Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Depleted Uranium in Kosovo Post-Conflict Environmental Assessment  

E-Print Network [OSTI]

2.1 UNEP’s role in post-conflict environmental assessment................................................9 2.2 Depleted uranium............................................................10

Unep Scientific; Mission Kosovo

2

Final Environmental assessment for the Uranium Lease Management Program  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared a programmatic environmental assessment (EA) of the proposed action to continue leasing withdrawn lands and DOE-owned patented claims for the exploration and production of uranium and vanadium ores. The Domestic Uranium Program regulation, codified at Title 10, Part 760.1, of the US Code of Federal Regulations (CFR), gives DOE the flexibility to continue leasing these lands under the Uranium Lease Management Program (ULMP) if the agency determines that it is in its best interest to do so. A key element in determining what is in DOE`s ``best interest`` is the assessment of the environmental impacts that may be attributable to lease tract operations and associated activities. On the basis of the information and analyses presented in the EA for the ULMP, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined in the National Environmental Policy Act (NEPA) of 1969 (42 United States Code 4321 et seq.), as amended.Therefore, preparation of an environmental impact statement is not required for the ULMP,and DOE is issuing this Finding, of No Significant Impact (FONSI).

NONE

1995-07-01T23:59:59.000Z

3

Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands assessment (Assessment 2) are included as part of this EA. The following sections and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service.

Not Available

1993-09-01T23:59:59.000Z

4

Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

none,

1987-06-01T23:59:59.000Z

5

Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming  

SciTech Connect (OSTI)

This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met.

NONE

1997-02-01T23:59:59.000Z

6

Environmental assessment of remedial action at the Maybell uranium mill tailings site near Maybell, Colorado: Revision 2  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment and a floodplain/wetlands assessment are included as part of this EA. This report and attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

Not Available

1994-11-01T23:59:59.000Z

7

Final Uranium Leasing Program Programmatic Environmental Impact...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing...

8

Contents of environmental assessments prepared for the Uranium Mill Tailings Remedial Action Project  

SciTech Connect (OSTI)

This document presents two versions of the outline for the environmental assessments (EAS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the assessments; it lists only the titles of sections. The second is a guide to the contents of the assessments which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements (40 CFR Part 1501) and the definitions of terms (40-' CFR Part 1508) established by the Council on Environmental Quality as well as DOE order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements (10 CFR Part 1022). These requirements and definitions are implicitly part of the outline. The outline presented in this document will guide the preparation of EAs. The UMTRA Project EAs will be used in determining whether the DOE should prepare an environmental impact statement or a finding of no significant impact for the actions at each of the sites. If no impact statement is necessary, the environmental assessment for that site will aid the DOE in complying with the National Environmental Policy Act before beginning remedial actions. If an impact statement is needed, the assessment will aid its preparation. These purposes, established by the Council on Environmental Quality in 40 CFR Part 1508.9(a), have guided the construction of the outline presented in this document. Remedial actions at each site will include the cleanup of properties in the vicinity of the tailings sites that have been contaminated by the tailings.

Not Available

1986-01-01T23:59:59.000Z

9

Contents of environmental assessments prepared for the Uranium Mill Tailings Remedial Action Project  

SciTech Connect (OSTI)

This document presents two versions of the outline for the environmental assessments (EAS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the assessments; it lists only the titles of sections. The second is a guide to the contents of the assessments which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements (40 CFR Part 1501) and the definitions of terms (40-` CFR Part 1508) established by the Council on Environmental Quality as well as DOE order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements (10 CFR Part 1022). These requirements and definitions are implicitly part of the outline. The outline presented in this document will guide the preparation of EAs. The UMTRA Project EAs will be used in determining whether the DOE should prepare an environmental impact statement or a finding of no significant impact for the actions at each of the sites. If no impact statement is necessary, the environmental assessment for that site will aid the DOE in complying with the National Environmental Policy Act before beginning remedial actions. If an impact statement is needed, the assessment will aid its preparation. These purposes, established by the Council on Environmental Quality in 40 CFR Part 1508.9(a), have guided the construction of the outline presented in this document. Remedial actions at each site will include the cleanup of properties in the vicinity of the tailings sites that have been contaminated by the tailings.

Not Available

1986-01-01T23:59:59.000Z

10

Disposition of highly enriched uranium obtained from the Republic of Kazakhstan. Environmental assessment  

SciTech Connect (OSTI)

This EA assesses the potential environmental impacts associated with DOE`s proposal to transport 600 kg of Kazakhstand-origin HEU from Y-12 to a blending site (B&W Lynchburg or NFS Erwin), transport low-enriched UF6 blending stock from a gaseous diffusion plant to GE Wilmington and U oxide blending stock to the blending site, blending the HEU and uranium oxide blending stock to produce LEU in the form of uranyl nitrate, and transport the uranyl nitrate from the blending site to USEC Portsmouth.

NONE

1995-05-01T23:59:59.000Z

11

Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. [UMTRA Project  

SciTech Connect (OSTI)

This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.

Bachrach, A.; Hoopes, J.; Morycz, D. (Jacobs Engineering Group, Inc., Pasadena, CA (USA)); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. (Weston (Roy F.), Inc., Washington, DC (USA)); Rice, G. (Sergent, Hauskins and Beckwith (USA))

1984-12-01T23:59:59.000Z

12

Environmental assessment of remedial action at the Maybell Uranium Mill Tailings Site near Maybell, Colorado. Revision 1  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to evaluate the environmental impacts resulting from remedial action at the Maybell uranium mill tailings site near Maybell, Colorado. A biological assessment (Attachment 1) and a floodplain/wetlands attachments describe the proposed action, affected environment, and environmental impacts associated with the proposed remedial action, including impacts to threatened and endangered species listed or proposed for listing by the US Fish and Wildlife Service (FWS).

Not Available

1994-04-01T23:59:59.000Z

13

Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5  

SciTech Connect (OSTI)

Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers.

Not Available

1994-10-01T23:59:59.000Z

14

Environmental assessment of remedial action at the Spook uranium mill tailings site, Converse County, Wyoming  

SciTech Connect (OSTI)

This document assesses a joint remedial action proposed by the US Department of Energy Uranium Mill Tailings Remedial Action Project and the State of Wyoming Abandoned Mine Lands Program. The proposed action would consist of stabilizing uranium mill tailings and other associated contaminated materials within an inactive open pit mine on the site; backfilling the open pit with overburden materials that would act as a radon barrier and cover; and recontouring and seeding all disturbed areas to premining conditions. The impacts of no action at this site are addressed as the alternative to the proposed action. 74 refs., 12 figs., 19 tabs.

Not Available

1989-04-01T23:59:59.000Z

15

Environmental impact assessment of tailings dispersal from a uranium mine using toxicity testing protocols  

SciTech Connect (OSTI)

Toxicity testing is a means of establishing the environmental risk of uranium tailings release. It is valuable in designing tailings containment structures because it assists in setting acceptable levels of risk of the design. This paper presents details of toxicity tests of the tailings from Ranger Uranium Mine, Northern Territory, Australia. The results suggest that the non-radiological toxicity of the tailings is low. The environmental risk of a tailings release is more likely to be related to the physical impacts of the tailings, including infilling of billabongs and changes in the sedimentology of riparian ecosystems rather than their biogeochemical impact. Two major results were: (1) water from treatment with washed tailing fines was not toxic to Hydra viridissima, and (2) mixtures of washed tailings fines and natural floodplain sediment (overlying water or elutriates) were not toxic to Hydra viridissima or Moinodaphnia macleayi. 33 refs., 4 figs., 3 tabs.

Rippon, G.D. [Environmental Protection Agency, Canberra (Australia); Riley, S.J. [Univ. of Western Sydney-Nepean, Kingswood (Australia)

1996-12-01T23:59:59.000Z

16

Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0  

SciTech Connect (OSTI)

This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

NONE

1996-03-01T23:59:59.000Z

17

Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

Not Available

1994-05-01T23:59:59.000Z

18

Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

NONE

1995-01-01T23:59:59.000Z

19

Environmental assessment of remedial action at the Shiprock uranium mill tailings site, Shiprock, New Mexico: Volume 1, Text  

SciTech Connect (OSTI)

This document assesses and compares the environmental impacts of various alternatives for remedial action at the shiprock uranium mill tailings site located on the Navajo Indian Reservation, one mile south of Shiprock, New Mexico. The site contains 72 acres of tailings and four of the original mill buildings. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated soils into a recontoured pile. A seven-foot-thick radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Three other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a more remote location. The no action alternative is also assessed. 99 refs., 40 figs., 58 tabs.

Not Available

1984-05-01T23:59:59.000Z

20

Environmental Assessment of remedial action at the Ambrosia Lake uranium mill tailings site, Ambrosia Lake, New Mexico  

SciTech Connect (OSTI)

This document assesses and compares the environmental impacts of various alternatives for remedial action at the Ambrosia Lake uranium mill tailings site located near Ambrosia Lake, New Mexico. The designated site covers 196 acres and contains 111 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for th remedial action (40 CFR Part 192). Remedial action must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion protection measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at an undeveloped location. The no action alternative is also assessed in this document.

Not Available

1987-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3  

SciTech Connect (OSTI)

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

Not Available

1994-02-01T23:59:59.000Z

22

Depleted uranium risk assessment for Jefferson Proving Ground using data from environmental monitoring and site characterization. Final report  

SciTech Connect (OSTI)

This report documents the third risk assessment completed for the depleted uranium (DU) munitions testing range at Jefferson Proving Ground (JPG), Indiana, for the U.S. Army Test and Evaluation command. Jefferson Proving Ground was closed in 1995 under the Base Realignment and Closure Act and the testing mission was moved to Yuma Proving Ground. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This report integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options.

Ebinger, M.H.; Hansen, W.R.

1996-10-01T23:59:59.000Z

23

Environmental analysis and data report prepared for the environmental assessment of remedial action at the Lowman uranium mill tailings site near Lowman, Idaho. Final report  

SciTech Connect (OSTI)

This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lowman, Idaho. The Lowman EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the effects of their actions on the environment. It examines the short-term and the long-term effects of the US Department of Energy`s (DOE) proposed remedial action for the Lowman site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement will be prepared. If the impacts are not judged to be significant, the DOE may issue a Finding of No Significant Impact and implement the proposed action. The information and data presented in this environmental analyses and data report are for background purposes only and are not required as part of the NEPA decision-making process.

Not Available

1991-01-01T23:59:59.000Z

24

Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

Not Available

1994-09-01T23:59:59.000Z

25

Environmental Impact Assessment in Canadian  

E-Print Network [OSTI]

energy projects/pipelines) Canadian Nuclear Safety Commission (for uranium mining, nuclear facilities26/02/2014 1 Environmental Impact Assessment in Canadian Mine/Energy Development The Purpose

Boisvert, Jeff

26

Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado. Draft  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC).

NONE

1993-06-01T23:59:59.000Z

27

Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site  

SciTech Connect (OSTI)

Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

NONE

1999-06-01T23:59:59.000Z

28

Final Environmental Assessment of remedial action at the Falls City uranium mill tailings site, Falls City, Texas  

SciTech Connect (OSTI)

This environmental assessment (EA) is prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the impacts that their actions may have on the environment. This EA examines the short- and long-term effects of the DOE`s proposed remedial action for the Falls City tailings site. The no action alternative is also examined. The DOE will use the information and analyses presented here to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an EIS will be prepared. If the impacts are not judged to be significant, the DOE will issue an official ``Finding of No Significant Impact`` and implement the proposed action.

Not Available

1991-12-01T23:59:59.000Z

29

Uranium Mill Tailings Remedial Action Project 1993 Environmental Report  

SciTech Connect (OSTI)

This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

Not Available

1994-10-01T23:59:59.000Z

30

Engineering assessment of inactive uranium mill tailings  

SciTech Connect (OSTI)

The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

Not Available

1981-07-01T23:59:59.000Z

31

The Environmental Style: Writing Environmental Assessments and...  

Energy Savers [EERE]

The Environmental Style: Writing Environmental Assessments and Impact Statements The Environmental Style: Writing Environmental Assessments and Impact Statements A writing guide...

32

Environmental Impact Statements and Environmental Assessments...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Impact Statements and Environmental Assessments Status Chart Environmental Impact Statements and Environmental Assessments Status Chart The Status Chart provides the...

33

Environmental analysis and data report prepared for the environmental assessment of remedial action at the Lowman uranium mill tailings site near Lowman, Idaho. [Urnanium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lowman, Idaho. The Lowman EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the effects of their actions on the environment. It examines the short-term and the long-term effects of the US Department of Energy's (DOE) proposed remedial action for the Lowman site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement will be prepared. If the impacts are not judged to be significant, the DOE may issue a Finding of No Significant Impact and implement the proposed action. The information and data presented in this environmental analyses and data report are for background purposes only and are not required as part of the NEPA decision-making process.

Not Available

1991-01-01T23:59:59.000Z

34

Environmental Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects theEnvironment,EH&S682 Environmental

35

Environmental Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects theEnvironment,EH&S682 Environmental 728D

36

Environmental Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects theEnvironment,EH&S682 Environmental

37

Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1  

SciTech Connect (OSTI)

The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).

Not Available

1994-09-01T23:59:59.000Z

38

Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union  

SciTech Connect (OSTI)

The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

Not Available

1994-01-01T23:59:59.000Z

39

Uranium Mill Tailings Remedial Action Project 1994 environmental report  

SciTech Connect (OSTI)

This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

NONE

1995-08-01T23:59:59.000Z

40

Environmental Survey preliminary report, Portsmouth Uranium Enrichment Complex, Piketon, Ohio  

SciTech Connect (OSTI)

This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Portsmouth Uranium Enrichment Complex (PUEC), conducted August 4 through August 15, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team specialists are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at PUEC, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Argonne National Laboratory. When completed, the results will be incorporated into the PUEC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the PUEC Survey. 55 refs., 22 figs., 21 tabs.

Not Available

1987-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Proceedings of Workshop on Uranium Production Environmental Restoration: An exchange between the United States and Germany  

SciTech Connect (OSTI)

Scientists, engineers, elected officials, and industry regulators from the United, States and Germany met in Albuquerque, New Mexico, August 16--20, 1993, in the first joint international workshop to discuss uranium tailings remediation. Entitled ``Workshop on Uranium Production Environmental Restoration: An Exchange between the US and Germany,`` the meeting was hosted by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The goal of the workshop was to further understanding and communication on the uranium tailings cleanup projects in the US and Germany. Many communities around the world are faced with an environmental legacy -- enormous quantities of hazardous and low-level radioactive materials from the production of uranium used for energy and nuclear weapons. In 1978, the US Congress passed the Uranium Mill Tailings Radiation Control Act. Title I of the law established a program to assess the tailings at inactive uranium processing sites and provide a means for joint federal and state funding of the cleanup efforts at sites where all or substantially all of the uranium was produced for sale to a federal agency. The UMTRA Project is responsible for the cleanup of 24 sites in 10 states. Germany is facing nearly identical uranium cleanup problems and has established a cleanup project. At the workshop, participants had an opportunity to interact with a broad cross section of the environmental restoration and waste disposal community, discuss common concerns and problems, and develop a broader understanding of the issues. Abstracts are catalogued individually for the data base.

Not Available

1993-12-31T23:59:59.000Z

42

Including environmental concerns in management strategies for depleted uranium hexafluoride  

SciTech Connect (OSTI)

One of the major programs within the Office of Nuclear Energy, Science, and Technology of the US Department of Energy (DOE) is the depleted uranium hexafluoride (DUF{sub 6}) management program. The program is intended to find a long-term management strategy for the DUF{sub 6} that is currently stored in approximately 46,400 cylinders at Paducah, KY; Portsmouth, OH; and Oak Ridge, TN, USA. The program has four major components: technology assessment, engineering analysis, cost analysis, and the environmental impact statement (EIS). From the beginning of the program, the DOE has incorporated the environmental considerations into the process of strategy selection. Currently, the DOE has no preferred alternative. The results of the environmental impacts assessment from the EIS, as well as the results from the other components of the program, will be factored into the strategy selection process. In addition to the DOE`s current management plan, other alternatives continued storage, reuse, or disposal of depleted uranium, will be considered in the EIS. The EIS is expected to be completed and issued in its final form in the fall of 1997.

Goldberg, M. [Argonne National Laboratory, Washington, DC (United States); Avci, H.I. [Argonne National Lab., IL (United States); Bradley, C.E. [USDOE, Washington, DC (United States)

1995-12-31T23:59:59.000Z

43

Final Draft ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

the anticipated completion of the Constellation Programmatic Environmental Impact Statement in June 2008Final Draft ENVIRONMENTAL ASSESSMENT FOR THE CONSTRUCTION, MODIFICATION, AND OPERATION OF THREE CENTER, FL 32899 February 2007 #12;THIS PAGE INTENTIONALLY LEFT BLANK #12;FINAL DRAFT DRAFT ENVIRONMENTAL

Waliser, Duane E.

44

Economic Assessment Environmental impact  

E-Print Network [OSTI]

were: I. The Uranium Fuel Cycle Facilities 2. Underground Uranium Mines 3. Inactive Uranium Mill Uranium Mines The data regarding the control options was developed for Vol Tailings 4. Licensed Uranium Mill Tailings 5. High-Level Waste Disposal Facilities 6. Department of Energy

45

Environmental Assessment of  

E-Print Network [OSTI]

Environmental Assessment of Geologic Storage of CO2 December 2003 REVISED: March 2004 MIT LFEE 2003........................................................................................ 23 4.4 CO2 Pipeline Transportation........................................................................................ 16 4.2 Enhanced Oil Recovery (EOR

46

DOEEA-1203 Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

Radi o l ogi cal Control Manual low-level b u r i a l grounds 1 ow- 1 eve1 m i xed waste low-level waste National Environmental Policy Act o f 1969 performance assessment Resource...

47

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect (OSTI)

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

48

CRAD, Environmental Protection- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Environmental Compliance program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

49

EA-1207: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities

50

Environmental Health and Safety Assessment  

E-Print Network [OSTI]

Environmental Health and Safety Assessment Program Manual 7/15/2013 #12;Environmental Health/26/2013. The most recent version of this document is available electronically at: http://sp.ehs.cornell.edu/env/general-environmental-management/environmental.........................................................................................................................4 #12;Environmental Health and Safety Assessment Program Manual Approved by: (Barb English) Last

Pawlowski, Wojtek

51

"" EPAT# Risk Assessments Environmental Impact  

E-Print Network [OSTI]

"" EPAT# Risk Assessments Appendixes Environmental Impact Statement NESHAPS for Radionuclides for Hazardous Air Pollutants Risk Assessments Environmental Impact Statement for NESHAPS Radionuclides VOLUME 2 for Hazardous Air Pollutants EPA 520.1'1.-89-006,-2 Risk Assessments Environmental Impact Statement for NESHAPS

52

Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan  

SciTech Connect (OSTI)

The Uranium Mill Tallings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1 (Chapter 3, paragraph 2). The UMTRA EPIP covers the time period of November 9, 1992, through November 8, 1993. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

Not Available

1992-10-01T23:59:59.000Z

53

Uranium Mill Tailings Remedial Action Project environmental protection implementation plan  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

Not Available

1994-10-01T23:59:59.000Z

54

Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado  

SciTech Connect (OSTI)

This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

Not Available

1993-12-01T23:59:59.000Z

55

Technical Basis for Assessing Uranium Bioremediation Performance  

SciTech Connect (OSTI)

In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

2008-04-01T23:59:59.000Z

56

Bacterial influence on uranium oxidation reduction reactions : implications for environmental remediation and isotopic composition  

E-Print Network [OSTI]

The bacterial influence on the chemistry and speciation of uranium has some important impacts on the environment, and can be exploited usefully for the purposes of environmental remediation of uranium waste contamination. ...

Mullen, Lisa Maureen

2007-01-01T23:59:59.000Z

57

Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

Vollmer, A.T.

1993-10-01T23:59:59.000Z

58

Environmental Assessment (Nova Scotia, Canada)  

Broader source: Energy.gov [DOE]

Nova Scotia Environment conducts environmental assessments on projects and developments to ensure they adhere to the laws and regulations of the province. Developments required to undergo an...

59

Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report  

SciTech Connect (OSTI)

In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

NONE

1996-06-01T23:59:59.000Z

60

Contents of environmental impact statements prepared for the Uranium Mill Tailings Remedial Action Project  

SciTech Connect (OSTI)

This document presents two versions of the outline for the environmental impact statements (EISS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the statements; it lists only the titles of sections. The second is a guide to the contents of the statements which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements and the definitions of terms established by the Council on Environmental Quality as well as DOE Order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements. These requirements and definitions are implicity part of the outline. The outline presented in this document will guide the preparation of EISs Guidelines for preparation of environmental assessments for the UMTRA Project are available.

Not Available

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

TO: Reid Rosnick, Radiation Protection Division, Environmental Protection Agency FROM: Sarah M. Fields, Uranium Watch  

E-Print Network [OSTI]

: Sarah M. Fields, Uranium Watch DATE: November 25, 2009 RE: EPA REVIEW OF 40 CFR PART 61, SUBPART W -- RADON NESHAP FOR OPERATING URANIUM RECOVERY FACILITIES Below are some issues that the Environmental radionuclide NESHAPS in a timely manner. · Failure to properly implement radionuclide NESHAPS for uranium mills

62

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado  

SciTech Connect (OSTI)

This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

Not Available

1995-02-01T23:59:59.000Z

63

Rutgers University Environmental Assessment  

E-Print Network [OSTI]

2) GHG Conversion Tool which convert standard metrics for electricity, green energy, fuel use) pledging to become an environmental steward by implementing a number of green initiatives that would reduce States Environmental Protection Agency (EPA) and Rutgers University has resulted in reducing energy

Hanson, Stephen José

64

Rutgers University Environmental Assessment  

E-Print Network [OSTI]

for electricity, green energy, fuel use, chemical use, water use, and sustainable materials management into MTCO2e) pledging to become an environmental steward by implementing a number of green initiatives that would reduce States Environmental Protection Agency (EPA) and Rutgers University has resulted in reducing energy

Delgado, Mauricio

65

Carbon Park Environmental Impact Assessment  

E-Print Network [OSTI]

of offsetting the University's carbon footprint, promoting biodiversity and establishing easily maintained Carbon Park Environmental Impact Assessment A B.E.S.T. Project By, Adam Bond 2011 #12; Bishop's University Carbon Park

66

Final Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

and Environmental Laboratory in Idaho Falls, Idaho; and the Nevada Test Site, Nevada. Upgrading the existing facilities at TA-18 was also analyzed in the EIS as well as the No...

67

DOEEA-0984 Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

LSA ME1 MMI NAAQS NEPA NPDES NRC NRDWSF NRHP PCB PNL RCRA RCW RQ SSE TRU voc WHC Yr as low as reasonably achievable Comprehensive Environmental Response, Compensation. and...

68

Environmental Assessments (EA) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 12, 2015 EA-1976D: Draft Environmental Assessment Emera CNG, LLC Compressed Natural Gas Project, Florida February 10, 2015 EA-2002: Final Environmental Assessment...

69

Environmental Impact Assessment (New Brunswick, Canada)  

Broader source: Energy.gov [DOE]

Environmental Impact Assessment (EIA) is a process through which the environmental impacts potentially resulting from a proposed project are identified and assessed early in the planning process....

70

Risk assessment in environmental management  

SciTech Connect (OSTI)

This book is a straightforward exposition of US EPA-based procedures for the risk assessment and risk management of contaminated land, interwoven with discussions on some of the key fundamentals on the fate and transport of chemicals in the environment and the toxic action of environmental chemicals. The book is logically structured, commencing with a general overview of the principles of risk assessment and the interface with environmental legislation. There follows an introduction to environmental fate and transport, modeling, toxicology and uncertainty analysis, and a discussion of the elements of a risk assessment (site characterization, exposure analysis, toxic action and risk characterization), intake of a chemical with its environmental concentration and activity-related parameters such as inhalation rate and exposure time. The book concludes with a discussion on the derivation of risk-based action levels and remediation goals.

