fuel elements of tubular shape, known as the Russian TVR-S fuel assembly type, placed in various heavy water square lattices within the RB cylindrical aluminum tank. Some of these well-documented experiments were selected, described, evaluated, and accepted for inclusion in the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments', contributing to the preservation of a rather small number of heavy water benchmark critical experiments.

Pesic, Milan P

2003-10-15T23:59:59.000Z

73

Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors  

DOE Patents [OSTI]

Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pocoima, CA); Benander, Robert E. (Pacoima, CA)

2010-02-23T23:59:59.000Z

74

Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors  

DOE Patents [OSTI]

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pacoima, CA); Benander, Robert E. (Pacoima, CA)

2011-03-01T23:59:59.000Z

75

Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors  

DOE Patents [OSTI]

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

2013-09-03T23:59:59.000Z

76

Measurement of lanthanum and technetium in uranium fuels by inductively coupled plasma atomic emission spectroscopy.  

SciTech Connect (OSTI)

An important parameter in characterizing an irradiated nuclear fuel is determining the amount of uranium fissioned. By determining the amount of uranium fissioned in the fuel a burnup performance parameter can be calculated, and the amount of fission products left in the fuel can be predicted. The quantity of uranium fissioned can be calculated from the amount of lanthanum and technetium present in the fuel. Lanthanum and technetium were measured in irradiated fuel samples using an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) instrument and separation equipment located in a shielded glove-box. A discussion of the method, interferences, detection limits, quality control and a comparison to other work will be presented.

Carney, K.; Crane, P.; Cummings, D.; Krsul, J.; McKnight, R.

1999-06-10T23:59:59.000Z

77

Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications  

SciTech Connect (OSTI)

Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

2013-02-01T23:59:59.000Z

78

LMFBR operation in the nuclear cycle without fuel reprocessing  

SciTech Connect (OSTI)

Substantiation is given to expediency of investigation of nuclear power (NP) development with fast reactors cooled by lead-bismuth alloy operating during extended time in the open nuclear fuel cycle with slightly enriched or depleted uranium make-up. 9 refs., 1 fig., 6 tabs.

Toshinsky, S.I. [Institute of Physics and Power Engineering, Kaluga (Russian Federation)

1997-12-01T23:59:59.000Z

79

Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel  

E-Print Network [OSTI]

Level Scheme Library Depleted Uranium Evaluated Nuclear Datafuel and the 238 U in depleted uranium (DU) was used as a

Ludewigt, Bernhard A

2011-01-01T23:59:59.000Z

80

Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor  

SciTech Connect (OSTI)

A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Swelling-resistant nuclear fuel  

DOE Patents [OSTI]

A nuclear fuel according to one embodiment includes an assembly of nuclear fuel particles; and continuous open channels defined between at least some of the nuclear fuel particles, wherein the channels are characterized as allowing fission gasses produced in an interior of the assembly to escape from the interior of the assembly to an exterior thereof without causing significant swelling of the assembly. Additional embodiments, including methods, are also presented.

Arsenlis, Athanasios (Hayward, CA); Satcher, Jr., Joe (Patterson, CA); Kucheyev, Sergei O. (Oakland, CA)

2011-12-27T23:59:59.000Z

82

Spent Nuclear Fuel Fact Sheets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

management needs. By coordinating common needs for research, technology development, and testing programs, the National Spent Nuclear Fuel Program is achieving cost efficiencies...

83

Uranium Weapons Components Successfully Dismantled | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEM withSecurity Administration Weapons

84

Nuclear Fuel Cycle & Vulnerabilities  

SciTech Connect (OSTI)

The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

Boyer, Brian D. [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

85

Irradiation behavior of miniature experimental uranium silicide fuel plates  

SciTech Connect (OSTI)

Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk from, on the order of 7 x 10/sup 20/ cm/sup -3/, far short of the approximately 20 x 10/sup 20/ cm/sup -3/ goal established for the RERTR program. The purpose of the irradiation experiments on silicide fuels on the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix.

Hofman, G.L.; Neimark, L.A.; Mattas, R.F.

1983-01-01T23:59:59.000Z

86

Uranium-plutonium-neptunium fuel cycle to produce isotopically denatured plutonium  

SciTech Connect (OSTI)

In view of the considerable amount of /sup 237/ Np produced as a by-product in nuclear power reactors, possible utilization of this nuclide in the nuclear fuel cycle has been studied. In particular, the performance of a gas-cooled fast breeder reactor as a neptunium burner was assessed. A strategy was developed and mass flows were computed for a denatured plutonium LWR strategy using uranium, plutonium and neptunium recycling. 10 refs.

Wydler, P.; Heer, W.; Stiller, P.; Wenger, H.U.

1980-06-01T23:59:59.000Z

87

Radiation measurements of uranium ingots from the electrometallurgical treatment of spent fuel.  

SciTech Connect (OSTI)

Radiation measurements and gamma spectroscopy analyses were made on numerous uranium ingots produced during the treatment of Experimental Breeder Reactor-II (EBR-II) spent nuclear fuel. The objective of these measurements was to provide background data for shielding concerns and potential process optimization. The uranium ingots resulted from the processing of both driver and blanket fuel by the electrometallurgical treatment process. The observed variation in the measurements was traced to the levels of certain fission product residues that remained in the uranium ingots produced during spent fuel treatment. A minor process change to hold the material at an elevated temperature for a specified length of time was found to significantly reduce concentrations of high-activity fission products and, thus the radiation field.

Westphal, B. R.; Liaw, J. R.; Krsul, J. R.; Maddison, D. W.; Jensen, B. A.

2003-03-24T23:59:59.000Z

88

International Atomic Energy Agency support of research reactor highly enriched uranium to low enriched uranium fuel conversion projects  

SciTech Connect (OSTI)

The IAEA has been involved for more than twenty years in supporting international nuclear non- proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly assisted efforts to convert research reactors from HEU to LEU fuel. HEU to LEU fuel conversion projects differ significantly depending on several factors including the design of the reactor and fuel, technical needs of the member state, local nuclear infrastructure, and available resources. To support such diverse endeavours, the IAEA tailors each project to address the relevant constraints. This paper presents the different approaches taken by the IAEA to address the diverse challenges involved in research reactor HEU to LEU fuel conversion projects. Examples of conversion related projects in different Member States are fully detailed. (author)

Bradley, E.; Adelfang, P.; Goldman, I.N. [Research Reactors Unit, Division of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna (Austria)

2008-07-15T23:59:59.000Z

89

Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site  

SciTech Connect (OSTI)

The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

2010-10-01T23:59:59.000Z

90

Letter Report: Looking Ahead at Nuclear Fuel Resources  

SciTech Connect (OSTI)

The future of nuclear energy and its ability to fulfill part of the world’s energy needs for centuries to come depend on a reliable input of nuclear fuel, either thorium or uranium. Obviously, the present nuclear fuel cycle is completely dependent on uranium. Future thorium cycles will also depend on 235U or fissile isotopes separated from used fuel to breed 232Th into fissile 233U. This letter report discusses several emerging areas of scientific understanding and technology development that will clarify and enable assured supplies of uranium and thorium well into the future. At the most fundamental level, the nuclear energy community needs to appreciate the origins of uranium and thorium and the processes of planetary accretion by which those materials have coalesced to form the earth and other planets. Secondly, the studies of geophysics and geochemistry are increasing understanding of the processes by which uranium and thorium are concentrated in various locations in the earth’s crust. Thirdly, the study of neutrinos and particularly geoneutrinos (neutrinos emitted by radioactive materials within the earth) has given an indication of the overall global inventories of uranium and thorium, though little indication for those materials’ locations. Crustal temperature measurements have also given hints of the vertical distribution of radioactive heat sources, primarily 238U and 232Th, within the continental crust. Finally, the evolving technologies for laser isotope separation are indicating methods for reducing the energy input to uranium enrichment but also for tailoring the isotopic vectors of fuels, burnable poisons and structural materials, thereby adding another tool for dealing with long-term waste management.

J. Stephen Herring

2013-09-01T23:59:59.000Z

91

Advanced Nuclear Fuel Cycle Options  

SciTech Connect (OSTI)

A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

2010-06-01T23:59:59.000Z

92

FABRICATION OF URANIUM OXYCARBIDE KERNELS AND COMPACTS FOR HTR FUEL  

SciTech Connect (OSTI)

As part of the program to demonstrate tristructural isotropic (TRISO)-coated fuel for the Next Generation Nuclear Plant (NGNP), Advanced Gas Reactor (AGR) fuel is being irradiation tested in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). This testing has led to improved kernel fabrication techniques, the formation of TRISO fuel particles, and upgrades to the overcoating, compaction, and heat treatment processes. Combined, these improvements provide a fuel manufacturing process that meets the stringent requirements associated with testing in the AGR experimentation program. Researchers at Idaho National Laboratory (INL) are working in conjunction with a team from Babcock and Wilcox (B&W) and Oak Ridge National Laboratory (ORNL) to (a) improve the quality of uranium oxycarbide (UCO) fuel kernels, (b) deposit TRISO layers to produce a fuel that meets or exceeds the standard developed by German researches in the 1980s, and (c) develop a process to overcoat TRISO particles with the same matrix material, but applies it with water using equipment previously and successfully employed in the pharmaceutical industry. A primary goal of this work is to simplify the process, making it more robust and repeatable while relying less on operator technique than prior overcoating efforts. A secondary goal is to improve first-pass yields to greater than 95% through the use of established technology and equipment. In the first test, called “AGR-1,” graphite compacts containing approximately 300,000 coated particles were irradiated from December 2006 to November 2009. The AGR-1 fuel was designed to closely replicate many of the properties of German TRISO-coated particles, thought to be important for good fuel performance. No release of gaseous fission product, indicative of particle coating failure, was detected in the nearly 3-year irradiation to a peak burn up of 19.6% at a time-average temperature of 1038–1121°C. Before fabricating AGR-2 fuel, each fabrication process was improved and changed. Changes to the kernel fabrication process included replacing the carbon black powder feed with a surface-modified carbon slurry and shortening the sintering schedule. AGR-2 TRISO particles were produced in a 6-inch diameter coater using a charge size about 21-times that of the 2-inch diameter coater used to coat AGR-1 particles. The compacting process was changed to increase matrix density and throughput by increasing the temperature and pressure of pressing and using a different type of press. AGR-2 fuel began irradiation in the ATR in late spring 2010.

Dr. Jeffrey A. Phillips; Eric L. Shaber; Scott G. Nagley

2012-10-01T23:59:59.000Z

93

Nuclear Fuels | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergy Nuclear Fuels

94

Nuclear power fleets and uranium resources recovered from phosphates  

SciTech Connect (OSTI)

Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

2013-07-01T23:59:59.000Z

95

Laser shockwave technique for characterization of nuclear fuel plate interfaces  

SciTech Connect (OSTI)

The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

Perton, M.; Levesque, D.; Monchalin, J.-P.; Lord, M. [National Research Council Canada, 75 de Mortagne Blvd, Boucherville, Quebec, J4B 6Y4 (Canada); Smith, J. A.; Rabin, B. H. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

2013-01-25T23:59:59.000Z

96

Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces  

SciTech Connect (OSTI)

The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

James A. Smith; Barry H. Rabin; Mathieu Perton; Daniel Lévesque; Jean-Pierre Monchalin; Martin Lord

2012-07-01T23:59:59.000Z

97

Uranium industry annual 1996  

SciTech Connect (OSTI)

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

98

Empirical modeling of uranium nitride fuels  

E-Print Network [OSTI]

SD Fuel swelling ( volume % ) Fission gas release (% ) Area average fuel temperature at the peak axial location Fuel burnup Fuel density Smear density The empirical fits shown above were produced using a least squares fit program with data... rejected due to a demonstrated lack of stability. The fuel swelling and fission gas release values predicted by the nonlinear correlations show fair agreement with the two experimental pins from the SP-1 irradiation test . Additionally, the trends...

Brozak, Daniel Edward

2012-06-07T23:59:59.000Z

99

Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report  

SciTech Connect (OSTI)

Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow, entitled “Uranium Metal Powder Production, Particle Dis

Sean M. McDeavitt

2011-04-29T23:59:59.000Z

100

6 Nuclear Fuel Designs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarchTHEMaterials and1663 January

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CONCEPTUAL PROCESS DESCRIPTION FOR THE MANUFACTURE OF LOW-ENRICHED URANIUM-MOLYBDENUM FUEL  

SciTech Connect (OSTI)

The National Nuclear Security Agency Global Threat Reduction Initiative (GTRI) is tasked with minimizing the use of high-enriched uranium (HEU) worldwide. A key component of that effort is the conversion of research reactors from HEU to low-enriched uranium (LEU) fuels. The GTRI Convert Fuel Development program, previously known as the Reduced Enrichment for Research and Test Reactors program was initiated in 1978 by the United States Department of Energy to develop the nuclear fuels necessary to enable these conversions. The program cooperates with the research reactors’ operators to achieve this goal of HEU to LEU conversion without reduction in reactor performance. The programmatic mandate is to complete the conversion of all civilian domestic research reactors by 2014. These reactors include the five domestic high-performance research reactors (HPRR), namely: the High Flux Isotope Reactor at the Oak Ridge National Laboratory, the Advanced Test Reactor at the Idaho National Laboratory, the National Bureau of Standards Reactor at the National Institute of Standards and Technology, the Missouri University Research Reactor at the University of Missouri–Columbia, and the MIT Reactor-II at the Massachusetts Institute of Technology. Characteristics for each of the HPRRs are given in Appendix A. The GTRI Convert Fuel Development program is currently engaged in the development of a novel nuclear fuel that will enable these conversions. The fuel design is based on a monolithic fuel meat (made from a uranium-molybdenum alloy) clad in Al-6061 that has shown excellent performance in irradiation testing. The unique aspects of the fuel design, however, necessitate the development and implementation of new fabrication techniques and, thus, establishment of the infrastructure to ensure adequate fuel fabrication capability. A conceptual fabrication process description and rough estimates of the total facility throughput are described in this document as a basis for establishing preconceptual fabrication facility designs.

Daniel M. Wachs; Curtis R. Clark; Randall J. Dunavant

2008-02-01T23:59:59.000Z

102

Energy Return on Investment from Recycling Nuclear Fuel  

SciTech Connect (OSTI)

This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

None

2011-08-17T23:59:59.000Z

103

Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors  

DOE Patents [OSTI]

A method is described for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction. 3 figs.

McLean, W. II; Miller, P.E.

1997-12-16T23:59:59.000Z

104

Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors  

DOE Patents [OSTI]

A method for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction.

McLean, II, William (Oakland, CA); Miller, Philip E. (Livermore, CA)

1997-01-01T23:59:59.000Z

105

Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond  

SciTech Connect (OSTI)

The Enhanced CANDU 6{sup R} (ECo{sup R}) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M. [Candu Energy Inc., 2285 Speakman Drive, Mississauga, ON L5K 1B1 (Canada)

2012-07-01T23:59:59.000Z

106

Breeding nuclear fuels with accelerators: replacement for breeder reactors  

SciTech Connect (OSTI)

One application of high energy particle accelerators has been, and still is, the production of nuclear fuel for the nuclear energy industry; tantalizing because it would create a whole new industry. This approach to producing fissile from fertile material was first considered in the early 1950's in the context of the nuclear weapons program. A considerable development effort was expended before discovery of uranium ore in New Mexico put an end to the project. Later, US commitment to the Liquid Metal Fast Breeder Reactors (LMFBR) killed any further interest in pursuing accelerator breeder technology. Interest in the application of accelerators to breed nuclear fuels, and possibly burn nuclear wastes, revived in the late 1970's, when the LMFBR came under attack during the Carter administration. This period gave the opportunity to revisit the concept in view of the present state of the technology. This evaluation and the extensive calculational modeling of target designs that have been carried out are promising. In fact, a nuclear fuel cycle of Light Water Reactors and Accelerator Breeders is competitive to that of the LMFBR. At this time, however, the relative abundance of uranium reserves vs electricity demand and projected growth rate render this study purely academic. It will be for the next generation of accelerator builders to demonstate the competitiveness of this technology versus that of other nuclear fuel cycles, such as LMFBR's or Fusion Hybrid systems. 22 references, 1 figure, 5 tables.

Grand, P.; Takahashi, H.

1984-01-01T23:59:59.000Z

107

Advanced nuclear fuel cycles - Main challenges and strategic choices  

SciTech Connect (OSTI)

A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

Le Biez, V. [Corps des Mines, 35 bis rue Saint-Sabin, F-75011 Paris (France); Machiels, A.; Sowder, A. [Electric Power Research Institute, Inc. 3420, Hillview Avenue, Palo Alto, CA 94304 (United States)

2013-07-01T23:59:59.000Z

108

Proliferation Resistant Nuclear Reactor Fuel  

SciTech Connect (OSTI)

Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

2011-02-18T23:59:59.000Z

109

Characterization plan for Hanford spent nuclear fuel  

SciTech Connect (OSTI)

Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF.

Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

1994-12-01T23:59:59.000Z

110

Corrosion of Spent Nuclear Fuel: The Long-Term Assessment  

SciTech Connect (OSTI)

Spent nuclear fuel, essentially U{sub 2}, accounts for over 95% of the total radioactivity of all of the radioactive wastes in the United States that require disposal, disposition or remediation. The UO{sub 2} in SNF is not stable under oxiding conditions and may also be altered under reducing conditions. The alteration of SNF results in the formation of new uranium phases that can cause the release or retardation of actinide and fission product radionuclides. Over the long term, and depending on the extent to which the secondary uranium phases incorporate fission products and actinides, these alteration phases become the near-field source term.

Rodney C. Ewing

2004-10-07T23:59:59.000Z

111

Spent nuclear fuel reprocessing modeling  

SciTech Connect (OSTI)

The long-term wide development of nuclear power requires new approaches towards the realization of nuclear fuel cycle, namely, closed nuclear fuel cycle (CNFC) with respect to fission materials. Plant nuclear fuel cycle (PNFC), which is in fact the reprocessing of spent nuclear fuel unloaded from the reactor and the production of new nuclear fuel (NF) at the same place together with reactor plant, can be one variant of CNFC. Developing and projecting of PNFC is a complicated high-technology innovative process that requires modern information support. One of the components of this information support is developed by the authors. This component is the programme conducting calculations for various variants of process flow sheets for reprocessing SNF and production of NF. Central in this programme is the blocks library, where the blocks contain mathematical description of separate processes and operations. The calculating programme itself has such a structure that one can configure the complex of blocks and correlations between blocks, appropriate for any given flow sheet. For the ready sequence of operations balance calculations are made of all flows, i.e. expenses, element and substance makeup, heat emission and radiation rate are determined. The programme is open and the block library can be updated. This means that more complicated and detailed models of technological processes will be added to the library basing on the results of testing processes using real equipment, in test operating mode. The development of the model for the realization of technical-economic analysis of various variants of technologic PNFC schemes and the organization of 'operator's advisor' is expected. (authors)

Tretyakova, S.; Shmidt, O.; Podymova, T.; Shadrin, A.; Tkachenko, V. [Bochvar Institute, 5 Rogova str., Moscow 123098 (Russian Federation); Makeyeva, I.; Tkachenko, V.; Verbitskaya, O.; Schultz, O.; Peshkichev, I. [Russian Federal Nuclear Center - VNIITF E.I. Zababakhin, p.o.box 245, Snezhinsk, 456770 (Russian Federation)

2013-07-01T23:59:59.000Z

112

Nuclear fuel cycle assessment of India: a technical study for U.S.-India cooperation  

E-Print Network [OSTI]

........................................................16 II.G. Current State of Indian Nuclear Program.........................................................17 III INDIAN NUCLEAR FACILITIES .................................................................18 IV FUEL CYCLE... pattern for TBR-1 .........................................100 Fig. 16. India’s proposed nuclear power production strategy........................................103 Fig. 17. Comparison for uranium utilization in electricity generation...

Woddi, Taraknath Venkat Krishna

2008-10-10T23:59:59.000Z

113

The gas centrifuge and nuclear weapons proliferation  

SciTech Connect (OSTI)

Uranium enrichment by centrifugation is the basis for the quick and efficient production of nuclear fuel-or nuclear weapons.

Wood, Houston G. [Mechanical and Aerospace Engineering Department, University of Virginia, Charlottesville, Virginia (United States); Glaser, Alexander [Woodrow Wilson School of Public and International Affairs, Program on Science, Technology and Environmental Policy, Princeton University, Princeton, New Jersey (United States); Kemp, R. Scott [Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

2014-05-09T23:59:59.000Z

114

Criticality experiments with mixed oxide fuel pin arrays in plutonium-uranium nitrate solution  

SciTech Connect (OSTI)

A series of critical experiments was completed with mixed plutonium-uranium solutions having a Pu/(Pu + U) ratio of approximately 0.22 in a boiler tube-type lattice assembly. These experiments were conducted as part of the Criticality Data Development Program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of the experiments and data are included in this report. The experiments were performed with an array of mixed oxide fuel pins in aqueous plutonium-uranium solutions. The fuel pins were contained in a boiler tube-type tank and arranged in a 1.4 cm square pitch array which resembled cylindrical geometry. One experiment was perfomed with the fuel pins removed from the vessel. The experiments were performed with a water reflector. The concentration of the solutions in the boiler tube-type tank was varied from 4 to 468 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was approximately 0.22 for all experiments.