Asante-Duah, D.K.

1998-07-01T23:59:59.000Z

71

Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah  

SciTech Connect (OSTI)

This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

72

Contents of environmental impact statements prepared for the Uranium Mill Tailings Remedial Action Project. [Uranium Mill Tailings Remedial Action (UMTRA) Project  

SciTech Connect (OSTI)

This document presents two versions of the outline for the environmental impact statements (EISS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the statements; it lists only the titles of sections. The second is a guide to the contents of the statements which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements and the definitions of terms established by the Council on Environmental Quality as well as DOE Order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements. These requirements and definitions are implicity part of the outline. The outline presented in this document will guide the preparation of EISs Guidelines for preparation of environmental assessments for the UMTRA Project are available.

Not Available

1986-01-01T23:59:59.000Z

73

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming  

SciTech Connect (OSTI)

This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

74

Draft Environmental Assessment  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA -National RenewableDonald E. Adcock -Dr. VincentEnvironmental

75

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon  

SciTech Connect (OSTI)

This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

Not Available

1994-10-01T23:59:59.000Z

76

E-Print Network 3.0 - assessing uranium bioremediation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mountain Project, US EPA Collection: Environmental Sciences and Ecology 75 Mathematical Geology, Vol. 33, No. 1, 2001 Modeling Uranium Transport in Koongarra, Summary: waste...

77

Assessment of enriched uranium storage safety issues at the Oak Ridge Y-12 Plant  

SciTech Connect (OSTI)

This document is an assessment of the technical safety issues pertaining to the storage of EU at the Oak Ridge Y-12 Plant. The purpose of the assessment is to serve as the basis for defining the technical standards for storage of EU at Y-12. A formal assessment of the Y-12 materials acceptance criteria for EU is currently being conducted by a task force cochaired by B. G. Eddy of DOE Oak Ridge Operations and S. 0. Cox of Y-12 Defense Programs. The mission of this technical assessment for storage is obviously dependent on results of the acceptance assessment. Clearly, the two efforts require coordination to avoid inconsistencies. In addition, both these Assessments must be consistent with the Environmental Assessment for EU storage at Y-12.1 Both the Storage Assessment and the Criteria for Acceptance must take cognizance of the fact that a portion of the EU to be submitted for storage in the future is expected to be derived from foreign sources and to include previously irradiated uranium containing significant levels of transuranics, radioactive daughter products, and unstable uranium isotopes that do not occur in the EU stream of the DOE weapons complex. National security considerations may dictate that these materials be accepted despite the fact that they fail to conform to the Acceptance Criteria. This document will attempt to address the complexities inherent in this situation.

NONE

1996-08-01T23:59:59.000Z

78

EA-1123: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

Transfer of Normal and Low-Enriched Uranium Billets to the United Kingdom, Hanford Site, Richland, Washington

79

EA-1393: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

Implementation of a Comprehensive Management Program for the Storage, Transportation, and Disposition of Potentially Reusable Uranium Materials

80

Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1  

SciTech Connect (OSTI)

This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

Not Available

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Independent Oversight Assessment, DOE Office of Environmental...  

Broader source: Energy.gov (indexed) [DOE]

of Environmental Management Headquarters - November 2012 November 2012 Assessment of Safety Culture at the U.S. Department of Energy Office of Environmental Management...

82

EA-0931: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-0931: Final Environmental Assessment Center for Molecular Electronics University of Missouri, St. Louis This Environmental Assessment evaluates the...

83

Feasibility study on consolidation of Fernald Environmental Management Project depleted uranium materials  

SciTech Connect (OSTI)

In 1991, the DOE made a decision to close the FMPC located in Fernald, Ohio, and end its production mission. The site was renamed FEMP to reflect Fernald`s mission change from uranium production to environmental restoration. As a result of this change, the inventory of strategic uranium materials maintained at Fernald by DOE DP will need to be relocated to other DOE sites. Although considered a liability to the Fernald Plant due to its current D and D mission, the FEMP DU represents a potentially valuable DOE resource. Recognizing its value, it may be important for the DOE to consolidate the material at one site and place it in a safe long-term storage condition until a future DOE programmatic requirement materializes. In August 1995, the DOE Office of Nuclear Weapons Management requested, Lockheed Martin Energy Systems (LMES) to assess the feasibility of consolidating the FEMP DU materials at the Oak Ridge Reservation (ORR). This feasibility study examines various phases associated with the consolidation of the FEMP DU at the ORR. If useful short-term applications for the DU fail to materialize, then long-term storage (up to 50 years) would need to be provided. Phases examined in this report include DU material value; potential uses; sampling; packaging and transportation; material control and accountability; environmental, health and safety issues; storage; project management; noneconomic factors; schedule; and cost.

NONE

1995-11-30T23:59:59.000Z

84

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 1  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation. These Appendices contain the Federal Register Notice, comments on evaluation factors, independent technical reviewers resumes, independent technical reviewers manual, and technology information packages.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

85

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 2  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

86

Uranium production in Eastern Europe and its environmental impact: A literature survey  

SciTech Connect (OSTI)

A survey of the unclassified literature was made to determine the location, technology, throughput, and environmental status of the uranium mines and mills that have historically made up uranium production capability in Eastern Europe. Included in that survey were the following countries: the former German Democratic Republic (GDR), now part of a reunited Germany, Czechoslovakia, Romania, Bulgaria, Hungary, and Poland. Until recently, uranium was being produced in five of these six countries (Poland stopped production 20 years ago). The production began directly after World War II in support of weapons production in the Soviet Union. Eastern Europe has produced about two-thirds of the total Soviet uranium inventory historically, or about 330,000 metric tonnes of uranium (NM) [730 million pounds of uranium (MlbU)l out of a total of about 490,000 MTU (1090 NlbU).

Norman, R.E.

1993-04-01T23:59:59.000Z

87

Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado  

SciTech Connect (OSTI)

This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

Not Available

1994-11-01T23:59:59.000Z

88

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania  

SciTech Connect (OSTI)

This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

Not Available

1994-09-01T23:59:59.000Z

89

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Tuba City, Arizona  

SciTech Connect (OSTI)

This document evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium mill site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1990 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine what remedial actions are necessary for contaminated ground water at the site.

Not Available

1994-06-01T23:59:59.000Z

90

Engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico  

SciTech Connect (OSTI)

Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing.The cost of the uranium recovered would be about $87/lb of U/sub 3/O/sub 8/ by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions.

none,

1981-10-01T23:59:59.000Z

91

Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado  

SciTech Connect (OSTI)

Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.

none,

1981-09-01T23:59:59.000Z

92

Environmental assessment of electricity scenarios with Life Cycle Assessment  

E-Print Network [OSTI]

been assessed with Life Cycle Assessment (LCA) studies [1], [2], [3] and [4]. However environmentalEnvironmental assessment of electricity scenarios with Life Cycle Assessment Touria Larbi1 impacts assessment of scenarios is very rarely evaluated through a life cycle perspective partly because

Paris-Sud XI, Université de

93

EIS-0240: Final Environmental Impact Statement | Department of...  

Broader source: Energy.gov (indexed) [DOE]

40: Final Environmental Impact Statement EIS-0240: Final Environmental Impact Statement Disposition of Surplus Highly Enriched Uranium This document assesses the environmental...

94

Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado  

SciTech Connect (OSTI)

Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U/sub 3/O/sub 8/ whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future.

none,

1981-09-01T23:59:59.000Z

95

Ann Williamson, Deputy Director, Office of Environmental Assessment Mike Cox, Manager, Risk Assessment Unit, Office of Environmental Assessment  

E-Print Network [OSTI]

Ann Williamson, Deputy Director, Office of Environmental Assessment Mike Cox, Manager, Risk, WA Ann Williamson and Mike Cox, EPA Region 10 Office of Environmental Assessment, will be presenting

96

The efficiency of environmental impact assessments relating to noise issues  

E-Print Network [OSTI]

The efficiency of environmental impact assessments relating to noise issues Z. Krukle University of environmental impact assessments (EIA) relating to noise issues. The goal is attained through evaluation, effectiveness, environmental impact assessment, noise 1 Introduction Environmental impact assessment (EIA

Paris-Sud XI, Université de

97

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

98

Live Fire Range Environmental Assessment  

SciTech Connect (OSTI)

The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

None

1993-08-01T23:59:59.000Z

99

EA-1836: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment EA-1836: Final Environmental Assessment Norwich Cogeneration Initiative, Norwich, Connecticut The DOE National Energy Technology Laboratory (NETL)...

100

EA-1138: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EA-1138: Final Environmental Assessment Proposed Energy Conservation Standards for Refrigerators, Refrigerator-Freezers, and Freezers This Environmental Assessment (EA)...

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EA-1705: Draft Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Draft Environmental Assessment EA-1705: Draft Environmental Assessment Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter...

102

Reduced-Enrichment Research and Test Reactor Program: Environmental assessment  

SciTech Connect (OSTI)

The principal program objective and principal part of the proposed action is to improve the proliferation resistance of nuclear fuels used in research and test reactors by providing the technical means (through technical development, design, and testing) for reducing the uranium enrichment requirements of these fuels to substantially less than the 90 to 93% enrichment currently used. Operator acceptance of the reduced-enrichment-uranium (REU) fuel alternative will require minimizing of reactor performance reduction, fuel cycle cost increases, the number of new safety and licensing issues raised, and reactor and facility modifications. The other part of the proposed action is to assure the capability for commercial production and supply of REU fuel for use both in the US and abroad. The RERTR Program scope is limited to generic design studies, technical support to reactor operating organizations in preparing for conversions to REU fuels, fuel development, fuel demonstrations, and technical support for commercialization of REU fuels. This environmental assessment addresses the environmental consequences of RERTR Program activities and of specific conversions of typical reactors (the Ford Nuclear Reactor and one or two other to-be-designated demonstrations) to REU-fuel cycles, including domestic and international shipments of enriched uranium pertinent to the conduct of RERTR Program activities.

Not Available

1980-05-01T23:59:59.000Z

103

Integrated Environmental Assessment Part III: Exposure Assessment  

E-Print Network [OSTI]

issues such as life cycle assessment (LCA) fosters the needlife-cycle impact assessment (LCIA) process within in LCA is

McKone, Thomas E.; Small, Mitchell J.

2006-01-01T23:59:59.000Z

104

Assessments of long-term uranium supply availability  

E-Print Network [OSTI]

The future viability of nuclear power will depend on the long-term availability of uranium. A two-form uranium supply model was used to estimate the date at which peak production will occur. The model assumes a constant ...

Zaterman, Daniel R

2009-01-01T23:59:59.000Z

105

Environmental assessment and social justice  

SciTech Connect (OSTI)

The purpose of this document is to describe an approach to assessing environmental justice issues at the start of proposed project. It is a structural approach to screening using readily available census data and commercial products that emphasizes the ability to replicate results and provide systematic data that can be used to identify spatial inequities. While our discussion of the methodology addresses only public health and safety issues related to certain minority and cohort sub-groups, systematic use of methodology could provide a valuable screening tool for identifying impacts particular to low-income groups. While the assumptions can be questioned as to applicability, they are based both on theory and practical knowledge.

Vogt, B.M.; Sorensen, J.H. [Oak Ridge National Lab., TN (United States); Hardee, H. [Tennessee Univ., Knoxville, TN (United States)

1995-03-01T23:59:59.000Z

106

Military use of depleted uranium assessment of prolonged population exposure  

E-Print Network [OSTI]

This work is an exposure assessment for a population living in an area contaminated by use of depleted uranium (DU) weapons. RESRAD 5.91 code is used to evaluate the average effective dose delivered from 1, 10, 20 cm depths of contaminated soil, in a residential farmer scenario. Critical pathway and group are identified in soil inhalation or ingestion and children playing with the soil, respectively. From available information on DU released on targeted sites, both critical and average exposure can leave to toxicological hazards; annual dose limit for population can be exceeded on short-term period (years) for soil inhalation. As a consequence, in targeted sites cleaning up must be planned on the basis of measured concentration, when available, while special cautions have to be adopted altogether to reduce unaware exposures, taking into account the amount of the avertable dose.

Giannardi, C

2001-01-01T23:59:59.000Z

107

Bureau of Land Management's Environmental Assessment | Department...  

Broader source: Energy.gov (indexed) [DOE]

Management's Environmental Assessment - T G Power LLC Hot Sulphur Springs Transmission Line, 120 kV Electric Power Line, Northern Independence Valley, Elko County, Nevada Bureau...

108

BIOMEDICAL AND HEALTH Assessing the Environmental, Health  

E-Print Network [OSTI]

BIOMEDICAL AND HEALTH Assessing the Environmental, Health and Safety Impact of Nanoparticles- proaching the sensitivity limit for most instruments. #12;BIOMEDICAL AND HEALTH A colloidal nanoparticle

Magee, Joseph W.

109

EA-1183: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

183: Final Environmental Assessment EA-1183: Final Environmental Assessment Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska This EA evaluates the environmental...

110

EA-1146: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

46: Final Environmental Assessment EA-1146: Final Environmental Assessment Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado This EA...

111

EA-1247: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

247: Final Environmental Assessment EA-1247: Final Environmental Assessment Electrical Power System Upgrades at Los Alamos National Laboratory This EA evaluates the environmental...

112

EA-1097: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

097: Final Environmental Assessment EA-1097: Final Environmental Assessment Solid waste Disposal - Nevada Test Site, Nye County, Nevada This EA evaluates the environmental impacts...

113

EA-1190: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0: Final Environmental Assessment EA-1190: Final Environmental Assessment Wastewater Treatment Capability Upgrade This EA evaluates the environmental impacts for the proposed...

114

EA-0965: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0965: Final Environmental Assessment EA-0965: Final Environmental Assessment Cancer Research Center Indiana University School of Medicine This EA evaluates the environmental...

115

EA-1178: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

178: Final Environmental Assessment EA-1178: Final Environmental Assessment 300 Area Steam Plant Replacement, Hanford Site, Richland, Washington This EA evaluates the environmental...

116

EA-0941: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment EA-0941: Final Environmental Assessment Lower Yakima Valley Wetlands and Riparian Restoration Project This EA evaluates the environmental impacts of the...

117

Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado  

SciTech Connect (OSTI)

Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

NONE

1996-03-01T23:59:59.000Z

118

Environmental Assessment of Ground Water Compliance at the Durango, Colorado, UMTRA Project Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is proposing a ground water compliance strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Durango, Colorado. DOE has prepared this environmental assessment to provide the public with information concerning the potential effects of this proposed strategy.

N /A

2002-11-29T23:59:59.000Z

119

From rum jungle to Wismut-reducing the environmental impact of uranium mining and milling  

SciTech Connect (OSTI)

Australia has a long history of uranium mining. In the early days, little attention was given to environmental matters and considerable pollution occurred. Ansto has been involved in rehabilitation of a number of the early uranium mining sites, from Rum Jungle in Australia`s Northern Territory to Wismut in Germany, and is working with current producers to minimise the environmental impact of their operations. Ansto`s expertise is extensive and includes, inter alia, amelioration of acid mine drainage, radon measurement and control, treatment of mill wastes, management of tailings, monitoring of seepage plumes, mathematical modelling of pollutant transport and biological impacts in a tropical environment.

Zuk, W.M.; Jeffree, R.A.; Levins, D.M. [and others

1994-12-31T23:59:59.000Z

120

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1  

SciTech Connect (OSTI)

For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.

NONE

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EA-1083: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

New Silt/Clay Source Development and Use at the Idaho National Engineering and Environmental Laboratory

122

Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium  

SciTech Connect (OSTI)

Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and exposure to the public as the result of normal operations and accidents that occurred at the INEEL. As a result of these studies, the maximum effective dose equivalent from site activities did not exceed seventeen percent of the natural background in Eastern Idaho. There was no year in which the radiation dose to the public exceeded the applicable limits for that year. Worker exposure to recycled uranium was minimized by engineering features that reduced the possibility of direct exposure.

L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

2000-09-01T23:59:59.000Z

123

Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1  

SciTech Connect (OSTI)

This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

Not Available

1994-08-01T23:59:59.000Z

124

Environmental Impact Assessment Biologist Biologist R24  

E-Print Network [OSTI]

Environmental Impact Assessment Biologist Biologist R24 Annual Salary: $58,332.28 - $66,652.94 Please note: While the current vacancy exists in Prince George or Smithers*, Environmental Impact, but at a lower classification. A great opportunity to make an impact on the province's environmental protection

Northern British Columbia, University of

125

Assessment of Controlling Processes for Field-Scale Uranium Reactive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore...

126

Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft  

SciTech Connect (OSTI)

This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

Not Available

1993-09-01T23:59:59.000Z

127

Environmental monitoring for detection of uranium enrichment operations: Comparison of LEU and HEU facilities  

SciTech Connect (OSTI)

In 1994, the International Atomic Energy Agency (IAEA) initiated an ambitious program of worldwide field trials to evaluate the utility of environmental monitoring for safeguards. Part of this program involved two extensive United States field trials conducted at the large uranium enrichment facilities. The Paducah operation involves a large low-enriched uranium (LEU) gaseous diffusion plant while the Portsmouth facilities include a large gaseous diffusion plant that has produced both LEU and high-enriched uranium (HEU) as well as an LEU centrifuge facility. As a result of the Energy Policy Act of 1992, management of the uranium enrichment operations was assumed by the US Enrichment Corporation (USEC). The facilities are operated under contract by Martin Marietta Utility Services. Martin Marietta Energy Systems manages the environmental restoration and waste management programs at Portsmouth and Paducah for DOE. These field trials were conducted. Samples included swipes from inside and outside process buildings, vegetation and soil samples taken from locations up to 8 km from main sites, and hydrologic samples taken on the sites and at varying distances from the sites. Analytical results from bulk analysis were obtained using high abundance sensitivity thermal ionization mm spectrometers (TIMS). Uranium isotopics altered from the normal background percentages were found for all the sample types listed above, even on vegetation 5 km from one of the enrichment facilities. The results from these field trials demonstrate that dilution by natural background uranium does not remove from environmental samples the distinctive signatures that are characteristic of enrichment operations. Data from swipe samples taken within the enrichment facilities were particularly revealing. Particulate analysis of these swipes provided a detailed ``history`` of both facilities, including the assays of the end product and tails for both facilities.

Hembree, D.M. Jr.; Carter, J.A.; Ross, H.H.

1995-03-01T23:59:59.000Z

128

EA-1310: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

Decontamination and Dismantlement of the Advanced Reactivity Measurement Facility and Coupled Fast Reactivity Measurements Facility at the Idaho National Engineering and Environmental Laboratory

129

EA-1736: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

Expansion of the Sanitary Effluent Reclamation Facility and Environmental Restoration of Reach S-2 of Sandia Canyon at Los Alamos National Laboratory, Los Alamos, New Mexico

130

Summary of the engineering assessment of inactive uranium-mill tailings: Canonsburg Site, Canonsburg, Pennsylvania  

SciTech Connect (OSTI)

Ford, Bacon and Davis Utah Inc. has evaluated the Canonsburg site in order to assess the problems resulting from the existence of radioactive residues at Canonsburg, Pennsylvania. This engineering assessment has included the preparation of topographic maps, radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the approximately 300,000 tons of tailings and contaminated soil at the Canonsburg site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings and contaminated materials to a remote disposal site and decontamination of the Canonsburg site (Options II through IV). Cost estimates for the four options range from $23,244,000 for stabilization in-place, to $27,052,000 for disposal at a distance of about 17 mi. Three principal alternatives for the reprocessing of the Canonsburg tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. As required by Public Law 95-604, under whose auspices this project is conducted, the US Department of Energy has solicited expressions of interest in reprocessing the tailings and residues at the Canonsburg site for uranium recovery. Since no such interest was demonstrated, no effort has been made to estimate the value of the residual uranium resource at the Canonsburg site.

Not Available

1982-04-01T23:59:59.000Z

131

EA-1631: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

for Beacon Power Corporation Frequency Regulation Facility in Stephentown, New York The environmental assessment examines the potential environmental impacts associated...

132

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1  

SciTech Connect (OSTI)

This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

Not Available

1994-04-01T23:59:59.000Z

133

ENVIRONMENTAL ASSESSMENT WASTE WATER TREATMENT MODIFICATIONS  

E-Print Network [OSTI]

ENVIRONMENTAL ASSESSMENT FOR WASTE WATER TREATMENT MODIFICATIONS FOR IMPROVED EFFLUENT COMPLIANCE................................................38 5.3.4 Effects of the Enhanced Treatment Alternative on Water Resources........................39 5.................................................................................................. 21 4.3 Alternative 3 ­ Enhanced Effluent Treatment

Ohta, Shigemi

134

ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW/ FINAL REGULATORY FLEXIBILITY ANALYSIS  

E-Print Network [OSTI]

ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW/ FINAL REGULATORY FLEXIBILITY ANALYSIS.0 NEPA REQUIREMENTS: ENVIRONMENTAL IMPACTS OF THE ALTERNATIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Environmental Impacts of the Alternatives

135

EA-1603: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

03: Final Environmental Assessment EA-1603: Final Environmental Assessment Expansion of Permitted Land and Operations at the 9940 Complex and Thunder Range at Sandia National...

136

EA-1170: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

70: Final Environmental Assessment EA-1170: Final Environmental Assessment Area 5 Radioactive Waste Management Site Access Improvement at the Nevada Test Site The Department of...

137

EA-1117: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment EA-1117: Final Environmental Assessment Management of Spent Nuclear Fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee This EA evaluates the...

138

EA-0923: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-0923: Final Environmental Assessment Winnett School District Boiler Replacement Project This EA evaluates the environmental impacts of the proposal to...

139

EA-0073: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EA-0073: Final Environmental Assessment EA-0073: Final Environmental Assessment Yucca Mountain Site, Nevada Research and Development Area, Nevada The Nuclear Waste Policy Act of...

140

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Environmental Assessment OTEC Pilot Plant. Prepared forDraft Environmental Assessment Mini-OTEC Second Deployment.matic EA are within the OTEC technology and include the

Sands, M.Dale

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EA-1008: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

Assessment EA-1008: Final Environmental Assessment Continued Development of Naval Petroleum Reserve No. 3 (Sitewide) This EA evaluates the environmental impacts of the proposal...

142

EA-1866: Final Environmental Assessment and Finding of No Significant...  

Broader source: Energy.gov (indexed) [DOE]

Impact EA-1866: Final Environmental Assessment and Finding of No Significant Impact Argonne National Laboratory Modernization Planning This environmental assessment (EA) has...

143

DOE Signs Notice to Prepare Environmental Assessment on Proposed...  

Broader source: Energy.gov (indexed) [DOE]

DOE Signs Notice to Prepare Environmental Assessment on Proposed Project with Germany DOE Signs Notice to Prepare Environmental Assessment on Proposed Project with Germany June 30,...

144

Final Environmental Assessment of the National Renewable Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Final Environmental Assessment of the National Renewable Energy Laboratory's (NREL) South Table Mountain Complex (DOEEA 1440) Final Environmental Assessment of the National...

145

Environmental Assessment of Plug-In Hybrid Electric Vehicles...  

Energy Savers [EERE]

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:...

146

Public Invited to Comment on Draft Environmental Assessment for...  

Office of Environmental Management (EM)

Environmental Assessment for the Resumption of Transient Testing of Nuclear Fuels and Materials Public Invited to Comment on Draft Environmental Assessment for the Resumption of...

147

EA-1344: Final Environmental Assessment | Department of Energy  

Office of Environmental Management (EM)

Environmental Assessment EA-1344: Final Environmental Assessment Proposed Energy Conservation Standards for Residential Clothes Washers The Energy Policy and Conservation Act,...

148

EA-1407: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment EA-1407: Final Environmental Assessment Proposed TA-16 Engineering Complex Refurbishment and Consolidation at Los Alamos National Laboratory, Los...

149

EA-1588: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment EA-1588: Final Environmental Assessment Sacramento Municipal Utility District 230-kV Folsom Dam Transmission Line Relocation The U.S. Army Corps of...

150

Policy Flash 2014-19 Electronic Products Environmental Assessment...  

Broader source: Energy.gov (indexed) [DOE]

19 Electronic Products Environmental Assessment Tool (EPEAT) Policy Flash 2014-19 Electronic Products Environmental Assessment Tool (EPEAT) Questions concerning this policy flash...

151

EA-1092: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

activities. EA-1092-FEA-1995.pdf More Documents & Publications EA-1001: Final Environmental Assessment EA-1053: Final Environmental Assessment EIS-0026: Mitigation Action Plan...

152

Special Resource Study/Environmental Assessment for Manhattan...  

Energy Savers [EERE]

Special Resource StudyEnvironmental Assessment for Manhattan Project Sites, DOEEA-1868 (September 2010) Special Resource StudyEnvironmental Assessment for Manhattan Project...

153

EA-1635: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

35: Final Environmental Assessment EA-1635: Final Environmental Assessment Williston to Tioga Transmission Line Project Pre-Approval Review Basin Electric Power Cooperative (BEPC)...

154

EA-1698: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment EA-1698: Final Environmental Assessment Baldwin Wind Energy Center The Baldwin Wind Energy Center (Project or Proposed Action) is a wind generation...

155

EA-1465: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

65: Final Environmental Assessment EA-1465: Final Environmental Assessment Wind Energy Center EdgeleyKulm Project, North Dakota The proposed EdgeleyKulm Project is a 21-megawatt...

156

EA-1542: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment EA-1542: Final Environmental Assessment Burleigh County Wind Energy Center The Burleigh County Wind Energy Center is a wind generation project proposed...

157

EA-1833: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment EA-1833: Final Environmental Assessment City of El Dorado Wind Energy Project, El Dorado, Butler County, Kansas DOE has provided an Energy Efficiency and...

158

EA-1832: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment EA-1832: Final Environmental Assessment Rainier Biogas LLC Community Anaerobic Manure Digester, Enumclaw, Washington This project is located...

159

EA-1797: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment EA-1797: Final Environmental Assessment Loan Guarantee for the Agua Caliente Solar Project in Yuma County, Arizona The U.S. Department of Energy...

160

EA-1692: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment EA-1692: Final Environmental Assessment Construction and Start-Up of an Activated Carbon Manufacturing Facility in Red River Parish, Louisiana The...

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Engineering assessment of inactive uranium mill tailings, Belfield Site, Belfield, North Dakota  

SciTech Connect (OSTI)

Ford, Bacon and Davis Utah Inc. has evaluated the Belfield site in order to assess the problems resulting from the existence of radiactive ash at Belfield, South Dakota. This engineering assessment has included drilling of boreholes and radiometric measurements sufficient to determine areas and volumes of ash and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actons. Radon gas released from the 55,600 tons of ash and contaminated material at the Belfield site constitutes a significant environmental impact, although external gamma radiation also is a factor. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material, to removal of the ash and contaminated materials to remote disposal sites, and decontamination of the Belfield site. Cost estimates for the four options range from about $1,500,000 for stabilization in-place, to about $2,500,000 for disposal at a distance of about 17 mi from the Belfield site. Reprocessing the ash for uranium recovery is not feasible because of the extremely small amount of material available at the site and because of its low U/sub 3/O/sub 8/ content.

Not Available

1981-11-01T23:59:59.000Z

162

Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor  

SciTech Connect (OSTI)

A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

1980-01-01T23:59:59.000Z

163

U.S. Environmental Protection Agency Evaluation of Uranium Mining TENORM Wastes-Characteristics, Occurrence, and Risks  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency is completing a multi year effort to issue technical reports and obtain stakeholder views on future programs to mitigate potential hazards associated with uranium mining Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM). The technical reports are the most comprehensive issued by the Agency on this topic, and should have utility for reclamation of abandoned uranium mines, as well as providing information for new mines proposed by the uranium mining industry. This presentation will provide principal results of the three technical reports issued, and elements of the proposed EPA program for uranium mining TENORM. (authors)

Setlow, L.W. [U.S. Environmental Protection Agency, Office of Radiation and Indoor Air (6608J), Washington, DC (United States); Peake, R.T. [U.S. Environmental Protection Agency, Office of Radiation and Indoor Air (6608J), Washington, DC (United States)

2007-07-01T23:59:59.000Z

164

Offshore Wind Power Farm Environmental Impact Assessment  

E-Print Network [OSTI]

Horns Rev Offshore Wind Power Farm Environmental Impact Assessment on Water Quality #12;Prepared with a planned 150 MW offshore wind farm at Horns Rev, an assessment was made of the effects the wind farm would for the preparation of EIA studies for offshore wind farms." Horns Rev is situated off BlĂĄvands Huk, which is Denmark

165

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

NONE

1995-09-01T23:59:59.000Z

166

MILDOS - A Computer Program for Calculating Environmental Radiation Doses from Uranium Recovery Operations  

SciTech Connect (OSTI)

The MILDOS Computer Code estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This code is multi-purposed and can be used to evaluate population doses for NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. Emissions of radioactive materials from fixed point source locations and from area sources are modeled using a sector-averaged Gaussian plume dispersion model, which utilizes user-provided wind frequency data. Mechanisms such as deposition of particulates, resuspension. radioactive decay and ingrowth of daughter radionuclides are included in the transport model. Annual average air concentrations are computed, from which subsequent impacts to humans through various pathways are computed. Ground surface concentrations are estimated from deposition buildup and ingrowth of radioactive daughters. The surface concentrations are modified by radioactive decay, weathering and other environmental processes. The MILDOS Computer Code allows the user to vary the emission sources as a step function of time by adjustinq the emission rates. which includes shutting them off completely. Thus the results of a computer run can be made to reflect changing processes throughout the facility's operational lifetime. The pathways considered for individual dose commitments and for population impacts are: • Inhalation • External exposure from ground concentrations • External exposure from cloud immersion • Ingestioo of vegetables • Ingestion of meat • Ingestion of milk • Dose commitments are calculated using dose conversion factors, which are ultimately based on recommendations of the International Commission on Radiological Protection (ICRP). These factors are fixed internally in the code, and are not part of the input option. Dose commitments which are available from the code are as follows: • Individual dose commitments for use in predictive 40 CFR 190 compliance evaluations (Radon and short-lived daughters are excluded) • Total individual dose commitments (impacts from all available radionuclides are considered) • Annual population dose commitments (regional, extraregional, total and cummulative). This model is primarily designed for uranium mill facilities, and should not be used for operations with different radionuclides or processes.

Strange, D. L.; Bander, T. J.

1981-04-01T23:59:59.000Z

167

Environmental Compliance Audit& Assessment Program Manual  

SciTech Connect (OSTI)

This document describes the elements, schedule, roles, and responsibilities of the Lawrence Berkeley National Laboratory (LBNL) Environmental Compliance Audit & Assessment Program (ECAAP). The ECAAP has been developed to meet the requirements of DOE Order 450.1A,1 and Executive Order 13423.2 These referenced Orders stipulate that government agencies must develop environmental compliance audit programs to monitor and improve compliance with environmental regulations. As stated specifically in the DOE Order, as a part of a DOE facility's Environmental Management System (EMS), 'An environmental compliance audit and review program that identifies compliance deficiencies and root causes of non-compliance' shall be developed and implemented. The ECAAP has also been developed to satisfy LBNL's institutional technical assurance assessment requirements promulgated in the Environment, Safety and Health (ES&H) Self-Assessment Program (LBNL/PUB-5344) and described by the ES&H Technical Assurance Program (TAP) Manual (LBNL/PUB-913E). The ES&H TAP Manual provides the framework for systematic reviews of ES&H programs with the intent to provide assurance that these programs comply with their guiding regulations, are effective, and are properly implemented. As required by the DOE and Executive Orders and by LBNL's TAP, the goal of the ECAAP is to identify environmental regulatory compliance deficiencies and to determine their respective causes. The ECAAP then provides a means of correcting any deficiencies identified, and leads to continually improving environmental compliance performance.

Thorson, Patrick; Baskin, David; Borglin, Ned; Fox, Robert; Wahl, Linnea; Hatayama, Howard; Pauer, Ronald

2009-03-13T23:59:59.000Z

168

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

NONE

1996-02-01T23:59:59.000Z

169

Engineering assessment of inactive uranium mill tailings: Lakeview site, Lakeview, Oregon  

SciTech Connect (OSTI)

This assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The three alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material (Option I) and removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II and III). Cost estimates range from about $6,000,000 for stabilization in-place, to about $7,500,000 for disposal at a distance of about 10 miles. Three alternatives for reprocessing the Lakeview tailings were examined: heap leaching, treatment at an existing mill, and reprocessing at a new conventional mill. The cost of the uranium recovered would be over $450/lb of U/sub 3/O/sub 8/ and hence reprocessing is not economical.

none,

1981-10-01T23:59:59.000Z

170

Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1995-09-01T23:59:59.000Z

171

Comprehensive environmental assessment and response program  

SciTech Connect (OSTI)

The US Department of Energy's (USDOE) Albuquerque Operations Office installations are being evaluated under its Comprehensive Environmental Assessment and Response program (CEARP). The installations consist of eight weapons development and production facilities, which are located across the United States. The evaluation covers the major environmental regulations, with emphasis on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and on the Resource Conservation and Recovery Act (RCRA). The CEARP is intended to help fulfill USDOE obligations for federal facilities under the US Environmental Protection Agency (CERCLA Program and constitutes the same basic approach as contained in USEPA guidance to federal facilities. The Program is a phased program to identify, assess, and correct existing and potential environmental concerns relative to these regulations. The five phases are Phase I - Installation Assessment, Phase II - Confirmation, Phase III - Technological Assessment, Phase IV - Remedial Action, and Phase V - Compliance and Verification. Phase I activities and reports should be completed during 1986. The Phase II generic sampling plans, data management plans, health and safety plans, and quality assurance/quality control plans will be prepared during 1986. Significant characterization of CERCLA sites will be initiated during 1987.

Gunderson, T.C.; Vocke, R.W.; Stoker, A.K.

1986-01-01T23:59:59.000Z

172

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

NONE

1995-09-01T23:59:59.000Z

173

Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

NONE

1995-08-01T23:59:59.000Z

174

Regulatory impact analysis of environmental standards for uranium mill tailings at active sites. Final report  

SciTech Connect (OSTI)

The Environmental Protection Agency was directed by Congress, under PL 95-604, the Uranium Mill Tailings Radiation Control Act of 1978, to set standards of general application that provide protection from the hazards associated with uranium mill tailings. Title I of the Act pertains to tailings at inactive sites for which the Agency has developed standards as part of a separate rulemaking. Title II of the Act requires standards covering the processing and disposal of byproduct materials at mills which are currently licensed by the appropriate regulatory authorities. This Regulatory Impact Analysis (RIA) addresses the standards developed under Title II. There are two major parts of the standards for active mills: standards for control of releases from tailings during processing operations and prior to final disposal, and standards for protection of the public after the disposal of tailings. This report presents a detailed analysis of standards for disposal only, since the analysis required for the operations standards is very limited.

Not Available

1983-03-01T23:59:59.000Z

175

Regulatory impact analysis of final environmental standards for uranium mill tailings at active sites  

SciTech Connect (OSTI)

The Environmental Protection Agency was directed by Congress, under PL 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), to set standards of general application that provide protection from the hazards associated with uranium mill tailings. Title II of the Act requires standards covering the processing and disposal of byproduct materials at mills which are currently licensed by the appropriate regulatory authorities. This Regulatory Impact Analysis (RIA) addresses the standards promulgated under Title II. There are two major parts of the standards for active mills: standards for control of releases from tailings during processing operations and prior to final disposal, and standards for protection of the public health and environment after the disposal of tailings. This report presents a detailed analysis of standards for disposal only, since the analysis required for the standards during mill operations is very limited.

Not Available

1983-09-01T23:59:59.000Z

176

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

NONE

1995-11-01T23:59:59.000Z

177

Environmental Compliance Audit & Assessment Program Manual  

E-Print Network [OSTI]

LBNL-1636E Environmental Compliance Audit & Assessment Program Manual Prepared by: Environment Berkeley National Laboratory Berkeley, CA 94720 This work was supported by the U.S. Department of Energy, neither the United States Government nor any agency thereof, nor The Regents of the University

178

ENVIRONMENTAL ASSESSMENT Waste Water Treatment Modifications for  

E-Print Network [OSTI]

Actions - Isolate and restore sand filter beds (~10 acres) - Remove UV light sanitation system ­ evaluateENVIRONMENTAL ASSESSMENT FOR Waste Water Treatment Modifications for Improved Effluent Compliance adhering to them. · Develop recharge basins for disposal of treated waste water. Polythiocarbonate

Homes, Christopher C.

179

Environmental radiation exposure: Regulation, monitoring, and assessment  

SciTech Connect (OSTI)

Radioactive releases to the environment from nuclear facilities constitute a public health concern. Protecting the public from such releases can be achieved through the establishment and enforcement of regulatory standards. In the United States, numerous standards have been promulgated to regulate release control at nuclear facilities. Most recent standards are more restrictive than those in the past and require that radioactivity levels be as low as reasonably achievable (ALARA). Environmental monitoring programs and radiological dose assessment are means of ensuring compliance with regulations. Environmental monitoring programs provide empirical information on releases, such as the concentrations of released radioactivity in environmental media, while radiological dose assessment provides the analytical means of quantifying dose exposures for demonstrating compliance.

Chen, S.Y.; Yu, C.; Hong, K.J.

1991-01-01T23:59:59.000Z

180

Performance Assessment for Environmental Decision Making  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) Performance Assessment Departments at Sandia National Laboratories have, over the last twenty (20) years, developed unique, internationally-recognized performance and risk assessment methods to assess options for the safe disposal and remediation of radioactive and non-radioactive hazardous waste/contamination in geohydrologic systems. While these methods were originally developed for the disposal of nuclear waste, ongoing improvements and extensions make them equally applicable to a variety of environmental problems such as those associated with the remediation of EPA designated Superfund sites and the more generic Brownfield sites (industrial sites whose future use is restricted because of real or perceived contamination).

Anderson, D.R.; Fewell, M.E.; Gomez, L.S.; Marietta, M.G.; Swift, P.N.; Trauth, K.M.; Vaughn, P. [Sandia National Labs., Albuquerque, NM (United States); MacKinnon, R.J. [Applied Physics, Inc., Albuquerque, NM (United States)

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site  

SciTech Connect (OSTI)

This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as Attachment 1.

None

2003-04-23T23:59:59.000Z

182

EA-0912: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel This EA evaluates the environmental impacts of a proposal to accept 409 spent...

183

EA-1156: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EA-1156: Final Environmental Assessment Effluent Reduction Los Alamos National Laboratory This EA evaluates the environmental impacts for the proposal to eliminate industrial...

184

Environmental Compliance Audit & Assessment Program Manual  

E-Print Network [OSTI]

include: Storm Water Management Environmental Services DavidEnvironmental Management System Environmental Radiation Protection Environmental Restoration Hazardous Waste Fixed Treatment Units Storm WaterEnvironmental Management System Environmental Radiation Protection Environmental Restoration Hazardous Waste Fixed Treatment Units Storm Water

Thorson, Patrick

2009-01-01T23:59:59.000Z

185

Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA).

N /A

2002-08-13T23:59:59.000Z

186

Environmental factors affecting long-term stabilization of radon suppression covers for uranium mill tailings  

SciTech Connect (OSTI)

Pacific Northwest Laboratory is investigating the use of a rock armoring blanket (riprap) to mitigate wind and water erosion of an earthen radon suppression cover applied to uranium mill tailings. To help determine design stresses for the tailings piles, environmental parameters are characterized for the five active uranium-producing regions on a site-specific basis. Only conventional uranium mills that are currently operating or that are scheduled to open in the mid 1980s are considered. Available data indicate that flooding has the most potential for disrupting a tailings pile. The arid regions of the Wyoming Basins and the Colorado Plateau are subject to brief storms of high intensity. The Texas Gulf Coast has the highest potential for extreme precipitation from hurricane-related storms. Wind data indicate average wind speeds from 3 to 6 m/sec for the sites, but extremes of 40 m/sec can be expected. Tornado risks range from low to moderate. The Colorado Plateau has the highest seismic potential, with maximum acceleration caused by earthquakes ranging from 0.2 to 0.4 g. Any direct effect from volcanic eruption is negligible, as all mills are located 90 km or more from an igneous or hydrothermal system.

Young, J.K.; Long, L.W.; Reis, J.W.

1982-04-01T23:59:59.000Z

187

Bonneville - Hood River Vegetation Management Environmental Assessment  

SciTech Connect (OSTI)

To maintain the reliability of its electrical system, BPA, in cooperation with the U.S. Forest Service, needs to expand the range of vegetation management options used to clear unwanted vegetation on about 20 miles of BPA transmission line right-of-way between Bonneville Dam and Hood River; Oregon, within the Columbia Gorge National Scenic Area (NSA). We propose to continue controlling undesirable vegetation using a program of Integrated Vegetation Management (IVM) which includes manual, biological and chemical treatment methods. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1257) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

N /A

1998-08-01T23:59:59.000Z

188

Klickitat Cogeneration Project : Final Environmental Assessment.  

SciTech Connect (OSTI)

To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

United States. Bonneville Power Administration; Klickitat Energy Partners

1994-09-01T23:59:59.000Z

189

Boise geothermal injection well: Final environmental assessment  

SciTech Connect (OSTI)

The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

NONE

1997-12-31T23:59:59.000Z

190

Scientific basis for risk assessment and management of uranium mill tailings  

SciTech Connect (OSTI)

A National Research Council study panel, convened by the Board on Radioactive Waste Management, has examined the scientific basis for risk assessment and management of uranium mill tailings and issued this final report containing a number of recommendations. Chapter 1 provides a brief introduction to the problem. Chapter 2 examines the processes of uranium extraction and the mechanisms by which radionuclides and toxic chemicals contained in the ore can enter the environment. Chapter 3 is devoted to a review of the evidence on health risks associated with radon and its decay products. Chapter 4 provides a consideration of conventional and possible new technical alternatives for tailings management. Chapter 5 explores a number of issues of comparative risk, provides a brief history of uranium mill tailings regulation, and concludes with a discussion of choices that must be made in mill tailing risk management. 211 refs., 30 figs., 27 tabs.

Not Available

1986-01-01T23:59:59.000Z

191

EA-1759: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1759: Final Environmental Assessment Southwest Alaska Regional Geothermal Energy Project The purpose of this report is to identify and describe wetlands at a...

192

EA-1055: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1055: Final Environmental Assessment The Proposed Center for Advanced Industrial Processes Washington State University College of Engineering and Architecture...

193

EA-1363: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1363: Final Environmental Assessment California Department of Food and Agriculture Curly Top Virus Control Program The purpose of the "Proposed Action" is to control...

194

assessment environmental health: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOI 10.3310hta18690 and economic evaluation. Health Technol Assess 2014;18(69). Health Technology Assessment is indexed 298 ENVIRONMENTAL ASSESSMENTREGULATORY IMPACT REVIEW...

195

EA-1800: Draft Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1800: Draft Environmental Assessment Monarch Warren County Wind Turbine Project, Lenox Township, Warren County, Illinois The U.S. Department of Energy (DOE)...

196

EA-1532: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1532: Final Environmental Assessment Proposed Consolidation of Neutron Generator Tritium Target Loading Production As part of National Nuclear Security...

197

EA-1756: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment EA-1756: Final Environmental Assessment Battelle Memorial Institute's Smart Grid Project At The City Of Ellensburg's Renewable Energy Park, Kittitas County,...

198

EA-1583: Final Site-wide Environmental Assessment | Department...  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1583: Final Site-wide Environmental Assessment RMOTCNaval Petroleum Reserve No. 3 (October 2008) SUMMARY: The U.S. Departmem of Energy (DOE) is...

199

EA-1956: Site-Wide Environmental Assessment for the Divestiture...  

Energy Savers [EERE]

Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming EA-1956: Site-Wide Environmental Assessment...

200

EA-1819: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1819: Final Environmental Assessment Kilowatts for Kenston Wind Energy Project, Chagrin Falls, Geauga County The Department of Energy has provided Federal...

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EA-1807: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment EA-1807: Final Environmental Assessment Heartland Community College Wind Energy Project, Normal, McLean County, Illinois DOE has provided a State Energy Program...

202

EA-0962: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications PG&E Reconductoring Project Biological Assessment (Revised) California Valley Solar Ranch Biological Assessment EA-1363: Final Environmental...

203

EA-1470: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1470: Final Environmental Assessment Interstate Intertie Centennial Plan: Harry Allen-Mead 500 kV Transmission Line Project Nevada Power Company (Nevada Power) is...

204

Office of Nuclear Safety and Environmental Assessments | Department...  

Energy Savers [EERE]

operation, deactivation, decontamination, decommissioning and environmental restoration. Conduct assessments of changes to operations, safety basis and modifications. Conducts...

205

Final Environmental Assessment and Finding of No Significant Impact: Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

SciTech Connect (OSTI)

This environmental assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Slick Rock, Colorado, Uranium Mill Tailings Remedial Action Project sites. The sites consist of two areas designated as the North Continent (NC) site and the Union Carbide (UC) site. In 1996, the U.S. Department of Energy (DOE) completed surface cleanup at both sites and encapsulated the tailings in a disposal cell 5 miles east of the original sites. Maximum concentration limits (MCLs) referred to in this environmental assessment are the standards established in Title 40 ''Code of Federal Regulations'' Part 192 (40 CFR 192) unless noted otherwise. Ground water contaminants of potential concern at the NC site are uranium and selenium. Uranium is more prevalent, and concentrations in the majority of alluvial wells at the NC site exceed the MCL of 0.044 milligram per liter (mg/L). Selenium contamination is less prevalent; samples from only one well had concentrations exceeding the MCL of 0.01 mg/L. To achieve compliance with Subpart B of 40 CFR 192 at the NC site, DOE is proposing the strategy of natural flushing in conjunction with institutional controls and continued monitoring. Ground water flow and transport modeling has predicted that concentrations of uranium and selenium in the alluvial aquifer will decrease to levels below their respective MCLs within 50 years.

N /A

2003-03-13T23:59:59.000Z

206

Environmental Monitoring and Assessment of Environmental Estrogens in Marine  

E-Print Network [OSTI]

of Orange County,CA. Environmental Toxicology and ChemistryCalifornia Flatfish. Society of Environmental Toxicology andOcean. Society of Environmental Toxicology and Chemistry. (

Schlenk, D

2006-01-01T23:59:59.000Z

207

MSU Departmental Assessment Plan Department: Land Resources and Environmental Sciences  

E-Print Network [OSTI]

MSU Departmental Assessment Plan 2007-2009 Department: Land Resources and Environmental Sciences (cross-college) #12;Student Outcomes Assessment Plan Land Resources and Environmental Sciences Department The Department of Land Resources and Environmental Sciences (LRES) will undertake a continuing assessment

Maxwell, Bruce D.

208

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1  

SciTech Connect (OSTI)

For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

NONE

1995-09-01T23:59:59.000Z

209

Environmental assessment: South microwave communication facilities  

SciTech Connect (OSTI)

Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

Not Available

1989-06-01T23:59:59.000Z

210

Grizzly Substation Fiber Optics : Environmental Assessment.  

SciTech Connect (OSTI)

This notice announces BPA`s decision to construct, operate, and maintain the Grizzly Substation Fiber Optic Project (Project). This Project is part of a continuing effort by BPA to complete a regionwide upgrade of its existing telecommunications system. The US Forest Service and BPA jointly prepared the Grizzly Substation Fiber Optic Project Environmental Assessment (EA) (DOE/EA-1241) evaluating the potential environmental impacts of the Proposed Action, the Underground Installation Alternative, and the No Action Alternative. Based on the analysis in the EA, the US Forest Service and BPA have determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI. The US Forest Service has separately issued a FONSI and Decision Notice authorizing BPA to construct, operate, and maintain the Project within the Crooked River National Grassland (Grassland).