Lloyd, R.C. (Pacific Northwest Lab., Richland, WA (United States)); Smolen, G.R. (Oak Ridge National Lab., TN (United States))

1988-08-01T23:59:59.000Z

115

Method for cleaning solution used in nuclear fuel reprocessing  

DOE Patents [OSTI]

Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

1980-12-17T23:59:59.000Z

116

Spent nuclear fuel sampling strategy  

SciTech Connect (OSTI)

This report proposes a strategy for sampling the spent nuclear fuel (SNF) stored in the 105-K Basins (105-K East and 105-K West). This strategy will support decisions concerning the path forward SNF disposition efforts in the following areas: (1) SNF isolation activities such as repackaging/overpacking to a newly constructed staging facility; (2) conditioning processes for fuel stabilization; and (3) interim storage options. This strategy was developed without following the Data Quality Objective (DQO) methodology. It is, however, intended to augment the SNF project DQOS. The SNF sampling is derived by evaluating the current storage condition of the SNF and the factors that effected SNF corrosion/degradation.

Bergmann, D.W.

1995-02-08T23:59:59.000Z

117

Uranium Enrichment Standards of the Y-12 Nuclear Detection and Sensor Testing Center  

SciTech Connect (OSTI)

The Y-12 National Security Complex has recently fabricated and characterized a new series of metallic uranium standards for use in the Nuclear Detection and Sensor Testing Center (NDSTC). Ten uranium metal disks with enrichments varying from 0.2 to 93.2% {sup 235}U were designed to provide researchers access to a wide variety of measurement scenarios in a single testing venue. Special care was taken in the selection of the enrichments in order to closely bracket the definitions of reactor fuel at 4% {sup 235}U and that of highly enriched uranium (HEU) at 20% {sup 235}U. Each standard is well characterized using analytical chemistry as well as a series of gamma-ray spectrometry measurements. Gamma-ray spectra of these standards are being archived in a reference library for use by customers of the NDSTC. A software database tool has been created that allows for easier access and comparison of various spectra. Information provided through the database includes: raw count data (including background spectra), regions of interest (ROIs), and full width half maximum calculations. Input is being sought from the user community on future needs including enhancements to the spectral database and additional Uranium standards, shielding configurations and detector types. A related presentation are planned for the INMM 53rd Annual Meeting (Hull, et al.), which describe new uranium chemical compound standards and testing opportunities at Y-12 Nuclear Detection and Sensor Testing Center (NDSTC).

Cantrell, J.

2012-05-23T23:59:59.000Z

118

Spent nuclear fuel recycling with plasma reduction and etching  

DOE Patents [OSTI]

A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

Kim, Yong Ho

2012-06-05T23:59:59.000Z

119

Modeling the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

Jacob J. Jacobson; Mary Lou Dunzik-Gougar; Christopher A. Juchau

2010-08-01T23:59:59.000Z

120

Nuclear fuel cycle facility accident analysis handbook  

SciTech Connect (OSTI)

The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

NONE

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle  

SciTech Connect (OSTI)

This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)

Bi, G.; Liu, C.; Si, S. [Shanghai Nuclear Engineering Research and Design Inst., No. 29, Hongcao Road, Shanghai, 200233 (China)

2012-07-01T23:59:59.000Z

122

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report  

SciTech Connect (OSTI)

The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

William Anderson; James Tulenko; Bradley Rearden; Gary Harms

2008-09-11T23:59:59.000Z

123

EA-1172: Sale of Surplus Natural and Low Enriched Uranium, Piketon, Ohio  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to sell uranium for subsequent enrichment and fabrication into commercial nuclear power reactor fuel.  The uranium is currently stored...

124

Categorization of Used Nuclear Fuel Inventory in Support of a...  

Broader source: Energy.gov (indexed) [DOE]

Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy Categorization of Used Nuclear Fuel Inventory in Support of a...

125

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network [OSTI]

of hydride fueled BWRs. Nuclear Engineering and Design, 239:Fueled PWR Cores. Nuclear Engineering and Design, 239:1489–Hydride Fueled LWRs. Nuclear Engineering and Design, 239:

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

126

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network [OSTI]

Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

127

The Role of Friction Stir Welding in Nuclear Fuel Plate Fabrication  

SciTech Connect (OSTI)

The friction bonding process combines desirable attributes of both friction stir welding and friction stir processing. The development of the process is spurred on by the need to fabricate thin, high density, reduced enrichment fuel plates for nuclear research reactors. The work seeks to convert research and test reactors currently operating on highly enriched uranium fuel to operate on low enriched uranium fuel without significant loss in reactor performance, safety characteristics, or significant increase in cost. In doing so, the threat of global nuclear material proliferation will be reduced. Feasibility studies performed on the process show that this is a viable option for mass production of plate-type nuclear fuel. Adapting the friction stir weld process for nuclear fuel fabrication has resulted in the development of several unique ideas and observations. Preliminary results of this adaptation and process model development are discussed.

D Burkes; P Medvedev; M Chapple; A Amritkar; P Wells; I Charit

2009-02-01T23:59:59.000Z

128

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network [OSTI]

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

129

Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel  

DOE Patents [OSTI]

Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

Herrmann, Steven Douglas

2014-05-27T23:59:59.000Z

130

THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS  

SciTech Connect (OSTI)

This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies required to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.

Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.; Bathke, Charles G.; Ebbinghaus, Bartley B.; Hase, Kevin R.; Sleaford, Brad W.; Robel, Martin; Smith, Brian W.

2011-07-17T23:59:59.000Z

131

Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria  

SciTech Connect (OSTI)

The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

K. J. Allen; T. G. Apostolov; I. S. Dimitrov

2009-03-01T23:59:59.000Z

132

Simulated nuclear reactor fuel assembly  

DOE Patents [OSTI]

An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

Berta, Victor T. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

133

Simulated nuclear reactor fuel assembly  

DOE Patents [OSTI]

An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

Berta, V.T.

1993-04-06T23:59:59.000Z

134

Transient fission-gas behavior in uranium nitride fuel under proposed space applications. Doctoral thesis  

SciTech Connect (OSTI)

In order to investigate whether fission gas swelling and release would be significant factors in a space based nuclear reactor operating under the Strategic Defense Initiative (SDI) program, the finite element program REDSTONE (Routine For Evaluating Dynamic Swelling in Transient Operational Nuclear Environments) was developed to model the 1-D, spherical geometry diffusion equations describing transient fission gas behavior in a single uranium nitride fuel grain. The equations characterized individual bubbles, rather than bubble groupings. This limits calculations to those scenarios where low temperatures, low burnups, or both were present. Instabilities in the bubble radii calculations forced the implementation of additional constraints limiting the bubble sizes to minimum and maximum (equilibrium) radii. The validity of REDSTONE calculations were checked against analytical solutions for internal consistency and against experimental studies for agreement with swelling and release results.

Deforest, D.L.

1991-12-01T23:59:59.000Z

135

Neutronics of accelerator-driven subcritical fission for burning transuranics in used nuclear fuel  

SciTech Connect (OSTI)

We report the development of a conceptual design for accelerator-driven subcritical fission in a molten salt core (ADSMS). ADSMS is capable of destroying all of the transuranics at the same rate and proportion as they are produced in a conventional nuclear power plant. The ADSMS core is fueled solely by transuranics extracted from used nuclear fuel and reduces its radiotoxicity by a factor 10,000. ADSMS offers a way to close the nuclear fuel cycle so that the full energy potential in the fertile fuels uranium and thorium can be recovered.

Sattarov, A.; Assadi, S.; Badgley, K.; Baty, A.; Comeaux, J.; Gerity, J.; Kellams, J.; Mcintyre, P.; Pogue, N.; Sooby, E.; Tsvetkov, P.; Rosaire, G. [Texas A and M University, College Station, TX 77845 (United States); Mann, T. [Argone National Laboratory, Argone, IL (United States)

2013-04-19T23:59:59.000Z

136

Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel  

SciTech Connect (OSTI)

Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

Primm, Trent [ORNL; Guida, Tracey [University of Pittsburgh

2010-02-01T23:59:59.000Z

137

Plutonium recovery from spent reactor fuel by uranium displacement  

DOE Patents [OSTI]

A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, John P. (Downers Grove, IL)

1992-01-01T23:59:59.000Z

138

Plutonium recovery from spent reactor fuel by uranium displacement  

DOE Patents [OSTI]

A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, J.P.

1992-03-17T23:59:59.000Z

139

Fuel cycle analysis of once-through nuclear systems.  

SciTech Connect (OSTI)

Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium (LEU) fuels. Examples of systems in this class include the small modular reactors being considered internationally; e.g. 4S [Tsuboi 2009], Hyperion Power Module [Deal 2010], ARC-100 [Wade 2010], and SSTAR [Smith 2008]. (2) Systems for Resource Utilization - In recent years, interest has developed in the use of advanced nuclear designs for the effective utilization of fuel resources. Systems under this class have generally utilized the breed and burn concept in which fissile material is bred and used in situ in the reactor core. Due to the favorable breeding that is possible with fast neutrons, these systems have tended to be fast spectrum systems. In the once-through concepts (as opposed to the traditional multirecycle approach typically considered for fast reactors), an ignition (or starter) zone contains driver fuel which is fissile material. This zone is designed to last a long time period to allow the breeding of sufficient fissile material in the adjoining blanket zone. The blanket zone is initially made of fertile depleted uranium fuel. This zone could also be made of fertile thorium fuel or recovered uranium from fuel reprocessing or natural uranium. However, given the bulk of depleted uranium and the potentially large inventory of recovered uranium, it is unlikely that the use of thorium is required in the near term in the U.S. Following the breeding of plutonium or fissile U-233 in the blanket, this zone or assembly then carries a larger fraction of the power generation in the reactor. These systems tend to also have a long cycle length (or core life) and they could be with or without fuel shuffling. When fuel is shuffled, the incoming fuel is generally depleted uranium (or thorium) fuel. In any case, fuel is burned once and then discharged. Examples of systems in this class include the CANDLE concept [Sekimoto 2001], the traveling wave reactor (TWR) concept of TerraPower [Ellis 2010], the ultra-long life fast reactor (ULFR) by ANL [Kim 2010], and the BNL fast mixed spectrum reactor (FMSR) concept [Fisher 1979]. (3) Thermal systems for resource extensio

Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

2010-08-10T23:59:59.000Z

140

World nuclear fuel market: proceedings of the international conference on nuclear energy  

SciTech Connect (OSTI)

Thirteen papers, along with discussion and comments, are divided into four conference sessions covering: the prospect for primary markets for enriched uranium; secondary trading markets for enriched uranium; the management of irradiatied fuel and economics of reprocessing; and an evaluation of plutonium recycling in thermal reactors. The speakers address technical, economic, and political issues relating to both front-end and back-end management of the fuel cycle. The papers were presented at the 9th International Conference on Nuclear Energy in Nice, France during October, 1982. A separate abstract was prepared for each of the 13 papers selected for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis (EAPA). (DCK)

Not Available

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nuclear nonproliferation: Concerns with US delays in accepting foregin research reactors` spent fuel  

SciTech Connect (OSTI)

One key US nonproliferation goal is to discourage use of highly enriched uranium fuel (HEU), which can be used to make nuclear bombs, in civilian nuclear programs worldwide. DOE`s Off-Site Fuels Policy for taking back spent HEU from foreign research reactors was allowed to expire due to environmental reasons. This report provides information on the effects of delays in renewing the Off-Site Fuels Policy on US nonproliferation goals and programs (specifically the reduced enrichment program), DOE`s efforts to renew the fuels policy, and the price to be charged to the operators of foreign reactors for DOE`s activities in taking back spent fuel.

NONE

1994-03-25T23:59:59.000Z

142

Spent Nuclear Fuel (SNF) Project Execution Plan  

SciTech Connect (OSTI)

The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

LEROY, P.G.

2000-11-03T23:59:59.000Z

143

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network [OSTI]

capacity and operating efficiency of nuclear plants [31,operating efficiency of nuclear plants in the past decades.cost of the fuel Nuclear Plant Capacity Factor Nuclear

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

144

Coprocessed nuclear fuels containing (U, Pu) values as oxides, carbides or carbonitrides  

DOE Patents [OSTI]

Method for direct coprocessing of nuclear fuels derived from a product stream of a fuels reprocessing facility containing uranium, plutonium, and fission product values comprising nitrate stabilization of said stream vacuum concentration to remove water and nitrates, neutralization to form an acid deficient feed solution for the internal gelation mode of sol-gel technology, green spherule formation, recovery and treatment for loading into a fuel element by vibra packed or pellet formation technologies.

Lloyd, Milton H. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

145

Coprocessed nuclear fuels containing (U, Pu) values as oxides, carbides or carbonitrides  

DOE Patents [OSTI]

Method for direct coprocessing of nuclear fuels derived from a product stream of fuels reprocessing facility containing uranium, plutonium, and fission product values comprising nitrate stabilization of said stream vacuum concentration to remove water and nitrates, neutralization to form an acid deficient feed solution for the internal gelation mode of sol-gel technology, green spherule formation, recovery and treatment for loading into a fuel element by vibra packed or pellet formation technologies.

Lloyd, M.H.

1981-01-09T23:59:59.000Z

146

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network [OSTI]

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

147

Nuclear Fuel Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities Nuclear

148

Nuclear Fuel Cycle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities NuclearCycle

149

Air Shipment of Spent Nuclear Fuel from Romania to Russia  

SciTech Connect (OSTI)

Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

2010-10-01T23:59:59.000Z

150

Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications  

SciTech Connect (OSTI)

The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy & Environment (E&E) and Chemistry & Material Sciences (C&MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E&E and C&MS Directorates co-sponsored this Laboratory Directed Research & Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US NASA space reactor, the SP-100 was designed to use mono-uranium nitride fuel. Although the SP-100 reactor was not commissioned, tens of thousand of nitride fuel pellets were manufactured and lots of them, cladded in Nb-1-Zr had been irradiated in fast test reactors (FFTF and EBR-II) with good irradiation results. The Russian Naval submarines also use nitride fuel with stainless steel cladding (HT-9) in Pb-Bi coolant. Although the operating experience of the Russian submarine is not readily available, such combination of fuel, cladding and coolant has been proposed for a commercial-size liquid-metal cooled fast reactor (BREST-300). Uranium mono-nitride fuel is studied in this LDRD Project due to its favorable properties such as its high actinide density and high thermal conductivity. The thermal conductivity of mono-nitride is 10 times higher than that of oxide (23 W/m-K for UN vs. 2.3 W/m-K for UO{sub 2} at 1000 K) and its melting temperature is much higher than that of metal fuel (2630 C for UN vs. 1132 C for U metal). It also has relatively high actinide density, (13.51 gU/cm{sup 3} in UN vs. 9.66 gU/cm{sup 3} in UO{sub 2}) which is essential for a compact reactor core design. The objective of this LDRD Project is to: (1) Establish a manufacturing capability for uranium-based ceramic nuclear fuel, (2) Develop a computational capability to analyze nuclear fuel performance, (3) Develop a modified UN-based fuel that can support a compact long-life reactor core, and (4) Collaborate with the Nuclear Engineering Department of UC Berkeley on nitride fuel reprocessing and disposal in a geologic repository.

Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

2006-02-09T23:59:59.000Z

151

Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution  

SciTech Connect (OSTI)

Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

2014-03-01T23:59:59.000Z

152

Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process  

SciTech Connect (OSTI)

The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

E. R. Johnson; R. E. Best

2009-12-28T23:59:59.000Z

153

Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs  

E-Print Network [OSTI]

An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

Matthews, Isaac A

2010-01-01T23:59:59.000Z

154

Fate of Noble Metals during the Pyroprocessing of Spent Nuclear Fuel  

SciTech Connect (OSTI)

During the pyroprocessing of spent nuclear fuel by electrochemical techniques, fission products are separated as the fuel is oxidized at the anode and refined uranium is deposited at the cathode. Those fission products that are oxidized into the molten salt electrolyte are considered active metals while those that do not react are considered noble metals. The primary noble metals encountered during pyroprocessing are molybdenum, zirconium, ruthenium, rhodium, palladium, and technetium. Pyroprocessing of spent fuel to date has involved two distinctly different electrorefiner designs, in particular the anode to cathode configuration. For one electrorefiner, the anode and cathode collector are horizontally displaced such that uranium is transported across the electrolyte medium. As expected, the noble metal removal from the uranium during refining is very high, typically in excess of 99%. For the other electrorefiner, the anode and cathode collector are vertically collocated to maximize uranium throughput. This arrangement results in significantly less noble metals removal from the uranium during refining, typically no better than 20%. In addition to electrorefiner design, operating parameters can also influence the retention of noble metals, albeit at the cost of uranium recovery. Experiments performed to date have shown that as much as 100% of the noble metals can be retained by the cladding hulls while affecting the uranium recovery by only 6%. However, it is likely that commercial pyroprocessing of spent fuel will require the uranium recovery to be much closer to 100%. The above mentioned design and operational issues will likely be driven by the effects of noble metal contamination on fuel fabrication and performance. These effects will be presented in terms of thermal properties (expansion, conductivity, and fusion) and radioactivity considerations. Ultimately, the incorporation of minor amounts of noble metals from pyroprocessing into fast reactor metallic fuel will be shown to be of no consequence to reactor performance.

B.R. Westphal; D. Vaden; S.X. Li; G.L. Fredrickson; R.D. Mariani

2009-09-01T23:59:59.000Z

155

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

Leigh, I.W.; Patridge, M.D.

1991-05-01T23:59:59.000Z

156

Annotated Bibliography for Drying Nuclear Fuel  

SciTech Connect (OSTI)

Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

Rebecca E. Smith

2011-09-01T23:59:59.000Z

157

Crystal Chemistry of Early Actinides (Thorium, Uranium, and Neptunium) and Uranium Mesoporous Materials.  

E-Print Network [OSTI]

??Despite their considerable global importance, the structural chemistry of actinides remains understudied. Thorium and uranium fuel cycles are used in commercial nuclear reactors in India… (more)

Sigmon, Ginger E.

2010-01-01T23:59:59.000Z

158

Composite construction for nuclear fuel containers  

DOE Patents [OSTI]

An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

Cheng, Bo-Ching (Fremont, CA); Rosenbaum, Herman S. (Fremont, CA); Armijo, Joseph S. (Saratoga, CA)

1987-01-01T23:59:59.000Z

159

Review of Used Nuclear Fuel Storage and Transportation Technical...  

Broader source: Energy.gov (indexed) [DOE]

action based on the comparison. Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis More Documents & Publications Review of Used Nuclear Fuel...

160

Department of Energy Awards $15 Million for Nuclear Fuel Cycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Influence of Nuclear Fuel Cycles on Uncertainty of Long Term...  

Broader source: Energy.gov (indexed) [DOE]

Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of Geologic Disposal Systems Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of...

162

Fuel element design for the enhanced destruction of plutonium in a nuclear reactor  

DOE Patents [OSTI]

A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both.

Crawford, Douglas C. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Hayes, Steven L. (Idaho Falls, ID); Hill, Robert N. (Bolingbrook, IL)

1999-01-01T23:59:59.000Z

163

Fuel element design for the enhanced destruction of plutonium in a nuclear reactor  

SciTech Connect (OSTI)

A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr-Hf alloy or an alloy of Pu-Zr-Hf or a combination of both.

Crawford, Douglas C.; Porter, Douglas L.; Hayes, Steven L.; Hill, Robert N.

1997-12-01T23:59:59.000Z

164

Fuel element design for the enhanced destruction of plutonium in a nuclear reactor  

DOE Patents [OSTI]

A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both. 7 figs.

Crawford, D.C.; Porter, D.L.; Hayes, S.L.; Hill, R.N.

1999-03-23T23:59:59.000Z

165

THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL  

SciTech Connect (OSTI)

This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.

Matthew Bunn; Steve Fetter; John P. Holdren; Bob van der Zwaan

2003-07-01T23:59:59.000Z

166

Final Environmental Impact Statement for the Treatment and Management of Sodium-Bonded Spent Nuclear Fuel  

SciTech Connect (OSTI)

DOE is responsible for the safe and efficient management of its sodium-bonded spent nuclear fuel. This fuel contains metallic sodium, a highly reactive material; metallic uranium, which is also reactive; and in some cases, highly enriched uranium. The presence of reactive materials could complicate the process of qualifying and licensing DOE's sodium-bonded spent nuclear fuel inventory for disposal in a geologic repository. Currently, more than 98 percent of this inventory is located at the Idaho National Engineering and Environmental Laboratory (INEEL), near Idaho Falls, Idaho. In addition, in a 1995 agreement with the State of Idaho, DOE committed to remove all spent nuclear fuel from Idaho by 2035. This EIS evaluates the potential environmental impacts associated with the treatment and management of sodium-bonded spent nuclear fuel in one or more facilities located at Argonne National Laboratory-West (ANL-W) at INEEL and either the F-Canyon or Building 105-L at the Savannah River Site (SRS) near Aiken, South Carolina. DOE has identified and assessed six proposed action alternatives in this EIS. These are: (1) electrometallurgical treatment of all fuel at ANL-W, (2) direct disposal of blanket fuel in high-integrity cans with the sodium removed at ANL-W, (3) plutonium-uranium extraction (PUREX) processing of blanket fuel at SRS, (4) melt and dilute processing of blanket fuel at ANL-W, (5) melt and dilute processing of blanket fuel at SRS, and (6) melt and dilute processing of all fuel at ANL-W. In addition, Alternatives 2 through 5 include the electrometallurgical treatment of driver fuel at ANL-W. Under the No Action Alternative, the EIS evaluates both the continued storage of sodium-bonded spent nuclear fuel until the development of a new treatment technology or direct disposal without treatment. Under all of the alternatives, the affected environment is primarily within 80 kilometers (50 miles) of spent nuclear fuel treatment facilities. Analyses indicate little difference in the environmental impacts among alternatives. DOE has identified electrometallurgical treatment as its Preferred Alternative for the treatment and management of all sodium-bonded spent nuclear fuel, except for the Fermi-1 blanket fuel. The No Action Alternative is preferred for the Fermi-1 blanket spent nuclear fuel.

N /A

2000-08-04T23:59:59.000Z

167

SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS  

SciTech Connect (OSTI)

Reactive Gas Recycling (RGR) technology development has been initiated at Savannah River National Laboratory (SRNL), with a stretch-goal to develop a fully dry recycling technology for Used Nuclear Fuel (UNF). This approach is attractive due to the potential of targeted gas-phase treatment steps to reduce footprint and secondary waste volumes associated with separations relying primarily on traditional technologies, so long as the fluorinators employed in the reaction are recycled for use in the reactors or are optimized for conversion of fluorinator reactant. The developed fluorination via SF{sub 6}, similar to the case for other fluorinators such as NF{sub 3}, can be used to address multiple fuel forms and downstream cycles including continued processing for LWR via fluorination or incorporation into a aqueous process (e.g. modified FLUOREX) or for subsequent pyro treatment to be used in advanced gas reactor designs such metal- or gas-cooled reactors. This report details the most recent experimental results on the reaction of SF{sub 6} with various fission product surrogate materials in the form of oxides and metals, including uranium oxides using a high-temperature DTA apparatus capable of temperatures in excess of 1000{deg}C . The experimental results indicate that the majority of the fission products form stable solid fluorides and sulfides, while a subset of the fission products form volatile fluorides such as molybdenum fluoride and niobium fluoride, as predicted thermodynamically. Additional kinetic analysis has been performed on additional fission products. A key result is the verification that SF{sub 6} requires high temperatures for direct fluorination and subsequent volatilization of uranium oxides to UF{sub 6}, and thus is well positioned as a head-end treatment for other separations technologies, such as the volatilization of uranium oxide by NF{sub 3} as reported by colleagues at PNNL, advanced pyrochemical separations or traditional full recycle approaches. Based on current results of the research at SRNL on SF{sub 6} fluoride volatility for UNF separations, SF{sub 6} treatment renders all anticipated volatile fluorides studied to be volatile, and all non-volatile fluorides studied to be non-volatile, with the notable exception of uranium oxides. This offers an excellent opportunity to use this as a head-end separations treatment process because: 1. SF{sub 6} can be used to remove volatile fluorides from a UNF matrix while leaving behind uranium oxides. Therefore an agent such as NF{sub 3} should be able to very cleanly separate a pure UF{sub 6} stream, leaving compounds in the bottoms such as PuF{sub 4}, SrF{sub 2} and CsF after the UNF matrix has been pre-treated with SF{sub 6}. 2. Due to the fact that the uranium oxide is not separated in the volatilization step upon direct contact with SF{sub 6} at moderately high temperatures (? 1000{deg}C), this fluoride approach may be wellsuited for head-end processing for Gen IV reactor designs where the LWR is treated as a fuel stock, and it is not desired to separate the uranium from plutonium, but it is desired to separate many of the volatile fission products. 3. It is likely that removal of the volatile fission products from the uranium oxide should simplify both traditional and next generation pyroprocessing techniques. 4. SF{sub 6} treatment to remove volatile fission products, with or without treatment with additional fluorinators, could be used to simplify the separations of traditional aqueous processes in similar fashion to the FLUOREX process. Further research should be conducted to determine the separations efficiency of a combined SF{sub 6}/NF{sub 3} separations approach which could be used as a stand-alone separations technology or a head-end process.

Gray, J.; Torres, R.; Korinko, P.; Martinez-Rodriguez, M.; Becnel, J.; Garcia-Diaz, B.; Adams, T.

2012-09-25T23:59:59.000Z

168

Nuclear Fuels & Materials Spotlight Volume 4  

SciTech Connect (OSTI)

As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

2014-04-01T23:59:59.000Z

169

Dry Processing of Used Nuclear Fuel  

SciTech Connect (OSTI)

Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

K. M. Goff; M. F. Simpson

2009-09-01T23:59:59.000Z

170

Standard test method for the determination of uranium by ignition and the oxygen to uranium (O/U) atomic ratio of nuclear grade uranium dioxide powders and pellets  

E-Print Network [OSTI]

1.1 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear grade uranium dioxide powder and pellets. 1.2 This test method does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this test method does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.4 This test method also is applicable to UO3 and U3O8 powder.

American Society for Testing and Materials. Philadelphia

2000-01-01T23:59:59.000Z

171

Evaluation of health effects in Sequoyah Fuels Corporation workers from accidental exposure to uranium hexafluoride  

SciTech Connect (OSTI)

Urine bioassay measurements for uranium and medical laboratory results were studied to determine whether there were any health effects from uranium intake among a group of 31 workers exposed to uranium hexafluoride (UF{sub 6}) and hydrolysis products following the accidental rupture of a 14-ton shipping cylinder in early 1986 at the Sequoyah Fuels Corporation uranium conversion facility in Gore, Oklahoma. Physiological indicators studied to detect kidney tissue damage included tests for urinary protein, casts and cells, blood, specific gravity, and urine pH, blood urea nitrogen, and blood creatinine. We concluded after reviewing two years of follow-up medical data that none of the 31 workers sustained any observable health effects from exposure to uranium. The early excretion of uranium in urine showed more rapid systemic uptake of uranium from the lung than is assumed using the International Commission on Radiological Protection (ICRP) Publication 30 and Publication 54 models. The urinary excretion data from these workers were used to develop an improved systemic recycling model for inhaled soluble uranium. We estimated initial intakes, clearance rates, kidney burdens, and resulting radiation doses to lungs, kidneys, and bone surfaces. 38 refs., 10 figs., 7 tabs.

Fisher, D.R. (Pacific Northwest Lab., Richland, WA (USA)); Swint, M.J.; Kathren, R.L. (Hanford Environmental Health Foundation, Richland, WA (USA))

1990-05-01T23:59:59.000Z

172

Dry Transfer Systems for Used Nuclear Fuel  

SciTech Connect (OSTI)

The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

Brett W. Carlsen; Michaele BradyRaap

2012-05-01T23:59:59.000Z

173

Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.

Brett Carlsen; Emily Tavrides; Erich Schneider

2010-08-01T23:59:59.000Z

174

Ultraslow Wave Nuclear Burning of Uranium-Plutonium Fissile Medium on Epithermal Neutrons  

E-Print Network [OSTI]

For a fissile medium, originally consisting of uranium-238, the investigation of fulfillment of the wave burning criterion in a wide range of neutron energies is conducted for the first time, and a possibility of wave nuclear burning not only in the region of fast neutrons, but also for cold, epithermal and resonance ones is discovered for the first time. For the first time the results of the investigation of the Feoktistov criterion fulfillment for a fissile medium, originally consisting of uranium-238 dioxide with enrichments 4.38%, 2.00%, 1.00%, 0.71% and 0.50% with respect to uranium-235, in the region of neutron energies 0.015-10.0eV are presented. These results indicate a possibility of ultraslow wave neutron-nuclear burning mode realization in the uranium-plutonium media, originally (before the wave initiation by external neutron source) having enrichments with respect to uranium-235, corresponding to the subcritical state, in the regions of cold, thermal, epithermal and resonance neutrons. In order to validate the conclusions, based on the slow wave neutron-nuclear burning criterion fulfillment depending on the neutron energy, the numerical modeling of ultraslow wave neutron-nuclear burning of a natural uranium in the epithermal region of neutron energies (0.1-7.0eV) was conducted for the first time. The presented simulated results indicate the realization of the ultraslow wave neutron-nuclear burning of the natural uranium for the epithermal neutrons.

V. D. Rusov; V. A. Tarasov; M. V. Eingorn; S. A. Chernezhenko; A. A. Kakaev; V. M. Vashchenko; M. E. Beglaryan

2014-09-29T23:59:59.000Z

175

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

Leigh, I.W.

1992-05-01T23:59:59.000Z

176

International nuclear fuel cycle fact book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.

1988-01-01T23:59:59.000Z

177

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

Leigh, I W; Mitchell, S J

1990-01-01T23:59:59.000Z

178

Commercial nuclear fuel from U.S. and Russian surplus defense inventories: Materials, policies, and market effects  

SciTech Connect (OSTI)

Nuclear materials declared by the US and Russian governments as surplus to defense programs are being converted into fuel for commercial nuclear reactors. This report presents the results of an analysis estimating the market effects that would likely result from current plans to commercialize surplus defense inventories. The analysis focuses on two key issues: (1) the extent by which traditional sources of supply, such as production from uranium mines and enrichment plants, would be displaced by the commercialization of surplus defense inventories or, conversely, would be required in the event of disruptions to planned commercialization, and (2) the future price of uranium considering the potential availability of surplus defense inventories. Finally, the report provides an estimate of the savings in uranium procurement costs that could be realized by US nuclear power generating companies with access to competitively priced uranium supplied from surplus defense inventories.

NONE

1998-05-01T23:59:59.000Z

179

Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility  

E-Print Network [OSTI]

The extent of remobilization of uranium from contaminated soils adjacent to a nuclear weapons processing facility during episodic rain events was investigated. In addition, information on the solid phase associations of U in floodplain and suspended...

Batson, Vicky Lynn

1994-01-01T23:59:59.000Z

180

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities, Sections 15-19  

SciTech Connect (OSTI)

Information is presented under the following section headings: fuel reprocessing; spent fuel and high-level and transuranic waste storage; spent fuel and high-level and transuranic waste disposal; low-level and intermediate-level waste disposal; and, transportation of radioactive materials in the nuclear fuel cycle. In each of the first three sections a description is given on the mainline process, effluent processing and waste management systems, plant layout, and alternative process schemes. Safety information and a summary are also included in each. The section on transport of radioactive materials includes information on the transportation of uranium ore, uranium ore concentrate, UF/sub 6/, PuO/sub 2/ powder, unirradiated uranium and mixed-oxide fuel assemblies, spent fuel, solidified high-level waste, contact-handled transuranic waste, remote-handled transuranic waste, and low and intermediate level nontransuranic waste. A glossary is included. (JGB)

Schneider, K.J.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Resource intensities of the front end of the nuclear fuel cycle  

SciTech Connect (OSTI)

This paper presents resource intensities, including direct and embodied energy consumption, land and water use, associated with the processes comprising the front end of the nuclear fuel cycle. These processes include uranium extraction, conversion, enrichment, fuel fabrication and depleted uranium de-conversion. To the extent feasible, these impacts are calculated based on data reported by operating facilities, with preference given to more recent data based on current technologies and regulations. All impacts are normalized per GWh of electricity produced. Uranium extraction is seen to be the most resource intensive front end process. Combined, the energy consumed by all front end processes is equal to less than 1% of the electricity produced by the uranium in a nuclear reactor. Land transformation and water withdrawals are calculated at 8.07 m{sup 2} /GWh(e) and 1.37x10{sup 5} l/GWh(e), respectively. Both are dominated by the requirements of uranium extraction, which accounts for over 70% of land use and nearly 90% of water use.

Schneider, E.; Phathanapirom, U. [The University of Texas at Austin, 1 University Station C2200, Austin TX 78712 (United States); Eggert, R.; Collins, J. [Colorado School of Mines, 1500 Illinois St., Golden CO 80401 (United States)

2013-07-01T23:59:59.000Z

182

Investigation of Electrochemical Recovery of Zirconium from Spent Nuclear Fuels  

SciTech Connect (OSTI)

This project uses both modeling and experimental studies to design optimal electrochemical technology methods for recovery of zirconium from used nuclear fuel rods for more effective waste management. The objectives are to provide a means of efficiently separating zirconium into metallic high-level waste forms and to support development of a process for decontamination of zircaloy hulls to enable their disposal as low- and intermediate-level waste. Modeling work includes extension of a 3D model previously developed by Seoul National University for uranium electrorefining by adding the ability to predict zirconium behavior. Experimental validation activities include tests for recovery of zirconium from molten salt solutions and aqueous tests using surrogate materials. *This is a summary of the FY 2013 progress for I-NERI project # 2010-001-K provided to the I-NERI office.

Michael Simpson; II-Soon Hwang

2014-06-01T23:59:59.000Z

183

Welding of uranium and uranium alloys  

SciTech Connect (OSTI)

The major reported work on joining uranium comes from the USA, Great Britain, France and the USSR. The driving force for producing this technology base stems from the uses of uranium as a nuclear fuel for energy production, compact structures requiring high density, projectiles, radiation shielding, and nuclear weapons. This review examines the state-of-the-art of this technology and presents current welding process and parameter information. The welding metallurgy of uranium and the influence of microstructure on mechanical properties is developed for a number of the more commonly used welding processes.

Mara, G.L.; Murphy, J.L.

1982-03-26T23:59:59.000Z

184

Double-clad nuclear fuel safety rod  

DOE Patents [OSTI]

A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

McCarthy, William H. (Los Altos, CA); Atcheson, Donald B. (Cupertino, CA); Vaidyanathan, Swaminathan (San Jose, CA)

1984-01-01T23:59:59.000Z

185

Surrogate Spent Nuclear Fuel Vibration Integrity Investigation  

SciTech Connect (OSTI)

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading encountered during road or rail shipment. ORNL has been developing testing capabilities that can be used to improve our understanding of the impacts of vibration loading on SNF integrity, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety of SNF storage and transportation operations.

Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Bevard, Bruce Balkcom [ORNL; Howard, Rob L [ORNL

2014-01-01T23:59:59.000Z

186

The Future of Nuclear Energy: Facts and Fiction Chapter II: What is known about Secondary Uranium Resources?  

E-Print Network [OSTI]

During 2009 nuclear power plants, with a capacity of 370 GWe, will produce roughly 14% of the worldwide electric energy. About 65000 tons of natural uranium equivalent are required to operate these reactors. For 15 years on average only 2/3 of this fuel is provided by the uranium mines and 1/3 comes from secondary resources. In this paper the situation concerning the secondary resources at the beginning of the year 2009 is presented. The data used are from the IAEA/NEA 2007 Red Book, "Uranium Resources, Production and Demand", and from the World Nuclear Association (WNA). Our analysis shows that these civilian stocks will be essentially exhausted within the next 5 years. This coincides roughly with the year 2013, when the delivery of the 10000 tons of natural uranium equivalent from russian military stocks to the USA will end. As the majority of the remaining civilian stocks, about 30000 tons, are believed to be under the control of the US government and american companies, it seems rather unlikely that the U...

Dittmar, Michael

2009-01-01T23:59:59.000Z

187

Nuclear fuel elements made from nanophase materials  

DOE Patents [OSTI]

A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

Heubeck, Norman B. (Schenectady, NY)

1998-01-01T23:59:59.000Z

188

Nuclear fuel elements made from nanophase materials  

DOE Patents [OSTI]

A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

Heubeck, N.B.

1998-09-08T23:59:59.000Z

189

Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

Patricia Paviet-Hartmann

2012-10-01T23:59:59.000Z

190

SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

Oji, L; Bill Wilmarth, B; David Hobbs, D

2008-05-30T23:59:59.000Z

191

CHARACTERISTICS OF NEXT-GENERATION SPENT NUCLEAR FUEL (SNF) TRANSPORT AND STORAGE CASKS  

SciTech Connect (OSTI)

The design of spent nuclear fuel (SNF) casks used in the present SNF disposition systems has evolved from early concepts about the nuclear fuel cycle. The reality today is much different from that envisioned by early nuclear scientists. Most SNF is placed in pool storage, awaiting reprocessing (as in Russia) or disposal at a geologic SNF repository (as in the United States). Very little transport of SNF occurs. This paper examines the requirements for SNF casks from today's perspective and attempts to answer this question: What type of SNF cask would be produced if we were to start over and design SNF casks based on today's requirements? The characteristics for a next-generation SNF cask system are examined and are found to be essentially the same in Russia and the United States. It appears that the new depleted uranium dioxide (DUO2)-steel cermet material will enable these requirements to be met. Depleted uranium (DU) is uranium in which a portion of the 235U isotope has been removed during a uranium enrichment process. The DUO2-steel cermet material is described. The United States and Russia are cooperating toward the development of a next-generation, dual-purpose, storage and transport SNF system.

Haire, M.J.; Forsberg, C.W.; Matveev, V.Z.; Shapovalov, V.I.

2004-10-03T23:59:59.000Z

192

Opportunities to reduce consumption of natural uranium in reactor SVBR-75/100 when changing over to the closed fuel cycle  

SciTech Connect (OSTI)

The design of reactor SVBR-75/100 allows it to operate using different types of fuel and in different fuel cycles without changing its design and deteriorating its safety characteristics. Fuel-at-once refueling adopted in the design (lack of partial refueling) makes it possible to change the core content at each refueling by using the type of fuel that is the most economically effective at the current stage of nuclear power (NP) development. In the nearest future use of mastered oxide uranium fuel and operating in the opened fuel cycle with postponed reprocessing will be the most economically effective. Changeover to the mixed uranium-plutonium fuel and closed nuclear fuel cycle (NFC) will be economically effective in an event of increase of natural uranium costs when the expenditures for construction of the enterprises on reprocessing the spent nuclear fuel (SNF), re-fabrication of new fuel with plutonium and their operating are less than the corresponding costs of natural uranium, its enrichment costs, the costs of manufacturing fresh uranium fuel and long temporary storage of SNF. At this, it is possible to use both MOX fuel with weapon or reactor plutonium and mixed nitride fuel in case its usage is more profitable. As fast reactors (FR) using uranium fuel and operating in the opened NFC consume much more natural uranium in comparison with thermal reactors (TR), and at the expected high paces of NP development the cheap resources of natural uranium will be exhausted prior to the middle of the century that will cause increase in the uranium cost, the period of FRs operating in the opened NFC must be maximally reduced. However, it should be mentioned that it is difficult to forecast reliably the date when because of the increased cost of natural uranium the NP will lose its competitiveness with electric power using fossil fuel. This is conditioned by the fact that the cost of the NPP produced electricity is less sensitive to the cost of natural uranium in contrast to the cost of electricity produced by thermal power plants using fossil fuel. At the same time, the available resources of natural uranium are increasing progressively with increase of its cost. The expenditure caused by changeover to the closed NFC will be less, if plutonium extracted from the own SNF of uranium loads is used in fabrication of the first MOX fuel loads. If the oxide uranium fuel is used, by the end of the lifetime a comparatively high breeding ratio (BR) ({approx}0.84) provides a sufficiently high content of plutonium in the SNF that may be used in the next fuel lifetimes when organizing the closed fuel cycle. Moreover, the own SNF of starting loads from oxide uranium fuel contains large quantity of unburned uranium-235 that is expedient to use for forming load for the next lifetime. From the very beginning of realization of the extended program on implementation of reactors SVBR-75/100 in the NP, use of plutonium extracted from the TRs' SNF for forming the starting loads of those reactors for the purpose of total elimination of natural uranium consumption will be more expensive as compared with the considered variant of changeover from the opened NFC to the closed NFC. This is conditioned by the fact that for the plutonium extracted from the TRs' SNF, the plutonium cost determined by a volume of SNF reprocessing per ton of plutonium will be several times higher as compared with its cost in case of using the own SNF because of considerably less content of plutonium in the TRs' SNF. It should be taken into account that the organization of the enterprise on large-scale reprocessing of TRs' SNF and MOX fuel fabrication must precede the construction of NPPs with FRs. Thus, the demands in investments are increased. At the same time, for the proposed changeover from the opened NFC to the closed one the construction of the closed NFC enterprise may be long postponed from FR launching that reduces the investment demands. At this, as the assessments have revealed, the investment fund for construction of such enterprise could be formed during abo ut t

Toshinsky, G.I.; Komlev, O.G.; Mel'nikov, K.G.; Novikova, N.N. [FSUE SSC RF-IPPE, 1, Bondarenko sq., Obninsk, Kaluga rg., 249033 (Russian Federation)

2007-07-01T23:59:59.000Z

193

Spent Nuclear Fuel (SNF) Project Product Specification  

SciTech Connect (OSTI)

This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

PAJUNEN, A.L.