United States. Bonneville Power Administration.

1998-02-01T23:59:59.000Z

211

Integrated Environmental Assessment Part III: ExposureAssessment  

SciTech Connect (OSTI)

Human exposure assessment is a key step in estimating the environmental and public health burdens that result chemical emissions in the life cycle of an industrial product or service. This column presents the third in a series of overviews of the state of the art in integrated environmental assessment - earlier columns described emissions estimation (Frey and Small, 2003) and fate and transport modeling (Ramaswami, et al., 2004). When combined, these first two assessment elements provide estimates of ambient concentrations in the environment. Here we discuss how both models and measurements are used to translate ambient concentrations into metrics of human and ecological exposure, the necessary precursors to impact assessment. Exposure assessment is the process of measuring and/or modeling the magnitude, frequency and duration of contact between a potentially harmful agent and a target population, including the size and characteristics of that population (IPCS, 2001; Zartarian, et al., 2005). Ideally the exposure assessment process should characterize the sources, routes, pathways, and uncertainties in the assessment. Route of exposure refers to the way that an agent enters the receptor during an exposure event. Humans contact pollutants through three routes--inhalation, ingestion, and dermal uptake. Inhalation occurs in both outdoor environments and indoor environments where most people spend the majority of their time. Ingestion includes both water and food, as well as soil and dust uptake due to hand-to-mouth activity. Dermal uptake occurs through contacts with consumer products; indoor and outdoor surfaces; the water supply during washing or bathing; ambient surface waters during swimming or boating; soil during activities such as work, gardening, and play; and, to a lesser extent, from the air that surrounds us. An exposure pathway is the course that a pollutant takes from an ambient environmental medium (air, soil, water, biota, etc), to an exposure medium (indoor air, food, tap water, etc.) and to an exposed individual. Exposure scenarios are used to define plausible pathways for human contact. Recognition of the multiple pathways possible for exposure highlights the importance of a multimedia, multipathway exposure framework.

McKone, Thomas E.; Small, Mitchell J.

2006-06-01T23:59:59.000Z

212

Environmental Assessments (EA) | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011DistrictLLC |Environmental Assessments (EA)

213

Environmental Assessments (EA) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010 EA-1797: Final Environmental Assessment

214

Environmental Management Assessment of the National Renewable Energy Laboratory (NREL)  

SciTech Connect (OSTI)

This report documents the results of the environmental management assessment performed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. The onsite portion of the assessment was conducted from September 14 through September 27, 1993, by DOE`s Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). During this assessment, the activities conducted by the assessment team included reviews of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and NREL contractor personnel; and inspections and observations of selected facilities and operations. The environmental management assessment of NREL focused on the adequacy of environmental management systems and assessed the formality of programs employing an approach that recognizes the level of formality implementing environmental programs may vary commensurate with non-nuclear research and development operations. The Assessment Team evaluated environmental monitoring, waste management and National Environmental Policy Act (NEPA) activities at NREL, from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section of this report. The scope of the NREL Environmental Management Assessment was comprehensive and included all areas of environmental management. At the same time, environmental monitoring, waste management, and NEPA activities were evaluated to develop a programmatic understanding of these environmental disciplines, building upon the results of previous appraisals, audits, and reviews performed at the NREL.

Not Available

1993-09-01T23:59:59.000Z

215

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) {section} 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments and concerns to the fullest extent possible. DOE received over 1,600 comments on the draft EIS from the public, federal, state and local agencies, tribes, governors, and members of Congress. DOE has considered these comments in finalizing the EIS and has provided responses to all comments in the EIS.

N /A

2005-08-05T23:59:59.000Z

216

Ris-M-2875 Preliminary Environmental  

E-Print Network [OSTI]

Risø-M-2875 m Preliminary Environmental Impact Statement for the Kvanefjeld Uranium Mine Kim Environmental Impact Statement for the Kvanefjeld Uranium Mine Kim Pilegaard Abstract. The sources of pollution. The environmental impact assessment was part of a pre-feasibility study. The main aims of this study have been

217

Ris-M-2875 Preliminary Environmental  

E-Print Network [OSTI]

Risø-M-2875 Preliminary Environmental Impact Statement for the Kvanefjeld Uranium Mine Kim Environmental Impact Statement for the Kvanefjeld Uranium Mine Kim Pilegaard Abstract. The sources of pollution. The environmental impact assessment was part of a pre-feasibility study. The main aims of this study have been

218

ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW PROPOSAL TO CREATE DISTRICTS  

E-Print Network [OSTI]

FINAL ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW FOR THE PROPOSAL TO CREATE DISTRICTS WITHIN. . . . . . . . . . . . . . . . . 2 1.2.1Environmental Assessment. . . . . . . . . . . . . . 2 1.2.2Regulatory Impact Review . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.0 ENVIRONMENTAL AND BIOLOGICAL IMPACTS . . . . . . . . . . . . . 4 2.1 Atka Mackerel Biology

219

Design criteria applicable to the environmental restoration of sites affected by uranium mining activities in the past  

SciTech Connect (OSTI)

In this paper the authors discuss the basic aspects to be considered while evaluating different alternatives to perform environmental restoration of sites affected by naturally occurring radionuclides, enhanced by human actions, as is the case in some old uranium mining activities. The discussion is confined to sites where radiation hazards had existed forever (sites with uranium deposits) and where the mining activities have introduced several factors modifying the initial situation, leading to the now existing one, requiring intervention as decided by the relevant authorities, in accordance with recommendations of ICRP60.

Carboneras, P. [ENRESA, Madrid (Spain); Sanchez, M. [INITEC, Madrid (Spain)

1993-12-31T23:59:59.000Z

220

Assessing the risk from the depleted uranium weapons used in Operation Allied Force  

E-Print Network [OSTI]

The conflict in Yugoslavia has been a source of great concern for the neighboring countries, about the radiological and toxic hazard posed by the alleged presence of depleted uranium in NATO weapons. In the present study a worst-case scenario is assumed mainly to assess the risk for Greece and other neighboring countries of Yugoslavia at similar distances . The risk of the weapons currently in use is proved to be negligible at distances greater than 100 Km. For shorter distances classified data of weapons composition are needed to obtain a reliable assessment.

Liolios, T E

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Motivation Literature Trans. Networks and Emissions Assessment Indices Link Importance Numerical Examples Summary a Environmental Impact Assessment of  

E-Print Network [OSTI]

Examples Summary a Environmental Impact Assessment of Transportation Networks with Degradable Links Environmental Impact Assessment Indices #12;Motivation Literature Trans. Networks and Emissions Assessment is gratefully acknowledged. Anna Nagurney, Qiang Qiang,, Ladimer S. Nagurney Environmental Impact Assessment

Nagurney, Anna

222

Determination of Depleted Uranium in Environmental Bio-monitor Samples and Soil from Target sites in Western Balkan Region  

SciTech Connect (OSTI)

Lichen and Moss are widely used to assess the atmospheric pollution by heavy metals and radionuclides. In this paper, we report results of uranium and its isotope ratios using mass spectrometric measurements (followed by chemical separation procedure) for mosses, lichens and soil samples from a depleted uranium (DU) target site in western Balkan region. Samples were collected in 2003 from Han Pijesak (Republika Srpska in Bosnia and Hercegovina). Inductively coupled plasma mass spectrometry (ICP-MS) measurements show the presence of high concentration of uranium in some samples. Concentration of uranium in moss samples ranged from 5.2-755.43 Bq/Kg. We have determined {sup 235}U/{sup 238}U isotope ratio using thermal ionization mass spectrometry (TIMS) from the samples with high uranium content and the ratios are in the range of 0.002097-0.002380. TIMS measurement confirms presence of DU in some samples. However, we have not noticed any traces of DU in samples containing lesser amount of uranium or from any samples from the living environment of same area.

Sahoo, Sarata K.; Enomoto, Hiroko; Tokonami, Shinji; Ishikawa, Tetsuo [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ujic, Predrag; Celikovic, Igor; Zunic, Zora S. [Institute of Nuclear Sciences, Vinca, Mike Petrovica Alasa 12-14, 11000 Belgrade (Serbia)

2008-08-07T23:59:59.000Z

223

MSU Departmental Assessment Plan Department: Land Resources and Environmental Sciences  

E-Print Network [OSTI]

MSU Departmental Assessment Plan 2009-2010 Department: Land Resources and Environmental Sciences: Ecology and Environmental Sciences (cross-college) #12;Student Outcomes Assessment Plan Land Resources Department Head: Tracy M. Sterling Assessment Coordinator: Cathy Zabinski Degrees/Majors/Options Offered

Maxwell, Bruce D.

224

Environmental impact assessment of the Dulang oilfield development project  

SciTech Connect (OSTI)

The authors discuss an environmental impact assessment (EIA) of the Dulang Oilfield Development Project, conducted to determine whether the project could proceed in a safe and environmentally acceptable manner. This is the first EIA for an offshore oilfield in Malaysian waters, and was conducted in anticipation of the Environmental Quality (Prescribed Activities) (Environmental Impact Assessment Order(1987)) which requires an EIA to be conducted for major oil and gas field development projects.

Hasan, M.N. (U. Kebangsaan Malaysia (MY)); (Ismail, M.Y. (Petronas Cangali Sdn. Bhd. (MY)))

1988-01-01T23:59:59.000Z

225

Office of Environmental Management Uranium Enrichment Decontamination and Decommissioning Fund financial statements, September 30, 1995 and 1994  

SciTech Connect (OSTI)

The Energy Policy Act of 1992 (Act) requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located at the K-25 site in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. The Act transferred the uranium enrichment enterprise to the United States Enrichment Corporation (USEC) as of July 1, 1993, and established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

NONE

1996-02-21T23:59:59.000Z

226

Office of Environmental Management uranium enrichment decontamination and decommissioning fund financial statements. September 30, 1994 and 1993  

SciTech Connect (OSTI)

The Energy Policy Act of 1992 (Act) transferred the uranium enrichment enterprise to the United States Enrichment Corporation as of July 1, 1993. However, the Act requires the Department of Energy to retain ownership and responsibility for the costs of environmental cleanup resulting from the Government`s operation of the three gaseous diffusion facilities located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio (diffusion facilities). The Act established the Uranium Enrichment Decontamination and Decommissioning Fund (D&D Fund) to: Pay for the costs of decontamination and decommissioning at the diffusion facilities; Pay the annual costs for remedial action at the diffusion facilities to the extent that the amount in the Fund is sufficient; and Reimburse uranium/thorium licensees for the costs of decontamination, decommissioning, reclamation, and other remedial actions which are incident to sales to the Government.

Marwick, P.

1994-12-15T23:59:59.000Z

227

Environmental assessment, Deaf Smith County site, Texas  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act of 1982 (42 USC sections 10101-10226) requires the environmental assessment of a proposed site to include a statement of the basis for nominating a site as suitable for characterization. Volume 2 provides a detailed statement evaluating the site suitability of the Deaf Smith County Site under DOE siting guidelines, as well as a comparison of the Deaf Smith County Site to the other sites under consideration. The evaluation of the Deaf Smith County Site is based on the impacts associated with the reference repository design, but the evaluation will not change if based on the Mission Plan repository concept. The second part of this document compares the Deaf Smith County Site to Davis Canyon, Hanford, Richton Dome and Yucca Mountain. This comparison is required under DOE guidelines and is not intended to directly support subsequent recommendation of three sites for characterization as candidate sites. 259 refs., 29 figs., 66 refs. (MHB)

Not Available

1986-05-01T23:59:59.000Z

228

EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

229

Transmission line environmental assessment guidance document  

SciTech Connect (OSTI)

Since 1939, U.S. utility companies have been required to obtain a Presidential Permit to construct electric transmission lines that cross a U.S. border and connect with a foreign utility. The purpose of this document is to provide Presidential Permit applicants with two types of guidance: (1) on the type of environmental and project descriptive information needed to assess the potential impacts of the proposed and alternative actions and (2) on compliance with applicable federal and state regulations. The main three chapters present information on the purpose and content of this document (Chapter 1); legislative, regulatory, and consultation requirements for transmission line interconnect projects (Chapter 2); and identification of basic transmission system design parameters and environmental data requirements for analysis of potential impacts of the proposed action (Chapter 3). Chapter 3 also includes information on possible techniques or measures to mitigate impacts. Appendix A presents an overview of NEPA requirements and DOE`s implementing procedures. Appendix B summarizes information on legislation that may be applicable to transmission line projects proposed in Presidential Permit applications.

Jackson, J.; Pentecost, E.; Muzzarelli, J.

1994-01-01T23:59:59.000Z

230

3000 Area Phase 1 environmental assessment  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is planning to sell the 3000 Area to prospective buyers. Environmental Services was requested by the WHC Economic Transition group to assess potential environmental liabilities in the area. Historical review of the area indicated that the site was the location of ``Camp Hanford`` in 1951 and has been used for a variety of purposes since then. The activities in the area have changed over the years. A number of Buildings from the area have been demolished and at least 15 underground storage tanks (USTs) have been removed. Part of the 3000 Area was identified as Operable Unit 1100-EM-3 in the Tri-Party Agreement and was cleaned up by the US Army Corps of Engineers (USACE). The cleanup included removal of contaminated soil and USTS. WHC and ICF KH had also performed sampling and analysis at some locations in the 3000 Area prior to USACE`s work on the Operable Unit 1100-EM-3. They removed a number of USTs and performed remediation.

Ranade, D.G.

1995-09-01T23:59:59.000Z

231

Long-term fate of depleted uranium at Aberdeen and Yuma Proving Grounds: Human health and ecological risk assessments  

SciTech Connect (OSTI)

The purpose of this study was to evaluate the immediate and long-term consequences of depleted uranium (DU) in the environment at Aberdeen Proving Ground (APG) and Yuma Proving Ground (YPG) for the Test and Evaluation Command (TECOM) of the US Army. Specifically, we examined the potential for adverse radiological and toxicological effects to humans and ecosystems caused by exposure to DU at both installations. We developed contaminant transport models of aquatic and terrestrial ecosystems at APG and terrestrial ecosystems at YPG to assess potential adverse effects from DU exposure. Sensitivity and uncertainty analyses of the initial models showed the portions of the models that most influenced predicted DU concentrations, and the results of the sensitivity analyses were fundamental tools in designing field sampling campaigns at both installations. Results of uranium (U) isotope analyses of field samples provided data to evaluate the source of U in the environment and the toxicological and radiological doses to different ecosystem components and to humans. Probabilistic doses were estimated from the field data, and DU was identified in several components of the food chain at APG and YPG. Dose estimates from APG data indicated that U or DU uptake was insufficient to cause adverse toxicological or radiological effects. Dose estimates from YPG data indicated that U or DU uptake is insufficient to cause radiological effects in ecosystem components or in humans, but toxicological effects in small mammals (e.g., kangaroo rats and pocket mice) may occur from U or DU ingestion. The results of this study were used to modify environmental radiation monitoring plans at APG and YPG to ensure collection of adequate data for ongoing ecological and human health risk assessments.

Ebinger, M.H.; Beckman, R.J.; Myers, O.B. [Los Alamos National Lab., NM (United States); Kennedy, P.L.; Clements, W.; Bestgen, H.T. [Colorado State Univ., Ft. Collins, CO (United States). Dept. of Fishery and Wildlife Biology

1996-09-01T23:59:59.000Z

232

EA-1869: Final Environmental Assessment and Finding of No Significant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Impact EA-1869: Final Environmental Assessment and Finding of No Significant Impact General Motors LLC, Electric Drive Vehicle Battery and Component Manufacturing Initiative...

233

EA-1638: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment Loan Guarantee to Solyndra, Inc. for Construction of A Photovoltaic Manufacturing Facility and Leasing of an Existing Commercial Facility in Fremont,...

234

Environmental Assessment for Department of Energy Loan Guarantee...  

Open Energy Info (EERE)

Provided Check for DOI availability: http:crossref.org Online Internet link for Environmental Assessment for Department of Energy Loan Guarantee for U.S. Geothermal's Neal Hot...

235

EA-1108: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment The National Spherical Tokamah Experiment at the Princeton Plasma Physics Laboratory This EA evaluates the environmental impacts of the proposal to support...

236

Environmental Assessment for Proposed Rule 10 CFR Parts 433 and...  

Broader source: Energy.gov (indexed) [DOE]

environmental assessment for Proposed Rule 10 CFR Part 433, Sustainable Design and Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential...

237

EA-1976D: Notice of Availability of Draft Environmental Assessment...  

Energy Savers [EERE]

Notice of Availability of Draft Environmental Assessment Emera CNG, LLC Compressed Natural Gas Project, Florida DOE's National Energy Technology Laboratory (NETL) announces...

238

EA-1575: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

proposed action evaluated in this Environmental Assessment (EA) is to advance technology transfer and other missions of the U. S. Department of Energy (DOE) Office of Science at...

239

Environmental Assessment LEAD TEST ASSEMBLY IRRADIATION AND ANALYSIS  

Broader source: Energy.gov (indexed) [DOE]

Administrative Code Watts Bar Nuclear Plant State of Washington Department of Fish and Wildlife Environmental Assessment ii July 1997 U . S . Department of Energy Metric...

240

EA-1802: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment Chicago View Wind Project, Chicago Heights, Cook County, Illinois DOE has provided a grant to the State of Illinois and proposes to authorize the...

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Environmental and economic assessment of microalgae-derived jet fuel  

E-Print Network [OSTI]

Significant efforts must be undertaken to quantitatively assess various alternative jet fuel pathways when working towards achieving environmental and economic United States commercial and military alternative aviation ...

Carter, Nicholas Aaron

2012-01-01T23:59:59.000Z

242

EA-1782: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EA-1782: Final Environmental Assessment University of Delaware Lewes Campus Onsite Wind Energy Project The University of Delaware has constructed a wind turbine adjacent to its...

243

EA-1815: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EA-1815: Final Environmental Assessment Cuyahoga County Agricultural Society Wind Energy Project, Berea, Cuyahoga County, Ohio The U.S. Department of Energy (DOE) has...

244

assessing environmental mobility: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an easyEnvironmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU-...

245

arizona environmental assessment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an easyEnvironmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU-...

246

EA-1839: Final Environmental Assessment and Finding of No Significant...  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Assessment and Finding of No Significant Impact Department of Energy Loan Guarantee to Cogentrix of Alamosa, LLC for Construction of the Cogentrix Solar...

247

EA-1177: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment SalvageDemolition of 200 West Area, 200 East Area, and 300 Area Steam Plants This EA evaluates the environmental impacts for the proposal to salvage and...

248

ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES  

E-Print Network [OSTI]

Environmental assessment Ocean Thermal Energy Conversion (Plan (EDP) 1978. Ocean Thermal Energy Conversion. U.S. Dept.the 6th Annual Ocean Thermal Energy Conversion Conference,

Wilde, P.

2010-01-01T23:59:59.000Z

249

EA-1880: Notice of Intent to Prepare an Environmental Assessment...  

Office of Environmental Management (EM)

Assessment with Scoping (EA) to meet its responsibilities under the National Environmental Policy Act (NEPA) and 7 CFR part 1794 in connection with potential impacts...

250

EA-1570: Final Environmental Assessment and Finding of No Significant...  

Office of Environmental Management (EM)

Impact EA-1570: Final Environmental Assessment and Finding of No Significant Impact Construction and Operation of Neutrinos at the Main Injector Off-Axis Electron Neutrino...

251

ENVIRONMENTAL ASSESSMENT NATIONAL SYNCHROTRON LIGHT SOURCE-II  

E-Print Network [OSTI]

ENVIRONMENTAL ASSESSMENT FOR NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II) BROOKHAVEN NATIONAL..............................................................................................11 4.1.1 Building Site Location ............................................................................20 5.9 Natural Hazards

Ohta, Shigemi

252

A top-down assessment of energy, water and land use in uranium mining, milling, and refining  

SciTech Connect (OSTI)

Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, water and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle.

E. Schneider; B. Carlsen; E. Tavrides; C. van der Hoeven; U. Phathanapirom

2013-11-01T23:59:59.000Z

253

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah  

SciTech Connect (OSTI)

This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

Not Available

1994-09-01T23:59:59.000Z

254

EA-1726: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i...

255

Uranium Mill Tailings Remedial Action Project Environmental Line Management Audit Action Plan. Final report. Audit, October 26, 1992--November 6, 1992  

SciTech Connect (OSTI)

This Action Plan contains responses, planned actions, and estimated costs for addressing the findings discovered in the Environmental Management Audit conducted for the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRA), October 26 through November 6, 1992. This document should be read in conjunction with the Audit Report to ensure the findings addressed in this document are fully understood. The scope of the UMTRA Environmental Management Audit was comprehensive and encompassed all areas of environmental management except environmental programs pertaining to the National Environmental Policy Act (NEPA) compliance. The Audit Report listed 18 findings: 11 were identified as compliance findings, and the remaining 7 were best management practice findings. Root cause analysis was performed on all the findings. The results of the analysis as well as planned corrective actions are summarized in Section 5.0. All planned actions were prioritized using the Tiger Team Assessment Corrective Action Plan system. Based on assigned priorities, all planned actions were costed by fiscal year. This Action Plan contains a description of the organizational and management structures to be used to implement the Action Plan, a brief discussion of root cause analysis and funding, followed by the responses and planned actions for each finding. A member of the UMTRA Project Office (PO) has been assigned responsibility for tracking the progress on each of the findings. The UMTRA PO staff wrote and/or approved all of the corrective actions recorded in this Action Plan.

NONE

1993-07-01T23:59:59.000Z

256

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site  

SciTech Connect (OSTI)

In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

Not Available

1991-09-01T23:59:59.000Z

257

Uranium Management - Preservation of a National Asset  

SciTech Connect (OSTI)

The Uranium Management Group (UMG) was established at the Department of Energy's (DOE's) Oak Ridge Operations in 1999 as a mechanism to expedite the de-inventory of surplus uranium from the Fernald Environmental Management Project site. This successful initial venture has broadened into providing uranium material de-inventory and consolidation support to the Hanford site as well as retrieving uranium materials that the Department had previously provided to universities under the loan/lease program. As of December 31, 2001, {approx} 4,300 metric tons of uranium (MTU) have been consolidated into a more cost effective interim storage location at the Portsmouth site near Piketon, OH. The UMG continues to uphold its corporate support mission by promoting the Nuclear Materials Stewardship Initiative (NMSI) and the twenty-five (25) action items of the Integrated Nuclear Materials Management Plan (1). Before additional consolidation efforts may commence to remove excess inventory from Environmental Management closure sites and universities, a Programmatic Environmental Assessment (PEA) must be completed. Two (2) noteworthy efforts currently being pursued involve the investigation of re-use opportunities for surplus uranium materials and the recovery of usable uranium from the shutdown Portsmouth cascade. In summary, the UMG is available as a DOE complex-wide technical resource to promote the responsible management of surplus uranium.

Jackson, J. D.; Stroud, J. C.

2002-02-27T23:59:59.000Z

258

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement  

SciTech Connect (OSTI)

This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

None

1986-12-01T23:59:59.000Z

259

ENVIRONMENTAL ASSESSMENT FOR OTEC PILOT PLANTS  

E-Print Network [OSTI]

mal Energy Conversion (OTEC). Preoperational Test Platform,Thermal EnergyConversion (OTEC), Preoperational Ocean Test1979. Sands, M.D. , Draft OTEC Programmatic Environmental

Wilde, P.

2011-01-01T23:59:59.000Z

260

Environmental Assessment for the Construction, Operation, and...  

Broader source: Energy.gov (indexed) [DOE]

Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation...

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fiver years of uranium mine and mill decommissioning in Germany: Progress of the Wismut environmental remediation project  

SciTech Connect (OSTI)

With the end of the Cold War and the fall of the iron curtain Germany inherited in 1990 by its reunification the legacy of 45 years of unrestricted, intensive uranium mining in the eastern part of Germany. The environmental damages and risks related to widespread soil and groundwater contamination, caused by huge tailings ponds and numerous waste rock piles in one of Germany`s most densely populated areas, made it necessary to implement one of the world`s largest environmental clean-up programs. 13 billion German Marks (8.7 billion US-$) will be spent within approx. 20 years for decommissioning and environmental restoration efforts. Five years after the start-up of the Wismut project considerable results have been achieved. Conceptual work, even regarding technically difficult issues of the program, is far advanced, and about one third of the physical work program has been completed. At the former mining and milling locations significant improvements of the environmental situation have been achieved. The further on-schedule progress of the Wismut program is an important prerequisite for the socio-economical development in the former uranium mining districts.

Mager, D. [German Federal Ministry of Economics, Bonn (Germany)

1996-12-31T23:59:59.000Z

262

Assessing potential future environmental legal events  

SciTech Connect (OSTI)

This report addresses the topic of environmental citizenship in the United States. The term refers to responsibilities each of us have with respect to helping our communities and nation make sound environmental decisions. This research centers on the citizens and what we ought to be doing, as opposed to what the government ought to be doing for us, to improve environmental citizenship. This report examines four central questions: What are the requirements (i.e., responsibilities) of citizenship vis-a-vis environmental decision- making processes; what constraints limit people`s ability to meet these requirements; what does our form of governance do to help or hinder in meeting these requirements; and what recommendations can be put forth to improve public participation in environmental decision making?

Tonn, B. [Oak Ridge National Lab., TN (United States); Petrich, C. [The Ernst and Yound Center for Business Innovation, Cambridge, MA (United States)

1997-10-28T23:59:59.000Z

263

Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel  

SciTech Connect (OSTI)

The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

Not Available

1994-04-01T23:59:59.000Z

264

Accepted Manuscript Carbon Footprint and emergy combination for Eco-Environmental assessment of  

E-Print Network [OSTI]

Accepted Manuscript Carbon Footprint and emergy combination for Eco- Environmental assessment Corre O, Feidt M, Carbon Footprint and emergy combination for Eco- Environmental assessment of cleaner ACCEPTED MANUSCRIPT 1 CARBON FOOTPRINT AND EMERGY COMBINATION FOR ECO- ENVIRONMENTAL ASSESSMENT OF CLEANER

Paris-Sud XI, Université de

265

Safeguards assessment of gamma-ray detection for process monitoring at natural uranium conversion facilities.  

E-Print Network [OSTI]

??Conversion, the process by which natural uranium ore (yellowcake) is puri?ed and converted through a series of chemical processes into uranium hexa?uoride gas (UF6), has… (more)

Dewji, Shaheen Azim

2014-01-01T23:59:59.000Z

266

Reclamation and groundwater restoration in the uranium milling industry: An assessment of UMTRCA, title II  

SciTech Connect (OSTI)

In 1978, Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) to regulate the disposal and reclamation of uranium mill tailings.This article examines the implementation of this legislation through eight cases of uranium mills in New Mexico, Wyoming, and Utah now being reclaimed. The eight cases examined here make up an important part of the total reclamation picture in the uranium milling industry.

Collins, J.D.

1996-12-31T23:59:59.000Z

267

Benefit-cost assessment of aviation environmental policies  

E-Print Network [OSTI]

This thesis aids in the development of a framework in which to conduct global benefit-cost assessments of aviation policies. Current policy analysis tools, such as the aviation environmental portfolio management tool (APMT), ...

Gilmore, Christopher K. (Christopher Kenneth)

2012-01-01T23:59:59.000Z

268

EA-1816: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Environmental Assessment Town of Hempstead Wind-to-Hydrogen Project, Point Lookout, New York The U.S. Department of Energy (DOE) has provided a grant to the Town of Hempstead, New...

269

Scoping the Environmental Assessment Process for a MRS | Department...  

Broader source: Energy.gov (indexed) [DOE]

tribe and preparing of the environmental assessment (EA) required by Section 404 of the Nuclear Waste Policy Act, as amended (NWPAA), are the first steps in a process intended to...

270

Specific Examples of Global Activities Environmental assessment in Azerbaijan  

E-Print Network [OSTI]

, global warming, and global entrepreneurship. Discovery Park works syner- gistically with the Office competitiveness, global energy security, global warming, and global entrepreneurship. Discovery Park worksSpecific Examples of Global Activities · Environmental assessment in Azerbaijan · Study abroad

271

Motivation Literature Trans. Networks and Emissions Assessment Indices Link Importance Numerical Examples Summary Environmental Impact Assessment of  

E-Print Network [OSTI]

Examples Summary Environmental Impact Assessment of Transportation Networks with Degradable Links in an Era S. Nagurney Environmental Impact Assessment Indices #12;Motivation Literature Trans. Networks. This support is gratefully acknowledged. Anna Nagurney, Qiang Qiang, Ladimer S. Nagurney Environmental Impact

Nagurney, Anna

272

Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 5. Environmental assessment, control, health and safety  

SciTech Connect (OSTI)

Pacific Northwest Laboratory's (PNL) 1980 annual report to the DOE Assistant Secretary for Environment describes research in environment, health, and safety conducted during fiscal year 1980. Part 5 includes technology assessments for natural gas, enhanced oil recovery, oil shale, uranium mining, magnetic fusion energy, solar energy, uranium enrichment and industrial energy utilization; regional analysis studies of environmental transport and community impacts; environmental and safety engineering for LNG, oil spills, LPG, shale oil waste waters, geothermal liquid waste disposal, compressed air energy storage, and nuclear/fusion fuel cycles; operational and environmental safety studies of decommissioning, environmental monitoring, personnel dosimetry, and analysis of criticality safety; health physics studies; and epidemiological studies. Also included are an author index, organization of PNL charts and distribution lists of the annual report, along with lists of presentations and publications. (DLS)

Baalman, R.W.; Hays, I.D. (eds.)

1981-02-01T23:59:59.000Z

273

ENVIRONMENTAL ASSESSMENT FOR OTEC PILOT PLANTS  

E-Print Network [OSTI]

Environmental Impact Statement (EIS) at approxi- mately theOperational o INITIATE EA/EIS FOR SITE/REGION Based on theof the appropriate ErA/EIS. o DESIGN LONG-TERM MONITORING/

Wilde, P.

2011-01-01T23:59:59.000Z

274

Method for converting uranium oxides to uranium metal  

DOE Patents [OSTI]

A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

Duerksen, Walter K. (Norris, TN)

1988-01-01T23:59:59.000Z

275

EA-1890: Final Environmental Assessment (Adopted) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental AssessmentFinal Environmental Assessment

276

Setting boundaries of participation in environmental impact assessment  

SciTech Connect (OSTI)

Public participation processes are touted as an effective way to increase the capacity and legitimacy of environmental assessment and the regulatory process that rely on them. Recent changes to the Canadian environmental assessment process narrowed the criteria for who can participate in environmental assessments from any who were interested to those who were most directly affected. This article examines the potential consequences of this change by exploring other areas of Canadian regulatory law where a similar directed affected test has been applied. This new standard risks institutionalizing the long-understood representational bias confronted by more diffuse interest like environmental protection. Restricting participation to the “directly affected” is far too narrow a test for processes like environmental assessment that are designed to determine the public interest. -- Highlights: • Public participation can improve the legitimacy of environmental assessments. • New Canadian rules narrow the range of eligible participants. • Similar rules in Alberta have excluded environmental representation. • The new rules may institutionalize bias against more diffuse interests. • Restricting participation to the “directly affected” is far too narrow.

Salomons, Geoffrey H., E-mail: gsalomon@ualberta.ca [University of Alberta, Department of Political Science, 10-16 Henry Marshall Tory Building, University of Alberta, Edmonton, AB T6G 2H4 (Canada); Hoberg, George, E-mail: george.hoberg@ubc.ca [University of British Columbia, Faculty of Forestry, Forest Sciences Centre 2045, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4 (Canada)] [University of British Columbia, Faculty of Forestry, Forest Sciences Centre 2045, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4 (Canada)

2014-02-15T23:59:59.000Z

277

Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I  

SciTech Connect (OSTI)

This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in accordance with the final standards. The EPA reserves the right to modify the ground water standards, if necessary, based on changes in EPA drinking water standards. Appendix A contains a copy of the 1983 EPA ground water compliance standards, the 1987 proposed changes to the standards, and the 1995 final rule. Under UMTRA, DOE is responsible for bringing the designated processing sites into compliance with the EPA ground water standards and complying with all other applicable standards and requirements. The U.S. Nuclear Regulatory Commission (NRC) must concur with DOE's actions. States are full participants in the process. The DOE also must consult with any affected Indian tribes and the Bureau of Indian Affairs. Uranium processing activities at most of the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as but not limited to uranium and nitrates. The purpose of the UMTRA Ground Water Project is to eliminate or reduce to acceptable levels the potential health and environmental consequences of milling activities by meeting the EPA ground water standards.

None

1996-10-01T23:59:59.000Z

278

The role of Life Cycle Assessment in identifying and reducing environmental impacts of CCS  

E-Print Network [OSTI]

EG. 2010. Human and environmental impact assessment ofof the overall environmental impacts and benefits of theand reducing environmental impacts of CCS Roger Sathre and

Sathre, Roger

2011-01-01T23:59:59.000Z

279

E-Print Network 3.0 - assessing environmental social Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Programs Summary: and environmental impact assessment, to the design of industrial wastewater treatment processes and waste... courses in environmental planning and environmental...

280

Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants  

SciTech Connect (OSTI)

This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1  

SciTech Connect (OSTI)

This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

282

Environmental Impact Statements and Environmental Assessments Status Chart  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011DistrictLLCDepartmentDepartmentEnvironmental|

283

Depleted Uranium Technical Brief  

E-Print Network [OSTI]

Depleted Uranium Technical Brief United States Environmental Protection Agency Office of Air and Radiation Washington, DC 20460 EPA-402-R-06-011 December 2006 #12;#12;Depleted Uranium Technical Brief EPA of Radiation and Indoor Air Radiation Protection Division ii #12;iii #12;FOREWARD The Depleted Uranium

284

REVIEW Open Access Assessing environmental impacts of offshore wind  

E-Print Network [OSTI]

REVIEW Open Access Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future Helen Bailey1* , Kate L Brookes2 and Paul M Thompson3 Abstract Offshore wind power literature and our experience with assessing impacts of offshore wind developments on marine mammals

Aberdeen, University of

285

Unexpected, Stable Form of Uranium Detected | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unexpected, Stable Form of Uranium Detected Unexpected, Stable Form of Uranium Detected Insights on underappreciated reaction could shed light on environmental cleanup options...

286

Retrospective examination of geothermal environmental assessments  

SciTech Connect (OSTI)

Since 1976, the Department of Energy (DOE) has supported a variety of programs and projects dealing with the exploration, development, and utilization of geothermal energy. This report presents an overview of the environmental impacts associated with these efforts. Impacts that were predicted in the environmental analyses prepared for the programs and projects are reviewed and summarized, along with measures that were recommended to mitigate these impacts. Also, for those projects that have gone forward, actual impacts and implemented mitigation measures are reported, based on telephone interviews with DOE and project personnel. An accident involving spills of geothermal fluids was the major environmental concern associated with geothermal development. Other important considerations included noise from drilling and production, emissions of H/sub 2/S and cooling tower drift, disposal of solid waste (e.g., from H/sub 2/S control), and the cumulative effects of geothermal development on land use and ecosystems. Mitigation measures were frequently recommended and implemented in conjunction with noise reduction; drift elimination; reduction of fugitive dust, erosion, and sedimentation; blowout prevention; and retention of wastes and spills. Monitoring to resolve uncertainties was often implemented to detect induced seismicity and subsidence, noise, drift deposition, concentrations of air and water pollutants, and effects on groundwater. The document contains an appendix, based on these findings, which outlines major environmental concerns, mitigation measures, and monitoring requirements associated with geothermal energy. Sources of information on various potential impacts are also listed.

Webb, J.W.; Eddlemon, G.K.; Reed, A.W.

1984-03-01T23:59:59.000Z

287

Environmental Assessment for decontamination and dismantlement, Pinellas Plant  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) (DOE/EA-1092) of the proposed decontamination and dismantlement of the Pinellas Plant in Largo, Florida. Under the Decontamination and Dismantlement EA, the DOE proposes to clean up facilities, structures, and utilities; dismantle specific structures; and mitigate or eliminate any environmental impacts associated with the cleanup, dismantlement, and related activities. Related activities include utilization of specific areas by new tenants prior to full-scale cleanup. Based on the analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969. Therefore, the preparation of an environmental impact statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

NONE

1995-06-01T23:59:59.000Z

288

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado  

SciTech Connect (OSTI)

This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

Not Available

1994-06-01T23:59:59.000Z

289

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

l l,eve l Ventil.u:ion ( el OTEC H . . ard Level (f) Type ofW.E. and R.N. Manley, 1979. OTEC Commercialization Analysis.Assessment for Operational OTEC Platforms A Progress Report.

Sands, M.Dale

2013-01-01T23:59:59.000Z

290

Record of Decision for the Uranium Leasing Program Programmatic...  

Energy Savers [EERE]

Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact...

291

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1  

SciTech Connect (OSTI)

This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.

Not Available

1994-09-01T23:59:59.000Z

292

Models and parameters for environmental radiological assessments  

SciTech Connect (OSTI)

This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)

Miller, C W [ed.] [ed.

1984-01-01T23:59:59.000Z

293

Environmental control technology for mining and milling low-grade uranium resources  

SciTech Connect (OSTI)

This study examined the type and level of wastes that would be generated in the mining and milling of U/sub 3/O/sub 8/ from four potential domestic sources of uranium. The estimated costs of the technology to control these wastes to different degrees of stringency are presented.

Weakley, S.A.; Blahnik, D.E.; Long, L.W.; Bloomster, C.H.

1981-04-01T23:59:59.000Z

294

Environmental Assessment : Happy Valley [Substation Project].  

SciTech Connect (OSTI)

The proposed Happy Valley project consists of construction of a new BPA customer service 69-kV substation south of Sequim in Clallam County, Washington. A tie line, to be constructed by the customer as part of this project, will link the new BPA facility to the existing customer's transmission system in the area. This project responds to rapid load growth in the Olympic Peninsula, and will strengthen the existing BPA system and interconnected utility systems. It will reduce transmission losses presently incurred, especially on the BPA system supplying power to the Olympic Peninsula. This report describes the potential environmental impact of the proposed actions. 2 figs., 1 tab.

United States. Bonneville Power Administration.

1982-05-01T23:59:59.000Z

295

Environmental Assessments (EA) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010 EA-1797: Final Environmental

296

Environmental Assessments (EA) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010 EA-1797: Final EnvironmentalApril 1, 2010

297

Environmental Assessments (EA) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010 EA-1797: Final EnvironmentalApril 1,

298

Environmental Assessment DOE/EA-1405  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects theEnvironment,EH&S682405 Environmental

299

Advancing Performance Assessment for Disposal of Depleted Uranium at Clive Utah - 12493  

SciTech Connect (OSTI)

A Performance Assessment (PA) for disposal of depleted uranium (DU) waste has recently been completed for a potential disposal facility at Clive in northwestern Utah. For the purposes of this PA, 'DU waste' includes uranium oxides of all naturally-occurring isotopes, though depleted in U-235, varying quantities of other radionuclides introduced to the uranium enrichment process in the form of used nuclear reactor fuel (reactor returns), and decay products of all of these radionuclides. The PA will be used by the State of Utah to inform an approval decision for disposal of DU waste at the facility, and will be available to federal regulators as they revisit rulemaking for the disposal of DU. The specific performance objectives of the Clive DU PA relate to annual individual radiation dose within a 10,000-year performance period, groundwater concentrations of specific radionuclides within a 500-year compliance period, and site stability in the longer term. Fate and transport processes that underlie the PA model include radioactive decay and ingrowth, diffusion in gaseous and water phases, water advection in unsaturated and saturated zones, transport caused by plant and animal activity, cover naturalization, natural and anthropogenic erosion, and air dispersion. Fate and transport models were used to support the dose assessment and the evaluation of groundwater concentrations. Exposure assessment was based on site-specific scenarios, since the traditional human exposure scenarios suggested by DOE and NRC guidance are unrealistic for this site. Because the U-238 in DU waste reaches peak radioactivity (secular equilibrium) after 2 million years (My) following its separation, the PA must also evaluate the impact of climate change cycles, including the return of pluvial lakes such as Lake Bonneville. The first draft of the PA has been submitted to the State of Utah for review. The results of this preliminary analysis indicate that doses are very low for the site-specific receptors for the 10,000-year compliance period. This is primarily because DU waste is not highly radioactive within this time frame, the DU waste is assumed to be buried beneath zones exposed by erosion, groundwater concentrations of DU waste constituents do not exceed groundwater protection limits with in the 500-year compliance period, and the first deep lake occurrence will disperse DU waste across a large area, and will ultimately be covered by lake-derived sediment. A probabilistic PA model was constructed that considered DU waste and decay product doses to site-specific receptors for a 10,000-yr performance period, as well as deep-time effects. The quantitative results are summarized in Table VII. Doses (as TEDE) are always less than 5 mSv in a year, and doses to the offsite receptors are always much less than 0.25 mSv in a year. Groundwater concentrations of Tc-99 are always less than its GWPL except when the Tc-99 contaminated waste is disposed below grade. Even in this case, the median groundwater concentration is only 4.18 Bq/L (113 pCi/L), which is more than one order of magnitude less than the GWPL for Tc-99. The results overall suggest that there are disposal configurations that can be used to dispose of the proposed quantities of DU waste that are adequately protective of human health. (authors)

Black, Paul; Tauxe, John; Perona, Ralph; Lee, Robert; Catlett, Kate; Balshi, Mike; Fitzgerald, Mark; McDermott, Greg [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States); Shrum, Dan; McCandless, Sean; Sobocinski, Robert; Rogers, Vern [EnergySolutions, LLC, Salt Lake City, Utah 84101 (United States)

2012-07-01T23:59:59.000Z

300

Environmental monitoring, restoration and assessment: What have we learned  

SciTech Connect (OSTI)

The Twenty-Eighth Hanford Symposium on Health and the Environment was held in Richland, Washington, October 16--19, 1989. The symposium was sponsored by the US Department of Energy and the Pacific Northwest Laboratory, operated by Battelle Memorial Institute. The symposium was organized to review and evaluate some of the monitoring and assessment programs that have been conducted or are currently in place. Potential health and environmental effects of energy-related and other industrial activities have been monitored and assessed at various government and private facilities for over three decades. Most monitoring is required under government regulations; some monitoring is implemented because facility operators consider it prudent practice. As a result of these activities, there is now a substantial radiological, physical, and chemical data base for various environmental components, both in the United States and abroad. Symposium participants, both platform and poster presenters, were asked to consider, among other topics, the following: Has the expenditure of millions of dollars for radiological monitoring and assessment activities been worth the effort How do we decide when enough monitoring is enough Can we adequately assess the impacts of nonradiological components -- both inorganic and organic -- of wastes Are current regulatory requirements too restrictive or too lenient Can monitoring and assessment be made more cost effective Papers were solicited in the areas of environmental monitoring; environmental regulations; remediation, restoration, and decommissioning; modeling and dose assessment; uncertainty, design, and data analysis; and data management and quality assurance. Individual reports are processed separately for the databases.

Gray, R.H. (ed.)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

N /A

2003-11-28T23:59:59.000Z

302

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

N /A

2003-11-28T23:59:59.000Z

303

Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

United States. Bonneville Power Administration.

1995-01-01T23:59:59.000Z

304

EA-1875: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875: Final Environmental

305

EA-1896: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental AssessmentFinalFinalDraft Environmental

306

A qualitative method proposal to improve environmental impact assessment  

SciTech Connect (OSTI)

In environmental impact assessment, qualitative methods are used because they are versatile and easy to apply. This methodology is based on the evaluation of the strength of the impact by grading a series of qualitative attributes that can be manipulated by the evaluator. The results thus obtained are not objective, and all too often impacts are eliminated that should be mitigated with corrective measures. However, qualitative methodology can be improved if the calculation of Impact Importance is based on the characteristics of environmental factors and project activities instead on indicators assessed by evaluators. In this sense, this paper proposes the inclusion of the vulnerability of environmental factors and the potential environmental impact of project activities. For this purpose, the study described in this paper defined Total Impact Importance and specified a quantification procedure. The results obtained in the case study of oil drilling in Colombia reflect greater objectivity in the evaluation of impacts as well as a positive correlation between impact values, the environmental characteristics at and near the project location, and the technical characteristics of project activities. -- Highlights: • Concept of vulnerability has been used to calculate the importance impact assessment. • This paper defined Total Impact Importance and specified a quantification procedure. • The method includes the characteristics of environmental and project activities. • The application has shown greater objectivity in the evaluation of impacts. • Better correlation between impact values, environment and the project has been shown.

Toro, Javier, E-mail: jjtoroca@unal.edu.co [Institute of Environmental Studies, National University of Colombia at Bogotá (Colombia)] [Institute of Environmental Studies, National University of Colombia at Bogotá (Colombia); Requena, Ignacio, E-mail: requena@decsai.ugr.es [Department of Computer Science and Artificial Intelligence, University of Granada (Spain)] [Department of Computer Science and Artificial Intelligence, University of Granada (Spain); Duarte, Oscar, E-mail: ogduartev@unal.edu.co [National University of Colombia at Bogotá, Department of Electrical Engineering and Electronics (Colombia)] [National University of Colombia at Bogotá, Department of Electrical Engineering and Electronics (Colombia); Zamorano, Montserrat, E-mail: zamorano@ugr.es [Department of Civil Engineering, University of Granada (Spain)] [Department of Civil Engineering, University of Granada (Spain)

2013-11-15T23:59:59.000Z

307

Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona. Draft  

SciTech Connect (OSTI)

This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site.

Not Available

1993-09-01T23:59:59.000Z

308

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

NONE

1995-09-01T23:59:59.000Z

309

Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

NONE

1995-06-01T23:59:59.000Z

310

Environmental Assessments | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: NetworkingEnvironment Environment EventsAssessments Categorical

311

ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PILOT PROJECT LICENSE  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord of DecisionDraftDepartmentofEnergy ENERGY STAR forASSESSMENT FOR

312

Environmental assessment for device assembly facility operations, Nevada Test Site, Nye County, Nevada. Final report  

SciTech Connect (OSTI)

The U.S. Department of Energy, Nevada Operations Office (DOE/NV), has prepared an environmental assessment (EA), (DOE/EA-0971), to evaluate the impacts of consolidating all nuclear explosive operations at the newly constructed Device Assembly Facility (DAF) in Area 6 of the Nevada Test Site. These operations generally include assembly, disassembly or modification, staging, transportation, testing, maintenance, repair, retrofit, and surveillance. Such operations have previously been conducted at the Nevada Test Site in older facilities located in Area 27. The DAF will provide enhanced capabilities in a state-of-the-art facility for the safe, secure, and efficient handling of high explosives in combination with special nuclear materials (plutonium and highly enriched uranium). Based on the information and analyses in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.). Therefore, an environmental impact statement is not required, and DOE is issuing this finding of no significant impact.

NONE

1995-05-01T23:59:59.000Z

313

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1  

SciTech Connect (OSTI)

Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

NONE

1995-09-01T23:59:59.000Z

314

DOE/EA-0978 ENVIRONMENTAL ASSESSMENT SLUDGE STABILIZATION AT  

Broader source: Energy.gov (indexed) [DOE]

limit latent cancer fatality National Emission Standards for Hazardous Air Pollutants Plutonium Finishing Plant Plutonium Reclamation Facility Plutonium-Uranium...

315

Radiological assessment. A textbook on environmental dose analysis  

SciTech Connect (OSTI)

Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. The material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.