2000-01-20T23:59:59.000Z

194

Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process  

SciTech Connect (OSTI)

A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

1983-03-01T23:59:59.000Z

195

Uranium dioxide electrolysis  

DOE Patents [OSTI]

This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

2009-12-29T23:59:59.000Z

196

Locking support for nuclear fuel assemblies  

DOE Patents [OSTI]

A locking device for supporting and locking a nuclear fuel assembly within a cylindrical bore formed by a support plate, the locking device including a support and locking sleeve having upwardly extending fingers forming wedge shaped contact portions arranged for interaction between an annular tapered surface on the fuel assembly and the support plate bore as well as downwardly extending fingers having wedge shaped contact portions arranged for interaction between an annularly tapered surface on the support plate bore and the fuel assembly whereby the sleeve tends to support and lock the fuel assembly in place within the bore by its own weight while facilitating removal and/or replacement of the fuel assembly.

Ledin, Eric (San Diego, CA)

1980-01-01T23:59:59.000Z

197

Experimental Observation of Nuclear Reactions in Palladium and Uranium  

SciTech Connect (OSTI)

By submitting various metals (Pd, U) containing hydrogen (from 2000 to 700 000 atoms of hydrogen for 1 000 000 atoms of the host metal) to the combined action of electrical currents and magnetic fields, we have observed a sizeable exothermal effect (from 0.1 to 8 W for 500 mg of metal used). This effect is beyond experimental errors, the energy output being typically 130 to 250{percent} of the energy input and not of chemical origin (exothermal effect in the range of 7000 MJ/mol of metal in the case of palladium and of 60 MJ/mol in the case of uranium). New chemical species also appear in the processes metals. It has been shown by a QED calculation that resonances of long lifetime (s), nuclear dimensions (fm), and low energy of formation (eV) could exist. This concept seems to look like the 'shrunken hydrogen atoms' proposed by various authors. It is indeed very different in two ways (a) being a metastable state, it needs energy to be formed (a few eV) and reverts to normal hydrogen after a few seconds, liberating back its energy of formation (it is thus not the source of the energy observed); (b) its formation can be described as the electron spin/proton nuclear spin interaction becoming first order in the lattice environment (whereas it is third order in a normal hydrogen atom). Moreover, we consider that the hydrex cannot yield a neutron because this reaction is strongly endothermic. To explain our results, we put forward the following working hypothesis: In a metal lattice and under proper conditions, the formation of such resonances (metastable state) could be favored. We propose to call them HYDREX, and we assume that they are actually formed in cold fusion (CF) and low-energy nuclear reaction (LENR) experiments. Once formed, a number of HYDREX could gather around a nucleus of the lattice to form a cluster of nuclear size and of very long life time compared to nuclear time (10{sup -22} s). In this cluster, nuclear rearrangements could take place, yielding mainly {sup 4}He, nuclei of atomic masses smaller than that of the host metal and small amounts of {sup 3}He and tritium. Because this nuclear rearrangement is a many-body reaction, the products formed should be stable products in their ground states, most of the reaction energy being carried away as kinetic energy by the alpha particles formed. The HYDREX hypothesis describes CF and LENR as fundamentally the same phenomenon, which we propose to call NUCLEAR CATALYSIS. Depending on the conditions of a CF or LENR experiment, the products formed may look very different, but the initial step is always the synthesis of HYDREX. When this synthesis is mastered, CF and LENR experiments should become fully reproducible.

J. Dufour; D. Murat; X. Dufour; J. Foos

2001-11-12T23:59:59.000Z

198

Spent Nuclear Fuel Alternative Technology Decision Analysis  

SciTech Connect (OSTI)

The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

Shedrow, C.B.

1999-11-29T23:59:59.000Z

199

Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies  

SciTech Connect (OSTI)

This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO{sub 2} assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the {sup 239}Pu and {ge}90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

Chodak, P. III

1996-05-01T23:59:59.000Z

200

US-Russian collaboration in MPC & A enhancements at the Elektrostal Uranium Fuel-Fabrication Plant  

SciTech Connect (OSTI)

Enhancement of the nuclear materials protection, control, and accounting of (MPC&A) at the Elektrostal Machine-Building Plant (ELEMASH) has proceeded in two phases. Initially, Elektrostal served as the model facility at which to test US/Russian collaboration and to demonstrate MPC&A technologies available for safeguards enhancements at Russian facilities. This phase addressed material control and accounting (MC&A) in the low-enriched uranium (LEU) fuel-fabrication processes and the physical protection (PP) of part of the (higher-enrichment) breeder-fuel process. The second phase, identified later in the broader US/Russian agreement for expanded MPC&A cooperation. includes implementation of appropriate MC&A and PP systems in the breeder-fuel fabrication processes. Within the past year, an automated physical protection system has been installed and demonstrated in building 274, and an automated MC&A system has been designed and is being installed and will be tested in the LEU process. Attention has now turned to assuring longterm sustainability for the first phase and beginning MPC&A upgrades for the second phase. Sustainability measures establish the infrastructure for operation, maintenance, and repair of the installed systems-with US support for the lifetime of the US/Russian Agreement, but evolving toward full Russian operation of the system over the long term. For phase 2, which will address higher enrichments, projects have been identified to characterize the facilities, design MPC&A systems, procure appropriate equipment, and install and test final systems. One goal in phase 2 will be to build on initial work to create shared, plant-wide MPC&A assets for operation, maintenance, and evaluation of all safeguards systems.

Smith, H.; Murray, W.; Whiteson, R. [and others

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nuclear Fuels Storage and Transportation Planning Project (NFST...  

Office of Environmental Management (EM)

Nuclear Fuel Storage and Transportation Planning Project Overview DOE Office of Nuclear Energy Task Force for Strategic Developments to Blue Ribbon Commission Recommendations...

202

Thermo-chemical Modelling of Uranium-free Nitride Fuels Mikael JOLKKONEN1;;y  

E-Print Network [OSTI]

and accepted December 22, 2003) A production process for americium-bearing, uranium-free nitride fuels environments was also estimated. We show that sintering of nitride compounds containing americium should be performed under nitrogen atmosphere in order to the avoid the excessive losses of americium reported from

Haviland, David

203

Measures of the environmental footprint of the front end of the nuclear fuel cycle  

SciTech Connect (OSTI)

Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle (FEFC) have focused primarily on energy consumption and CO2 emissions. Results have varied widely. This work builds upon reports from operating facilities and other primary data sources to build a database of front end environmental impacts. This work also addresses land transformation and water withdrawals associated with the processes of the FEFC. These processes include uranium extraction, conversion, enrichment, fuel fabrication, depleted uranium disposition, and transportation. To allow summing the impacts across processes, all impacts were normalized per tonne of natural uranium mined as well as per MWh(e) of electricity produced, a more conventional unit for measuring environmental impacts that facilitates comparison with other studies. This conversion was based on mass balances and process efficiencies associated with the current once-through LWR fuel cycle. Total energy input is calculated at 8.7 x 10- 3 GJ(e)/MWh(e) of electricity and 5.9 x 10- 3 GJ(t)/MWh(e) of thermal energy. It is dominated by the energy required for uranium extraction, conversion to fluoride compound for subsequent enrichment, and enrichment. An estimate of the carbon footprint is made from the direct energy consumption at 1.7 kg CO2/MWh(e). Water use is likewise dominated by requirements of uranium extraction, totaling 154 L/MWh(e). Land use is calculated at 8 x 10- 3 m2/MWh(e), over 90% of which is due to uranium extraction. Quantified impacts are limited to those resulting from activities performed within the FEFC process facilities (i.e. within the plant gates). Energy embodied in material inputs such as process chemicals and fuel cladding is identified but not explicitly quantified in this study. Inclusion of indirect energy associated with embodied energy as well as construction and decommissioning of facilities could increase the FEFC energy intensity estimate by a factor of up to 2.

E. Schneider; B. Carlsen; E. Tavrides; C. van der Hoeven; U. Phathanapirom

2013-11-01T23:59:59.000Z

204

Mr. William f. Crow, Acting Director . Uranium Fuel Licensing Branch  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - : Mr.~ofad. 3 0 II,Mr.

205

German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat PumpsChad Simmons Gerdenis Kodis

206

Used Nuclear Fuel Loading and Structural Performance Under Normal...  

Energy Savers [EERE]

Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Demonstration of Approach and Results of Used Fuel Performance Characterization Used...

207

Financing Strategies for Nuclear Fuel Cycle Facility  

SciTech Connect (OSTI)

To help meet our nation’s energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

David Shropshire; Sharon Chandler

2005-12-01T23:59:59.000Z

208

Development of monolithic nuclear fuels for RERTR by hot isostatic pressing  

SciTech Connect (OSTI)

The RERTR Program (Reduced Enrichment for Research and Test Reactors) is developing advanced nuclear fuels for high power test reactors. Monolithic fuel design provides a higher uranium loading than that of the traditional dispersion fuel design. In order to bond monolithic fuel meat to aluminum cladding, several bonding methods such as roll bonding, friction stir bonding and hot isostatic pressing, have been explored. Hot isostatic pressing is a promising process for low cost, batch fabrication of monolithic RERTR fuel plates. The progress on the development of this process at the Idaho National Laboratory will be presented. Due to the relatively high processing temperature used, the reaction between fuel meat and aluminum cladding to form brittle intermetallic phases may be a concern. The effect of processing temperature and time on the fuel/cladding reaction will be addressed. The influence of chemical composition on the reaction will also be discussed. (author)

Jue, J.-F.; Park, Blair; Chapple, Michael; Moore, Glenn; Keiser, Dennis [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

2008-07-15T23:59:59.000Z

209

Beryllium Impregnation of Uranium Fuel: Thermal Modeling of Cylindrical Objects for Efficiency Evaluation  

E-Print Network [OSTI]

With active research projects related to nuclear waste immobilization and high conductivity nuclear fuels, a thermal model has been developed to simulate the temperature profile within a heat generating cylinder in order to imitate the behavior...

Lynn, Nicholas

2011-08-04T23:59:59.000Z

210

Uranium-233 purification and conversion to stabilized ceramic grade urania for LWBR fuel fabrication (LWBR Development Program)  

SciTech Connect (OSTI)

High purity ceramic grade urania (/sup 233/UO/sub 2/) used in manufacturing the fuel for the Light Water Breeder Reactor (LWBR) core was made from uranium-233 that was obtained by irradiating thoria under special conditions to result in not more than 10 ppM of uranium-232 in the recovered uranium-233 product. A developmental study established the operating parameters of the conversion process for transforming the uranium-233 into urania powder with the appropriate chemical and physical attributes for use in fabricating the LWBR core fuel. This developmental study included the following: (a) design of an ion exchange purification process for removing the gamma-emitting alpha-decay daughters of uranium-232, to reduce the gamma-radiation field of the uranium-233 during LWBR fuel manufacture; (b) definition of the parameters for precipitating the uranium-233 as ammonium uranate (ADU) and for reducing the ADU with hydrogen to yield a urania conversion product of the proper particle size, surface area and sinterability for use in manufacturing the LWBR fuel; (c) establishment of parameters and design of equipment for stabilizing the urania conversion product to prevent it from undergoing excessive oxidation on exposure to the air during LWBR fuel manufacturing operations; and (d) development of a procedure and a facility to reprocess the unirradiated thoria-urania fuel scrap from the LWBR core manufacturing operations to recover the uranium-233 and convert it into high purity ceramic grade urania for LWBR core fabrication.

Lloyd, R.

1980-10-01T23:59:59.000Z

211

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network [OSTI]

Nuclear   Fuel”,   Nuclear  Engineering  and  Technology,  in   Engineering  -­?  Nuclear  Engineering   and  the  in  Engineering  -­?  Nuclear  Engineering   and  the  

Djokic, Denia

2013-01-01T23:59:59.000Z

212

Seawater Enhances the Corrosion of Nuclear Fuel Rods | Photosynthetic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seawater Enhances the Corrosion of Nuclear Fuel Rods April 19, 2012 Seawater Enhances the Corrosion of Nuclear Fuel Rods PARC Post Doc Anne-Marie Carey is featured in DOE Frontiers...

213

Strategy for the Management and Disposal of Used Nuclear Fuel...  

Office of Environmental Management (EM)

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

214

Summary of nuclear fuel reprocessing activities around the world  

SciTech Connect (OSTI)

This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied.

Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

1984-11-01T23:59:59.000Z

215

Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?  

SciTech Connect (OSTI)

For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

2011-11-14T23:59:59.000Z

216

Neutronics studies of uranium-based fully ceramic micro-encapsulated fuel for PWRs  

SciTech Connect (OSTI)

This study evaluates the core neutronics and fuel cycle characteristics using uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR assembly designs with FCM fuel have been developed, which by virtue of their TRISO particle-based elements are expected to achieve higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software used to model the assembly designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities; however, the Reactivity-Equivalent Physical Transformation (RPT) method was used for lattice calculations due to the long run times associated with the SCALE DH capability. In order to understand the impact on reactivity and reactor operating cycle length, a parametric study was performed by varying TRISO particle design features, such as kernel diameter, coating layer thicknesses, and packing fraction. Also, other features such as the selection of matrix material (SiC, zirconium) and fuel rod dimensions were studied. After evaluating different uranium-based fuels, the higher compound density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO{sub 2} rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime and temperature coefficients of reactivity, as well as pin cell and assembly peaking factors. (authors)

George, N. M.; Maldonado, I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States); Terrani, K.; Godfrey, A.; Gehin, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2012-07-01T23:59:59.000Z

217

Gas Generation from K East Basin Sludges and Irradiated Metallic Uranium Fuel Particles Series III Testing  

SciTech Connect (OSTI)

The path forward for managing of Hanford K Basin sludge calls for it to be packaged, shipped, and stored at T Plant until final processing at a future date. An important consideration for the design and cost of retrieval, transportation, and storage systems is the potential for heat and gas generation through oxidation reactions between uranium metal and water. This report, the third in a series (Series III), describes work performed at the Pacific Northwest National Laboratory (PNNL) to assess corrosion and gas generation from irradiated metallic uranium particles (fuel particles) with and without K Basin sludge addition. The testing described in this report consisted of 12 tests. In 10 of the tests, 4.3 to 26.4 g of fuel particles of selected size distribution were placed into 60- or 800-ml reaction vessels with 0 to 100 g settled sludge. In another test, a single 3.72-g fuel fragment (i.e., 7150-mm particle) was placed in a 60 ml reaction vessel with no added sludge. The twelfth test contained only sludge. The fuel particles were prepared by crushing archived coupons (samples) from an irradiated metallic uranium fuel element. After loading the sludge materials (whether fuel particles, mixtures of fuel particles and sludge, or sludge-only) into reaction vessels, the solids were covered with an excess of K Basin water, the vessels closed and connected to a gas measurement manifold, and the vessels back-flushed with inert neon cover gas. The vessels were then heated to a constant temperature. The gas pressures and temperatures were monitored continuously from the times the vessels were purged. Gas samples were collected at various times during the tests, and the samples analyzed by mass spectrometry. Data on the reaction rates of uranium metal fuel particles with water as a function of temperature and particle size were generated. The data were compared with published studies on metallic uranium corrosion kinetics. The effects of an intimate overlying sludge layer (''blanket'') on the uranium metal corrosion rates were also evaluated.

Schmidt, Andrew J.; Delegard, Calvin H.; Bryan, Samuel A.; Elmore, Monte R.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2003-08-01T23:59:59.000Z

218

Nuclear power generation and fuel cycle report 1996  

SciTech Connect (OSTI)

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

219

Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel  

SciTech Connect (OSTI)

The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

Not Available

1994-04-01T23:59:59.000Z

220

Study of feasible and sustainable multilateral approach on nuclear fuel cycle  

SciTech Connect (OSTI)

Despite the Fukushima accident it is undeniable that nuclear power remains one of the most important methods to handle global growth of economic/energy consumption and issues with greenhouse gases. If the demand for nuclear power increases, the demand for not only the generation of power but also for refining uranium (U), conversion, enrichment, re-conversion, and fuel manufacturing should increase. In addition, concerns for the proliferation of 'Sensitive Nuclear Technologies' (SNT) should also increase. We propose a demand-side approach, where nuclear fuel cycle (NFC) activities would be implemented among multiple states. With this approach, NFC services, in particular those using SNTs, are multilaterally executed and controlled, thereby preventing unnecessary proliferation of SNTs, and enabling safe and appropriate control of nuclear technologies and nuclear materials. This proposal would implement nuclear safety and security at an international level and solve transport issues for nuclear fuels. This proposal is based on 3 types of cooperation for each element of NFC: type A: cooperation for 3S only, services received; Type B: cooperation for 3S, MNA (Multilateral Nuclear Activities) without transfer of ownership to MNA; and Type C cooperation for 3S, MNA holding ownership rights. States involved in the 3 types of activity should be referred to as partner states, host states, and site states respectively. The feasibility of the proposal is discussed for the Asian region.

Kuno, Y.; Tazaki, M. [University of Tokyo, Tokyo (Japan); Japan Atomic Energy Agency - JAEA, 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184 (Japan); Akiba, M.; Takashima, R.; Izumi, Y.; Tanaka, S. [University of Tokyo, Tokyo (Japan)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Pyroprocess for processing spent nuclear fuel  

DOE Patents [OSTI]

This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF.sub.4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF.sub.4 with a eutectic melting point of 500.degree. C. Prior to lowering the basket, the salt is heated to a temperature of between 550.degree. C. and 700.degree. C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF.sub.6. In addition, after dissolution, the basket contains PuO.sub.2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.

Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

2002-01-01T23:59:59.000Z

222

NEUTRONICS STUDIES OF URANIUM-BASED FULLY CERAMIC MICRO-ENCAPSULATED FUEL FOR PWRs  

SciTech Connect (OSTI)

This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature coefficients of reactivity, as well as pin cell and assembly peaking factors. Key Words: FCM, TRISO, Uranium Mononitride, PWR

George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL

2012-01-01T23:59:59.000Z

223

Nuclear fuel cycles for mid-century development  

E-Print Network [OSTI]

A comparative analysis of nuclear fuel cycles was carried out. Fuel cycles reviewed include: once-through fuel cycles in LWRs, PHWRs, HTGRs, and fast gas cooled breed and burn reactors; single-pass recycle schemes: plutonium ...

Parent, Etienne, 1977-

2003-01-01T23:59:59.000Z

224

Method and apparatus for close packing of nuclear fuel assemblies  

DOE Patents [OSTI]

The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

Newman, D.F.

1993-03-30T23:59:59.000Z

225

Method and apparatus for close packing of nuclear fuel assemblies  

DOE Patents [OSTI]

The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

Newman, Darrell F. (Richland, WA)

1993-01-01T23:59:59.000Z

226

Dry air oxidation kinetics of K-Basin spent nuclear fuel  

SciTech Connect (OSTI)

The safety and process analyses of the proposed Integrated Process Strategy (IPS) to move the N-Reactor spent nuclear fuel (SNF) stored at K-Basin to an interim storage facility require information about the oxidation behavior of the metallic uranium. Limited experiments have been performed on the oxidation reaction of SNF samples taken from an N-Reactor outer fuel element in various atmospheres. This report discusses studies on the oxidation behavior of SNF using two independent experimental systems: (1) a tube furnace with a flowing gas mixture of 2% oxygen/98% argon; and (2) a thermogravimetric system for dry air oxidation.

Abrefah, J.; Buchanan, H.C.; Gerry, W.M.; Gray, W.J.; Marschman, S.C.

1998-06-01T23:59:59.000Z

227

The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel  

SciTech Connect (OSTI)

The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

Tehan, Terry

2000-09-27T23:59:59.000Z

228

Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride  

E-Print Network [OSTI]

1.1 These test methods cover procedures for subsampling and for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride UF6. Most of these test methods are in routine use to determine conformance to UF6 specifications in the Enrichment and Conversion Facilities. 1.2 The analytical procedures in this document appear in the following order: Note 1—Subcommittee C26.05 will confer with C26.02 concerning the renumbered section in Test Methods C761 to determine how concerns with renumbering these sections, as analytical methods are replaced with stand-alone analytical methods, are best addressed in subsequent publications. Sections Subsampling of Uranium Hexafluoride 7 - 10 Gravimetric Determination of Uranium 11 - 19 Titrimetric Determination of Uranium 20 Preparation of High-Purity U3O 8 21 Isotopic Analysis 22 Isotopic Analysis by Double-Standard Mass-Spectrometer Method 23 - 29 Determination of Hydrocarbons, Chlorocarbons, and Partially Substitut...