Till, J.E.; Meyer, H.R. (eds.)

1983-09-01T23:59:59.000Z

316

Power Systems Development Facility. Environmental Assessment  

SciTech Connect (OSTI)

The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell.

Not Available

1993-06-01T23:59:59.000Z

317

Environmental life cycle assessment as a decision making tool  

E-Print Network [OSTI]

· Bi-objective optimization to consider environmental and economic metrics · Steam and Power Plant and Heijungs (2002). Handbook on Life Cycle Assessment. Kluwer Academic Publ. #12;PASI 2011 Potential #12;PASI 2011 Steam and power plant #12;PASI 2011 Steam and power demands #12;Martínez P. and Eliceche

Grossmann, Ignacio E.

318

SECRETARIAL REVIEW DRAFT ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW/  

E-Print Network [OSTI]

SECRETARIAL REVIEW DRAFT ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW/ INITIAL REGULATORY The purpose of the non-AFA crab sideboard limits was to prevent vessels with crab QS from disadvantaging non for non-American Fisheries Act (AFA) crab vessels. In April 2007, the Council began developing options

319

ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW/ FINAL REGULATORY FLEXIBILITY ANALYSIS  

E-Print Network [OSTI]

ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW/ FINAL REGULATORY FLEXIBILITY ANALYSIS Amendment and Need The purpose of the non-AFA crab sideboard limits was to prevent vessels with crab QS from paper of all GOA sideboards for non-American Fisheries Act (AFA) crab vessels. In April 2007

320

August 2011 Environmental Assessment of Ocean Thermal Energy  

E-Print Network [OSTI]

August 2011 1 Environmental Assessment of Ocean Thermal Energy Conversion in Hawaii Available data prompted ocean thermal energy conversion (OTEC) technology to be re-considered for use in Hawaii for OTEC development. Keywords- Ocean thermal energy conversion, OTEC, renewable energy, Hawaii

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Environmental Impact Assessment of Transportation Networks with Degradable Links in an Era of Climate Change  

E-Print Network [OSTI]

Environmental Impact Assessment of Transportation Networks with Degradable Links in an Era: This paper proposes environmental impact assessment indices to evaluate the environmental effects of link creating a vicious cycle. In this paper, we explore the assessment of the environmental impact

Nagurney, Anna

322

Assessing the influence of environmental impact assessments on science and policy: An analysis of the Three Gorges Project  

E-Print Network [OSTI]

Assessing the influence of environmental impact assessments on science and policy: An analysis Keywords: Environmental impact assessment Dams Three Gorges Project Uncertainty Prioritization a b s t r exist between the scientific interest (via number of publications) in environmental impacts and (a

Tullos, Desiree

323

Environmental implications of accelerated gasohol production: preliminary assessment  

SciTech Connect (OSTI)

This report assesses the environmental impacts of increasing US production of fuel ethanol by 330 million gallons per year in the 1980 to 1981 time frame in order to substitute gasohol for 10% of the unleaded gasoline consumed in the United States. Alternate biomass feedstocks are examined and corn is selected as the most logical feedstock, based on its availability and cost. Three corn conversion processes that could be used to attain the desired 1980 to 1981 production are identified; fermentation plants that use a feedstock of starch and wastes from an adjacent corn refining plants are found to have environmental and economic advantages. No insurmountable environmental problems can be achieved using current technology; the capital and operating costs of this control are estimated. If ethanol production is increased substantially after 1981, the environmentally acceptable use or disposal of stillage, a liquid by-product of fermentation, could become a serious problem.

Not Available

1980-01-01T23:59:59.000Z

324

Environmentally Conscious Manufacturing Project: ECM assessment guidance manual  

SciTech Connect (OSTI)

The purpose of this document is to provide a summary of the basic tools that will be used in conducting assessments under the Environmentally Conscious Manufacturing (ECM) Project assessment program. ECM can cover a wide range of issues including: finding safer alternatives to toxic materials; changing processes to become more efficient; environmental costs and regulatory compliance; waste reduction; energy conservation; product packaging; and product reuse/recycling. The assessments performed as part of this program will try to identify opportunities to implement technologies/actions that will promote the types of results listed above. The general methodology, or sequence of events, that will be used in conducting assessments is as follows: 1. Form an Assessment Team; 2. Map Process by flow diagrams and materials accounting; 3. Identify opportunities for ECM by activity based accounting and pareto analysis; 4. Identify and evaluate ECM/pollution prevention alternatives; 5. Implement alternatives; 6. Monitor progress. All of the assessment steps listed above are addressed in this document except forming the assessment team. The tools discussed in this document are well known, widely used process analysis or quality improvement tools which have been adapted for use in evaluating opportunities for ECM/Pollution prevention.

Not Available

1994-11-01T23:59:59.000Z

325

Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1  

SciTech Connect (OSTI)

Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

NONE

1995-12-01T23:59:59.000Z

326

E-Print Network 3.0 - assessment environmental impact Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(see Impact assessment). The notion of an environmental impact due... . An ... Source: Smith, Eric P. - Department of Statistics, Virginia Tech Collection: Environmental...

327

E-Print Network 3.0 - assessing environmental impacts Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(see Impact assessment). The notion of an environmental impact due... . An ... Source: Smith, Eric P. - Department of Statistics, Virginia Tech Collection: Environmental...

328

Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

329

Continuing investigations for technology assessment of /sup 99/Mo production from LEU (low enriched Uranium) targets  

SciTech Connect (OSTI)

Currently much of the world's supply of /sup 99m/Tc for medical purposes is produced from /sup 99/Mo derived from the fissioning of high enriched uranium (HEU). The need for /sup 99m/Tc is continuing to grow, especially in developing countries, where needs and national priorities call for internal production of /sup 99/Mo. This paper presents the results of our continuing studies on the effects of substituting low enriched Uranium (LEU) for HEU in targets for the production of fission product /sup 99/Mo. Improvements in the electrodeposition of thin films of uranium metal are reported. These improvements continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or hastaloy. A cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets is reported. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminum alloy or uranium aluminide dispersed fuel used in other current target designs will allow the substitution of LEU for HEU in these targets with equivalent /sup 99/Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to (1) the insolubility of uranium silicides in alkaline solutions and (2) the presence of significant quantities of silicate in solution. Results to date suggest that both concerns can be handled and that substitution of LEU for HEU can be achieved.

Vandergrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.

1987-01-01T23:59:59.000Z

330

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site  

SciTech Connect (OSTI)

Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

1991-09-01T23:59:59.000Z

331

Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

NONE

1996-03-01T23:59:59.000Z

332

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

NONE

1996-03-01T23:59:59.000Z

333

Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology  

SciTech Connect (OSTI)

In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.

Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary A.

2014-02-07T23:59:59.000Z

334

Final environmental statement related to the Western Nuclear, Inc. , Split Rock Uranium Mill (Fremont County, Wyoming)  

SciTech Connect (OSTI)

The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock Uranium Mill near Jeffrey City and the Green Mountain Ion-Exchange Facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area - the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). However, although heap leaching operations were previously authorized at Frazier-Lamac, there has never been any processing of material at this site. The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U/sub 3/O/sub 8/ through 1996 using lower-grade ores.

Not Available

1980-02-01T23:59:59.000Z

335

Environmental Hazards Assessment Program. Quarterly report, July--September 1993  

SciTech Connect (OSTI)

The objectives of the EHAP program stated in the proposal to DOE are to: (1) develop a holistic, national basis for risk assessment, risk management, and risk communication which recognizes the direct impact of environmental hazards on the health and well-being of all, (2) develop a pool of talented scientists and experts in cleanup activities, especially in human health aspects, and (3) identify needs and develop programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health oriented aspects of environmental restoration and waste management.

Not Available

1993-12-01T23:59:59.000Z

336

EA-1884: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875:4: Draft Environmental

337

EA-1886: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875:4:Final Environmental

338

Uranium Mill Tailings Management  

SciTech Connect (OSTI)

This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements).

Nelson, J.D.

1982-01-01T23:59:59.000Z

339

Environmental life-cycle assessment of highway construction projects  

E-Print Network [OSTI]

Finland (Junnila et al 2003). The energy use and emissions from the life-cycle of the office building was assessed assuming fifty years as its service life. This study conducted an inventory as well as impact assessment on the office building as given... of office buildings in Finland. The practical aspects of this study are that more environmentally-conscious design can be made but further studies have to be conducted to standardize the results of this study in countries in a different geographic...

Rajagopalan, Neethi

2009-05-15T23:59:59.000Z

340

US Geological Survey research on the environmental fate of uranium mining and milling wastes  

SciTech Connect (OSTI)

Studies by the US Geological Survey (USGS) of uranium mill tailings (UMT) have focused on characterizing the forms in which radionuclides are retained and identifying factors influencing the release of radionuclides to air and water. Selective extraction studies and studies of radionuclide sorption by and reaching from components of UMT showed alkaline earth sulfate and hydrous ferric oxides to be important hosts of radium-226 ({sup 226}Ra) in UMT. Extrapolating from studies of barite dissolution in anerobic lake sediments, the leaching of {sup 226}Ra from UMT by sulfate-reducing bacteria was investigated; a marked increase in {sup 226}Ra release to aqueous solution as compared to sterile controls was demonstrated. A similar action of iron(III)-reducing bacteria was later shown. Ion exchangers such as clay minerals can also promote the dissolution of host-phase minerals and thereby influence the fate of radionuclides such as {sup 226}Ra. Radon release studies examined particle size and ore composition as variables. Aggregation of UMT particles was shown to mask the higher emanating fraction of finer particles. Studies of various ores and ore components showed that UMT cannot be assumed to have the same radon-release characteristics as their precursor ores, nor can {sup 226}Ra retained by various substrates be assumed to emanate the same fraction of radon. Over the last decade, USGS research directed at offsite mobility of radionuclides form uranium mining and milling processes has focused on six areas: the Midnite Mine in Washington; Ralston Creek and Reservoir, Colorado; sites near Canon City, Colorado; the Monument Valley District of Arizona and Utah; the Cameron District of Arizona; and the Puerco River basin of Arizona and New Mexico. 48 refs., 6 figs., 4 tabs.

Landa, E.R.; Gray, J.R. [Geological Survey, Reston, VA (United States)

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - assessment benefits environmental Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Ecology 3 Willingness to Pay Data Potential problems with WTP method Summary: Environmental Impact Assessment Risk Assessment and Management Precautionary...

342

Controlled Speed Accessory Drive Program: Programmatic environmental assessment  

SciTech Connect (OSTI)

This document is a programmatic environmental assessment of the Department of Energy's Controlled Speed Accessory Drive (CSAD) program and alternatives. Its purpose is to evaluate CSAD alternatives to assure that environmental priorities are considered at the earliest meaningful point in the decision-making process, and to facilitate the choice of preferable options. This document accords with both the letter and the spirit of the National Environmental Policy Act (NEPA) requirements as interpreted and standardized by the Council on Environmental Quality. The major conclusions reached in this assessment are as follows: (1) controlled speed accessory drive bolted onto existing automobile designs may not provide adequate engine cooling when operated at high ambient temperatures or under heavy loading; (2) when the CSAD is adopted for production, the emissions effect of controlled speed accessory drive will not be a problem. Auto emissions are already controlled by existing regulations, and automobiles with a CSAD must meet the same emission standards as non-CSAD vehicles; (3) the nature of the impact is such that significant expansion of the market will not affect it. The one adverse environmental concern, the engine cooling problem, will probably be remedied by proper optimization of automobiles for controlled speed accessory drive, or, until the problem can be alleviated, it will delay commercialization of the drive. No safety hazard will be introduced to the American roadways. In addition, no adverse environmental concerns directly related to the Controlled Speed Accessory Drive demonstration program are anticipated. Therefore, it is recommended that a finding of no significant impact be prepared.

Not Available

1980-04-14T23:59:59.000Z

343

Integrating the principles of strategic environmental assessment into local comprehensive land use plans in California  

E-Print Network [OSTI]

The lack of early integration with the planning and decision-making process has been a major problem in environmental assessment. Traditional project-based environmental impact assessment has inadequate incentives and capacities to incorporate...

Tang, Zhenghong

2009-05-15T23:59:59.000Z

344

Horns Rev Offshore Wind Farm Environmental Impact Assessment  

E-Print Network [OSTI]

Horns Rev Offshore Wind Farm Environmental Impact Assessment of Sea Bottom and Marine Biology #12 Design ApS 01.03.2000 #12;Bio/consult A/S Horns Rev. Offshore Wind Farm Doc. No. 1680-1-02-03-003 rev. 1........................................................................................................................................................... 36 #12;Bio/consult A/S ELSAM Horns Rev. Offshore Wind Farm Doc. No. 1680-1-02-03-003 rev. 1 Page 4

345

EA-1876: Final Environmental Assessment and Finding of No Significant  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875: FinalImpact |

346

EA-1881: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875: FinalImpactof

347

EA-1884: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875:4: Draft

348

EA-1886: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875:4:

349

EA-1890: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment

350

EA-1892: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental AssessmentFinal

351

EA-1895: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental AssessmentFinalFinal

352

EA-1896: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental AssessmentFinalFinalDraft

353

EA-1959: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9: Draft Environmental Assessment EA-1959: Draft

354

EA-1960: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9: Draft Environmental Assessment EA-1959:

355

EA-0847: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant Potomac RiverEA-0847: Final Environmental Assessment

356

EA-1795: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental Assessment EA-1795: Final

357

EA-1849: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental AssessmentTuscarora, NV |: Final

358

EA-1859: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental AssessmentTuscarora, NVFinal

359

EA-1887: Supplemental Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental AssessmentTuscarora,6882:

360

EA-1935: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal1935: Final Environmental Assessment EA-1935:

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EA-1941: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal1935: Final Environmental Assessment

362

EA-1948: Draft Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal1935: FinalDraft Environmental Assessment

363

EA-1954: Draft Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal1935: FinalDraftDraft Environmental Assessment

364

Ross Hazardous and Toxic Materials Handling Facility: Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) owns a 200-acre facility in Washington State known as the Ross Complex. Activities at the Ross Complex routinely involve handling toxic substances such as oil-filled electrical equipment containing polychlorinated biphenyls (PCBs), organic and inorganic compounds for preserving wood transmission poles, and paints, solvents, waste oils, and pesticides and herbicides. Hazardous waste management is a common activity on-site, and hazardous and toxic substances are often generated from these and off-site activities. The subject of this environmental assessment (EA) concerns the consolidation of hazardous and toxic substances handling at the Complex. This environmental assessment has been developed to identify the potential environmental impacts of the construction and operation of the proposal. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) to determine if the proposed action is likely to have a significant impact on the environment. In addition to the design elements included within the project, mitigation measures have been identified within various sections that are now incorporated within the project. This facility would be designed to improve the current waste handling practices and to assist BPA in meeting Federal and state regulations.

URS Consultants, Inc.

1992-06-01T23:59:59.000Z

365

E-Print Network 3.0 - assess environmental degradation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assessment. COURSES Advanced Environmental Chemistry Advanced Topics in Air Pollution Air Pollution... and physiology of microorgan- isms involved in degradation...

366

Resources, Conservation and Recycling 51 (2007) 294313 Environmental impact assessment of different  

E-Print Network [OSTI]

Resources, Conservation and Recycling 51 (2007) 294­313 Environmental impact assessment environmental impacts. Therefore, it is vital to evaluate the environmental impacts of the symbiosis in order is proposed. In this paper, an LCA-type environmental impact assessment of different design schemes

Pike, Ralph W.

367

The mediation of environmental assessment's influence: What role for power?  

SciTech Connect (OSTI)

Considerable empirical research has been conducted on why policy tools such as environmental assessment (EA) often appear to have 'little effect' (after Weiss) on policy decisions. This article revisits this debate but looks at a mediating factor that has received limited attention to-date in the context of EA - political power. Using a tripartite analytical framework, a comparative analysis of the influence and significance of power in mediating environmental policy integration is undertaken. Power is analysed, albeit partially, through an exploration of institutions that underpin social order. Empirically, the research examines the case of a new approach to policy-level EA (essentially a form of Strategic Environmental Assessment) developed by the World Bank and its trial application to urban environmental governance and planning in Dhaka mega-city, Bangladesh. The research results demonstrate that power was intimately involved in mediating the influence of the policy EA approach, in both positive (enabling) and negative (constraining) ways. It is suggested that the policy EA approach was ultimately a manifestation of a corporate strategy to maintain the powerful position of the World Bank as a leading authority on international development which focuses on knowledge generation. Furthermore, as constitutive of an institution and reflecting the worldviews of its proponents, the development of a new approach to EA also represents a significant power play. This leads us to, firstly, emphasise the concepts of strategy and intentionality in theorising how and why EA tools are employed, succeed and fail; and secondly, reflect on the reasons why power has received such limited attention to-date in EA scholarship. - Highlights: Black-Right-Pointing-Pointer Conducts empirical research on the neglected issue of power. Black-Right-Pointing-Pointer Employs an interpretation of power in which it is viewed as a productive phenomenon. Black-Right-Pointing-Pointer Analyses the influence of power in the trial application of a new approach to policy environmental assessment. Black-Right-Pointing-Pointer Demonstrates the importance of power dynamics in understanding the successes and failures of environmental assessment.

Cashmore, Matthew, E-mail: cashmore@plan.aau.dk [Danish Centre for Environmental Assessment, Department of Development and Planning, Aalborg University Copenhagen, A.C. Meyers Vaenge 15, DK-2450 Copenhagen SV (Denmark); Axelsson, Anna [Naturskyddsforeningen, Box 4625, 116 91 Stockholm (Sweden)

2013-02-15T23:59:59.000Z

368

Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment  

SciTech Connect (OSTI)

DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

Irving, John S

2003-04-01T23:59:59.000Z

369

Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003  

SciTech Connect (OSTI)

DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

Irving, J.S.

2003-04-30T23:59:59.000Z

370

Environmental Assessment: geothermal direct heat project, Marlin, Texas  

SciTech Connect (OSTI)

The Federal action addressed by this Environmental Assessment (EA) is joint funding the retrofitting of a heating and hot water system in a hospital at Marlin, Texas, with a geothermal preheat system. The project will be located within the existing hospital boiler room. One supply well was drilled in an existing adjacent parking lot. It was necessary to drill the well prior to completion of this environmental assessment in order to confirm the reservoir and to obtain fluids for analysis in order to assess the environmental effects of fluid disposal. Fluid from operation will be disposed of by discharging it directly into existing street drains, which will carry the fluid to Park Lake and eventually the Brazos River. Fluid disposal activities are regulated by the Texas Railroad Commission. The local geology is determined by past displacements in the East Texas Basin. Boundaries are marked by the Balcones and the Mexia-Talco fault systems. All important water-bearing formations are in the cretaceous sedimentary rocks and are slightly to highly saline. Geothermal fluids are produced from the Trinity Group; they range from approximately 3600 to 4000 ppM TDS. Temperatures are expected to be above 64/sup 0/C (147/sup 0/F). Surface water flows southeastward as a part of the Brazos River Basin. The nearest perennial stream is the Brazos River 5.6 km (3.5 miles) away, to which surface fluids will eventually discharge. Environmental impacts of construction were small because of the existing structures and paved areas. Construction run-off and geothermal flow-test fluid passed through a small pond in the city park, lowering its water quality, at least temporarily. Construction noise was not out of character with existing noises around the hospital.

Not Available

1980-08-01T23:59:59.000Z

371

DOE Extends Public Comment Period for the Draft Uranium Leasing...  

Office of Environmental Management (EM)

Extends Public Comment Period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement DOE Extends Public Comment Period for the Draft Uranium Leasing...

372

Environmental assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico  

SciTech Connect (OSTI)

Sandia National Laboratories/New Mexico (SNL/NM) is managed and operated for the U.S. Department of Energy (DOE) by Sandia Corporation, a subsidiary of the Lockheed Martin Company. SNL/NM is located on land controlled by DOE within the boundaries of Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. This report provides an environmental assessment of proposed remedial action activities at the solid waste management units at SNL/NM. A risk assessment of health hazards is also discussed.

NONE

1996-03-01T23:59:59.000Z

373

Environmental Assessment -- Test Area North pool stabilization project update  

SciTech Connect (OSTI)

The purpose of this Environmental Assessment (EA) is to update the ``Test Area North Pool Stabilization Project`` EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped from the EA/FONSI issued May 6, 1996. A new drying process was subsequently developed and is analyzed in Section 2.1.2 of this document. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN.

NONE

1997-08-01T23:59:59.000Z

374

Draft environmental assessment -- Test Area North pool stabilization project update  

SciTech Connect (OSTI)

The purpose of this Environmental Assessment (EA) is to update the ``Test Area North Pool Stabilization Project`` EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped form the Ea/FONSI issued May 6, 1996. The origin and nature of the TMI core debris and the proposed drying process are described and analyzed in detail in this EA. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN.

NONE

1997-06-01T23:59:59.000Z

375

Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE`s deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

NONE

1999-02-01T23:59:59.000Z

376

An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use  

E-Print Network [OSTI]

An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material: Life cycle assessment Quantum dots Nanophotovoltaics Quantum dot photovoltaic modules Solar energy Assessment (LCA) of a proposed type of nanophotovoltaic, quantum dot photovoltaic (QDPV) module. The LCA

Illinois at Chicago, University of

377

EA-1942: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing the2-AFinal Environmental Assessment

378

EA-1798: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADAMitigation7:3:8: Final Environmental Assessment

379

EA-1885: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875:4: DraftFinding of

380

EA-1885: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875:4: DraftFinding

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EA-1888: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875:4:Final7: Finding

382

EA-1888: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875:4:Final7: FindingFinal

383

EA-1889: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875:4:Final7:Draft

384

EA-1889: Final Environmental Assessment and Finding of No Significant  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental Assessment EA-1875:4:Final7:DraftImpact |

385

EA-1897: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental AssessmentFinalFinalDraftFinding of

386

EA-1900: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final Environmental AssessmentFinalFinalDraftFindingDraft

387

EA-1960: Draft Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9: Draft Environmental Assessment EA-1959: Draft|Draft

388

EA-1964: Final Environmental Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9: Draft Environmental AssessmentFInding of NoFinal

389

EA-1958: Final Environmental Assessment | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S.7685 Vol.Final Environmental Assessment8: Final

390

EA-1812: Draft Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental Assessment EA-1795:1 H.Q

391

EA-1812: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental Assessment EA-1795:1 H.QFinal

392

EA-1826: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental Assessment EA-1795:1 H.QC H.Q826:

393

EA-1828: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental Assessment EA-1795:1 H.QC

394

EA-1845: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental Assessment EA-1795:1-B845: Final

395

EA-1846: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental Assessment EA-1795:1-B845:

396

EA-1891: Draft Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental AssessmentTuscarora,6882:9Draft

397

EA-1941: Draft Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal1935: Final Environmental Assessment EA-1935:41:

398

EA-1948: Final Environmental Assessment | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal1935: FinalDraft Environmental AssessmentFinal

399

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

NONE

1996-03-01T23:59:59.000Z

400

POLICY ISSUES ASSOCIATED WITH USING SIMULATION TO ASSESS ENVIRONMENTAL IMPACTS  

SciTech Connect (OSTI)

This report examines the relationship between simulation-based science and judicial assessments of simulations or models supporting evaluations of environmental harms or risks, considering both how it exists currently and how it might be shaped in the future. This report considers the legal standards relevant to judicial assessments of simulation-based science and provides examples of the judicial application of those legal standards. Next, this report discusses the factors that inform whether there is a correlation between the sophistication of a challenged simulation and judicial support for that simulation. Finally, this report examines legal analysis of the broader issues that must be addressed for simulation-based science to be better understood and utilized in the context of judicial challenge and evaluation. !