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

229

Nuclear reactor fuel rod attachment system  

DOE Patents [OSTI]

A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

Christiansen, David W. (Kennewick, WA)

1982-01-01T23:59:59.000Z

230

Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union  

SciTech Connect (OSTI)

The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

Not Available

1994-01-01T23:59:59.000Z

231

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network [OSTI]

Security of the National Nuclear Security Administration, USof Energys National Nuclear Security Administration (NNSA)

Quiter, Brian

2012-01-01T23:59:59.000Z

232

Used Nuclear Fuel Loading and Structural Performance Under Normal  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......Uranium LeaseThroughAugust

233

Spent nuclear fuel project - criteria document spent nuclear fuel final safety analysis report  

SciTech Connect (OSTI)

The criteria document provides the criteria and planning guidance for developing the Spent Nuclear Fuel (SNF) Final Safety Analysis Report (FSAR). This FSAR will support the US Department of Energy, Richland Operations Office decision to authorize the procurement, installation, installation acceptance testing, startup, and operation of the SNF Project facilities (K Basins, Cold Vacuum Drying Facility, and Canister Storage Building).

MORGAN, R.G.

1999-02-23T23:59:59.000Z

234

Submersion Criticality Safety Analysis of Tungsten-Based Fuel for Nuclear Power and Propulsion Applications  

SciTech Connect (OSTI)

The Center for Space Nuclear Research (CSNR) is developing tungsten-encapsulated fuels for space nuclear applications. Aims to develop NTP fuels that are; Affordable Low impact on production and testing environment Producible on a large scale over suitable time period Higher-performance compared to previous graphite NTP fuel elements Space nuclear reactors remain subcritical before and during launch, and do not go critical until required by its mission. A properly designed reactor will remain subcritical in any launch abort scenario, where the reactor falls back to Earth and becomes submerged in terrestrial material. Submersion increases neutron reflection and thermalizes the neutrons, which typically increases the reactivity of the core. This effect is usually very significant for fast-spectrum reactors. This research provided a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor. Determine the submersion behavior of a reactor fueled by tungsten-based fuel. Considered fuel compositions with varying: Rhenium content (wt% rhenium in tungsten) Fuel loading fractions (UO2 vol%)

A.E. Craft; R. C. O'Brien; S. D. Howe; J. C. King

2014-07-01T23:59:59.000Z

235

Overview of the international R&D recycling activities of the nuclear fuel cycle  

SciTech Connect (OSTI)

Nuclear power has demonstrated over the last thirty years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence of the price of uranium. However the management of used nuclear fuel (UNF) remains the “Achilles’ heel of this energy source since the storage of UNF is increasing as evidenced by the following number with 2,000 to 2,300 of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 UNF assemblies stored in dry cask storage and 88,000 stored in pools. Alarmingly, more than half of US commercial reactor sites have filled their pools to capacity and have had to add dry cask storage facilities. Two options adopted by several countries will be discussed. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of UNF into a geologic formation. One has to remind that only 30% of the worldwide UNF are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

Patricia Paviet-Hartmann

2012-12-01T23:59:59.000Z

236

Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing  

SciTech Connect (OSTI)

Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

D.R. Jackson; G.R. Kiebel

1999-08-24T23:59:59.000Z

237

Transportation capabilities study of DOE-owned spent nuclear fuel  

SciTech Connect (OSTI)

This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1994-10-01T23:59:59.000Z

238

Evacuation and Shelter in Place Modeling for a Release of Uranium Hexafluoride.  

E-Print Network [OSTI]

?? Evacuation and sheltering behaviors were modeled for a hypothetical release of uranium hexafluoride (UF6) from Nuclear Fuel Services (NFS) in Erwin, Tennessee. NFS down-blends… (more)

Harris, Joseph B

2014-01-01T23:59:59.000Z

239

THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS  

SciTech Connect (OSTI)

We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides a set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.

Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.; Sleaford, Brad W.; Hase, Kevin R.; Robel, Martin; Wallace, R. K.; Bradley, Keith S.; Ireland, J. R.; Jarvinen, G. D.; Johnson, M. W.; Prichard, Andrew W.; Smith, Brian W.

2012-08-29T23:59:59.000Z

240

The Soviet uranium industry and exports of nuclear materials and services  

SciTech Connect (OSTI)

The USSR has been offering Western countries, through long-term contracts, services in the processing and enrichment of uranium for their nuclear power industries since 1973. Although known for some time from Western sources, this was confirmed by Boris Semyenov, First Deputy Chairman of the USSR State Committee for the Utilization of Atomic Energy, in 1989. Other sources state that the first service contract was signed in 1971, with initial deliveries beginning in 1973, and that altogether, there are now about 10-12 long-term contracts with firms in various Western European countries that extend to the year 2000 or in some cases to 2010. Although these services are said to remain the mainstay of business with the capitalist countries of the West, the export of enriched uranium materials produced from domestic ore began in 1988. Clients include firms in both the US and Western Europe. Evidently, the severe balance-of-payments problems in Soviet foreign trade operations in recent years have led the Soviets to push alternatives to oil exports as much as possible, notably metals and minerals and chemicals and fertilizers, and this has now extended to the Soviet uranium industry. The paper discusses the USSR uranium industry, uranium mining, uranium enrichment, and plutonium production.

Sagers, M.J.

1990-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

MANAGING SPENT NUCLEAR FUEL WASTES AT THE IDAHO NATIONAL LABORATORY  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy is in part due to the history of the INL as the National Reactor Testing Station, in part to its mission to recover highly enriched uranium from SNF and in part to it’s mission to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facility, some dating back 50 years in the site history. The success of the INL SNF program is measured by its ability to: 1) achieve safe existing storage, 2) continue to receive SNF from other locations, both foreign and domestic, 3) repackage SNF from wet storage to interim dry storage, and 4) prepare the SNF for dispositioning in a federal repository. Because of the diversity in the SNF and the facilities at the INL, the INL is addressing almost very condition that may exist in the SNF world. Many of solutions developed by the INL are applicable to other SNF storage sites as they develop their management strategy. The SNF being managed by the INL are in a variety of conditions, from intact assemblies to individual rods or plates to powders, rubble, and metallurgical mounts. Some of the fuel has been in wet storage for over forty years. The fuel is stored bare, or in metal cans and either wet under water or dry in vaults, caissons or casks. Inspections have shown varying degrees of corrosion and degradation of the fuel and the storage cans. Some of the fuel has been recanned under water, and the conditions of the fuel inside the second or third can are unknown. The fuel has been stored in one of 10 different facilities: five wet pools and one casks storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The wet pools range from forty years old to the most modern pool in the US Department of Energy (DOE) complex. The near-term objective is moving the fuel in the older wet storage facilities to interim dry storage facilities, thus permitting the shutdown and decommission of the older facilities. Two wet pool facilities, one at the Idaho Nuclear Technology and Engineering Center and the other at Test Area North, were targeted for initial SNF movements since these were some of the oldest at the INL. Because of the difference in the SNF materials different types of drying processes had to be developed. Passive drying, as is done with typical commercial SNF was not an option because on the condition of some of the fuel, the materials to be dried, and the low heat generation of some of the SNF. There were also size limitations in the existing facility. Active dry stations were designed to address the specific needs of the SNF and the facilities.

Hill, Thomas J

2005-09-01T23:59:59.000Z

242

Dynamic Systems Analysis Report for Nuclear Fuel Recycle  

SciTech Connect (OSTI)

This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

2008-12-01T23:59:59.000Z

243

Depleted uranium management alternatives  

SciTech Connect (OSTI)

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

244

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect (OSTI)

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26T23:59:59.000Z

245

Method of manufacturing nuclear fuel bundle spacers  

SciTech Connect (OSTI)

This patent describes a method of manufacturing nuclear fuel bundle spacers on an automated production line basis. It comprises: cutting elongated tubing stock into shorter tubular ferrules; checking the length of each ferrule and rejecting those ferrules of unacceptable lengths; cutting predetermined features in the sidewall of each ferrule; forming the sidewall of each ferrule to impart predetermined surface formations thereto; checking a critical dimension of each sidewall surface formation of each ferrule and rejecting those of unacceptable dimensions; assembling successive pairs of ferrules into subassemblies; assembling successive subassemblies into a spacer assembly fixture; assembling a peripheral band in the spacer assembly fixture; conjoining the ferrules to each other and to the peripheral band to create a structurally rigid, finished spacer; and providing a separate controller for automatically controlling and monitoring the performances of these steps.

White, D.W.; Muncy, D.G.; Schoenig, F.C. Jr.

1989-09-26T23:59:59.000Z

246

Risk and Responsibility Sharing in Nuclear Spent Fuel Management  

E-Print Network [OSTI]

With the Nuclear Waste Policy Act of 1982, the responsibility of American utilities in the long-term management of spent nuclear fuel was limited to the payment of a fee. This narrow involvement did not result in faster ...

De Roo, Guillaume

247

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network [OSTI]

of the Institute of Nuclear Material Management, Tucson, AZ,Assay, Institute of Nuclear Materials Management 51st Annual

Quiter, Brian

2012-01-01T23:59:59.000Z

248

Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads  

SciTech Connect (OSTI)

The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

NONE

2013-07-01T23:59:59.000Z

249

Italy Highly Enriched Uranium and Plutonium Removals | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for andFuel-Efficient Engines |Iron isCancerFuelIt

250

Nonproliferation impacts assessment for the management of the Savannah River Site aluminum-based spent nuclear fuel  

SciTech Connect (OSTI)

On May 13, 1996, the US established a new, 10-year policy to accept and manage foreign research reactor spent nuclear fuel containing uranium enriched in the US. The goal of this policy is to reduce civilian commerce in weapons-usable highly enriched uranium (HEU), thereby reducing the risk of nuclear weapons proliferation. Two key disposition options under consideration for managing this fuel include conventional reprocessing and new treatment and packaging technologies. The Record of Decision specified that, while evaluating the reprocessing option, ``DOE will commission or conduct an independent study of the nonproliferation and other (e.g., cost and timing) implications of chemical separation of spent nuclear fuel from foreign research reactors.`` DOE`s Office of Arms Control and Nonproliferation conducted this study consistent with the aforementioned Record of Decision. This report addresses the nonproliferation implications of the technologies under consideration for managing aluminum-based spent nuclear fuel at the Savannah River Site. Because the same technology options are being considered for the foreign research reactor and the other aluminum-based spent nuclear fuels discussed in Section ES.1, this report addresses the nonproliferation implications of managing all the Savannah River Site aluminum-based spent nuclear fuel, not just the foreign research reactor spent nuclear fuel. The combination of the environmental impact information contained in the draft EIS, public comment in response to the draft EIS, and the nonproliferation information contained in this report will enable the Department to make a sound decision regarding how to manage all aluminum-based spent nuclear fuel at the Savannah River Site.

NONE

1998-12-01T23:59:59.000Z

251

Spent Nuclear Fuel project integrated safety management plan  

SciTech Connect (OSTI)

This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

Daschke, K.D.

1996-09-17T23:59:59.000Z

252

Uranium Transport in a High-Throughput Electrorefiner for EBR-II Blanket Fuel  

SciTech Connect (OSTI)

A unique high-throughput Mk-V electrorefiner is being used in the electrometallurgical treatment of the metallic sodium-bonded blanket fuel from the Experimental Breeder Reactor II. Over many cycles, it transports uranium back and forth between the anodic fuel dissolution baskets and the cathode tubes until, because of imperfect adherence of the dendrites, it all ends up in the product collector at the bottom. The transport behavior of uranium in the high-throughput electrorefiner can be understood in terms of the sticking coefficients for uranium adherence to the cathode tubes in the forward direction and to the dissolution baskets in the reverse direction. The sticking coefficients are inferred from the experimental voltage and current traces and are correlated in terms of a single parameter representing the ratio of the cell current to the limiting current at the surface acting as the cathode. The correlations are incorporated into an engineering model that calculates the transport of uranium in the different modes of operation. The model also uses the experimentally derived electrorefiner operating maps that describe the relationship between the cell voltage and the cell current for the three principal transport modes. It is shown that the model correctly simulates the cycle-to-cycle variation of the voltage and current profiles. The model is used to conduct a parametric study of electrorefiner throughput rate as a function of the principal operating parameters. The throughput rate is found to improve with lowering of the basket rotation speed, reduction of UCl{sub 3} concentration in salt, and increasing the maximum cell current or cut-off voltage. Operating conditions are identified that can improve the throughput rate by 60 to 70% over that achieved at present.

Ahluwalia, Rajesh K.; Hua, Thanh Q.; Vaden, DeeEarl [Argonne National Laboratory (United States)

2004-01-15T23:59:59.000Z

253

Fuel assembly transfer basket for pool type nuclear reactor vessels  

DOE Patents [OSTI]

A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

1991-01-01T23:59:59.000Z

254

Thermomechanical analysis of innovative nuclear fuel pin designs  

E-Print Network [OSTI]

One way to increase the power of a nuclear reactor is to change the solid cylindrical fuel to Internally and Externally Cooled (I&EC) annular fuel, and adjust the flow and the core inlet coolant temperature. The switch to ...

Lerch Andrew (Andrew J.)

2010-01-01T23:59:59.000Z

255

International nuclear fuel cycle fact book. Revision 6  

SciTech Connect (OSTI)

The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1986-01-01T23:59:59.000Z

256

Assessment of uranium-free nitride fuels for spent fuel transmutation in fast reactor systems  

E-Print Network [OSTI]

. ....................................................................................... 18 Fig. 4. Standard PWR ¼ core model with fresh, once- and twice-burned fuel, and the location of MOX fuel assemblies with respect to original layout, 32% MOX loading................................................................................................................ 21 Fig. 5. Control rod locations......................................................................................... 21 Fig. 6. Net change of U, Pu and Am for PWR and 1/3 MOX fueled whole cores, 360 day burn...

Szakaly, Frank Joseph

2004-09-30T23:59:59.000Z

257

Standard specification for uranium oxides with a 235U content of less than 5 % for dissolution prior to conversion to nuclear-grade uranium dioxide  

E-Print Network [OSTI]

1.1 This specification covers uranium oxides, including processed byproducts or scrap material (powder, pellets, or pieces), that are intended for dissolution into uranyl nitrate solution meeting the requirements of Specification C788 prior to conversion into nuclear grade UO2 powder with a 235U content of less than 5 %. This specification defines the impurity and uranium isotope limits for such urania powders that are to be dissolved prior to processing to nuclear grade UO2 as defined in Specification C753. 1.2 This specification provides the nuclear industry with a general standard for such uranium oxide powders. It recognizes the diversity of conversion processes and the processes to which such powders are subsequently to be subjected (for instance, by solvent extraction). It is therefore anticipated that it may be necessary to include supplementary specification limits by agreement between the buyer and seller. 1.3 The scope of this specification does not comprehensively cover all provisions for prevent...

American Society for Testing and Materials. Philadelphia

2005-01-01T23:59:59.000Z

258

Modeling of Gap Closure in Uranium-Zirconium Alloy Metal Fuel - A Test Problem  

SciTech Connect (OSTI)

Uranium based binary and ternary alloy fuel is a possible candidate for advanced fast spectrum reactors with long refueling intervals and reduced liner heat rating [1]. An important metal fuel issue that can impact the fuel performance is the fuel-cladding gap closure, and fuel axial growth. The dimensional change in the fuel during irradiation is due to a superposition of the thermal expansion of the fuel due to heating, volumetric changes due to possible phase transformations that occur during heating and the swelling due to fission gas retention. The volumetric changes due to phase transformation depend both on the thermodynamics of the alloy system and the kinetics of phase change reactions that occur at the operating temperature. The nucleation and growth of fission gas bubbles that contributes to fuel swelling is also influenced by the local fuel chemistry and the microstructure. Once the fuel expands and contacts the clad, expansion in the radial direction is constrained by the clad, and the overall deformation of the fuel clad assembly depends upon the dynamics of the contact problem. The neutronics portion of the problem is also inherently coupled with microstructural evolution in terms of constituent redistribution and phase transformation. Because of the complex nature of the problem, a series of test problems have been defined with increasing complexity with the objective of capturing the fuel-clad interaction in complex fuels subjected to a wide range of irradiation and temperature conditions. The abstract, if short, is inserted here before the introduction section. If the abstract is long, it should be inserted with the front material and page numbered as such, then this page would begin with the introduction section.

Simunovic, Srdjan [ORNL; Ott, Larry J [ORNL; Gorti, Sarma B [ORNL; Nukala, Phani K [ORNL; Radhakrishnan, Balasubramaniam [ORNL; Turner, John A [ORNL

2009-10-01T23:59:59.000Z

259

Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing {sup 235}U, {sup 233}U, and {sup 232}Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons  

SciTech Connect (OSTI)

A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of {sup 235}U. It operates in the open-cycle mode involving {sup 233}U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

Ioffe, B. L.; Kochurov, B. P. [Institute of Theoretical and Experimental Physics (Russian Federation)

2012-02-15T23:59:59.000Z

260

Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011  

SciTech Connect (OSTI)

This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel  

SciTech Connect (OSTI)

This report describes criticality benchmark experiments containing rhodium that were conducted as part of a Department of Energy Nuclear Energy Research Initiative project. Rhodium is an important fission product absorber. A capability to perform critical experiments with low-enriched uranium fuel was established as part of the project. Ten critical experiments, some containing rhodium and others without, were conducted. The experiments were performed in such a way that the effects of the rhodium could be accurately isolated. The use of the experimental results to test neutronics codes is demonstrated by example for two Monte Carlo codes. These comparisons indicate that the codes predict the behavior of the rhodium in the critical systems within the experimental uncertainties. The results from this project, coupled with the results of follow-on experiments that investigate other fission products, can be used to quantify and reduce the conservatism of spent nuclear fuel safety analyses while still providing the necessary level of safety.

Harms, Gary A.; Helmick, Paul H.; Ford, John T.; Walker, Sharon A.; Berry, Donald T.; Pickard, Paul S.

2004-04-01T23:59:59.000Z

262

Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel  

SciTech Connect (OSTI)

Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present studies used current analytical tools to evaluate the various alternate designs for cycle length, scientific performance (e.g., neutron scattering), and steady-state and transient thermal performance using both safety limit and nominal parameter assumptions. The studies concluded that a new reference design combining a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone will allow successful conversion of HFIR. Future collaboration with the program will reveal whether the new reference design can be fabricated reliably and affordably. Following this feedback, additional studies using state-of-the-art developmental analytical tools are proposed to optimize the design of the fuel zone radial contour and the amount and location of both types of neutron absorbers to further flatten thermal peaks while maximizing the performance of the reactor.

Renfro, David [ORNL; Chandler, David [ORNL; Cook, David [ORNL; Ilas, Germina [ORNL; Jain, Prashant [ORNL; Valentine, Jennifer [ORNL

2014-10-30T23:59:59.000Z

263

Detection of uranium-based nuclear weapons using neutron-induced fission  

SciTech Connect (OSTI)

Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P. [Los Alamos National Lab., NM (United States); Ewing, R.I.; Marlow, K.W. [Sandia National Labs., Albuquerque, NM (United States)

1991-12-01T23:59:59.000Z

264

Detection of uranium-based nuclear weapons using neutron-induced fission  

SciTech Connect (OSTI)

Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P. (Los Alamos National Lab., NM (United States)); Ewing, R.I.; Marlow, K.W. (Sandia National Labs., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

265

Oak Ridge, Tenn. Selected as Uranium Enrichment Site | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at theOfficials to discuss NPT

266

Highly Enriched Uranium Transparency Program | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC High-Rate,Highlights Highlights Below is

267

Nuclear & Uranium - U.S. Energy Information Administration (EIA)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchives Events/NewsYou

268

Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable EnergySouthwest MichiganNovember 27, 2006November

269

Belgium Highly Enriched Uranium and Plutonium Removals | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling atSFO |Alternate| National

270

Dry halide method for separating the components of spent nuclear fuels  

DOE Patents [OSTI]

The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200 C to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400 C; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164 to 2 C; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic. 3 figs.

Christian, J.D.; Thomas, T.R.; Kessinger, G.F.

1998-06-30T23:59:59.000Z

271

Dry halide method for separating the components of spent nuclear fuels  

DOE Patents [OSTI]

The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic.