Uchitel, Kirsten; Tanana, Heather

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners  

SciTech Connect (OSTI)

This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

Bansal, Pradeep [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

2014-01-01T23:59:59.000Z

402

Environmental assessment for the proposed CMR Building upgrades at the Los Alamos National Laboratory, Los Alamos, New Mexico. Final document  

SciTech Connect (OSTI)

In order to maintain its ability to continue to conduct uninterrupted radioactive and metallurgical research in a safe, secure, and environmentally sound manner, the US Department of Energy (DOE) proposes to upgrade the Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Building. The building was built in the early 1950s to provide a research and experimental facility for analytical chemistry, plutonium and uranium chemistry, and metallurgy. Today, research and development activities are performed involving nuclear materials. A variety of radioactive and chemical hazards are present. The CMR Building is nearing the end of its original design life and does not meet many of today`s design codes and standards. The Proposed Action for this Environmental Assessment (EA) includes structural modifications to some portions of the CMR Building which do not meet current seismic criteria for a Hazard Category 2 Facility. Also included are upgrades and improvements in building ventilation, communications, monitoring, and fire protection systems. This EA analyzes the environmental effects of construction of the proposed upgrades. The Proposed Action will have no adverse effects upon agricultural and cultural resources, wetlands and floodplains, endangered and threatened species, recreational resources, or water resources. The Proposed Action would have negligible effects on human health and transportation, and would not pose a disproportionate adverse health or environmental impact on minority or low-income populations within an 80 kilometer (50 mile) radius of the CMR Building.

NONE

1997-02-04T23:59:59.000Z

403

EIS-0269: Long-Term Management of Depleted Uranium Hexaflouride  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) prepared this programmatic environmental impact statement to assess the potential impacts of alternative management strategies for depleted uranium hexafluoride currently stored at three DOE sites: Paducah site near Paducah, Kentucky; Portsmouth site near Portsmouth, Ohio; and K-25 site on the Oak Ridge Reservation in Oak Ridge, Tennessee.

404

Terrestrial perturbation experiments as an environmental assessment tool  

SciTech Connect (OSTI)

The National Environmental Policy Act of 1969 (NEPA) was initially interpreted as requiring full disclosure of the environmental impacts of a federal action. Because of the limitations of time, money, and manpower, this requirement that all impacts be considered has led to superficial analysis of many important impacts. The President's Council on Environmental Quality (CEQ) has provided a solution to this problem by reinterpreting NEPA as requiring analysis of those impacts which have significant bearing on decision making. Because assessment resources can now be concentrated on a few critical issues, it should be possible to perform field perturbation experiments to provide direct evidence of the effects of a specific mixture of pollutants or physical disturbances on the specific receiving ecosystem. Techniques are described for field simulation of gaseous and particulate air pollution, soil pollutants, disturbance of the earth's surface, and disturbance of wildlife. These techniques are discussed in terms of their realism, cost, and the restrictions which they place on the measurement of ecological parameters.

Suter, G.W. II

1980-08-01T23:59:59.000Z

405

(Environmental impact assessment as applied to policies, plans and programs)  

SciTech Connect (OSTI)

A proposal to study the application of the principles of environmental impact assessment (EIA) to policy, plans, and programs was submitted by the US Environmental Protection Agency (EPA) to the Senior Advisors on Environmental and Water Problems of the United Nations Economic Commission. On approval, EPA asked Oak Ridge National Laboratory (ORNL) to support its efforts as lead participant on an international task force. ORNL is responsible for overall project management, including development of the report. At the first meeting in Geneva on June 18--19, there were representatives from Austria, Canada, Finland, Norway, Poland, Sweden, and the United Kingdom. The administrative/legal setting for EIA in each country was reviewed. The objectives of the task force were defined, and issues related to the application of EIA at the policy level were discussed. At the second meeting, in addition to those countries represented at the first meeting the Commission of Economic Communities, Czech and Slovak Federal Republic, Remark, Federal Republic of Germany, Hungary, and The Netherlands were represented. A brief review was given by the new participants of legal/administrative requirements for EIA in their countries. Case studies were presented by Canada, Finland, The Netherlands, Norway, Sweden, and the United States.

Sigal, L.L.

1990-10-19T23:59:59.000Z

406

Test Area North Pool Stabilization Project: Environmental assessment  

SciTech Connect (OSTI)

The Test Area North (TAN) Pool is located within the fenced TAN facility boundaries on the Idaho National Engineering Laboratory (INEL). The TAN pool stores 344 canisters of core debris from the March, 1979, Three Mile Island (TMI) Unit 2 reactor accident; fuel assemblies from Loss-of-Fluid Tests (LOFT); and Government-owned commercial fuel rods and assemblies. The LOFT and government owned commercial fuel rods and assemblies are hereafter referred to collectively as {open_quotes}commercial fuels{close_quotes} except where distinction between the two is important to the analysis. DOE proposes to remove the canisters of TMI core debris and commercial fuels from the TAN Pool and transfer them to the Idaho Chemical Processing Plant (ICPP) for interim dry storage until an alternate storage location other than at the INEL, or a permanent federal spent nuclear fuel (SNF) repository is available. The TAN Pool would be drained and placed in an industrially and radiologically safe condition for refurbishment or eventual decommissioning. This environmental assessment (EA) identifies and evaluates environmental impacts associated with (1) constructing an Interim Storage System (ISS) at ICPP; (2) removing the TMI and commercial fuels from the pool and transporting them to ICPP for placement in an ISS, and (3) draining and stabilizing the TAN Pool. Miscellaneous hardware would be removed and decontaminated or disposed of in the INEL Radioactive Waste Management Complex (RWMC). This EA also describes the environmental consequences of the no action alternative.

NONE

1996-05-01T23:59:59.000Z

407

Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.  

SciTech Connect (OSTI)

Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

NONE

1995-04-01T23:59:59.000Z

408

Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska  

SciTech Connect (OSTI)

The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

NONE

1998-05-01T23:59:59.000Z

409

National Wind Technology Center sitewide, Golden, CO: Environmental assessment  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

NONE

1996-11-01T23:59:59.000Z

410

Environmental risk assessment for aquifer thermal energy storage  

SciTech Connect (OSTI)

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system's design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

411

Environmental risk assessment for aquifer thermal energy storage  

SciTech Connect (OSTI)

This report has been prepared by Pacific Northwest Laboratory at the request of the International Energy Agency (IEA). The US Department of Energy represents the United States in the IEA for Annex IV, the IEA task for research and development in aquifer thermal energy storage (ATES). Installation and operation of an ATES system is necessarily intrusive to ground-water resources. Therefore, governmental authorities usually require an environmental risk assessment to be performed before permission to construct an ATES system is granted. Writing an accurate statement of risk presupposes a knowledge of aquifer and ground-water characteristics and that an engineering feasibility study has taken place. Effective and logical presentation of the results of the risk assessment can expedite the grant of approval. Introductory remarks should address questions regarding why the ATES project has been proposed, what it is expected to accomplish, and what the expected benefits are. Next, the system configuration, including the aquifer, ATES plant, and well field, should be described in terms of size and location, design components, and thermal and hydraulic capacity. The final element of system design, the predicted annual operating cycle, needs to be described in sufficient detail to allow the reviewer to appreciate the net hydraulic, thermal, and hydrochemical effects imposed on the aquifer. Risks may be environmental or legal. Only after a reviewer has been introduced to the proposed system`s design, operation, and scale can risk issues can be identified and weighed against the benefits of the proposed ATES system.

Hall, S.H.

1993-01-01T23:59:59.000Z

412

HEALTH IMPACT ASSESSMENT OF GLOBAL ENVIRONMENTAL CHANGE (Spring Semester, 2009) Dr. Jonathan Patz, course director  

E-Print Network [OSTI]

1 HEALTH IMPACT ASSESSMENT OF GLOBAL ENVIRONMENTAL CHANGE (Spring Semester, 2009) Dr. Jonathan Patz) ============================================================= Course Outline Section I. Assessment Frameworks & Intro to Environmental/Occupational Health Faculty (UW (& proj. mapping tool) Jonathan Patz 2. 1/26/09 Intro. to Environmental Health: Local to Global Scales

Sheridan, Jennifer

413

Assessing the prospective environmental impacts of photovoltaic systems based on a simplified LCA model  

E-Print Network [OSTI]

Assessing the prospective environmental impacts of photovoltaic systems based on a simplified LCA the environmental impacts of PV systems are small during their operating phase, they are more significant during the use of LCA to assess the environmental impacts of one electricity-production technology. To address

Paris-Sud XI, Université de

414

Re-conceptualising strategic environmental assessment: theoretical overview and case study from Chile  

E-Print Network [OSTI]

, Chile (Comision Nacional del Medio Ambiente) Regional Environmental Commission, Chile (Comision Regional del Medio Ambiente) DepaJ1ment for International Development (UK) Direccion General de Aguas Declaracion de Impacto Ambiental Direccion de... Impact Assessment (in Chilean literature: Evaluacion de Impacto Ambiental) Environmental Sustainability Assurance European Union Global Environmental Facility Geographical Information Systems Impact Assessment (generic for all categories of 'impacts...

Bina, Olivia Claudia

2004-06-15T23:59:59.000Z

415

Safety Training Self-Assessment The UC Irvine Safety Training Self-Assessment (STSA) is provided by Environmental Health  

E-Print Network [OSTI]

Safety Training Self-Assessment The UC Irvine Safety Training Self-Assessment (STSA) is provided by Environmental Health Safety (EH&S). The Safety Training Self-Assessment is required for: · All UC employees the Safety Training Self-Assessment: 1. Log into the UC Learning Center at http://www.uclc.uci.edu. 2

Rose, Michael R.

416

Environmental Assessment for the Accelerated Tank Closure Demonstration Project  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) Office of River Protection (ORP) needs to collect engineering and technical information on (1) the physical response and behavior of a Phase I grout fill in an actual tank, (2) field deployment of grout production equipment and (3) the conduct of component closure activities for single-shell tank (SST) 241-C-106 (C-106). Activities associated with this Accelerated Tank Closure Demonstration (ATCD) project include placement of grout in C-106 following retrieval, and associated component closure activities. The activities will provide information that will be used in determining future closure actions for the remaining SSTs and tank farms at the Hanford Site. This information may also support preparation of the Environmental Impact Statement (EIS) for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington (Tank Closure EIS). Information will be obtained from the various activities associated with the component closure activities for C-106 located in the 241-C tank farm (C tank farm) under the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989). The impacts of retrieving waste from C-106 are bounded by the analysis in the Tank Waste Remediation System (TWRS) EIS (DOE/EIS-0189), hereinafter referred to as the TWRS EIS. DOE has conducted and continues to conduct retrieval activities at C-106 in preparation for the ATCD Project. For major federal actions significantly affecting the quality of the human environment, the ''National Environmental Policy Act of 1969'' (NEPA) requires that federal agencies evaluate the environmental effects of their proposed and alternative actions before making decisions to take action. The President's Council on Environmental Quality (CEQ) has developed regulations for implementing NEPA. These regulations are found in Title 40 of the Code of Federal Regulations (CFR), Parts 1500-1508. They require the preparation of an Environmental Assessment (EA) that includes an evaluation of alternative means of addressing the problem and a discussion of the potential environmental impacts of a proposed federal action. An EA provides analysis to determine whether an EIS or a finding of no significant impact should be prepared.

N /A

2003-06-16T23:59:59.000Z

417

Selenium transformation in coal mine spoils: Its environmental impact assessment  

SciTech Connect (OSTI)

The objective of this program was to conduct an environmental impact assessment study for selenium from coal mine spoils. The use of in-situ lysimetry to predict selenium speciation, transformation, and mobility under natural conditions was evaluated. The scope of the study was to construct and test field-scale lysimeter and laboratory mini-column to assess mobility and speciation of selenium in coal mine overburden and soil systems; to conduct soil and groundwater sampling throughout the state of Oklahoma for an overall environmental impact assessment of selenium; and to conduct an in-depth literature review on the solubility, speciation, mobility, and toxicity of selenium from various sources. Groundwater and surface soil samples were also collected from each county in Oklahoma. Data collected from the lysimeter study indicated that selenium in the overburden of the abandoned mine site was mainly found in the selenite form. The amount of selenite found was too low and immobile to be of concern to the environment. The spoil had equilibrated long enough (over 50 years) that most of the soluble forms of selenium have already been lost. Examination of the overburden indicated the presence of pyrite crystals that precipitated over time. The laboratory mini-column study indicated that selenite is quite immobile and remained on the overburden material even after leaching with dilute acid. Data from groundwater samples indicated that based on the current permissible level for selenium in groundwater (0.01 mg Se/L), Oklahoma groundwater is widely contaminated with the element. However, according to the new regulation (0.05 mg Se/L), which is to be promulgated in 1992, only 9 of the 77 counties in the state exceed the limit.

Harness, J.; Atalay, A.; Koll, K.J.; Zhang, H.; Maggon, D.

1991-12-31T23:59:59.000Z

418

Framework for a comparative environmental assessment of drilling fluids  

SciTech Connect (OSTI)

During the drilling of an oil or gas well, drilling fluid (or mud) is used to maintain well control and to remove drill cuttings from the hole. In response to effluent limitation guidelines promulgated by the US Environmental Protection Agency (EPA) for discharge of drilling wastes offshore, alternatives to water and oil-based muds have been developed. These synthetic-based muds (SBMs) are more efficient than water-based muds (WBMs) for drilling difficult and complex formation intervals and have lower toxicity and smaller environmental impacts than diesel or conventional mineral oil-based muds (OBMs). A third category of drilling fluids, derived from petroleum and called enhanced mineral oils (EMOs), also have these advantages over the traditionally used OBMs and WBMs. EPA recognizes that SBMs and EMOs are new classes of drilling fluids, but their regulatory status is unclear. To address this uncertainty, EPA is following an innovative presumptive rulemaking process that will develop final regulations for SBM discharges offshore in less than three years. This report develops a framework for a comparative risk assessment for the discharge of SBMs and EMOs, to help support a risk-based, integrated approach to regulatory decision making. The framework will help identify potential impacts and benefits associated with the use of SBMs, EMOs, WBMs, and OBMs; identify areas where additional data are needed; and support early decision-making in the absence of complete data. As additional data becomes available, the framework can support a full quantitative comparative assessment. Detailed data are provided to support a comparative assessment in the areas of occupational and public health impacts.

Meinhold, A.F.

1998-11-01T23:59:59.000Z

419

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

NONE

1995-09-01T23:59:59.000Z

420

Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado  

SciTech Connect (OSTI)

The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the project under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The Federal action triggering the preparation of this EA is the need for DOE to decide whether to release the requested funding to support the construction of the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE's deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

N /A

1999-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Preliminary environmental assessment for the Satellite Power System (SPS). Revision 1. Volume 2. Detailed assessment  

SciTech Connect (OSTI)

The Department of Energy (DOE) is considering several options for generating electrical power to meet future energy needs. The satellite power system (SPS), one of these options, would collect solar energy through a system of satellites in space and transfer this energy to earth. A reference system has been described that would convert the energy to microwaves and transmit the microwave energy via directive antennas to large receiving/rectifying antennas (rectennas) located on the earth. At the rectennas, the microwave energy would be converted into electricity. The potential environmental impacts of constructing and operating the satellite power system are being assessed as a part of the Department of Energy's SPS Concept Development and Evaluation Program. This report is Revision I of the Preliminary Environmental Assessment for the Satellite Power System published in October 1978. It refines and extends the 1978 assessment and provides a basis for a 1980 revision that will guide and support DOE recommendations regarding future SPS development. This is Volume 2 of two volumes. It contains the technical detail suitable for peer review and integrates information appearing in documents referenced herein. The key environmental issues associated with the SPS concern human health and safety, ecosystems, climate, and electromagnetic systems interactions. In order to address these issues in an organized manner, five tasks are reported: (I) microwave-radiation health and ecological effects; (II) nonmicrowave health and ecological effectss; (III) atmospheric effects; (IV) effects on communication systems due to ionospheric disturbance; and (V) electromagnetic compatibility. (WHK)

Not Available

1980-01-01T23:59:59.000Z

422

Environmental assessment in support of proposed voluntary energy conservation standard for new residential buildings  

SciTech Connect (OSTI)

The objective of this environmental assessment (EA) is to identify the potential environmental impacts that could result from the proposed voluntary residential standard (VOLRES) on private sector construction of new residential buildings. 49 refs., 15 tabs.

Hadley, D.L.; Parker, G.B.; Callaway, J.W.; Marsh, S.J.; Roop, J.M.; Taylor, Z.T.

1989-06-01T23:59:59.000Z

423

Integrating life-cycle impact assessment with environmental assessment techniques to satisfy the needs of ISO 14000  

SciTech Connect (OSTI)

After three years of negotiations, the ISO 14000 standards on Environmental Management Tools are now making rapid progress toward completion and international adoption. At the outset of this standardization effort, one methodological tool--life-cycle assessment (LCA)--was singled out for standardization, while the remaining standards were focused on management frameworks and applications--environmental management systems, environmental performance evaluation, environmental labeling and environmental auditing. The reason for singling out LCA was the belief that it could serve as a tool for evaluating the environmental impacts associated with competing production technologies, alternative materials, product options and packaging choices, and for supporting environmental claims in the marketplace. Of particular importance was LCA`s system-wide, cradle-to-grave, scope, which was considered essential for accurate and fair assessments and comparisons. This presentation examines the evolution of LCA standardization within the ISO-14000 process, describes the LCSEA framework and methodology, and explores the role of environmental professionals in this context.

Rhodes, S.P.; Brown, L. [Scientific Certification Systems, Inc., Oakland, CA (United States)

1997-08-01T23:59:59.000Z

424

The U.S. Uranium Mill Tailings Radiation Control Act -- An environmental legacy of the Cold War  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has guided the Uranium Mill Tailings Remedial Action (UMTRA) Project through its first 10 years of successful remediation. The Uranium Mill Tailings Radiation Control Act (UMTRCA), passed in 1978, identified 24 uranium mill tailings sites in need of remediation to protect human health and the environment from the residual contamination resulting from the processing of uranium ore. The UMTRCA was promulgated in two titles: Title 1 and Title 2. This paper describes the regulatory structure, required documentation, and some of the technical approaches used to meet the Act`s requirements for managing and executing the $1.4 billion project under Title 1. Remedial actions undertaken by private industry under Title 2 of the Act are not addressed in this paper. Some of the lessons learned over the course of the project`s history are presented so that other countries conducting similar remedial action activities may benefit.

Watson, C.D.; Nelson, R.A. [Jacobs Engineering Group Inc., Albuquerque, NM (United States). Albuquerque Operations Office; Mann, P. [USDOE Albuquerque Operations Office, NM (United States)

1993-12-31T23:59:59.000Z

425

Uranium Ore Uranium is extracted  

E-Print Network [OSTI]

Milling of Uranium Ore Uranium is extracted from ore with strong acids or bases. The uranium is concentrated in a solid substance called"yellowcake." Chemical Conversion Plants convert the uranium in yellowcake to uranium hexafluoride (UF6 ), a compound that can be made into nuclear fuel. Enrichment

426

Avoiding climate change uncertainties in Strategic Environmental Assessment  

SciTech Connect (OSTI)

This article is concerned with how Strategic Environmental Assessment (SEA) practice handles climate change uncertainties within the Danish planning system. First, a hypothetical model is set up for how uncertainty is handled and not handled in decision-making. The model incorporates the strategies ‘reduction’ and ‘resilience’, ‘denying’, ‘ignoring’ and ‘postponing’. Second, 151 Danish SEAs are analysed with a focus on the extent to which climate change uncertainties are acknowledged and presented, and the empirical findings are discussed in relation to the model. The findings indicate that despite incentives to do so, climate change uncertainties were systematically avoided or downplayed in all but 5 of the 151 SEAs that were reviewed. Finally, two possible explanatory mechanisms are proposed to explain this: conflict avoidance and a need to quantify uncertainty.

Larsen, Sanne Vammen, E-mail: sannevl@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University-Copenhagen, A.C. Meyers Vćnge 15, 2450 Křbenhavn SV (Denmark); Křrnřv, Lone, E-mail: lonek@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University, Skibbrogade 5, 1. Sal, 9000 Aalborg (Denmark)] [The Danish Centre for Environmental Assessment, Aalborg University, Skibbrogade 5, 1. Sal, 9000 Aalborg (Denmark); Driscoll, Patrick, E-mail: patrick@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University-Copenhagen, A.C. Meyers Vćnge 15, 2450 Křbenhavn SV (Denmark)] [The Danish Centre for Environmental Assessment, Aalborg University-Copenhagen, A.C. Meyers Vćnge 15, 2450 Křbenhavn SV (Denmark)

2013-11-15T23:59:59.000Z

427

National Environmental Policy Act Hazards Assessment for the TREAT Alternative  

SciTech Connect (OSTI)

This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

Boyd D. Christensen; Annette L. Schafer

2013-11-01T23:59:59.000Z

428

National Environmental Policy Act Hazards Assessment for the TREAT Alternative  

SciTech Connect (OSTI)

This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

Boyd D. Christensen; Annette L. Schafer

2014-02-01T23:59:59.000Z

429

Environmental assessment -- Proposed neutrino beams at the Main Injector project  

SciTech Connect (OSTI)

The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

NONE

1997-12-01T23:59:59.000Z

430

The Idaho National Engineering and Environmental Laboratory Source Water Assessment  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL's public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

Sehlke, G.

2003-03-17T23:59:59.000Z

431

Wild Horse 69-kV transmission line environmental assessment  

SciTech Connect (OSTI)

Hill County Electric Cooperative Inc. (Hill County) proposes to construct and operate a 69-kV transmission line from its North Gildford Substation in Montana north to the Canadian border. A vicinity project area map is enclosed as a figure. TransCanada Power Corporation (TCP), a Canadian power-marketing company, will own and construct the connecting 69-kV line from the international border to Express Pipeline`s pump station at Wild Horse, Alberta. This Environmental Assessment is prepared for the Department of Energy (DOE) as lead federal agency to comply with the requirements of the National Environmental Policy Act (NEPA), as part of DOE`s review and approval process of the applications filed by Hill County for a DOE Presidential Permit and License to Export Electricity to a foreign country. The purpose of the proposed line is to supply electric energy to a crude oil pump station in Canada, owned by Express Pipeline Ltd. (Express). The pipeline would transport Canadian-produced oil from Hardisty, Alberta, Canada, to Caster, Wyoming. The Express Pipeline is scheduled to be constructed in 1996--97 and will supply crude oil to refineries in Wyoming and the midwest.

NONE

1996-12-01T23:59:59.000Z

432

Transportation risk assessment for the US Department of Energy Environmental Management Programmatic Environmental Impact Statement  

SciTech Connect (OSTI)

In its Programmatic Environmental Impact Statement (PEIS), the Office of Environmental Management (EM) of the US Department of Energy (DOE) is considering a broad range of alternatives for the future management of radioactive and hazardous waste at the facilities of the DOE complex. The alternatives involve facilities to be used for treatment, storage, and disposal of various wastes generated from DOE`s environmental restoration activities and waste management operation. Included in the evaluation are six types of waste (five types of radioactive waste plus hazardous waste), 49 sites, and numerous cases associated with each different alternative for waste management. In general, the alternatives are evaluated independently for each type of waste and reflect decentralized, regionalized, and centralized approaches. Transportation of waste materials is an integral component of the EM PEIS alternatives for waste management. The estimated impact on human health that is associated with various waste transportation activities is an important element leading to a complete appraisal of the alternatives. The transportation risk assessment performed for the EM PEIS is designed to ensure -- through uniform and judicious selection of models, data, and assumptions -- that relative comparisons of risk among the various alternatives are meaningful and consistent.

Chen, S.Y.; Monette, F.A.; Biwer, B.M.; Lazaro, M.A.; Hartmann, H.M.; Policastro, A.J.

1994-08-01T23:59:59.000Z

433

Text Alternative Version: Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the "Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products" webcast, held March 28, 2013.

434

EA-1968 Site-Wide Environmental Assessment of the U.S. Department...  