Christian, Jerry Dale (Idaho Falls, ID); Thomas, Thomas Russell (Rigby, ID); Kessinger, Glen F. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

272

Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel  

SciTech Connect (OSTI)

The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

Cowell, B.S.; Fisher, S.E.

1999-02-01T23:59:59.000Z

273

Spent Nuclear Fuel (SNF) Project Product Specification  

SciTech Connect (OSTI)

The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major sub-system. Section 4.0--Specific technical basis description for each product specification. The scope of this product specification does not include data collection requirements to support accountability or environmental compliance activities.

PAJUNEN, A.L.

2000-12-07T23:59:59.000Z

274

Examination of the conversion of the U.S. submarine fleet from highly enriched uranium to low enriched uranium ; Examination of the conversion of the United States submarine fleet from HEU to low LEU .  

E-Print Network [OSTI]

??The nuclear reactors used by the U.S. Navy for submarine propulsion are currently fueled by highly enriched uranium (HEU), but HEU brings administrative and political… (more)

McCord, Cameron (Cameron Liam)

2014-01-01T23:59:59.000Z

275

Overview of reductants utilized in nuclear fuel reprocessing/recycling  

SciTech Connect (OSTI)

Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold promises as a replacement for AHA. FHA undergoes hydrolysis to formic acid which is volatile, thus allowing the recycling of nitric acid. Unfortunately, FHA powder was not stable in the experiments we ran in our laboratory. In addition, AHA and FHA also decompose to hydroxylamine which may undergo an autocatalytic reaction. Other reductants are available and could be extremely useful for actinides separation. The review presents the current plutonium reductants used in used nuclear fuel reprocessing and will introduce innovative and novel reductants that could become reducers for future research on UNF separation.

Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

2013-10-01T23:59:59.000Z

276

Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1995-09-01T23:59:59.000Z

277

Fabrication of high exposure nuclear fuel pellets  

DOE Patents [OSTI]

A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.

Frederickson, James R. (Richland, WA)

1987-01-01T23:59:59.000Z

278

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

Dixon, B.W.; Piet, S.J.

2004-10-03T23:59:59.000Z

279

The End of Cheap Uranium  

E-Print Network [OSTI]

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

Michael Dittmar

2011-06-21T23:59:59.000Z

280

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect (OSTI)

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

282

Engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico  

SciTech Connect (OSTI)

Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing.The cost of the uranium recovered would be about $87/lb of U/sub 3/O/sub 8/ by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions.

none,

1981-10-01T23:59:59.000Z

283

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14  

SciTech Connect (OSTI)

The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

Schneider, K.J.

1982-09-01T23:59:59.000Z

284

A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377  

SciTech Connect (OSTI)

A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are that the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)

Carelli, M.D.; Franceschini, F.; Lahoda, E.J. [Westinghouse Electric Company LLC., Cranberry Township, PA (United States); Petrovic, B. [Georgia Institute of Technology, Atlanta, GA (United States)

2012-07-01T23:59:59.000Z

285

Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade uranium dioxide powders and pellets  

E-Print Network [OSTI]

1.1 These test methods cover procedures for the chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade uranium dioxide powders and pellets to determine compliance with specifications. 1.2 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear-grade uranium dioxide powder and pellets. 1.4 This test method covers the determination of chlorine and fluorine in nuclear-grade uranium dioxide. With a 1 to 10-g sample, concentrations of 5 to 200 g/g of chlorine and 1 to 200 ?g/g of fluorine are determined without interference. 1.5 This test method covers the determination of moisture in uranium dioxide samples. Detection limits are as low as 10 ?g. 1.6 This test method covers the determination of nitride nitrogen in uranium dioxide in the range from 10 to 250 ?g. 1.7 This test method covers the spectrographic analysis of nuclear-grade UO2 for the 26 elements in the ranges indicated in Table 2. 1.8 For simultaneous determination of trace ele...

American Society for Testing and Materials. Philadelphia

1999-01-01T23:59:59.000Z

286

Comparative analysis of thorium and uranium fuel for transuranic recycle in a sodium cooled Fast Reactor  

SciTech Connect (OSTI)

The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associated with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232.

C. Fiorina; N. E. Stauff; F. Franceschini; M. T. Wenner; A. Stanculescu; T. K. Kim; A. Cammi; M. E. Ricotti; R. N. Hill; T. A. Taiwo; M. Salvatores

2013-12-01T23:59:59.000Z

287

Spent nuclear fuel discharges from U.S. reactors 1994  

SciTech Connect (OSTI)

Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

NONE

1996-02-01T23:59:59.000Z

288

Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites  

SciTech Connect (OSTI)

This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

Maheras, Steven J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Best, Ralph E.; Ross, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Buxton, Kenneth A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); England, Jeffery L. [Savannah River National Laboratory, Aiken, SC (United States); McConnell, Paul E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

2013-09-30T23:59:59.000Z

289

Improved Irradiation Performance of Uranium-Molybdenum/Aluminum Dispersion Fuel by Silicon Addition in Aluminum  

SciTech Connect (OSTI)

Uranium-molybdenum fuel particle dispersion in aluminum is a form of fuel under development for conversion of high-power research and test reactors from highly enriched to low-enriched uranium in the U.S. Global Threat Reduction Initiative program (also known as the Reduced Enrichment for Research and Test Reactors program). Extensive irradiation tests have been conducted to find a solution for problems caused by interaction layer growth and pore formation between U-Mo and Al. Adding a small amount of Si (up to [approximately]5 wt%) in the Al matrix was one of the proposed remedies. The effect of silicon addition in the Al matrix was examined using irradiation test results by comparing side-by-side samples with different Si additions. Interaction layer growth was progressively reduced with increasing Si addition to the matrix Al, up to 4.8 wt%. The Si addition also appeared to delay pore formation and growth between the U-Mo and Al.

Yeon Soo Kim; G. L. Hofman; A. B. Robinson; D. M. Wachs

2013-10-01T23:59:59.000Z

290

Benefits and concerns of a closed nuclear fuel cycle  

SciTech Connect (OSTI)

Nuclear power can play an important role in our energy future, contributing to increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. As stated in the 1982 Nuclear Waste Policy Act, the U.S. Department of Energy is responsible for disposing of spent nuclear fuel generated by commercial nuclear power plants operating in a “once-through” fuel cycle in the deep geologic repository located at Yucca Mountain. However, unyielding political opposition to the site has hindered the commissioning process to the extant that the current administration has recently declared the unsuitability of the Yucca Mountain site. In light of this the DOE is exploring other options, including closing the fuel cycle through recycling and reprocessing of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste (HLW) package as well as recover additional energy value from the original fuel. The technology is, however, still very controversial because of the increased cost and proliferation risk it can present. To lend perspective on the closed fuel cycle alternative, this presents the arguments for and against closing the fuel cycle with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security.

Widder, Sarah H.

2010-11-17T23:59:59.000Z

291

Coupon Surveillance For Corrosion Monitoring In Nuclear Fuel Basin  

SciTech Connect (OSTI)

Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

Mickalonis, J. I.; Murphy, T. R.; Deible, R.

2012-10-01T23:59:59.000Z

292

Comparison of potential radiological consequences from a spent-fuel repository and natural uranium deposits  

SciTech Connect (OSTI)

A general criterion has been suggested for deep geological repositories containing spent fuel - the repositories should impose no greater radiological risk than due to naturally occurring uranium deposits. The following analysis investigates the rationale of that suggestion and determines whether current expectations of spent-fuel repository performance are consistent with such a criterion. In this study, reference spent-fuel repositories were compared to natural uranium-ore deposits. Comparisons were based on intrinsic characteristics, such as radionuclide inventory, depth, proximity to aquifers, and regional distribution, and actual and potential radiological consequences that are now occurring from some ore deposits and that may eventually occur from repositories and other ore deposits. The comparison results show that the repositories are quite comparable to the natural ore deposits and, in some cases, present less radiological hazard than their natural counterparts. On the basis of the first comparison, placing spent fuel in a deep geologic repository apparently reduces the hazard from natural radioactive materials occurring in the earth's crust by locating the waste in impermeable strata without access to oxidizing conditions. On the basis of the second comparison, a repository constructed within reasonable constraints presents no greater hazard than a large ore deposit. It is recommended that if the naturally radioactive environment is to be used as a basis for a criterion regarding repositories, then this criterion should be carefully constructed. The criterion should be based on the radiological quality of the waters in the immediate region of a specific repository, and it should be in terms of an acceptable potential increase in the radiological content of those waters due to the existence of the repository.

Wick, O.J.; Cloninger, M.O.

1980-09-01T23:59:59.000Z

293

Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor  

SciTech Connect (OSTI)

An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

Ilas, Germina [ORNL; Primm, Trent [ORNL

2011-05-01T23:59:59.000Z

294

The Effectiveness of Full Actinide Recycle as a Nuclear Waste Management Strategy when Implemented over a Limited Timeframe – Part II: Thorium Fuel Cycle  

E-Print Network [OSTI]

water reactors (LWRs) or sodium-cooled fast reactors (SFRs) is considered for uranium (U) fuel cycles. With full actinide recycling, at least 6 generations of SFRs are required in a gradual phase-out of nuclear power to achieve transmutation performance...

Lindley, Benjamin A.; Fiorina, Carlo; Gregg, Robert; Franceschini, Fausto; Parks, Geoffrey T.

2014-12-06T23:59:59.000Z

295

Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining  

SciTech Connect (OSTI)

A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl – 1 wt% Li2O at 650 °C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 °C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

S. D. Herrmann; S. X. Li

2010-09-01T23:59:59.000Z

296

Spent nuclear fuel discharges from US reactors 1993  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

Not Available

1995-02-01T23:59:59.000Z

297

Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors  

SciTech Connect (OSTI)

The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

Shropshire, D.E.; Herring, J.S.

2004-10-03T23:59:59.000Z

298

A study of a zone approach to IAEA (International Atomic Energy Agency) safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle  

SciTech Connect (OSTI)

At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches.

Fishbone, L.G.; Higinbotham, W.A.

1986-06-01T23:59:59.000Z

299

Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement  

SciTech Connect (OSTI)

A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

2013-05-01T23:59:59.000Z

300

Uranium hexafluoride handling. Proceedings  

SciTech Connect (OSTI)

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-07-17T23:59:59.000Z

302

Mox fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-05-15T23:59:59.000Z

303

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

Kantrowitz, M.L.; Rosenstein, R.G.

1998-10-13T23:59:59.000Z

304

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

1998-01-01T23:59:59.000Z

305

Sandia National Laboratories: Nuclear Energy and Fuel Cycle Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More GreenWorkshops Nuclear

306

Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors (Progress report for work through June 2002, 12th quarterly report)  

SciTech Connect (OSTI)

The overall objective of this NERI project is to evaluate the potential advantages and disadvantages of an optimized thorium-uranium dioxide (ThO2/UO2) fuel design for light water reactors (LWRs). The project is led by the Idaho National Engineering and Environmental Laboratory (INEEL), with the collaboration of three universities, the University of Florida, Massachusetts Institute of Technology (MIT), and Purdue University; Argonne National Laboratory; and all of the Pressurized Water Reactor (PWR) fuel vendors in the United States (Framatome, Siemens, and Westinghouse). In addition, a number of researchers at the Korean Atomic Energy Research Institute and Professor Kwangheon Park at Kyunghee University are active collaborators with Korean Ministry of Science and Technology funding. The project has been organized into five tasks: · Task 1 consists of fuel cycle neutronics and economics analysis to determine the economic viability of various ThO2/UO2 fuel designs in PWRs, · Task 2 will determine whether or not ThO2/UO2 fuel can be manufactured economically, · Task 3 will evaluate the behavior of ThO2/UO2 fuel during normal, off-normal, and accident conditions and compare the results with the results of previous UO2 fuel evaluations and U.S. Nuclear Regulatory Commission (NRC) licensing standards, · Task 4 will determine the long-term stability of ThO2/UO2 high-level waste, and · Task 5 consists of the Korean work on core design, fuel performance analysis, and xenon diffusivity measurements.

Mac Donald, Philip Elsworth

2002-09-01T23:59:59.000Z

307

TEPP - Spent Nuclear Fuel | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommitteeRenewable Energy,Section 180(c)CHARTER

308

Improving the Estimates of Waste from the Recycling of Used Nuclear Fuel - 13410  

SciTech Connect (OSTI)

Estimates are presented of wastes arising from the reprocessing of 50 GWD/tonne, 5 year and 50 year cooled used nuclear fuel (UNF) from Light Water Reactors (LWRs), using the 'NUEX' solvent extraction process. NUEX is a fourth generation aqueous based reprocessing system, comprising shearing and dissolution in nitric acid of the UNF, separation of uranium and mixed uranium-plutonium using solvent extraction in a development of the PUREX process using tri-n-butyl phosphate in a kerosene diluent, purification of the plutonium and uranium-plutonium products, and conversion of them to uranium trioxide and mixed uranium-plutonium dioxides respectively. These products are suitable for use as new LWR uranium oxide and mixed oxide fuel, respectively. Each unit process is described and the wastes that it produces are identified and quantified. Quantification of the process wastes was achieved by use of a detailed process model developed using the Aspen Custom Modeler suite of software and based on both first principles equilibrium and rate data, plus practical experience and data from the industrial scale Thermal Oxide Reprocessing Plant (THORP) at the Sellafield nuclear site in the United Kingdom. By feeding this model with the known concentrations of all species in the incoming UNF, the species and their concentrations in all product and waste streams were produced as the output. By using these data, along with a defined set of assumptions, including regulatory requirements, it was possible to calculate the waste forms, their radioactivities, volumes and quantities. Quantification of secondary wastes, such as plant maintenance, housekeeping and clean-up wastes, was achieved by reviewing actual operating experience from THORP during its hot operation from 1994 to the present time. This work was carried out under a contract from the United States Department of Energy (DOE) and, so as to enable DOE to make valid comparisons with other similar work, a number of assumptions were agreed. These include an assumed reprocessing capacity of 800 tonnes per year, the requirement to remove as waste forms the volatile fission products carbon-14, iodine-129, krypton-85, tritium and ruthenium-106, the restriction of discharge of any water from the facility unless it meets US Environmental Protection Agency drinking water standards, no intentional blending of wastes to lower their classification, and the requirement for the recovered uranium to be sufficiently free from fission products and neutron-absorbing species to allow it to be re-enriched and recycled as nuclear fuel. The results from this work showed that over 99.9% of the radioactivity in the UNF can be concentrated via reprocessing into a fission-product-containing vitrified product, bottles of compressed krypton storage and a cement grout containing the tritium, that together have a volume of only about one eighth the volume of the original UNF. The other waste forms have larger volumes than the original UNF but contain only the remaining 0.1% of the radioactivity. (authors)

Phillips, Chris; Willis, William; Carter, Robert [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States)] [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States); Baker, Stephen [UK National Nuclear Laboratory, Warrington, Cheshire (United Kingdom)] [UK National Nuclear Laboratory, Warrington, Cheshire (United Kingdom)

2013-07-01T23:59:59.000Z

309

Used Nuclear Fuels Storage, Transportation, and Disposal Analysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Used Nuclear Fuels Storage, Transportation, and Disposal Analysis Resource and Data System (UNF-ST&DARDS) Apr 08 2014 10:00 AM - 11:00 AM John M. Scaglione, ORNL staff, Oak Ridge...

310

Inventory of LWR spent nuclear fuel in the 324 Building  

SciTech Connect (OSTI)

This document contains the results of calculations to estimate the decay heat, neutron source term, photon source term, and radioactive inventory of light-water-reactor spent nuclear fuel in the 324 Building at Pacific Northwest National Laboratory.

Jenquin, U.P.

1996-09-01T23:59:59.000Z

311

Used Nuclear Fuel Loading and Structural Performance Under Normal...  

Broader source: Energy.gov (indexed) [DOE]

Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with...

312

Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security Overview Tanzanians living near the Udzungwa Mountains National Park have 100,000 villagers without an available fuel source. One possible solution to alleviate this crisis

Demirel, Melik C.

313

Nuclear Materials Characterization in the Materials and Fuels Complex Analytical Hot Cells  

SciTech Connect (OSTI)

As energy prices skyrocket and interest in alternative, clean energy sources builds, interest in nuclear energy has increased. This increased interest in nuclear energy has been termed the “Nuclear Renaissance”. The performance of nuclear fuels, fuels and reactor materials and waste products are becoming a more important issue as the potential for designing new nuclear reactors is more immediate. The Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Analytical Laboratory Hot Cells (ALHC) are rising to the challenge of characterizing new reactor materials, byproducts and performance. The ALHC is a facility located near Idaho Falls, Idaho at the INL Site. It was built in 1958 as part of the former Argonne National Laboratory West Complex to support the operation of the second Experimental Breeder Reactor (EBR-II). It is part of a larger analytical laboratory structure that includes wet chemistry, instrumentation and radiochemistry laboratories. The purpose of the ALHC is to perform analytical chemistry work on highly radioactive materials. The primary work in the ALHC has traditionally been dissolution of nuclear materials so that less radioactive subsamples (aliquots) could be transferred to other sections of the laboratory for analysis. Over the last 50 years though, the capabilities within the ALHC have also become independent of other laboratory sections in a number of ways. While dissolution, digestion and subdividing samples are still a vitally important role, the ALHC has stand alone capabilities in the area of immersion density, gamma scanning and combustion gas analysis. Recent use of the ALHC for immersion density shows that extremely fine and delicate operations can be performed with the master-slave manipulators by qualified operators. Twenty milligram samples were tested for immersion density to determine the expansion of uranium dioxide after irradiation in a nuclear reactor. The data collected confirmed modeling analysis with very tight precision. The gamma scanning equipment in the ALHC has taken on a new role also as a micro-gamma scanning system and has been put into service; allowing the linear and radial counting of a spent fuel segment to determine reaction characteristics within a small section of nuclear fuel. The nitrogen, oxygen and carbon analysis allows the identification of these impurities in spent nuclear fuel and also most oxides, nitrides, carbides, C-14 and tritium.

Michael Rodriquez

2009-03-01T23:59:59.000Z

314

What to Expect When Readying to Move Spent Nuclear Fuel from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power...

315

Laser-based characterization of nuclear fuel plates  

SciTech Connect (OSTI)

Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

Smith, James A.; Cottle, Dave L.; Rabin, Barry H. [Idaho National Laboratory, Fuel Performance and Design, P.O. Box 1625, Idaho Falls, Idaho, 83415-6188 (United States)

2014-02-18T23:59:59.000Z

316

Laser-Based Characterization of Nuclear Fuel Plates  

SciTech Connect (OSTI)

Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

James A. Smith; David L. Cottle; Barry H. Rabin

2013-07-01T23:59:59.000Z

317

A review of nuclear fuel cycle options for developing nations  

SciTech Connect (OSTI)

A study of several nuclear reactor and fuel cycle options for developing nations was performed. All reactor choices were considered under a GNEP framework. Two advanced alternative reactor types, a nuclear battery-type reactor and a fuel reprocessing fast reactor were examined and compared with a conventional Generation III+ LWR reactor. The burn of nuclear fuel was simulated using ORIGEN 2.2 for each reactor type and the resulting information was used to compare the options in terms of waste produced, waste quality and repository impact. The ORIGEN data was also used to evaluate the economics of the fuel cycles using unit costs, discount rates and present value functions with the material balances. The comparison of the fuel cycles and reactors developed in this work provides a basis for the evaluation of subsidy programs and cost-benefit comparisons for various reactor parameters such as repository impact and proliferation risk versus economic considerations. (authors)

Harrison, R.K.; Scopatz, A.M.; Ernesti, M. [The University of Texas at Austin, Pickle Research Campus, Building 159, Austin, TX 78712 (United States)

2007-07-01T23:59:59.000Z

318

Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel  

SciTech Connect (OSTI)

This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was previously known the liquidus temperature of the molten salt would change as spent fuel is processed through the Mk-IV electrorefiner. However, the extent of the increase in liquidus temperature was not known. This work is first of its kind in determining thermodynamic properties of a molten salt electrolyte containing transuranics, fission products and bond sodium. Experimental data concluded that the melting temperature of the electrolyte will become greater than the operating temperature of the Mk-IV ER during current fuel processing campaigns. Collected data also helps predict when the molten salt electrolyte will no longer be able to support electrorefining operations.

Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

2012-04-01T23:59:59.000Z

319

Microstructural Examination to Aid in Understanding Friction Bonding Fabrication Technique for Monolithic Nuclear Fuel  

SciTech Connect (OSTI)

Monolithic nuclear fuel is currently being developed for use in research reactors, and friction bonding (FB) is a technique being developed to help in this fuel’s fabrication. Since both FB and monolithic fuel are new concepts, research is needed to understand the impact of varying FB fabrication parameters on fuel plate characteristics. This thesis research provides insight into the FB process and its application to the monolithic fuel design by recognizing and understanding the microstructural effects of varying fabrication parameters (a) FB tool load, and (b) FB tool face alloy. These two fabrication parameters help drive material temperature during fabrication, and thus the material properties, bond strength, and possible formation of interface reaction layers. This study analyzed temperatures and tool loads measured during those FB processes and examined microstructural characteristics of materials and bonds in samples taken from the resulting fuel plates. This study shows that higher tool load increases aluminum plasticization and forging during FB, and that the tool face alloy helps determine the tool’s heat extraction efficacy. The study concludes that successful aluminum bonds can be attained in fuel plates using a wide range of FB tool loads. The range of tool loads yielding successful uranium-aluminum bonding was not established, but it was demonstrated that such bonding can be attained with FB tool load of 48,900 N (11,000 lbf) when using a FB tool faced with a tungsten alloy. This tool successfully performed FB, and with better results than tools faced with other materials. Results of this study correlate well with results reported for similar aluminum bonding techniques. This study’s results also provide support and validation for other nuclear fuel development studies and conclusions. Recommendations are offered for further research.

Karen L. Shropshire

2008-04-01T23:59:59.000Z

320

Reprocessing of nuclear fuels at the Savannah River Plant  

SciTech Connect (OSTI)

For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

Gray, L.W.

1986-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The uranium cylinder assay system for enrichment plant safeguards  

SciTech Connect (OSTI)

Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Rael, Carlos D [Los Alamos National Laboratory; Iwamoto, Tomonori [JNFL; Tamura, Takayuki [JNFL; Aiuchi, Syun [JNFL

2010-01-01T23:59:59.000Z

322

EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...  

Broader source: Energy.gov (indexed) [DOE]

the potential environmental impacts of adopting a policy to manage foreign research reactor spent nuclear fuel containing uranium enriched in the United States. In...

323

Nuclear Power 2010 Unveiled update 3.04.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nuclear power include heavy carbon emissions from energy intensive reactor construction and fuel enrichment operations, radioactive discharges from uranium mine...

324

January 2013 Most Viewed Documents for Fission And Nuclear Technologie...  

Office of Scientific and Technical Information (OSTI)

January 2013 Most Viewed Documents for Fission And Nuclear Technologies Laboratory studies of shearleach processing of zircaloy clad metallic uranium reactor fuel Swanson, J.L.;...

325

Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels  

SciTech Connect (OSTI)

The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

Carbajo, J.J.

2005-05-27T23:59:59.000Z

326

Spent nuclear fuel discharges from US reactors 1992  

SciTech Connect (OSTI)

This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

Not Available

1994-05-05T23:59:59.000Z

327

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities

328

Nuclear fuel recycling in 4 minutes | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&DNuclear fuel recycling in 4 minutes Share Topic

329

Sandia National Laboratories: Nuclear Energy and Fuel Systems Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNo More GreenWorkshops Nuclearand Fuel

330

Molten-Salt Depleted-Uranium Reactor  

E-Print Network [OSTI]

The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

Dong, Bao-Guo; Gu, Ji-Yuan

2015-01-01T23:59:59.000Z

331

International nuclear fuel cycle fact book. Revision 4  

SciTech Connect (OSTI)

This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-03-01T23:59:59.000Z

332

International Nuclear Fuel Cycle Fact Book. Revision 5  

SciTech Connect (OSTI)

This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1985-01-01T23:59:59.000Z

333

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

334

Radioactive Flow Characterization for Real-Time Detection Systems in UREX+ Nuclear Fuel Reprocessing  

E-Print Network [OSTI]

plants. Current large-scale commercial reprocessing facilities around the world make use of the PUREX (Plutonium-Uranium Extraction) method, which separates out a pure plutonium and pure uranium stream and puts all the remaining isotopes... products in the fuel. The leading technology option in the U.S. for reprocessing is a sequence of processing methods known as UREX+ (Uranium Extraction+). However, an industrial scale facility implementing this separation procedure will require...

Hogelin, Thomas Russell

2011-02-22T23:59:59.000Z

335

Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography  

E-Print Network [OSTI]

This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

Jonkmans, G; Jewett, C; Thompson, M

2012-01-01T23:59:59.000Z

336

An assessment of the attractiveness of material associated with thorium/uranium and uranium closed fuel cycles from a safeguards perspective  

SciTech Connect (OSTI)

This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled until consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.

Bathke, Charles Gary [Los Alamos National Laboratory; Wallace, Richard K [Los Alamos National Laboratory; Hase, Kevin R [Los Alamos National Laboratory; Sleaford, Brad W [LLNL; Ebbinghaus, Bartley B [LLNL; Collins, Brian W [PNNL; Bradley, Keith S [LLNL; Prichard, Andrew W [PNNL; Smith, Brian W [PNNL

2010-01-01T23:59:59.000Z

337

Examination of the conversion of the U.S. submarine fleet from highly enriched uranium to low enriched uranium  

E-Print Network [OSTI]

The nuclear reactors used by the U.S. Navy for submarine propulsion are currently fueled by highly enriched uranium (HEU), but HEU brings administrative and political challenges. This issue has been studied by the Navy ...

McCord, Cameron (Cameron Liam)

2014-01-01T23:59:59.000Z

338

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation – Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

Brent W. Dixon; Steven J. Piet

2004-10-01T23:59:59.000Z

339

A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?  

SciTech Connect (OSTI)

Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

Mark Schanfein

2009-07-01T23:59:59.000Z

340

Next-generation nuclear fuel withstands high-temperature accident  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewport News Business55NewsNext

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sandia National Laboratories: Recent Sandia International Used Nuclear Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test CenterCMCNationalEnergyRadiationManagement

342

Sandia National Laboratories: Nuclear Fuel Cycle Options Catalog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP Resources On SeptemberNuclear Energy Videos On

343

Nuclear Fuels Storage and Transportation Planning Project (NFST) Program  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 PrintingNeed| Department ofDC. |NuclearFacts:Department

344

India's Worsening Uranium Shortage  

SciTech Connect (OSTI)

As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

Curtis, Michael M.

2007-01-15T23:59:59.000Z

345

Dry Storage of Research Reactor Spent Nuclear Fuel - 13321  

SciTech Connect (OSTI)

Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)

Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)] [Moore Nuclear Energy, LLC (United States)

2013-07-01T23:59:59.000Z

346

International Nuclear Fuel Cycle Fact Book. Revision 12  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

Leigh, I.W.

1992-05-01T23:59:59.000Z

347

International nuclear fuel cycle fact book: Revision 9  

SciTech Connect (OSTI)

The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

Leigh, I.W.

1989-01-01T23:59:59.000Z

348

International nuclear fuel cycle fact book. [Contains glossary  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

1987-01-01T23:59:59.000Z

349

Nuclear reactor vessel fuel thermal insulating barrier  

DOE Patents [OSTI]

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

2013-03-19T23:59:59.000Z

350

The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input  

SciTech Connect (OSTI)

A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal,; Monado, Fiber; Sekimoto, Hiroshi [Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134, Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134 (Indonesia); Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134, Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Reserach of Laboratory for Nuclear Reactors, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152 (Japan)

2012-06-06T23:59:59.000Z

351

Nuclear Fuel Cycle Reasoner: PNNL FY13 Report  

SciTech Connect (OSTI)

In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

Hohimer, Ryan E.; Strasburg, Jana D.

2013-09-30T23:59:59.000Z

352

Not So Permafrost Under Fire Viewport for Nuclear Fusion Hassle-Free Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig Eddyof H-2 andNot So Permafrost Under Fire

353

LIBS Spectral Data for a Mixed Actinide Fuel Pellet Containing Uranium, Plutonium, Neptunium and Americium  

SciTech Connect (OSTI)

Laser-induced breakdown spectroscopy (LIBS) was used to analyze a mixed actinide fuel pellet containing 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2}. The preliminary data shown here is the first report of LIBS analysis of a mixed actinide fuel pellet, to the authors knowledge. The LIBS spectral data was acquired in a plutonium facility at Los Alamos National Laboratory where the sample was contained within a glove box. The initial installation of the glove box was not intended for complete ultraviolet (UV), visible (VIS) and near infrared (NIR) transmission, therefore the LIBS spectrum is truncated in the UV and NIR regions due to the optical transmission of the window port and filters that were installed. The optical collection of the emission from the LIBS plasma will be optimized in the future. However, the preliminary LIBS data acquired is worth reporting due to the uniqueness of the sample and spectral data. The analysis of several actinides in the presence of each other is an important feature of this analysis since traditional methods must chemically separate uranium, plutonium, neptunium, and americium prior to analysis. Due to the historic nature of the sample fuel pellet analyzed, the provided sample composition of 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2} cannot be confirm without further analytical processing. Uranium, plutonium, and americium emission lines were abundant and easily assigned while neptunium was more difficult to identify. There may be several reasons for this observation, other than knowing the exact sample composition of the fuel pellet. First, the atomic emission wavelength resources for neptunium are limited and such techniques as hollow cathode discharge lamp have different dynamics than the plasma used in LIBS which results in different emission spectra. Secondly, due to the complex sample of four actinide elements, which all have very dense electronic energy levels, there may be reactions and interactions occurring within the plasma, such as collisional energy transfer, that might be a factor in the reduction in neptunium emission lines. Neptunium has to be analyzed alone using LIBS to further understand the dynamics that may be occurring in the plasma of the mixed actinide fuel pellet sample. The LIBS data suggests that the emission spectrum for the mixed actinide fuel pellet is not simply the sum of the emission spectra of the pure samples but is dependent on the species present in the plasma and the interactions and reactions that occur within the plasma. Finally, many of the neptunium lines are in the near infrared region which is drastically reduced in intensity by the current optical setup and possibly the sensitivity of the emission detector in the spectral region. Once the optics are replaced and the optical collection system is modified and optimized, the probability of observing emission lines for neptunium might be increased significantly. The mixed actinide fuel pellet was analyzed under the experimental conditions listed in Table 1. The LIBS spectra of the fuel pellet are shown in Figures 1-49. The spectra are labeled with the observed wavelength and atomic species (both neutral (I) and ionic (II)). Table 2 is a complete list of the observed and literature based emission wavelengths. The literature wavelengths have references including NIST Atomic Spectra Database (NIST), B.A. Palmer et al. 'An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge' taken at the Kitt Peak National Observatory (KPNO), R.L. Kurucz 1995 Atomic Line Data from the Smithsonian Astrophysical Observatory (SAO), J. Blaise et al. 'The Atomic Spectrum of Plutonium' from Argonne National Laboratory (BFG), and M. Fred and F.S. Tomkins, 'Preliminary Term Analysis of Am I and Am II Spectra' (FT). The dash (-) shown under Ionic State indicates that the ionic state of the transition was not available. In the spectra, the dash (-) is replaced with a question mark (?). Peaks that are not assigned are most likely real features and not noise but cannot be confidently assi

Judge, Elizabeth J. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Le, Loan A. [Los Alamos National Laboratory; Lopez, Leon N. [Los Alamos National Laboratory; Barefield, James E. [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

354

Nano-Scale Fission Product Phases in an Irradiated U-7Mo Alloy Nuclear Fuel  

SciTech Connect (OSTI)

Irradiated nuclear fuel is a very difficult material to characterize. Due to the large radiation fields associated with these materials, they are hard to handle and typically have to be contained in large hot cells. Even the equipment used for performing characterization is housed in hot cells or shielded glove boxes. The result is not only a limitation in the techniques that can be employed for characterization, but also a limitation in the size of features that can be resolved The most standard characterization techniques include light optical metallography (WM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). These techniques are applied to samples that are typically prepared using grinding and polishing approaches that will always generate some mechanical damage on the sample surface. As a result, when performing SEM analysis, for example, the analysis is limited by the quality of the sample surface that can be prepared. However, a new approach for characterizing irradiated nuclear fuel has recently been developed at the Idaho National Laboratory (INL) in Idaho Falls, Idaho. It allows for a dramatic improvement in the quality of characterization that can be performed when using an instrument like an SEM. This new approach uses a dual-beam scanning microscope, where one of the beams isa focused ion beam (FIB), which can be used to generate specimens of irradiated fuel (-10µm x 10µm) for microstructural characterization, and the other beam is the electron beam of an SEM. One significant benefit of this approach is that the specimen surface being characterized has received much less damage (and smearing) than is caused by the more traditional approaches, which enables the imaging of nanometer­ sized microstructural features in the SEM. The process details are for an irradiated low-enriched uranium (LEU) U-Mo alloy fuel Another type of irradiated fuel that has been characterized using this technique is a mixed oxide fuel.

Dennis Keiser, Jr.; Brandon Miller; James Madden; Jan-Fong Jue; Jian Gan

2014-09-01T23:59:59.000Z

355

Concept of development of nuclear power based on LMFBR operation in open nuclear fuel cycle  

SciTech Connect (OSTI)

The preliminary assessments performed show that it is reasonable to investigate in the future the possibilities of FBR efficient operation with the open NFC. To improve its safety it is expedient to use the lead-bismuth alloy as a coolant. In order to operate with depleted uranium make-up it is necessary to meet a number of requirements providing the reactor criticality due to plutonium build-up and BR > 1. These requirements are as follows: a large core (20--25 m{sup 3}); a high fuel volume fraction (> 60%); utilization of dense metallic fuel; a high fuel burn-up--at a level of 20% of h.a. Making use of these reactors should allow the NP fuel base to be extended more than 10 times without making NFC closed. It provides improving NP safety during a sufficiently long stage of its development.

Toshinsky, G.I. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation)

1996-08-01T23:59:59.000Z

356

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

357

Apparatus for injection casting metallic nuclear energy fuel rods  

DOE Patents [OSTI]

Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.

Seidel, Bobby R. (Idaho Falls, ID); Tracy, Donald B. (Firth, ID); Griffiths, Vernon (Butte, MT)

1991-01-01T23:59:59.000Z

358

Double-clad nuclear-fuel safety rod  

DOE Patents [OSTI]

A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

McCarthy, W.H.; Atcheson, D.B.

1981-12-30T23:59:59.000Z

359

Nuclear Fuel Cycle Reasoner: PNNL FY12 Report  

SciTech Connect (OSTI)

Building on previous internal investments and leveraging ongoing advancements in semantic technologies, PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In developing this proof of concept prototype, the utility and relevancy of semantic technologies to the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) has been better understood.

Hohimer, Ryan E.; Pomiak, Yekaterina G.; Neorr, Peter A.; Gastelum, Zoe N.; Strasburg, Jana D.

2013-05-03T23:59:59.000Z

360

SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION  

SciTech Connect (OSTI)

With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful information to analysts evaluating spent fuel subcriticality. The original purpose of the subcritical measurements was to validate computer model predictions that spent N Reactor fuel of a particular, typical exposure (2740 MWd/t) had a critical mass equal to twice that of unexposed fuel of the same type. The motivation for performing this work was driven by the need to increase spent fuel storage limits. These subcritical measurements confirmed the computer model predictions.

SCHWINKENDORF, K.N.

2006-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications  

SciTech Connect (OSTI)

The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

Yang Zhong; Robert C. O'Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

2011-11-01T23:59:59.000Z

362

A micro hot test of the Chalmers-GANEX extraction system on used nuclear fuel  

SciTech Connect (OSTI)

In the present study, a 'micro hot test' has been performed using the Chalmers-GANEX (Group Actinide Extraction) system for partitioning of used nuclear fuel. The test included a pre-extraction step using N,N-di-2- ethylhexyl-butyramide (DEHBA) in n-octanol to remove the bulk part of the uranium. This pre-extraction was followed by a group extraction of actinides using the mixture of TBP and CyMe{sub 4}-BTBP in cyclohexanone as suggested in the Chalmers-GANEX process, and a three stage stripping of the extracted actinides. Distribution ratios for the extractions and stripping were determined based on a combination of ?- and ?-spectrometry, as well as ICP-MS measurements. Successful extraction of uranium, plutonium and the minor actinides neptunium, americium and curium was achieved. However, measurements also indicated that co-extraction of europium occurs to some extent during the separation. These results were expected based on previous experiments using trace concentrations of actinides and lanthanides. Since this test was only performed in one stage with respect to the group actinide extraction, it is expected that multi stage tests will give even better results. (authors)

Bauhn, L.; Hedberg, M.; Aneheim, E.; Ekberg, C.; Loefstroem-Engdahl, E.; Skarnemark, G. [Department of Chemical and Biological Engineering, Nuclear Chemistry, Chalmers University of Technology, Kemivaegen 4, SE-412 96 Goeteborg (Sweden)

2013-07-01T23:59:59.000Z

363

Impact of Fuel Failure on Criticality Safety of Used Nuclear Fuel  

SciTech Connect (OSTI)

Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for considerably longer periods than originally intended (e.g., <40 years). Extended storage (ES) time and irradiation of nuclear fuel to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. This effort is primarily motivated by concerns related to the potential for fuel degradation during ES periods and transportation following ES. The criticality analyses consider representative UNF designs and cask systems and a range of fuel enrichments, burnups, and cooling times. The various failed-fuel configurations considered are designed to bound the anticipated effects of individual rod and general cladding failure, fuel rod deformation, loss of neutron absorber materials, degradation of canister internals, and gross assembly failure. The results quantify the potential impact on criticality safety associated with fuel reconfiguration and may be used to guide future research, design, and regulatory activities. Although it can be concluded that the criticality safety impacts of fuel reconfiguration during transportation subsequent to ES are manageable, the results indicate that certain configurations can result in a large increase in the effective neutron multiplication factor, k{sub eff}. Future work to inform decision making relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

Marshall, William BJ J [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

364

Method of controlling crystallite size in nuclear-reactor fuels  

DOE Patents [OSTI]

Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

Lloyd, Milton H. (Oak Ridge, TN); Collins, Jack L. (Knoxville, TN); Shell, Sam E. (Oak Ridge, TN)

1985-01-01T23:59:59.000Z

365

Methods and apparatuses for the development of microstructured nuclear fuels  

DOE Patents [OSTI]

Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.

Jarvinen, Gordon D. (Los Alamos, NM); Carroll, David W. (Los Alamos, NM); Devlin, David J. (Santa Fe, NM)

2009-04-21T23:59:59.000Z

366

Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability  

SciTech Connect (OSTI)

The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

367

Final environmental statement related to the Western Nuclear, Inc. , Split Rock Uranium Mill (Fremont County, Wyoming)  

SciTech Connect (OSTI)

The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock Uranium Mill near Jeffrey City and the Green Mountain Ion-Exchange Facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area - the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). However, although heap leaching operations were previously authorized at Frazier-Lamac, there has never been any processing of material at this site. The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U/sub 3/O/sub 8/ through 1996 using lower-grade ores.

Not Available

1980-02-01T23:59:59.000Z

368

Enduring Nuclear Fuel Cycle, Proceedings of a panel discussion  

SciTech Connect (OSTI)

The panel reviewed the complete nuclear fuel cycle in the context of alternate energy resources, energy need projections, effects on the environment, susceptibility of nuclear materials to theft, diversion, and weapon proliferation. We also looked at ethical considerations of energy use, as well as waste, and its effects. The scope of the review extended to the end of the next century with due regard for world populations beyond that period. The intent was to take a long- range view and to project, not forecast, the future based on ethical rationales, and to avoid, as often happens, long-range discussions that quickly zoom in on only the next few decades. A specific nuclear fuel cycle technology that could satisfy these considerations was described and can be applied globally.

Walter, C. E., LLNL

1997-11-18T23:59:59.000Z

369

Characterization of Nuclear Fuel using Multivariate Statistical Analysis  

SciTech Connect (OSTI)

Various combinations of reactor type and fuel composition have been characterized using principle components analysis (PCA) of the concentrations of 9 U and Pu isotopes in the 10 fuel as a function of burnup. The use of PCA allows the reduction of the 9-dimensional data (isotopic concentrations) into a 3-dimensional approximation, giving a visual representation of the changes in nuclear fuel composition with burnup. Real-world variation in the concentrations of {sup 234}U and {sup 236}U in the fresh (unirradiated) fuel was accounted for. The effects of reprocessing were also simulated. The results suggest that, 15 even after reprocessing, Pu isotopes can be used to determine both the type of reactor and the initial fuel composition with good discrimination. Finally, partial least squares discriminant analysis (PSLDA) was investigated as a substitute for PCA. Our results suggest that PLSDA is a better tool for this application where separation between known classes is most important.

Robel, M; Robel, M; Robel, M; Kristo, M J; Kristo, M J

2007-11-27T23:59:59.000Z

370

Standard guide for drying behavior of spent nuclear fuel  

E-Print Network [OSTI]

1.1 This guide is organized to discuss the three major components of significance in the drying behavior of spent nuclear fuel: evaluating the need for drying, drying spent nuclear fuel, and confirmation of adequate dryness. 1.1.1 The guide addresses drying methods and their limitations in drying spent nuclear fuels that have been in storage at water pools. The guide discusses sources and forms of water that remain in SNF, its container, or both, after the drying process and discusses the importance and potential effects they may have on fuel integrity, and container materials. The effects of residual water are discussed mechanistically as a function of the container thermal and radiological environment to provide guidance on situations that may require extraordinary drying methods, specialized handling, or other treatments. 1.1.2 The basic issue in drying is to determine how dry the SNF must be in order to prevent issues with fuel retrievability, container pressurization, or container corrosion. Adequate d...