Broader source: Energy.gov (indexed) [DOE]

National Renewable Energy Laboratory (NREL) South Table Mountain Campus, Golden, Colorado EA-1968 Site-Wide Environmental Assessment of the U.S. Department of Energy National...

435

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado  

SciTech Connect (OSTI)

The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

NONE

1995-05-01T23:59:59.000Z

436

Assessment of the radiological impact of the inactive uranium-mill tailings at Mexican Hat, Utah  

SciTech Connect (OSTI)

High surface soil concentrations of /sup 226/Ra and high above-ground measurements of gamma-ray intensity in the vicinity of the inactive uranium-mill tailings at Mexican Hat show both wind and water erosion of the tailings. The former mill area, occupied by a trade school at the time of this survey, shows a comparatively high level of contamination, probably from unprocessed ore on the surface of the ore storage area near the location of the former mill buildings. However, the estimated health effect of exposure to gamma rays during a 2000-hr work year in the area represents an increase of 0.1% in the risk of death from cancer. Exposure of less than 600 persons within 1.6 km of the tailings to radon daughters results in an estimated 0.2%/year increase in risk of lung cancer.

Haywood, F.F.; Goldsmith, W.A.; Ellis, B.S.; Hubbard, H.M. Jr.; Fox, W.F.; Shinpaugh, W.H.

1980-03-01T23:59:59.000Z

437

Public participation in environmental impact assessment: why, who and how?  

SciTech Connect (OSTI)

Even a cursory glance at the literature on environmental impact assessment (EIA) reveals that public participation is being considered as an integral part of the assessment procedure. Public participation in EIA is commonly deemed to foster democratic policy-making and to render EIA more effective. Yet a closer look at the literature unveils that, beyond this general assertion, opinions of the precise meaning, objectives and adequate representation of public participation in EIA considerably diverge. Against this background, in this article we aim to provide a comprehensive overview of the academic debate on public participation in EIA concerning its meaning, objectives and adequate level of inclusiveness. In so doing, we hope to stimulate a more focused debate on the subject, which is key to advancing the research agenda. Furthermore, this paper may serve as a starting point for practitioners involved in defining the role of public participation in EIA practice. -- Highlights: • There is little reflection on the meaning, objectives and adequate level of inclusiveness of public participation in EIA. • We provide a comprehensive overview of the academic debate on public participation in EIA concerning the meaning, objectives and adequate level of inclusiveness. • Theoretical claims put forth by scholars are contrasted with empirical evidence. • Overview shall stimulate a more focused debate on the subject. • This paper may serve as a starting point for practitioners involved in defining the role of public participation in EIA.

Glucker, Anne N., E-mail: anne.glucker@gmx.de [Copernicus Institute of Sustainable Development, Utrecht University, P.O. Box 80115, 3508 TC (Netherlands); Driessen, Peter P.J., E-mail: p.driessen@uu.nl [Copernicus Institute of Sustainable Development, Utrecht University, P.O. Box 80115, 3508 TC (Netherlands); Kolhoff, Arend, E-mail: akolhoff@eia.nl [Netherlands Commission for Environmental Assessment, P.O. Box 2345, 3500 GH Utrecht (Netherlands)] [Netherlands Commission for Environmental Assessment, P.O. Box 2345, 3500 GH Utrecht (Netherlands); Runhaar, Hens A.C., E-mail: h.a.c.runhaar@uu.nl [Copernicus Institute of Sustainable Development, Utrecht University, P.O. Box 80115, 3508 TC (Netherlands)

2013-11-15T23:59:59.000Z

438

Assessment of doses and and environmental contamination from decommissioning of the  

E-Print Network [OSTI]

Assessment of doses and and environmental contamination from decommissioning of the nuclear contamination from decommissioning of thecontamination from decommissioning of the nuclear facilities - 6 December 2002 #12;PresentationPresentation · Assessment of activity inventory in the nuclear

439

Uranium industry annual 1993  

SciTech Connect (OSTI)

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

440

Research Summary Sustainability impact assessment: tools for environmental, social and economic  

E-Print Network [OSTI]

Research Summary Sustainability impact assessment: tools for environmental, social and economic to produce Sustainability Impact Assessment Tools (SIATs) that will be used to predict the impacts) and will be used as part of the Impact Assessment (IA) process, as set out in the Impact Assessment Guidelines

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria  

SciTech Connect (OSTI)

This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. The work reported herein was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM). Research at ASU, focused on the biogenesis aspects, examined the biogeochemical bases for iron-sulfide production by Desulfovibrio vulgaris, a Gram-negative bacterium that is one of the most-studied strains of sulfate-reducing bacteria. A series of experimental studies were performed to investigate comprehensively important metabolic and environmental factors that affect the rates of sulfate reduction and iron-sulfide precipitation, the mineralogical characteristics of the iron sulfides, and how uranium is reduced or co-reduced by D. vulagaris. FeS production studies revealed that controlling the pH affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3 mM. On the other hand, using solid Fe(III) (hydr)oxides as the iron source led to less productivity of FeS due to their slow and incomplete dissolution and scavenging of sulfide. Furthermore, sufficient free Fe2+, particularly during Fe(III) (hydr)oxide reductions, led to the additional formation of vivianite [Fe3(PO4)2•8(H2O)]. The U(VI) reduction studies revealed that D. vulgaris reduced U(VI) fastest when accumulating sulfide from concomitant sulfate reduction, since direct enzymatic and sulfide-based reductions of U(VI) occurred in parallel. The UO2 produced in presence of ferrous iron was poorly crystalline. At UM, laboratory-scale reactor studies were performed to assess the potential for the predominant abiotic reductants formed under sulfate reducing conditions (SRCs) to: (1) reduce U(VI) in contaminated groundwater sediments), and (2) inhibit the re-oxidation of U(IV) species, and in particular, uraninite (UO2(s)). Under SRCs, mackinawite and aqueous sulfide are the key reductants expected to form. To assess their potential for abiotic reduction of U(VI) species, a series of experiments were performed in which either FeS or S(-II) was added to solutions of U(VI), with the rates of conversion to U(IV) solids monitored as a function of pH, and carbonate and calcium concentration. In the presence of FeS and absence of oxygen or carbonate, U(IV) was completely reduced uraninite. S(-II) was also found to be an effective reductant of aqueous phase U(VI) species and produced uraninite, with the kinetics and extent of reduction depending on geochemical conditions. U(VI) reduction to uraninite was faster under higher S(-II) concentrations but was slowed by an increase in the dissolved Ca or carbonate concentration. Rapid reduction of U(VI) occurred at circumneutral pH but virtually no reduction occurred at pH 10.7. In general, dissolved Ca and carbonate slowed abiotic U(VI) reduction by forming stable Ca-U(VI)-carbonate soluble complexes that are resistant to reaction with aqueous sulfide. To investigate the stability of U(IV) against re-oxidation in the presence of iron sulfides by oxidants in simulated groundwater environments, and to develop a mechanistic understanding the controlling redox processes, continuously-mixed batch reactor (CMBR) and flow-through reactor (CMFR) studies were performed at UM. In these studies a series of experiments were conducted under various oxic groundwater conditions to examine the effectiveness of FeS as an oxygen scavenger to retard UO2 dissolution. The results indicate that FeS is an effective oxygen scavenger, and can lower the rate of oxidative dissolution of UO2 by over an order of magnitude compared to

Hayes, Kim F.; Bi, Yuqiang; Carpenter, Julian; Hyng, Sung Pil; Rittmann, Bruce E.; Zhou, Chen; Vannela, Raveender; Davis, James A.

2014-01-01T23:59:59.000Z

442

Environmental Assessment/Regulatory Impact Review/Final Regulatory Flexibility Analysis  

E-Print Network [OSTI]

Environmental Assessment/Regulatory Impact Review/Final Regulatory Flexibility Analysis (EA . . . . . . . . . . . 11 2.0 NEPA REQUIREMENTS: ENVIRONMENTAL IMPACTS OF THE ALTERNATIVES . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Environmental Impacts of the Alternatives . . . . . 15 2.2 Whale watching activity in Alaska

443

Imnaha Subbasin Assessment May 2004259 1.2.10.3 Key Environmental Correlates  

E-Print Network [OSTI]

, such as roads, buildings, and pollution. Including these fine-scale attributes of an animal's environment whenImnaha Subbasin Assessment May 2004259 1.2.10.3 Key Environmental Correlates Key environmental conditions. Key environmental correlates are the finest scale features that help to define wildlife habitat

444

THE MARS ENVIRONMENTAL COMPATIBILITY ASSESSMENT (MECA) WET CHEMISTRY EXPERIMENT ON THE MARS '01 LANDER  

E-Print Network [OSTI]

THE MARS ENVIRONMENTAL COMPATIBILITY ASSESSMENT (MECA) WET CHEMISTRY EXPERIMENT ON THE MARS '01, Morgantown, WV, 26507 Introduction. The Mars Environmental Compatibility Assessment (MECA) is an instrument of the sensors are compact and rugged and are not subject to radiation damage. Actuator Assembly. The actuator

Kounaves, Samuel P.

445

Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site  

SciTech Connect (OSTI)

Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

1991-09-01T23:59:59.000Z

446

DOE/EA-1607: Final Environmental Assessment for Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium (June 2009)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014of Energy 6-2013,EA - 0942 E N vÎĽCi/cc

447

Environmental Hazards Assessment Program. Volume 4: Annual report, July 1, 1993--June 30, 1994  

SciTech Connect (OSTI)

The Medical University of South Carolina`s (MUSC) vision is to become the premier national resource for medical information and for environmental/health risk assessment. A key component to the success of the many missions of the Environmental Hazards Assessment Program (EHAP) is timely access to large volumes of data. The significant growth in the number of environmental/health information systems that has occurred over the past few years has made data access challenging. This study documents the results of the needs assessment effort conducted to determine the information access and processing requirements of EHAP. The following topics are addressed in this report: immunological consequences of beryllium exposure; assessment of genetic risks to environmental diseases; low dose-rate radiation health effects; environmental risk perception in defined populations; information support and access systems; and environmental medicine and risk communication: curriculum and a professional support network-Department of Family Medicine.

Not Available

1994-09-01T23:59:59.000Z

448

Radiological assessment of residues from uranium and other ore mining and processing - A precondition for decisions on remedial measures  

SciTech Connect (OSTI)

In certain parts of Eastern Germany relics of uranium mining and milling as well as of traditional ore mining and processing may contribute to the environmental contamination and the radiation exposure of the public. Systematic investigations of the situation are the indispensable prerequisite for decisions upon the radiological relevance and remedial actions. In view of the large number and scattering of relics under consideration, a stepwise procedure with increasing intensity of investigation was developed to solve the task effectively and in an appropriate time. For the radiological evaluation following the steps of investigation generic criteria were derived. They are based on a primary reference dose of level (1 mSv/year) and on measureable radioactivity quantities recommend by the German Commission on Radiological Protection for unrestricted/restricted release of contaminated grounds. Applying the criteria established for the verification (gamma dose rate, volume of disposed material, area affected by waste materials) the investigations led to the result that no more than 30% of the objects of former mining have to be classified as {open_quotes}possibly relevant{close_quotes} and have to be investigated further on.

Ettenhuber, E; Roehnsch, W. [Bundesamt fuer Strahlenschutz, Berlin (Germany); Biesold, H. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Colonge (Germany)

1994-12-31T23:59:59.000Z

449

Streamlined approach for environmental restoration plan for corrective action unit 430, buried depleted uranium artillery round No. 1, Tonopah test range  

SciTech Connect (OSTI)

This plan addresses actions necessary for the restoration and closure of Corrective Action Unit (CAU) No. 430, Buried Depleted Uranium (DU) Artillery Round No. 1 (Corrective Action Site No. TA-55-003-0960), a buried and unexploded W-79 Joint Test Assembly (JTA) artillery test projectile with high explosives (HE), at the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Tonopah Test Range (TTR) in south-central Nevada. It describes activities that will occur at the site as well as the steps that will be taken to gather adequate data to obtain a notice of completion from Nevada Division of Environmental Protection (NDEP). This plan was prepared under the Streamlined Approach for Environmental Restoration (SAFER) concept, and it will be implemented in accordance with the Federal Facility Agreement and Consent Order (FFACO) and the Resource Conservation and Recovery Act (RCRA) Industrial Sites Quality Assurance Project Plan.

NONE

1996-09-01T23:59:59.000Z

450

DOE/EA-1535; Uranium Leasing Program Final Programmatic Environmental Assessment  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014of Energy 6-2013,EA - 0942 E N v m o

451

Environmental Assessment DOE/EA-1172 DOE Sale of Surplus Natural and Low Enriched Uranium  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES AND INTER-JURISDICTIONAL CHALLENGESRailroadDecember

452

Implementing Strategic Environmental Assessment of spatial planning tools  

SciTech Connect (OSTI)

After more than a decade from the publication of the European Directive 2001/42/CE (Directive) on Strategic Environmental Assessment (SEA), the design and construction of the interested spatial planning instruments has gone through a variety of changes and integrations in European and in world states. This inhomogeneous panorama can be explained with a pattern of institutional structures that have so far affected the implementation of the Directive. The aim of this paper is to investigate the level of implementation of the Directive in Italy by developing a comparative analysis of the quality of integration of SEA within the design of the spatial coordination plan of a set of Italian provinces. Italian practice is analyzed in the framework of a comparative study of worldwide SEA implementation within spatial and land use planning. The results reveal strengths and weaknesses in SEA implementation at the provincial level and, in particular, the emergence of critical areas of research concerning institutional context, public participation, monitoring, and observatory of the spatial transformations. -- Highlights: • This is a comparative analysis of SEA in strategic spatial planning in Italy. • The adhesion of Provinces to the study is remarkable. • SEA implementation and integration into spatial planning is still moderate. • Participation via consultations should be more widespread. • Monitoring and institution of observatories are still in an infancy stage.

De Montis, Andrea, E-mail: andreadm@uniss.it

2013-07-15T23:59:59.000Z

453

Transportation of radionuclides in urban environs: draft environmental assessment  

SciTech Connect (OSTI)

This report assesses the environmental consequences of the transportation of radioactive materials in densely populated urban areas, including estimates of the radiological, nonradiological, and social impacts arising from this process. The chapters of the report and the appendices which follow detail the methodology and results for each of four causative event categories: incident free transport, vehicular accidents, human errors or deviations from accepted quality assurance practices, and sabotage or malevolent acts. The numerical results are expressed in terms of the expected radiological and economic impacts from each. Following these discussions, alternatives to the current transport practice are considered. Then, the detailed analysis is extended from a limited area of New York city to other urban areas. The appendices contain the data bases and specific models used to evaluate these impacts, as well as discussions of chemical toxicity and the social impacts of radioactive material transport in urban areas. The latter are evaluated for each causative event category in terms of psychological, sociological, political, legal, and organizational impacts. The report is followed by an extensive bibliography covering the many fields of study which were required in performing the analysis.

Finley, N.C.; Aldrich, D.C.; Daniel, S.L.; Ericson, D.M.; Henning-Sachs, C.; Kaestner, P.C.; Ortiz, N.R.; Sheldon, D.D.; Taylor, J.M.

1980-07-01T23:59:59.000Z

454

Power and environmental assessment: Introduction to the special issue  

SciTech Connect (OSTI)

The significance of politics and power dynamics has long been recognised in environmental assessment (EA) research, but there has not been sustained attention to power, either theoretically or empirically. The aim of this special issue is to encourage the EA community to engage more consistently with the issue of power. The introduction represents a ground-clearing exercise intended to clarify the terms of the debate about power in the EA field, and to contribute to the development of a research agenda. Research trends in the field are outlined, and potential analytic and normative lines of inquiry are identified. The contributions to this special issue represent contrasting conceptual and methodological approaches that navigate the analytical and normative terrain of power dynamics in EA. Together, they demonstrate that power cannot be removed from EA policy or practices, and is a necessary research focus for the development of the field. - Highlights: Black-Right-Pointing-Pointer Introduces the themed section on power Black-Right-Pointing-Pointer Provides an overview of the papers in the themed section Black-Right-Pointing-Pointer Identifies research trends and directions for future research.

Cashmore, Matthew, E-mail: cashmore@plan.aau.dk [Danish Centre for Environmental Assessment, Department of Development and Planning, Aalborg University Copenhagen, A.C. Meyers Vaenge 15, DK-2450 Copenhagen SV (Denmark); Richardson, Tim [Department of Development and Planning, Aalborg University, Skibbrogade 5, DK-9000 Aalborg (Denmark)

2013-02-15T23:59:59.000Z

455

Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

Hillesheim, M.; Mosey, G.

2013-11-01T23:59:59.000Z

456

Uranium immobilization and nuclear waste  

SciTech Connect (OSTI)

Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

Duffy, C.J.; Ogard, A.E.

1982-02-01T23:59:59.000Z

457

LM Issues Final Programmatic Environmental Impact Statement on...  

Office of Environmental Management (EM)

LM Issues Final Programmatic Environmental Impact Statement on the Uranium Leasing Program LM Issues Final Programmatic Environmental Impact Statement on the Uranium Leasing...

458

Cover Page for the Final Site-Wide Environmental Assessment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners with Siemens on EnergyUranium Enrichment9 Cover

459

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 2, Appendices: Final environmental impact statement  

SciTech Connect (OSTI)

This volume contains Appendix F--hydrology report, and Appendix G--flood plain and wetland assessment. Contents of the hydrology report include: surface water; ground water; potentially affected hydrogeologic environment-processing site; potentially affected hydrogeologic environment-Cheney reservoir site; potentially affected hydrogeologic environment-Two Road site; and conclusions-ground water.

none,

1986-12-01T23:59:59.000Z

460

Assessment of cold-climate environmental research priorities  

SciTech Connect (OSTI)

The Environmental Protection Agency (EPA) has consistently recognized that cold regions pose unique environmental problems. This report sets forth the conceptual framework and research plans for several high priority research areas. It provides the fundamental basis for implementation of the EPA Cold-Climate Environmental Research Program. This three- to five-year program encompasses both short- and long-term research of high relevance to the EPA and to the cold regions that it serves.

States, J.B.

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium environmental assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EA-1729: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Laboratories, New Mexico, DOEEA-1729 (August 2010) More Documents & Publications EA-1729: Finding of No Significant Impact EIS-0281: Draft Environmental Impact Statement EA-1603...

462

DOE/EA-1247; Environmental Assessment for Electrical Power System...  

Broader source: Energy.gov (indexed) [DOE]

South Technical Area SWEIS Site-Wide Environmental Impact Statement SWPP Storm Water Pollution Prevention TA technical area TCPs traditional cultural properties T&E threatened and...

463

EA-1829: Final Environmental Assessment and Finding of No Significant...  

Broader source: Energy.gov (indexed) [DOE]

DOE completed its Final Environmental Impact Statement for the Phycal Algae Pilot Project,Wahiawa and Kalaeloa, HI (DOEEA-1829). Based on the analyses in the...

464

EA-0372: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the environmental impacts resulting from new or amended energy-efficiency standards for refrigerators, refrigerator-freezers, freezers, small gas furnaces, and television sets as...

465

ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM AT POTENTIAL OTEC SITES  

E-Print Network [OSTI]

the 6th Annual Ocean Thermal Energy Conversion Conference,Conference Washington, D..C Environmental Development Plan (EDP) 1978. Ocean Thermal Energy Conversion.

Wilde, P.

2010-01-01T23:59:59.000Z

466

EA-1120: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Golden, Colorado. EA-1120-FEA-1996.pdf More Documents & Publications EIS-0277: Final Environmental Impact Statement EIS-0026-SA-03: Supplement Analysis EIS-0277: Record of Decision...

467

Joint Environmental Assessment of the California Department of...  

Broader source: Energy.gov (indexed) [DOE]

action significantly affecting the quality of the human environment, within the meaning of the NEPA. Therefore, the preparation of an Environmental Impact Statement is not...

468

Environmental Assessment for the Oak Ridge Science and Technology...  

Broader source: Energy.gov (indexed) [DOE]

and (6) fossil fuels recovery research (e.g., extraction of oil from shale, deep natural gas reserves, etc.). * Environmental R&D - research, development, and commercialization of...

469

Environmental Assessment for the Center for Integrated Nanotechnologie...  

Broader source: Energy.gov (indexed) [DOE]

Environmental Protection Act NESHAP National Emission Standards for Hazardous Air Pollutants NHPA National Historic Preservation Act NMAC New Mexico Administrative Code NMED New...

470

EA-1131: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of Neutron Tube Target Loading Operation, Los Alamos Laboratory, Los Alamos, New Mexico This EA evaluates the environmental impacts of the proposal to relocate the Neutron...

471

Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors along Little Beaver Creek, the Northwest Tributary stream, and a wooded area east of the X-100 facility. However, no Indiana bats were collected during surveys of these areas in 1994 and 1996. Locations A, B, and C do not support suitable habitat for the Indiana bat and would be unlikely to be used by Indiana bats. Indiana bat habitat also does not occur at Proposed Areas 1 and 2. Although Locations A and C contain small wooded areas, the small size and lack of suitable maturity of these areas indicate that they would provide poor habitat for Indiana bats. Trees that may be removed during construction would not be expected to be used for summer roosting by Indiana bats. Disturbance of Indiana bats potentially roosting or foraging in the vicinity of the facility during operations would be very unlikely, and any disturbance would be expected to be negligible. On the basis of these considerations, DOE concludes that the proposed action is not likely to adversely affect the Indiana bat. No critical habitat exists for this species in the action area. Although the timber rattlesnake occurs in the vicinity of the Portsmouth site, it has not been observed on the site. In addition, habitat for the timber rattlesnake is not present on the Portsmouth site. Therefore, DOE concludes that the proposed action would not affect the timber rattlesnake.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

472

EA-1172: Sale of Surplus Natural and Low Enriched Uranium, Piketon, Ohio  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to sell uranium for subsequent enrichment and fabrication into commercial nuclear power reactor fuel.  The uranium is currently stored...

473

Walking the sustainability assessment talk - Progressing the practice of environmental impact assessment (EIA)  

SciTech Connect (OSTI)

Internationally there is a growing demand for environmental impact assessment (EIA) to move away from its traditional focus towards delivering more sustainable outcomes. South Africa is an example of a country where the EIA system seems to have embraced the concept of sustainability. In this paper we test the existing objectives for EIA in South Africa against sustainability principles and then critique the effectiveness of EIA practice in delivering these objectives. The outcome of the research suggests that notwithstanding a strong and explicit sustainability mandate through policy and legislation, the effectiveness of EIA practice falls far short of what is mandated. This shows that further legislative reform is not required to improve effectiveness but rather a focus on changing the behaviour of individual professionals. We conclude by inviting further debate on what exactly practitioners can do to give effect to sustainability in EIA practice.

Morrison-Saunders, Angus, E-mail: a.morrison-saunders@murdoch.edu.au [School of Environmental Sciences and Development, North West University (South Africa); School of Environmental Science, Murdoch University (Australia); Retief, Francois [School of Environmental Sciences and Development, North West University (South Africa)

2012-09-15T23:59:59.000Z

474

Final report to the strategic environmental research and development program on near-net shape casting of uranium-6% niobium alloys  

SciTech Connect (OSTI)

Fabrication methods traditionally used in the fabrication of depleted uranium parts within the Department of Energy (DOE) are extremely wasteful, with only 3% of the starting material actually appearing as finished product. The current effort, funded by the Strategic Environmental Research and Development Program (SERDP) at Los Alamos National Laboratory (LANL), Sandia National Laboratories, Albuquerque (SNLA), and Lawrence Livermore National Laboratory (LLNL), was conceived as a means to drastically reduce this inefficiency and the accompanying waste by demonstrating the technology to cast simple parts close to their final shape in molds made from a variety of materials. As a part of this coordinated study, LLNL was given, and has achieved, two primary objectives: (1) to demonstrate the feasibility of using refractory metal for reusable molds in the production of castings of uranium-6 wt% niobium alloy (U-6Nb); and (2) to demonstrate the utility of detailed simulations of thermal and fluid flow characteristics in the understanding