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

371

High energy X-ray diffraction measurement of residual stresses in a monolithic aluminum clad uranium–10 wt% molybdenum fuel plate assembly  

SciTech Connect (OSTI)

Residual stresses are expected in monolithic, aluminum clad uranium 10 wt% molybdenum (U–10Mo) nuclear fuel plates because of the large mismatch in thermal expansion between the two bonded materials. The full residual stress tensor of the U–10Mo foil in a fuel plate assembly was mapped with 0.1 mm resolution using high-energy (86 keV) X-ray diffraction. The in-plane stresses in the U–10Mo foil are strongly compressive, roughly -250 MPa in the longitudinal direction and -140 MPa in the transverse direction near the center of the fuel foil. The normal component of the stress is weakly compressive near the center of the foil and tensile near the corner. The disparity in the residual stress between the two in-plane directions far from the edges and the tensile normal stress suggest that plastic deformation in the aluminum cladding during fabrication by hot isostatic pressing also contributes to the residual stress field. A tensile in-plane residual stress is presumed to be present in the aluminum cladding to balance the large in-plane compressive stresses in the U–10Mo fuel foil, but cannot be directly measured with the current technique due to large grain size.

D. W. Brown; M. A. Okuniewski; J. D. Almer; L. Balogh; B. Clausen; J. S. Okasinski; B. H. Rabin

2013-10-01T23:59:59.000Z

372

Incorporation of radionuclides in the alteration phases of spent nuclear fuel.  

SciTech Connect (OSTI)

Alteration may be expected for spent nuclear fuel exposed to groundwater under oxidizing conditions such as that which exist at the proposed nuclear waste repository at Yucca Mountain, Nevada. The actinide elements released during the corrosion of spent fuel may be incorporated into the structures of secondary U{sup 6+} phases. The incorporation of transuranics into the crystal structures of the alteration products may significantly decrease their mobility. A series of precipitation tests were conducted at 90 C to determine the potential incorporation of Ce{sup 4+} and Nd{sup 3+} (surrogates for Pu{sup 4+} and Am{sup 3+}, respectively) into uranyl phase. Dehydrated schoepite (UO{sub 3}{center_dot}0.8-1.0HP{sub 2}O) was produced by hydrolysis of a uranium oxyacetate solution containing either cerium or neodymium. ICP-MS analysis of the leachant, leachate, and solid phase reaction products which were dissolved in a HNO{sub 3} solution indicates that 26 ppm of Ce was incorporated into dehydrated schoepite. ICP-MS results from the Nd-doped tests indicate significant neodymium incorporation as well, however, the heterogeneous distribution of Nd in the solid phase noted during the AEM/EELS examination implies that neodymium may not incorporate into the structure of dehydrated schoepite.

Buck, E. C.; Kim, C.-W.; Wronkiewicz, D. J.

1999-08-25T23:59:59.000Z

373

Sensitivity analysis and optimization of the nuclear fuel cycle  

SciTech Connect (OSTI)

A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and in core and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme. (authors)

Passerini, S.; Kazimi, M. S.; Shwageraus, E. [Massachusetts Inst. of Technology, Dept. of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02138 (United States)

2012-07-01T23:59:59.000Z

374

Fuel bundle design for enhanced usage of plutonium fuel  

DOE Patents [OSTI]

A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

Reese, Anthony P. (San Jose, CA); Stachowski, Russell E. (Fremont, CA)

1995-01-01T23:59:59.000Z

375

TOWARDS BENCHMARK MEASUREMENTS FOR USED NUCLEAR FUEL ASSAY USING A LEAD SLOWING-DOWN SPECTROMETER  

E-Print Network [OSTI]

for spent fuel testing. The characterization of spent fuel is particularly important for nuclear safeguardsTOWARDS BENCHMARK MEASUREMENTS FOR USED NUCLEAR FUEL ASSAY USING A LEAD SLOWING-DOWN SPECTROMETER B) is considered as a possible option for non- destructive assay of fissile material in used nuclear fuel

Danon, Yaron

376

Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input  

SciTech Connect (OSTI)

A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

Monado, Fiber, E-mail: fiber.monado@gmail.com [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia and Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Ariani, Menik [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung (Indonesia); Aziz, Ferhat [National Nuclear Energy Agency of Indonesia (BATAN) (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, O-okoyama, Meguro-ku, Tokyo 152-8550 (Japan)

2014-02-12T23:59:59.000Z

377

Safe Advantage on Dry Interim Spent Nuclear Fuel Storage  

SciTech Connect (OSTI)

This paper aims to present the advantages of dry cask storage in comparison with the wet storage (cooling water pools) for SNF. When the nuclear fuel is removed from the core reactor, it is moved to a storage unit and it wait for a final destination. Generally, the spent nuclear fuel (SNF) remains inside water pools within the reactors facility for the radioactive activity decay. After some period of time in pools, SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing facilities, or still, wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet facilities, depending on the method adopted by the nuclear power plant or other plans of the country. Interim storage, up to 20 years ago, was exclusively wet and if the nuclear facility had to be decommissioned another storage solution had to be found. At the present time, after a preliminary cooling of the SNF elements inside the water pool, the elements can be stored in dry facilities. This kind of storage does not need complex radiation monitoring and it is safer then wet one. Casks, either concrete or metallic, are safer, especially on occurrence of earthquakes, like that occurred at Kashiwazaki-Kariwa nuclear power plant, in Japan on July 16, 2007. (authors)

Romanato, L.S. [Centro Tecnologico da Marinha em S.Paulo, Brazilian Navy Technological Center, Sao Paulo (Brazil)

2008-07-01T23:59:59.000Z

378

E-Print Network 3.0 - alternative nuclear fuel Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of electricity from nuclear power plants is far less than any of the alternative energy technologies now contem... Processing of Nuclear Fuel, EGRN 430 ...

379

Transient Testing of Nuclear Fuels and Materials in United States  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has been engaged in an effort to develop and qualify next generation LWR fuel with enhanced performance and safety and reduced waste generation since 2010. This program, which has emphasized collaboration between the DOE, U.S. national laboratories and nuclear industry, was refocused from enhanced performance to enhanced accident tolerance following the events at Fukushima in 2011. Accident tolerant fuels have been specifically described as fuels that, in comparison with standard UO2-Zircaloy, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events. The program maintains an ambitious goal to insert a lead test assembly (LTA) of the new design into a commercial power reactor by 2022 .

Daniel M. Wachs

2012-12-01T23:59:59.000Z

380

Gamma Ray Mirrors for Direct Measurement of Spent Nuclear Fuel  

SciTech Connect (OSTI)

Direct measurement of the amount of Pu and U in spent nuclear fuel represents a challenge for the safeguards community. Ideally, the characteristic gamma-ray emission lines from different isotopes provide an observable suitable for this task. However, these lines are generally lost in the fierce flux of radiation emitted by the fuel. The rates are so high that detector dead times limit measurements to only very small solid angles of the fuel. Only through the use of carefully designed view ports and long dwell times are such measurements possible. Recent advances in multilayer grazing-incidence gamma-ray optics provide one possible means of overcoming this difficulty. With a proper optical and coating design, such optics can serve as a notch filter, passing only narrow regions of the overall spectrum to a fully shielded detector that does not view the spent fuel directly. We report on the design of a mirror system and a number of experimental measurements.

Pivovaroff, Dr. Michael J. [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Ziock, Klaus-Peter [ORNL] [ORNL; Harrison, Mark J [ORNL] [ORNL; Soufli, Regina [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL)

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Spent Nuclear Fuel (SNF) Project Design Basis Capacity Study  

SciTech Connect (OSTI)

This study of the design basis capacity of process systems was prepared by Fluor Federal Services for the Spent Nuclear Fuel Project. The evaluation uses a summary level model of major process sub-systems to determine the impact of sub-system interactions on the overall time to complete fuel removal operations. The process system model configuration and time cycle estimates developed in the original version of this report have been updated as operating scenario assumptions evolve. The initial document released in Fiscal Year (FY) 1996 varied the number of parallel systems and transport systems over a wide range, estimating a conservative design basis for completing fuel processing in a two year time period. Configurations modeling planned operations were updated in FY 1998 and FY 1999. The FY 1998 Base Case continued to indicate that fuel removal activities at the basins could be completed in slightly over 2 years. Evaluations completed in FY 1999 were based on schedule modifications that delayed the start of KE Basin fuel removal, with respect to the start of KW Basin fuel removal activities, by 12 months. This delay resulted in extending the time to complete all fuel removal activities by 12 months. However, the results indicated that the number of Cold Vacuum Drying (CVD) stations could be reduced from four to three without impacting the projected time to complete fuel removal activities. This update of the design basis capacity evaluation, performed for FY 2000, evaluates a fuel removal scenario that delays the start of KE Basin activities such that staffing peaks are minimized. The number of CVD stations included in all cases for the FY 2000 evaluation is reduced from three to two, since the scenario schedule results in minimal time periods of simultaneous fuel removal from both basins. The FY 2000 evaluation also considers removal of Shippingport fuel from T Plant storage and transfer to the Canister Storage Building for storage.

CLEVELAND, K.J.

2000-08-17T23:59:59.000Z

382

Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579  

SciTech Connect (OSTI)

General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2 discharge reuse. The EM2 waste disposal profile is effectively only fission products, which reduces the mass (about 3% vs LWR), average half life, heat and long term radio-toxicity of the disposal. Widespread implementation of EM2 fuel cycle is highly significant as it would increase world energy reserves; the remaining energy in U.S. LWR SNF alone exceeds that in the U.S. natural gas reserves. Unlike many LWR SNF disposition concepts, the EM2 fuel cycle conversion of SNF produces energy and associated revenue such that the overall project is cost effective. By providing conversion of SNF to fission products the fuel cycle is closed and a non-repository LWR SNF disposition path is created and overall repository requirements are significantly reduced. (authors)

Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D. [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)] [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)

2013-07-01T23:59:59.000Z

383

A strategy for transition from a uranium fueled, open cycle SFR to a transuranic fueled, closed cycle sodium cooled fast reactor  

E-Print Network [OSTI]

Reactors utilizing a highly energetic neutron spectrum, often termed fast reactors, offer large fuel utilization improvements over the thermal reactors currently used for nuclear energy generation. Conventional fast reactor ...

Richard, Joshua (Joshua Glenn)

2012-01-01T23:59:59.000Z

384

EDF Nuclear Power Plants Operating Experience with MOX fuel  

SciTech Connect (OSTI)

EDF started Plutonium recycling in PWR in 1987 and progressively all the 20 reactors, licensed in using MOX fuel, have been loaded with MOX assemblies. At the origin of MOX introduction, these plants operated at full power in base load and the core management limited the irradiation time of MOX fuel assemblies to 3 annual cycles. Since 1995 all these reactors can operate in load follow mode. Since that time, a large amount of experience has been accumulated. This experience is very positive considering: - Receipt, handling, in core behaviour, pool storage and shipment of MOX fuel; - Operation of the various systems of the plant; - Environment impact; - Radioprotection; - Safety file requirements; - Availability for the grid. In order to reduce the fuel cost and to reach a better adequacy between UO{sub 2} fuel reprocessing flow and plutonium consumption, EDF had decided to improve the core management of MOX plants. This new core management call 'MOX Parity' achieves parity for MOX and UO{sub 2} assemblies in term of discharge burn-up. Compared to the current MOX assembly the Plutonium content is increased from 7,08% to 8,65% (equivalent to natural uranium enriched to respectively 3,25% and 3,7%) and the maximum MOX assembly burn-up moves from 42 to 52 GWd/t. This amount of burn-up is obtained from loading MOX assemblies for one additional annual cycle. Some, but limited, adaptations of the plant are necessary. In addition a new MOX fuel assembly has been designed to comply with the safety criteria taking into account the core management performances. These design improvements are based on the results of an important R and D program including numerous experimental tests and post-irradiated fuel examinations. In particular, envelope conditions compared to MOX Parity neutronic solicitations has been extensively investigated in order to get a full knowledge of the in reactor fuel behavior. Moreover, the operating conditions of the plant have been evaluated in many details and finally no important impact is anticipated. The industrial maturity of plutonium recycling activities is fully demonstrated and a new progress can be done with a complete confidence. The licensing process of 'MOX Parity' core management is in progress and its implementation on the 20 PWR is now expected at mid 2007. (author)

Thibault, Xavier [EDF Generation, Tour EDF Part Dieu - 9 rue des Cuirassiers B.P.3181 - 69402 Lyon Cedex 03 (France)

2006-07-01T23:59:59.000Z

385

Commercial Spent Nuclear Fuel Waste Package Misload Analysis  

SciTech Connect (OSTI)

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis Department. Before using the results of this calculation, the reader is cautioned to verify that the assumptions made in this calculation regarding the waste stream, the loading process, and the staging of the spent nuclear fuel assemblies are applicable.

A. Alsaed

2005-07-28T23:59:59.000Z

386

Commercial Spent Nuclear Fuel Waste Package Misload Analysis  

SciTech Connect (OSTI)

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis Department. Before using the results of this calculation, the reader is cautioned to verify that the assumptions made in this calculation regarding the waste stream, the loading process, and the staging of the spent nuclear fuel assemblies are applicable.

J.K. Knudson

2003-10-02T23:59:59.000Z

387

Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures  

SciTech Connect (OSTI)

The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

Jacob J. Jacobson; Steven J. Piet; Gretchen E. Matthern; David E. Shropshire; Robert F. Jeffers; A. M. Yacout; Tyler Schweitzer

2010-11-01T23:59:59.000Z

388

Mechanical Properties of Nuclear Fuel Surrogates using Picosecond Laser Ultrasonics  

SciTech Connect (OSTI)

Detailed understanding between microstructure evolution and mechanical properties is important for designing new high burnup nuclear fuels. In this presentation we discuss the use of picosecond ultrasonics to measure localize changes in mechanical properties of fuel surrogates. We develop measurement techniques that can be applied to investigate heterogeneous elastic properties caused by localize changes in chemistry, grain microstructure caused by recrystallization, and mechanical properties of small samples prepared using focused ion beam sample preparation. Emphasis is placed on understanding the relationship between microstructure and mechanical properties

David Hurley; Marat Khafizov; Farhad Farzbod; Eric Burgett

2013-05-01T23:59:59.000Z

389

Molten tin reprocessing of spent nuclear fuel elements  

DOE Patents [OSTI]

A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

Heckman, Richard A. (Castro Valley, CA)

1983-01-01T23:59:59.000Z

390

Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Annual progress report, May 1982-May 1983  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) is currently conducting research for the US Nuclear Regulatory Commission (NRC) on uranium recovery process wastes for both active and inactive operations. NRC-sponsored uranium recovery research at PNL is focused on NRC regulatory responsibilities for uranium-recovery operations: license active milling and in situ extraction operations; concur on the acceptability of DOE remedial-action plans for inactive sites; and license DOE to maintain inactive sites following remedial actions. PNL's program consists of four coordinated projects comprised of a program management task and nine research tasks that address the critical technical and safety issues for uranium recovery. Specifically, the projects endeavor to find and evaluate methods to: prevent erosion of tailings piles and prevent radon release from tailings piles; evaluate the effectiveness of interim stabilization techniques to prevent wind erosion and transport of dry tailings from active piles; estimate the dewatering and consolidation behavior of slurried tailings to promote early cover placement; design a cover-protection system to prevent erosion of the cover by expected environmental stresses; reduce seepage into ground water and prevent ground-water degradation; control solution movement and reaction with ground water in in-situ extraction operations; evaluate natural and induced restoration of ground water in in-situ extraction operations; and monitor releases to the environment from uranium recovery facilities.

Foley, M.G.; Opitz, B.E.; Deutsch, W.J.; Peterson, S.R.; Gee, G.W.; Serne, R.J.; Hartley, J.N.; Thomas, V.W.; Kalkwarf, D.R.; Walters, W.H.

1983-06-01T23:59:59.000Z

391

Standard test method for determination of impurities in nuclear grade uranium compounds by inductively coupled plasma mass spectrometry  

E-Print Network [OSTI]

1.1 This test method covers the determination of 67 elements in uranium dioxide samples and nuclear grade uranium compounds and solutions without matrix separation by inductively coupled plasma mass spectrometry (ICP-MS). The elements are listed in Table 1. These elements can also be determined in uranyl nitrate hexahydrate (UNH), uranium hexafluoride (UF6), triuranium octoxide (U3O8) and uranium trioxide (UO3) if these compounds are treated and converted to the same uranium concentration solution. 1.2 The elements boron, sodium, silicon, phosphorus, potassium, calcium and iron can be determined using different techniques. The analyst's instrumentation will determine which procedure is chosen for the analysis. 1.3 The test method for technetium-99 is given in Annex A1. 1.4 The values stated in SI units are to be regarded as standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

392

SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION  

SciTech Connect (OSTI)

With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel and four (4) spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data, such as the uncertainty in fuel exposure impact on reactivity and the pulse neutron data evaluation methodology, failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements supply useful information to analysts evaluating spent fuel subcriticality. The original purpose of the subcritical measurements was to validate computer model predictions that spent N Reactor fuel of a particular, typical exposure (2740 MWd/t) had a critical mass equal to twice that of unexposed fuel of the same type. The motivation for performing this work was driven by the need to increase spent fuel storage limits. These subcritical measurements confirmed the computer model predictions.

TOFFER, H.

2006-07-18T23:59:59.000Z

393

Financing Strategies For A Nuclear Fuel Cycle Facility  

SciTech Connect (OSTI)

To help meet the nation’s energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs computed for the government case. The uncertainty in operations, leading to lower than optimal processing rates (or annual plant throughput), is the most detrimental issue to achieving low unit costs. Conversely, lowering debt interest rates and the required return on investments can reduce costs for private industry.

David Shropshire; Sharon Chandler

2006-07-01T23:59:59.000Z

394

Experimental Observation of Nuclear Reactions in Palladium and Uranium - Possible Explanation by Hydrex Mode  

SciTech Connect (OSTI)

Experiments with uranium are presented that show a highly exothermal reaction, which can only be of nuclear origin. One striking point of these results is that they clearly show that what is being observed is not some kind of fusion reaction of the deuterium present (only exceedingly small amounts of it are present). This is a strong indication that hydrogen can trigger nuclear reactions that seem to involve the nuclei of the lattice (which would yield a fission-like pattern of products). Confronted with a situation where some experiments in the field yield a fusion-like pattern of products (CF experiments) and others a fissionlike one (LENR experiments), one can reasonably wonder whether one is not observing two aspects of the same phenomenon. Thus, it is proposed to describe CF and LENR reactions as essentially the same phenomenon based on the possible existence of a still hypothetical proton/electron resonance, which would catalyze fissionlike reactions with a neutron sink. Finally, a series of experiments is proposed to assess this hypothesis.

Dufour, J.; Murat, D.; Dufour, X.; Foos, J

2001-07-15T23:59:59.000Z

395

Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements  

SciTech Connect (OSTI)

In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8.0 References lists the references used for this document.

KLEM, M.J.

2000-10-18T23:59:59.000Z

396

Detachable connection for a nuclear reactor fuel assembly  

DOE Patents [OSTI]

A locking connection for releasably attaching a handling socket to the duct tube of a fuel assembly for a nuclear reactor. The connection comprises a load pad housing mechanically attached to the duct tube and a handling socket threadably secured within the housing. A retaining ring is interposed between the housing and the handling socket and is formed with a projection and depression engageable within a cavity and groove of the housing and handling socket, respectively, to form a detachable interlocked connection assembly.

Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA)

1986-01-01T23:59:59.000Z

397

National briefing summaries: Nuclear fuel cycle and waste management  

SciTech Connect (OSTI)

Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

1991-04-01T23:59:59.000Z

398

Effect of residual stress on the life prediction of dry storage canisters for used nuclear fuel  

E-Print Network [OSTI]

Used nuclear fuel dry storage canisters will likely be tasked with holding used nuclear fuel for a period longer than originally intended. Originally designed for 20 years, the storage time will likely approach 100 years. ...

Black, Bradley P. (Bradley Patrick)

2013-01-01T23:59:59.000Z

399

Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry  

SciTech Connect (OSTI)

An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

Biegalski, S R; Whitney, S M; Buchholz, B

2005-08-24T23:59:59.000Z

400

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents [OSTI]

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Ratavia, IL)

2007-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "uranium fuel nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents [OSTI]

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Batavia, IL)

2010-09-21T23:59:59.000Z

402